Science.gov

Sample records for access microbial populations

  1. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  2. Microbial diversity--insights from population genetics.

    PubMed

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  3. Microbial populations in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les

  4. Access to bird population data

    USGS Publications Warehouse

    Martin, E.; Peterjohn, B.G.; Koneff, M.D.

    2001-01-01

    Access to bird population data is critical for effective conservation planning and implementation. Although a tremendous volume of baseline data exists, it is often diffusely distributed and inaccessible to the resource manager and decision maker. A mechanism that facilitates assembly, documentation and delivery of avian data in a user-friendly manner is needed in order to integrate bird-related information resources across agencies and organizations. To address this fundamental need, the National Biological Information Infrastructure (NBII), in partnership with the U.S. Geological Survey's Patuxent Wildlife Research Center and the U.S. Fish and Wildlife Service, is developing a web-based interactive system that will focus on access to bird population and habitat data used in bird management and conservation. This system, known as the NBII Bird Conservation Node, will support planning and evaluation of bird conservation activities within the context of the North American Bird Conservation Initiative (NABCI), a framework for collaboration among organizations interested in bird conservation across North America. Initial development of the NBII Bird Conservation Node will focus on creating a prototype mapping application that will provide interactive access to data from the North American Breeding Bird Survey, the Colonial Waterbird Survey, the Breeding Waterfowl Population and Habitat Survey, and the Atlantic Flyway Mid-winter Waterfowl Survey. This prototype mapping application, to be available on-line at http://www.nbii.gov by Sep 2001, will lay the foundation for establishment of a Migratory Bird Data Center at Patuxent Wildlife Research Center, and will provide an opportunity for linking to and establishing partnerships with other sources of bird population and habitat data available over the Internet.

  5. Monitoring microbial population dynamics at low densities

    NASA Astrophysics Data System (ADS)

    Julou, Thomas; Desprat, Nicolas; Bensimon, David; Croquette, Vincent

    2012-07-01

    We propose a new and simple method for the measurement of microbial concentrations in highly diluted cultures. This method is based on an analysis of the intensity fluctuations of light scattered by microbial cells under laser illumination. Two possible measurement strategies are identified and compared using simulations and measurements of the concentration of gold nanoparticles. Based on this comparison, we show that the concentration of Escherichia coli and Saccharomyces cerevisiae cultures can be easily measured in situ across a concentration range that spans five orders of magnitude. The lowest measurable concentration is three orders of magnitude (1000×) smaller than in current optical density measurements. We show further that this method can also be used to measure the concentration of fluorescent microbial cells. In practice, this new method is well suited to monitor the dynamics of population growth at early colonization of a liquid culture medium. The dynamic data thus obtained are particularly relevant for microbial ecology studies.

  6. Interval scanning photomicrography of microbial cell populations.

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  7. Rapid quantitative profiling of complex microbial populations

    PubMed Central

    Palmer, Chana; Bik, Elisabeth M.; Eisen, Michael B.; Eckburg, Paul B.; Sana, Theodore R.; Wolber, Paul K.; Relman, David A.; Brown, Patrick O.

    2006-01-01

    Diverse and complex microbial ecosystems are found in virtually every environment on earth, yet we know very little about their composition and ecology. Comprehensive identification and quantification of the constituents of these microbial communities—a ‘census’—is an essential foundation for understanding their biology. To address this problem, we developed, tested and optimized a DNA oligonucleotide microarray composed of 10 462 small subunit (SSU) ribosomal DNA (rDNA) probes (7167 unique sequences) selected to provide quantitative information on the taxonomic composition of diverse microbial populations. Using our optimized experimental approach, this microarray enabled detection and quantification of individual bacterial species present at fractional abundances of <0.1% in complex synthetic mixtures. The estimates of bacterial species abundance obtained using this microarray are similar to those obtained by phylogenetic analysis of SSU rDNA sequences from the same samples—the current ‘gold standard’ method for profiling microbial communities. Furthermore, probes designed to represent higher order taxonomic groups of bacterial species reliably detected microbes for which there were no species-specific probes. This simple, rapid microarray procedure can be used to explore and systematically characterize complex microbial communities, such as those found within the human body. PMID:16407321

  8. Accessing the Soil Metagenome for Studies of Microbial Diversity▿ †

    PubMed Central

    Delmont, Tom O.; Robe, Patrick; Cecillon, Sébastien; Clark, Ian M.; Constancias, Florentin; Simonet, Pascal; Hirsch, Penny R.; Vogel, Timothy M.

    2011-01-01

    Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome. PMID:21183646

  9. Environmental Disturbances Decrease the Variability of Microbial Populations within Periphyton

    PubMed Central

    Webert, Kyle C.; McMahon, Katherine D.

    2016-01-01

    ABSTRACT A central pursuit of microbial ecology is to accurately model changes in microbial community composition in response to environmental factors. This goal requires a thorough understanding of the drivers of variability in microbial populations. However, most microbial ecology studies focus on the effects of environmental factors on mean population abundances, rather than on population variability. Here, we imposed several experimental disturbances upon periphyton communities and analyzed the variability of populations within disturbed communities compared with those in undisturbed communities. We analyzed both the bacterial and the diatom communities in the periphyton under nine different disturbance regimes, including regimes that contained multiple disturbances. We found several similarities in the responses of the two communities to disturbance; all significant treatment effects showed that populations became less variable as the result of environmental disturbances. Furthermore, multiple disturbances to these communities were often interactive, meaning that the effects of two disturbances could not have been predicted from studying single disturbances in isolation. These results suggest that environmental factors had repeatable effects on populations within microbial communities, thereby creating communities that were more similar as a result of disturbances. These experiments add to the predictive framework of microbial ecology by quantifying variability in microbial populations and by demonstrating that disturbances can place consistent constraints on the abundance of microbial populations. Although models will never be fully predictive due to stochastic forces, these results indicate that environmental stressors may increase the ability of models to capture microbial community dynamics because of their consistent effects on microbial populations. IMPORTANCE There are many reasons why microbial community composition is difficult to model. For example

  10. Microbial population structures in the deep marine biosphere.

    PubMed

    Huber, Julie A; Mark Welch, David B; Morrison, Hilary G; Huse, Susan M; Neal, Phillip R; Butterfield, David A; Sogin, Mitchell L

    2007-10-05

    The analytical power of environmental DNA sequences for modeling microbial ecosystems depends on accurate assessments of population structure, including diversity (richness) and relative abundance (evenness). We investigated both aspects of population structure for microbial communities at two neighboring hydrothermal vents by examining the sequences of more than 900,000 microbial small-subunit ribosomal RNA amplicons. The two vent communities have different population structures that reflect local geochemical regimes. Descriptions of archaeal diversity were nearly exhaustive, but despite collecting an unparalleled number of sequences, statistical analyses indicated additional bacterial diversity at every taxonomic level. We predict that hundreds of thousands of sequences will be necessary to capture the vast diversity of microbial communities, and that different patterns of evenness for both high- and low-abundance taxa may be important in defining microbial ecosystem dynamics.

  11. Detecting differential growth of microbial populations with Gaussian process regression

    PubMed Central

    Tonner, Peter D.; Darnell, Cynthia L.; Engelhardt, Barbara E.; Schmid, Amy K.

    2017-01-01

    Microbial growth curves are used to study differential effects of media, genetics, and stress on microbial population growth. Consequently, many modeling frameworks exist to capture microbial population growth measurements. However, current models are designed to quantify growth under conditions for which growth has a specific functional form. Extensions to these models are required to quantify the effects of perturbations, which often exhibit nonstandard growth curves. Rather than assume specific functional forms for experimental perturbations, we developed a general and robust model of microbial population growth curves using Gaussian process (GP) regression. GP regression modeling of high-resolution time-series growth data enables accurate quantification of population growth and allows explicit control of effects from other covariates such as genetic background. This framework substantially outperforms commonly used microbial population growth models, particularly when modeling growth data from environmentally stressed populations. We apply the GP growth model and develop statistical tests to quantify the differential effects of environmental perturbations on microbial growth across a large compendium of genotypes in archaea and yeast. This method accurately identifies known transcriptional regulators and implicates novel regulators of growth under standard and stress conditions in the model archaeal organism Halobacterium salinarum. For yeast, our method correctly identifies known phenotypes for a diversity of genetic backgrounds under cyclohexamide stress and also detects previously unidentified oxidative stress sensitivity across a subset of strains. Together, these results demonstrate that the GP models are interpretable, recapitulating biological knowledge of growth response while providing new insights into the relevant parameters affecting microbial population growth. PMID:27864351

  12. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw.

    PubMed

    Tian, Jiang-Hao; Pourcher, Anne-Marie; Bureau, Chrystelle; Peu, Pascal

    2017-01-01

    Solid state anaerobic digestion (SSAD) with leachate recirculation is an appropriate method for the valorization of agriculture residues. Rape straw is a massively produced residue with considerable biochemical methane potential, but its degradation in SSAD remains poorly understood. A thorough study was conducted to understand the performance of rape straw as feedstock for laboratory solid state anaerobic digesters. We investigated the methane production kinetics of rape straw in relation to cellulose accessibility to cellulase and the microbial community. Improving cellulose accessibility through milling had a positive influence on both the methane production rate and methane yield. The SSAD of rape straw reached 60% of its BMP in a 40-day pilot-scale test. Distinct bacterial communities were observed in digested rape straw and leachate, with Bacteroidales and Sphingobacteriales as the most abundant orders, respectively. Archaeal populations showed no phase preference and increased chronologically.

  13. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape

    NASA Astrophysics Data System (ADS)

    Woo, Anthony C.; Brar, Manreetpal S.; Chan, Yuki; Lau, Maggie C. Y.; Leung, Frederick C. C.; Scott, James A.; Vrijmoed, Lilian L. P.; Zawar-Reza, Peyman; Pointing, Stephen B.

    2013-08-01

    The microbial component of outdoor aerosols was assessed along a gradient of urban development from inner-city to rural in the seasonal-tropical metropolis of Hong Kong. Sampling over a continuous one-year period was conducted, with molecular analyses to characterize bacterial and eukaryal microbial populations, immuno-assays to detect microbially-derived allergens and extensive environmental and meteorological observations. The data revealed bio-aerosol populations were not significantly impacted by the level of urban development as measured by anthropogenic pollutants and human population levels, but instead exhibited a strong seasonal trend related to general climatic variables. We applied back-trajectory analysis to establish sources of air masses and this allowed further explanation of urban bio-aerosols largely in terms of summer-marine and winter-continental origins. We also evaluated bio-aerosols for the potential to detect human health threats. Many samples supported bacterial and fungal phylotypes indicative of known pathogenic taxa, together with common indicators of human presence. The occurrence of allergenic endotoxins and beta-glucans generally tracked trends in microbial populations, with levels known to induce symptoms detected during summer months when microbial loading was higher. This strengthens calls for bio-aerosols to be considered in future risk assessments and surveillance of air quality, along with existing chemical and particulate indices.

  14. Cooperation, cheating, and collapse in microbial populations

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    2012-02-01

    Natural populations can suffer catastrophic collapse in response to small changes in environmental conditions, and recovery after such a collapse can be exceedingly difficult. We have used laboratory yeast populations to study proposed early warning signals of impending extinction. Yeast cooperatively breakdown the sugar sucrose, meaning that there is a minimum number of cells required to sustain the population. We have demonstrated experimentally that the fluctuations in the population size increase in magnitude and become slower as the population approaches collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to cheater cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We have confirmed this possibility experimentally by using a cheater yeast strain that lacks the gene encoding the cooperative behavior [1]. However, recent results in the lab demonstrate that the presence of a bacterial competitor may drive cooperation within the yeast population.[4pt] [1] Gore et al, Nature 459, 253 -- 256 (2009)

  15. 2007 Microbial Population Biology (July 22-26, 2007)

    SciTech Connect

    Anthony M. Dean Nancy Ryan Gray

    2008-04-01

    Microbial Population Biology covers a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past meetings have covered topics ranging from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. We anticipate the 2007 meeting being no exception. The final form of the 2007 meeting is yet to be decided, but the following topics are likely to be included: evolutionary emergence of infectious disease and antibiotic resistance, genetic architecture and implications for the evolution of microbial populations, ageing in bacteria, biogeography, evolution of symbioses, the role of microbes in ecosystem function, and ecological genomics.

  16. MICROBIAL POPULATION ANALYSIS AS A MEASURE OF ECOSYSTEM RESTORATION

    EPA Science Inventory

    During a controlled oil spill study in a freshwater wetland, four methods were used to track changes in microbial populations in response to in situ remediation treatments, including nutrient amendments and the removal of surface vegetation. Most probable number (MPN) esimates o...

  17. MICROBIAL POPULATION ANALYSIS AS A MEASURE OF ECOSYSTEM RESTORATION

    EPA Science Inventory

    During a controlled oil spill study in a freshwater wetland, four methods were used to track changes in microbial populations in response to in situ remediation treatments, including nutrient amendments and the removal of surface vegetation. Most probable number (MPN) esimates o...

  18. Microbial Populations in Two Swamp Soils of South Carolina

    Treesearch

    David S. Priester; William R. Harms

    1971-01-01

    Microbial populations were counted in agar-plated samples of two swamp soils collected in summer and winter. Number of aerobic and anaerobic microorganisms differed significantly among the soils and between seasons. Alluvial soil from the river swamp was high in organic matter, N, K, Ca, and pH and averaged 88 million microorganisms per gram over the growing season....

  19. Evaluation of DNA extraction methods of rumen microbial populations.

    PubMed

    Villegas-Rivera, Gabriela; Vargas-Cabrera, Yevani; González-Silva, Napoleón; Aguilera-García, Florentino; Gutiérrez-Vázquez, Ernestina; Bravo-Patiño, Alejandro; Cajero-Juárez, Marcos; Baizabal-Aguirre, Víctor Manuel; Valdez-Alarcón, Juan José

    2013-02-01

    The dynamism of microbial populations in the rumen has been studied with molecular methods that analyze single nucleotide polymorphisms of ribosomal RNA gene fragments (rDNA). Therefore DNA of good quality is needed for this kind of analysis. In this work we report the evaluation of four DNA extraction protocols (mechanical lysis or chemical lysis with CTAB, ethylxanthogenate or DNAzol(®)) from ruminal fluid. The suitability of two of these protocols (mechanical lysis and DNAzol(®)) was tested on single-strand conformation polymorphism (SSCP) of rDNA of rumen microbial populations. DNAzol(®) was a simple method that rendered good integrity, yield and purity. With this method, subtle changes in protozoan populations were detected in young bulls fed with slightly different formulations of a supplement of multinutritional blocks of molasses and urea. Sequences related to Eudiplodinium maggi and a non-cultured Entodiniomorphid similar to Entodinium caudatum, were related to major fluctuating populations in an SSCP assay.

  20. Microbial population dynamics by digital in-line holographic microscopy

    NASA Astrophysics Data System (ADS)

    Frentz, Zak; Kuehn, Seppe; Hekstra, Doeke; Leibler, Stanislas

    2010-08-01

    Measurements of population dynamics are ubiquitous in experiments with microorganisms. Studies with microbes elucidating adaptation, selection, and competition rely on measurements of changing populations in time. Despite this importance, quantitative methods for measuring population dynamics microscopically, with high time resolution, across many replicates remain limited. Here we present a new noninvasive method to precisely measure microbial spatiotemporal population dynamics based on digital in-line holographic (DIH) microscopy. Our inexpensive, replicate DIH microscopes imaged hundreds of swimming algae in three dimensions within a volume of several microliters on a time scale of minutes over periods of weeks.

  1. Microbial population dynamics by digital in-line holographic microscopy

    PubMed Central

    Frentz, Zak; Kuehn, Seppe; Hekstra, Doeke; Leibler, Stanislas

    2010-01-01

    Measurements of population dynamics are ubiquitous in experiments with microorganisms. Studies with microbes elucidating adaptation, selection, and competition rely on measurements of changing populations in time. Despite this importance, quantitative methods for measuring population dynamics microscopically, with high time resolution, across many replicates remain limited. Here we present a new noninvasive method to precisely measure microbial spatiotemporal population dynamics based on digital in-line holographic (DIH) microscopy. Our inexpensive, replicate DIH microscopes imaged hundreds of swimming algae in three dimensions within a volume of several microliters on a time scale of minutes over periods of weeks. PMID:20815617

  2. Minimal models of growth and decline of microbial populations.

    PubMed

    Juška, Alfonsas

    2011-01-21

    Dynamics of growth and decline of microbial populations were analysed and respective models were developed in this investigation. Analysis of the dynamics was based on general considerations concerning the main properties of microorganisms and their interactions with the environment which was supposed to be affected by the activity of the population. Those considerations were expressed mathematically by differential equations or systems of the equations containing minimal sets of parameters characterizing those properties. It has been found that: (1) the factors leading to the decline of the population have to be considered separately, namely, accumulation of metabolites (toxins) in the medium and the exhaustion of resources; the latter have to be separated again into renewable ('building materials') and non-renewable (sources of energy); (2) decline of the population is caused by the exhaustion of sources of energy but no decline is predicted by the model because of the exhaustion of renewable resources; (3) the model determined by the accumulation of metabolites (toxins) in the medium does not suggest the existence of a separate 'stationary phase'; (4) in the model determined by the exhaustion of energy resources the 'stationary' and 'decline' phases are quite discernible; and (5) there is no symmetry in microbial population dynamics, the decline being slower than the rise. Mathematical models are expected to be useful in getting insight into the process of control of the dynamics of microbial populations. The models are in agreement with the experimental data.

  3. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  4. Molecular characterization of microbial population dynamics during sildenafil citrate degradation.

    PubMed

    De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda

    2009-02-01

    Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to

  5. Effect of Gamma radiation on microbial population of natural casings

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Fraqueza, M. J.

    1998-06-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganisms, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation of the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestines and colon) and dry beef casings were irradiated in a Cobalt 60 source with with absorbed doses of 1,2,5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy.

  6. Coupling between evolutionary and population dynamics in experimental microbial populations

    NASA Astrophysics Data System (ADS)

    Sanchez, Alvaro; Gore, Jeff

    2012-02-01

    It has been often been assumed that population dynamics and evolutionary dynamics occur at such different timescales that they are effectively de-coupled. This view has been challenged recently, due to observations of evolutionary changes occurring in short timescales. This has led to a growing interest in understanding eco-evolutionary dynamics of populations. In this context, recent theoretical models have predicted that coupling between population dynamics and evolutionary dynamics can have important effects for the evolution and stability of cooperation, and lead to extremely rich and varied dynamics. Here, we report our investigation of the eco-evolutionary dynamics of a cooperative social behavior, sucrose metabolism, in experimental yeast populations. We have devised an experimental strategy to visualize trajectories in the phase space formed by the population size (N) and the fraction of cooperator cells in the population (f). Our measurements confirm a strong coupling between evolutionary and population dynamics, and allowed us to characterize the bifurcation plots. We used this approach to investigate how sudden environmental changes affect the stability and recovery of populations, and therefore the stability of cooperation.

  7. Vascular Access in the Pediatric Population.

    PubMed

    Church, Joseph T; Jarboe, Marcus D

    2017-02-01

    Vascular access procedures are an important and frequent component of the day-to-day practice of the pediatric surgeon. Most access procedures can be performed percutaneously via Seldinger or modified Seldinger technique and are aided by technology, such as ultrasound and fluoroscopy. Complications, such as infection, do occur, and the pediatric surgeon should be able to diagnose and treat these when they arise. The indications, techniques, and complications of vascular access are covered in this article. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Biogeography of Metabolically Active Microbial Populations within the Subseafloor Biosphere

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Shepard, A.; St. Peter, C.; Mills, H. J.

    2011-12-01

    Microbial life in deep marine sediments is widespread, metabolically active and diverse. Evidence of prokaryotic communities in sediments as deep as 800 m below the seafloor (mbsf) have been found. By recycling carbon and nutrients through biological and geochemical processes, the deep subsurface has the potential to remain metabolically active over geologic time scales. While a vast majority of the subsurface biosphere remains under studied, recent advances in molecular techniques and an increased focus on microbiological sampling during IODP expeditions have provided the initial steps toward better characterizations of the microbial communities. Coupling of geochemistry and RNA-based molecular analysis is essential to the description of the active microbial populations within the subsurface biosphere. Studies based on DNA may describe the taxa and metabolic pathways from the total microbial community within the sediment, whether the cells sampled were metabolically active, quiescent or dead. Due to a short lifespan within a cell, only an RNA-based analysis can be used to identify linkages between active populations and observed geochemistry. This study will coalesce and compare RNA sequence and geochemical data from Expeditions 316 (Nankai Trough), 320 (Pacific Equatorial Age Transect), 325 (Great Barrier Reef) and 329 (South Pacific Gyre) to evaluate the biogeography of microbial lineages actively altering the deep subsurface. The grouping of sediments allows for a wide range of geochemical environments to be compared, including two environments limited in organic carbon. Significant to this study is the use of similar extraction, amplification and simultaneous 454 pyrosequencing on all sediment populations allowing for robust comparisons with similar protocol strengths and biases. Initial trends support previously described reduction of diversity with increasing depth. The co-localization of active reductive and oxidative lineages suggests a potential cryptic

  9. Self-driven jamming in growing microbial populations

    NASA Astrophysics Data System (ADS)

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation, the colonization of porous media, and the invasion of biological tissues. Although mechanical forces have been characterized at the single-cell level, it remains elusive how collective pushing forces result from the combination of single-cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the micro-environment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling.

  10. Self-Driven Jamming in Growing Microbial Populations

    PubMed Central

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-01-01

    In natural settings, microbes tend to grow in dense populations [1–4] where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation [5–7], the colonization of porous media [8, 9], and the invasion of biological tissues [10–12]. Although mechanical forces have been characterized at the single cell level [13–16], it remains elusive how collective pushing forces result from the combination of single cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter [17–20]. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the microenvironment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling [21–26]. PMID:27642362

  11. Self-Driven Jamming in Growing Microbial Populations.

    PubMed

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations [1-4] where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation [5-7], the colonization of porous media [8, 9], and the invasion of biological tissues [10-12]. Although mechanical forces have been characterized at the single cell level [13-16], it remains elusive how collective pushing forces result from the combination of single cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter [17-20]. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the microenvironment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling [21-26].

  12. CRISPR-Induced Distributed Immunity in Microbial Populations

    PubMed Central

    Young, Mark J.; Weitz, Joshua S.; Whitaker, Rachel J.

    2014-01-01

    In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities. PMID:25000306

  13. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.

    PubMed

    Ki, D; Park, J; Lee, J; Yoo, K

    2008-01-01

    In this study, we performed microbial community analysis to examine microbial diversity and community structure in microbial fuel cells (MFCs) seeded with activated sludge from a municipal wastewater treatment plant in South Korea. Because anode-attached biofilm populations are particularly important in electricity transfer, the ecological characteristics of anode-attached biofilm microbes were explored and compared with those of microbes grown in suspension in an anode chamber. 16S rDNA-based community analysis showed that the degree of diversity in anode-attached biofilms was greater than that of the originally seeded activated sludge as well as that of the suspension-grown microbes in the anode bottle. In addition, Bacteroidetes and Clostridia grew preferentially during MFC electricity generation. Further phylogenetic analysis revealed that the anode biofilm populations described in this work are phylogenetically distant from previously characterized MFC anode biofilm microbes. These findings suggest that a phylogenetically diverse set of microbes can be involved in the electricity generation of MFC anode compartments, and that increased microbial diversity in anode biofilms may help to stabilize electricity production in the MFC. Copyright (c) IWA Publishing 2008.

  14. Population Distribution, Settlement Patterns and Accessibility across Africa in 2010

    PubMed Central

    Linard, Catherine; Gilbert, Marius; Snow, Robert W.; Noor, Abdisalan M.; Tatem, Andrew J.

    2012-01-01

    The spatial distribution of populations and settlements across a country and their interconnectivity and accessibility from urban areas are important for delivering healthcare, distributing resources and economic development. However, existing spatially explicit population data across Africa are generally based on outdated, low resolution input demographic data, and provide insufficient detail to quantify rural settlement patterns and, thus, accurately measure population concentration and accessibility. Here we outline approaches to developing a new high resolution population distribution dataset for Africa and analyse rural accessibility to population centers. Contemporary population count data were combined with detailed satellite-derived settlement extents to map population distributions across Africa at a finer spatial resolution than ever before. Substantial heterogeneity in settlement patterns, population concentration and spatial accessibility to major population centres is exhibited across the continent. In Africa, 90% of the population is concentrated in less than 21% of the land surface and the average per-person travel time to settlements of more than 50,000 inhabitants is around 3.5 hours, with Central and East Africa displaying the longest average travel times. The analyses highlight large inequities in access, the isolation of many rural populations and the challenges that exist between countries and regions in providing access to services. The datasets presented are freely available as part of the AfriPop project, providing an evidence base for guiding strategic decisions. PMID:22363717

  15. Obtaining vascular access in the obese patient population.

    PubMed

    Houston, Patricia A

    2013-01-01

    Obese patients are a highly specialized population to manage within the health care system. Excess weight contributes to changes in patients' anatomy and physiology. Specialized equipment, including vascular access devices, is required to accommodate their needs. Research has shown that traditional methods of obtaining vascular access can prove unfruitful in the obese patient population. Choosing the most appropriate device in conjunction with practicing the most effective technique will improve vascular access outcomes for obese patients.

  16. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms.

  17. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    PubMed Central

    Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719

  18. Population Education Accessions List, September-December 1996.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This issue of the Population Education Accessions List is an output from United Nation's Educational Social and Cultural Organization's (UNESCO) computerized bibliographic database. It categorizes entries into three parts. Part I, Population Education, consists of titles that address various aspects of population education arranged by country in…

  19. Mechanisms of DNA utilization by estuarine microbial populations

    SciTech Connect

    Paul, J.H.; DeFlaun, M.F.; Jeffrey, W.H.

    1988-01-01

    The mechanisms of utilization of DNA by estarine microbial populations has been investigated by competition experiments and DNA uptake studies. Deoxyribonucleoside monophosphates (dNMP's), thymidine, thymine, and RNA all competed with the uptake of radioactivity from (3H)DNA in 4-hour incubations. In fifteen-minute incubations, dNMP's had no effect or stimulated (3H)DNA binding, depending on concentration. Uptake of radioactivity from (3H)DNA resulted in little accumulation of TCA-soluble intracellular radioactivity, and was inhibited by the DNA synthesis inhibitor novobiocin. Molecular fractionation studies indicated that some radioactivity from (3H)DNA appeared in the RNA (10 and 30% at 4 and 24 h respectively) and protein (approximately 3%) fractions. The ability for esturine microbial assemblages to transport gene sequences was investigated by plasmid uptake studies followed by molecular probing.

  20. The bacteriocin bactofencin A subtly modulates gut microbial populations.

    PubMed

    Guinane, Caitriona M; Lawton, Elaine M; O'Connor, Paula M; O'Sullivan, Órla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2016-08-01

    The diverse and dynamic microbiota of the gastrointestinal tract represents a vast source of bioactive substances. These include bacteriocins, which are antimicrobial peptides with the potential to modulate gut populations to impact positively on human health. Although several gut-derived bacteriocins have been isolated, there remain only a few exceptional studies in which their influence on microbial populations within the gut has been investigated. To facilitate such investigations, in vitro faecal fermentation systems can be used to simulate the anaerobic environment of the colon. In this instance, such a system was employed to explore the impact of bactofencin A, a novel broad spectrum class IId bacteriocin produced by gut isolates of Lactobacillus salivarius, on intestinal populations and overall microbial diversity. The study reveals that, although bactofencin A is a broad spectrum bacteriocin, it has a relatively subtle influence on intestinal communities, with a potentially positive impact on anaerobic populations such as Bacteroides, Clostridium and Bifidibacterium spp. The strategy taken is an important first step in investigating the merits of using bactofencin A to manipulate the gut microbiota in a beneficial way for health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optimization modeling to maximize population access to comprehensive stroke centers

    PubMed Central

    Branas, Charles C.; Kasner, Scott E.; Wolff, Catherine; Williams, Justin C.; Albright, Karen C.; Carr, Brendan G.

    2015-01-01

    Objective: The location of comprehensive stroke centers (CSCs) is critical to ensuring rapid access to acute stroke therapies; we conducted a population-level virtual trial simulating change in access to CSCs using optimization modeling to selectively convert primary stroke centers (PSCs) to CSCs. Methods: Up to 20 certified PSCs per state were selected for conversion to maximize the population with 60-minute CSC access by ground and air. Access was compared across states based on region and the presence of state-level emergency medical service policies preferentially routing patients to stroke centers. Results: In 2010, there were 811 Joint Commission PSCs and 0 CSCs in the United States. Of the US population, 65.8% had 60-minute ground access to PSCs. After adding up to 20 optimally located CSCs per state, 63.1% of the US population had 60-minute ground access and 86.0% had 60-minute ground/air access to a CSC. Across states, median CSC access was 55.7% by ground (interquartile range 35.7%–71.5%) and 85.3% by ground/air (interquartile range 59.8%–92.1%). Ground access was lower in Stroke Belt states compared with non–Stroke Belt states (32.0% vs 58.6%, p = 0.02) and lower in states without emergency medical service routing policies (52.7% vs 68.3%, p = 0.04). Conclusion: Optimal system simulation can be used to develop efficient care systems that maximize accessibility. Under optimal conditions, a large proportion of the US population will be unable to access a CSC within 60 minutes. PMID:25740858

  2. [Vulnerable populations and access to care].

    PubMed

    Castello, Christine; Michard-Lenoir, Anne-Pascale; Allemand, Robert

    2012-01-01

    Precariousness is a very complex concept that brings together a diverse and fragmented population. The interest in comparing views and opinions is clear for understanding of this phenomenon. A physician in the paediatric emergency unit of a hospital and the head of a "Medecins du Monde" branch evoke the different faces of precariousness. A difficult and sometimes poignant reality, which health care providers must try to cope with.

  3. Multi-population model of a microbial electrolysis cell.

    PubMed

    Pinto, R P; Srinivasan, B; Escapa, A; Tartakovsky, B

    2011-06-01

    This work presents a multi-population dynamic model of a microbial electrolysis cell (MEC). The model describes the growth and metabolic activity of fermentative, electricigenic, methanogenic acetoclastic, and methanogenic hydrogenophilic microorganisms and is capable of simulating hydrogen production in a MEC fed with complex organic matter, such as wastewater. The model parameters were estimated with the experimental results obtained in continuous flow MECs fed with acetate or synthetic wastewater. Following successful model validation with an independent data set, the model was used to analyze and discuss the influence of applied voltage and organic load on hydrogen production and COD removal.

  4. Metabolic Differences in Microbial Cell Populations Revealed by Nanophotonic Ionization

    SciTech Connect

    Walker, Bennett; Antonakos, Cory; Retterer, Scott T; Vertes, Akos

    2013-01-01

    ellular differences are linked to cell differentiation, the proliferation of cancer and to the development of drug resistance in microbial infections. Due to sensitivity limitations, however, large- scale metabolic analysis at the single cell level is only available for cells significantly larger in volume than Saccharomyces cerevisiae (~30 fL). Here we demonstrate that by a nanophotonic ionization platform and mass spectrometry, over one hundred up to 108 metabolites, or up to 18% of the known S. cerevisiae metabolome, can be identified in very small cell populations (n < 100). Under ideal conditions, r Relative quantitation of up to 4% of the metabolites is achieved at the single cell level.

  5. Microbial Population Changes During Bioremediation of an Experimental Oil Spill

    SciTech Connect

    Chang, Y.J.; Davis, G.A.; Macnaughton, S.J.; Stephen, J.R.; Venosa, A.D.; White, D.C.

    1998-08-08

    A field experiment was conducted in Delaware (USA) to evaluate three crude oil bioremediation techniques. Four treatments were studied: no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum. The microbial populations were monitored by standard MPN techniques, PLFA profile analysis, and 16S rDNA DGGE analysis for species definition. Viable MPN estimates showed high but steadily declining microbial numbers and no significant differences among treatments during the 14-weeks. Regarding the PLFA results, the communities shifted over the 14-week period from being composed primarily of eukaryotes to Gram-negative bacteria. The Gram-negative communities shifted from the exponential to the stationary phase of growth after week 0. All Gram-negative communities showed evidence of environmental stress. The 16S rDNA DGGE profile of all plots revealed eight prominent bands at time zero. The untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. The original banding pattern disappeared rapidly in all oiled plots, indicating that the dominant species diversity changed and increased substantially over 14 weeks. The nature of this change was altered by nutrient-addition and the addition of the indigenous inoculum.

  6. Population dynamics of microbial communities in the zebrafish gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Hampton, Jennifer; Rolig, Annah; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    2015-03-01

    The vertebrate intestine is home to a diverse microbial community, which plays a crucial role in the development and health of its host. Little is known about the population dynamics and spatial structure of this ecosystem, including mechanisms of growth and interactions between species. We have constructed an experimental model system with which to explore these issues, using initially germ-free larval zebrafish inoculated with defined communities of fluorescently tagged bacteria. Using light sheet fluorescence microscopy combined with computational image analysis we observe and quantify the entire bacterial community of the intestine during the first 24 hours of colonization, during which time the bacterial population grows from tens to tens of thousands of bacteria. We identify both individual bacteria and clusters of bacteria, and quantify the growth rate and spatial distribution of these distinct subpopulations. We find that clusters of bacteria grow considerably faster than individuals and are located in specific regions of the intestine. Imaging colonization by two species reveals spatial segregation and competition. These data and their analysis highlight the importance of spatial organization in the establishment of gut microbial communities, and can provide inputs to physical models of real-world ecological dynamics.

  7. Monitoring Spatial Segregation in Surface Colonizing Microbial Populations

    PubMed Central

    Hölscher, Theresa; Dragoš, Anna; Gallegos-Monterrosa, Ramses; Martin, Marivic; Mhatre, Eisha; Richter, Anne; Kovács, Ákos T.

    2016-01-01

    Microbes provide an intriguing system to study social interaction among individuals within a population. The short generation times and relatively simple genetic modification procedures of microbes facilitate the development of the sociomicrobiology field. To assess the fitness of certain microbial species, selected strains or their genetically modified derivatives within one population, can be fluorescently labelled and tracked using microscopy adapted with appropriate fluorescence filters. Expanding colonies of diverse microbial species on agar media can be used to monitor the spatial distribution of cells producing distinctive fluorescent proteins. Here, we present a detailed protocol for the use of green- and red-fluorescent protein producing bacterial strains to follow spatial arrangement during surface colonization, including flagellum-driven community movement (swarming), exopolysaccharide- and hydrophobin-dependent growth mediated spreading (sliding), and complex colony biofilm formation. Non-domesticated isolates of the Gram-positive bacterium, Bacillus subtilis can be utilized to scrutinize certain surface spreading traits and their effect on two-dimensional distribution on the agar-solidified medium. By altering the number of cells used to initiate colony biofilms, the assortment levels can be varied on a continuous scale. Time-lapse fluorescent microscopy can be used to witness the interaction between different phenotypes and genotypes at a certain assortment level and to determine the relative success of either. PMID:27842347

  8. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  9. Programming microbial population dynamics by engineered cell-cell communication

    PubMed Central

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2013-01-01

    A major aim of synthetic biology is to program novel cellular behaviors using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behaviors at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications. PMID:21681967

  10. Characterization of Microbial Population Shifts during Sample Storage.

    PubMed

    Mills, Heath J; Reese, Brandi Kiel; Peter, Cruz St

    2012-01-01

    The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.

  11. Characterization of Microbial Population Shifts during Sample Storage

    PubMed Central

    Mills, Heath J.; Reese, Brandi Kiel; Peter, Cruz St.

    2011-01-01

    The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at −80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations. PMID:22363327

  12. Eco-evolutionary feedbacks can rescue cooperation in microbial populations

    PubMed Central

    Moreno-Fenoll, Clara; Cavaliere, Matteo; Martínez-García, Esteban; Poyatos, Juan F.

    2017-01-01

    Bacterial populations whose growth depends on the cooperative production of public goods are usually threatened by the rise of cheaters that do not contribute but just consume the common resource. Minimizing cheater invasions appears then as a necessary mechanism to maintain these populations. However, that invasions result instead in the persistence of cooperation is a prospect that has yet remained largely unexplored. Here, we show that the demographic collapse induced by cheaters in the population can actually contribute to the rescue of cooperation, in a clear illustration of how ecology and evolution can influence each other. The effect is made possible by the interplay between spatial constraints and the essentiality of the shared resource. We validate this result by carefully combining theory and experiments, with the engineering of a synthetic bacterial community in which the public compound allows survival to a lethal stress. The characterization of the experimental system identifies additional factors that can matter, like the impact of the lag phase on the tolerance to stress, or the appearance of spontaneous mutants. Our work explains the unanticipated dynamics that eco-evolutionary feedbacks can generate in microbial communities, feedbacks that reveal fundamental for the adaptive change of ecosystems at all scales. PMID:28211914

  13. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    EPA Science Inventory

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  14. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    EPA Science Inventory

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  15. Population Education Accessions List. January-December 1993.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This document consists of the two issues of the bi-annual Population Education Accessions list, an output from a computerized bibliographic database. The first issue lists the entries from January to June, and the second issue lists the entries from July to December. The issues categorize the total of 387 entries into four parts. Part I,…

  16. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System

    PubMed Central

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H2S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H2S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH3-N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H2S, CH4, and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems. PMID:28261160

  17. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    PubMed

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H2S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H2S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH3-N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H2S, CH4, and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  18. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa.

    PubMed

    Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar

    2013-07-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.

  19. Microbial Population of Feedlot Waste and Associated Sites

    PubMed Central

    Rhodes, R. A.; Hrubant, G. R.

    1972-01-01

    A quantitative determination was made every 2 months for a year of the microflora of beef cattle waste and runoff at a medium-sized midwestern feedlot. Counts were obtained for selected groups of organisms in waste taken from paved areas of pens cleaned daily and, therefore, reflect the flora of raw waste. Overall, in terms of viable count per gram dry weight, the feedlot waste contained 1010 total organisms, 109 anaerobes, 108 gram-negative bacteria, 107 coliforms, 106 sporeformers, and 105 yeasts, fungi, and streptomycetes. The specific numbers and pattern of these groups of organisms varied only slightly during the study in spite of a wide variation in weather. Data indicate that little microbial growth occurs in the waste as it exists in the feedlot. Runoff from the pens contained the same general population pattern but with greater variation attributable to volume of liquid. Comparable determinations of an associated field disposal area (before and after cropping), stockpiled waste, and elevated dirt areas in the pens indicate that fungi, and especially streptomycetes, are the aerobic organisms most associated with final stabilization of the waste. Yeasts, which are the dominant type of organism in the ensiled corn fed the cattle, do not occur in large numbers in the animal waste. Large ditches receiving runoff and subsurface water from the fields have a population similar to the runoff but with fewer coliforms. PMID:16349931

  20. Characterization of microbial populations associated with natural swimming pools.

    PubMed

    Casanovas-Massana, Arnau; Blanch, Anicet R

    2013-03-01

    Natural swimming pools are artificially created bodies of water that are intended for human recreational bathing and have no chemical disinfection treatment. The microbial populations in four private natural swimming pools were analysed to assess the typical microbiological parameters, establish the origin of faecal contamination in the water, and predict the behaviour of larger systems that are open to the public. For this purpose, faecal coliforms, E. coli, enterococci, aerobic heterotrophic bacteria and Pseudomonas aeruginosa were enumerated in summer and winter. Moreover, faecal coliforms and enterococci populations were biochemically phenotyped with the Phene-Plate System, the diversity and similarity indexes were calculated and the isolates were identified. Three of the four natural pools exceeded the E. coli or enterococci limits stated in the recommendations for natural swimming pools. The concentrations of P. aeruginosa and aerobic heterotrophic bacteria were acceptable. The results suggest that wildlife was an important source of faecal pollution in the pools. Since there is a lack of regulations on these systems, and the health risks are higher than in conventional swimming pools, further research is needed to establish the parameters for ensuring safe bathing in private and public natural swimming pools. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    PubMed Central

    Tait, Alastair W.; Gagen, Emma J.; Wilson, Siobhan A.; Tomkins, Andrew G.; Southam, Gordon

    2017-01-01

    with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall. PMID:28713354

  2. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers.

    PubMed

    Tait, Alastair W; Gagen, Emma J; Wilson, Siobhan A; Tomkins, Andrew G; Southam, Gordon

    2017-01-01

    with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall.

  3. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  4. Self-Driven Jamming of Growing Microbial Populations

    NASA Astrophysics Data System (ADS)

    Schreck, Carl; Delarue, Morgan; Gneiwek, Pawel; Hallatschek, Oskar

    When cells grow in confined spaces, they assemble into dense populations that interact both chemically and physically. Although in recent years scientists have uncovered a previously hidden layer of mechanical regulation in mammalian tissues that impacts gene expression and development, little is known about the consequences of mechanical constraints on single-celled microbes. This is largely due to a lack of appropriate culturing techniques and accurate computational models. Using physically explicit computer models that are developed alongside microfluidic experiments, we address two fundamental questions: (1) what structures self-assemble in confined geometries due to the cell growth and division process? and (2) how do those structures and associated stresses feed back on to cell physiology? We find that microbial growth in confinement can lead to jamming, heterogeneous stress fields, and intermittent flow that in turn result in spatially and temporally heterogeneous physiological responses. With computer simulations, we further explore the differences between this 'active' flow that is driven internally by cell growth and 'inactive' flow, such as shear and hopper flow, that is driven externally.

  5. Enumeration of Microbial Populations in Radioactive Environments by Epifluorescence Microscopy

    SciTech Connect

    Pansoy-Hjelvik, M.E.A.; Strietelmeierr, B.A.; Paffett, M.T.; Kitten, S.M.; Leonard, P.A.; Dunn, M.; Gillow, J.B.; Dodge, C.J.; Villarreal, R.; Triay, I.; Francis, A.J.

    1996-12-02

    Epifluorescence microscopy was utilized to enumerate halophilic bacterial populations in two studies involving inoculated, actual radioactive waste/brine mixtures and pure brine solutions. The studies include an initial set of experiments designed to elucidate potential transformations of actinide-containing wastes under salt-repository conditions, including microbially mediated changes. The first study included periodic enumeration of bacterial populations of a mixed inoculum initially added to a collection of test containers. The contents of the test containers are the different types of actual radioactive waste that could potentially be stored in nuclear waste repositories in a salt environment. The transuranic waste was generated from materials used in actinide laboratory research. The results show that cell numbers decreased with time. Sorption of the bacteria to solid surfaces in the test system is discussed as a possible mechanism for the decrease in cell numbers. The second study was designed to determine radiological and/or chemical effects of {sup 239}Pu, {sup 243}Am, {sup 237}Np, {sup 232}Th and {sup 238}U on the growth of pure and mixed anaerobic, denitrifying bacterial cultures in brine media. Pu, Am, and Np isotopes at concentrations of <=1 x 10{sup {minus}5}M, <=5 x 10{sup {minus}6}M and <=5 x 10{sup {minus}4}M respectively, and Th and U isotopes <=4 x 10{sup {minus}3}M were tested in these media. The results indicate that high actinide concentration affected both the bacterial growth rate and morphology. However, relatively minor effects from Am were observed at all tested concentrations with the pure culture.

  6. Enumeration of microbial populations in radioactive environments by epifluorescence microscopy

    SciTech Connect

    Pansoy-Hjelvik, M.E.; Strietelmeier, B.A.; Paffett, M.T.

    1997-01-01

    Epifluorescence microscopy was utilized to enumerate halophilic bacterial populations in two studies involving inoculated, actual waste/brine mixtures and pure brine solutions. The studies include an initial set of experiments designed to elucidate potential transformations of actinide-containing wastes under salt-repository conditions, including microbially mediated changes. The first study included periodic enumeration of bacterial populations of a mixed inoculum initially added to a collection of test containers. The contents of the test containers are the different types of actual radioactive waste that could potentially be stored in nuclear waste repositories in a salt environment. The transuranic waste was generated from materials used in actinide laboratory research. The results show that cell numbers decreased with time. Sorption of the bacteria to solid surfaces in the test system is discussed as a possible mechanism for the decrease in cell numbers. The second study was designed to determine radiological and/or chemical effects of {sup 239}Pu, {sup 243}Am, {sup 237}Np, {sup 232}Th and {sup 238}U on the growth of pure and mixed anaerobic, denitrifying bacterial cultures in brine media. Pu, Am, and Np isotopes at concentrations of {le}1x10{sup -6} M , {le}5x10{sup -6} M and {le}5x10{sup -4}M respectively, and Th and U isotopes {le}4x10{sup -3}M were tested in these media. The results indicate that high concentrations of certain actinides affected both the bacterial growth rate and morphology. However, relatively minor effects from Am were observed at all tested concentrations with the pure culture.

  7. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    NASA Astrophysics Data System (ADS)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  8. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-01-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations. PMID:27666090

  9. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity.

    PubMed

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-26

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  10. Molecular Characterization of Swine Manure Lagoon Microbial and Antibiotic Resistant Populations

    USDA-ARS?s Scientific Manuscript database

    Background: The differences in swine manure lagoon effluent based on differing management styles or approaches such as different stages of swine rearing determines the presence of variable antibiotic resistance determinants and functional microbial populations. These concerns determine the suitabil...

  11. Access and Satisfaction Within the Disabled Medicare Population

    PubMed Central

    Rosenbach, Margo L.

    1995-01-01

    Little is known about variations in the levels of access and satisfaction within the disabled Medicare population. Based on the Medicare Current Beneficiary Survey (MCBS), beneficiaries under 65 years of age were classified by original reason for disability (mental versus physical). Those with a mental disability were less likely to have a private physician as a usual source; were less satisfied with the overall quality of care, availability of after-hours care, followup care, and coordination of care; and were more likely to report unmet need, owing in large part to supply barriers. Implications for the current delivery system and for design of managed care programs are discussed. PMID:10172614

  12. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    PubMed

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6-1.8 g cm(-3) ) and bulk soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for

  13. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources.

    PubMed

    Ishii, Shun'ichi; Suzuki, Shino; Yamanaka, Yuko; Wu, Angela; Nealson, Kenneth H; Bretschger, Orianna

    2017-10-01

    Microbial fuel cells (MFCs) are one of the bioelectrochemical systems that exploit microorganisms as biocatalysts to degrade organic matters and recover energy as electric power. Here, we explored how the established electrogenic microbial communities were influenced by three different inoculum sources; anaerobic sludge of the wastewater plant, rice paddy field soil, and coastal lagoon sediment. We periodically characterized both electricity generation with sucrose consumption and 16S rRNA-basis microbial community composition. The electrochemical features of MFCs were slightly different among three inocula, and the lagoon sediment-inoculated MFC showed the highest performance in terms of the treatment time. Meanwhile, although the inoculated microbial communities were highly diverse and quite different, only twelve genera affiliated with δ-Proteobacteria, γ-Proteobacteria, Bacilli, Clostridia/Negativicutes or Bacteroidetes were abundantly enriched in all MFC anode communities. Within them, several fermentative genera were clearly different due to the inocula, while the inocula-specific phylotypes were identified in an electrogenic genus Geobacter. The relative abundances of phylotypes closely-related to Geobacter metallireducens were increased in later stages of all the sucrose-fed MFCs. These results indicate that key microbial members for the functional electrogenic community widely exist in natural ecosystems, but the community members presenting in inoculum sources affected the MFC performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ileal and cecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs

    USDA-ARS?s Scientific Manuscript database

    Digestive microbial populations (MP) are key components for sustained healthy broiler production. Specific essential oil (EO) blends and probiotics used as feed additives have shown to promote healthy digestive microbials, resulting in improved poultry production. Two consecutive experiments were ...

  15. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    EPA Science Inventory

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  16. MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL

    EPA Science Inventory

    Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...

  17. Ecological perspectives on synthetic biology: insights from microbial population biology

    PubMed Central

    Escalante, Ana E.; Rebolleda-Gómez, María; Benítez, Mariana; Travisano, Michael

    2015-01-01

    The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems. PMID

  18. Ecological perspectives on synthetic biology: insights from microbial population biology.

    PubMed

    Escalante, Ana E; Rebolleda-Gómez, María; Benítez, Mariana; Travisano, Michael

    2015-01-01

    The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems.

  19. Oxygen Effects on Thermophilic Microbial Populations in Biofilters Treating Nitric Oxide Containing Off-Gas Streams

    SciTech Connect

    Lee, Brady Douglas; Apel, William Arnold; Smith, William Aaron

    2004-04-01

    Electricity generation from coal has increased by an average of 51 billion kWh per year over the past 3 years. For this reason cost-effective strategies to control nitrogen oxides (NOx) from coal-fired power plant combustion gases must be developed. Compost biofilters operated at 55°C at an empty bed contact time (EBCT) of 13 seconds were shown to be feasible for removal of nitric oxide (NO) from synthetic flue gas. Denitrifying microbial populations in these biofilters were shown to reduce influent NO feeds by 90 to 95% at inlet NO concentrations of 500 ppmv. Oxygen was shown to have a significant effect on the NO removal efficiency demonstrated by these biofilters. Two biofilters were set up under identical conditions for the purpose of monitoring NO removal as well as changes in the microbial population in the bed medium under anaerobic and aerobic conditions. Changes in the microbial population were monitored to determine the maximum oxygen tolerance of a denitrifying biofilter as well as methods of optimizing microbial populations capable of denitrification in the presence of low oxygen concentrations. Nitric oxide removal dropped to between 10 and 20% when oxygen was present in the influent stream. The inactive compost used to pack the biofilters may have also caused the decreased NO removal efficiency compared to previous biofiltration experiments. Analysis of the bed medium microbial population using environmental scanning electron microscopy indicated significant increases in biomass populating the surface of the compost when compared to unacclimated compost.

  20. Mechanism for microbial population collapse in a fluctuating resource environment.

    PubMed

    Turkarslan, Serdar; Raman, Arjun V; Thompson, Anne W; Arens, Christina E; Gillespie, Mark A; von Netzer, Frederick; Hillesland, Kristina L; Stolyar, Sergey; López García de Lomana, Adrian; Reiss, David J; Gorman-Lewis, Drew; Zane, Grant M; Ranish, Jeffrey A; Wall, Judy D; Stahl, David A; Baliga, Nitin S

    2017-03-20

    Managing trade-offs through gene regulation is believed to confer resilience to a microbial community in a fluctuating resource environment. To investigate this hypothesis, we imposed a fluctuating environment that required the sulfate-reducer Desulfovibrio vulgaris to undergo repeated ecologically relevant shifts between retaining metabolic independence (active capacity for sulfate respiration) and becoming metabolically specialized to a mutualistic association with the hydrogen-consuming Methanococcus maripaludis Strikingly, the microbial community became progressively less proficient at restoring the environmentally relevant physiological state after each perturbation and most cultures collapsed within 3-7 shifts. Counterintuitively, the collapse phenomenon was prevented by a single regulatory mutation. We have characterized the mechanism for collapse by conducting RNA-seq analysis, proteomics, microcalorimetry, and single-cell transcriptome analysis. We demonstrate that the collapse was caused by conditional gene regulation, which drove precipitous decline in intracellular abundance of essential transcripts and proteins, imposing greater energetic burden of regulation to restore function in a fluctuating environment.

  1. Metagenomic approach for understanding microbial population from petroleum muck.

    PubMed

    Joshi, M N; Dhebar, S V; Dhebar, S V; Bhargava, P; Pandit, A S; Patel, R P; Saxena, A K; Bagatharia, S B

    2014-05-29

    Petroleum products play a major role in fueling the economy of the world but the pollution they create has become a critical issue. Understanding the diversity present in pipeline muck will help with the exploration of new microbial strains with better hydrocarbon degrading capacities for bioremediation of polluted sites. This study provides an analysis of petroleum muck using next generation sequencing. Copyright © 2014 Joshi et al.

  2. Microbial degradation of seven amides by suspended bacterial populations.

    PubMed Central

    Steen, W C; Collette, T W

    1989-01-01

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the second-order rate constants for these amides. Second-order rate constants (k2) ranged from a low of 2.0 X 10(-14) to a high of 1.1 X 10(-9) liters organism-1 h-1 for niclosamide (2',5-dichloro-4'-nitrosalicylanilide) and propachlor (2-chloro-N-isopropylacetanilide), respectively. The mechanism of degradation (i.e., microbially mediated hydrolysis) of the amides was consistent with that of other organic chemicals previously studied in a variety of natural waters. Preliminary investigations indicate that temporal variations in measured second-order rate constants are small. A simple linear regression of the infrared carbonyl-stretching frequency with log K2 gave a correlation coefficient (r2) of 0.962. PMID:2604396

  3. Integral structural-functional method for characterizing microbial populations

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.

    2015-04-01

    An original integral structural-functional method has been proposed for characterizing microbial communities. The novelty of the approach is the in situ study of microorganisms based on the growth kinetics of microbial associations in liquid nutrient broth media under selective conditions rather than on the level of taxa or large functional groups. The method involves the analysis of the integral growth model of a periodic culture. The kinetic parameters of such associations reflect their capacity of growing on different media, i.e., their physiological diversity, and the metabolic capacity of the microorganisms for growth on a nutrient medium. Therefore, the obtained parameters are determined by the features of the microbial ecological strategies. The inoculation of a dense medium from the original inoculate allows characterizing the taxonomic composition of the dominants in the soil community. The inoculation from the associations developed on selective media characterizes the composition of syntrophic groups, which fulfill a specific function in nature. This method is of greater information value than the classical methods of inoculation on selective media.

  4. Transcriptome analysis of a microbial coculture in which the cell populations are separated by a membrane.

    PubMed

    Hosoda, Kazufumi; Ono, Naoaki; Suzuki, Shingo; Yomo, Tetsuya

    2014-01-01

    The microbial coculture of multiple cell populations is used to study community evolution and for bioengineering applications. The cells in coculture undergo dynamic changes because of cell-cell and cell-environment interactions. Transcriptome analysis allows us to study the molecular basis of these changes in cell physiology. For transcriptome analysis, it is essential that the cell populations in the coculture are harvested separately. Here, we describe a method for transcriptome analysis of a microbial coculture in which two different cell populations are separated by a porous membrane.

  5. Soil ventilation: Effects on microbial populations in gasoline-contaminated subsurface soils

    SciTech Connect

    Hickey, W.J.

    1995-07-01

    Short- and long-term effects of vapor extraction (VE) in an unsaturated subsurface soil and in situ biodegradation of gasoline were evaluated in a field study. Subsurface temperature, moisture, solid- and gas-phase contaminant levels, atmospheric gases, nutrient levels, and microbial population densities were measured during and after soil VE for 462 d. Microbial activity, based on in situ O{sub 2} consumption rates, measured 7 d after VE started averaged 3.8% O{sub 2} d{sup -1}; by Day 62 these rates dropped to 0.2% O{sub 2} d{sup -1}. Soil VE was stopped on Day 180 and about 70 d elapsed before renewed, low-level (0.05% O{sub 2} d{sup -1}) activity was detectable. Following a second round of VE, average O{sub 2} consumption rates increased to 0.11% O{sub 2} d{sup -1}. Microbial population densities did not consistently reflect activity changes measured by O{sub 2} consumption. Activity increases in the latter part of the study were not adequately accounted for by changes in subsurface moisture levels, temperature, or contaminant vapor concentrations. At the study`s completion, 400 kg of gasoline was volatilized from the soil and another 139 kg estimated to be biodegraded in situ. A two-phase process is proposed to account for the effects of VE on microbial activity. The initial phase is characterized by declining microbial activity levels in response to substrate reduction. Microbial activity slowly increases as a result of interactions between gasoline vapor concentrations and possibly changes in degradative activities of the microbial population. More work is needed to identify the gasoline constituents serving as substrates for microbial populations before and after ventilation. 31 refs., 8 figs., 5 tabs.

  6. Controls upon microbial accessibility to soil organic matter following woody plant encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Creamer, C. A.; Boutton, T. W.; Filley, T. R.

    2009-12-01

    Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic matter (SOM) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and soil hydrology. To elucidate the controls upon microbial accessibility to SOM, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas A&M Agricultural Experimental Station La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, plant biopolymer chemistry in SOM, and microbial community structure were tracked. Respiration rates declined steadily over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total carbon was mineralized to CO2 throughout the incubation. After day 84 a significantly (p < 0.05) greater portion of carbon was mineralized from soils of older woody clusters (34-86 years) than from soils of younger clusters (14-23 years) and the native grassland. Approximately 80% of patterns seen in cumulative CO2 loss could be explained by the proportions of macro- and micro-aggregates within each soil, suggesting soil structure is a major controlling factor of respiration rates. Despite documented carbon accrual within La Copita soils due to WPE, we observed no evidence of enhanced carbon stabilization in these respiration experiments. In fact, a greater proportion of total carbon was lost from the soil of mature woody stands than from young stands, suggesting carbon accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. A cluster approximately 34 years in age represents a transition point in WPE where respiration dynamics become distinct between grassland and wooded elements. By day 84 of the incubation CO2 respired from all soils was depleted with respect to bulk SOM (1.5 to 5‰) and this

  7. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation.

    PubMed Central

    Borneman, J; Triplett, E W

    1997-01-01

    Although the Amazon Basin is well known for its diversity of flora and fauna, this report represents the first description of the microbial diversity in Amazonian soils involving a culture-independent approach. Among the 100 sequences of genes coding for small-subunit rRNA obtained by PCR amplification with universal small-subunit rRNA primers, 98 were bacterial and 2 were archaeal. No duplicate sequences were found, and none of the sequences had been previously described. Eighteen percent of the bacterial sequences could not be classified in any known bacterial kingdom. Two sequences may represent a unique branch between the vast majority of bacteria and the deeply branching, predominantly thermophilic bacteria. Five sequences formed a clade that may represent a novel group within the class Proteobacteria. In addition, rRNA intergenic spacer analysis was used to show significant microbial population differences between a mature forest soil and an adjacent pasture soil. PMID:9212415

  8. The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Megharaj, Mallavarapu; Naidu, Ravi

    2016-06-01

    Crude oil spills resulting from excavation, transportation and downstream processes can cause intensive damage to living organisms and result in changes in the microbial population of that environment. In this study, we used a pyrosequencing analysis to investigate changes in the microbial population of soils contaminated with crude oil. Crude oil contamination in soil resulted in the creation of a more homogenous population of microorganisms dominated by members of the Actinomycetales, Clostridiales and Bacillales (all belonging to Gram-positive bacteria) as well as Flavobacteriales, Pseudomonadales, Burkholderiales, Rhizobiales and Sphingomonadales (all belonging to Gram-negative bacteria). These changes in the biodiversity decreased the ratios of chemoheterotrophic bacteria at higher concentrations of crude oil contamination, with these being replaced by photoheterotrophic bacteria, mainly Rhodospirillales. Several of the dominant microbial orders in the crude oil contaminated soils are able to degrade crude oil hydrocarbons and therefore are potentially useful for remediation of crude oil in contaminated sites.

  9. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean.

    PubMed

    De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Lekunberri, Itziar; Herndl, Gerhard J

    2016-04-01

    Viruses are abundant, diverse and dynamic components of the marine environments and play a significant role in the ocean biogeochemical cycles. To assess potential variations in the relation between viruses and microbes in different geographic regions and depths, viral and microbial abundance and production were determined throughout the water column along a latitudinal transect in the South Atlantic Ocean. Path analysis was used to examine the relationships between several abiotic and biotic parameters and the different microbial and viral populations distinguished by flow cytometry. The depth-integrated contribution of microbial and viral abundance to the total microbial and viral biomass differed significantly among the different provinces. Additionally, the virus-to-microbe ratio increased with depth and decreased laterally towards the more productive regions. Our data revealed that the abundance of phytoplankton and microbes is the main controlling factor of the viral populations in the euphotic and mesopelagic layers, whereas in the bathypelagic realm, viral abundance was only weakly related to the biotic and abiotic variables. The relative contribution of the three viral populations distinguished by flow cytometry showed a clear geographical pattern throughout the water column, suggesting that these populations are composed of distinct taxa able to infect specific hosts. Overall, our data indicate the presence of distinct microbial patterns along the latitudinal transect. This variability is not limited to the euphotic layer but also detectable in the meso- and bathypelagic layers. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Large‐scale distribution of microbial and viral populations in the South Atlantic Ocean

    PubMed Central

    Sintes, Eva; Yokokawa, Taichi; Lekunberri, Itziar; Herndl, Gerhard J.

    2016-01-01

    Summary Viruses are abundant, diverse and dynamic components of the marine environments and play a significant role in the ocean biogeochemical cycles. To assess potential variations in the relation between viruses and microbes in different geographic regions and depths, viral and microbial abundance and production were determined throughout the water column along a latitudinal transect in the South Atlantic Ocean. Path analysis was used to examine the relationships between several abiotic and biotic parameters and the different microbial and viral populations distinguished by flow cytometry. The depth‐integrated contribution of microbial and viral abundance to the total microbial and viral biomass differed significantly among the different provinces. Additionally, the virus‐to‐microbe ratio increased with depth and decreased laterally towards the more productive regions. Our data revealed that the abundance of phytoplankton and microbes is the main controlling factor of the viral populations in the euphotic and mesopelagic layers, whereas in the bathypelagic realm, viral abundance was only weakly related to the biotic and abiotic variables. The relative contribution of the three viral populations distinguished by flow cytometry showed a clear geographical pattern throughout the water column, suggesting that these populations are composed of distinct taxa able to infect specific hosts. Overall, our data indicate the presence of distinct microbial patterns along the latitudinal transect. This variability is not limited to the euphotic layer but also detectable in the meso‐ and bathypelagic layers. PMID:26765966

  11. A RESTful API for Accessing Microbial Community Data for MG-RAST

    PubMed Central

    Wilke, Andreas; Bischof, Jared; Harrison, Travis; Brettin, Tom; D'Souza, Mark; Gerlach, Wolfgang; Matthews, Hunter; Paczian, Tobias; Wilkening, Jared; Glass, Elizabeth M.; Desai, Narayan; Meyer, Folker

    2015-01-01

    Metagenomic sequencing has produced significant amounts of data in recent years. For example, as of summer 2013, MG-RAST has been used to annotate over 110,000 data sets totaling over 43 Terabases. With metagenomic sequencing finding even wider adoption in the scientific community, the existing web-based analysis tools and infrastructure in MG-RAST provide limited capability for data retrieval and analysis, such as comparative analysis between multiple data sets. Moreover, although the system provides many analysis tools, it is not comprehensive. By opening MG-RAST up via a web services API (application programmers interface) we have greatly expanded access to MG-RAST data, as well as provided a mechanism for the use of third-party analysis tools with MG-RAST data. This RESTful API makes all data and data objects created by the MG-RAST pipeline accessible as JSON objects. As part of the DOE Systems Biology Knowledgebase project (KBase, http://kbase.us) we have implemented a web services API for MG-RAST. This API complements the existing MG-RAST web interface and constitutes the basis of KBase's microbial community capabilities. In addition, the API exposes a comprehensive collection of data to programmers. This API, which uses a RESTful (Representational State Transfer) implementation, is compatible with most programming environments and should be easy to use for end users and third parties. It provides comprehensive access to sequence data, quality control results, annotations, and many other data types. Where feasible, we have used standards to expose data and metadata. Code examples are provided in a number of languages both to show the versatility of the API and to provide a starting point for users. We present an API that exposes the data in MG-RAST for consumption by our users, greatly enhancing the utility of the MG-RAST service. PMID:25569221

  12. A RESTful API for accessing microbial community data for MG-RAST

    SciTech Connect

    Wilke, Andreas; Bischof, Jared; Harrison, Travis; Brettin, Tom; D'Souza, Mark; Gerlach, Wolfgang; Matthews, Hunter; Paczian, Tobias; Wilkening, Jared; Glass, Elizabeth M.; Desai, Narayan; Meyer, Folker; Gardner, Paul P.

    2015-01-08

    Metagenomic sequencing has produced significant amounts of data in recent years. For example, as of summer 2013, MGRAST has been used to annotate over 110,000 data sets totaling over 43 Terabases. With metagenomic sequencing finding even wider adoption in the scientific community, the existing web-based analysis tools and infrastructure in MG-RAST provide limited capability for data retrieval and analysis, such as comparative analysis between multiple data sets. Moreover, although the system provides many analysis tools, it is not comprehensive. By opening MG-RAST up via a web services API (application programmers interface) we have greatly expanded access to MG-RAST data, as well as provided a mechanism for the use of third-party analysis tools with MG-RAST data. This RESTful API makes all data and data objects created by the MG-RAST pipeline accessible as JSON objects. As part of the DOE Systems Biology Knowledgebase project (KBase, http:// kbase.us) we have implemented a web services API for MG-RAST. This API complements the existing MG-RAST web interface and constitutes the basis of KBase’s microbial community capabilities. In addition, the API exposes a comprehensive collection of data to programmers. This API, which uses a RESTful (Representational State Transfer) implementation, is compatible with most programming environments and should be easy to use for end users and third parties. It provides comprehensive access to sequence data, quality control results, annotations, and many other data types. Where feasible, we have used standards to expose data and metadata. Code examples are provided in a number of languages both to show the versatility of the API and to provide a starting point for users. We present an API that exposes the data in MG-RAST for consumption by our users, greatly enhancing the utility of the MG-RAST service.

  13. A RESTful API for accessing microbial community data for MG-RAST

    DOE PAGES

    Wilke, Andreas; Bischof, Jared; Harrison, Travis; ...

    2015-01-08

    Metagenomic sequencing has produced significant amounts of data in recent years. For example, as of summer 2013, MGRAST has been used to annotate over 110,000 data sets totaling over 43 Terabases. With metagenomic sequencing finding even wider adoption in the scientific community, the existing web-based analysis tools and infrastructure in MG-RAST provide limited capability for data retrieval and analysis, such as comparative analysis between multiple data sets. Moreover, although the system provides many analysis tools, it is not comprehensive. By opening MG-RAST up via a web services API (application programmers interface) we have greatly expanded access to MG-RAST data, asmore » well as provided a mechanism for the use of third-party analysis tools with MG-RAST data. This RESTful API makes all data and data objects created by the MG-RAST pipeline accessible as JSON objects. As part of the DOE Systems Biology Knowledgebase project (KBase, http:// kbase.us) we have implemented a web services API for MG-RAST. This API complements the existing MG-RAST web interface and constitutes the basis of KBase’s microbial community capabilities. In addition, the API exposes a comprehensive collection of data to programmers. This API, which uses a RESTful (Representational State Transfer) implementation, is compatible with most programming environments and should be easy to use for end users and third parties. It provides comprehensive access to sequence data, quality control results, annotations, and many other data types. Where feasible, we have used standards to expose data and metadata. Code examples are provided in a number of languages both to show the versatility of the API and to provide a starting point for users. We present an API that exposes the data in MG-RAST for consumption by our users, greatly enhancing the utility of the MG-RAST service.« less

  14. A two-population bio-electrochemical model of a microbial fuel cell.

    PubMed

    Pinto, R P; Srinivasan, B; Manuel, M-F; Tartakovsky, B

    2010-07-01

    This work presents a two-population model describing the competition of anodophilic and methanogenic microbial populations for a common substrate in a microbial fuel cell (MFC). Fast numerical solution of the model is provided by using ordinary differential equations to describe biomass growth and retention in the anodic compartment. The model parameters are estimated and validated using experimental results obtained in four continuous-flow air-cathode MFCs operated at various external resistances and organic loads. Model analysis demonstrates the influence of operating conditions on MFC performance and suggests ways to maximize MFC power output. The model is suitable both for process optimization and on-line control applications.

  15. Milankovitch-scale correlations between deeply-buried microbial populations and biogenic ooze lithology

    NASA Astrophysics Data System (ADS)

    Aiello, I. W.; Bekins, B.

    2008-12-01

    Active populations of buried microbes are unevenly distributed in the sub-seafloor of the world's ocean. Globally, the rates of microbial activity in the sub-seafloor of open-ocean, oligotrophic basins are much lower than in ocean-margin eutrophic basins. Variations of cell abundances and metabolic activity are often independent from sediment depths with increased prokaryotic activity at geochemical and/or sedimentary interfaces. At the scale of lithologic units, higher microbial activity has been detected in units with abundant diatom ooze. Given these broad-scale relationships between paleoceanography and sub-seafloor microbial life it is plausible that variations in microbial populations at scales finer than lithologic units may also occur, if properties, such as organic carbon (OC), porosity, or solid-phase electron acceptors, vary within individual beds. In this study we demonstrate that microbial populations vary at the scale of individual beds in the biogenic oozes of a drill site in the eastern equatorial Pacific (Ocean Drilling Program Leg 201, Site 1226). We relate bedding-scale changes in biogenic ooze sediment composition to OC and microbial cell concentrations using high-resolution color reflectance data as proxy for lithology. Our analyses demonstrate that microbial concentrations are larger by an order of magnitude in the more organic-rich diatom oozes than in the nannofossil oozes. The variations mimic small-scale variations in diatom abundance and OC indicating that the modern distribution of microbial biomass is ultimately controlled by Milankovitch-frequency variations in past oceanographic conditions. Because OC becomes more refractory with depth, bedding-scale differences in OC and microbial concentrations are no longer apparent below 200 meters below seafloor (mbsf). The evidence presented in this study suggests that future microbiology sampling schemes that account for small- scale lithologic variations should be part of the study design

  16. Successive range expansion promotes diversity and accelerates evolution in spatially structured microbial populations.

    PubMed

    Goldschmidt, Felix; Regoes, Roland R; Johnson, David R

    2017-09-01

    Successive range expansions occur within all domains of life, where one population expands first (primary expansion) and one or more secondary populations then follow (secondary expansion). In general, genetic drift reduces diversity during range expansion. However, it is not clear whether the same effect applies during successive range expansion, mainly because the secondary population must expand into space occupied by the primary population. Here we used an experimental microbial model system to show that, in contrast to primary range expansion, successive range expansion promotes local population diversity. Because of mechanical constraints imposed by the presence of the primary population, the secondary population forms fractal-like dendritic structures. This divides the advancing secondary population into many small sub-populations and promotes intermixing between the primary and secondary populations. We further developed a mathematical model to simulate the formation of dendritic structures in the secondary population during succession. By introducing mutations in the primary or dendritic secondary populations, we found that mutations are more likely to accumulate in the dendritic secondary populations. Our results thus show that successive range expansion can promote intermixing over the short term and increase genetic diversity over the long term. Our results therefore have potentially important implications for predicting the ecological processes and evolutionary trajectories of microbial communities.

  17. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids; Part I. Effects on growth performance, microbial populations and immune status

    USDA-ARS?s Scientific Manuscript database

    Pigs (n=88) weaned at 19 ± 2 d of age were used in a 14 d study to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on immune status, Salmonella infection and shedding, and intestinal microbial populations following a Salmonella Typhimurium challenge. Pigs were ch...

  18. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations

    PubMed Central

    Shilova, Irina N.; Robidart, Julie C.; DeLong, Edward F.; Zehr, Jonathan P.

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics. PMID:26751368

  19. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    PubMed

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.

  20. Suppression of Beneficial Mutations in Dynamic Microbial Populations

    NASA Astrophysics Data System (ADS)

    Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.

    2017-01-01

    Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.

  1. Microbial strain-level population structure and genetic diversity from metagenomes

    PubMed Central

    Tett, Adrian

    2017-01-01

    Among the human health conditions linked to microbial communities, phenotypes are often associated with only a subset of strains within causal microbial groups. Although it has been critical for decades in microbial physiology to characterize individual strains, this has been challenging when using culture-independent high-throughput metagenomics. We introduce StrainPhlAn, a novel metagenomic strain identification approach, and apply it to characterize the genetic structure of thousands of strains from more than 125 species in more than 1500 gut metagenomes drawn from populations spanning North and South American, European, Asian, and African countries. The method relies on per-sample dominant sequence variant reconstruction within species-specific marker genes. It identified primarily subject-specific strain variants (<5% inter-subject strain sharing), and we determined that a single strain typically dominated each species and was retained over time (for >70% of species). Microbial population structure was correlated in several distinct ways with the geographic structure of the host population. In some cases, discrete subspecies (e.g., for Eubacterium rectale and Prevotella copri) or continuous microbial genetic variations (e.g., for Faecalibacterium prausnitzii) were associated with geographically distinct human populations, whereas few strains occurred in multiple unrelated cohorts. We further estimated the genetic variability of gut microbes, with Bacteroides species appearing remarkably consistent (0.45% median number of nucleotide variants between strains), whereas P. copri was among the most plastic gut colonizers. We thus characterize here the population genetics of previously inaccessible intestinal microbes, providing a comprehensive strain-level genetic overview of the gut microbial diversity. PMID:28167665

  2. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

    PubMed Central

    Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin

    2017-01-01

    Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470

  3. Assessment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis.

    PubMed

    Alegría, Angel; González, Renata; Díaz, Mario; Mayo, Baltasar

    2011-03-01

    The composition and development of microbial population during the manufacture and ripening of two batches of a blue-veined cheese was examined by culturing and polymerase chain reaction (PCR) denaturing gradient gel electrophoresis (DGGE) (PCR-DGGE). Nine selective and/or differential media were used to track the cultivable populations of total and indicator microbial groups. For PCR-DGGE, the V3 hyper variable region of the bacterial 16S rRNA gene and the eukaryotic D1 domain of 28S rDNA were amplified with universal primers, specific for prokaryotes and eukaryotes, respectively. Similarities and differences between the results obtained by the culturing and the molecular method were recorded for some populations. Culturing analysis allows minority microbial groups (coliforms, staphylococci) to be monitored, although in this study PCR-DGGE identified a population of Streptococcus thermophilus that went undetected by culturing. These results show that the characterization of the microbial populations interacting and evolving during the cheese-making process is improved by combining culturing and molecular methods.

  4. Microbial Populations in Lithifying and Non-lithifying Microbial Mat Systems: Community Interactions with Chemical and Physical Ecology

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. K.; Vischer, P. T.; Dupraz, C.; Reid, R. P.; Buckley, D. H.; Spear, J. R.; Pace, N. R.

    2005-05-01

    The precipitation of calcium carbonate in microbial mat systems such as stromatolites creates a geological record of life. We cannot read that record, however, without understanding the mechanism of precipitation and lithification (the consolidation of loose sediment grains into solid rock). Several different groups of mat bacteria have been implicated in the precipitation and dissolution of calcium carbonate, most notably cyanobacteria, sulfate-reducing bacteria, aerobic heterotrophs, and sulfide-oxidizing bacteria. Through their metabolic activities, cyanobacteria and sulfate-reducing bacteria both facilitate precipitation, while heterotrophs and sulfide-oxidizing bacteria facilitate dissolution. These trends within the larger functional groups are further affected by within-group differences, such as the ability of some sulfate reducers to more fully oxidize carbon, which should also result in greater precipitation. Differential abilities within the microbial community may create the difference between mat systems that do and do not form lithified layers. Both the larger functional groups and the within-group changes are often phylogenetically predictable, and community analysis of lithifying and non-lithifying mat systems may provide some predictions as to which groups dominate lithification. Two research sites provide ideal study systems: a hypersaline lagoon in Eleuthera, Bahamas, where lithifying and non-lithifying mats coexist under similar physical and chemical environments, and the open marine stromatolites of Highborne Cay, Bahamas, which exhibit both lithifying and non-lithifying surfaces. The microbial communities of both microbial mat types from these two systems were analyzed to elucidate the population structure and examine differences between the communities. Given the very different mat systems growing under similar large-scale environments, the community structures are an interesting reflection of how microbes both affect and are affected by

  5. Aerobic Microbial Community of Insectary Population of Phlebotomus papatasi

    PubMed Central

    Maleki-Ravasan, Naseh; Oshaghi, Mohammad Ali; Hajikhani, Sara; Saeidi, Zahra; Akhavan, Amir Ahmad; Gerami-Shoar, Mohsen; Shirazi, Mohammad Hasan; Yakhchali, Bagher; Rassi, Yavar; Afshar, Davoud

    2014-01-01

    Background: Microbes particularly bacteria presenting in the gut of haematophagous insects may have an important role in the epidemiology of human infectious disease. Methods: The microbial flora of gut and surrounding environmental of a laboratory strain of Phlebotomus papatasi, the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in the old world, was investigated. Biochemical reactions and 16s rDNA sequencing of the isolated bacteria against 24 sugars and amino acids were used for bacteria species identification. Common mycological media used for fungi identification as well. Results: Most isolates belonged to the Enterobacteriaceae, a large, heterogeneous group of gram-negative rods whose natural habitat is the intestinal tract of humans and animals. Enterobacteriaceae groups included Edwardsiella, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leminorella, Pantoea, Proteus, Providencia, Rahnella, Serratia, Shigella, Tatumella, and Yersinia and non Enterobacteriaceae groups included Bacillus, Staphylococcus and Pseudomonas. The most prevalent isolates were Proteus mirabilis and P. vulgaris. These saprophytic and swarming motile bacteria were isolated from all immature, pupae, and mature fed or unfed male or female sand flies as well as from larval and adult food sources. Five fungi species were also isolated from sand flies, their food sources and colonization materials where Candida sp. was common in all mentioned sources. Conclusion: Midgut microbiota are increasingly seen as an important factor for modulating vector competence in insect vectors so their possible effects of the mirobiota on the biology of P. papatasi and their roles in the sandfly-Leishmania interaction are discussed. PMID:25629067

  6. Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet ▿ †

    PubMed Central

    Fernando, S. C.; Purvis, H. T.; Najar, F. Z.; Sukharnikov, L. O.; Krehbiel, C. R.; Nagaraja, T. G.; Roe, B. A.; DeSilva, U.

    2010-01-01

    High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and

  7. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    SciTech Connect

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  8. Investigation of microbial populations in the extremely metal-contaminated Coeur d'Alene River sediments.

    PubMed

    Rastogi, Gurdeep; Barua, Sutapa; Sani, Rajesh K; Peyton, Brent M

    2011-07-01

    The deposition of mine tailings generated from 125 years of sulfidic ore mining resulted in the enrichment of Coeur d'Alene River (CdAR) sediments with significant amounts of toxic heavy metals. A review of literature suggests that microbial populations play a pivotal role in the biogeochemical cycling of elements in such mining-impacted sedimentary environments. To assess the indigenous microbial communities associated with metal-enriched sediments of the CdAR, high-density 16S microarray (PhyloChip) and clone libraries specific to bacteria (16S rRNA), ammonia oxidizers (amoA), and methanogens (mcrA) were analyzed. PhyloChip analysis provided a comprehensive assessment of bacterial populations and detected the largest number of phylotypes in Proteobacteria followed by Firmicutes and Actinobacteria. Furthermore, PhyloChip and clone libraries displayed considerable metabolic diversity in indigenous microbial populations by capturing several chemolithotrophic groups such as ammonia oxidizers, iron-reducers and -oxidizers, methanogens, and sulfate-reducers in the CdAR sediments. Twenty-two phylotypes detected on PhyloChip could not be classified even at phylum level thus suggesting the presence of novel microbial populations in the CdAR sediments. Clone libraries demonstrated very limited diversity of ammonia oxidizers and methanogens in the CdAR sediments as evidenced by the fact that only Nitrosospira- and Methanosarcina-related phylotypes were retrieved in amoA and mcrA clone libraries, respectively.

  9. Bioreactor studies predict whole microbial population dynamics in oil sands tailings ponds.

    PubMed

    Chi Fru, Ernest; Chen, Michael; Walshe, Gillian; Penner, Tara; Weisener, Christopher

    2013-04-01

    Microorganisms in oil sands fluid fine tailings (FFT) are critical to biogeochemical elemental cycling as well as to the degradation of residual hydrocarbon constituents and subsequent methane and CO2 production. Microbial activity enhances particulate matter sedimentation rates and the dewatering of FFT materials, allowing water to be recycled back into bitumen extraction. A bulk of this evidence comes from bioreactor studies and has implications for engineering and environmental management of the FFT ponds. Yet, it is largely uncertain whether such laboratory populations are representative of whole field scale microbial communities. By using population ecology tools, we compared whole microbial communities present in FFT bioreactors to reference populations existing in Syncrude's West In Pit (WIP) tailings pond. Bacteria were found to be persistent in a sulfidic zone in both the oxic and anoxic bioreactors at all occasions tested. In contrast to the WIP, archaea only became predominant in bioreactors after 300 days, at which point analysis of similarity (global R statistic p<0.5) revealed no significant dissimilarities between the populations present in either system. A whole community succession pattern from bacterial dominated prevalence to a new assemblage predominated by archaea was suggested. These results have implications for the stepwise development of microbial model systems for predictive management of field scale FFT basins.

  10. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  11. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  12. Estimation of the Number of Microbial Species Comprising a Population

    DTIC Science & Technology

    2008-03-01

    Sample Sizes .................68 19. Minimum Sample Sizes Require to Equate Non-Parametric and Parametric Estimation Methods...63 PARAMETRIC ESTIMATION OF NUMBER OF SPECIES COMPRISING A POPULATION I. Introduction Background The current state of the environment...estimation of the number of species which are currently used include both parametric and non- parametric estimation techniques. There are advantages and

  13. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products.

    PubMed

    Courtois, Sophie; Cappellano, Carmela M; Ball, Maria; Francou, Francois-Xavier; Normand, Philippe; Helynck, Gérard; Martinez, Asuncion; Kolvek, Steven J; Hopke, Joern; Osburne, Marcia S; August, Paul R; Nalin, Renaud; Guérineau, Michel; Jeannin, Pascale; Simonet, Pascal; Pernodet, Jean-Luc

    2003-01-01

    To further explore possible avenues for accessing microbial biodiversity for drug discovery from natural products, we constructed and screened a 5,000-clone "shotgun" environmental DNA library by using an Escherichia coli-Streptomyces lividans shuttle cosmid vector and DNA inserts from microbes derived directly (without cultivation) from soil. The library was analyzed by several means to assess diversity, genetic content, and expression of heterologous genes in both expression hosts. We found that the phylogenetic content of the DNA library was extremely diverse, representing mostly microorganisms that have not been described previously. The library was screened by PCR for sequences similar to parts of type I polyketide synthase genes and tested for the expression of new molecules by screening of live colonies and cell extracts. The results revealed new polyketide synthase genes in at least eight clones. In addition, at least five additional clones were confirmed by high-pressure liquid chromatography analysis and/or biological activity to produce heterologous molecules. These data reinforce the idea that exploiting previously unknown or uncultivated microorganisms for the discovery of novel natural products has potential value and, most importantly, suggest a strategy for developing this technology into a realistic and effective drug discovery tool.

  14. Targeted Access to the Genomes of Low Abundance Organisms in Complex Microbial Communities

    SciTech Connect

    Podar, Mircea; Abulencia, Carl; Walcher, Marion; Hutchinson, Don; Zengler, Karsten; Garcia, Joseph; Holland, Trevin; Cotton, Dave; Hauser, Loren John; Keller, Martin

    2007-01-01

    Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism, and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequency, especially those representing yet uncultured taxa-which includes the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms directly isolated from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the community metabolic potential.

  15. Recombinant Environmental Libraries Provide Access to Microbial Diversity for Drug Discovery from Natural Products

    PubMed Central

    Courtois, Sophie; Cappellano, Carmela M.; Ball, Maria; Francou, Francois-Xavier; Normand, Philippe; Helynck, Gérard; Martinez, Asuncion; Kolvek, Steven J.; Hopke, Joern; Osburne, Marcia S.; August, Paul R.; Nalin, Renaud; Guérineau, Michel; Jeannin, Pascale; Simonet, Pascal; Pernodet, Jean-Luc

    2003-01-01

    To further explore possible avenues for accessing microbial biodiversity for drug discovery from natural products, we constructed and screened a 5,000-clone “shotgun” environmental DNA library by using an Escherichia coli-Streptomyces lividans shuttle cosmid vector and DNA inserts from microbes derived directly (without cultivation) from soil. The library was analyzed by several means to assess diversity, genetic content, and expression of heterologous genes in both expression hosts. We found that the phylogenetic content of the DNA library was extremely diverse, representing mostly microorganisms that have not been described previously. The library was screened by PCR for sequences similar to parts of type I polyketide synthase genes and tested for the expression of new molecules by screening of live colonies and cell extracts. The results revealed new polyketide synthase genes in at least eight clones. In addition, at least five additional clones were confirmed by high-pressure liquid chromatography analysis and/or biological activity to produce heterologous molecules. These data reinforce the idea that exploiting previously unknown or uncultivated microorganisms for the discovery of novel natural products has potential value and, most importantly, suggest a strategy for developing this technology into a realistic and effective drug discovery tool. PMID:12513976

  16. A proposal for a portal to make earth's microbial diversity easily accessible and searchable.

    PubMed

    Vinatzer, Boris A; Tian, Long; Heath, Lenwood S

    2017-03-09

    Estimates of the number of bacterial species range from 10(7) to 10(12). At the pace at which descriptions of new species are currently being published, the description of all bacterial species on earth will only be completed in thousands of years. However, even if one day all species were named and described, these names and descriptions would still be of little practical value unless they could be easily searched and accessed, so that novel strains could be easily identified as members of any of these species. To complicate the situation further, many of the currently known species contain significant genotypic and phenotypic diversity that would still be missed if description of microbial diversity were limited to species. The solution to this problem could be a database in which every bacterial species and every intra-specific group is anchored to a genome-similarity framework. This ideal database should be searchable using complete or partial genome sequences as well as phenotypes. Moreover, the database should include functions to easily add newly sequenced novel strains, automatically place them into the genome-similarity framework, identify them as members of an already named species, or tag them as members of yet to be described species or new intra-specific groups. Here, we propose the means to develop such a database by taking advantage of the concept of genome sequence similarity-based codes, called Life Identification Numbers or LINs.

  17. Effects of dilution on dissolved oxygen depletion and microbial populations in the biochemical oxygen demand determination.

    PubMed

    Seo, Kyo Seong; Chang, Ho Nam; Park, Joong Kon; Choo, Kwang-Ho

    2007-09-01

    The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD(5)), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important with less dilution. BOD(5) increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD(5) increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more accurate BOD measurements, specific guidelines on dilution should be established.

  18. Microbial population analysis improves the evidential value of faecal traces in forensic investigations.

    PubMed

    Quaak, Frederike C A; de Graaf, Mei-Lan M; Weterings, Rob; Kuiper, Irene

    2017-01-01

    The forensic science community has a growing interest in microbial population analysis, especially the microbial populations found inside and on the human body. Both their high abundance, microbes outnumber human cells by a factor 10, and their diversity, different sites of the human body harbour different microbial communities, make them an interesting tool for forensics. Faecal material is a type of trace evidence which can be found in a variety of criminal cases, but is often being ignored in forensic investigations. Deriving a human short tandem repeat (STR) profile from a faecal sample can be challenging. However, the microbial communities within faecal material can be of additional criminalistic value in linking a faecal trace to the possible donor. We present a microarray technique in which the faecal microbial community is used to differentiate between faecal samples and developed a decision model to predict the possible common origin of questioned samples. The results show that this technique may be a useful additional tool when no or only partial human STR profiles can be generated.

  19. Transport and mixing of microbial population by atmospheric coherent structures

    NASA Astrophysics Data System (ADS)

    Bozorg Magham, A.; Ross, S. D.

    2012-12-01

    Lagrangian coherent structures (LCSs) provide a new means for discussion of spatiotemporal characteristics of the passive transport and mixing of atmospheric pathogen populations, paving the way for new management strategies regarding the spread of infectious diseases affecting plants, domestic animals, and humans, including identification of probable source regions and forecasts of regions at high risk. We report on the relationship of coherent structures to the patchiness of pathogen populations, and the effects of imperfect forecast wind data on the resultant LCSs. Regarding forecasting LCSs, our main contributions are to quantify the accuracy and sensitivity of such predictions with respect to the forecasting parameters. To obtain more reliable atmospheric LCS features, we have incorporated two more concepts. First is the effect of unresolved turbulent motion; this consideration leads to the stochastic finite-time Lyapunov exponent (SFTLE) field and the resultant stochastic LCS. The second concept is ensemble FTLE/LCS forecasting using individual members of the ensemble wind field forecasts.

  20. A new device for real time monitoring of microbial population dynamics during in situ and ex situ bioremediation

    SciTech Connect

    Woodward, R.E.; Malone, R.W.

    1995-12-31

    Monitoring of microbial population dynamics is an important operating parameter for successful bioremediation projects. The traditional method of plate counts or most probable number (MPN) requires 2 to 7 days for development and therefore provides a historical measurement of little real-time operational significance. Selected enzyme activity is directly proportional to microbial population density and is linear in the population range from 10{sub 4} to 10{sup 8} CFU/mL. This paper summarizes the use of this enzyme based, real-time measurement of microbial population dynamics for the management of four bioremediation projects: (1) differentiation of assimilation from nitrification during the metabolism of ammonia in an industrial waste stream, (2) treatability assessment and management of activated sludge processes during the treatment of a hazardous, petrochemical waste, (3) measurement of intrinsic microbial activity in soil cores at a spill site, and (4) non-invasive monitoring of microbial populations during in situ bioremediation of two aquifers.

  1. Patient-centred access to health care: conceptualising access at the interface of health systems and populations

    PubMed Central

    2013-01-01

    Background Access is central to the performance of health care systems around the world. However, access to health care remains a complex notion as exemplified in the variety of interpretations of the concept across authors. The aim of this paper is to suggest a conceptualisation of access to health care describing broad dimensions and determinants that integrate demand and supply-side-factors and enabling the operationalisation of access to health care all along the process of obtaining care and benefiting from the services. Methods A synthesis of the published literature on the conceptualisation of access has been performed. The most cited frameworks served as a basis to develop a revised conceptual framework. Results Here, we view access as the opportunity to identify healthcare needs, to seek healthcare services, to reach, to obtain or use health care services, and to actually have a need for services fulfilled. We conceptualise five dimensions of accessibility: 1) Approachability; 2) Acceptability; 3) Availability and accommodation; 4) Affordability; 5) Appropriateness. In this framework, five corresponding abilities of populations interact with the dimensions of accessibility to generate access. Five corollary dimensions of abilities include: 1) Ability to perceive; 2) Ability to seek; 3) Ability to reach; 4) Ability to pay; and 5) Ability to engage. Conclusions This paper explains the comprehensiveness and dynamic nature of this conceptualisation of access to care and identifies relevant determinants that can have an impact on access from a multilevel perspective where factors related to health systems, institutions, organisations and providers are considered with factors at the individual, household, community, and population levels. PMID:23496984

  2. Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions.

    PubMed

    Ruppel, Silke; Krumbein, Angelika; Schreiner, Monika

    2008-08-01

    The plant phyllosphere is intensely colonized by a complex and highly diverse microbial population and shows pronounced plant-species-specific differences. The mechanisms and influencing factors determining whether and in which density microorganisms colonize plant phyllosphere tissues are not yet fully understood. One of the key influencing factors is thought to be phytochemical concentration and composition. Therefore, correlations between various concentrations of individual glucosinolates and carotenoids in four different plant species-Brassica juncea, Brassica campestris, Cichorium endivia, and Spinacea oleracea-and the phyllospheric bacterial population size associated with the aerial parts of the same plants were analyzed. The concentration of various individual glucosinolates and carotenoids were measured using high-performance liquid chromatography. The phyllospheric bacterial population size including both nonculturable and culturable organisms was assessed using quantitative real-time polymerase chain reaction, and the physiological profile of the culturable microbial community was analyzed using the Biolog system. Results show significant differences between plant species in both concentration and composition of secondary metabolites, bacterial population size, and microbial community composition in three consecutively performed experiments. An interesting and underlying trend was that bacterial density was positively correlated to concentrations of beta-carotene in the plant phyllosphere of the four plant species examined. Likewise, the alkenyl glucosinolates, 2-propenyl, 3-butenyl, and 4-pentenyl, concentrations were positively correlated to the bacterial population density, whereas the aromatic glucosinolate 2-phenylethyl showed a negative correlation to the phyllospheric bacterial population size. Thus, we report for the first time the relationship between individual glucosinolate and carotenoid concentrations and the phyllospheric bacterial

  3. Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation

    SciTech Connect

    Jordahl, J.L.; Foster, L.; Schnoor, J.L.; Alvarez, P.J.J.

    1997-06-01

    Microbial concentrations of denitrifiers, pseudomonads, and monoaromatic petroleum hydrocarbon (BTX) degraders were significantly higher (p < 0.1) in soil samples from the rhizosphere of poplar trees than in adjacent agricultural soils, and atrazine degraders were found only in one rhizosphere sample. The relative abundance of these phenotypes (as a fraction of total heterotrophs) was not significantly different between rhizosphere and surrounding soils. Therefore, the poplar rhizosphere enhanced the growth of microbial populations that participate in natural bioremediation without exerting selective pressure for them.

  4. Connectivity of microbial populations in coral reef environments: microbiomes of sediment, fish and water

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Leon, Z. R.; McCargar, M.; Drew, J.

    2016-12-01

    The benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared between the ecosystem of sediments, seagrasses and reef fish, however it is unknown to what degree. We investigated the potential connections between the microbiomes of sediments, seagrass blades and roots (Syringodium isoetifolium), Surgeonfish (A. nigricauda, Acanthurinae sp. unknown, C. striatus) and Parrotfish (C. spinidens) guts in reef areas of Fiji. We contrasted these with sediment samples from the Florida Keys and ocean water microbiomes from the Atlantic, Pacific and Indian Oceans. In general, we see a higher diversity of sediment microbial communities in Fiji compared to the Florida Keys. However, many of the same taxa are shared in these chemically similar environments, whereas the ocean water environments are completely distinct with few overlapping groups. We were able to show connectivity of a core microbiome between seagrass, fish and sediments in Fiji, including identifying a potential environmental reservoir of a surgeonfish symbiont, Epulopiscum. Finally, we show that fish guts have different microbial populations from crop to hindgut, and that microbial populations differ based on food source. The connection of these ecosystems suggest that the total microbiome of these environments may vary as their animal inhabitants shift in a changing ocean.

  5. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities.

    PubMed

    Wang, Qiongshan; He, Mengchang; Wang, Ying

    2011-01-01

    The effects of both combined and single pollution of antimony (Sb) and arsenic (As) in different concentrations on culturable soil microbial populations and enzyme activities were studied under laboratory conditions. Joint effects of both Sb and As were different from that of Sb or As alone. The inhibition rate of culturable soil microbial populations under Sb and As pollution followed the order: bacterial > fungi > actinomycetes. There existed antagonistic inhibiting effect on urease and acid phophatase and synergistic inhibiting effect on protease under the combined pollution of Sb (III) and As (III). Only urease appeared to be the most sensitive indicator under Sb (V) and As (V) pollution, and there existed antagonistic inhibiting effect on acid phophatase and synergistic inhibiting effect on urease and protease under Sb (V) and As (V) combined pollution at most time. In this study, we also confirmed that the trivalent states of Sb and As were more toxic to all the microbes tested and more inhibitory on microbial enzyme activities then their pentavalent counterparts. The results also suggest that not only the application rate of the two metalloids but also the chemical form of metalloids should be considered while assessing the effect of metalloid on culturable microbial populations and enzyme activities. Urease and acid phosphatase can be used as potential biomarkers to evaluate the intensity of Sb (III) and As (III) stress.

  6. Controls on microbial accessibility to soil organic carbon following woody plant encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Creamer, Courtney; Boutton, Thomas; Olk, Dan; Filley, Timothy

    2010-05-01

    Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic carbon (SOC) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and hydrology. To elucidate the controls on microbial accessibility to SOC, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas Agrilife La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, and plant biopolymer chemistry in SOC were tracked. Respiration rates declined exponentially over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total SOC was mineralized to CO2 throughout the incubation. After day 84 a significantly (p<0.05) greater portion of SOC was mineralized from soils of older woody clusters (34-86 years) than from soils of younger woody clusters (14-23 years) and the native grassland. Invading woody stands of ≃≥35 years of age represent a transition point in WPE where respiration dynamics become distinct in wooded elements compared to grasslands; this distinction has been previously observed through changes in belowground SOC accrual, C input chemistry, and mycorrhizal productivity. Despite documented SOC accrual following WPE at La Copita, we observed no evidence of enhanced SOC stabilization in these respiration experiments. In fact, a greater proportion of total SOC was lost from the soil of mature woody stands than from young stands, suggesting SOC accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. Compound-specific analyses indicated there was a significant (p<0.05) loss of C from carbohydrates, amino acids, and amino sugars during the incubation. Amino nitrogen tended to become more concentrated during the incubation, although the trend was not significant. Relatively

  7. Effects of Environmental Perturbations and Seasonal Dynamics upon Microbial Populations in Serpentinite-hosted Groundwater

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Cardace, D.; Williams, L. I.; Hoehler, T. M.; Hyndman, D. W.; Kubo, M. D.; McCollom, T. M.

    2016-12-01

    Fractured and uplifted ultramafic rock, found in structures known as ophiolites, is a common feature at continental margins throughout the world. As these structures undergo water-rock reactions through a process known as serpentinization they generate high pH (>10), highly reducing, volatile-rich fluids that can provide energy sources for subsurface microbial communities. At the same time, as ophiolites weather into serpentine soils, they interact with carbon reservoirs in complex ways through processes such as abiogenic hydrocarbon formation, carbonate precipitation, and microbial processing of organic matter. A recent study of the Coast Range Ophiolite Microbial Observatory (CROMO) well network in northern California documented the relationships between aqueous geochemistry and microbial metagenomes in serpentinization-influenced groundwater, highlighting the influence of pH, methane, and carbon monoxide concentrations upon the abundance of certain populations. The extremely low diversity of microbial communities at the site provided a tractable model to evaluate ongoing biogeochemical processes. New work at CROMO has studied temporal changes in microbial abundance and community composition in groundwater relative to hydrological and geochemical properties. Between 2014 and 2016, in situ dataloggers at CROMO have captured perturbations in the region such as earthquakes, wildfires, droughts, and floods. These perturbations impact physico-chemical properties of the groundwater (e.g. redox, nutrient concentrations) in ways that are reflected in the microbial ecology of the site. Initial results of the multi-year integration of groundwater microbiology, geochemistry, and hydrology at CROMO will be presented in terms of their consequences for carbon cycling activities. Developing a predictive model of these feedbacks is essential as serpentine-hosted environments are subjected to land-use change, mining activities, and are being targeted for geological carbon

  8. Population Education Accessions List. January-April 1997.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This bibliography addresses the subject of population education. Entries are categorized into three parts. Part 1, "Population Education," consists of titles of books and other documents addressing various aspects of population education arranged by country in the first section and general materials in the second section. Part 2,…

  9. Population Education Accessions List. May-August 1997.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This annotated bibliography lists available resources that address many issues involved in population education. Entries are categorized into three parts. Part I, "Population Education," consists of titles on various aspects of population education arranged by country in the first section and by general materials in the second section.…

  10. Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors.

    PubMed

    Shuryak, Igor; Dadachova, Ekaterina

    2016-01-01

    Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1) bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA); (2) fungi isolated from the Chernobyl nuclear-power plant (Ukraine) buildings after the accident; (3) yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s) among biologically-plausible alternatives. Our analysis suggests the following: (1) Both radionuclides and co-occurring chemical contaminants (e.g. NO2) are important for explaining microbial responses to radioactive contamination. (2) Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3) The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4) Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1) the most severe effects (e.g. extinction) on microbial populations may occur when unfavorable environmental

  11. Long-term application of winery wastewater - Effect on soil microbial populations and soil chemistry

    NASA Astrophysics Data System (ADS)

    Mosse, Kim; Patti, Antonio; Smernik, Ron; Cavagnaro, Timothy

    2010-05-01

    The ability to reuse winery wastewater (WWW) has potential benefits both with respect to treatment of a waste stream, as well as providing a beneficial water resource in water limited regions such as south-eastern Australia, California and South Africa. Over an extended time period, this practice leads to changes in soil chemistry, and potentially, also to soil microbial populations. In this study, we compared the short term effects of WWW (both treated and untreated) application on soil biology and chemistry in two adjacent paired sites with the same soil type, one of which had received WWW for approximately 30 years, and the other which had not. The paired sites were treated with an industrially relevant quantity of WWW, and the soil microbial activity (measured as soil CO2 efflux) and common soil physicochemical properties were monitored over a 16-day period. In addition, Solid State 13C NMR was employed on whole soil samples from the two sites, to measure and compare the chemical nature of the soil organic matter at the paired sites. The acclimatised soil showed a high level of organic matter and a greater spike in microbial activity following WWW addition, in comparison with the non-acclimatised soil, suggesting differences in soil chemistry and soil microbial communities between the two sites. Soil nitrate and phosphorus levels showed significant differences between WWW treatments; these differences likely to be microbially mediated.

  12. Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India

    PubMed Central

    Chandel, Kshitij; Mendki, Murlidhar J.; Parikh, Rasesh Y.; Kulkarni, Girish; Tikar, Sachin N.; Sukumaran, Devanathan; Prakash, Shri; Parashar, Brahma D.; Shouche, Yogesh S.; Veer, Vijay

    2013-01-01

    The mosquito Culex quinquefasciatus is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female Cx. quinquefasciatus mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus Staphylococcus was the largest genus represented by 11 species whereas Enterobacter was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild Cx. quinquefasciatus from over a

  13. Dynamics of indigenous microbial populations of butter head lettuce grown in mulch and on bare soil.

    PubMed

    Ponce, A G; Agüero, M V; Roura, S I; Del Valle, C E; Moreira, M R

    2008-08-01

    The native microflora of lettuce cultivated in mulch and on bare soil and its evolution during storage at optimal condition were evaluated. Inner, mid, and outer leaves of the lettuce heads were analyzed separately and the evolution of the microbial populations were fitted to Gompertz and logistic models. The cultivation method (bare soil and mulch) introduced differences in the initial counts, evolution, and tolerance to refrigeration temperatures for some of the microbial populations under study. Most microbial populations from mulch lettuce presented a decline or little growth under refrigerated storage. However, populations from bare soil lettuce presented some growth phase during storage. Lactic acid bacteria from bare soil lettuce presented significant growth after 8 d of storage while LAB from mulch grown lettuce did not. Concurrently with the LAB growth, there was a decline in the coliform counts in bare soil grown lettuce. At the end of storage, the inner and mid leaves of mulch lettuce presented lower counts of psychrotrophic bacteria, LAB, and yeast and molds.

  14. Monitoring the microbial populations and temperatures of fresh broccoli from harvest to retail display.

    PubMed

    Dallaire, R; LeBlanc, D I; Tranchant, C C; Vasseur, L; Delaquis, P; Beaulieu, C

    2006-05-01

    Microbial populations and the temperature of fresh broccoli were monitored at several steps of a supply chain by sampling 33 distinct lots of locally grown produce over two seasons during harvest, storage, wholesale handling, and retail display. Imported broccoli was also sampled, but only at retail display. Microbiological analyses were conducted on the florets of 201 local and 60 imported broccoli samples to determine populations of total aerobic bacteria (aerobic colony count), fecal coliforms, Escherichia coli, and Listeria monocytogenes. All the samples had mean aerobic colony counts ranging between 4 and 6 log CFU/g, but L. monocytogenes was not detected (limit of detection =100 CFU/g). Fecal coliforms and E. coli (limit of detection =20 most probable number per 100 g) were found in 22 of 126 samples of local broccoli collected at various steps of the production and distribution system during the first season. None was found in 75 samples collected in the second season. Fecal coliforms and E. coli were found in 2 of 60 imported broccoli samples. Broccoli temperatures were relatively well controlled throughout the production and distribution system. No clear change in produce microbial populations was evident between harvest and retail display, during both sampling seasons. However, a large experimental variability was found, possibly associated with the high variability of the initial levels of microbial populations on broccoli at harvest.

  15. Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equations.

    PubMed

    Peleg, M

    1997-08-01

    The life histories of microbial populations, under favorable and adverse conditions, exhibit a variety of growth, decay, and fluctuation patterns. They have been described by numerous mathematical models that varies considerably in structure and number of constants. The continuous logistic equation alone and combined with itself or with its mirror image, the Fermi function, can produce many of the observed growth patterns. They include those that are traditionally described by the Gompertz equation and peaked curves, with the peak being symmetric or asymmetric narrow or wide. The shape of survival and dose response curves appears to be determined by the distribution of the resistance's to the lethal agent among the individual organisms. Thus, exponential decay and Fermian or Gompertz-type curves can be considered manifestations of skewed to the right, symmetric, and skewed to the left distributions, respectively. Because of the mathematical constraints and determinism, the original discrete logistic equation can rarely be an adequate model of real microbial populations. However, by making its proportionality constant a normal-random variate it can simulate realistic histories of fluctuating microbial populations, including scenarios of aperiodic population explosions of varying intensities of the kind found in food-poisoning episodes.

  16. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  17. Milankovitch-scale correlations between deeply buried microbial populations and biogenic ooze lithology

    USGS Publications Warehouse

    Aiello, I.W.; Bekins, B.A.

    2010-01-01

    The recent discoveries of large, active populations of microbes in the subseafloor of the world's oceans supports the impact of the deep biosphere biota on global biogeochemical cycles and raises important questions concerning the functioning of these extreme environments for life. These investigations demonstrated that subseafloor microbes are unevenly distributed and that cell abundances and metabolic activities are often independent from sediment depths, with increased prokaryotic activity at geochemical and/or sedimentary interfaces. In this study we demonstrate that microbial populations vary at the scale of individual beds in the biogenic oozes of a drill site in the eastern equatorial Pacific (Ocean Drilling Program Leg 201, Site 1226). We relate bedding-scale changes in biogenic ooze sediment composition to organic carbon (OC) and microbial cell concentrations using high-resolution color reflectance data as proxy for lithology. Our analyses demonstrate that microbial concentrations are an order of magnitude higher in the more organic-rich diatom oozes than in the nannofossil oozes. The variations mimic small-scale variations in diatom abundance and OC, indicating that the modern distribution of microbial biomass is ultimately controlled by Milankovitch-frequency variations in past oceanographic conditions. ?? 2010 Geological Society of America.

  18. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs.

    PubMed

    Hale, Victoria; Keasling, Jay D; Renninger, Neil; Diagana, Thierry T

    2007-12-01

    Despite considerable efforts by multiple governmental and nongovernmental organizations to increase access to artemisinin-based combination therapies (ACTs), these life-saving antimalarial drugs remain largely unaffordable to the most vulnerable populations. The cost of artemisinin derivatives, ACTs' crucial active ingredients, contributes significantly to the high price of these therapies. With a grant from the Bill and Melinda Gates Foundation, a partnership between Amyris Biotechnologies, the Institute for OneWorld Health, and the University of California, Berkeley is using synthetic biology to help reduce the cost of artemisinin. This article presents a description of the technological platform the partnership--called the Artemisinin Project--is developing to manufacture a low-cost, semi-synthetic artemisinin through a fermentation process. By making life-saving ACTs affordable to the people who most need them, the Artemisinin Project hopes to show that the power of biotechnology can be harnessed to provide solutions to global health problems.

  19. Long Live Rock! Exploring Active Microbial Populations in North Pond Subsurface Basalt

    NASA Astrophysics Data System (ADS)

    Mills, H. J.; Lehne, J.

    2014-12-01

    Microbial life should be considered as an active source for subsurface alterations of crustal material. Over the past several decades, microbial populations have been qualitatively and quantitatively characterized in marine sediments from the near shore to gyre centers, from the surface to two kilometers below the surface. Recent exploration of the underlying basement has revealed bacterial populations within the basalt. Initial cultivation-based and in situ analysis of subsurface basalt has produced some structural identification of populations that have the potential to alter the crust. Within this study, we have advanced this understanding by characterizing the metabolically active fraction of these populations. A 16S rRNA gene transcript approach was conducted using high throughput sequencing on RNA extracted from breccia, glass basalts and ultramafic basalts of the western flank of the Mid-Atlantic Ridge. Previous research has shown that the fluid within the basement is oxic. As expected, populations associated with aerobic metabolism were detected. In addition, iron-utilizing populations were observed to be metabolically active within the basalt samples characterized. Future characterization will reveal overlap between previous studies to determine the total versus metabolically active populations.

  20. Targeted metagenomics of active microbial populations with stable-isotope probing.

    PubMed

    Coyotzi, Sara; Pratscher, Jennifer; Murrell, J Colin; Neufeld, Josh D

    2016-10-01

    The ability to explore microbial diversity and function has been enhanced by novel experimental and computational tools. The incorporation of stable isotopes into microbial biomass enables the recovery of labeled nucleic acids from active microorganisms, despite their initial abundance and culturability. Combining stable-isotope probing (SIP) with metagenomics provides access to genomes from microorganisms involved in metabolic processes of interest. Studies using metagenomic analysis on DNA obtained from DNA-SIP incubations can be ideal for the recovery of novel enzymes for biotechnology applications, including biodegradation, biotransformation, and biosynthesis. This chapter introduces metagenomic and DNA-SIP methodologies, highlights biotechnology-focused studies that combine these approaches, and provides perspectives on future uses of these methods as analysis tools for applied and environmental microbiology. Copyright © 2016. Published by Elsevier Ltd.

  1. Monomethylhydrazine degradation and its effect on carbon dioxide evolution and microbial populations in soil

    SciTech Connect

    Ou, L.T.; Street, J.J.

    1988-09-01

    Monomethylhydrazine (MMH), along with hydrazine and 1,1-dimethylhydrazine are the main components of hydrazine fuels. Information on the fate of MMH in soil and its overall effect on soil microbial activity is not known, though MMH is known to be toxic to a number of soil bacteria. Despite the fact that axenic bacterial cultures are inhibited by the three hydrazines, Ou and Street reported that soil respiration, and total bacterial and fungal populations in soil, were not inhibited by hydrazine at concentrations of 100 ..mu..g/g and lower. Even at 500 ..mu..g/g, only total bacterial populations in soil were inhibited by the presence of hydrazine. They also reported that hydrazine rapidly disappeared in soil. The authors initiated this study to investigate the effect of MMH on soil microbial activity and on degradation of the chemical in soil.

  2. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla.

    PubMed

    Emerson, Joanne B; Thomas, Brian C; Alvarez, Walter; Banfield, Jillian F

    2016-06-01

    Research on geologic carbon sequestration raises questions about potential impacts of subsurface microbiota on carbon cycling and biogeochemistry. Subsurface, high-CO2 systems are poorly biologically characterized, partly because of difficulty accessing high-volume, uncontaminated samples. CO2 -driven Crystal Geyser (CG, Utah, USA), an established geologic carbon sequestration analogue, provides high volumes of deep (∼ 200-500 m) subsurface fluids. We explored microbial diversity and metabolic potential in this high-CO2 environment by assembly and analysis of metagenomes recovered from geyser water filtrate. The system is dominated by neutrophilic, iron-oxidizing bacteria, including 'marine' Mariprofundus (Zetaproteobacteria) and 'freshwater' Gallionellales, sulfur-oxidizing Thiomicrospira crunogena and Thiobacillus-like Hydrogenophilales. Near-complete genomes were reconstructed for these bacteria. CG is notably populated by a wide diversity of bacteria and archaea from phyla lacking isolated representatives (candidate phyla) and from as-yet undefined lineages. Many bacteria affiliate with OD1, OP3, OP9, PER, ACD58, WWE3, BD1-5, OP11, TM7 and ZB2. The recovery of nearly 100 genes encoding ribulose-1,5 bisphosphate carboxylase-oxygenase subunit proteins of the Calvin cycle and AMP salvage pathways suggests a strong biological role in high-CO2 subsurface carbon cycling. Overall, we predict microbial impacts on subsurface biogeochemistry via iron, sulfur, and complex carbon oxidation, carbon and nitrogen fixation, fermentation, hydrogen metabolism, and aerobic and anaerobic respiration.

  3. Population Education Accessions List. July-December 1978.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Identified in this pamphlet are 317 resources about population education. Compiled by UNESCO's Population Education Clearing House in Thailand, the list contains references to journal articles, monographs, research reports, teaching guides, and curriculum materials. Most were published in Asian countries and the United States during the period…

  4. Population Education Accessions List. July-December 1978.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Identified in this pamphlet are 317 resources about population education. Compiled by UNESCO's Population Education Clearing House in Thailand, the list contains references to journal articles, monographs, research reports, teaching guides, and curriculum materials. Most were published in Asian countries and the United States during the period…

  5. Population Education Accessions List. January-April, 1999.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    This document features output from a computerized bibliographic database. The list categorizes entries into three parts. Part I, Population Education, consists of titles that address various aspects of population education arranged by country in the first section and general materials in the second. Part II, Knowledge Base Information, consists of…

  6. Population Education Accessions List, May-August 1999.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This document is comprised of output from the Regional Clearinghouse on Population Education and Communication (RCPEC) computerized bibliographic database on reproductive and sexual health and geography. Entries are categorized into four parts: (1) "Population Education"; (2) "Knowledge-base Information"; (3) "Audio-Visual and IEC Materials; and…

  7. Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro

    2013-04-01

    The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to

  8. Phylogenetic diversity and temporal variation in the Spirochaeta populations from two Mediterranean microbial mats.

    PubMed

    Berlanga, Mercedes; Aas, Jorn A; Paster, Bruce J; Boumenna, Tahani; Dewhirst, Floyd E; Guerrero, Ricardo

    2008-12-01

    Spirochetes are among the bacterial groups often observed in hydrogen-sulfide-rich layers of coastal microbial mats. However, relatively few spirochetes from these microbial mats have been described and characterized. We used 16S rDNA phylogenetic analysis to investigate the spirochetal diversity of microbial mats from two locations in the western Mediterranean (Ebro Delta, Spain, and Camargue, France). Samples from each location were monitored in the spring and winter over a period of 1 to 2 years. In the sequence analysis of 332 clones derived from samples of both locations, 42 novel phylotypes of not-yet-cultivated spirochetes belonging to the genus Spirochaeta were detected. None of the phylotypes were identified as known culturable species of Spirochaeta or previously identified phylotypes cloned from other hypersaline microbial mat such as Guerrero Negro, Mexico. Eight of the phylotypes were common to Ebro and Camargue mats, and two (IF058 and LL066) were present both in spring and winter. Some phylotypes appeared to show seasonal variation, i.e., they were found only in the spring, but not in the winter. Ebro and Camargue phylotypes, like phylotypes from Guerrero Negro, grouped according to the vertical gradient of oxygen and sulfide in the mat. Some phylotypes, such as LH073, IE028, LH042, or LG013 were harbored in low H2S or H2S-O2 interface zone. In contrast, major phylotypes were detected in deeper layers and they were likely strict anaerobes and high tolerant to H2S. The presence of spirochetes in differently located microbial mats suggests that they constitute very diverse and stable populations involved in a well-integrated metabolic symbiosis (i.e., permanent physiological cooperation) with other guild populations in the mats, where they maintain a coordinated functional and stable community.

  9. Homogeneity and Synchronous Dynamics of Microbial Communities in Particulate Biofilms: from Major Populations to Minor Groups

    PubMed Central

    Gévaudan, Gaëlle; Hamelin, Jérôme; Dabert, Patrick; Godon, Jean-Jacques; Bernet, Nicolas

    2012-01-01

    Natural or engineered microbial populations often show variations over time. These variations may be due to environmental fluctuations or intrinsic factors. Thus, studying the dynamics of microbial diversity for different communities living in a spatially homogeneous landscape is of interest. As a model ecosystem, nitrifying biofilm communities were grown in a two litre inverse turbulent bed reactor (ITBR) containing an estimated 200 million small particles (about 150 μm in diameter). Each particulate biofilm is considered as a distinct community growing in the neighborhood of other similar particles, in a homogeneous and well-controlled environmental context. A molecular approach was adopted to test how microbial community structures might evolve: either in synchrony, converging or diverging. The shape of biofilm was observed by microscopy for each particle. The biomass content was evaluated by quantitative PCR and showed similar values for each particle. The microbial community structure was evaluated by Capillary Electrophoresis-Single Strand Conformation Polymorphism (CE-SSCP) fingerprinting and showed extraordinary homogeneity between particles, even though transitory community structures were observed when reactor operating conditions were modified. This homogeneity was observed for the Bacteria primer set but, more interestingly, was also observed when minor non-nitrifying bacteria making up the biofilm, representing about 5% and 10% of total cells, were targeted. PMID:22791046

  10. Homogeneity and synchronous dynamics of microbial communities in particulate biofilms: from major populations to minor groups.

    PubMed

    Gévaudan, Gaëlle; Hamelin, Jérôme; Dabert, Patrick; Godon, Jean-Jacques; Bernet, Nicolas

    2012-01-01

    Natural or engineered microbial populations often show variations over time. These variations may be due to environmental fluctuations or intrinsic factors. Thus, studying the dynamics of microbial diversity for different communities living in a spatially homogeneous landscape is of interest. As a model ecosystem, nitrifying biofilm communities were grown in a two litre inverse turbulent bed reactor (ITBR) containing an estimated 200 million small particles (about 150 µm in diameter). Each particulate biofilm is considered as a distinct community growing in the neighborhood of other similar particles, in a homogeneous and well-controlled environmental context. A molecular approach was adopted to test how microbial community structures might evolve: either in synchrony, converging or diverging. The shape of biofilm was observed by microscopy for each particle. The biomass content was evaluated by quantitative PCR and showed similar values for each particle. The microbial community structure was evaluated by Capillary Electrophoresis-Single Strand Conformation Polymorphism (CE-SSCP) fingerprinting and showed extraordinary homogeneity between particles, even though transitory community structures were observed when reactor operating conditions were modified. This homogeneity was observed for the Bacteria primer set but, more interestingly, was also observed when minor non-nitrifying bacteria making up the biofilm, representing about 5% and 10% of total cells, were targeted.

  11. Spatial shifts in microbial population structure within poultry litter associated with physicochemical properties.

    PubMed

    Lovanh, N; Cook, K L; Rothrock, M J; Miles, D M; Sistani, K

    2007-09-01

    Microbial populations within poultry litter have been largely ignored with the exception of potential human or livestock pathogens. A better understanding of the community structure and identity of the microbial populations within poultry litter could aid in the development of management practices that would reduce populations responsible for toxic air emissions and pathogen incidence. In this study, poultry litter air and physical properties were correlated to shifts in microbial community structure as analyzed by principal component analysis (PCA) and measured by denaturing gradient gel electrophoresis (DGGE). Litter samples were taken in a 36-point grid pattern at 5 m across and 12 m down a 146 m x 12.8 m chicken house. At each sample point, physical parameters such as litter moisture, pH, air and litter temperature, and relative humidity were recorded, and samples were taken for molecular analysis. The DGGE analysis showed that the banding pattern of samples from the back and water/feeder areas of poultry house were distinct from those of samples from other areas. There were distinct clusters of banding patterns corresponding to the front, middle front, middle back, back, and waterer/feeder areas. The PCA analysis showed similar cluster patterns, but with more distinct separation of the front and midhouse samples. The PCA analysis also showed that moisture content and litter temperature (accounting for 51.5 and 31.5% of the separation of samples, respectively) play a major role in spatial diversity of microbial community in the poultry house. Based on analysis of DGGE fingerprints and cloned DGGE band sequences, there appear to be differences in the types of microorganisms over the length of the house, which correspond to differences in the physical properties of the litter.

  12. Breast cancer and microbial cancer incidence in female populations around the world: a surprising hyperbolic association.

    PubMed

    Savu, Anamaria; Potter, John; Li, Suwen; Yasui, Yutaka

    2008-09-01

    Current literature on cancer epidemiology typically discusses etiology of cancer by cancer type. Risks of different cancer types are, however, correlated at population level and may provide etiological clues. We showed previously an unexpected very high positive correlation between breast cancer (BC) and young-adult Hodgkin disease incidence rates. In a population-based case-control study of BC, older ages at the first Epstein-Barr virus exposure, indicated by older ages at onset of infectious mononucleosis, were associated with elevated BC risk. Here we examine BC risk in association with microbial cancer (MC) risk in female populations across the world. MC cancers are cervical, liver and stomach cancers with established causal associations with human papillomaviruses, hepatitis viruses, and helicobacter pylori, respectively. We examined age-adjusted BC and MC incidence rates in 74 female populations around the world with cancer registries. Our analysis suggests that BC and MC rates are inversely associated in a special mathematical form such that the product of BC rate and MC rate is approximately constant across world female populations. A differential equation model with solutions consistent to the observed inverse association was derived. BC and MC rates were modeled as functions of an exposure level to unspecified common factors that influence the 2 rates. In conjunction with previously reported evidence, we submit a hypothesis that BC etiology may have an appreciable link with microbial exposures (and/or immunological responses to them), the lack of which, especially in early life, may elevate BC risk.

  13. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    PubMed

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory.

  14. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population

    PubMed Central

    Abdullah, Norhani; Oskoueian, Armin

    2013-01-01

    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation. PMID:24175289

  15. Geochemical Attributes and Gradients Within Geothermal Systems Define the Distribution of Specific Microbial Populations

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Macur, R. E.; Korf, S.; Taylor, W. P.; Ackerman, G.; Kozubal, M.; Nagy, A.

    2006-12-01

    Microorganisms in natural habitats interact with mineral surfaces in many different respects. For example, microorganisms are known to enhance the dissolution rates of some minerals via the production of organic acids and other exudates, but at the same time, may mineralize solid phases as a direct or indirect result of metabolic processes. It is also well-established that many microorganisms form biofilms on mineral surfaces, and may preferentially attach to surfaces rich in necessary nutrients or in elements used for energy conservation. In part due to the complexity of natural soil, water and sediments systems, it is generally difficult to ascertain mechanisms controlling the distribution of organisms on mineral surfaces and their role in mineral precipitation-dissolution reactions. Geothermal microbial communities are often less diverse than surface soils and sediments and offer opportunities for understanding relationships among specific microbial populations and geochemical processes that define the biogeochemical cycles of individual elements. We have investigated numerous acidic and near-neutral geothermal sites in Yellowstone National Park, and have performed a number of complimentary chemical and microbiological analyses to ascertain the role of microorganisms in S, Fe, As and Sb cycling in geothermal systems. Our results demonstrate the importance of microbiota in the formation of various Fe(III) oxide phases with variable anion chemistry, and the importance of chemolithotrophic metabolisms in Fe, S and As cycling. Where possible, these metabolisms are linked to specific microbial populations identified via molecular methods, and in some cases confirmed using isolation and characterization of individual organisms.

  16. Efficacy of gaseous ozone against Salmonella and microbial population on dried oregano.

    PubMed

    Torlak, Emrah; Sert, Durmuş; Ulca, Pelin

    2013-08-01

    Interest in potential food applications of ozone has expanded in recent years in response to consumer demands for green technologies. This study was conducted to evaluate the efficacy of gaseous ozone for the microbial reduction and elimination of Salmonella on dried oregano. Ozone treatment was performed up to 120min under continuous stream of two different constant ozone concentrations (2.8 and 5.3mg/L). Significant (P<0.05) reductions of 2.7 and 1.8 log were observed in aerobic plate counts and yeast and mold counts after ozonation at 2.8mg/L for 120min, respectively. Ozonation performed at 5.3mg/L for 90min yielded a reduction of over 3.2 log in the aerobic plate counts. Initial population of a cocktail of Salmonella serotypes (S. Typhimurium, S. Newport and S. Montevideo) on inoculated oregano determined as 5.8logCFU/g decreased significantly by 2.8 and 3.7 log after ozonation at 2.8 and 5.3mg/L for 120min, respectively. Sensory evaluation results suggested that over the 2 log reduction in the microbial population can be obtained on dried oregano by gaseous ozone treatments with an acceptable taste, flavor and appearance. The results demonstrated that the gaseous ozone treatment is an effective alternative microbial reduction technique for dried oregano.

  17. Population-based geographic access to endocrinologists in the United States, 2012.

    PubMed

    Lu, Hua; Holt, James B; Cheng, Yiling J; Zhang, Xingyou; Onufrak, Stephen; Croft, Janet B

    2015-12-07

    Increases in population and life expectancy of Americans may result in shortages of endocrinologists by 2020. This study aims to assess variations in geographic accessibility to endocrinologists in the US, by age group at state and county levels, and by urban/rural status, and distance. We used the 2012 National Provider Identifier Registry to obtain office locations of all adult and pediatric endocrinologists in the US. The population with geographic access to an endocrinologist within a series of 6 distance radii, centered on endocrinologist practice locations, was estimated using the US Census 2010 block-level population. We assumed that persons living within the same circular buffer zone of an endocrinologist location have the same geographic accessibility to that endocrinologist. The geographic accessibility (the percentage of the population with geographic access to at least one endocrinologist) and the population-to-endocrinologist ratio for each geographic area were estimated. By using 20 miles as the distance radius, geographic accessibility to at least one pediatric/adult endocrinologist for age groups 0-17, 18-64, and ≥ 65 years was 64.1%, 85.4%, and 82.1%. The overall population-to-endocrinologist ratio within 20 miles was 39,492:1 for children, 29,887:1 for adults aged 18-64 years, and 6,194:1 for adults aged ≥ 65 years. These ratios varied considerably by state, county, urban/rural status, and distance. This study demonstrates that there are geographic variations of accessibility to endocrinologists in the US. The areas with poorer geographic accessibility warrant further study of the effect of these variations on disease prevention, detection, and management of endocrine diseases in the US population. Our findings of geographic access to endocrinologists also may provide valuable information for medical education and health resources allocation.

  18. Increasing access by priority populations to Australian sexual health clinics.

    PubMed

    Ali, Hammad; Donovan, Basil; Fairley, Christopher K; Chen, Marcus Y; O'Connor, Catherine C; Grulich, Andrew E; McNulty, Anna; Ryder, Nathan; Hellard, Margaret E; Guy, Rebecca J

    2013-10-01

    Data from a network of 35 Australian sexual health clinics, in geographically diverse locations, showed that the number and proportion of patients from priority populations (ie, young people, men who have sex with men, indigenous people, and female sex workers) increased significantly between 2004 and 2011.

  19. Population Education Accessions Lists, July-December 1986.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    Part I of this resource guide contains listings of instructional materials, computer-assisted instructions, classroom activities and teaching methods. Part II deals with the knowledge base of population education. These publications are divided into 11 topics including: (1) demography; (2) documentation; (3) education (including environmental,…

  20. Population Education Accessions List, January-April 2000.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This document contains output from a computerized bibliographic database. This issue is divided into four parts. Part I consists of titles that address various aspects of population education and is arranged by country in the first section, and general materials in the second section. Part II presents knowledge base information and consists of…

  1. Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw.

    PubMed

    Nguyen, Thien Truong Giang; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2017-02-01

    Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Four, rumen fistulated dairy steers with initial weight of 167±12 kg were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers.

  2. Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw

    PubMed Central

    Nguyen, Thien Truong Giang; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2017-01-01

    Objective Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Methods Four, rumen fistulated dairy steers with initial weight of 167±12 kg were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Conclusion Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers. PMID:27165024

  3. Access to healthful foods among an urban food insecure population: perceptions versus reality.

    PubMed

    Freedman, Darcy A; Bell, Bethany A

    2009-11-01

    The influence of local food environments on the risk for obesity is important overall, but may be particularly important for food insecure populations in urban settings. Access to healthful foods is most limited among racial and ethnic minorities and low-income populations; these same populations experience the highest rates of obesity and food insecurity. Few valid and reliable measures have been developed to assess the quality of local food environments. This research addresses this gap by introducing an inventory for measuring self-reported perceptions of food access and then compares the perceptions measure to objective assessments of local food environments. Data are focused on an urban population experiencing disproportionate rates of food insecurity. The four-item perceptions of food access inventory had high internal consistency (Cronbach's alpha = 0.80). Participants' perceptions of access to healthful foods mirrored the reality of their food environment; however, perceptions of access to alcohol and tobacco were less accurate. Findings suggest that people living in low-income, urban, minority, and food insecure communities can validly assess (in)access to healthful foods. Future research is needed to further validate the perceptions of food access measure introduced and, more importantly, to develop strategies for increasing access to healthful foods in food insecure contexts.

  4. Variation in microbial population during composting of agro-industrial waste.

    PubMed

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation.

  5. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting.

    PubMed

    Huang, Dan-Lian; Zeng, Guang-Ming; Feng, Chong-Ling; Hu, Shuang; Lai, Cui; Zhao, Mei-Hua; Su, Feng-Feng; Tang, Lin; Liu, Hong-Liang

    2010-06-01

    Microbial populations and their relationship to bioconversion during lignocellulosic waste composting were studied by quinone profiling. Nine quinones were observed in the initial composting materials, and 15 quinones were found in compost after 50days of composting. The quinone species Q-9(H2), Q-10 and Q-10(H2) which are indicative of certain fungi appeared at the thermophilic stage but disappeared at the cooling stage. Q-10, indicative of certain fungi, and MK-7, characteristic of certain bacteria, were the predominant quinones during the thermophilic stage and were correlated with lignin degradation at the thermophilic stage. The highest lignin degradation ratio (26%) and good cellulose degradation were found at the cooling stage and were correlated with quinones Q-9, MK-7 and long-chain menaquinones attributed to mesophilic fungi, bacteria and actinomycetes, respectively. The present findings will improve the understandings of microbial dynamics and roles in composting, which could provide useful references for development of composting technology.

  6. Salmonella prevalence and total microbial and spore populations in spices imported to Japan.

    PubMed

    Hara-Kudo, Y; Ohtsuka, L K; Onoue, Y; Otomo, Y; Furukawa, I; Yamaji, A; Segawa, Y; Takatori, K

    2006-10-01

    A total of 259 samples of 40 types of spices were tested for Salmonella prevalence and total microbial and spore populations. Salmonella enterica serotypes Weltevreden and Senftenberg were isolated from a black- and red-pepper sample, respectively. Because Salmonella was not detected by the most-probable-number method, it indicated that at least one cell of the microorganism was present in 25 g of sample. The mean aerobic bacterial count was greater than 5.39 log CFU/g in turmeric, garam masala, curry powder, and paprika. The mean bacterial spore counts were greater than 4.33 log CFU/g in turmeric and curry powder. The mean aerobic bacterial count in the two Salmonella-isolated samples was 6.93 log CFU/g. These results indicate that spices can be a source of contamination in the products where they are used as ingredients, and methods to reduce the microbial load in spices should be used.

  7. Equity of access to primary healthcare for vulnerable populations: the IMPACT international online survey of innovations.

    PubMed

    Richard, Lauralie; Furler, John; Densley, Konstancja; Haggerty, Jeannie; Russell, Grant; Levesque, Jean-Frederic; Gunn, Jane

    2016-04-12

    Improving access to primary healthcare (PHC) for vulnerable populations is important for achieving health equity, yet this remains challenging. Evidence of effective interventions is rather limited and fragmented. We need to identify innovative ways to improve access to PHC for vulnerable populations, and to clarify which elements of health systems, organisations or services (supply-side dimensions of access) and abilities of patients or populations (demand-side dimensions of access) need to be strengthened to achieve transformative change. The work reported here was conducted as part of IMPACT (Innovative Models Promoting Access-to-Care Transformation), a 5-year Canadian-Australian research program aiming to identify, implement and trial best practice interventions to improve access to PHC for vulnerable populations. We undertook an environmental scan as a broad screening approach to identify the breadth of current innovations from the field. We distributed a brief online survey to an international audience of PHC researchers, practitioners, policy makers and stakeholders using a combined email and social media approach. Respondents were invited to describe a program, service, approach or model of care that they considered innovative in helping vulnerable populations to get access to PHC. We used descriptive statistics to characterise the innovations and conducted a qualitative framework analysis to further examine the text describing each innovation. Seven hundred forty-four responses were recorded over a 6-week period. 240 unique examples of innovations originating from 14 countries were described, the majority from Canada and Australia. Most interventions targeted a diversity of population groups, were government funded and delivered in a community health, General Practice or outreach clinic setting. Interventions were mainly focused on the health sector and directed at organisational and/or system level determinants of access (supply-side). Few innovations

  8. Mapping Microbial Populations Relative to Sites of Ongoing Serpentinization: Results from the Tablelands Ophiolite Complex, Canada

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Woodruff, Q.; Szponar, N.; Morrill, P. L.

    2010-12-01

    assemblages consisting of diverse taxa at neutral pH background sites. Terrestrial serpentinite-hosted microbial ecosystems with their accessibility, their low phylogenetic diversity, and limited range of energetic resources provide an excellent opportunity to explore the interplay between geochemical energy and life and to elucidate the native serpentinite subsurface biosphere. From the perspective of Mars exploration, studies of serpentinite ecosystems provide the opportunity to pinpoint the organisms and physiological adaptations specifically associated with serpentinization and to directly measure their geochemical impacts. Both of these results will inform modeling and life detection efforts of the Martian subsurface environment.

  9. Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors

    PubMed Central

    Shuryak, Igor; Dadachova, Ekaterina

    2016-01-01

    Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1) bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA); (2) fungi isolated from the Chernobyl nuclear-power plant (Ukraine) buildings after the accident; (3) yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s) among biologically-plausible alternatives. Our analysis suggests the following: (1) Both radionuclides and co-occurring chemical contaminants (e.g. NO2) are important for explaining microbial responses to radioactive contamination. (2) Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3) The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4) Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1) the most severe effects (e.g. extinction) on microbial populations may occur when unfavorable environmental

  10. New Methods for Analysis of Spatial Distribution and Coaggregation of Microbial Populations in Complex Biofilms

    PubMed Central

    Almstrand, Robert; Daims, Holger; Persson, Frank; Sörensson, Fred

    2013-01-01

    In biofilms, microbial activities form gradients of substrates and electron acceptors, creating a complex landscape of microhabitats, often resulting in structured localization of the microbial populations present. To understand the dynamic interplay between and within these populations, quantitative measurements and statistical analysis of their localization patterns within the biofilms are necessary, and adequate automated tools for such analyses are needed. We have designed and applied new methods for fluorescence in situ hybridization (FISH) and digital image analysis of directionally dependent (anisotropic) multispecies biofilms. A sequential-FISH approach allowed multiple populations to be detected in a biofilm sample. This was combined with an automated tool for vertical-distribution analysis by generating in silico biofilm slices and the recently developed Inflate algorithm for coaggregation analysis of microbial populations in anisotropic biofilms. As a proof of principle, we show distinct stratification patterns of the ammonia oxidizers Nitrosomonas oligotropha subclusters I and II and the nitrite oxidizer Nitrospira sublineage I in three different types of wastewater biofilms, suggesting niche differentiation between the N. oligotropha subclusters, which could explain their coexistence in the same biofilms. Coaggregation analysis showed that N. oligotropha subcluster II aggregated closer to Nitrospira than did N. oligotropha subcluster I in a pilot plant nitrifying trickling filter (NTF) and a moving-bed biofilm reactor (MBBR), but not in a full-scale NTF, indicating important ecophysiological differences between these phylogenetically closely related subclusters. By using high-resolution quantitative methods applicable to any multispecies biofilm in general, the ecological interactions of these complex ecosystems can be understood in more detail. PMID:23892743

  11. Impact of Field Release of Genetically Modified Pseudomonas fluorescens on Indigenous Microbial Populations of Wheat

    PubMed Central

    De Leij, F.; Sutton, E. J.; Whipps, J. M.; Fenlon, J. S.; Lynch, J. M.

    1995-01-01

    In a field release experiment, an isolate of Pseudomonas fluorescens, which was chromosomally modified with two reporter gene cassettes (lacZY and Kan(supr)-xylE), was applied to spring wheat as a seed coating and subsequently as a foliar spray. The wild-type strain was isolated from the phylloplane of sugar beet but was found to be a common colonizer of both the rizosphere and phylloplane of wheat as well. The impact on the indigenous microbial populations resulting from release of this genetically modified microorganism (GMM) was compared with the impact of the unmodified, wild-type strain and a nontreated control until 1 month after harvest of the crop. The release of the P. fluorescens GMM and the unmodified, wild-type strain resulted in significant but transient perturbations of some of the culturable components of the indigenous microbial communities that inhabited the rhizosphere and phylloplane of wheat, but no significant perturbations of the indigenous culturable microbial populations in nonrhizosphere soil were found. Fast-growing organisms that did not produce resting structures (for example, fluorescent pseudomonads and yeasts) seemed to be most sensitive to perturbation. In terms of hazard and risk to the environment, the observed microbial perturbations that resulted from this GMM release may be considered minor for several reasons. First, the recombinant P. fluorescens strain caused changes that were, in general, not significantly different from those caused by the unmodified wild-type strain; second, perturbations resulting from bacterial inoculations were mainly small; and third, the release of bacteria had no obvious effects on plant growth and plant health. PMID:16535129

  12. Microbial population dynamics in the faeces of wood-eating loricariid catfishes.

    PubMed

    Di Maiuta, N; Schwarzentruber, P; Schenker, M; Schoelkopf, J

    2013-06-01

    Catfishes of the genus Panaque are known for their ability to feed on wood and hence to process cellulose fibres in their digestive systems. The paper industry uses cellulose fibres and thus has an interest in exploiting this property biomimetically: it could be employed as a pretreatment to lessen the energy required by the mechanical production stage of manufacturing nanocellulose fibres. Here, we characterize the diet-associated in situ microbial diversity and population dynamic in the faeces of catfish (Panaque sp.) exposed to consecutive diets of pellet food and then wood. Fish faeces samples were collected and investigated by parallel DNA deep amplicon sequencing of the bacterial 16S rRNA SSU for both diet conditions. The most frequently occurring bacterium in the faeces was Cetobacterium sp. The dominant cellulolytic bacterial genera found in ascending relative abundance were as follows: Aeromonas sp., Flavobacterium sp., Bacteroides sp., Pseudomonas sp. and Cellvibrio sp. Diet-associated changes in the faeces microbiome were noted for Flavobacterium sp. Extensive microbial diversity was found in catfish faeces, evidenced using culture-independent molecular techniques. No significant diet-associated effects on the microbiome in terms of biodiversity were observed in the catfish faeces, but diet-associated changes in the microbial population structure were observed. Although catfishes are not classified as true xylivores, inhabiting their faeces are bacteria that may provide a novel source of cellulolytic enzyme. Based on this first microbiology study, the faeces and thus the gastrointestinal microbiome of Panaque catfishes are an unexplored reservoir of microbial extracts with enhanced polysaccharide transforming enzyme activity. The biomimetical exploitation of this cellulolytic activity in the form of novel enzymes or by applying a mixture of cellulolytic micro-organisms could accomplish a pretreatment to the mechanical production process of nanocellulose

  13. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment.

    PubMed

    Edwards, K J; Gihring, T M; Banfield, J F

    1999-08-01

    Microbial populations, their distributions, and their aquatic environments were studied over a year (1997) at an acid mine drainage (AMD) site at Iron Mountain, Calif. Populations were quantified by fluorescence in situ hybridizations with group-specific probes. Probes were used for the domains Eucarya, Bacteria, and Archaea and the two species most widely studied and implicated for their role in AMD production, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Results show that microbial populations, in relative proportions and absolute numbers, vary spatially and seasonally and correlate with geochemical and physical conditions (pH, temperature, conductivity, and rainfall). Bacterial populations were in the highest proportion (>95%) in January. Conversely, archaeal populations were in the highest proportion in July and September ( approximately 50%) and were virtually absent in the winter. Bacterial and archaeal populations correlated with conductivity and rainfall. High concentrations of dissolved solids, as reflected by high conductivity values (up to 125 mS/cm), occurred in the summer and correlated with high archaeal populations and proportionally lower bacterial populations. Eukaryotes were not detected in January, when total microbial cell numbers were lowest (<10(5) cells/ml), but eukaryotes increased at low-pH sites ( approximately 0.5) during the remainder of the year. This correlated with decreasing water temperatures (50 to 30 degrees C; January to November) and increasing numbers of prokaryotes (10(8) to 10(9) cells/ml). T. ferrooxidans was in highest abundance (>30%) at moderate pHs and temperatures ( approximately 2.5 and 20 degrees C) in sites that were peripheral to primary acid-generating sites and lowest (0 to 5%) at low-pH sites (pH approximately 0.5) that were in contact with the ore body. L. ferrooxidans was more widely distributed with respect to geochemical conditions (pH = 0 to 3; 20 to 50 degrees C) but was more abundant at

  14. Seasonal Variations in Microbial Populations and Environmental Conditions in an Extreme Acid Mine Drainage Environment

    PubMed Central

    Edwards, Katrina J.; Gihring, Thomas M.; Banfield, Jillian F.

    1999-01-01

    Microbial populations, their distributions, and their aquatic environments were studied over a year (1997) at an acid mine drainage (AMD) site at Iron Mountain, Calif. Populations were quantified by fluorescence in situ hybridizations with group-specific probes. Probes were used for the domains Eucarya, Bacteria, and Archaea and the two species most widely studied and implicated for their role in AMD production, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Results show that microbial populations, in relative proportions and absolute numbers, vary spatially and seasonally and correlate with geochemical and physical conditions (pH, temperature, conductivity, and rainfall). Bacterial populations were in the highest proportion (>95%) in January. Conversely, archaeal populations were in the highest proportion in July and September (∼50%) and were virtually absent in the winter. Bacterial and archaeal populations correlated with conductivity and rainfall. High concentrations of dissolved solids, as reflected by high conductivity values (up to 125 mS/cm), occurred in the summer and correlated with high archaeal populations and proportionally lower bacterial populations. Eukaryotes were not detected in January, when total microbial cell numbers were lowest (<105 cells/ml), but eukaryotes increased at low-pH sites (∼0.5) during the remainder of the year. This correlated with decreasing water temperatures (50 to 30°C; January to November) and increasing numbers of prokaryotes (108 to 109 cells/ml). T. ferrooxidans was in highest abundance (>30%) at moderate pHs and temperatures (∼2.5 and 20°C) in sites that were peripheral to primary acid-generating sites and lowest (0 to 5%) at low-pH sites (pH ∼0.5) that were in contact with the ore body. L. ferrooxidans was more widely distributed with respect to geochemical conditions (pH = 0 to 3; 20 to 50°C) but was more abundant at higher temperatures and lower pHs (∼40°C; pH ∼0.5) than T. ferrooxidans

  15. Household computer and Internet access: The digital divide in a pediatric clinic population.

    PubMed

    Carroll, Aaron E; Rivara, Frederick P; Ebel, Beth; Zimmerman, Frederick J; Christakis, Dimitri A

    2005-01-01

    Past studies have noted a digital divide, or inequality in computer and Internet access related to socio-economic class. This study sought to measure how many households in a pediatric primary care outpatient clinic had household access to computers and the Internet, and whether this access differed by socio-economic status or other demographic information. We conducted a phone survey of a population-based sample of parents with children ages 0 to 11 years old. Analyses assessed predictors of having home access to a computer, the Internet, and high-speed Internet service. Overall, 88.9% of all households owned a personal computer, and 81.4% of all households had Internet access. Among households with Internet access, 48.3% had high speed Internet at home. There were significant associations between home computer ownership or Internet access and parental income or education. There was no relationship these factors and high speed Internet access. Over 60% of families with annual household income of $10,000-$25,000, and nearly 70% of families with only a high-school education had Internet access at home. While income and education remain significant predictors of household computer and internet access, many patients and families at all economic levels have access, and might benefit from health promotion interventions using these modalities.

  16. Characterization of Microbial Population Structures in Recreational Waters and Primary Sources of Fecal Pollution with a Next-Generation Sequencing Approach

    EPA Science Inventory

    The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...

  17. Characterization of Microbial Population Structures in Recreational Waters and Primary Sources of Fecal Pollution with a Next-Generation Sequencing Approach

    EPA Science Inventory

    The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...

  18. Pattern and synchrony of gene expression among sympatric marine microbial populations

    PubMed Central

    Ottesen, Elizabeth A.; Young, Curtis R.; Eppley, John M.; Ryan, John P.; Chavez, Francisco P.; Scholin, Christopher A.; DeLong, Edward F.

    2013-01-01

    Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically

  19. Pattern and synchrony of gene expression among sympatric marine microbial populations.

    PubMed

    Ottesen, Elizabeth A; Young, Curtis R; Eppley, John M; Ryan, John P; Chavez, Francisco P; Scholin, Christopher A; DeLong, Edward F

    2013-02-05

    Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically

  20. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  1. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  2. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems.

    PubMed

    Maslov, Sergei; Sneppen, Kim

    2017-01-04

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  3. Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition.

    PubMed

    Saeed, Isaam; Tang, Sen-Lin; Halgamuge, Saman K

    2012-03-01

    An approach to infer the unknown microbial population structure within a metagenome is to cluster nucleotide sequences based on common patterns in base composition, otherwise referred to as binning. When functional roles are assigned to the identified populations, a deeper understanding of microbial communities can be attained, more so than gene-centric approaches that explore overall functionality. In this study, we propose an unsupervised, model-based binning method with two clustering tiers, which uses a novel transformation of the oligonucleotide frequency-derived error gradient and GC content to generate coarse groups at the first tier of clustering; and tetranucleotide frequency to refine these groups at the secondary clustering tier. The proposed method has a demonstrated improvement over PhyloPythia, S-GSOM, TACOA and TaxSOM on all three benchmarks that were used for evaluation in this study. The proposed method is then applied to a pyrosequenced metagenomic library of mud volcano sediment sampled in southwestern Taiwan, with the inferred population structure validated against complementary sequencing of 16S ribosomal RNA marker genes. Finally, the proposed method was further validated against four publicly available metagenomes, including a highly complex Antarctic whale-fall bone sample, which was previously assumed to be too complex for binning prior to functional analysis.

  4. Registration of RMPAP-C4, a random-mated primitive race accession cotton germplasm population

    USDA-ARS?s Scientific Manuscript database

    A random mated population involving four cultivars of Upland cotton, Gossypium hirsutum L., and thirty day-neutral primitive accessions, RMPAP-C4, was developed and jointly released by USDA-ARS and the Mississippi Agricultural and Forestry Experiment Station in 2014. This population involved five c...

  5. The association between dietary sucrose consumption and microbial population shifts at six oral sites in man.

    PubMed

    Minah, G E; Solomon, E S; Chu, K

    1985-01-01

    Sucrose-related microbial population shifts were evaluated at 6 oral sites in 22 volunteers, who consumed high-sucrose diets for 21 days followed by low-sucrose diets for 21 days. Culturing was performed at 0, 12, 21, 33 and 42 days of the 6-week experiment. Over 50,000 microbial isolates were characterized and analysed. Analysis of initial cultures showed the following site-specific microbial characteristics of the 6 sites evaluated: (1) molar fissures harboured higher levels of Neisseria species and showed the highest facultative-to-anaerobic ratio; (2) molar fissures and cervical buccal sites showed high Streptococcus sanguis levels and total Gram-positive cocci and fewer Gram-negative bacilli; (3) the tongue and saliva gave high concentrations of Streptococcus salivarius and Veillonella sp. Sucrose intake was positively related to concentrations of yeasts and Streptococcus mutans in the molar fissures; Actinomyces viscosus in the mandibular approximal site; Strep. mutans, Veillonella sp. and Lactobacillus sp. in the maxillary approximal site and Strep. salivarius on the tongue and in saliva. Sucrose intake was negatively related to concentrations of Neisseria sp. on the tongue and total Gram-positive bacilli in saliva. A definite ecological effect of sucrose on the oral microflora was confirmed. The high inter-subject and site variations of target bacteria and the generally low magnitude of shifts, however, discourage implementation of microbiological criteria in dietary assessments.

  6. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    USGS Publications Warehouse

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  7. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    SciTech Connect

    Muller, R; Denef, Vincent; Kalnejals, Linda; Suttle, K Blake; Thomas, Brian; Wilmes, P; Smith, Richard L.; Nordstrom, D Kirk; McCleskey, R Blaine; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems.We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism s metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ

  8. Fractionation of microbial populations in a PHA accumulating mixed culture and associated PHA content and composition.

    PubMed

    Janarthanan, Om Murugan; Yu, Yang; Laycock, Bronwyn; Werker, Alan; Pratt, Steven

    2014-11-01

    The uniformity of PHA composition and content across groups of organisms in mixed cultures was considered. An activated sludge microbial community, with an average PHA content of 20wt%, was fractioned by Percoll assisted buoyant density separation. The microbial community in the two principal fractions was characterised using amplicon pyrosequencing. While organisms were common to both fractions, the relative abundances of species were found to be different between the two fractions. The average PHA content in one of the fractions was found to be higher (24wt%) than the other (16wt%); separation was considered to be in part driven by the density difference associated with PHA content, but also by other factors such as cell dimension and cellular morphology. But while differences in PHA content were observed, the PHA composition in both fractions was found to be approximately the same (43-44mol% HV), which shows that distinct groups of microbial populations within mixed cultures may generate PHA with similar average copolymer composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil.

    PubMed

    Pupin, B; Nahas, E

    2014-04-01

    Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.

  10. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    PubMed Central

    Mueller, Ryan S; Denef, Vincent J; Kalnejais, Linda H; Suttle, K Blake; Thomas, Brian C; Wilmes, Paul; Smith, Richard L; Nordstrom, D Kirk; McCleskey, R Blaine; Shah, Manesh B; VerBerkmoes, Nathan C; Hettich, Robert L; Banfield, Jillian F

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ. PMID:20531404

  11. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.

    PubMed

    Lladó, Salvador; Jiménez, Nuria; Viñas, Marc; Solanas, Anna Maria

    2009-09-01

    A previous bioremediation survey on a creosote-contaminated soil showed that aeration and optimal humidity promoted depletion of three-ringed polycyclic aromatic hydrocarbons (PAHs), but residual concentrations of four-ringed benzo(a)anthracene (B(a)A) and chrysene (Chry) remained. In order to explain the lack of further degradation of heavier PAHs such as four-ringed PAHs and to analyze the microbial population responsible for PAH biodegradation, a chemical and microbial molecular approach was used. Using a slurry incubation strategy, soil in liquid mineral medium with and without additional B(a)A and Chry was found to contain a powerful PAH-degrading microbial community that eliminated 89% and 53% of the added B(a)A and Chry, respectively. It is hypothesized that the lack of PAH bioavailability hampered their further biodegradation in the unspiked soil. According to the results of the culture-dependent and independent techniques Mycobacterium parmense, Pseudomonas mexicana, and Sphingobacterials group could control B(a)A and Chry degradation in combination with several microorganisms with secondary metabolic activity.

  12. Study on Biodegradation Process of Polyethylene Glycol with Exponential Glowth of Microbial Population

    NASA Astrophysics Data System (ADS)

    Watanabe, Masaji; Kawai, Fusako

    Biodegradation of polyethylene glycol is studied mathematically. A mathematical model for depolymerization process of exogenous type is described. When a degradation rate is a product of a time factor and a molecular factor, a time dependent model can be transformed into a time independent model, and techniques developed in previous studies can be applied to the time independent model to determine the molecular factor. The time factor can be determined assuming the exponential growth of the microbial population. Those techniques are described, and numerical results are presented. A comparison between a numerical result and an experimental result shows that the mathematical method is appropriate for practical applications.

  13. Household computer and Internet access: The digital divide in a pediatric clinic population

    PubMed Central

    Carroll, Aaron E.; Rivara, Frederick P.; Ebel, Beth; Zimmerman, Frederick J.; Christakis, Dimitri A.

    2005-01-01

    Past studies have noted a digital divide, or inequality in computer and Internet access related to socioeconomic class. This study sought to measure how many households in a pediatric primary care outpatient clinic had household access to computers and the Internet, and whether this access differed by socio-economic status or other demographic information. We conducted a phone survey of a population-based sample of parents with children ages 0 to 11 years old. Analyses assessed predictors of having home access to a computer, the Internet, and high-speed Internet service. Overall, 88.9% of all households owned a personal computer, and 81.4% of all households had Internet access. Among households with Internet access, 48.3% had high speed Internet at home. There were statistically significant associations between parental income or education and home computer ownership and Internet access. However, the impact of this difference was lessened by the fact that over 60% of families with annual household income of $10,000–$25,000, and nearly 70% of families with only a high-school education had Internet access at home. While income and education remain significant predictors of household computer and internet access, many patients and families at all economic levels have access, and might benefit from health promotion interventions using these modalities. PMID:16779012

  14. Molecular Analysis of Surfactant-Driven Microbial Population Shifts in Hydrocarbon-Contaminated Soil†

    PubMed Central

    Colores, Gregory M.; Macur, Richard E.; Ward, David M.; Inskeep, William P.

    2000-01-01

    We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization. PMID:10877792

  15. Accessing the population of high-redshift Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Mereghetti, S.; Tagliaferri, G.; Campana, S.; Osborne, J. P.; O'Brien, P.; Tanvir, N.; Willingale, D.; Amati, L.; Basa, S.; Bernardini, M. G.; Burlon, D.; Covino, S.; D'Avanzo, P.; Frontera, F.; Götz, D.; Melandri, A.; Nava, L.; Piro, L.; Vergani, S. D.

    2015-04-01

    Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Epeak-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence, of ˜10-8 erg cm-2 is expected to detect ≈40 GRBs yr-1 sr-1 at z ≥ 5 (≈3 GRBs yr-1 sr-1 at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe.

  16. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle.

    PubMed

    Ghorbani, G R; Morgavi, D P; Beauchemin, K A; Leedle, J A Z

    2002-07-01

    A study was conducted to determine whether bacterial direct-fed microbials (DFM) could be used to minimize the risk of acidosis in feedlot cattle receiving high concentrate diets. Six ruminally cannulated steers, previously adapted to a high concentrate diet, were used in a double 3 x 3 Latin square to study the effects of DFM on feed intake, ruminal pH, and ruminal and blood characteristics. Steers were provided ad libitum access to a diet containing steam-rolled barley, barley silage, and a protein-mineral supplement at 87, 9, and 4% (DM basis), respectively. Treatments were as follows: control, Propionibacterium P15 (P15), and Propionibacterium P15 and Enterococcus faecium EF212 (PE). The bacterial treatments (10(9) cfu/g) plus whey powder carrier, or whey powder alone for control, were top-dressed once daily at the time of feeding (10 g/[steer/d]). Periods consisted of 2 wk of adaptation and 1 wk of measurements. Ruminal pH was continuously measured for 6 d using indwelling electrodes. Dry matter intake and ruminal pH (mean, minimum, hours, and area pH < 5.8 or < 5.5) were not affected by treatment (P > 0.05). However, supplementation with P15 increased protozoal numbers (P < 0.05) with a concomitant increase in ruminal NH3 concentration (P < 0.01) and a decrease in the number of amylolytic bacteria (P < 0.05) compared with the control. Streptococcus bovis, enumerated using a selective medium, was numerically reduced with supplementation of PE. Although blood pH and blood glucose were not affected by DFM supplementation, steers fed PE had numerically lower concentrations of blood CO2 than control steers, which is consistent with a reduced risk of metabolic acidosis. Although the bacterial DFM used in this study did not induce changes in DMI or ruminal and blood pH, some rumen and blood variables indicated that the bacterial DFM used in this study may decrease the risk of acidosis in feedlot cattle.

  17. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    PubMed

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  18. Evaluation of chemical immersion treatments to reduce microbial populations in fresh beef.

    PubMed

    Kassem, Ahmed; Meade, Joseph; Gibbons, James; McGill, Kevina; Walsh, Ciara; Lyng, James; Whyte, Paul

    2017-09-05

    The aim of the current study was to assess the ability of a number of chemicals (acetic Acid (AA), citric acid (CA) lactic acid (LA), sodium decanoate (SD) and trisodium phosphate (TSP)) to reduce microbial populations (total viable count, Campylobacter jejuni, Escherichia coli, Salmonella typhimurium and Listeria monocytogenes) on raw beef using an immersion system. The following concentrations of each chemical were used: 3 & 5% for AA, CA, LA, SD and 10 &12% for TSP. Possible synergistic effects of using combinations of two chemicals sequentially (LA+CA and LA+AA) were also investigated. L*, a* and b* values were measured before and after treatments and ΔE* values were calculated in order to determine any changes in the color of meat due to the use of these chemicals. In general, all chemical treatments resulted in significantly (p<0.05) reduced bacterial counts when compared to untreated controls. The greatest reductions were obtained by using LA3%, SD5%, AA5%, LA5% and SD3% for TVC, C. jejuni, E. coli, S. typhimurium and L. monocytogenes, respectively. However, no significant difference in microbial load was observed between the different concentrations of each chemical used (p>0.05). The application of combinations of chemical immersion treatments (LA3%+AA3% and LA3%+CA3%) did not result in further significant reductions in microbial populations when compared to single chemical treatments (P<0.05). Assessment of color changes in meat following the application of chemical immersion treatments indicated that using AA or CA at either concentration and LA at 5% led to an increase in the ΔE* value of >3 immediately after treatment and after 24h storage. The remaining treatments did not result in significant changes to the color of raw beef. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periods.

    PubMed

    Liu, Y Q; Kong, Y H; Zhang, R; Zhang, X; Wong, F S; Tay, J H; Zhu, J R; Jiang, W J; Liu, W T

    2010-01-01

    This study investigates microbial population dynamics in granular sequencing batch reactors (GSBR). The experimental results of DGGE fingerprint of sludge demonstrated that the microbial community structure of sludge shifted significantly during granulation period and nutrient removal improvement period. After reactor performance and physical characteristics of sludge reached steady state, microbial population of sludge became relatively stable. The high similarity of microbial community structure between co-existed flocculated sludge and granular sludge in GSBR at different operation phases indicated that similar microbial consortium could exist in compact aggregated form or in amorphous flocculated form. Therefore, strong selection pressure was still required to wash out flocs to maintain the stability of reactor operation. In addition, it was found that substrate type had considerable impact on microbial species selection and enrichment in granular sludge. The clone library of granular sludge showed that microbial species in divisions of α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria and Bacteroidetes existed within acetate-fed granule communities and Thauera spp. from β-Proteobacteria accounted for 49% of the total clones in the whole clone library. It is thus speculated that Thauera spp. are important for the formation of acetate-fed granules under the conditions used in this study, maintaining the integrity of granules or substrate degradation.

  20. Chilling and trimming effects on the microbial populations of pork carcasses.

    PubMed

    Carr, M A; Thompson, L D; Miller, M F; Ramsey, C B; Kaster, C S

    1998-04-01

    The effects of chilling (normal chill or freeze chill) and trimming (hot fat trim or no fat trim) on the microbial populations of pork carcases were evaluated. In a two-part study, composited ham, loin, belly, and shoulder samples from 30 park carcasses had similar aerobic plate counts, averaging 5.5 log10 CFU/cm2. The nofat trim, normal chill procedure typically used in the industry, however, produced higher coliform and Staphylococcus spp. counts (P < 0.05). The hot fat trim, freeze chill treatment had the lowest lactic acid bacteria counts. Only 1 sample in 60 tested positive for Salmonella spp. Vacuum-packaged hams and loins stored at 4 degrees C for 14 days had similar (P > 0.05) aerobic plate counts, lactic acid bacteria and Staphylococcus spp. counts regardless of trim, chill, or the location of treatment, averaging 5.7, 6.3 and 1.4 log10 CFU/cm2, respectively. Hams had higher counts than loins all three days; however, only the difference on day 2 was significant. The desire to reduce microbial populations on pork carcasses as a food-safety issue and the coming implementation of hazard analysis critical control points (HACCP) programs warrants the use of trimming and chilling methods as critical control points or good manufacturing practices and standard operating procedures in the pork slaughter, processing, and packaging industry.

  1. Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production.

    PubMed

    de Vet, W W J M; Dinkla, I J T; Muyzer, G; Rietveld, L C; van Loosdrecht, M C M

    2009-01-01

    In full-scale drinking water production from groundwater, subsurface aeration is an effective means of enhancing the often troublesome process of nitrification. Until now the exact mechanism, however, has been unknown. By studying the microbial population we can improve the understanding of this process. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments of bacteria, archaea and ammonia-oxidizing bacteria was used to characterize the microbial populations in raw groundwater and trickling filters of an active nitrifying surface aerated system and an inactive non-surface aerated system. Only in the active filter were nitrifying microorganisms found above the detection limit of the method. In ammonia oxidation in this groundwater filter both bacteria and archaea played a role, while members belonging to the genus Nitrospira were the only nitrite-oxidizing species found. The subsurface aerated groundwater did not contain any of the nitrifying organisms active in the filter above the detection limit, but did contain Gallionella species that might play a major role in iron oxidation in the filter.

  2. Effects of different sources of physically effective fiber on rumen microbial populations.

    PubMed

    Shaw, C N; Kim, M; Eastridge, M L; Yu, Z

    2016-03-01

    Physically effective fiber is needed by dairy cattle to prevent ruminal acidosis. This study aimed to examine the effects of different sources of physically effective fiber on the populations of fibrolytic bacteria and methanogens. Five ruminally cannulated Holstein cows were each fed five diets differing in physically effective fiber sources over 15 weeks (21 days/period) in a Latin Square design: (1) 44.1% corn silage, (2) 34.0% corn silage plus 11.5% alfalfa hay, (3) 34.0% corn silage plus 5.1% wheat straw, (4) 36.1% corn silage plus 10.1% wheat straw, and (5) 34.0% corn silage plus 5.5% corn stover. The impact of the physically effective fiber sources on total bacteria and archaea were examined using denaturing gradient gel electrophoresis. Specific real-time PCR assays were used to quantify total bacteria, total archaea, the genus Butyrivibrio, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and three uncultured rumen bacteria that were identified from adhering ruminal fractions in a previous study. No significant differences were observed among the different sources of physical effective fiber with respect to the microbial populations quantified. Any of the physically effective fiber sources may be fed to dairy cattle without negative impact on the ruminal microbial community.

  3. Temporal variation of microbial population in a thermophilic biofilter for SO₂ removal.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2016-01-01

    The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes (PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10months of operation time, with a maximum elimination capacity of 48.29 g/m(3)/hr. Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid (DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic-anoxic-aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4months of operation. Copyright © 2015. Published by Elsevier B.V.

  4. Microbial Populations Stimulated for Hexavalent Uranium Reduction in Uranium Mine Sediment

    PubMed Central

    Suzuki, Yohey; Kelly, Shelly D.; Kemner, Kenneth M.; Banfield, Jillian F.

    2003-01-01

    Uranium-contaminated sediment and water collected from an inactive uranium mine were incubated anaerobically with organic substrates. Stimulated microbial populations removed U almost entirely from solution within 1 month. X-ray absorption near-edge structure analysis showed that U(VI) was reduced to U(IV) during the incubation. Observations by transmission electron microscopy, selected area diffraction pattern analysis, and energy-dispersive X-ray spectroscopic analysis showed two distinct types of prokaryotic cells that precipitated only a U(IV) mineral uraninite (UO2) or both uraninite and metal sulfides. Prokaryotic cells associated with uraninite and metal sulfides were inferred to be sulfate-reducing bacteria. Phylogenetic analysis of 16S ribosomal DNA obtained from the original and incubated sediments revealed that microbial populations were changed from microaerophilic Proteobacteria to anaerobic low-G+C gram-positive sporeforming bacteria by the incubation. Forty-two out of 94 clones from the incubated sediment were related to sulfate-reducing Desulfosporosinus spp., and 23 were related to fermentative Clostridium spp. The results suggest that, if in situ bioremediation were attempted in the uranium mine ponds, Desulfosporosinus spp. would be a major contributor to U(VI) and sulfate reduction and Clostridium spp. to U(VI) reduction. PMID:12620814

  5. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress.

    PubMed

    Kivisaar, Maia

    2003-10-01

    Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.

  6. Evolutionary consequences of intra-patient phage predation on microbial populations.

    PubMed

    Seed, Kimberley D; Yen, Minmin; Shapiro, B Jesse; Hilaire, Isabelle J; Charles, Richelle C; Teng, Jessica E; Ivers, Louise C; Boncy, Jacques; Harris, Jason B; Camilli, Andrew

    2014-08-26

    The impact of phage predation on bacterial pathogens in the context of human disease is not currently appreciated. Here, we show that predatory interactions of a phage with an important environmentally transmitted pathogen, Vibrio cholerae, can modulate the evolutionary trajectory of this pathogen during the natural course of infection within individual patients. We analyzed geographically and temporally disparate cholera patient stool samples from Haiti and Bangladesh and found that phage predation can drive the genomic diversity of intra-patient V. cholerae populations. Intra-patient phage-sensitive and phage-resistant isolates were isogenic except for mutations conferring phage resistance, and moreover, phage-resistant V. cholerae populations were composed of a heterogeneous mix of many unique mutants. We also observed that phage predation can significantly alter the virulence potential of V. cholerae shed from cholera patients. We provide the first molecular evidence for predatory phage shaping microbial community structure during the natural course of infection in humans.

  7. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum

    PubMed Central

    Chiodini, Rodrick J.; Dowd, Scot E.; Chamberlin, William M.; Galandiuk, Susan; Davis, Brian; Glassing, Angela

    2015-01-01

    Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem that is not well

  8. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum.

    PubMed

    Chiodini, Rodrick J; Dowd, Scot E; Chamberlin, William M; Galandiuk, Susan; Davis, Brian; Glassing, Angela

    2015-01-01

    Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem that is not well

  9. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns.

    PubMed

    He, Ruo; Ruan, Aidong; Shen, Dong-Sheng

    2007-05-01

    A considerable fraction of methane produced in landfills is oxidized by landfill cover soils. In this work, microbial populations and oxidation rates developed in response to the presence of methane were studied in three soil columns simulated landfill cover soil environments. The population of aerobic heterotrophic bacteria was highest in the waste soil, middle in the clay soil, and lowest in the red soil. After exposure to methane-rich environments, the populations of methanotrophic bacteria showed increases in the waste and clay soils. The population of methanotrophic bacteria increased from 30.77x10(4) to 141.77x10(4) cfu g d.w.-1 in the middle layer of the waste soil column as a function of exposure to methane for 120 days. The populations of methanotrophic bacteria were correlated with the potential methane oxidation rates in the waste and clay soils, respectively. The topsoil was observed to be dried in the three soil columns. Most of methane oxidation occurred at the depth of between 10 and 20 cm in the waste soil column, while it took place mainly at the depth of between 20 and 30 cm in the clay soil column.

  10. Efficacy of chlorine and acidified sodium chlorite on microbial population and quality changes of spinach leaves.

    PubMed

    Nei, Daisuke; Choi, Ji-Weon; Bari, Md Latiful; Kawasaki, Susumu; Kawamoto, Shinichi; Inatsu, Yasuhiro

    2009-06-01

    Efficacy of washing with distilled water, chlorine solution, and acidified sodium chlorite (ASC) solution on populations of microorganisms on spinach leaves was evaluated. Washing with chlorine (100 mg/L) and ASC (sodium chlorite, 15 mg/L; citric acid, 200 mg/L) resulted in significant population reduction (1.1-1.9 log CFU/g) of aerobic microflora, coliform, and Escherichia coli O157:H7 (p < 0.05). There was no remarkable difference in decontamination efficacy between chlorine and ASC solution. In recent years, several sodium chlorite chemicals have been commercially available, and no difference in decontamination efficacy among the chemicals was observed when same concentration of sodium chlorite and citric acid were used. In addition, the reduction of E. coli O157:H7 population was influenced depending on the inoculation method and type of washing. It has been seen that dip-inoculated spinach leaves showed lower reduction than that of spot-inoculated spinach. After washing, populations of aerobic microflora, coliform, and E. coli O157:H7 were increased during storage at 10 degrees C, and washing condition before storage did not affect the subsequent increases in microbial population. Color of spinach leaves washed with ASC solution was not different from the color of those washed with water or chlorine solution, and washing with ASC solution was concluded to has no effect on appearance of spinach leaves.

  11. Oral health status, perceptions, and access to dental care in the Hispanic population.

    PubMed

    Lugo, Ivan; Arteaga, Sarita; Sanchez, Veronica

    2014-01-01

    This article analyzes the results of a survey designed to assess self-reported oral health status, perceptions, and access to care between the Hispanic population and the general population of the United States. A nationally representative telephone survey was conducted with randomly selected participants: 1000 each from the Hispanic and the general populations. Responses of both groups were compared and statistically analyzed at a 95% confidence level (α = 0.05). The results showed significant differences between the Hispanic and the general populations. Hispanics were less likely to believe in the need for regular professional dental care, more likely to have misperceptions about oral health and conditions, and less likely to have access to care than the general population. Hispanics were less likely to have visited a dentist in the last 2 years, and significantly more Hispanics than general population participants cited cost of care and lack of dental insurance as key reasons for not seeing a dentist. More information on good oral health habits, Spanish-language information, and where to access care were identified as helpful tools by majorities of Hispanics. These data indicate disparities do exist between the Hispanic and the general populations. They highlight the need for new policies and programs-from organized dentistry to individual practices-that address the needs of the growing Hispanic population.

  12. Access to primary healthcare services for the Roma population in Serbia: a secondary data analysis

    PubMed Central

    2011-01-01

    Background Serbia has proclaimed access to healthcare as a human right. In a context wherein the Roma population are disadvantaged, the aim of this study was to assess whether the Roma population are able to effectively access primary care services, and if not, what barriers prevent them from doing so. The history of the Roma in Serbia is described in detail so as to provide a context for their current vulnerable position. Methods Disaggregated data were analyzed from three population groups in Serbia; the general population, the Roma population, and the poorest quintile of the general population not including the Roma. The effective coverage framework, which incorporates availability, affordability, accessibility, acceptability, and effectiveness of health services, was used to structure the secondary data analysis. Acute respiratory infection (ARI) in children less than five years of age was used as an example as this is the leading cause of death in children under 5 years old in Serbia. Results Roma children were significantly more likely to experience an ARI than either the general population or the poorest quintile of the general population, not including the Roma. All three population groups were equally likely to not receive the correct treatment regime of antibiotics. An analysis of the factors that affect quality of access to health services reveal that personal documentation is a statistically significant problem; availability of health services is not an issue that disproportionately affects the Roma; however the geographical accessibility and affordability are substantive issues that disproportionately affect the Roma population. Affordability of services affected the Roma and the poorest quintile and affordability of medications significantly affected all three population groups. With regards to acceptability, mothers from all three population groups are equally likely to recognize the importance of seeking treatment. Conclusions The Roma should be

  13. MbT-Tool: An open-access tool based on Thermodynamic Electron Equivalents Model to obtain microbial-metabolic reactions to be used in biotechnological process.

    PubMed

    Araujo, Pablo Granda; Gras, Anna; Ginovart, Marta

    2016-01-01

    Modelling cellular metabolism is a strategic factor in investigating microbial behaviour and interactions, especially for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engineers. A new computational tool to represent microbial pathways through microbial metabolic reactions (MMRs) using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in the open-access framework NetLogo. This computational tool, called MbT-Tool (Metabolism based on Thermodynamics) can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains eighteen organic and twenty inorganic reduction-half-reactions, four N-sources (NH4 (+), NO3 (-), NO2 (-), N2) to biomass synthesis and twenty-four microbial empirical formulas, one of which can be determined by the user (CnHaObNc). MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are applicable in a wide range of academic research interested in designing, optimizing and modelling microbial activity without any extensive chemical, microbiological and programing experience.

  14. Microbial population dynamics during fed-batch operation of commercially available garbage composters.

    PubMed

    Narihiro, T; Abe, T; Yamanaka, Y; Hiraishi, A

    2004-09-01

    Microbial populations in terms of quantity, quality, and activity were monitored during 2 months of start-up operation of commercially available composters for fed-batch treatment of household biowaste. All the reactors, operated at a waste-loading rate of 0.7 kg day(-1) (wet wt), showed a mass reduction efficiency of 88-93%. The core temperature in the reactors fluctuated between 31 degrees C and 58 degrees C due to self-heating. The pH declined during the early stage of operation and steadied at pH 7.4-9.3 during the fully acclimated stage. The moisture content was 48-63% early in the process and 30-40% at the steady state. Both direct total counts and plate counts of bacteria increased via two phases (designated phases I, II) and reached an order of magnitude of 10(11) cells g(-1) (dry wt) at the steady state. Microbial community changes during the start-up period were studied by culture-independent quinone profiling and denatured gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA. In all the reactors, ubiquinones predominated during phase I, whereas partially saturated menaquinones became predominant during phase II. This suggested that there was a drastic population shift from ubiquinone-containing Proteobacteria to Actinobacteria during the start-up period. The DGGE analysis of the bacterial community in one of the reactors also demonstrated a drastic population shift during phase I and the predominance of members of the phyla Proteobacteria and Bacteroidetes during the overall period. But this molecular analysis failed to detect actinobacterial clones from the reactor at any stage.

  15. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.

    PubMed

    Kirschling, Teresa L; Gregory, Kelvin B; Minkley, Edwin G; Lowry, Gregory V; Tilton, Robert D

    2010-05-01

    Nanoscale zerovalent iron (NZVI) particles are a promising technology for reducing trichloroethylene (TCE) contamination in the subsurface. Prior to injecting large quantities of nanoparticles into the groundwater it is important to understand what impact the particles will have on the geochemistry and indigenous microbial communities. Microbial populations are important not only for nutrient cycling, but also for contaminant remediation and heavy metal immobilization. Microcosms were used to determine the effects of NZVI addition on three different aquifer materials from TCE contaminated sites in Alameda Point, CA, Mancelona, MI, and Parris Island, SC. The oxidation and reduction potential of the microcosms consistently decreased by more than 400 mV when NZVI was added at 1.5 g/L concentrations. Sulfate concentrations decreased in the two coastal aquifer materials, and methane was observed in the presence of NZVI in Alameda Point microcosms, but not in the other two materials. Denaturing gradient gel electrophoresis (DGGE) showed significant shifts in Eubacterial diversity just after the Fe(0) was exhausted, and quantitative polymerase chain reaction (qPCR) analyses showed increases of the dissimilatory sulfite reductase gene (dsrA) and Archaeal 16s rRNA genes, indicating that reducing conditions and hydrogen created by NZVI stimulate both sulfate reducer and methanogen populations. Adding NZVI had no deleterious effect on total bacterial abundance in the microcosms. NZVI with a biodegradable polyaspartate coating increased bacterial populations by an order of magnitude relative to controls. The lack of broad bactericidal effect, combined with the stimulatory effect of polyaspartate coatings, has positive implications for NZVI field applications.

  16. A microwave-powered sterilizable interface for aseptic access to bioreactors that are vulnerable to microbial contamination

    NASA Technical Reports Server (NTRS)

    Atwater, J. E.; Michalek, W. F.; Wheeler, R. R. Jr; Dahl, R.; Lunsford, T. D.; Garmon, F. C.; Sauer, R. L.

    2001-01-01

    Novel methods and apparatus that employ the rapid heating characteristics of microwave irradiation to facilitate the aseptic transfer of nutrients, products, and other materials between microbially sensitive systems and the external environment are described. The microwave-sterilizable access port (MSAP) consists of a 600-W magnetron emitting at a frequency of 2.45 GHz, a sterilization chamber with inlet and outlet flow lines, and a specimen transfer interface. Energy is routed to the sterilization chamber via a coaxial transmission line where small quantities of water couple strongly with the incident radiation to produce a superheated vapor phase. The efficiency of energy transfer is enhanced through the use of microwave susceptors within the sterilization chamber. Mating surfaces are thermally sterilized through direct contact with the hot gas. Efficacy has been demonstrated using the thermophile Bacillus stearothermophilus.

  17. A microwave-powered sterilizable interface for aseptic access to bioreactors that are vulnerable to microbial contamination.

    PubMed

    Atwater, J E; Michalek, W F; Wheeler, R R; Dahl, R; Lunsford, T D; Garmon, F C; Sauer, R L

    2001-01-01

    Novel methods and apparatus that employ the rapid heating characteristics of microwave irradiation to facilitate the aseptic transfer of nutrients, products, and other materials between microbially sensitive systems and the external environment are described. The microwave-sterilizable access port (MSAP) consists of a 600-W magnetron emitting at a frequency of 2.45 GHz, a sterilization chamber with inlet and outlet flow lines, and a specimen transfer interface. Energy is routed to the sterilization chamber via a coaxial transmission line where small quantities of water couple strongly with the incident radiation to produce a superheated vapor phase. The efficiency of energy transfer is enhanced through the use of microwave susceptors within the sterilization chamber. Mating surfaces are thermally sterilized through direct contact with the hot gas. Efficacy has been demonstrated using the thermophile Bacillus stearothermophilus.

  18. Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation.

    PubMed

    Gat, Daniella; Ronen, Zeev; Tsesarsky, Michael

    2016-01-19

    Microbial-induced CaCO3 precipitation (MICP) via urea-hydrolysis (ureolysis) is an emerging soil improvement technique for various civil engineering and environmental applications. In-situ application of MICP in soils is performed either by augmenting the site with ureolytic bacteria or by stimulating indigenous ureolytic bacteria. Both of these approaches may lead to changes in the indigenous bacterial population composition and to the accumulation of large quantities of ammonium. In this batch study, effective ureolysis was stimulated in coastal sand from a semiarid environment, with low initial ureolytic bacteria abundance. Two different carbon sources were used: yeast-extract and molasses. No ureolysis was observed in their absence. Ureolysis was achieved using both carbon sources, with a higher rate in the yeast-extract enrichment resulting from increased bacterial growth. The changes to the indigenous bacterial population following biostimulation of ureolysis were significant: Bacilli class abundancy increased from 5% in the native sand up to 99% in the yeast-extract treatment. The sand was also enriched with ammonium-chloride, where ammonia-oxidation was observed after 27 days, but was not reflected in the bacterial population composition. These results suggest that biostimulation of ureolytic bacteria can be applied even in a semiarid and nutrient-poor environment using a simple carbon source, that is, molasses. The significant changes to bacterial population composition following ureolysis stimulation could result in a decrease in trophic activity and diversity in the treated site, thus they require further attention.

  19. Effects of feed intake on composition of sheep rumen contents and their microbial population size.

    PubMed

    Rodríguez, C A; González, J; Alvir, M R; Redondo, R; Cajarville, C

    2003-01-01

    The present study was conducted to determine the effect of feed intake on the composition of the rumen contents of sheep and on their bacterial densities. Whole rumen contents were sampled after a period of continuous inter-rumen infusion of 15NH3 from four rumen-cannulated wethers successively fed on a hay-concentrate diet (2:1, w/w on a DM basis) at two rates of feed intake: 40 and 80 g DM/kg body weight0.75. Total weight and chemical composition of rumen contents, as well as the distribution by size and chemical composition of particles, were determined. The populations of bacteria associated with the liquid (liquid-associated bacteria, LAB) and solid (solid-associated bacteria, SAB) fractions of rumen digesta and the distribution of SAB according to feed particle size were also examined. The greater feed intake caused an increase in the mass of the rumen contents, while its chemical composition did not change, except for a higher content of organic matter (P=0.023). The distribution of feed particles by size was similar at both levels of intake. The concentrations of neutral- and acid-detergent fibre in feed particles decreased and those of total, dietary, and microbial N increased, both with a quadratic response (P=0.001), as particle size decreased. The proportion of LAB in the microbial biomass of rumen digesta reached only 8.0 %. This proportion and the density of LAB were unaffected by the level of feed intake, whereas an apparent reduction (10.4 %) occurred with the SAB biomass in whole rumen contents. A systematic, but not significant, reduction (mean value 11.9 %) in the level of microbial colonisation in the different particle fractions with the increase of feed intake was also observed.

  20. The Abundance and Activity of Nitrate-Reducing Microbial Populations in Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Francis, C. A.

    2014-12-01

    Estuaries are productive ecosystems that ameliorate nutrient and metal contaminants from surficial water supplies. At the intersection of terrestrial and aquatic environments, estuarine sediments host major microbially-mediated geochemical transformations. These include denitrification (the conversion of nitrate to nitrous oxide and/or dinitrogen) and dissimilatory nitrate reduction to ammonium (DNRA). Denitrification has historically been seen as the predominant nitrate attenuation process and functions as an effective sink for nitrate. DNRA has previously been believed to be a minor nitrate reduction process and transforms nitrate within the ecosystem to ammonium, a more biologically available N species. Recent studies have compared the two processes in coastal environments and determined fluctuating environmental conditions may suppress denitrification, supporting an increased role for DNRA in the N cycle. Nitrate availability and salinity are factors thought to influence the membership of the microbial communities present, and the nitrate reduction process that predominates. The aim of this study is to investigate how nitrate concentration and salinity alter the transcript abundances of N cycling functional gene markers for denitrification (nirK, nirS) and DNRA (nrfA) in estuarine sediments at the mouth of the hypernutrified Old Salinas River, CA. Short-term whole core incubations amended with artificial freshwater/artificial seawater (2 psu, 35 psu) and with varying NO3- concentrations (200mM, 2000mM) were conducted to assess the activity as well as the abundance of the nitrate-reducing microbial populations present. Gene expression of nirK, nirS, and nrfA at the conclusion of the incubations was quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). High abundances of nirK, nirS, and nrfA under particular conditions coupled with the resulting geochemical data ultimately provides insight onto how the aforementioned factors

  1. The relationship between access and quality of urban green space with population physical activity.

    PubMed

    Hillsdon, M; Panter, J; Foster, C; Jones, A

    2006-12-01

    This study examined the association between access to quality urban green space and levels of physical activity. A cross-sectional examination of the relationship between access to quality urban green space and level of recreational physical activity in 4950 middle-aged (40-70 years) respondents from the European Prospective Investigation into Cancer and Nutrition (EPIC), who resided in Norwich, UK. Using geographic information systems (GIS), three measures of access to open green space were calculated based on distance only, distance and size of green space and distance, size and quality of green space. Multiple regression models were used to determine the relationship between the three indicators of access to open green space and level of recreational physical activity. There was no evidence of clear relationships between recreational activity and access to green spaces. Non-significant associations were apparent for all variables, and there was no evidence of a clear trend in regression coefficients across quartiles of access for either the distance, size adjusted, and quality and size-adjusted models. Furthermore, the neighbourhood measures of access to green spaces showed non-significant associations with recreational physical activity. Access to urban green spaces does not appear to be associated with population levels of recreational physical activity in our sample of middle-aged adults.

  2. Disparities in access to trauma care in the United States: A population-based analysis.

    PubMed

    Carr, Brendan G; Bowman, Ariel J; Wolff, Catherine S; Mullen, Michael T; Holena, Daniel N; Branas, Charles C; Wiebe, Douglas J

    2017-02-01

    Injury is a major contributor to morbidity and mortality in the United States. Accordingly, expanding access to trauma care is a Healthy People priority. The extent to which disparities in access to trauma care exist in the US is unknown. Our objective was to describe geographic, demographic, and socioeconomic disparities in access to trauma care in the United States. Cross-sectional study of the US population in 2010 using small units of geographic analysis and validated estimates of population access to a Level I or II trauma center within 60minutes via ambulance or helicopter. We examined the association between geographic, demographic, and socioeconomic factors and trauma center access, with subgroup analyses of urban-rural disparities. Of the 309 million people in the US in 2010, 29.7 million lacked access to trauma care. Across the country, areas with higher income were significantly more likely to have access (OR 1.30, 95% CI 1.12-1.50), as were major cities (OR 2.13, 95% CI 1.25-3.62) and suburbs (OR 1.27, 95% CI 1.02-1.57). Areas with higher rates of uninsured (OR 0.09, 95% CI 0.07-0.11) and Medicaid or Medicare eligible patients (OR 0.69, 95% CI 0.59-0.82) were less likely to have access. Areas with higher proportions of blacks and non-whites were more likely to have access (OR 1.37, 95% CI 1.19-1.58), as were areas with higher proportions of Hispanics and foreign-born persons (OR 1.51, 95% CI 1.13-2.01). Overall, rurality was associated with significantly lower access to trauma care (OR 0.20, 95% CI 0.18-0.23). While the majority of the United States has access to trauma care within an hour, almost 30 million US residents do not. Significant disparities in access were evident for vulnerable populations defined by insurance status, income, and rurality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 2009 MICROBIAL POPULATION BIOLOGY GORDON RESEARCH CONFERENCES JULY 19-24,2009

    SciTech Connect

    ANTHONY DEAN

    2009-07-24

    The 2009 Gordon Conference on Microbial Population Biology will cover a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past Conferences have covered a range of topics from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. The 2009 Conference is no exception, and will include sessions on the evolution of infectious diseases, social evolution, the evolution of symbioses, experimental evolution, adaptive landscapes, community dynamics, and the evolution of protein structure and function. While genomic approaches continue to make inroads, broadening our knowledge and encompassing new questions, the conference will also emphasize the use of experimental approaches to test hypotheses decisively. As in the past, this Conference provides young scientists and graduate students opportunities to present their work in poster format and exchange ideas with leading investigators from a broad spectrum of disciplines. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. The 2009 meeting will be no exception.

  4. Visualizing the population dynamics of microbial communities in the larval zebrafish gut

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    In each of our digestive tracts, trillions of microbes representing hundreds of different species colonize local environments, reproduce, and compete with one another. The resulting ecosystems influence many aspects their host's development and health. Little is known about how gut microbial communities vary in space and time: how they grow, fluctuate, and respond to various perturbations. To address this and investigate microbial colonization of the vertebrate gut, we apply light sheet fluorescence microscopy to a model system that combines a realistic in vivo environment with a high degree of experimental control: larval zebrafish with defined subsets of commensal bacterial species. Light sheet microscopy enables three-dimensional imaging with high resolution over the entire intestine, providing visualizations that would be difficult or impossible to achieve with other techniques. Quantitative analysis of image data enables measurement of bacterial abundances and distributions. I will describe this approach and focus especially on recent experiments in which a colonizing bacterial species is challenged by the invasion of a second species, which leads to the decline of the first group. Imaging reveals dramatic population collapses that differentially affect the two species due to their different biogeographies and morphologies. The collapses are driven by the peristaltic motion of the zebrafish intestine, indicating that the physical activity of the host environment can play a major role in mediating inter-species competition. role in mediating inter-species competition. Supported by the National Science Foundation under Grant No. 0922951 and the National Institutes of Health under Award Number 1P50GM098911.

  5. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs.

    PubMed

    Colman, Daniel R; Feyhl-Buska, Jayme; Robinson, Kirtland J; Fecteau, Kristopher M; Xu, Huifang; Shock, Everett L; Boyd, Eric S

    2016-09-01

    Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Role of Aerobic Microbial Populations in Cellulose Digestion by Desert Millipedes

    PubMed Central

    Taylor, Elsa C.

    1982-01-01

    I examined the role of aerobic microbial populations in cellulose digestion by two sympatric species of desert millipedes, Orthoporus ornatus and Comanchelus sp. High numbers of bacteria able to grow on media containing cellulose, carboxymethyl cellulose, or cellobiose as the substrate were found in the alimentary tracts of the millipedes. Enzyme assays indicated that most cellulose and hemicellulose degradation occurred in the midgut, whereas the hindgut was an important site for pectin degradation. Hemicellulase and β-glucosidase in both species and possibly Cx-cellulase and pectinase in O. ornatus were of possible microbial origin. Degradation of [14C]cellulose by millipedes whose gut floras were reduced by antibiotic treatment and starvation demonstrated a reduction in 14CO2 release and 14C assimilation and an increase in 14C excretion over values for controls. It appears that the millipede-bacterium association is mutualistic and makes available to millipedes an otherwise mostly unutilizable substrate. Such an association may be an important pathway for decomposition in desert ecosystems. Images PMID:16346074

  7. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils.

    PubMed

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-02-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated (13)C from labeled hemicellulose, analyzing (13)C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  8. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils

    PubMed Central

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-01-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  9. Acinetobacter, Aeromonas, and Trichococcus populations dominate the microbial community within urban sewer infrastructure

    PubMed Central

    VandeWalle, J. L.; Goetz, G.W.; Huse, S.M.; Morrison, H. G.; Sogin, M.L.; Hoffmann, R.G.; Yan, K.; McLellan, S.L.

    2012-01-01

    We evaluated the population structure and temporal dynamics of the dominant community members within sewage influent from two wastewater treatment plants (WWTPs) in Milwaukee, WI. We generated >1.1M bacterial pyrotag sequences from the V6 hypervariable region of 16S rRNA genes from 38 influent samples and two samples taken upstream in the sanitary sewer system. Only a small fraction of pyrotags from influent samples (~15%) matched sequences from human fecal samples. The fecal components of the sewage samples included enriched pyrotag populations from Lactococcus and Enterobacteriaceae relative to their fractional representation in human fecal samples. In contrast to the large number of distinct pyrotags that represent fecal bacteria such as Lachnospiraceae and Bacteroides, only one or two unique V6 sequences represented Acinetobacter, Trichococcus and Aeromonas, which collectively account for nearly 35% of the total sewage community. Two dominant Acinetobacter V6 pyrotags (designated Acineto tag 1 and Acineto tag 2) fluctuated inversely with a seasonal pattern over a 3-year period, suggesting two distinct Acinetobacter populations respond differently to ecological forcings in the system. A single nucleotide change in the V6 pyrotags accounted for the difference in these populations and corresponded to two phylogenically distinct clades based on full-length sequences. Analysis of wavelet functions, derived from a mathematical model of temporal fluctuations, demonstrated that other abundant sewer associated populations including Trichococcus and Aeromonas had temporal patterns similar to either Acineto tag 1 or Acineto tag 2. Populations with related temporal fluctuations were found to significantly correlate with the same WWTP variables (5-day BOD, flow, ammonia, total phosphorous, and suspended solids). These findings illustrate that small differences in V6 sequences can represent phylogenetically and ecologically distinct taxa. This work provides insight into

  10. Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure.

    PubMed

    Vandewalle, J L; Goetz, G W; Huse, S M; Morrison, H G; Sogin, M L; Hoffmann, R G; Yan, K; McLellan, S L

    2012-09-01

    We evaluated the population structure and temporal dynamics of the dominant community members within sewage influent from two wastewater treatment plants (WWTPs) in Milwaukee, WI. We generated > 1.1 M bacterial pyrotag sequences from the V6 hypervariable region of 16S rRNA genes from 38 influent samples and two samples taken upstream in the sanitary sewer system. Only a small fraction of pyrotags from influent samples (∼ 15%) matched sequences from human faecal samples. The faecal components of the sewage samples included enriched pyrotag populations from Lactococcus and Enterobacteriaceae relative to their fractional representation in human faecal samples. In contrast to the large number of distinct pyrotags that represent faecal bacteria such as Lachnospiraceae and Bacteroides, only one or two unique V6 sequences represented Acinetobacter, Aeromonas and Trichococcus, which collectively account for nearly 35% of the total sewage community. Two dominant Acinetobacter V6 pyrotags (designated Acineto tag 1 and Acineto tag 2) fluctuated inversely with a seasonal pattern over a 3-year period, suggesting two distinct Acinetobacter populations respond differently to ecological forcings in the system. A single nucleotide change in the V6 pyrotags accounted for the difference in these populations and corresponded to two phylogenetically distinct clades based on full-length sequences. Analysis of wavelet functions, derived from a mathematical model of temporal fluctuations, demonstrated that other abundant sewer associated populations including Trichococcus and Aeromonas had temporal patterns similar to either Acineto tag 1 or Acineto tag 2. Populations with related temporal fluctuations were found to significantly correlate with the same WWTP variables (5-day BOD, flow, ammonia, total phosphorous and suspended solids). These findings illustrate that small differences in V6 sequences can represent phylogenetically and ecologically distinct taxa. This work provides insight

  11. Response of microbial community of tundra soil to global warming: Simulation of seasonal and long-term population dynamics

    SciTech Connect

    Panikov, N.S.

    1994-11-01

    A mathematical model has been constructed and verified to simulate dynamics of a microbial community in typical tundra. The model contains the following state variables: the population densities of three competing microbial species (exemplified by Arthrobacter, Pseudomonas, and Bacillus), indexes of their physiological state, concentration of available organic substrate, plant litter reserves, the amount of microbiovorous protozoans, and temperature. The mathematical model simulates adequately the qualitative features of microbial seasonal dynamics observed in tundra. The global warming and associated increase in primary productivity, as predicted by simulation, will relieve the pressure of L-selection and thus result in stabilization of the tundra microbial community. The model also predicts that aerobic decomposition of dead organic matter in solid will be accelerated compared to its formation. 24 refs., 7 figs., 1 tab.

  12. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations

    PubMed Central

    Zaragoza, Jose; Bendiks, Zachary; Tyler, Charlotte; Kable, Mary E.; Williams, Thomas R.; Luchkovska, Yelizaveta; Chow, Elaine; Boundy-Mills, Kyria

    2017-01-01

    ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can

  13. Microbial population, activity, and phylogenetic diversity in the subseafloor core sediment from the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Suzuki, M.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    Subseafloor environments has already been recognized as the largest biosphere on the planet Earth, however, the microbial diversity and activity has been still poorly understood, even in their impacts on biogeochemical processes, tectonic settings, and paleoenvironmental events. We demonstrate here the evaluation of microbial community structure and active habitats in deeply buried cold marine sediments collected from the Sea of Okhotsk by a combined use of molecular ecological surveys and culturing assays. The piston core sediment (MD01-2412) was collected by IMAGES (International Marine Global Change Study) Project from the southeastern Okhotsk Sea, June 2001. The total recovered length was about 58m. The lithology of the core sediment was mainly constructed from pelagic clay (PC) and volcanic ash layers (Ash). We collected aseptically the most inside core parts from 16 sections at different depths for microbiological study. The direct count of DAPI-stained cells revealed that the cells in Ash samples were present 1.2 to 2.2 times higher than in PC samples. The quantitative-PCR of 16S rDNA between bacterial and archaeal rDNA suggested that the increased population density in Ash layers was caused by the bacterial components. We studied approximately 650 and 550 sequences from bacterial and archaeal rDNA clone libraries, respectively. The similarity and phylogenetic analyses revealed that the microbial community structures were apparently different between in Ash layers and PC samples. From bacterial rDNA clone libraries, the members within gamma-Proteobacteria such as genera Halomonas, Shewanella, Psychromonas and Methylosinus were predominantly detected in Ash layers whereas the Dehalococcoides group and delta-Proteobacteria were major bacterial components in PC samples. From archaeal libraries, the sequences from Ash and PC samples were affiliated into the clusters represented by the environmental sequences obtained from terrestrial and deep-sea environments

  14. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations.

    PubMed

    Zaragoza, Jose; Bendiks, Zachary; Tyler, Charlotte; Kable, Mary E; Williams, Thomas R; Luchkovska, Yelizaveta; Chow, Elaine; Boundy-Mills, Kyria; Marco, Maria L

    2017-01-01

    In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be

  15. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor.

    PubMed

    He, Qiulai; Zhou, Jun; Wang, Hongyu; Zhang, Jing; Wei, Li

    2016-08-01

    The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The dynamical analogy between microbial growth on mixtures of substrates and population growth of competing species.

    PubMed

    Narang, A

    1998-07-05

    There is a similarity between the metabolic dynamics of a microbial species growing on a mixture of two substrates and the dynamics of growth of two competing populations. Specifically, the enzymes catalyzing the uptake and catabolism of substrates exhibit phenomena analogous to extinction and coexistence."Extinction" of the enzymes associated with one of the substrates results in sequential utilization of the substrates (diauxie) (Monod, 1942). "Coexistence" of the enzymes associated with the substrates results in simultaneous utilization of the substrates (Egli, 1995). Here, we formulate a simple model that shows the basis for this dynamical similarity: The equations describing the evolution of the enzyme levels are dynamical analogs of the Lotka-Volterra model for two competing species. The analogy suggests ways of capturing the experimentally observed preculture-dependent growth patterns, i.e., growth patterns that vary depending on the physiological state of the preculture.

  17. Effect of moisture, organic matter, microbial population and fortification level on dissipation of pyraclostrobin in soils.

    PubMed

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-09-01

    The dissipation of pyraclostrobin, a strobilurin fungicide, in soil was found to be influenced by soil moisture, organic matter content and microbial population. Among the different moisture regimes, dissipation was faster under submerged condition (T1/2 10 days) followed by field capacity (T1/2 28.7 days) and in dry soil (T1/2 41.8 days). Use of sludge at 5 % level to Inceptisol favoured a faster dissipation of pyraclostrobin, whereas a slower rate of dissipation was observed in partial organic matter removed soil as compared to normal soil. Slower rate of dissipation was also observed in sterile soil (T1/2 47 days) compared to normal soil. Pyraclostrobin dissipated faster in Vertisol (T1/2 21.8 days) than in Inceptisol (T1/2 28.7 days). No significant difference in the dissipation rate was observed at 1 and 10 μg g(-1) fortification levels.

  18. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations

    PubMed Central

    Guenthner, Casey J.; Miyamichi, Kazunari; Yang, Helen H.; Heller, H. Craig; Luo, Liqun

    2013-01-01

    SUMMARY Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed a new approach, Targeted Recombination in Active Populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreERT2 is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreERT2 can undergo recombination only when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 h. We show that TRAP can selectively provide access to neurons activated by specific somatosensory, visual, and auditory stimuli, and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful new approach for understanding how the brain processes information and generates behavior. PMID:23764283

  19. Genetic diversity and population structure of Korean and Chinese soybean [Glycine max (L.) Merr.] accessions

    USDA-ARS?s Scientific Manuscript database

    Korean and Chinese cultivated soybean [Glycine max (L.) Merr.] populations are major soybean gene pools. Information has been reported comparing genetic diversity between soybeans from the two countries using an unequal number of accessions and only 6 to 35 genetic markers. This study compares diffe...

  20. Gaining Access to Economically Marginalized Rural Populations: Lessons Learned from Nonprobability Sampling

    ERIC Educational Resources Information Center

    Mammen, Sheila; Sano, Yoshie

    2012-01-01

    Poverty is a significant problem in rural America. Gaining access to economically marginalized rural populations in order to recruit individuals to participate in a research study, however, is often a challenge. This article compares three different nonprobability sampling techniques that have been used to recruit rural, low-income…

  1. Health Benefits for Vocational Rehabilitation Consumers: Comparison of Access Rates with Workers in the General Population

    ERIC Educational Resources Information Center

    Lustig, Daniel C.; Strauser, David R.

    2010-01-01

    Access to health insurance is one of the critical aspects of securing employment for people with disabilities. This study investigated whether vocational rehabilitation consumers secured employment with an employer who offered health insurance at similar rates to workers in the general population. In general, the results show that vocational…

  2. Gaining Access to Economically Marginalized Rural Populations: Lessons Learned from Nonprobability Sampling

    ERIC Educational Resources Information Center

    Mammen, Sheila; Sano, Yoshie

    2012-01-01

    Poverty is a significant problem in rural America. Gaining access to economically marginalized rural populations in order to recruit individuals to participate in a research study, however, is often a challenge. This article compares three different nonprobability sampling techniques that have been used to recruit rural, low-income…

  3. Health Benefits for Vocational Rehabilitation Consumers: Comparison of Access Rates with Workers in the General Population

    ERIC Educational Resources Information Center

    Lustig, Daniel C.; Strauser, David R.

    2010-01-01

    Access to health insurance is one of the critical aspects of securing employment for people with disabilities. This study investigated whether vocational rehabilitation consumers secured employment with an employer who offered health insurance at similar rates to workers in the general population. In general, the results show that vocational…

  4. [Persisting health and health access inequalities in Mexican indigenous population, 2006-2012].

    PubMed

    Leyva-Flores, René; Infante-Xibille, César; Gutiérrez, Juan Pablo; Quintino-Pérez, Frida

    2013-01-01

    To analyze socioeconomic, health conditions and access to health services of Mexican indigenous population between 2006 and 2012. A comparative analysis was done between indigenous and non indigenous population, using the information from th National Health and Nutrition Survey (2006 and 2012). 60% of the indigenous population was allocated at the poorest socioeconomic level in 2012 despite the implementation of social programs. The Seguro Popular increased its coverage from 14 to 61.9% in indigenous population. The increase observed in coverage in no indigenous population was from 10 to 35.7%. Nevertheless, no increase was observed in the utilization of healthcare services between indigenous and non indigenous population. The access to hospital services for childbirth delivery increased from 63.8 to 76.4% in indigenous population. However there is an important difference with non indigenous population (93.9%). The increase in the coverage of the Seguro Popular in Mexico has had heterogeneous results in the utilization of health care services. Other social programs such a Oportunidades have not had an impact to alleviate poverty in indigenous groups.

  5. The challenges and recommendations of accessing to affected population for humanitarian assistance: a narrative review.

    PubMed

    Moslehi, Shandiz; Fatemi, Farin; Mahboubi, Mohammad; Mozafarsaadati, Hossein; Karami, Shirzad

    2014-11-17

    Access to affected people pays an important role in United Nation Organization for Coordination and Humanitarian Affairs (OCHA). The aim of this article is to identify the main obstacles of humanitarian access and the humanitarian organization responses to these obstacles and finally suggest some recommendations and strategies. In this narrative study the researchers searched in different databases. This study focused on the data from five countries in the following areas: access challenges and constraints to affected population and response strategies selected for operations in the affected countries by humanitarian organizations. Three main issues were studied: security threats, bureaucratic restrictions and indirect constraint, which each of them divided to three subcategories. Finally, nine related subcategories emerged from this analysis. Most of these constraints relate to political issues. Changes in policy structures, negotiations and advocacy can be recommended to solve most of the problems in access issues.

  6. Racial disparities in access to care within the cardiac revascularization population.

    PubMed

    Miller, Pamela S

    2007-12-01

    Health disparities and vulnerability are embedded within the context of historical and contemporary dynamics, and are confounded by inequities in access to quality healthcare. Early management and preventive therapy has been the cornerstone of cardiovascular medicine for acute coronary syndromes. Invasive cardiac strategies, including revascularization with percutaneous coronary intervention or coronary artery bypass grafting have been instituted as methods to minimize subsequent cardiovascular events and to improve survival benefits. Several studies have described the obstacles and variance involved in the distribution of access to cardiac catheterization, particularly among vulnerable groups such as African-Americans. There is a paucity of nursing research in the area of access to care and cardiovascular disease. The purpose of this article is to examine the existing nature of disparities in health-care access among ethnic minority cardiac populations who utilize or require invasive cardiac procedures. This will be followed by an exploration of avenues to which nursing science can make substantial contributions.

  7. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    PubMed

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vidal-Mas, Jaume; Gargallo-Viola, Domingo; Guglietta, Antonio; Giró, Antoni

    2011-01-01

    Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  8. Range expansions transition from pulled to pushed waves with increasing cooperativity in an experimental microbial population

    NASA Astrophysics Data System (ADS)

    Gandhi, Saurabh; Yurtsev, Eugene; Korolev, Kirill; Gore, Jeff

    Range expansions are becoming more frequent due to environmental changes and rare long distance dispersal, often facilitated by anthropogenic activities. Simple models in theoretical ecology explain many emergent properties of range expansions, such as a constant expansion velocity, in terms of organism-level properties such as growth and dispersal rates. Testing these quantitative predictions in natural populations is difficult because of large environmental variability. Here, we used a controlled microbial model system to study range expansions of populations with and without intra-specific cooperativity. For non-cooperative growth, the expansion dynamics were dominated by population growth at the low-density front, which pulled the expansion forward. We found these expansions to be in close quantitative agreement with the classical theory of pulled waves by Fisher and Skellam, suitably adapted to our experimental system. However, as cooperativity increased, the expansions transitioned to being pushed, i.e. controlled by growth in the bulk as well as in the front. Although both pulled and pushed waves expand at a constant velocity and appear otherwise similar, their distinct dynamics leads to very different evolutionary consequences. Given the prevalence of cooperative growth in nature, understanding the effects of cooperativity is essential to managing invading species and understanding their evolution.

  9. SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions.

    PubMed

    Choudhary, Shashi Bhushan; Sharma, Hariom Kumar; Kumar, Arroju Anil; Maruthi, Rangappa Thimmaiah; Mitra, Jiban; Chowdhury, Isholeena; Singh, Binay Kumar; Karmakar, Pran Gobinda

    2017-02-01

    A total of 130 flax accessions of diverse morphotypes and worldwide origin were assessed for genetic diversity and population structure using 11 morphological traits and microsatellite markers (15 gSSRs and 7 EST-SSRs). Analysis performed after classifying these accessions on the basis of plant height, branching pattern, seed size, Indian/foreign origin into six categories called sub-populations viz. fibre type exotic, fibre type indigenous, intermediate type exotic, intermediate type indigenous, linseed type exotic and linseed type indigenous. The study assessed different diversity indices, AMOVA, population structure and included a principal coordinate analysis based on different marker systems. The highest diversity was exhibited by gSSR markers (SI=0.46; He=0.31; P=85.11). AMOVA based on all markers explained significant difference among fibre type, intermediate type and linseed type populations of flax. In terms of variation explained by different markers, EST-SSR markers (12%) better differentiated flax populations compared to morphological (9%) and gSSR (6%) markers at P=0.01. The maximum Nei's unbiased genetic distance (D=0.11) was observed between fibre type and linseed type exotic sub-populations based on EST-SSR markers. The combined structure analysis by using all markers grouped Indian fibre type accessions (63.4%) in a separate cluster along with the Indian intermediate type (48.7%), whereas Indian accessions (82.16%) of linseed type constituted an independent cluster. These findings were supported by the results of the principal coordinate analysis. Morphological markers employed in the study found complementary with microsatellite based markers in deciphering genetic diversity and population structure of the flax germplasm. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  10. Implications for informatics given expanding access to care for Veterans and other populations.

    PubMed

    Dixon, Brian E; Haggstrom, David A; Weiner, Michael

    2015-07-01

    Recent investigations into appointment scheduling within facilities operated by the US Department of Veterans Affairs (VA) illuminate systemic challenges in meeting its goal of providing timely access to care for all Veterans. In the wake of these investigations, new policies have been enacted to expand access to care at VA facilities as well as non-VA facilities if the VA is unable to provide access within a reasonable timeframe or a Veteran lives more than 40 miles from a VA medical facility. These policies are similar to broader health reform efforts that seek to expand access to care for other vulnerable populations. In this perspective, we discuss the informatics implications of expanded access within the VA and its wider applicability across the US health system. Health systems will require robust health information exchange, to maintain coordination while access to care is expanded. Existing informatics research can guide short-term implementation; furthermore, new research is needed to generate evidence about how best to achieve the long-term aim of expanded access to care.

  11. Effect of Plants Containing Secondary Compounds with Palm Oil on Feed Intake, Digestibility, Microbial Protein Synthesis and Microbial Population in Dairy Cows

    PubMed Central

    Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P.

    2013-01-01

    The objective of this study was to determine the effect of rain tree pod meal with palm oil supplementation on feed intake, digestibility, microbial protein synthesis and microbial populations in dairy cows. Four, multiparous early-lactation Holstein-Friesian crossbred (75%) lactating dairy cows with an initial body weight (BW) of 405±40 kg and 36±8 DIM were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. The four dietary treatments were un-supplementation (control), supplementation with rain tree pod meal (RPM) at 60 g/kg, supplementation with palm oil (PO) at 20 g/kg, and supplementation with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter intake. The cows were offered concentrates, at a ratio of concentrate to milk production of 1:2, and chopped 30 g/kg of urea treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM, respectively. It was found that supplementation with RPM and/or PO to dairy cows diets did not show negative effects on feed intake and ruminal pH and BUN at any times of sampling (p>0.05). However, RPM supplementation resulted in lower crude protein digestibility, NH3-N concentration and number of proteolytic bacteria. It resulted in greater allantoin absorption and microbial crude protein (p<0.05). In addition, dairy cows showed a higher efficiency of microbial N supply (EMNS) in both RPM and RPO treatments. Moreover, NDF digestibility and cellulolytic bacteria numbers were highest in RPO supplementation (p<0.05) while, supplementation with RPM and/or PO decreased the protozoa population in dairy cows. Based on this study, supplementation with RPM and/or PO in diets could improve fiber digestibility, microbial protein synthesis in terms of quantity and efficiency and microbial populations in dairy cows. PMID:25049855

  12. GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis.

    PubMed

    Holben, William E; Feris, Kevin P; Kettunen, Anu; Apajalahti, Juha H A

    2004-04-01

    Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which combines mechanistically different community analysis approaches to enhance assessment of microbial community diversity and detection of minority populations of microbes. This approach employs GC fractionation as an initial step to reduce the complexity of the community in each fraction. This reduced complexity facilitates subsequent detection of diversity in individual fractions. DGGE analysis of individual fractions revealed bands that were undetected or only poorly represented when total bacterial community DNA was analyzed. Also, directed cloning and sequencing of individual bands from DGGE lanes corresponding to individual G+C fractions allowed detection of numerous phylotypes that were not recovered using a traditional random cloning and sequencing approach.

  13. Accessing the black box of microbial diversity and ecophysiology: recent advances through polyphasic experiments.

    PubMed

    Collins, Gavin; Kavanagh, Siobhán; McHugh, Sharon; Connaughton, Sean; Kearney, Aileen; Rice, Olivia; Carrigg, Cora; Scully, Colm; Bhreathnach, Niamh; Mahony, Thérèse; Madden, Pádhraig; Enright, Anne-Marie; O'flaherty, Vincent

    2006-01-01

    The microbial ecology of a range of anaerobic biological assemblages (granular sludge) from full- and laboratory-scale wastewater treatment bioreactors, and of crop-growing and peat soils, was determined using a variety of 16S rRNA gene-based techniques, including clone library, terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis (DGGE) analyses. Fluorescent in situ hybridization (FISH) using 16S rRNA gene-targeted probes was employed to complete a "full-cycle rRNA approach" with selected biomass. Genetic fingerprinting (TRFLP and DGGE) was effectively used to elucidate community structure-crop relationships, and to detect and monitor trends in bioreactor sludge and specific enrichment cultures of peat soil. Greater diversity was resolved within bacterial than within archaeal communities, and unexpected reservoirs of uncultured Crenarchaeota were detected in sludge granules. Advanced radiotracer incubations and micro-beta imaging were employed in conjunction with FISH to elucidate the eco-functionalism of these organisms. Crenarchaeota clusters were identified in close associated with methanogenic Archaea and both were localised with acetate uptake in biofilm structure.

  14. Population-based geographic access to parent and satellite National Cancer Institute Cancer Center Facilities.

    PubMed

    Onega, Tracy; Alford-Teaster, Jennifer; Wang, Fahui

    2017-09-01

    Satellite facilities of National Cancer Institute (NCI) cancer centers have expanded their regional footprints. This study characterized geographic access to parent and satellite NCI cancer center facilities nationally overall and by sociodemographics. Parent and satellite NCI cancer center facilities, which were geocoded in ArcGIS, were ascertained. Travel times from every census tract in the continental United States and Hawaii to the nearest parent and satellite facilities were calculated. Census-based population attributes were used to characterize measures of geographic access for sociodemographic groups. From the 62 NCI cancer centers providing clinical care in 2014, 76 unique parent locations and 211 satellite locations were mapped. The overall proportion of the population within 60 minutes of a facility was 22% for parent facilities and 32.7% for satellite facilities. When satellites were included for potential access, the proportion of some racial groups for which a satellite was the closest NCI cancer center facility increased notably (Native Americans, 22.6% with parent facilities and 39.7% with satellite facilities; whites, 34.8% with parent facilities and 50.3% with satellite facilities; and Asians, 40.0% with parent facilities and 54.0% with satellite facilities), with less marked increases for Hispanic and black populations. Rural populations of all categories had dramatically low proportions living within 60 minutes of an NCI cancer center facility of any type (1.0%-6.6%). Approximately 14% of the population (n = 43,033,310) lived more than 180 minutes from a parent or satellite facility, and most of these individuals were Native Americans and/or rural residents (37% of Native Americans and 41.7% of isolated rural residents). Racial/ethnic and rural populations showed markedly improved geographic access to NCI cancer center care when satellite facilities were included. Cancer 2017;123:3305-11. © 2017 American Cancer Society. © 2017 American

  15. [Determining Factors in the Access to Mental Health Services by the Adult Colombian Population].

    PubMed

    González, Lina María; Peñaloza, Rolando Enrique; Matallana, María Alexandra; Gil, Fabián; Gómez-Restrepo, Carlos; Landaeta, Angela Patricia Vega

    2016-12-01

    Access to mental health services by people with mental disorders has traditionally been limited, and is associated with attitudinal, social, and structural variables. To analyse the factors that determine access to mental health services by the adult population (18-44 years old) in Colombia, from the results obtained in the 2015 National Mental Health Survey. Analysis of variables of access to attention in mental health care for adults. The reasons for not consulting were classified as barriers of behavioural supply and demand. To analyse the factors associated with access to mental health services in the Colombian adult population, the use of health services in the last 12 months for emotional, nervous or mental health problems was taken into account, as well as associated variables such as demographic characteristics, occupational activity, affiliation to social security, and health status variables. The relationships between these variables were estimated using bivariate multinomial logistic regression models. Rural residence, being married, and having a chronic disease were associated with the decision to consult or not to consult the doctor. Further studies should be conducted to evaluate the situation as regards mental health care access, as well as to determine the potential factors associated with these limitations. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  16. Access to drinking water and health of populations in Sub-Saharan Africa.

    PubMed

    Ntouda, Julien; Sikodf, Fondo; Ibrahim, Mohamadou; Abba, Ibrahim

    2013-01-01

    Water is at the center of the plant and animal life, the foundation upon which the health of human settlement and development of civilizations rely on. In tropical regions, 80% of diseases are transmitted either by germs in the water, or by vectors staying in it. In Sub-Saharan Africa, statistics show particularly high levels of unmet needs of populations in access to drinking water in a context of socioeconomic development. For this purpose, this study aims to determine the influence of access to drinking water on the health of populations in Sub-Saharan Africa. Using data from Demographic and Health Surveys (DHS) from Cameroon, Senegal and Chad, it is clear from the descriptive analysis that 60% (Cameroon), and 59% (Chad) of the cases of childhood diarrhea in these two countries are due to the consumption of dirty water. In terms of explanatory analysis, we note that when a household in Cameroon, Senegal or Chad does not have access to drinking water, children under 5 years old residing there are respectively 1.29, 1.27 and 1.03 times more likely to have diarrhea than those residing in households with easy access to drinking water. In view of these results, it is recommended to increase access to drinking water in particular by reducing disparities between the rich and poor people. Copyright © 2013 Académie des sciences. All rights reserved.

  17. [Factors affecting access to health care institutions by the internally displaced population in Colombia].

    PubMed

    Mogollón-Pérez, Amparo Susana; Vázquez, María Luisa

    2008-04-01

    In Colombia, the on-going armed conflict causes displacement of thousands of persons that suffer its economic, social, and health consequences. Despite government regulatory efforts, displaced people still experience serious problems in securing access to health care. In order to analyze the institutional factors that affect access to health care by the internally displaced population, a qualitative, exploratory, and descriptive study was carried out by means of semi-structured individual interviews with a criterion sample of stakeholders (81). A narrative content analysis was performed, with mixed generation of categories and segmentation of data by themes and informants. Inadequate funding, providers' problems with reimbursement by insurers, and lack of clear definition as to coverage under the Social Security System in Health pose barriers to access to health care by the internally displaced population. Bureaucratic procedures, limited inter- and intra-sector coordination, and scarce available resources for public health service providers also affect access. Effective government action is required to ensure the right to health care for this population.

  18. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  19. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  20. Accessibility of dog populations for rabies control in Kathmandu valley, Nepal.

    PubMed Central

    Bögel, K.; Joshi, D. D.

    1990-01-01

    The accessibility of dogs in urban areas of Kathmandu valley was measured using the following approaches: determination of the proportion of dogs that bore signs of having been the objects of religious worship and other signs of household association, supplemented by information obtained by interviewing people in the neighbourhood; and the vaccination coverage attained in a rabies control campaign that was preceded by intensive activities to encourage the community to participate. An accessibility rate of 90-95% was determined using the first of these approaches, whereas 75-80% of the total dog population was reached in the vaccination campaign. PMID:2289296

  1. Spatial analysis of cattle and shoat population in Ethiopia: growth trend, distribution and market access.

    PubMed

    Leta, Samson; Mesele, Frehiwot

    2014-01-01

    The livestock subsector has an enormous contribution to Ethiopia's national economy and livelihoods of many Ethiopians. The subsector contributes about 16.5% of the national Gross Domestic Product (GDP) and 35.6% of the agricultural GDP. It also contributes 15% of export earnings and 30% of agricultural employment. The livestock subsector currently support and sustain livelihoods for 80% of all rural population. The GDP of livestock related activities valued at 59 billion birr. Ethiopian livestock population trends, distribution and marketing vary considerably across space and time due to a variety of reasons. This study was aimed to assess cattle and shoat population growth trend, distribution and their access to market. Regression analysis was used to assess the cattle and shoat population growth trend and Geographic Information Systems (GIS) techniques were used to determine the spatial distribution of cattle and shoats, and their relative access to market. The data sets used are agricultural census (2001/02) and annual CSA agricultural sample survey (1995/96 to 2012/13). In the past eighteen years, the livestock population namely cattle, sheep and goat grew from 54.5 million to over 103.5 million with average annual increment of 3.4 million. The current average national cattle, sheep and goat population per km(2) are estimated to be 71, 33 and 29 respectively (excluding Addis Ababa, Afar and Somali regions). From the total livestock population the country owns about 46% cattle, 43% sheep and 40% goats are reared within 10 km radius from major livestock market centres and all-weather roads. On the other hand, three fourth of the country's land mass which comprises 15% of the cattle, 20% of the sheep and 21% of goat population is not accessible to market (greater than 30 km from major livestock market centres). It is found that the central highland regions account for the largest share of livestock population and also more accessible to market. Defining the

  2. Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay.

    PubMed

    Wan, Yi; Zhang, Dun; Hou, Baorong

    2009-11-15

    An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptoundecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-)were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (R(ct)) increased with increasing SRB concentration. A linear relationship between R(ct) and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7)cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost, and time-saving monitoring of microbial populations.

  3. Optimal resting-growth strategies of microbial populations in fluctuating environments.

    PubMed

    Geisel, Nico; Vilar, Jose M G; Rubi, J Miguel

    2011-04-15

    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.

  4. Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments

    PubMed Central

    Geisel, Nico; Vilar, Jose M. G.; Rubi, J. Miguel

    2011-01-01

    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments. PMID:21525975

  5. Influence of packaging conditions on natural microbial population growth of endive.

    PubMed

    Charles, Florence; Rugani, Nathalie; Gontard, Nathalie

    2005-05-01

    The influence of three packaging conditions, i.e., unmodified atmosphere packaging (UAP), passive modified atmosphere packaging (MAP), and active MAP, on the natural microbial population growth of endive was investigated at 20 degrees C. For UAP, endive was placed in macroperforated oriented polypropylene pouches that maintained gas composition close to that of air (21 kPa O2 and 0 kPa CO2) but also limited superficial product dehydration. For MAP, endive was placed in low-density polyethylene pouches that induced a 3 kPa O2 and 5 kPa CO2 equilibrium atmosphere composition. Steady state was reached after 25 h of storage with an oxygen absorbing packet (active MAP) compared with 100 h without the packet (passive MAP) and was maintained for 200 h. After 312 h of storage, both active and passive MAP reduced total aerobic mesophile, yeast, and mold population growth compared with endive in UAP. Active MAP accelerated and improved the inhibition of Pseudomonas spp. and Enterobacteriaceae, respectively, probably because of the rapid O2 depletion during the transition period. A shift in the Enterobacteriaceae subpopulation from Rhanella aquatilis to Enterobacter agglomerans was observed for both passive and active MAP.

  6. Effect of Portulaca oleracea extracts on growth performance and microbial populations in ceca of broilers.

    PubMed

    Zhao, X H; He, X; Yang, X F; Zhong, X H

    2013-05-01

    The aim of this study was to investigate the effects of Portulaca oleracea extracts on growth performance and microbial populations in the ceca of broilers. A total of 120 one-day-old broilers were randomly divided into 3 groups. Portulaca oleracea extracts were added to diets at 0.2 and 0.4% (wt/wt; POL-0.2, POL-0.4), respectively. The control (CON) group was administered with no P. oleracea extract supplementation. Body weight gain and feed conversion ratio were recorded every 2 wk. On d 28 and 42, the cecal contents were collected and assayed for Escherichia coli, Lactobacillus, and Bifidobacterium populations. Additionally, the pH of the ileum and cecum was measured. The results showed that both on d 28 and 42 BW gain of P. oleracea extract supplementation groups was significantly higher, whereas the feed conversion ratio was lower (P < 0.05) compared with CON. On d 28 and 42, significantly (P < 0.05) fewer E. coli were recovered from ceca of broilers provided with the POL-0.2 diet than from broilers provided with the control diet. The quantities of Lactobacillus and Bifidobacterium of POL-0.2 were significantly (P < 0.05) higher than CON. Results showed P. oleracea extracts have no distinct influence on intestinal pH. These data suggest that P. oleracea extract supplementation significantly altered the cecal bacterial community without affecting the intestinal pH.

  7. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.

    PubMed

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2016-10-01

    Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated

  8. Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates.

    PubMed

    Ortíz, Irmene; Velasco, Antonio; Le Borgne, Sylvie; Revah, Sergio

    2013-04-01

    Stimulation of native microbial populations in soil by the addition of small amounts of secondary carbon sources (cosubstrates) and its effect on the degradation and theoretical mineralization of DDT [l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane] and its main metabolites, DDD and DDE, were evaluated. Microbial activity in soil polluted with DDT, DDE and DDD was increased by the presence of phenol, hexane and toluene as cosubstrates. The consumption of DDT was increased from 23 % in a control (without cosubstrate) to 67, 59 and 56 % in the presence of phenol, hexane and toluene, respectively. DDE was completely removed in all cases, and DDD removal was enhanced from 67 % in the control to ~86 % with all substrates tested, except for acetic acid and glucose substrates. In the latter cases, DDD removal was either inhibited or unchanged from the control. The optimal amount of added cosubstrate was observed to be between 0.64 and 2.6 mg C [Formula: see text]. The CO2 produced was higher than the theoretical amount for complete cosubstrate mineralization indicating possible mineralization of DDT and its metabolites. Bacterial communities were evaluated by denaturing gradient gel electrophoresis, which indicated that native soil and the untreated control presented a low bacterial diversity. The detected bacteria were related to soil microorganisms and microorganisms with known biodegradative potential. In the presence of toluene a bacterium related to Azoarcus, a genus that includes species capable of growing at the expense of aromatic compounds such as toluene and halobenzoates under denitrifying conditions, was detected.

  9. Accessibility

    EPA Pesticide Factsheets

    Federal laws, including Section 508 of the Rehabilitation Act, mandate that people with disabilities have access to the same information that someone without a disability would have. 508 standards cover electronic and information technology (EIT) products.

  10. Demographic population model for American shad: will access to additional habitat upstream of dams increase population sizes?

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2012-01-01

    American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.

  11. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  12. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  13. Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates

    PubMed Central

    Sonnenburg, Erica D.; Sonnenburg, Justin L.

    2016-01-01

    The gut microbiota of a healthy person may not be equivalent to a healthy microbiota. It is possible that the Western microbiota is actually dysbiotic and predisposes individuals to a variety of diseases. The asymmetric plasticity between the relatively stable human genome and the more malleable gut microbiome suggests that incompatibilities between the two could rapidly arise. The Western lifestyle, which includes a diet low in microbiota-accessible carbohydrates (MACs), has selected for a microbiota with altered membership and functionality compared to those of groups living traditional lifestyles. Interactions between resident microbes and host leading to immune dysregulation may explain several diseases that share inflammation as a common basis. The low-MAC Western diet results in poor production of gut microbiota-generated short-chain fatty acids (SCFAs), which attenuate inflammation through a variety of mechanisms in mouse models. Studies focused on modern and traditional societies, combined with animal models, are needed to characterize the connection between diet, microbiota composition, and function. Differentiating between an optimal microbiota, one that increases disease risk, and one that is causative or potentiates disease will be required to further understand both the etiology and possible treatments for health problems related to microbiota dysbiosis. PMID:25156449

  14. A framework for guiding health literacy research in populations with universal access to healthcare.

    PubMed

    Weld, Konstantine Keian; Padden, Diane; Ramsey, Gloria; Garmon Bibb, Sandra C

    2008-01-01

    At least one third of the US population suffers from limited health literacy, which has been linked to poorer health status, higher costs, and individuals who are socioeconomically disadvantaged. However, research and the development of theoretical frameworks to study health literacy have only recently begun to occur. The purpose of this article is to describe theoretical frameworks that have either been used or may be used to guide health literacy research and to identify implications for nursing research and practice related to an adaptation of a health literacy framework developed specifically for conducting research in populations with universal access to healthcare.

  15. Effect of incremental doses of radiation on viability of the microbial population on synthetic operating room gowns.

    PubMed Central

    Whitby, J L; Storey, D G

    1982-01-01

    A total of 700 25-cm2 samples of surgical gown material were exposed to doses of cobalt-60 radiation of 0.0 to 0.6 Mrad in 0.1-Mrad increments. Pour plates were made, and the microbial colonies that arose were enumerated, isolated, and identified as to species. The death rate of the microbial population was calculated, and the mean D10 value of 0.269 Mrad was obtained. Analysis showed that the initial population on unirradiated material had been underestimated; when the counts obtained by homogenization of unirradiated material were substituted, a corrected mean D10 value of 0.249 Mrad was obtained. The isolates obtained were identified, and 70.7% were found to be Bacillus spp. with 12 different species identified, 16.2% were Micrococcus spp. with 6 different species identified, and 8.2% were fungi with 10 different species identified. Calculations were made for appropriate doses of radiation to sterilize gowns with this contaminating microbial population. These calculations gave an estimated dose of radiation of 1.98 to 1.81 Mrad to reduce the observed population to 0.001, a standard where 1 gown in 1,000 might contain a living organism. Comparison of the radiation resistance of this population with that of others reported in the literature showed good agreement. PMID:7073273

  16. Fluorescently Labeled Virus Probes Show that Natural Virus Populations Can Control the Structure of Marine Microbial Communities

    PubMed Central

    Hennes, K. P.; Suttle, C. A.; Chan, A. M.

    1995-01-01

    Fluorescently stained viruses were used as probes to label, identify, and enumerate specific strains of bacteria and cyanobacteria in mixed microbial assemblages. Several marine virus isolates were fluorescently stained with YOYO-1 or POPO-1 (Molecular Probes, Inc.) and added to seawater samples that contained natural microbial communities. Cells to which the stained viruses adsorbed were easily distinguished from nonhost cells; typically, there was undetectable binding of stained viruses to natural microbial assemblages containing >10(sup6) bacteria ml(sup-1) but to which host cells were not added. Host cells that were added to natural seawater were quantified with 99% (plusmn) 2% (mean (plusmn) range) efficiency with fluorescently labeled virus probes (FLVPs). A marine bacterial isolate (strain PWH3a), tentatively identified as Vibrio natriegens, was introduced into natural microbial communities that were either supplemented with nutrients or untreated, and changes in the abundance of the isolate were monitored with FLVPs. Simultaneously, the concentrations of viruses that infected strain PWH3a were monitored by plaque assay. Following the addition of PWH3a, the concentration of viruses infecting this strain increased from undetectable levels (<1 ml(sup-1)) to 2.9 x 10(sup7) and 8.3 x 10(sup8) ml(sup-1) for the untreated and nutrient-enriched samples, respectively. The increase in viruses was associated with a collapse in populations of strain PWH3a from ca. 30 to 2% and 43 to 0.01% of the microbial communities in untreated and nutrient-enriched samples, respectively. These results clearly demonstrate that FLVPs can be used to identify and quantify specific groups of bacteria in mixed microbial communities. The data show as well that viruses which are present at low abundances in natural aquatic viral communities can control microbial community structure. PMID:16535146

  17. Fluorescently Labeled Virus Probes Show that Natural Virus Populations Can Control the Structure of Marine Microbial Communities.

    PubMed

    Hennes, K P; Suttle, C A; Chan, A M

    1995-10-01

    Fluorescently stained viruses were used as probes to label, identify, and enumerate specific strains of bacteria and cyanobacteria in mixed microbial assemblages. Several marine virus isolates were fluorescently stained with YOYO-1 or POPO-1 (Molecular Probes, Inc.) and added to seawater samples that contained natural microbial communities. Cells to which the stained viruses adsorbed were easily distinguished from nonhost cells; typically, there was undetectable binding of stained viruses to natural microbial assemblages containing >10(sup6) bacteria ml(sup-1) but to which host cells were not added. Host cells that were added to natural seawater were quantified with 99% (plusmn) 2% (mean (plusmn) range) efficiency with fluorescently labeled virus probes (FLVPs). A marine bacterial isolate (strain PWH3a), tentatively identified as Vibrio natriegens, was introduced into natural microbial communities that were either supplemented with nutrients or untreated, and changes in the abundance of the isolate were monitored with FLVPs. Simultaneously, the concentrations of viruses that infected strain PWH3a were monitored by plaque assay. Following the addition of PWH3a, the concentration of viruses infecting this strain increased from undetectable levels (<1 ml(sup-1)) to 2.9 x 10(sup7) and 8.3 x 10(sup8) ml(sup-1) for the untreated and nutrient-enriched samples, respectively. The increase in viruses was associated with a collapse in populations of strain PWH3a from ca. 30 to 2% and 43 to 0.01% of the microbial communities in untreated and nutrient-enriched samples, respectively. These results clearly demonstrate that FLVPs can be used to identify and quantify specific groups of bacteria in mixed microbial communities. The data show as well that viruses which are present at low abundances in natural aquatic viral communities can control microbial community structure.

  18. Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L.

    PubMed

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.

  19. Application of electrolyzed water on reducing the microbial populations on commercial mung bean sprouts.

    PubMed

    Liu, Rui; Yu, Zhang-Long

    2017-03-01

    The efficacy of acidic electrolyzed water (AEW) for reducing total bacteria, coliforms, yeast and mold counts on commercial mung bean sprouts was investigated. The impact of pH, available chlorine concentration (ACC) and the cleaning method on antimicrobial efficacy of AEW was studied. AEW with a pH of 4.47 reduced the total bacterial, coliform, and yeast and mold counts on mung bean sprouts by 1.23, 1.42 and 1.25 log CFU/g, respectively. The efficacy of AEW increased with increasing ACC, and further studies showed that its antimicrobial ability was based on a combination of pH and ACC values. Cleaning using ultrasonic waves enhanced the antimicrobial activity of electrolyzed water, achieving reduction of 2.46, 2.13 and 2.92 log CFU/g for total bacterial, yeast and mold, and coliform counts, respectively. These results have indicated that using ultrasonic waves as a cleaning method, combined with AEW, could be a promising way to reduce the microbial populations on mung bean sprouts.

  20. Particulate DNA in smoker fluids: Evidence for existence of microbial populations in hot hydrothermal systems

    SciTech Connect

    Straube, W.L.; Colwell, R.R. Univ. of Maryland, Baltimore ); Deming, J.W.; Baross, J.A. ); Somerville, C.C. )

    1990-05-01

    As part of an interdisciplinary study of hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge, we used the submersible ALVIN to collect 57 fluid samples from 17 different hot vents (smokers and flanges) and their environs for the purpose of extracting particulate DNA. Particulate material concentrated from these samples was lysed enzymatically (enz) and by a combination of enzyme and French press treatment (fp). Concentrations of partially purified DNA recovered from these lysates were determined spectrofluorometrically. Ambient seawater surrounding the vents was found to contain low DNA concentrations, 0.18 to 0.32 ng of DNA per ml, while low-temperature vent samples yielded significantly higher concentrations of 0.37 to 2.12 ng of DNA per ml. Although DNA recovery values from superheated (210 to 345{degree}C) flange samples were not significantly different from ambient seawater values, most of the superheated (174 to 357{degree}C) smoker fluid samples contained particulate DNA in concentrations too high to be attributable to entrained seawater. Detailed sampling at one smoker site demonstrated not only the existence of significant levels of particulate DNA in the superheated smoker fluids but also the presence of an elevated microbial population in the buoyant plume 20 to 100 m above the smoker. These results underscore the heterogeneity of smoker environments within a given hydrothermal vent fluid and indicate that microorganisms exist in some superheated fluids.

  1. Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene

    PubMed Central

    Ramakrishnan, Vijayalakshmi; Ogram, Andrew V.; Lindner, Angela S.

    2005-01-01

    With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms. PMID:15626648

  2. Microbial population, physicochemical quality, and allergenicity of molluscs and shrimp treated with cobalt-60 gamma radiation.

    PubMed

    Sinanoglou, Vassilia J; Batrinou, Anthimia; Konteles, Spyros; Sflomos, Konstantinos

    2007-04-01

    Frozen molluscs (squid, octopuses, and cuttlefish) and crustaceans (shrimp) were irradiated using a cobalt-60 gamma source, at different doses, in order to investigate the effects of gamma radiation on their microbial population, organoleptic characteristics, lipid profile, and tropomyosin content. Irradiation of shrimp and squid with either 2.5 or 4.7 kGy reduced mesophilic bacteria contamination to low or nondetectable levels, respectively, whereas irradiation of octopus and cuttlefish with the same doses reduced the bacterial population. Irradiation treatment had no significant (P > 0.05) effect on the total lipid content and the major detected classes of polar and neutral lipids, whereas it significantly (P < 0.05) increased the contents of neutral lipids in octopus mantle and in shrimp muscle and cephalothorax samples. The total fatty acid content and the omega-3: omega-6 fatty acid ration was not affected. A dose-dependent significant (P < 0.05) decrease in the ratio of polyunsaturated fatty acids:saturated fatty acids was observed. With the increase in radiation dose, redness (a) and yellowness (b) values showed a variation, whereas the lightness (L) value was significantly (P < 0.05) decreased in mollusc mantles and shrimp muscle and increased in shrimp cephalothorax. The total of color changes ( delta E) increased (P < 0.05) as the dose increased. Significant (P < 0.05) changes in textural properties were observed with radiation treatment in octopus tentacles and in squid and cuttlefish mantle. The amount of tropomyosin, which is the major mollusc and crustacean allergen in the irradiated organisms, was reduced by gamma radiation, depending on the dose.

  3. Effects of intermittent and continuous aeration on accelerative stabilization and microbial population dynamics in landfill bioreactors.

    PubMed

    Sang, Nguyen Nhu; Soda, Satoshi; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko

    2009-10-01

    Performance and microbial population dynamics in landfill bioreactors were investigated in laboratory experiments. Three reactors were operated without aeration (control reactor, CR), with cyclic 6-h aeration and 6-h non-aeration (intermittently aerated reactor, IAR), and with continuous aeration (continuously aerated reactor, CAR). Each reactor was loaded with high-organic solid waste. The performance of IAR was highest among the reactors up to day 90. The respective solid weight, organic matter content, and waste volume on day 90 in the CR, IAR, and CAR were 50.9, 39.1, and 47.5%; 46.5, 29.3 and 35.0%; and 69, 38, and 53% of the initial values. Organic carbon and nitrogen compounds in leachate in the IAR and the CAR showed significant decreases in comparison to those in the CR. The most probable number (MPN) values of fungal 18S rDNA in the CAR and the IAR were higher than those in the CR. Terminal restriction fragment length polymorphism analysis showed that unique and diverse eubacterial and archaeal communities were formed in the IAR. The intermittent aeration strategy was favorable for initiation of solubilization of organic matter by the aerobic fungal populations and the reduction of the acid formation phase. Then the anaerobic H(2)-producing bacteria Clostridium became dominant in the IAR. Sulfate-reducing bacteria, which cannot use acetate/sulfate but which instead use various organics/sulfate as the electron donor/acceptor were also dominant in the IAR. Consequently, Methanosarcinales, which are acetate-utilizing methanogens, became the dominant archaea in the IAR, where high methane production was observed.

  4. Socioeconomic disparities in eligibility and access to bariatric surgery: a national population-based analysis.

    PubMed

    Martin, Matthew; Beekley, Alec; Kjorstad, Randy; Sebesta, James

    2010-01-01

    To analyze the socioeconomics of the morbidly obese patient population and the impact on access to bariatric surgery using 2 nationally representative databases. Bariatric surgery is a life-changing and potentially life-saving intervention for morbid obesity. Access to bariatric surgical care among eligible patients might be adversely affected by a variety of socioeconomic factors. The national bariatric eligible population was identified from the 2005-2006 National Health and Nutrition Examination Survey and compared with the adult noneligible population. The eligible cohort was then compared with patients who had undergone bariatric surgery in the 2006 Nationwide Inpatient Sample, and key socioeconomic disparities were identified and analyzed. A total of 22,151,116 people were identified as eligible for bariatric surgery using the National Institutes of Health criteria. Compared with the noneligible group, the bariatric eligible group had significantly lower family incomes, lower education levels, less access to healthcare, and a greater proportion of nonwhite race (all P <.001). Bariatric eligibility was associated with significant adverse economic and health-related markers, including days of work lost (5 versus 8 days, P <.001). More than one third (35%) of bariatric eligible patients were either uninsured or underinsured, and 15% had incomes less than the poverty level. A total of 87,749 in-patient bariatric surgical procedures were performed in 2006. Most were performed in white patients (75%) with greater median incomes (80%) and private insurance (82%). Significant disparities associated with a decreased likelihood of undergoing bariatric surgery were noted by race, income, insurance type, and gender. Socioeconomic factors play a major role in determining who does and does not undergo bariatric surgery, despite medical eligibility. Significant disparities according to race, income, education level, and insurance type continue to exist and should prompt

  5. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico.

    PubMed

    Martinez, Robert J; Mills, Heath J; Story, Sandra; Sobecky, Patricia A

    2006-10-01

    In this study, ribosomes and genomic DNA were extracted from three sediment depths (0-2, 6-8 and 10-12 cm) to determine the vertical changes in the microbial community composition and identify metabolically active microbial populations in sediments obtained from an active seafloor mud volcano site in the northern Gulf of Mexico. Domain-specific Bacteria and Archaea 16S polymerase chain reaction primers were used to amplify 16S rDNA gene sequences from extracted DNA. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from each sediment depth that had been subjected to reverse transcription polymerase chain reaction amplification. Twelve different 16S clone libraries, representing the three sediment depths, were constructed and a total of 154 rDNA (DNA-derived) and 142 crDNA (RNA-derived) Bacteria clones and 134 rDNA and 146 crDNA Archaea clones obtained. Analyses of the 576 clones revealed distinct differences in the composition and patterns of metabolically active microbial phylotypes relative to sediment depth. For example, epsilon-Proteobacteria rDNA clones dominated the 0-2 cm clone library whereas gamma-Proteobacteria dominated the 0-2 cm crDNA library suggesting gamma to be among the most active in situ populations detected at 0-2 cm. Some microbial lineages, although detected at a frequency as high as 9% or greater in the total DNA library (i.e. Actinobacteria, alpha-Proteobacteria), were markedly absent from the RNA-derived libraries suggesting a lack of in situ activity at any depth in the mud volcano sediments. This study is one of the first to report the composition of the microbial assemblages and physiologically active members of archaeal and bacterial populations extant in a Gulf of Mexico submarine mud volcano.

  6. Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting.

    PubMed

    Mary, Isabelle; Oliver, Anna; Skipp, Paul; Holland, Ross; Topping, Juliette; Tarran, Glen; Scanlan, David J; O'Connor, C David; Whiteley, Andrew S; Burkill, Peter H; Zubkov, Mikhail V

    2010-10-01

    A major obstacle in the molecular investigation of natural, especially oceanic, microbial cells is their adequate preservation for further land-based molecular analyses. Here, we examined the use of microwaves for cell fixation before high-speed flow cytometric sorting to define the metaproteomes and metagenomes of key microbial populations. The microwave fixation procedure was established using cultures of Synechococcus cyanobacteria, the photosynthetic eukaryote Micromonas pusilla and the gammaproteobacterium Halomonas variabilis. Shotgun proteomic analyses showed that the profile of microwave-fixed and -unfixed Synechococcus sp. WH8102 cells was the same, and hence proteome identification of microwave-fixed sorted cells by nanoLC-MS/MS is possible. Microwave-fixed flow-sorted Synechococcus cells can also be successfully used for whole-genome amplification and fosmid library construction. We then carried out successful metaproteomic and metagenomic analyses of microwave-fixed Synechococcus cells flow sorted from concentrates of microbial cells, collected in the North Atlantic Ocean. Thus, the microwave fixation procedure developed appears to be useful for molecular studies of microbial populations in aquatic ecosystems.

  7. Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice.

    PubMed

    Xiang, Shu-Rong; Shang, Tian-Cui; Chen, Yong; Yao, Tan-Dong

    2009-11-01

    Glaciers accumulate airborne microorganisms year by year and thus are good archives of microbial communities and their relationship to climatic and environmental changes. Hypotheses have focused on two possible drivers of microbial community composition in glacier systems. One is aeolian deposition, in which the microbial load by aerosol, dust, and precipitation events directly determines the amount and composition of microbial species in glacier ice. The other is postdepositional selection, in which the metabolic activity in surface snow causes microbial community shifts in glacier ice. An additional possibility is that both processes occur simultaneously. Aeolian deposition initially establishes a microbial community in the ice, whereas postdeposition selection strengthens the deposition patterns of microorganisms with the development of tolerant species in surface snow, resulting in varying structures of microbial communities with depth. In this minireview, we examine these postulations through an analysis of physical-chemical and biological parameters from the Malan and Vostok ice cores, and the Kuytun 51 Glacial surface and deep snow. We discuss these and other recent results in the context of the hypothesized mechanisms driving microbial community succession in glaciers. We explore our current gaps in knowledge and point out future directions for research on microorganisms in glacial ecosystems.

  8. Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population.

    PubMed

    Zou, Kai-Nan; Ren, Li-Jie; Ping, Yuan; Ma, Ke; Li, Hui; Cao, Yu; Zhou, Huai-Gu; Wei, Yi-Liang

    2016-10-01

    In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces.

  9. Effects of Momordica charantia Saponins on In vitro Ruminal Fermentation and Microbial Population

    PubMed Central

    Kang, Jinhe; Zeng, Bo; Tang, Shaoxun; Wang, Min; Han, Xuefeng; Zhou, Chuanshe; Yan, Qiongxian; He, Zhixiong; Liu, Jinfu; Tan, Zhiliang

    2016-01-01

    This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, NH3-N, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 (FRD0) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production (VF) and the half-life (t0.5) compared with the control. The NH3-N concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the

  10. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations.

    PubMed

    Guenthner, Casey J; Miyamichi, Kazunari; Yang, Helen H; Heller, H Craig; Luo, Liqun

    2013-06-05

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.

  11. Dental Therapists as New Oral Health Practitioners: Increasing Access for Underserved Populations.

    PubMed

    Brickle, Colleen M; Self, Karl D

    2017-09-01

    The development of dental therapy in the U.S. grew from a desire to find a workforce solution for increasing access to oral health care. Worldwide, the research that supports the value of dental therapy is considerable. Introduction of educational programs in the U.S. drew on the experiences of programs in New Zealand, Australia, Canada, and the United Kingdom, with Alaska tribal communities introducing dental health aide therapists in 2003 and Minnesota authorizing dental therapy in 2009. Currently, two additional states have authorized dental therapy, and two additional tribal communities are pursuing the use of dental therapists. In all cases, the care provided by dental therapists is focused on communities and populations who experience oral health care disparities and have historically had difficulties in accessing care. This article examines the development and implementation of the dental therapy profession in the U.S. An in-depth look at dental therapy programs in Minnesota and the practice of dental therapy in Minnesota provides insight into the early implementation of this emerging profession. Initial results indicate that the addition of dental therapists to the oral health care team is increasing access to quality oral health care for underserved populations. As evidence of dental therapy's success continues to grow, mid-level dental workforce legislation is likely to be introduced by oral health advocates in other states. This article was written as part of the project "Advancing Dental Education in the 21(st) Century."

  12. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations.

    PubMed

    Zhao, Guang; Ma, Fang; Wei, Li; Chua, Hong; Chang, Chein-Chi; Zhang, Xiao-Jun

    2012-09-01

    A microbial fuel cell (MFC) was constructed to investigate the possible generation of electricity using cattle dung as a substrate. After 30 days of operation, stable electricity was generated, and the maximum volumetric power density was 0.220 W/m(3). The total chemical oxygen demand (TCOD) removal and coulombic efficiency (CE) of the MFC reached 73.9±1.8% and 2.79±0.6%, respectively, after 120 days of operation. Acetate was the main metabolite in the anolyte, and other volatile fatty acids (VFAs) (propionate and butyrate) were present in minor amounts. The PCR-DGGE analysis indicated that the following five groups of microbes were present: Proteobacteria, Bacteroides, Chloroflexi, Actinobacteria and Firmicutes. Proteobacteria and Firmicutes were the dominant phyla in the sample; specifically, 36.3% and 24.2% of the sequences obtained were Proteobacteria and Firmicutes, respectively. Clostridium sp., Pseudomonas luteola and Ochrobactrum pseudogrignonense were the most dominant groups during the electricity generation process. The diversity of archaea dramatically decreased after 20 days of operation. The detected archaea were hydrogenotrophic methanogens, and the Methanobacterium genus disappeared during the periods of stable electricity generation via acidogenesis.

  13. Population density and total biomass of microbial communities in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region

    NASA Astrophysics Data System (ADS)

    Kashirskaya, N. N.; Khomutova, T. E.; Chernysheva, E. V.; El'tsov, M. V.; Demkin, V. A.

    2015-03-01

    The population density and total biomass of microbial communities were determined in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region with the use of the methods of sequential fractionation of the soil and direct counting. The mean weighted values of the population density of the microbial communities in the soil profiles (A1 + B1 + B2 horizons) in the studied soils varied within 3.8-8.0 × 1011 cells/g of soil. The total microbial biomass in the soils of the Privolzhskaya Upland reached 0.9-2.4 mg C/g of soil; in the soils of the Ergeni Upland, it was 20 to 75% lower. The microbial cells in the soils of the Privolzhskaya Upland were larger than those in the soils of the Ergeni Upland. Sequential fractionation of the soil prior to direct counting contributed to the more complete assessment of the population density of the microbial communities.

  14. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    El Fantroussi, Said; Urakawa, Hidetoshi; Bernhard, Anne E.; Kelly, John J.; Noble, Peter A.; Smidt, H.; Yershov, G. M.; Stahl, David A.

    2003-01-01

    Oligonucleotide microarrays were used to profile directly extracted rRNA from environmental microbial populations without PCR amplification. In our initial inspection of two distinct estuarine study sites, the hybridization patterns were reproducible and varied between estuarine sediments of differing salinities. The determination of a thermal dissociation curve (i.e., melting profile) for each probe-target duplex provided information on hybridization specificity, which is essential for confirming adequate discrimination between target and nontarget sequences.

  15. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    El Fantroussi, Said; Urakawa, Hidetoshi; Bernhard, Anne E.; Kelly, John J.; Noble, Peter A.; Smidt, H.; Yershov, G. M.; Stahl, David A.

    2003-01-01

    Oligonucleotide microarrays were used to profile directly extracted rRNA from environmental microbial populations without PCR amplification. In our initial inspection of two distinct estuarine study sites, the hybridization patterns were reproducible and varied between estuarine sediments of differing salinities. The determination of a thermal dissociation curve (i.e., melting profile) for each probe-target duplex provided information on hybridization specificity, which is essential for confirming adequate discrimination between target and nontarget sequences.

  16. Modeling and Decision Support Tools Based on the Effects to Sediment Geochemistry and Microbial Populations on Contaminant Reactions in Sediments

    DTIC Science & Technology

    2011-09-01

    water, and soil/sediment transport processes have spread PCBs from local sites of contamination across the global environment , and PCBs have been found...sediment transport processes have distributed PCBs from local sites of contamination across the global environment , including the most remote areas...Final Report Modeling and Decision Support Tools Based on the Effects to Sediment Geochemistry and Microbial Populations on Contaminant

  17. Mobile Health in the Retinal Clinic Population: Access to and Interest in Self-Tracking.

    PubMed

    Ludwig, Cassie A; Callaway, Natalia F; Park, Joyce Ho; Leng, Theodore

    2016-03-01

    Implementation of mobile health-tracking programs for retinal pathology requires both access to mobile devices and patient motivation to participate in self-tracking. The authors' study aimed to evaluate the prevalence of smartphone and tablet ownership and patient interest in self-tracking among a retinal clinic population. This is an institutional, prospective, cross-sectional survey of 103 retinal clinic outpatients. Consenting patients underwent a one-on-one interview conducted in the examination room during their waiting period by one researcher. Overall, 75 of 103 participants (72.2%) reported either owning a smartphone and/or tablet or having access at their household to a device that could be used to track eye health. The majority of participants (69 of 103 participants; 67%) reported interest in using a mobile application (smartphone or tablet) to track their eye health. These data suggest strong patient interest in the use of mobile devices to track eye health. Copyright 2016, SLACK Incorporated.

  18. Central Venous Access in the Pediatric Population With Emphasis on Complications and Prevention Strategies.

    PubMed

    Duesing, Lori A; Fawley, Jason A; Wagner, Amy J

    2016-08-01

    Central venous catheters are often necessary in the pediatric population. Access may be challenging, and each vessel presents its own unique set of risks and complications. Central venous catheterization is useful for hemodynamic monitoring, rapid fluid infusion, and administration of hyperosmolar medications, including vasopressors, antibiotics, chemotherapy, and parenteral nutrition. Recent advances have improved the catheters used as well as techniques for insertion. A serious complication of central access is infection, which is associated with morbidity, mortality, and significant financial costs. Reduction of catheter-related bloodstream infections is realized with use of ethanol locks, single lumens when appropriate, and prudent adherence to insertion and maintenance bundles. Ultrasound guidance used for central venous catheter placement improves accuracy of placement, reducing time and unsuccessful insertion and complication rates. Patients with central venous catheters are best served by multidisciplinary team involvement. © 2016 American Society for Parenteral and Enteral Nutrition.

  19. Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice.

    PubMed

    Suzuki, Taichi A; Nachman, Michael W

    There is a growing appreciation of the role of gut microbial communities in host biology. However, the nature of variation in microbial communities among different segments of the gastrointestinal (GI) tract is not well understood. Here, we describe microbial communities from ten different segments of the GI tract (mouth, esophagus, stomach, duodenum, ileum, proximal cecum, distal cecum, colon, rectum, and feces) in wild house mice using 16S rRNA gene amplicon sequencing. We also measured carbon and nitrogen stable isotopic ratios from hair samples of individual mice as a proxy for diet. We identified factors that may explain differences in microbial composition among gut segments, and we tested for differences among individual mice in the composition of the microbiota. Consistent with previous studies, the lower GI tract was characterized by a greater relative abundance of anaerobic bacteria and greater microbial diversity relative to the upper GI tract. The upper and lower GI tracts also differed in the relative abundances of predicted microbial gene functions, including those involved in metabolic pathways. However, when the upper and lower GI tracts were considered separately, gut microbial composition was associated with individual mice. Finally, microbial communities derived from fecal samples were similar to those derived from the lower GI tract of their respective hosts, supporting the utility of fecal sampling for studying the gut microbiota of mice. These results show that while there is substantial heterogeneity among segments of the GI tract, individual hosts play a significant role in structuring microbial communities within particular segments of the GI tract.

  20. Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice

    PubMed Central

    Nachman, Michael W.

    2016-01-01

    There is a growing appreciation of the role of gut microbial communities in host biology. However, the nature of variation in microbial communities among different segments of the gastrointestinal (GI) tract is not well understood. Here, we describe microbial communities from ten different segments of the GI tract (mouth, esophagus, stomach, duodenum, ileum, proximal cecum, distal cecum, colon, rectum, and feces) in wild house mice using 16S rRNA gene amplicon sequencing. We also measured carbon and nitrogen stable isotopic ratios from hair samples of individual mice as a proxy for diet. We identified factors that may explain differences in microbial composition among gut segments, and we tested for differences among individual mice in the composition of the microbiota. Consistent with previous studies, the lower GI tract was characterized by a greater relative abundance of anaerobic bacteria and greater microbial diversity relative to the upper GI tract. The upper and lower GI tracts also differed in the relative abundances of predicted microbial gene functions, including those involved in metabolic pathways. However, when the upper and lower GI tracts were considered separately, gut microbial composition was associated with individual mice. Finally, microbial communities derived from fecal samples were similar to those derived from the lower GI tract of their respective hosts, supporting the utility of fecal sampling for studying the gut microbiota of mice. These results show that while there is substantial heterogeneity among segments of the GI tract, individual hosts play a significant role in structuring microbial communities within particular segments of the GI tract. PMID:27669007

  1. Unequal Accessibility of Nurseries for Sick Children in Over- and Under-Populated Areas of Japan.

    PubMed

    Ehara, Akira

    2017-01-01

    Infants and toddlers are prone to rapidly contracting illnesses, which are usually attributed to infectious diseases. Most nurseries and schools in Japan, however, refuse to accept children even with mild illnesses. For working parents, a sick child may therefore create new problems as the situation requires new day-care arrangements. To support such families, the Japanese government subsidizes construction and management of nurseries that operate especially for sick children. However, it has not been known whether most families are able to access such nurseries. To clarify the accessibility of these services, I calculated the distance to the nurseries from each of the 211,012 "blocks" (small residential areas with a median of 0.18 km(2)) in Japan and determined the proportion of children aged 0-4 years who lived within 3, 5, 10, 20 or 30 km of the nearest such nursery. Overall, 82.1% of these children lived within 10 km. However, the proportion was lower in northern parts of Japan such as Hokkaido and Tohoku, which have expansive land areas and low population and pediatric department densities. The proportion of children who lived within that same distance of the nearest nursery was also much lower in small towns and villages with 10,000 or fewer residents. Nurseries for sick children were not evenly distributed, and children and their caregivers in under-populated areas had to travel further to access these facilities. As the national government subsidizes such services, children and caregivers throughout Japan should have equal access to them.

  2. Toxicoanthropology: Phthalate exposure in relation to market access in a remote forager-horticulturalist population.

    PubMed

    Sobolewski, Marissa; Weiss, Bernard; Martin, Melanie; Gurven, Michael; Barrett, Emily

    2017-07-01

    Phthalates are a class of plasticizing chemicals produced in high volume and widely found in consumer products. Evidence suggests that phthalates may have non-monotonic effects on reproductive hormone activity. With exposure to phthalates virtually ubiquitous among industrialized populations, identifying unexposed and/or minimally exposed human populations is essential for understanding the effects of low level exposures. Our primary objective was to quantify urinary phthalate metabolite concentrations in the Tsimane', a remote population of Bolivian forager-horticulturalists. Our secondary objectives were to determine if phthalate metabolite concentrations vary in relation to access to market goods; and to explore relationships between phthalate and reproductive hormone metabolite concentrations. Given that phthalate exposure is of particular concern during fetal development, we focused on reproductive age women in the current analyses. Phthalate metabolites were assayed in urine samples from 59 naturally cycling, reproductive age Tsimane' women. Market access was assessed as: (1) distance from residence to the largest nearby town (San Borja, Bolivia) and (2) Spanish fluency. Urinary reproductive hormone metabolite concentrations were quantified using enzyme immunoassays. We fit linear models to examine: (1) predictors of phthalate exposure; and (2) relationships between urinary phthalate and reproductive hormone metabolite concentrations. Eight phthalate metabolites were detectable in at least 75% of samples. Median concentrations were up to an order of magnitude lower than industrialized populations. Proximity to San Borja and Spanish fluency were strong predictors of exposure. In exploratory analyses, the sum of the di-2-ethylhexyl phthalate metabolites (∑DEHP) and Mono-isobutyl phthalate (MiBP) were significantly associated with altered concentrations of urinary reproductive hormone metabolites. Remote, subsistence populations, like the Tsimane', offer a

  3. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut ‘Granny Smith’ apples

    USDA-ARS?s Scientific Manuscript database

    Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. ‘Granny Smith’ apple slices, dipp...

  4. Lack of access and continuity of adult health care: a national population-based survey

    PubMed Central

    Dilélio, Alitéia Santiago; Tomasi, Elaine; Thumé, Elaine; da Silveira, Denise Silva; Siqueira, Fernando Carlos Vinholes; Piccini, Roberto Xavier; Silva, Suele Manjourany; Nunes, Bruno Pereira; Facchini, Luiz Augusto

    2015-01-01

    OBJECTIVE To describe the lack of access and continuity of health care in adults. METHODS A cross-sectional population-based study was performed on a sample of 12,402 adults aged 20 to 59 years in urban areas of 100 municipalities of 23 states in the five Brazilian geopolitical regions. Barriers to the access and continuity of health care and were investigated based on receiving, needing and seeking health care (hospitalization and accident/emergency care in the last 12 months; care provided by a doctor, by other health professional or home care in the last three months). Based on the results obtained by the description of the sample, a projection is provided for adults living in Brazilian urban areas. RESULTS The highest prevalence of lack of access to health services and to provision of care by health professionals was for hospitalization (3.0%), whilst the lowest prevalence was for care provided by a doctor (1.1%). The lack of access to care provided by other health professionals was 2.0%; to accident and emergency services, 2.1%; and to home care, 2.9%. As for prevalences, the greatest absolute lack of access occurred in emergency care (more than 360,000 adults). The main reasons were structural and organizational problems, such as unavailability of hospital beds, of health professionals, of appointments for the type of care needed and charges made for care. CONCLUSIONS The universal right to health care in Brazil has not yet been achieved. These projections can help health care management in scaling the efforts needed to overcome this problem, such as expanding the infrastructure of health services and the workforce. PMID:26061454

  5. Chronic impact of sulfamethoxazole on acetate utilization kinetics and population dynamics of fast growing microbial culture.

    PubMed

    Kor-Bicakci, G; Pala-Ozkok, I; Rehman, A; Jonas, D; Ubay-Cokgor, E; Orhon, D

    2014-08-01

    The study evaluated the chronic impact of sulfamethoxazole on metabolic activities of fast growing microbial culture. It focused on changes induced on utilization kinetics of acetate and composition of the microbial community. The experiments involved a fill and draw reactor, fed with acetate and continuous sulfamethoxazole dosing of 50 mg/L. The evaluation relied on model evaluation of the oxygen uptake rate profiles, with parallel assessment of microbial community structure by 454-pyrosequencing. Continuous sulfamethoxazole dosing inflicted a retardation effect on acetate utilization in a way commonly interpreted as competitive inhibition, blocked substrate storage and accelerated endogenous respiration. A fraction of acetate was utilized at a much lower rate with partial biodegradation of sulfamethoxazole. Results of pyrosequencing with a replacement mechanism within a richer more diversified microbial culture, through inactivation of vulnerable fractions in favor of species resistant to antibiotic, which made them capable of surviving and competing even with a slower metabolic response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product.

    PubMed

    Mullins, C R; Mamedova, L K; Carpenter, A J; Ying, Y; Allen, M S; Yoon, I; Bradford, B J

    2013-09-01

    The rumen microbial ecosystem is a critical factor that links diets to bovine physiology and productivity; however, information about dietary effects on microbial populations has generally been limited to small numbers of samples and qualitative assessment. To assess whether consistent shifts in microbial populations occur in response to common dietary manipulations in dairy cattle, samples of rumen contents were collected from 2 studies for analysis by quantitative real-time PCR (qPCR). In one study, lactating Holstein cows (n=8) were fed diets in which a nonforage fiber source replaced an increasing proportion of forages and concentrates in a 4×4 Latin square design, and samples of ruminal digesta were collected at 9-h intervals over 3 d at the end of each period. In the second study, lactating Holstein cows (n=15) were fed diets with or without the inclusion of a Saccharomyces cerevisiae fermentation product (SCFP) in a crossover design. In this study, rumen liquid and solid samples were collected during total rumen evacuations before and after feeding in a 42-h period. In total, 146 samples of ruminal digesta were used for microbial DNA isolation and analysis by qPCR. Validated primer sets were used to quantify total bacterial and anaerobic fungal populations as well as 12 well-studied bacterial taxa. The relative abundance of the target populations was similar to those previously reported. No significant treatment effects were observed for any target population. A significant interaction of treatment and dry matter intake was observed, however, for the abundance of Eubacterium ruminantium. Increasing dry matter intake was associated with a quadratic decrease in E. ruminantium populations in control animals but with a quadratic increase in E.ruminantium populations in cows fed SCFP. Analysis of sample time effects revealed that Fibrobacter succinogenes and fungal populations were more abundant postfeeding, whereas Ruminococcus albus tended to be more abundant

  7. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats.

    PubMed

    Barry, K A; Wojcicki, B J; Middelbos, I S; Vester, B M; Swanson, K S; Fahey, G C

    2010-09-01

    Twelve young adult (1.7 +/- 0.1 yr) male cats were used in a replicated 3 x 3 Latin square design to determine the effects of fiber type on nutrient digestibility, fermentative end products, and fecal microbial populations. Three diets containing 4% cellulose, fructooligosaccharides (FOS), or pectin were evaluated. Feces were scored based on the 5-point system: 1 being hard, dry pellets, and 5 being watery liquid that can be poured. No differences were observed (P > 0.100) in intake of DM, OM, CP, or acid-hydrolyzed fat; DM or OM digestibility; or fecal pH, DM%, output on an as-is or DM basis, or concentrations of histamine or phenylalanine. Crude protein and fat digestibility decreased (P = 0.079 and 0.001, respectively) in response to supplementation with pectin compared with cellulose. Both FOS and pectin supplementation resulted in increased fecal scores (P < 0.001) and concentrations of ammonia (P = 0.003) and 4-methyl phenol (P = 0.003). Fecal indole concentrations increased (P = 0.049) when cats were supplemented with FOS. Fecal acetate (P = 0.030), propionate (P = 0.035), and total short-chain fatty acid (P = 0.016) concentrations increased in pectin-supplemented cats. Fecal butyrate (P = 0.010), isobutyrate (P = 0.011), isovalerate (P = 0.012), valerate (P = 0.026), and total branched-chain fatty acids + valerate (P = 0.008) concentrations increased with supplementation of FOS and pectin. Fecal cadaverine (P < 0.001) and tryptamine (P < 0.001) concentrations increased with supplementation of FOS and pectin. Fecal tyramine concentrations decreased (P = 0.039) in FOS-supplemented cats, whereas spermidine concentrations increased (P < 0.001) in pectin-supplemented cats. Whereas fecal concentrations of putrescine (P < 0.001) and total biogenic amines (P < 0.001) increased with FOS and pectin, the concentrations of these compounds were increased (P < 0.001) in cats supplemented with pectin. Fecal Bifidobacterium spp. concentrations increased (P = 0.006) and

  8. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut "Granny Smith" apples.

    PubMed

    Guan, Wenqiang; Fan, Xuetong

    2010-03-01

    Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. "Granny Smith" apple slices, dipped for 5 min in CP solutions at 0%, 0.5%, 1%, and 2% (w/v) either alone or in combination with 0.05% (w/v) SC, were stored at 3 and 10 degrees C for up to 14 d. Color, firmness, and microflora population were measured at 1, 7, and 14 d of storage. Results showed that CP alone had no significant effect on the browning of cut apples. Even though SC significantly inhibited tissue browning initially, the apple slices turned brown during storage at 10 degrees C. The combination of CP and SC was able to inhibit apple browning during storage. Samples treated with the combination of SC with CP did not show any detectable yeast and mold growth during the entire storage period at 3 degrees C. At 10 degrees C, yeast and mold count increased on apple slices during storage while CP reduced the increase. However, high concentrations of CP reduced the efficacy of SC in inactivating E. coli inoculated on apples. Overall, our results suggested that combination of SC with 0.5% and 1% CP could be used to inhibit tissue browning and maintain firmness while reducing microbial population. Practical Application: Apple slices, which contain antioxidants and other nutrient components, have emerged as popular snacks in food service establishments, school lunch programs, and for family consumption. However, the further growth of the industry is limited by product quality deterioration caused by tissue browning, short shelf-life due to microbial growth, and possible contamination with human pathogens during processing. Therefore, this study was conducted to develop treatments to reduce microbial population and tissue browning of "Granny Smith" apple slices. Results showed that an antimicrobial

  9. In Situ Exposure to Low Herbicide Concentrations Affects Microbial Population Composition and Catabolic Gene Frequency in an Aerobic Shallow Aquifer

    PubMed Central

    de Lipthay, Julia R.; Tuxen, Nina; Johnsen, Kaare; Hansen, Lars H.; Albrechtsen, Hans-Jørgen; Bjerg, Poul L.; Aamand, Jens

    2003-01-01

    The aim of this study was to evaluate how the in situ exposure of a Danish subsurface aquifer to phenoxy acid herbicides at low concentrations (<40 μg l−1) changes the microbial community composition. Sediment and groundwater samples were collected inside and outside the herbicide-exposed area and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (100 to 104 g−1 sediment) was determined by most probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophenoxyacetic acid degradation pathway genes tfdA and tfdB (102 to 103 gene copies g−1 sediment) were only detected in sediments from contaminated areas of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4′,6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous microbial communities from acclimated sediments. The findings of this study demonstrate that continuous exposure to low herbicide concentrations can markedly change the bacterial community composition of a subsurface aquifer. PMID:12514028

  10. Population access to hospital emergency departments and the impacts of health reform in New Zealand.

    PubMed

    Brabyn, Lars; Beere, Paul

    2006-09-01

    In the current political climate of evidence-based research, GIS has emerged as a powerful research tool as it allows spatial and social health inequality to be explored efficiently. This article explores the impact health reforms had on geographical accessibility to hospital emergency department (ED) services in New Zealand from 1991 to 2001. Travel time was calculated using least-cost path analysis, which identified the shortest travel time from each census enumeration district through a road network to the nearest ED. This research found that the population further than 60 minutes from an ED has increased with some areas being affected more than others. Some of this increase is attributed to increases in population rather than the closing of hospitals. The findings will be discussed within the context of the health policy reform era and changes to health service provision.

  11. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.

    PubMed

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo; Afzal, Shahzad

    2013-05-01

    Microbial electrolysis cell (MEC) devices are efficient for wastewater treatment, but its application was limited due to low anode oxidation rate. The objective of this study was to improve anode performance of a MEC combined anaerobic reactor (R1) for high concentration industrial wastewater treatment via dosing Fe(OH)3. For the first 53 days without power, the addition of Fe(OH)3 in R1 enhanced the degradation of reactive brilliant red X-3B dye and sucrose. Applying a voltage of 0.8 V in R1 resulted in a higher decolorization and COD removal through driving the redox reactions at electrodes under Fe(III)-reducing conditions. Real-time PCR and enzyme activity analysis showed that the abundance and azoreductase activity of bacteria were improved in R1. Pyrosequencing revealed that dominant populations in anode biofilm and R1 were more diverse and abundant than the common anaerobic reactor (R2), and there was a significant distinction among anode film, R1 and R2 in microbial community structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [Perceptions and experiences of access to health services and their utilization among the immigrant population].

    PubMed

    Bas-Sarmiento, Pilar; Fernández-Gutiérrez, Martina; Albar-Marín, M A Jesús; García-Ramírez, Manuel

    2015-01-01

    To identify and describe the needs and problems of the immigrant population related to access and utilization of health services. A descriptive, qualitative, phenomenological study was conducted using focus groups. The study area was the county of Campo de Gibraltar (Spain), which represents the gateway to Europe for immigration from Africa. The final sample size (51 immigrants from 11 countries) was determined by theoretical saturation. A narrative analysis was conducted with QSR NVivo9 software. Immigrants' discourse showed four categories of analysis: response to a health problem, system access, knowledge of social and health resources, and health literacy needs. Responses to health problems and the route of access to the health care system differed according to some sociodemographic characteristics (nationality/culture of origin, length of residence, and economic status). In general, immigrants primarily used emergency services, hampering health promotion and prevention. The health literacy needs identified concerned language proficiency and the functioning of the health system. There is a need to promote interventions to enhance health literacy among immigrants. These interventions should take into account diversity and length of residence, and should be based on an action-participation methodology. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  13. [Barriers to administrative access to health services in the Colombian population, 2013].

    PubMed

    Hernández, Jorge Martín Rodríguez; Rubiano, Diana Patricia Rodríguez; Barona, Juan Carlos Corrales

    2015-06-01

    The scope of this paper is to characterize the main barriers faced by the Colombian population when they attempt to gain access to health services. It is an observational, descriptive and exploratory study using both quantitative and qualitative techniques. It was based on the records of Petitions, Complaints, Claims and Suggestions sent to the National Department of Health of Colombia between January 2102 and June 2013. In-depth interviews were conducted with users of health services, as well as officials of the Health Promoting Companies and Outlets for Right to Health of the Health Department of Bogotá. The study is based on domains proposed by Frenk et al for effective access to health services. Users of this study found limitations starting at admission and search for care due to communication failures in accessing health services. For ongoing care services, they encountered barriers resulting from the need for authorizations, lack of availability of specialist medical appointments, surgical procedures and drug delivery. Based on the findings, the conclusion reached is that the barriers perceived by users generate negative perceptions and harmful consequences both for them and for their families.

  14. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens.

    PubMed

    Salim, H M; Kang, H K; Akter, N; Kim, D W; Kim, J H; Kim, M J; Na, J C; Jong, H B; Choi, H C; Suh, O S; Kim, W K

    2013-08-01

    An experiment was conducted to investigate the supplementation of direct-fed microbials (DFM) as an alternative to antibiotics on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. A total of 800 one-day-old male broiler chicks (Ross × Ross) were randomly allotted to 4 dietary treatments with 4 replicate pens per treatment (50 birds/replicate pen). The 4 dietary treatments fed for 35 d were a corn-soybean meal basal diet (control); control plus 0.1% virginiamycin, as an antibiotic growth promoter (AGP); control plus 0.1% direct-fed microbials that contained Lactobacillus reuteri (DFM 1); and control plus 0.1% direct-fed microbials that contained a mixture of L. reuteri, Bacillus subtilis, and Saccharomyces cerevisiae (DFM 2). Results showed that dietary AGP and DFM supplementation significantly increased (P < 0.05) the BW gain of broilers during 0 to 21 d. The feed intake was reduced, whereas the feed conversion was improved significantly when birds were fed DFM 2 at 0 to 7 d of age. The white blood cell and monocyte levels were significantly higher in the DFM 2 group compared with the control. In addition, feeding DFM significantly (P < 0.05) increased the plasma immunoglobulin levels where a higher level was observed in DFM 2 compared with those of the other treatments. Neither DFM nor AGP treatments affected the cecal Lactobacillus and Salmonella content; however, cecal Escherichia coli content significantly decreased in broiler chickens fed DFM and AGP. The ileal villus height, and width and total thickness of muscularis externa were significantly increased when birds were fed DFM compared with AGP and control. These results indicate that the dietary supplementation of DFM increases the growth performance of birds at an early age, stimulates the immune response, decreases the number of E. coli, and improves the ileal morphology of broiler chickens. Thus, DFM that contained a mixture of several beneficial

  15. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage.

    PubMed

    Ramos, S; Tejido, M L; Martínez, M E; Ranilla, M J; Carro, M D

    2009-09-01

    Six ruminally and duodenally cannulated sheep were used in a partially replicated 4 x 4 Latin square to evaluate the effects of 4 diets on microbial synthesis, microbial populations, and ruminal digestion. The experimental diets had forage to concentrate ratios (F:C; DM basis) of 70:30 (HF) or 30:70 (HC) with alfalfa hay (A) or grass hay (G) as forage and were designated as HFA, HCA, HFG, and HCG. The concentrate was based on barley, gluten feed, wheat middlings, soybean meal, palmkern meal, wheat, corn, and mineral-vitamin premix in the proportions of 22, 20, 20, 13, 12, 5, 5, and 3%, respectively (as-is basis). Sheep were fed the diets at a daily rate of 56 g/kg of BW(0.75) to minimize feed selection. High-concentrate diets resulted in greater (P < 0.001) total tract apparent OM digestibility compared with HF diets, but no differences were detected in NDF digestibility. Ruminal digestibility of OM, NDF, and ADF was decreased by increasing the proportion of concentrate, but no differences between forages were detected. Compared with sheep fed HF diets, sheep receiving HC diets had less ruminal pH values and acetate proportions, but greater butyrate proportions. No differences among diets were detected in numbers of cellulolytic bacteria, but protozoa numbers were less (P = 0.004) and total bacteria numbers tended (P = 0.08) to be less for HC diets. Carboxymethylcellulase, xylanase, and amylase activities were greater for HC compared with HF diets, with A diets showing greater (P = 0.008) carboxymethylcellulase activities than G diets. Retained N ranged from 28.7 to 37.9% of N intake and was not affected by F:C (P = 0.62) or the type of forage (P = 0.31). Microbial N synthesis and its efficiency was greater (P < 0.001) for HC diets compared with HF diets. The results indicate that concentrates with low cereal content can be included in the diet of sheep up to 70% of the diet without detrimental effects on ruminal activity, microbial synthesis efficiency, and N

  16. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations.

    PubMed

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-05-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from <20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 μm filter. Such cells of <0.22 μm would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with >86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the <0.22 μm populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow 'modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, 'old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.

  17. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China.

    PubMed

    Li, Xiang-kun; Chu, Zhao-rui; Liu, Ya-jun; Zhu, Meng-ting; Yang, Liu; Zhang, Jie

    2013-11-01

    In iron and manganese-containing groundwater treatment for drinking water production, biological filter is an effective process to remove such pollutants. Until now the exact microbial mechanism of iron and manganese removal, especially coupled with other pollutants, such as ammonia, has not been clearly understood. To assess this issue, the performance of a full-scale biofilter located in Harbin, China was monitored over four months. Microbial populations in the biofilter were investigated using T-RFLP and clone library technique. Results suggested that Gallionella, Leptothrix, Nitrospira, Hyphomicrobium and Pseudomonas are dominant in the biofilter and play major roles in the removal of iron, manganese and ammonia. The spatial distribution of microbial populations along the depth of the biofilter demonstrated the stratification of the removal of iron, manganese and ammonia. Additionally, the absence of ammonia-oxidizing bacteria in the biofilter implicated that ammonia-oxidizing archaea might be responsible for the oxidation of ammonia to nitrite. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

    PubMed Central

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-01-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from <20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 μm filter. Such cells of <0.22 μm would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with >86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the <0.22 μm populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow ‘modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, ‘old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community. PMID:26484735

  19. Interactions between snow chemistry, mercury inputs and microbial population dynamics in an Arctic snowpack.

    PubMed

    Larose, Catherine; Prestat, Emmanuel; Cecillon, Sébastien; Berger, Sibel; Malandain, Cédric; Lyon, Delina; Ferrari, Christophe; Schneider, Dominique; Dommergue, Aurélien; Vogel, Timothy M

    2013-01-01

    We investigated the interactions between snowpack chemistry, mercury (Hg) contamination and microbial community structure and function in Arctic snow. Snowpack chemistry (inorganic and organic ions) including mercury (Hg) speciation was studied in samples collected during a two-month field study in a high Arctic site, Svalbard, Norway (79 °N). Shifts in microbial community structure were determined by using a 16S rRNA gene phylogenetic microarray. We linked snowpack and meltwater chemistry to changes in microbial community structure by using co-inertia analyses (CIA) and explored changes in community function due to Hg contamination by q-PCR quantification of Hg-resistance genes in metagenomic samples. Based on the CIA, chemical and microbial data were linked (p = 0.006) with bioavailable Hg (BioHg) and methylmercury (MeHg) contributing significantly to the ordination of samples. Mercury was shown to influence community function with increases in merA gene copy numbers at low BioHg levels. Our results show that snowpacks can be considered as dynamic habitats with microbial and chemical components responding rapidly to environmental changes.

  20. Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites

    NASA Technical Reports Server (NTRS)

    Ortega, Maya C.

    2011-01-01

    Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.

  1. Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities

    PubMed Central

    Bever, James D.; Platt, Thomas G.; Morton, Elise R.

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology. PMID:22726216

  2. Microbial population and community dynamics on plant roots and their feedbacks on plant communities.

    PubMed

    Bever, James D; Platt, Thomas G; Morton, Elise R

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.

  3. Microbial Populations in Extreme Environments: Investigations and Characterizations of the Microbiology and Geochemistry of Galapagos Island Fumaroles

    NASA Astrophysics Data System (ADS)

    Mayhew, L. E.; Childers, S. E.; Geist, D.

    2005-12-01

    The extreme physiochemical conditions, insularity, and wide range in ages of fumaroles of the Galapagos Islands provide an excellent opportunity to explore for novel microorganisms and to study life in extreme environments. This is the first study that measures microbial diversity of Galapagos fumaroles. Forty-seven samples were collected from six distinct fumarole fields on Sierra Negra and Alcedo volcanoes. Vulcan Chico, on Sierra Negra, was activated during the last eruption in 1979. Two of the other fumarole fields on Sierra Negra are associated with a long-lived fault system on the caldera floor and are therefore likely to be significantly older. The fault-associated fumaroles have widespread alteration haloes (up to 100 m in diameter) and thick deposits of native sulfur. The most vigorous of the fumarole fields on Alcedo activated in late 1993 to early 1994. The second fumarole field on Alcedo is associated with a recently extinct geyser and the third is located on a rhyolite vent. A diversity of colors was observed in the substrates at all of the fumarole fields and some may be the result of microbial activity. Collection sites were chosen on the basis of temperature and the variations in the substrate in order to obtain samples from a variety of environments. Temperatures at sample sites range from 25.0 to 178.5° C, and pH from 0 to 6. The material collected varies between sites and includes crystalline sulfur deposits, clay, sandy and rocky soils, and microbial mats. Substrate material is characterized by powder x-ray diffractometry and scanning electron microscopy and gases collected from five of the fumarole fields are being analyzed to test for chemical controls on the microbial populations. Genomic DNA is being extracted from all of the samples. Primers for Bacteria and Archaea are used for PCR amplification of the 16S rRNA gene. To date, 22 of 37 processed samples have amplifiable DNA. Microbial diversity of samples possessing amplifiable DNA is

  4. Microbial population dynamics in an anaerobic CSTR treating a chemical synthesis-based pharmaceutical wastewater.

    PubMed

    Oz, Nilgun Ayman; Ince, Orhan; Ince, Bahar Kasapgil; Akarsubasi, Alper Tunga; Eyice, Ozge

    2003-01-01

    Effects of a chemical synthesis based pharmaceutical wastewater on performance of an anaerobic completely stirred tank reactor (CSTR), activity of acetoclastic methanogens and microbial composition were evaluated under various influent compositions. Initially, the CSTR was fed with glucose up to an organic loading rate (OLR) of 6 kg COD/m3 x d corresponding to an F/M ratio of 0.43 with a hydraulic retention time (HRT) of 2.5 days. A COD removal efficiency of 92% and a methane yield of 0.32 m3 CH4/kg COD(removed) were achieved whilst specific methanogenic activity (SMA) was found to be 336mL CH4/gTVS x d. After the CSTR was fed with pre-aerated wastewater diluted by glucose in different dilution ratios of 10% (w/v), 30% (w/v), 70% (w/v), and 100% (w/v) pre-aerated wastewater, gradual decreases in COD removal efficiency to 71%, methane yield to 0.28 m3CH4/kg COD(removed) and SMA to 166 mL CH4/gTVS d occurred whilst volatile fatty acid concentration reached to 1474 mg/L. After the raw wastewater diluted with the pre-aerated wastewater was fed into the CSTR in increasing ratios of 10% (w/v), 30% (w/v), and 60% (w/v), there was a proportional deterioration in performance in terms of COD removal efficiency, methane yield and acetoclastic methanogenic activity. Epifluorescence microscopy of the seed sludge revealed that Methanococcus-like species, short, and medium rods were found to be equally dominant. The short and medium rod species remained equally dominant groups in the CSTR throughout the feeding regime whilst Methanococcus-like species and long rods were found to be in insignificant numbers at the end of the study. Changes in archael diversity were determined using molecular analyses such as polymerase chain reaction (PCR), and denaturent gradient gel electrophoresis (DGGE). Results showed that overall archeal diversity did not change much whereas changes in composition of eubacterial population occurred.

  5. Poplar clones of different sizes, grown on a heavy metal polluted site, are associated with microbial populations of varying composition.

    PubMed

    Gamalero, Elisa; Cesaro, Patrizia; Cicatelli, Angela; Todeschini, Valeria; Musso, Chiara; Castiglione, Stefano; Fabiani, Arturo; Lingua, Guido

    2012-05-15

    We performed a field trial to evaluate the response of different poplar clones to heavy metals. We found that poplar plants of the same clone, propagated by cuttings, had a marked variability of survival and growth in different zones of the field that were characterized by very similar physical-chemical prosperities. Since metal uptake and its accumulation by plants can be affected by soil microorganisms, we investigated soil microbial populations that were collected in proximity to the roots of large and small poplar plants. We used microbiological and molecular tools to ascertain whether bacterial strains or species were associated with large, or small poplars, and whether these were different from those present in the bulk (without plants) soil. We found that the culturable fraction of the bacteria differed in the three cases (bulk soil, small or large poplars). While some taxa were always present, two species (Chryseobacterium soldanellicola and Variovorax paradoxus) were only found in the soil where poplars (large or small) were growing, independently from the plant size. Bacterial strains of the genus Flavobacterium were prevalent in the soil with large poplar plants. The existence of different microbial populations in the bulk and in the poplar grown soils was confirmed by the DGGE profiles of the bacterial culturable fractions. Cluster analysis of the DGGE profiles highlighted the clear separation of the culturable fraction from the whole microbial community. The isolation and identification of poplar-associated bacterial strains from the culturable fraction of the microbial community provided the basis for further studies aimed at the combined use of plants and soil microorganisms in the remediation of heavy metal polluted soils.

  6. Organizational interventions improving access to community-based primary health care for vulnerable populations: a scoping review.

    PubMed

    Khanassov, Vladimir; Pluye, Pierre; Descoteaux, Sarah; Haggerty, Jeannie L; Russell, Grant; Gunn, Jane; Levesque, Jean-Frederic

    2016-10-10

    Access to community-based primary health care (hereafter, 'primary care') is a priority in many countries. Health care systems have emphasized policies that help the community 'get the right service in the right place at the right time'. However, little is known about organizational interventions in primary care that are aimed to improve access for populations in situations of vulnerability (e.g., socioeconomically disadvantaged) and how successful they are. The purpose of this scoping review was to map the existing evidence on organizational interventions that improve access to primary care services for vulnerable populations. Scoping review followed an iterative process. Eligibility criteria: organizational interventions in Organisation for Economic Cooperation and Development (OECD) countries; aiming to improve access to primary care for vulnerable populations; all study designs; published from 2000 in English or French; reporting at least one outcome (avoidable hospitalization, emergency department admission, or unmet health care needs).

  7. Genetic diversity and population structure of Musa accessions in ex situ conservation

    PubMed Central

    2013-01-01

    Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an

  8. A mixed-methods investigation of incident Hemodialysis access in a safety-net population.

    PubMed

    Rich, Nicole C; Vartanian, Shant M; Sharief, Shimi; Freitas, Daniel J; Tuot, Delphine S

    2017-09-02

    Despite improved health outcomes associated with arteriovenous fistulas, 80% of Americans initiate hemodialysis using a catheter, influenced by low socioeconomic status among other factors. Risk factors for incident catheter use in safety-net populations are unknown. Our objective was to identify factors associated with incident catheter use among hemodialysis patients at one safety-net hospital, with a goal of informing fistula placement initiatives targeted at safety-net populations more generally. We performed a retrospective review of all incident hemodialysis patients at a single urban safety-net hospital from January 1, 2010 - December 31, 2015 (n = 241), as well as semi-structured interviews with a multi-lingual convenience sample of patients (n = 10) from this cohort. The primary outcome was incident vascular access modality. Multivariable logistic regression was used to identify factors associated with incident catheter use. Interview transcripts were coded using a directed content analysis framework based on a model describing barriers to healthcare access. Subjects were 61.8% male, racially/ethnically diverse (19.5% white, 29.5% black, 28.6% Hispanic, 17.4% Asian), with a mean age of 52.4 years. Eighty-eight percent initiated hemodialysis using a catheter. In multivariable analysis, longer duration of nephrology care was associated with decreased catheter use (>12 months vs. 0-6 months: adjusted Odds Ratio [aOR] 0.07, 95% CI 0.02-0.23, p < 0.001), whereas uninsured status increased odds of catheter use (aOR 3.96, 1.23-12.76, p = 0.02). There was a decrease in catheter use after vascular surgery services became available in-hospital (OR 0.40, 95% CI 0.16-0.98, p = 0.04), however this association was not significant in multivariable analysis (aOR 0.48, 0.17-1.36, p = 0.17). During interviews, patients cited emotional responses to disease, lack of social and financial resources, and limited health knowledge as barriers to obtaining fistula

  9. Cow teat skin, a potential source of diverse microbial populations for cheese production.

    PubMed

    Verdier-Metz, Isabelle; Gagne, Geneviève; Bornes, Stéphanie; Monsallier, Françoise; Veisseire, Philippe; Delbès-Paus, Céline; Montel, Marie-Christine

    2012-01-01

    The diversity of the microbial community on cow teat skin was evaluated using a culture-dependent method based on the use of different dairy-specific media, followed by the identification of isolates by 16S rRNA gene sequencing. This was combined with a direct molecular approach by cloning and 16S rRNA gene sequencing. This study highlighted the large diversity of the bacterial community that may be found on teat skin, where 79.8% of clones corresponded to various unidentified species as well as 66 identified species, mainly belonging to those commonly found in raw milk (Enterococcus, Pediococcus, Enterobacter, Pantoea, Aerococcus, and Staphylococcus). Several of them, such as nonstarter lactic acid bacteria (NSLAB), Staphylococcus, and Actinobacteria, may contribute to the development of the sensory characteristics of cheese during ripening. Therefore, teat skin could be an interesting source or vector of biodiversity for milk. Variations of microbial counts and diversity between the farms studied have been observed. Moreover, Staphylococcus auricularis, Staphylococcus devriesei, Staphylococcus arlettae, Streptococcus bovis, Streptococcus equinus, Clavibacter michiganensis, Coprococcus catus, or Arthrobacter gandavensis commensal bacteria of teat skin and teat canal, as well as human skin, are not common in milk, suggesting that there is a breakdown of microbial flow from animal to milk. It would then be interesting to thoroughly study this microbial flow from teat to milk.

  10. Cow Teat Skin, a Potential Source of Diverse Microbial Populations for Cheese Production

    PubMed Central

    Gagne, Geneviève; Bornes, Stéphanie; Monsallier, Françoise; Veisseire, Philippe; Delbès-Paus, Céline; Montel, Marie-Christine

    2012-01-01

    The diversity of the microbial community on cow teat skin was evaluated using a culture-dependent method based on the use of different dairy-specific media, followed by the identification of isolates by 16S rRNA gene sequencing. This was combined with a direct molecular approach by cloning and 16S rRNA gene sequencing. This study highlighted the large diversity of the bacterial community that may be found on teat skin, where 79.8% of clones corresponded to various unidentified species as well as 66 identified species, mainly belonging to those commonly found in raw milk (Enterococcus, Pediococcus, Enterobacter, Pantoea, Aerococcus, and Staphylococcus). Several of them, such as nonstarter lactic acid bacteria (NSLAB), Staphylococcus, and Actinobacteria, may contribute to the development of the sensory characteristics of cheese during ripening. Therefore, teat skin could be an interesting source or vector of biodiversity for milk. Variations of microbial counts and diversity between the farms studied have been observed. Moreover, Staphylococcus auricularis, Staphylococcus devriesei, Staphylococcus arlettae, Streptococcus bovis, Streptococcus equinus, Clavibacter michiganensis, Coprococcus catus, or Arthrobacter gandavensis commensal bacteria of teat skin and teat canal, as well as human skin, are not common in milk, suggesting that there is a breakdown of microbial flow from animal to milk. It would then be interesting to thoroughly study this microbial flow from teat to milk. PMID:22081572

  11. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    PubMed

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  12. Analyses of microbial populations and antibiotic resistance present in stored swine manure from underground storage pits

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial compounds have been commonly used as feed additives for domestic animals to reduce infection and promote growth. Recent concerns have suggested such feeding practices may result in increased microbial resistance to antibiotics, which can have an impact on human health. While many inves...

  13. Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic ▿ †

    PubMed Central

    Perreault, Nancy N.; Greer, Charles W.; Andersen, Dale T.; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G.

    2008-01-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO2 uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH4) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy. PMID:18805995

  14. Effect of untreated sewage effluent irrigation on heavy metal content, microbial population and enzymatic activities of soils in Aligarh.

    PubMed

    Bansal, O P; Singh, Gajraj; Katiyar, Pragati

    2014-07-01

    The study pertains to the impact of domestic and industrial sewage water irrigation on the chemical, biological and enzymatic activities in alluvial soils of Aligarh District. Results showed that soil enzymatic [dehydogenase (DHA), acid and alkaline phosphatase, urease and catalase] activities in the soils increased up to 14 days of incubation and thereafter inhibited significantly. The enzymatic activity were in the order sewage effluent > partial sewage effluent > ground water irrigated soils. Increase in soil enzymatic activities up to 2nd week of incubation was due to decomposition of organic matter. Maximum inhibition of enzymatic activities, after 14 days of incubation were found in sewage effluent irrigated soils and minimum in ground water irrigated soils. Similar trend was also seen for microbial population. Soil enzymatic activities and microbial population were significantly and positively correlated with soil organic matter. Results also indicated that the microbial population and enzymatic activities in sewage irrigated soils decreased continually with irrigation period. The average concentration of total heavy metals in sewage irrigated soils and partial sewage irrigated soils increased and was 3 and 2 times higher for Zn; 4.5 and 1.7 times higher for Cu; 3.8 and 2.4 times higher for Cr; 5.7 and 3.5 times higher for Pb; 3.5 and 2.2 times higher for Cd and 2.7 and 2.0 times higher for Ni respectively than that of ground water irrigated soils. Results also showed that though total heavy metals concentration increased with period of sewage irrigation but the concentration of diethylene triamine pentaacetic acid (DTPA) extractable heavy metals in partial sewage irrigated and sewage irrigated soils remained almost same, which might be due to deposition of heavy metals in crops grown on the soils.

  15. Development of a Web-Accessible Population Pharmacokinetic Service—Hemophilia (WAPPS-Hemo): Study Protocol

    PubMed Central

    Foster, Gary; Navarro-Ruan, Tamara; McEneny-King, Alanna; Edginton, Andrea N; Thabane, Lehana

    2016-01-01

    Background Individual pharmacokinetic assessment is a critical component of tailored prophylaxis for hemophilia patients. Population pharmacokinetics allows using individual sparse data, thus simplifying individual pharmacokinetic studies. Implementing population pharmacokinetics capacity for the hemophilia community is beyond individual reach and requires a system effort. Objective The Web-Accessible Population Pharmacokinetic Service—Hemophilia (WAPPS-Hemo) project aims to assemble a database of patient pharmacokinetic data for all existing factor concentrates, develop and validate population pharmacokinetics models, and integrate these models within a Web-based calculator for individualized pharmacokinetic estimation in patients at participating treatment centers. Methods Individual pharmacokinetic studies on factor VIII and IX concentrates will be sourced from pharmaceutical companies and independent investigators. All factor concentrate manufacturers, hemophilia treatment centers (HTCs), and independent investigators (identified via a systematic review of the literature) having on file pharmacokinetic data and willing to contribute full or sparse pharmacokinetic data will be eligible for participation. Multicompartmental modeling will be performed using a mixed-model approach for derivation and Bayesian forecasting for estimation of individual sparse data. NONMEM (ICON Development Solutions) will be used as modeling software. Results The WAPPS-Hemo research network has been launched and is currently joined by 30 HTCs from across the world. We have gathered dense individual pharmacokinetic data on 878 subjects, including several replicates, on 21 different molecules from 17 different sources. We have collected sparse individual pharmacokinetic data on 289 subjects from the participating centers through the testing phase of the WAPPS-Hemo Web interface. We have developed prototypal population pharmacokinetics models for 11 molecules. The WAPPS-Hemo website

  16. Development of a Web-Accessible Population Pharmacokinetic Service-Hemophilia (WAPPS-Hemo): Study Protocol.

    PubMed

    Iorio, Alfonso; Keepanasseril, Arun; Foster, Gary; Navarro-Ruan, Tamara; McEneny-King, Alanna; Edginton, Andrea N; Thabane, Lehana

    2016-12-15

    Individual pharmacokinetic assessment is a critical component of tailored prophylaxis for hemophilia patients. Population pharmacokinetics allows using individual sparse data, thus simplifying individual pharmacokinetic studies. Implementing population pharmacokinetics capacity for the hemophilia community is beyond individual reach and requires a system effort. The Web-Accessible Population Pharmacokinetic Service-Hemophilia (WAPPS-Hemo) project aims to assemble a database of patient pharmacokinetic data for all existing factor concentrates, develop and validate population pharmacokinetics models, and integrate these models within a Web-based calculator for individualized pharmacokinetic estimation in patients at participating treatment centers. Individual pharmacokinetic studies on factor VIII and IX concentrates will be sourced from pharmaceutical companies and independent investigators. All factor concentrate manufacturers, hemophilia treatment centers (HTCs), and independent investigators (identified via a systematic review of the literature) having on file pharmacokinetic data and willing to contribute full or sparse pharmacokinetic data will be eligible for participation. Multicompartmental modeling will be performed using a mixed-model approach for derivation and Bayesian forecasting for estimation of individual sparse data. NONMEM (ICON Development Solutions) will be used as modeling software. The WAPPS-Hemo research network has been launched and is currently joined by 30 HTCs from across the world. We have gathered dense individual pharmacokinetic data on 878 subjects, including several replicates, on 21 different molecules from 17 different sources. We have collected sparse individual pharmacokinetic data on 289 subjects from the participating centers through the testing phase of the WAPPS-Hemo Web interface. We have developed prototypal population pharmacokinetics models for 11 molecules. The WAPPS-Hemo website (available at www.wapps-hemo.org, version

  17. Toward an integrated physiological theory of microbial growth: from subcellular variables to population dynamics.

    PubMed

    Narang, Atul; Pilyugin, Sergei S

    2005-01-01

    The dynamics of microbial growth is a problem of fundamental interest in microbiology, microbial ecology, and biotechnology. The pioneering work of Jacob Monod served as a starting point for developing a wealth of mathematical models that address diferent aspects of microbial growth in batch and continuous cultures. A number of phenomenological models have appeared in the literature over the last half century. These models can capture the steady-state behavior of pure and mixed cultures, but fall short of explaining most of the complex dynamic phenomena. This is because the onset of these complex dynamics is invariably driven by one or more intracellular variables not accounted for by phenomenological models. In this paper, we provide an overview of the experimental data, and introduce a diferent class of mathematical models that can be used to understand microbial growth dynamics. In addition to the standard variables such as the cell and substrate concentrations, these models explicitly include the dynamics of the physiological variables responsible for adaptation of the cells to environmental variations. We present these physiological models in the order of increasing complexity. Thus, we begin with models of single-species growth in environments containing a single growth-limiting substrate, then advance to models of single-species growth in mixed-substrate media, and conclude with models of multiple-species growth in mixed-substrate environments. Throughout the paper, we discuss both the analytical and simulation techniques to illustrate how these models capture and explain various experimental phenomena. Finally, we also present open questions and possible directions for future research that would integrate these models into a global physiological theory of microbial growth.

  18. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  19. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  20. Oil Biodegradation and Oil-Degrading Microbial Populations in Marsh Sediments Impacted by Oil from the Deepwater Horizon Well Blowout.

    PubMed

    Atlas, Ronald M; Stoeckel, Donald M; Faith, Seth A; Minard-Smith, Angela; Thorn, Jonathan R; Benotti, Mark J

    2015-07-21

    To study hydrocarbon biodegradation in marsh sediments impacted by Macondo oil from the Deepwater Horizon well blowout, we collected sediment cores 18-36 months after the accident at the marshes in Bay Jimmy (Upper Barataria Bay), Louisiana, United States. The highest concentrations of oil were found in the top 2 cm of sediment nearest the waterline at the shorelines known to have been heavily oiled. Although petroleum hydrocarbons were detectable, Macondo oil could not be identified below 8 cm in 19 of the 20 surveyed sites. At the one site where oil was detected below 8 cm, concentrations were low. Residual Macondo oil was already highly weathered at the start of the study, and the concentrations of individual saturated hydrocarbons and polycyclic aromatic hydrocarbons continued to decrease over the course of the study due to biodegradation. Desulfococcus oleovorans, Marinobacter hydrocarbonoclasticus, Mycobacterium vanbaalenii, and related mycobacteria were the most abundant oil-degrading microorganisms detected in the top 2 cm at the oiled sites. Relative populations of these taxa declined as oil concentrations declined. The diversity of the microbial community was low at heavily oiled sites compared to that of the unoiled reference sites. As oil concentrations decreased over time, microbial diversity increased and approached the diversity levels of the reference sites. These trends show that the oil continues to be biodegraded, and microbial diversity continues to increase, indicating ongoing overall ecological recovery.

  1. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems.

    PubMed

    Yin, Huaqun; Cao, Linhui; Qiu, Guanzhou; Wang, Dianzuo; Kellogg, Laurie; Zhou, Jizhong; Dai, Zhimin; Liu, Xueduan

    2007-07-01

    To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11). Based on the results of microarray hybridizations, specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was 5 ng of genomic DNA in the absence of background DNA. Strong linear relationships between the signal intensity and the target DNA were observed (r(2) approximately 0.98). Application of this type of the microarray to analyze the acidic environments and bioleaching systems demonstrated that the developed microarray appeared to be useful for profiling differences in microbial community structures of acidic environments and bioleaching systems. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of genes related with acidophilic microorganism and the microbial community in acidic environments and bioleaching systems, although more work is needed to improve.

  2. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000.

    PubMed

    Krhutková, O; Ruzicková, I; Wanner, J

    2002-01-01

    The long-term project on the survey of filamentous microorganisms, which started in 1996, was finished in 2000 by the survey of eight Czech activated sludge plants with biological nutrient removal (BNR) systems. At all plants with enhanced biological nutrient removal, specific microbial population (mostly from the point of view of filaments occurrence), operational problems (presence of biological foaming, bulking) and plant operation were observed periodically and longer than 1 year. In our paper the relationship between the composition of activated sludge (especially filaments) consortia and modification of the process with nutrient removal is discussed. At the surveyed plants Type 0092 and Microthrix parvicella were identified as dominant Eikelboom filamentous types.

  3. Assessing internet access and use in a medically underserved population: implications for providing enhanced health information services.

    PubMed

    Zach, Lisl; Dalrymple, Prudence W; Rogers, Michelle L; Williver-Farr, Heather

    2012-03-01

    The relationship between health information seeking, patient engagement and health literacy is not well understood. This is especially true in medically underserved populations, which are often viewed as having limited access to health information. To improve communication between an urban health centre and the community it serves, a team of library and information science researchers undertook an assessment of patients' level and methods of access to and use of the Internet. Data were collected in 53 face-to-face anonymous interviews with patients at the centre. Interviews were tape-recorded for referential accuracy, and data were analysed to identify patterns of access and use. Seventy-two percentage of study participants reported having access to the Internet through either computers or cell phones. Barriers to Internet access were predominantly lack of equipment or training rather than lack of interest. Only 21% of those with Internet access reported using the Internet to look for health information. The findings suggest that lack of access to the Internet in itself is not the primary barrier to seeking health information in this population and that the digital divide exists not at the level of information access but rather at the level of information use. © 2011 The authors. Health Information and Libraries Journal © 2011 Health Libraries Group.

  4. Food web structure in the recently flooded Sep Reservoir as inferred from phytoplankton population dynamics and living microbial biomass.

    PubMed

    Tadonléké, R D; Jugnia, L B; Sime-Ngando, T; Devaux, J; Romagoux, J C

    2002-01-01

    Phytoplankton dynamics, bacterial standing stocks and living microbial biomass (derived from ATP measurements, 0.7-200 mm size class) were examined in 1996 in the newly flooded (1995) Sep Reservoir ('Massif Central,' France), for evidence of the importance of the microbial food web relative to the traditional food chain. Phosphate concentrations were low, N:P ratios were high, and phosphate losses converted into carbon accounted for <50% of phytoplankton biomass and production, indicating that P was limiting phytoplankton development during the study. The observed low availability of P contrasts with the high release of "directly" assimilable P often reported in newly flooded reservoirs, suggesting that factors determining nutrient dynamics in such ecosystems are complex. The phosphate availability, but also the water column stability, seemed to be among the major factors determining phytoplankton dynamics, as (i) large-size phytoplankton species were prominent during the period of increasing water column stability, whereas small-size species dominated phytoplankton assemblages during the period of decreasing stability, and (ii) a Dinobryon divergens bloom occurred during a period when inorganic P was undetectable, coinciding with the lowest values of bacterial standing stocks. Indication of grazing limitation of bacterial populations by the mixotrophic chrysophyte D. divergens (in late spring) and by other potential grazers (mainly rotifers in summer) seemed to be confirmed by the Model II or functional slopes of the bacterial vs phytoplankton regressions, which were always <0.63. Phytoplankton biomass was not correlated with phosphorus sources and its contribution was remarkably low relative to the living microbial biomass which, in contrast, was positively correlated with total phosphorus in summer. We conclude that planktonic microheterotrophs are strongly implicated in the phosphorus dynamics in the Sep Reservoir, and thus support the idea that an important

  5. Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L

    PubMed Central

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID

  6. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems.

    PubMed

    Briancesco, Rossella; Semproni, Maurizio; Della Libera, Simonetta; Sdanganelli, Massimo; Bonadonna, Lucia

    2010-01-01

    Data on the occurrence of non-tuberculous mycobacteria (NTM), in parallel with those obtained for bacterial indicators and amoebae, are presented with the aim to collect information on the spread of NTM in drinking water distribution systems in Italy. Samples were collected from taps of hospitals and households in Central and Southern Italy. The concentration values obtained for the more traditional microbial parameters complied with the mandatory requirements for drinking water. Conversely, moderate-to-high microbial loads (till 300 CFU/L) were observed for the NTM. Positive samples were obtained from 62% of the investigated water samples. Analogous results were observed for amoebae showing a higher percentage of positive samples (76%). In terms of public health, the presence of mycobacteria in water distribution systems may represent a potential risk especially for vulnerable people such as children, the elderly or immunocompromised individuals.

  7. Involvement of microbial populations during the composting of olive mill wastewater sludge.

    PubMed

    Abid, N; Chamkha, M; Godon, J J; Sayadi, S

    2007-07-01

    Olive mill waste water sludge obtained by the electro-Fenton oxidation of olive mill waste water was composted in a bench scale reactor. The evolution of microbial species within the composter was investigated using a respirometric test and by means of both cultivation-dependent and independent approaches (Polymerase Chain Reaction-Single Strand Conformation Polymorphism, PCR SSCP). During the period of high respiration rate (7-24 days), cultivation method showed that thermophilic bacteria as well as actinomycetes dominated over eumycetes. During the composting process, the PCR-SSCP method showed a higher diversity of the bacterial community than the eukaryotic one. After 60 days of composting, the compost exhibited a microbial stability and a clear absence of phytotoxicity.

  8. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.

    PubMed

    Gilichinsky, D A; Wilson, G S; Friedmann, E I; McKay, C P; Sletten, R S; Rivkina, E M; Vishnivetskaya, T A; Erokhina, L G; Ivanushkina, N E; Kochkina, G A; Shcherbakova, V A; Soina, V S; Spirina, E V; Vorobyova, E A; Fyodorov-Davydov, D G; Hallet, B; Ozerskaya, S M; Sorokovikov, V A; Laurinavichyus, K S; Shatilovich, A V; Chanton, J P; Ostroumov, V E; Tiedje, J M

    2007-04-01

    Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.

  9. Microbial population and functional dynamics associated with surface potential and carbon metabolism

    PubMed Central

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2014-01-01

    Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938

  10. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

    NASA Astrophysics Data System (ADS)

    Xie, Sitan; Lipp, Julius S.; Wegener, Gunter; Ferdelman, Timothy G.; Hinrichs, Kai-Uwe

    2013-04-01

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([14C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pgṡmL-1 sedimentṡy-1 at the surface to 0.2 pgṡmL-1ṡy-1 at 1 km depth, equivalent to production of 7 × 105 to 140 archaeal cellsṡmL-1 sedimentṡy-1, respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  11. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    PubMed

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-09

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  12. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

    PubMed Central

    Xie, Sitan; Lipp, Julius S.; Wegener, Gunter; Ferdelman, Timothy G.; Hinrichs, Kai-Uwe

    2013-01-01

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([14C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6–73 ky in sediments deeper than 1 m, 50–96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL−1 sediment⋅y−1 at the surface to 0.2 pg⋅mL−1⋅y−1 at 1 km depth, equivalent to production of 7 × 105 to 140 archaeal cells⋅mL−1 sediment⋅y−1, respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle. PMID:23530229

  13. Archaeal Populations in Hypersaline Sediments Underlying Orange Microbial Mats in the Napoli Mud Volcano▿†

    PubMed Central

    Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-01-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391

  14. Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano.

    PubMed

    Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-05-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.

  15. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.

    PubMed

    Papadopoulos, Apostolos; Reid, Brian J; Semple, Kirk T

    2007-01-01

    Traditionally, solvent extractions are routinely used in the assessment of contaminated land. However, vigorous solvent extractions only give total concentrations rather than that relating to the bioaccessible fraction. Recently, less harsh, aqueous-based extraction methods have been shown to be a better estimate of the microbial degradation of polycyclic aromatic hydrocarbons (PAHs). The aqueous-based hydroxypropyl-beta-cyclodextrin (HPCD) extraction technique was tested using 14C-PAHs in soils and compared against indigenous microbial mineralization (a measure of bioaccessibility) of 14C-phenanthrene in the presence of pyrene or benzo[a]pyrene (B[a]P) over a range of concentrations (0, 5, 10, or 50 mg kg(-1)) and aged for 0, 25, 50, and 100 d in four soils. At each time point, the total loss, extractability, and mineralization of 14C-phenanthrene was measured in each of the soils. The presence of the other PAHs had little effect on the behavior of 14C-phenanthrene in any of the soils. Comparisons between the amounts of 14C-phenanthrene extracted using HPCD and mineralized were made and showed that there was a correlation (1:1). This study demonstrates that HPCD extraction is able to predict the microbial accessibility fraction of 14C-phenanthrene in the presence of other PAHs in a range of soils, further supporting the applicability of this technique.

  16. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site.

  17. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.

    PubMed

    Long, Xin-Xian; Zhang, Yu-Gang; Jun, Dai; Zhou, Qixing

    2009-04-01

    A field survey was conducted to study the characteristics of zinc, cadmium, and lead accumulation and rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance growing natively on an old lead/zinc mining site. We found significant hyperaccumulation of zinc and cadmium in field samples of S. alfredii, with maximal shoot concentrations of 9.10-19.61 g kg(-1) zinc and 0.12-1.23 g kg(-1) cadmium, shoot/root ratios ranging from 1.75 to 3.19 (average 2.54) for zinc, 3.36 to 4.43 (average 3.85) for cadmium, shoot bioaccumulation factors of zinc and cadmium being 1.46-4.84 and 7.35-17.41, respectively. While most of lead was retained in roots, thus indicating exclusion as a tolerance strategy for lead. Compared to the non-rhizosphere soil, organic matter and total nitrogen and phosphorus content, CEC and water extractable zinc, cadmium, and lead concentration were significantly higher, but pH was smaller in rhizosphere soil. The rhizosphere soil of S. alfredii harbored a wide variety of microorganism. In general, significantly higher numbers of culturable bacteria, actinomycetes, and fungi were found in the rhizosphere compared to bulk soil, confirming the stimulatory effect of the S. alfredii rhizosphere on microbial growth and proliferation. Analyses of BIOLOG data also showed that the growth of S. alfredii resulted in observable changes in BIOLOG metabolic profiles, utilization ability of different carbon substrates of microbial communities in the rhizosphere soil were also higher than the non-rhizosphere, confirming a functional effect of the rhizosphere of S. alfredii on bacterial population.

  18. Microbial population in the rumen of swamp buffalo (Bubalus bubalis) as influenced by coconut oil and mangosteen peel supplementation.

    PubMed

    Pilajun, R; Wanapat, M

    2013-06-01

    Four, rumen fistulated swamp buffalo bulls were used to study microbial populations in the rumen when supplemented with coconut oil and mangosteen peel. Animals were randomly assigned to a 4 × 4 Latin square design. Four treatments were un-supplemented (Control), supplementation with coconut oil at 50 g/kg (CO5), supplementation with mangosteen peel at 30 g/kg (MP3) and supplementation with CO5 and MP3 (COM), of total DM intake. Animals received concentrate at 10 g/kg of BW, and rice straw was given ad libitum. Abundance of total bacteria was increased by CO5 supplementation, whereas populations of protozoa and Fibrobacter succinogenes were reduced by CO5 and COM supplementation. Dietary supplementation did not affect methanogen, Ruminococcus flavefaciens or Ruminococcus albus abundances. Dietary treatments changed denaturing gradient gel electrophoresis (DGGE) band patterns of methanogens and protozoa when compared with the control group, especially when supplemented with MP3. Supplementation of COM resulted in the greatest difference in pattern of DGGE bands for total bacteria compared with the control. Coconut oil and mangosteen peel supplementation resulted in changing of rumen microbial abundances and communities; however, combination of them could be more benefit to improve rumen fermentation of swamp buffalo fed on rice straw. © 2012 Blackwell Verlag GmbH.

  19. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    SciTech Connect

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.; Azadpour, A.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolution of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.

  20. Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements

    SciTech Connect

    Brown, J.W.; Haas, E.S.; Nolan, J.M.; Rubio, M.T.

    1996-04-02

    PCR amplification of template DNAs extracted from mixed, naturally occurring microbial populations, using oligonucleotide primers complementary to highly conserved sequences, was used to obtain a large collection of diverse RNase P RNA-encoding genes. An alignment of these sequences was used in a comparative analysis of RNase P RNA secondary and tertiary structure. The new sequences confirm the secondary structure model based on sequences rom cultivated organisms (with minor alterations in helices P12 and P18), providing additional support for nearly every base pair. Analysis of sequence covariation using the entire RNase P RNA data set reveals elements of tertiary structure in the RNA; the third nucleotides (underlined) of the GNRA tetraloops L14 and L18 are seen to interact with adjacent Watson-Crick base pairs in helix P8, forming A:G/C or G:A/U base triples. These experiments demonstrate one way in which the enormous diversity of natural microbial populations can be used to elucidate molecular structure through comparative analysis. 32 refs., 4 figs., 1 tab.

  1. The influence of age and gender on skin-associated microbial communities in urban and rural human populations

    DOE PAGES

    Ying, Shi; Zeng, Dan -Ning; Chi, Liang; ...

    2015-10-28

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroupmore » variation among the elderly and rural populations was significantly greater. Lastly, skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~ 5x greater than random.« less

  2. The influence of age and gender on skin-associated microbial communities in urban and rural human populations

    SciTech Connect

    Ying, Shi; Zeng, Dan -Ning; Chi, Liang; Tan, Yuan; Galzote, Carlos; Cardona, Cesar; Lax, Simon; Gilbert, Jack; Quan, Zhe -Xue; Badger, Jonathan H.

    2015-10-28

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Lastly, skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~ 5x greater than random.

  3. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations

    PubMed Central

    Ying, Shi; Zeng, Dan-Ning; Chi, Liang; Tan, Yuan; Galzote, Carlos; Cardona, Cesar; Lax, Simon; Gilbert, Jack; Quan, Zhe-Xue

    2015-01-01

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random. PMID:26510185

  4. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations.

    PubMed

    Ying, Shi; Zeng, Dan-Ning; Chi, Liang; Tan, Yuan; Galzote, Carlos; Cardona, Cesar; Lax, Simon; Gilbert, Jack; Quan, Zhe-Xue

    2015-01-01

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.

  5. Determining geographic areas and populations with timely access to cardiac catheterization facilities for acute myocardial infarction care in Alberta, Canada

    PubMed Central

    Patel, Alka B; Waters, Nigel M; Ghali, William A

    2007-01-01

    Background This study uses geographic information systems (GIS) as a tool to evaluate and visualize the general accessibility of areas within the province of Alberta (Canada) to cardiac catheterization facilities. Current American and European guidelines suggest performing catheterization within 90 minutes of the first medical contact. For this reason, this study evaluates the populated places that are within a 90 minute transfer time to a city with a catheterization facility. The three modes of transport considered in this study are ground ambulance, rotary wing air ambulance and fixed wing air ambulance. Methods Reference data from the Alberta Chart of Call were interpolated into continuous travel time surfaces. These continuous surfaces allowed for the delineation of isochrones: lines that connect areas of equal time. Using Dissemination Area (DA) centroids to represent the adult population, the population numbers were extracted from the isochrones using Statistics Canada census data. Results By extracting the adult population from within isochrones for each emergency transport mode analyzed, it was found that roughly 70% of the adult population of Alberta had access within 90 minutes to catheterization facilities by ground, roughly 66% of the adult population had access by rotary wing air ambulance and that no population had access within 90 minutes using the fixed wing air ambulance. An overall understanding of the nature of air vs. ground emergency travel was also uncovered; zones were revealed where the use of one mode would be faster than the others for reaching a facility. Conclusion Catheter intervention for acute myocardial infarction is a time sensitive procedure. This study revealed that although a relatively small area of the province had access within the 90 minute time constraint, this area represented a large proportion of the population. Within Alberta, fixed wing air ambulance is not an effective means of transporting patients to a

  6. The Affordable Care Act's Impacts on Access to Insurance and Health Care for Low-Income Populations.

    PubMed

    Kominski, Gerald F; Nonzee, Narissa J; Sorensen, Andrea

    2017-03-20

    The Patient Protection and Affordable Care Act (ACA) expands access to health insurance in the United States, and, to date, an estimated 20 million previously uninsured individuals have gained coverage. Understanding the law's impact on coverage, access, utilization, and health outcomes, especially among low-income populations, is critical to informing ongoing debates about its effectiveness and implementation. Early findings indicate that there have been significant reductions in the rate of uninsurance among the poor and among those who live in Medicaid expansion states. In addition, the law has been associated with increased health care access, affordability, and use of preventive and outpatient services among low-income populations, though impacts on inpatient utilization and health outcomes have been less conclusive. Although these early findings are generally consistent with past coverage expansions, continued monitoring of these domains is essential to understand the long-term impact of the law for underserved populations.

  7. Access to Primary Care and Visits to Emergency Departments in England: A Cross-Sectional, Population-Based Study

    PubMed Central

    Cowling, Thomas E.; Cecil, Elizabeth V.; Soljak, Michael A.; Lee, John Tayu; Millett, Christopher; Majeed, Azeem; Wachter, Robert M.; Harris, Matthew J.

    2013-01-01

    Background The number of visits to hospital emergency departments (EDs) in England has increased by 20% since 2007-08, placing unsustainable pressure on the National Health Service (NHS). Some patients attend EDs because they are unable to access primary care services. This study examined the association between access to primary care and ED visits in England. Methods A cross-sectional, population-based analysis of patients registered with 7,856 general practices in England was conducted, for the time period April 2010 to March 2011. The outcome measure was the number of self-referred discharged ED visits by the registered population of a general practice. The predictor variables were measures of patient-reported access to general practice services; these were entered into a negative binomial regression model with variables to control for the characteristics of patient populations, supply of general practitioners and travel times to health services. Main Result and Conclusion General practices providing more timely access to primary care had fewer self-referred discharged ED visits per registered patient (for the most accessible quintile of practices, RR = 0.898; P<0.001). Policy makers should consider improving timely access to primary care when developing plans to reduce ED utilisation. PMID:23776694

  8. Responses of microbial populations in the rhizosphere to deposition of simulated acidic rain onto foliage and/or soil.

    PubMed

    Shafer, S R

    1992-01-01

    Air pollutants or some chemicals applied to plant foliage can alter the ecology of the rhizosphere. Experiments were conducted to distinguish among possible foliage-mediated versus soil- or root-mediated effects of acid deposition on microorganism in the rhizosphere. Seedlings of a sorghum x sudangrass hybrid in pots of non-sterile soil-sand mix in a greenhouse were exposed to simulated rain solution adjusted with H2SO4 + HNO3 to pH 4.9, 4.2, 3.5 or 2.8. Solutions were applied as simulated rain to foliage and soil, foliage only (soil covered by plastic, and deionized water applied directly to the soil), or soil only (solution applied directly to the soil). Solutions were applied on 16 days during a 6-week period (1.5 cm deposition in 1 h per application). Plant shoot and root dry weights and population densities of selected types of bacteria, filamentous actinomycetes and fungi in the rhizosphere were quantified after exposures were completed. Deposition of simulated acidic rain onto foliage alone had no effect on plant biomass or microbial population densities in the rhizosphere (colony-forming units per gram of rhizosphere soil). However, plant growth was stimulated and all microbial populations in the rhizosphere increased 3- to 8-fold with increased solution acidity (relative to pH 4.9 solution) when solution penetrated the soil. Statistical analyses indicated that the acid dose-population response relationships for soil-only and foliage-and-soil applications were not different. Thus, no foliage-mediated effect of simulated acidic rain on rhizosphere ecology was detected.

  9. Increasing Contraceptive Access for Hard-to-Reach Populations With Vouchers and Social Franchising in Uganda.

    PubMed

    Bellows, Benjamin; Mackay, Anna; Dingle, Antonia; Tuyiragize, Richard; Nnyombi, William; Dasgupta, Aisha

    2017-09-27

    From 2001 to 2011, modern contraceptive prevalence in Uganda increased from 18% to 26%. However, modern method use, in particular use of long-acting reversible contraceptives (LARCs) and permanent methods (PMs), remained low. In the 2011 Uganda Demographic and Health Survey, only 1 of 5 married women used a LARC or PM even though 34% indicated an unmet need for contraception. Between 2011 and 2014, a social franchise and family planning voucher program, supporting 400 private facilities to provide family planning counseling and broaden contraceptive choice by adding LARCs and PMs to the service mix, offered a voucher to enable poor women to access family planning services at franchised facilities. This study analyzes service trends and voucher client demographics and estimates the contribution of the program to increasing contraceptive prevalence in Uganda, using the Impact 2 model developed by Marie Stopes International. Between March 2011 and December 2014, 330,826 women received a family planning service using the voucher, of which 70% of voucher clients chose an implant and 25% chose an intrauterine device. The median age of voucher users was 28 years; 79% had no education or only a primary education; and 48% reported they were unemployed or a housewife. We estimated that by 2014, 280,000 of the approximately 8,600,000 women of reproductive age in Uganda were using a contraceptive method provided by the program and that 120,000 of the clients were "additional users" of contraception, contributing 1.4 percentage points to the national modern contraceptive prevalence rate. The combination of family planning vouchers and a franchise-based quality improvement initiative can leverage existing private health infrastructure to substantially expand family planning access and choice for disadvantaged populations and potentially improve contraceptive prevalence when scaled nationally. © Bellows et al.

  10. Increasing Contraceptive Access for Hard-to-Reach Populations With Vouchers and Social Franchising in Uganda

    PubMed Central

    Bellows, Benjamin; Mackay, Anna; Dingle, Antonia; Tuyiragize, Richard; Nnyombi, William; Dasgupta, Aisha

    2017-01-01

    ABSTRACT From 2001 to 2011, modern contraceptive prevalence in Uganda increased from 18% to 26%. However, modern method use, in particular use of long-acting reversible contraceptives (LARCs) and permanent methods (PMs), remained low. In the 2011 Uganda Demographic and Health Survey, only 1 of 5 married women used a LARC or PM even though 34% indicated an unmet need for contraception. Between 2011 and 2014, a social franchise and family planning voucher program, supporting 400 private facilities to provide family planning counseling and broaden contraceptive choice by adding LARCs and PMs to the service mix, offered a voucher to enable poor women to access family planning services at franchised facilities. This study analyzes service trends and voucher client demographics and estimates the contribution of the program to increasing contraceptive prevalence in Uganda, using the Impact 2 model developed by Marie Stopes International. Between March 2011 and December 2014, 330,826 women received a family planning service using the voucher, of which 70% of voucher clients chose an implant and 25% chose an intrauterine device. The median age of voucher users was 28 years; 79% had no education or only a primary education; and 48% reported they were unemployed or a housewife. We estimated that by 2014, 280,000 of the approximately 8,600,000 women of reproductive age in Uganda were using a contraceptive method provided by the program and that 120,000 of the clients were “additional users” of contraception, contributing 1.4 percentage points to the national modern contraceptive prevalence rate. The combination of family planning vouchers and a franchise-based quality improvement initiative can leverage existing private health infrastructure to substantially expand family planning access and choice for disadvantaged populations and potentially improve contraceptive prevalence when scaled nationally. PMID:28963175

  11. Transbrachial Access for Radiologic Manipulation of Problematic Central Venous Catheters in a Pediatric Population

    SciTech Connect

    Rao, Sandeep Hogan, Mark J.

    2010-08-15

    A transfemoral venous approach is the current standard for accessing malpositioned and fractured central venous catheters (CVCs). The purpose of this study was (1) to describe a transbrachial approach for correction and (2) to assess the success and failure of this method in a pediatric population. A 12-year retrospective review of all patients referred for correction of malpositioned, retained, and fractured CVCs was conducted. Based on the performing interventionalist's preference, transbrachial or transfemoral venous sheaths where placed under ultrasonographic guidance. Diagnostic angiographic catheters and snares were used to manipulate the catheters. Patients who underwent the transfemoral approach received postprocedural monitoring for 4 hours, whereas patients who underwent the transbrachial approach were allowed unrestricted activity immediately after hemostasis was obtained. Technical success of malpositioned lines was defined (1) by final position in the superior vena cava or at the cavoatrial junction on postprocedural imaging or (2) by successful removal of retained catheter fragments, if present. Transbrachial approach was used for access in 11 patients. Problematic lines included malpositioned (n = 10) and retained (n = 1) lines. The ipsilateral arm was used for transbrachial entry in 7 patients. Initial use of angiographic catheters was attempted in 7 cases, of which 4 were successful. All 3 unsuccessful cases had tips positioned in the contralateral brachiocephalic vein, and these were successfully repositioned using snares. A combination of snares and angiographic catheters was used in 2 cases. Snares were used for all other cases. Technical success by way of the transbrachial approach was observed in all cases. Periprocedural follow-up demonstrated no immediate complications. We conclude that the transbrachial approach is a suitable alternative to the transfemoral approach for catheter tip position correction. Tip malposition in the contralateral

  12. Microbial Populations Associated with Phosphate-Mediated Vadose Zone Sequestration of Strontium and Uranium

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Chou, J.; Fujita, Y.; Bill, M.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.; Conrad, M. S.

    2007-12-01

    Significant quantities of metals and radionuclides are contained in thick unsaturated zones at several contaminated sites in the western US. In many cases, this contamination has migrated to underlying groundwater, sometimes decades after being released into the subsurface. Because of the prohibitive costs associated with physically removing the contamination, an attractive remedy to this problem is to develop methods for long-term in situ stabilization of the contamination in the vadose zone. Our research focuses on developing a method of introducing gaseous compounds to stimulate precipitation of stable phosphate mineral phases in the vadose zone to immobilize soluble contaminants thus minimizing further transport to groundwater. Preliminary studies have demonstrated that biological precipitation of phosphate minerals can be stimulated under unsaturated conditions by injection of triethyl phosphate (TEP) gas. Microorganisms hydrolyze TEP, releasing inorganic phosphate, catalyzing the precipitation of metals and radionuclide-containing phosphate minerals. Our initial results demonstrate that a mixed culture of aerobic microorganisms from vadose zone sediments, enriched with TEP, produce significantly higher concentrations of inorganic phosphate than the no TEP control. A high-density microarray (PhyloChip) capable of detecting up to 9,000 prokaryotic taxa will be used to identify the microbial community composition of the enriched culture. In addition, the metabolically active organisms will be investigated through extraction and hybridization of ribosomal RNA. Organisms capable of hydrolyzing TEP to inorganic phosphate will be further characterized to determine the requirements for aerobic microbially-mediated radionuclide immobilization. The chemical and isotopic compositions of the reactants and products will be measured to enable in situ monitoring of microbial TEP utilization. The result of these studies will be the basis for unsaturated column experiments

  13. Stability of partial nitrification and microbial population dynamics in a bioaugmented membrane bioreactor.

    PubMed

    Zhang, Yunxia; Xu, Yanli; Jia, Ming; Zhou, Jiti; Yuan, Shouzhi; Zhang, Jinsong; Zhang, Zhen-Peng

    2009-12-01

    Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on stability of partial nitrification and microbial community structure, in particular on nitrifying community were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/L and 30 degrees C, achieving 95% ammonia oxidization efficiency and 0.95 of nitrite ratio (NO2-/NOx-). High-DO (5-6 mg/L) and low-temperature (20 degrees C) had negative impacts on nitrite accumulation, leading to its drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, which coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to Cytophaga-Flavobacterium-Bacteroides (CFB) group, alpha-, beta-, and gamma- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of NOB (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.

  14. Effect of different preservative treatments on the microbial population of Nigerian orange juice.

    PubMed

    Sodeko, O O; Izuagbe, Y S; Ukhun, M E

    1987-01-01

    The effect of different preservative treatments on the microbial load of Nigerian orange juice was studied over a period of 1 month. Results obtained indicated that pasteurization at 60 degrees and 80 degrees C for 20 to 40 min, freezing at -5 degrees C, and addition of sodium benzoate at a concentration of 0.1 to 0.4% (w/v) could form a microbiological basis for the preservation of the juice for 1 month. Leuconostoc mesenteroides, L. paramesenteroides, Streptococcus avium, Lactobacillus plantarum, L. fermentum, L. fructivorans, Klebsiella pneumoniae and Saccharomyces cerevisiae were the micro-organisms isolated from the untreated and treated juice samples.

  15. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids. Part I: effects on growth performance, microbial populations, and immune status.

    PubMed

    Walsh, M C; Rostagno, M H; Gardiner, G E; Sutton, A L; Richert, B T; Radcliffe, J S

    2012-01-01

    Pigs (n = 88) weaned at 19 ± 2 d of age were used in a 14-d study to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on growth, immune status, Salmonella infection and shedding, and intestinal microbial populations after intranasal inoculation of Salmonella Typhimurium (10(10) cfu/pig). Pigs were challenged with Salmonella 6 d after commencement of water treatments. Treatments were 1) control diet; 2) control diet + DFM (Enterococcus faecium, Bacillus subtilis, and Bacillus licheniformis) in drinking water at 10(9) cfu/L for each strain of bacteria; 3) control diet + an organic acid-based blend (predominantly propionic, acetic, and benzoic acid) in drinking water at 2.58 mL/L; and 4) control diet + 55 mg/kg of carbadox. Serum samples were taken on d 6, 8, 10, and 14 for determination of tumor necrosis factor α (TNFα) concentrations. Fecal samples were taken on d 0, 5, 7, and 11 for determination of Salmonella shedding and enumeration of coliforms. Pigs were euthanized on d 6, 8, 10, and 14. Intestinal and cecal tissue and digesta and mesenteric lymph nodes were sampled and analyzed for Salmonella. Duodenal, jejunal, and ileal mucosal scrapings were sampled for measurement of mucosal TNFα concentrations. Water delivery of DFM prevented a decline in ADG on d 2 to 6 postchallenge compared with the negative control (P < 0.05). Coliform counts tended to be greater (P = 0.09) in the cecum of the DFM treatment group on d 2 postinfection compared with the negative control and acid treatment groups. However, Salmonella prevalence in the feces, gastrointestinal tract, or lymph nodes was not affected by water delivery of acids or DFM. Serum and mucosal TNFα concentrations were not affected by treatment throughout the study with the exception of ileal concentrations on d 4 postchallenge, which were greater in the negative control group compared with all other treatments (P < 0.05). The in-feed antibiotic was the only treatment that

  16. Access and completion of a Web-based treatment in a population-based sample of tornado-affected adolescents.

    PubMed

    Price, Matthew; Yuen, Erica K; Davidson, Tatiana M; Hubel, Grace; Ruggiero, Kenneth J

    2015-08-01

    Although Web-based treatments have significant potential to assess and treat difficult-to-reach populations, such as trauma-exposed adolescents, the extent that such treatments are accessed and used is unclear. The present study evaluated the proportion of adolescents who accessed and completed a Web-based treatment for postdisaster mental health symptoms. Correlates of access and completion were examined. A sample of 2,000 adolescents living in tornado-affected communities was assessed via structured telephone interview and invited to a Web-based treatment. The modular treatment addressed symptoms of posttraumatic stress disorder, depression, and alcohol and tobacco use. Participants were randomized to experimental or control conditions after accessing the site. Overall access for the intervention was 35.8%. Module completion for those who accessed ranged from 52.8% to 85.6%. Adolescents with parents who used the Internet to obtain health-related information were more likely to access the treatment. Adolescent males were less likely to access the treatment. Future work is needed to identify strategies to further increase the reach of Web-based treatments to provide clinical services in a postdisaster context. (c) 2015 APA, all rights reserved).

  17. Access and Completion of a Web-Based Treatment in a Population-Based Sample of Tornado-Affected Adolescents

    PubMed Central

    Price, Matthew; Yuen, Erica; Davidson, Tatiana M.; Hubel, Grace; Ruggiero, Kenneth J.

    2015-01-01

    Although web-based treatments have significant potential to assess and treat difficult to reach populations, such as trauma-exposed adolescents, the extent that such treatments are accessed and used is unclear. The present study evaluated the proportion of adolescents who accessed and completed a web-based treatment for post-disaster mental health symptoms. Correlates of access and completion were examined. A sample of 2,000 adolescents living in tornado-affected communities was assessed via structured telephone interview and invited to a web-based treatment. The modular treatment addressed symptoms of PTSD, depression, and alcohol and tobacco use. Participants were randomized to experimental or control conditions after accessing the site. Overall access for the intervention was 35.8%. Module completion for those who accessed ranged from 52.8% to 85.6%. Adolescents with parents who used the Internet to obtain health-related information were more likely to access the treatment. Adolescent males were less likely to access the treatment. Future work is needed to identify strategies to further increase the reach of web-based treatments to provide clinical services in a post-disaster context. PMID:25622071

  18. Access and Attitudes to HPV Vaccination amongst Hard-To-Reach Populations in Kenya

    PubMed Central

    Watson-Jones, Deborah; Mugo, Nelly; Lees, Shelley; Mathai, Muthoni; Vusha, Sophie; Ndirangu, Gathari; Ross, David A.

    2015-01-01

    Background Sub-Saharan Africa bears the greatest burden of cervical cancer. Human papillomavirus (HPV) vaccination programmes to prevent the disease will need to reach vulnerable girls who may not be able access health and screening services in the future. We conducted formative research on facilitators and barriers to HPV vaccination and potential acceptability of a future HPV vaccination programme amongst girls living in hard-to-reach populations in Kenya. Methods Stakeholder interviews with Ministry of Health staff explored barriers to and support for the uptake of HPV vaccination. A situation assessment was conducted to assess community services in Maasai nomadic pastoralist communities in Kajiado County and in Korogocho informal settlement in Nairobi city, followed by focus group discussions (n=14) and semi-structured interviews (n=28) with health workers, parents, youth, and community and religious leaders. These covered marriage, knowledge of cervical cancer and HPV, factors that might inhibit or support HPV vaccine uptake and intention to accept HPV vaccine if a programme was in place. Results Reported challenges to an HPV vaccination programme included school absenteeism and drop-out, early age of sex and marriage, lack of parental support, population mobility and distance from services. Despite little prior knowledge of cervical cancer and HPV, communities were interested in receiving HPV vaccination. Adequate social mobilisation and school-based vaccination, supplemented by out-reach activities, were considered important facilitating factors to achieve high coverage. There was some support for a campaign approach to vaccine delivery. Conclusions Given the high level of support for a vaccine against cervical cancer and the experience of reaching pastoralist and slum-dwellers for other immunizations, implementing an HPV vaccine programme should be feasible in such hard-to-reach communities. This may require additional delivery strategies in addition to the

  19. metaBEETL: high-throughput analysis of heterogeneous microbial populations from shotgun DNA sequences

    PubMed Central

    2013-01-01

    Environmental shotgun sequencing (ESS) has potential to give greater insight into microbial communities than targeted sequencing of 16S regions, but requires much higher sequence coverage. The advent of next-generation sequencing has made it feasible for the Human Microbiome Project and other initiatives to generate ESS data on a large scale, but computationally efficient methods for analysing such data sets are needed. Here we present metaBEETL, a fast taxonomic classifier for environmental shotgun sequences. It uses a Burrows-Wheeler Transform (BWT) index of the sequencing reads and an indexed database of microbial reference sequences. Unlike other BWT-based tools, our method has no upper limit on the number or the total size of the reference sequences in its database. By capturing sequence relationships between strains, our reference index also allows us to classify reads which are not unique to an individual strain but are nevertheless specific to some higher phylogenetic order. Tested on datasets with known taxonomic composition, metaBEETL gave results that are competitive with existing similarity-based tools: due to normalization steps which other classifiers lack, the taxonomic profile computed by metaBEETL closely matched the true environmental profile. At the same time, its moderate running time and low memory footprint allow metaBEETL to scale well to large data sets. Code to construct the BWT indexed database and for the taxonomic classification is part of the BEETL library, available as a github repository at git@github.com:BEETL/BEETL.git. PMID:23734710

  20. Impact of demographics on human gut microbial diversity in a US Midwest population

    PubMed Central

    Chen, Jun; Ryu, Euijung; Hathcock, Matthew; Ballman, Karla; Chia, Nicholas; Olson, Janet E

    2016-01-01

    The clinical utility of microbiome biomarkers depends on the reliable and reproducible nature of comparative results. Underappreciation of the variation associated with common demographic, health, and behavioral factors may confound associations of interest and generate false positives. Here, we present the Midwestern Reference Panel (MWRP), a resource for comparative gut microbiome studies conducted in the Midwestern United States. We analyzed the relationships between demographic and health behavior-related factors and the microbiota in this cohort, and estimated their effect sizes. Most variables investigated were associated with the gut microbiota. Specifically, body mass index (BMI), race, sex, and alcohol use were significantly associated with microbial β-diversity (P < 0.05, unweighted UniFrac). BMI, race and alcohol use were also significantly associated with microbial α-diversity (P < 0.05, species richness). Tobacco use showed a trend toward association with the microbiota (P < 0.1, unweighted UniFrac). The effect sizes of the associations, as quantified by adjusted R2 values based on unweighted UniFrac distances, were small (< 1% for all variables), indicating that these factors explain only a small percentage of overall microbiota variability. Nevertheless, the significant associations between these variables and the gut microbiota suggest that they could still be potential confounders in comparative studies and that controlling for these variables in study design, which is the main objective of the MWRP, is important for increasing reproducibility in comparative microbiome studies. PMID:26839739

  1. Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing

    PubMed Central

    Crowley, Edward J.; King, Jonathan M.; Wilkinson, Toby; Worgan, Hilary J.; Huson, Kathryn M.; Rose, Michael T.; McEwan, Neil R.

    2017-01-01

    This study aimed to determine the microbial composition of faeces from two groups of caecotrophagic animals; rabbits and guinea pigs. In addition the study aimed to determine the community present in the different organs in the rabbit. DNA was extracted from seven of the organs in wild rabbits (n = 5) and from faecal samples from domesticated rabbits (n = 6) and guinea pigs (n = 6). Partial regions of the small ribosomal sub-unit were amplified by PCR and then the sequences present in each sample were determined by next generation sequencing. Differences were detected between samples from rabbit and guinea pig faeces, suggesting that there is not a microbial community common to caecotrophagic animals. Differences were also detected in the different regions of the rabbits’ digestive tracts. As with previous work, many of the organisms detected were Firmicutes or unclassified species and there was a lack of Fibrobacteres, but for the first time we observed a high number of Bacteroidetes in rabbit samples. This work re-iterates high levels of Firmicutes and unclassified species are present in the rabbit gut, together with low number of Fibrobacteres. This suggests that in the rabbit gut, organisms other than the Fibrobacteres must be responsible for fibre digestion. However observation of high numbers of Bacteroidetes suggests that this phylum may indeed have a role to play in digestion in the rabbit gut. PMID:28182658

  2. Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses.

    PubMed

    Araujo, Ricardo; Eusebio, Nadia; Caramalho, Rita

    2015-03-01

    Practical schemes based on single nucleotide polymorphisms (SNP) have been proposed as alternatives to simplify and replace the molecular methodologies based on the extensive sequencing analysis of genes. SNaPshot mini-sequencing has been progressively experienced during the last decade and represents a fast and robust strategy to analyze critical polymorphisms. Such assays have been proposed to characterize some bacteria and microbial eukaryotes, and its feasibility was now reviewed in the present manuscript. The mini-sequencing schemes showed high discriminatory power and competence for identification of microorganisms, but some specificity errors were still found, particularly for species of the Burkholderia cepacia complex and mycobacteria. SNP assays designed for other goals, e.g., comparison of strains, detection of serotypes, virulence, epidemic, and phylogenetic-related subgroups of isolates, can be very useful by facilitating the investigation of large collections of isolates. The next-generation of SNP assays might consider the inclusion of large number of markers to fully characterize microbial taxonomy and strains; nevertheless, these new technologies are still prone to errors and can largely benefit from integration with well-established mini-sequencing assays. Newly proposed molecular tools should be systematically tested in collections of isolates with high indexes of diversity and guarantee interlaboratorial validation.

  3. Metabolite toxicity determines the pace of molecular evolution within microbial populations.

    PubMed

    Lilja, Elin E; Johnson, David R

    2017-02-14

    The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.

  4. Using populations of human and microbial genomes for organism detection in metagenomes

    SciTech Connect

    Ames, Sasha K.; Gardner, Shea N.; Marti, Jose Manuel; Slezak, Tom R.; Gokhale, Maya B.; Allen, Jonathan E.

    2015-04-29

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. In conclusion, left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.

  5. Using populations of human and microbial genomes for organism detection in metagenomes

    DOE PAGES

    Ames, Sasha K.; Gardner, Shea N.; Marti, Jose Manuel; ...

    2015-04-29

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-freemore » human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. In conclusion, left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.« less

  6. Using populations of human and microbial genomes for organism detection in metagenomes

    PubMed Central

    Ames, Sasha K.; Gardner, Shea N.; Marti, Jose Manuel; Slezak, Tom R.; Gokhale, Maya B.; Allen, Jonathan E.

    2015-01-01

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected. PMID:25926546

  7. Evaluation of microbial populations, Rhizobium Trifolii, and endomycorrhizal associations in reclamation of surface mine spoils in Texas

    SciTech Connect

    Mott, J.B.

    1984-01-01

    The deficiency of nitrogen and phosphorus in mixed overburden mine spoils has resulted in interest in strategies to minimize fertilizer application. In this study, the abundance of microbial populations, with emphasis on those involved in nitrogen cycle transformations was estimated in variously aged spoils. Two beneficial plant-microbe associations, the clover-Rhizobium trifolii symbiosis and endomycorrhizal associations, were investigated in field and laboratory studies. While most groups of microorganisms regained pre-mining levels in revegetated spoils within 1.5 years after disturbance, algal populations were still reduced ten years after mining. Populations of nitrifying bacteria and asymbiotic nitrogen-fixing bacteria were as high in all spoils as in unmined soil. Indigenous populations of ineffective R. trifolii were present in spoil banks and older revegetated spoil. A laboratory study of survival of three commercial strains of R. trifolii for subterranean clover showed lethal effects of high temperature (45/sup 0/C) especially in moist spoil, and superior survival of strain 162X95. Endomycorrhizal associations, evaluated by assessment of root infection in bermudagrass, reached pre-mining levels by three to seven years after disturbance. Growth chamber studies to investigate the effects of the two symbiotic associations on subterranean clover in mine spoil at different fertility levels indicated that dual infection with Rhizobium and VAM fungi was most beneficial for plant growth, nitrogen fixation, and nitrogen and phosphorus contents.

  8. Spatial distribution of microbial populations and carbon cycle in the subsurface environment of the Horonobe area, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Ise, K.; Terashima, M.; Sasaki, Y.; Amamiya, H.; Yoshikawa, H.

    2014-12-01

    Microorganisms are widely distributed in the subsurface environments. However, the distribution, role and rate of metabolisms, and the source of their activity are not well known. In this study, we investigated deep groundwater samples from sedimentary rocks, containing saturated methane and CO2, using boreholes at the Horonobe Underground Research Laboratory (URL), northern Hokkaido, Japan. The hydrochemical conditions of groundwaters, such as in-situ water pressure, temperature, electric conductivity, pH, redox potential, were monitored without degassing at multiple intervals along the borehole. Groundwater samples were taken periodically and chemical composition was analyzed using ICP-MS, etc. Cell counts were in the range of 103 to 105 cells ml-1. Molecular analyses revealed the spatial distribution and heterogeneity of the microbial population. Abundant methanogens were detected in the groundwater, and 80% of them were related to either Methanoregula boonei or Methanobacterium flexile that can utilize H2/CO2 by methanogenesis. Phylotypes clustered within the phylum Firmicutes, beta-Proteobacteria, delta-Proteobacteria and candidate division TM7 were dominant in the groundwater samples. Laboratory experiments using a culture technique showed that humic substances purified from the groundwater at Horonobe area appear to be degraded by microorganisms. Our results suggest that microbial spatial distributions in the subsurface environment were correlated closely with geochemical conditions, such as redox condition and carbon sources. In addition, it is inferred that humic substances are one of the important carbon sources for the subsurface microbial redox processes in the environment. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan.

  9. Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations

    USGS Publications Warehouse

    Bekins, B.A.; Cozzarelli, I.M.; Godsy, E.M.; Warren, E.; Essaid, H.I.; Tuccillo, M.E.

    2001-01-01

    A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes. Copyright ?? 2001 Elsevier Science B.V.

  10. Dietary n-6:n-3 Fatty Acid Ratios Alter Rumen Fermentation Parameters and Microbial Populations in Goats.

    PubMed

    Ebrahimi, Mahdi; Rajion, Mohamed Ali; Adeyemi, Kazeem Dauda; Jafari, Saeid; Jahromi, Mohammad Faseleh; Oskoueian, Ehsan; Meng, Goh Yong; Ghaffari, Morteza Hosseini

    2017-02-01

    Revealing the ruminal fermentation patterns and microbial populations as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the role of the rumen in the lipid metabolism of ruminants. The objective of the present study was to investigate the effects of dietary n-6:n-3 PUFA ratios on fermentation characteristics, fatty acid (FA) profiles, and microbial populations in the rumen of goats. A total of twenty-one goats were randomly assigned to three dietary treatments with different n-6:n-3 PUFA ratios of 2.27:1 (low ratio, LR), 5.01:1 (medium ratio, MR), and 10.38:1 (high ratio, HR). After 100 days of feeding, all goats were slaughtered. Dietary n-6:n-3 PUFA ratios had no effect (P > 0.05) on rumen pH and NH3N concentration. Goats fed HR diet had lower (P < 0.05) propionate and total volatile fatty acids and higher (P < 0.05) butyrate compared with those fed the MR and LR diets. The proportion of C18:0 decreased (P < 0.05) as dietary n-6:n-3 PUFA ratios increased. The proportions of C18:1 trans-11, C18:2n-6, cis-9 trans-11 CLA, and C20:4n-6 were greater in the HR goats compared with the MR and LR goats. Lowering dietary n-6:n-3 PUFA ratios enhanced (P < 0.05) the proportion of C18:3n-3 and total n-3 PUFA in the rumen fluid of goats. The populations of R. albus and R. flavefaciens decreased (P < 0.05) as the n-6:n-3 PUFA ratios increased in diet. Diet had no effect (P > 0.05) on the ruminal populations of F. succinogenes, total bacteria, methanogens, total protozoa, Entiodinium, and Holotrich. The population of B. fibrisolvens was lower (P < 0.05) in the LR goats compared with the MR and HR goats. It was concluded that HR would increase the concentration of cis-9 trans-11 CLA and C18:1 trans-11 in the rumen. However, LR whould decrease the B. fibrisolvens population, which is involved in the BH process in the rumen. Further research is needed to evaluate the potential role and contribution of rumen microbiome in the metabolism of FA in the

  11. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status

    PubMed Central

    Branton, William G.; Ellestad, Kristofor K.; Maingat, Ferdinand; Wheatley, B. Matt; Rud, Erling; Warren, René L.; Holt, Robert A.; Surette, Michael G.; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain

  12. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status.

    PubMed

    Branton, William G; Ellestad, Kristofor K; Maingat, Ferdinand; Wheatley, B Matt; Rud, Erling; Warren, René L; Holt, Robert A; Surette, Michael G; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1⁻/⁻ mouse brains. Intracerebral implantation of human brain homogenates into RAG1⁻/⁻ mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain's microbiome

  13. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants

    PubMed Central

    Bourceret, Amélia; Leyval, Corinne; de Fouquet, Chantal; Cébron, Aurélie

    2015-01-01

    Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron. PMID:26599438

  14. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    PubMed

    Meersman, Esther; Steensels, Jan; Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J

    2013-01-01

    The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  15. Detailed Analysis of the Microbial Population in Malaysian Spontaneous Cocoa Pulp Fermentations Reveals a Core and Variable Microbiota

    PubMed Central

    Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J.

    2013-01-01

    The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a “core” and a “variable” part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations (“core” yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations (“variable” yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency. PMID:24358116

  16. Interprofessional collaborative model for medication therapy management (MTM) services to improve health care access and quality for underserved populations.

    PubMed

    Truong, Hoai-An; Groves, C Nicole; Congdon, Heather Brennan; Botchway, Rosemary; Dang, Diem-Thanh Tanya; Clark, Nancy Ripp; Zarfeshan, Faramarz

    2012-08-01

    As part of the Health Resources and Services Administration Patient Safety and Clinical Pharmacy Services Collaborative (PSPC), an interprofessional model with medication therapy management documentation and outcomes tracking tools (MTM-DOTT) is established to improve health care access and quality for underserved populations. Despite limitations, there have been positive outcomes and national recognitions.

  17. Spatial accessibility of the population to urban health centres in Kermanshah, Islamic Republic of Iran: a geographic information systems analysis.

    PubMed

    Reshadat, S; Saedi, S; Zangeneh, A; Ghasemi, S R; Gilan, N R; Karbasi, A; Bavandpoor, E

    2015-09-08

    Geographic information systems (GIS) analysis has not been widely used in underdeveloped countries to ensure that vulnerable populations have accessibility to primary health-care services. This study applied GIS methods to analyse the spatial accessibility to urban primary-care centres of the population in Kermanshah city, Islamic Republic of Iran, by age and sex groups. In a descriptive-analytical study over 3 time periods, network analysis, mean centre and standard distance methods were applied using ArcGIS 9.3. The analysis was based on a standard radius of 750 m distance from health centres, walking speed of 1 m/s and desired access time to health centres of 12.5 mins. The proportion of the population with inadequate geographical access to health centres rose from 47.3% in 1997 to 58.4% in 2012. The mean centre and standard distance mapping showed that the spatial distribution of health centres in Kermanshah needed to be adjusted to changes in population distribution.

  18. Evaluation of the Microbial Population in the Multibiological Life Support System Experiments

    NASA Astrophysics Data System (ADS)

    Fu, Yuming; Tong, Ling; Li, Ming; Hu, Enzhu; Hu, Dawei; He, Wenting; Liu, Hong

    In order to develop and evaluate a ground-based bioregenerative life support system satisfying half of one crew member's requirement towards O2 , Multibiological Life Support System Exper-iments (MLSSE) have been conducted. The MLSSE involved humans participating in the gas exchange with the closed equipment simulating the future extraterrestrial life support systems, which included three phases. The Phase I test involved one person participating in the gas exchange with lettuce in plant chamber as the primary means of air revitalization for 3 months. The Phase II test involved one person participating in the gas exchange with lettuce in plant chamber and micoalgae in bioreactor as the means of air revitalization for 1 month. In the Phase III test, silkworm was introduced into animal chamber for 2 months based on Phase II. The microbial dynamics in the closed chambers were evaluated during the whole experiments. The surfaces, water, and air of closed equipment were sampled for microbial content during the whole experiments. In general, the numbers of microbes in the chambers slowly increased with length of occupation. Compared with Phase I, the numbers of microbes of Phase II ob-viously increased, however, the numbers of microbes of Phase III did not increase relative to Phase II. The types of microbes found on the surfaces and in the air in all the experimental phases were similar. The most common bacteria were Bacillus sp., Pseudomonas sp., as well as Sphingomonas sp., with Pencillium sp. and Cladosporium sp. the most common fungi. A few opportunistic pathogens were also determined, but neither phase had levels of microbes that would be considered an occupational health threat.

  19. metaBEETL: high-throughput analysis of heterogeneous microbial populations from shotgun DNA sequences.

    PubMed

    Ander, Christina; Schulz-Trieglaff, Ole B; Stoye, Jens; Cox, Anthony J

    2013-01-01

    Environmental shotgun sequencing (ESS) has potential to give greater insight into microbial communities than targeted sequencing of 16S regions, but requires much higher sequence coverage. The advent of next-generation sequencing has made it feasible for the Human Microbiome Project and other initiatives to generate ESS data on a large scale, but computationally efficient methods for analysing such data sets are needed.Here we present metaBEETL, a fast taxonomic classifier for environmental shotgun sequences. It uses a Burrows-Wheeler Transform (BWT) index of the sequencing reads and an indexed database of microbial reference sequences. Unlike other BWT-based tools, our method has no upper limit on the number or the total size of the reference sequences in its database. By capturing sequence relationships between strains, our reference index also allows us to classify reads which are not unique to an individual strain but are nevertheless specific to some higher phylogenetic order.Tested on datasets with known taxonomic composition, metaBEETL gave results that are competitive with existing similarity-based tools: due to normalization steps which other classifiers lack, the taxonomic profile computed by metaBEETL closely matched the true environmental profile. At the same time, its moderate running time and low memory footprint allow metaBEETL to scale well to large data sets.Code to construct the BWT indexed database and for the taxonomic classification is part of the BEETL library, available as a github repository at git@github.com:BEETL/BEETL.git.

  20. Equity in access to health care in a rural population in Malaysia: A cross-sectional study.

    PubMed

    Lim, Ka Keat; Sivasampu, Sheamini; Mahmud, Fatihah

    2017-04-01

    To examine the extent of equity in access to health care, their determinants and reasons of unmet need of a rural population in Malaysia. Exploratory cross-sectional survey administered by trained interviewers among participants of a health screening program. A rural plantation estate in the West Coast of Peninsular Malaysia. One hundred and thirty out of 142 adults above 18 years old who attended the program. Percentages of respondents reporting realised access and unmet need to health care, determinants of both access indicators and reasons for unmet need. Realised access associated with need but not predisposing or enabling factors and unmet need not associated with any variables were considered equitable. A total of 88 (67.7%) respondents had visited a doctor (realised access) in the past 6 months and 24.8% (n = 31) experienced unmet need in the past 12 months. Using logistic regression, realised access was associated with presence of chronic disease (OR 6.97, P < 0.001), whereas unmet need was associated with low education level (OR 6.50, P < 0.05), 'poor' or 'fair' self-assessed health status (OR 6.03, P < 0.05) and highest income group (> RM 2000 per month) (OR 51.27, P < 0.05). Personal choice (67.7%) was more commonly expressed than barriers (54.8%) as reasons for unmet need. The study found equity in realised access and inequity in unmet need among the rural population, the latter associated with education level, subjective health status and income. Despite not being generalisable, the findings highlight the need for a national level study on equity in access before the country reforms its health system. © 2016 National Rural Health Alliance Inc.

  1. A surface swab method for culturing Foley catheters assays the pericatheter (urethral) but not the urine (luminal) microbial population.

    PubMed

    Johnson, J R; Dykstra, D; Brown, J J; Kringstad, B; Pryor, J L

    1997-07-01

    Assessment of the urethral flora in patients with indwelling bladder catheters is problematic in the presence of urinary tract infection (UTI). A new surface swab method that samples the external catheter surface without interference from contaminated luminal contents is described. In vitro, recovery of adherent bacteria from the external catheter surface by the surface swab method was proportional to the bacterial density as measured by a comparison scrape method. In a prospective longitudinal assessment of three chronically catheterized subjects with polymicrobial catheter-associated UTI, a conventional roll plate catheter culture method suggested substantial overlap between the urethral and urine microbial populations, possibly a result of contamination of catheter cultures by infected urine. In contrast, the surface swab method revealed little overlap between these floras, evidence suggesting a predominantly luminal (rather than meatal) route of UTI acquisition. The new surface swab method should prove useful in future studies of the pathogenesis and prevention of catheter-associated UTI.

  2. The spatial profiles and metabolic capabilities of microbial populations impact the growth of antibiotic-resistant mutants

    PubMed Central

    Kaushik, Karishma S.; Ratnayeke, Nalin; Katira, Parag; Gordon, Vernita D.

    2015-01-01

    Antibiotic resistance adversely affects clinical and public health on a global scale. Using the opportunistic human pathogen Pseudomonas aeruginosa, we show that increasing the number density of bacteria, on agar containing aminoglycoside antibiotics, can non-monotonically impact the survival of antibiotic-resistant mutants. Notably, at high cell densities, mutant survival is inhibited. A wide range of bacterial species can inhibit antibiotic-resistant mutants. Inhibition results from the metabolic breakdown of amino acids, which results in alkaline by-products. The consequent increase in pH acts in conjunction with aminoglycosides to mediate inhibition. Our work raises the possibility that the manipulation of microbial population structure and nutrient environment in conjunction with existing antibiotics could provide therapeutic approaches to combat antibiotic resistance. PMID:25972434

  3. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  4. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  5. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    PubMed

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  6. Nonantibiotic interventions to control pathogens and undesired microbial activities in mixed microbial populations residing in the gut of food-producing animals and their excreted wastes

    USDA-ARS?s Scientific Manuscript database

    The intensification and industrialization of animal agriculture throughout the world has led to considerable increases in animal production efficiencies but has also led to concerns that microbial pathogens, antibiotic residues, and other chemical contaminants could be concentrated in the environmen...

  7. Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population

    PubMed Central

    Yurtsev, Eugene Anatoly; Korolev, Kirill S.; Gore, Jeff

    2016-01-01

    Range expansions are becoming more frequent due to environmental changes and rare long-distance dispersal, often facilitated by anthropogenic activities. Simple models in theoretical ecology explain many emergent properties of range expansions, such as a constant expansion velocity, in terms of organism-level properties such as growth and dispersal rates. Testing these quantitative predictions in natural populations is difficult because of large environmental variability. Here, we used a controlled microbial model system to study range expansions of populations with and without intraspecific cooperativity. For noncooperative growth, the expansion dynamics were dominated by population growth at the low-density front, which pulled the expansion forward. We found these expansions to be in close quantitative agreement with the classical theory of pulled waves by Fisher [Fisher RA (1937) Ann Eugen 7(4):355–369] and Skellam [Skellam JG (1951) Biometrika 38(1-2):196–218], suitably adapted to our experimental system. However, as cooperativity increased, the expansions transitioned to being pushed, that is, controlled by growth and dispersal in the bulk as well as in the front. Given the prevalence of cooperative growth in nature, understanding the effects of cooperativity is essential to managing invading species and understanding their evolution. PMID:27185918

  8. Microbial-mammalian co-metabolites dominate the age-associated urinary metabolic phenotype in Taiwanese and American Populations

    PubMed Central

    Swann, Jonathan R.; Spagou, Konstantina; Lewis, Matthew; Nicholson, Jeremy K.; Glei, Dana A.; Seeman, Teresa E.; Coe, Christopher L.; Goldman, Noreen; Ryff, Carol D.; Weinstein, Maxine; Holmes, Elaine

    2013-01-01

    Understanding the metabolic processes associated with aging is key to developing effective management and treatment strategies for age-related diseases. We investigated the metabolic profiles associated with age in a Taiwanese and an American population. 1H NMR spectral profiles were generated for urine specimens collected from the Taiwanese Social Environment and Biomarkers of Aging Study (SEBAS; n= 857; age 54-91 years) and the Mid-Life in the USA study (MIDUS II; n= 1148; age 35-86 years). Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites--4-cresyl sulfate (4CS) and phenylacetylglutamine (PAG)—were positively associated with age. In addition, creatine and β-hydroxy-β-methylbutyrate (HMB) were negatively correlated with age in both populations (p<4×10-6). These age-associated gradients in creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Both are products of concerted microbial-mammalian host co-metabolism and indicate an age-related association with the balance of host-microbiome metabolism. PMID:23701591

  9. Microbial-mammalian cometabolites dominate the age-associated urinary metabolic phenotype in Taiwanese and American populations.

    PubMed

    Swann, Jonathan R; Spagou, Konstantina; Lewis, Matthew; Nicholson, Jeremy K; Glei, Dana A; Seeman, Teresa E; Coe, Christopher L; Goldman, Noreen; Ryff, Carol D; Weinstein, Maxine; Holmes, Elaine

    2013-07-05

    Understanding the metabolic processes associated with aging is key to developing effective management and treatment strategies for age-related diseases. We investigated the metabolic profiles associated with age in a Taiwanese and an American population. ¹H NMR spectral profiles were generated for urine specimens collected from the Taiwanese Social Environment and Biomarkers of Aging Study (SEBAS; n = 857; age 54-91 years) and the Mid-Life in the USA study (MIDUS II; n = 1148; age 35-86 years). Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites--4-cresyl sulfate (4CS) and phenylacetylglutamine (PAG)--were positively associated with age. In addition, creatine and β-hydroxy-β-methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10⁻⁶). These age-associated gradients in creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). Both are products of concerted microbial-mammalian host cometabolism and indicate an age-related association with the balance of host-microbiome metabolism.

  10. Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater.

    PubMed

    Pelissari, Catiane; Guivernau, Miriam; Viñas, Marc; de Souza, Samara Silva; García, Joan; Sezerino, Pablo Heleno; Ávila, Cristina

    2017-04-15

    The dynamics of the active microbial populations involved in nitrogen transformation in a vertical subsurface flow constructed wetland (VF) treating urban wastewater was assessed. The wetland (1.5m(2)) operated under average loads of 130gCODm(-2)d(-1) and 17gTNm(-2)d(-1) in Period I, and 80gCODm(-2)d(-1) and 19gTNm(-2)d(-1) in Period II. The hydraulic loading rate (HLR) was 375mmd(-1) and C/N ratio was 2 in both periods. Samples for microbial characterization were collected from the filter medium (top and bottom layers) of the wetland, water influent and effluent at the end of Periods I (Jun-Oct) and II (Nov-Jan). The combination of qPCR and high-throughput sequencing (NGS, MiSeq) assessment at DNA and RNA level of 16S rRNA genes and nitrogen-based functional genes (amoA and nosZ-clade I) revealed that nitrification was associated both with ammonia-oxidizing bacteria (AOB) (Nitrosospira) and ammonia-oxidizing archaea (AOA) (Nitrososphaeraceae), and nitrite-oxidizing bacteria (NOB) such as Nitrobacter. Considering the active abundance (based in amoA transcripts), the AOA population revealed to be more stable than AOB in both periods and depths of the wetland, being less affected by the organic loading rate (OLR). Although denitrifying bacteria (nosZ copies and transcripts) were actively detected in all depths, the denitrification process was low (removal of 2gTNm(-2)d(-1) for both periods) concomitant with NOx-N accumulation in the effluent. Overall, AOA, AOB and denitrifying bacteria (nosZ) were observed to be more active in bottom than in top layer at lower OLR (Period II). A proper design of OLR and HLR seems to be crucial to control the activity of microbial biofilms in VF wetlands on the basis of oxygen, organic-carbon and NOx-N forms, to improve their capacity for total nitrogen removal.

  11. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    PubMed

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  12. Availability and access in modern obstetric care: a retrospective population-based study

    PubMed Central

    Engjom, HM; Morken, N-H; Norheim, OF; Klungsøyr, K

    2014-01-01

    Objective To assess the availability of obstetric institutions, the risk of unplanned delivery outside an institution and maternal morbidity in a national setting in which the number of institutions declined from 95 to 51 during 30 years. Design Retrospective population-based, three cohorts and two cross-sectional analyses. Setting Census data, Statistics Norway. The Medical Birth Registry of Norway from 1979 to 2009. Population Women (15–49 years), 2000 (n = 1 050 269) and 2010 (n = 1 127 665). Women who delivered during the period 1979–2009 (n = 1 807 714). Methods Geographic Information Systems software for travel zone calculations. Cross-table and multiple logistic regression analysis of change over time and regional differences. World Health Organization Emergency Obstetric and Newborn Care (EmOC) indicators. Main outcome measures Proportion of women living outside the 1-hour travel zone to obstetric institutions. Risk of unplanned delivery outside obstetric institutions. Maternal morbidity. Results The proportion of women living outside the 1-hour zone for all obstetric institutions increased from 7.9% to 8.8% from 2000 to 2010 (relative risk, 1.1; 95% confidence interval, 1.11–1.12), and for emergency obstetric care from 11.0% to 12.1% (relative risk, 1.1; 95% confidence interval, 1.09–1.11). The risk of unplanned delivery outside institutions increased from 0.4% in 1979–83 to 0.7% in 2004–09 (adjusted odds ratio, 2.0; 95% confidence interval, 1.9–2.2). Maternal morbidity increased from 1.7% in 2000 to 2.2% in 2009 (adjusted odds ratio, 1.4; 95% confidence interval, 1.2–1.5) and the regional differences increased. Conclusions The availability of and access to obstetric institutions was reduced and we did not observe the expected decrease in maternal morbidity following the centralisation. PMID:24283373

  13. Arkansas Special Populations Access Network perception versus reality--cancer screening in primary care clinics.

    PubMed

    Rutledge, William; Gibson, Regina; Siegel, Eric; Duke, Kelly; Jones, Rise; Rucinski, Diane; Nunn, Gary; Torrence, W Alvin; Lewellen-Williams, Charlotte; Stewart, Chara; Blann, Kimberly; Belleton, Larry; Fincher, Lindsey; Klimberg, V Suzanne; Greene, Paul; Thomas, Billy; Erwin, Deborah; Henry-Tillman, Ronda

    2006-10-15

    The origin of cancer health disparities and mortality in Arkansas is multifactorial. In response to a cooperative agreement with the National Cancer Institute's Center to Reduce Cancer Health Disparities, the Arkansas Special Populations Access Network (ASPAN) was developed to reduce these disparities. ASPAN's partnership with local primary care physicians of the Arkansas Medical, Dental, and Pharmaceutical Association through the Cancer Education Awareness Program is the focus of this article. A quasi-experimental intervention, the Community Cancer Education Awareness Program, was employed that included 1) physician education to increase awareness of risk factors and cancer screening; and 2) patient education to increase screening, and 3) patient-generated screening questionnaires to prompt discussion of cancer risk and screening recommendations between patients and physicians. Two urban and 2 rural clinics were targeted during a 12-month period with interval intervention assessments. Baseline review of records (n = 200) from patients >/=40 were utilized to assess the rate of breast, prostate, and colorectal screenings among clinics. For the patient education intervention, patients (n = 120) were interviewed via a 34-item assessment. Physician awareness of cancer risk factors and screening recommendations significantly increased. Statistically significant increases were seen for prostate (P = .028), breast (P = .036), and colorectal (P < .001) cancer screening across all 4 clinics. Patients' increased likelihood of cancer screenings was associated with knowledge about consumption of animal fat (P < .001), dietary fiber (P < .013), and mammograms (P < .001). Utilizing the physician as the central change agent, the ASPAN provider network successfully enhanced cancer screening awareness of minority physicians and their patients. Cancer 2006. (c) 2006 American Cancer Society.

  14. [Effects of bio-mulching on rhizosphere soil microbial population, enzyme activity and tree growth in poplar plantation].

    PubMed

    Liu, Jiu-Jun; Fang, Sheng-Zuo; Xie, Bao-Dong; Hao, Juan-Juan

    2008-06-01

    Coriaria nepalensis, Pteridium aquilinum var. latiuscukum, Imperata cylindrical var. major, and Quercus fabric were used as mulching materials to study their effects on the rhizosphere soil microbial population and enzyme activity and the tree growth in poplar plantation. The results showed that after mulching with test materials, the populations of both bacteria and fungi in rhizosphere soil were more than those of the control. Of the mulching materials, I. cylindrical and Q. fabric had the best effect, with the numbers of bacteria and fungi being 23.56 and 1.43 times higher than the control, respectively. The bacterial and fungal populations in rhizosphere soil increased with increasing mulching amount. When the mulching amount was 7.5 kg m(-2), the numbers of bacteria and fungi in rhizosphere soil were 0.5 and 5.14 times higher than the control, respectively. Under bio-mulching, the bacterial and fungal populations in rhizosphere soil had a similar annual variation trend, which was accorded with the annual fluctuation of soil temperature and got to the maximum in July and the minimum in December. The urease and phosphatase activities in rhizosphere soil also increased with increasing mulching amount. As for the effects of different mulching materials on the enzyme activities, they were in the order of C. nepalensis > P. aquilinum > I. cylindrical > Q. fabric. The annual variation of urease and phosphatase activities in rhizosphere soil was similar to that of bacterial and fungal populations, being the highest in July and the lowest in December. Bio-mulching promoted the tree height, DBH, and biomass of poplar trees significantly.

  15. Population, Population and Family Education, and Family Planning: A Bibliography, Supplement to Bibliography, and Accessions List, February-June 1973.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    This is a bibliography of books, periodical articles and pamphlets on population and family education which are available in the library of the Population Education Clearing House Service of the Unesco Regional Office for Education in Asia, Bangkok. Most of the documents cited were published in the 60's and 70's with the exception of a few which…

  16. A Regional Assessment of Medicaid Access to Outpatient Orthopaedic Care: The Influence of Population Density and Proximity to Academic Medical Centers on Patient Access

    PubMed Central

    Patterson, Brendan M.; Draeger, Reid W.; Olsson, Erik C.; Spang, Jeffrey T.; Lin, Feng-Chang; Kamath, Ganesh V.

    2014-01-01

    Background: Access to care is limited for patients with Medicaid with many conditions, but data investigating this relationship in the orthopaedic literature are limited. The purpose of this study was to investigate the relationship between health insurance status and access to care for a diverse group of adult orthopaedic patients, specifically if access to orthopaedic care is influenced by population density or distance from academic teaching hospitals. Methods: Two hundred and three orthopaedic practices within the state of North Carolina were randomly selected and were contacted on two different occasions separated by three weeks. An appointment was requested for a fictitious adult orthopaedic patient with a potential surgical problem. Injury scenarios included patients with acute rotator cuff tears, zone-II flexor tendon lacerations, and acute lumbar disc herniations. Insurance status was reported as Medicaid at the time of the first request and private insurance at the time of the second request. County population density and the distance from each practice to the nearest academic hospital were recorded. Results: Of the 203 practices, 119 (59%) offered the patient with Medicaid an appointment within two weeks, and 160 (79%) offered the patient with private insurance an appointment within this time period (p < 0.001). Practices in rural counties were more likely to offer patients with Medicaid an appointment as compared with practices in urban counties (odds ratio, 2.25 [95% confidence interval, 1.16 to 4.34]; p = 0.016). Practices more than sixty miles from academic hospitals were more likely to accept patients with Medicaid than practices closer to academic hospitals (odds ratio, 3.35 [95% confidence interval, 1.44 to 7.83]; p = 0.005). Conclusions: Access to orthopaedic care was significantly decreased for patients with Medicaid. Practices in less populous areas were more likely to offer an appointment to patients with Medicaid than practices in more

  17. Access to care based on state nurse practitioner practice regulation: secondary data analysis results in the Medicare population.

    PubMed

    Cross, Summer; Kelly, Patricia

    2015-01-01

    To examine access to care in the Medicare population based on state nurse practitioner (NP) practice regulation. Secondary data analysis of the Medicare Current Beneficiary Survey Access to Care 2011 dataset. Items used to measure access to care were usual source of care, appointment waiting times, and difficulties encountered. States were designated as full, reduced, or restricted NP practice based on data from the American Association of Nurse Practitioners State Regulatory Map. Self-reported usual source of care (N = 1,496,251) was not significantly affected by state regulation (p > .05); however, these results were based on only 3% of the sample answering the question. Significant differences were seen in sites for care across state groups (N = 41,650,566, p ≤ .01). Participants in reduced (B = -1.86) and restricted (B = -2.82) states reported lower waiting times than those in full practice states (N = 371,166, p < .01). Participants in reduced practice states had 67% lower odds of having trouble accessing care than participants in full practice states (N = 5,568,495, p = .01). More participants in restricted and reduced states reported cost as a difficulty (N = 1180, p = .03). Access to care based on state NP practice regulation is an important area of study because of the changing nature of health care and the growing support for full practice. This study examined access to care in states with different levels of NP practice regulation, but did not directly measure outcomes in individuals based on NP care. Additional research is needed to examine the impact of state regulation in different patient populations (self-insured, Medicaid, uninsured), and changes in access to care over time as state regulations change. ©2014 American Association of Nurse Practitioners.

  18. Activated Protein C-Resistance Determination and Vascular Access Thrombosis in Populations with High Prevalence of Factor V Leiden.

    PubMed

    Androulakis, Nikolaos E; Tzenakis, Nikolaos; Nioti, Eleni; Spatharaki, Paraskevi; Vyzoukaki, Rodanthi; Papadopoulou, Anastasia; Kokonozaki, Maria; Alexandrakis, Michael G

    2015-01-01

    Factor V Leiden heterozygosity occurs in 3-8% of the general European and US populations. Activated protein C resistance (APC-R)--a non-molecular laboratory test--can efficiently demonstrate the presence of this mutation and can be performed on most coagulation analyzers. On the other hand, fistula or graft thrombosis is a common and costly complication in hemodialysis patients. Our aim was to establish the value of APC-R determination in hemodialysis patients by assessing the risk of access thrombosis in patients with increased APC-R. A total of 133 patients (81 men, mean age 64.5 ± 14.9 years and 52 women, mean age 63.6 ± 15 years) were selected. Participants were divided into 2 groups: those with access thrombosis (54 patients, 40.6%) and those with no access thrombosis (79 patients, 59.4%), and they were tested for the most common congenital or acquired thrombophilia risk factors. Overall, 12 patients (9%) had an increased APC-R and 10 of them had at least 1 episode of access thrombosis (83.3%). Univariate analysis to estimate crude odds ratio (OR) showed an OR of 8.8 (95% CI 1.8-41.8) times higher risk for access thrombosis in these patients. No significant differences were found after adjusting for age, hypertension, diabetes mellitus, coronary artery disease, cerebrovascular disease, peripheral arterial disease and malignancy. Sex was also a factor influencing thrombosis, presenting a higher OR for women (OR 2.2, 95% CI 1.1-4.4). This study revealed a significant association between access thrombosis and increased APC-R in hemodialysis patients. This indicates that the determination of APC-R should be considered--especially, in populations with a high prevalence of Factor V Leiden--as proper anticoagulant therapy in these patients may reduce the risk of access thrombosis. © 2015 S. Karger AG, Basel.

  19. Population structure and physiological changes within a hot spring microbial mat community following disturbance.

    PubMed

    Ferris, M J; Nold, S C; Revsbech, N P; Ward, D M

    1997-04-01

    The influence of disturbance on a hot spring cyanobacterial mat community was investigated by physically removing the top 3.0 mm, which included the entire cyanobacterial layer. Changes in 16S rRNA-defined populations were monitored by denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene segments. Some previously absent cyanobacterial populations colonized the disturbed areas, while some populations which were present before the disturbance remained absent for up to 40 days. Changes in physiological activity were measured by oxygen microelectrode analyses and by 14CO2 incorporation into cyanobacterial molecular components. These investigations indicated substantial differences between the disturbed and undisturbed mats, including an unexplained light-induced oxygen consumption in the freshly exposed mat, increased carbon partitioning by phototrophs into growth-related macromolecules, bimodal vertical photosynthesis profiles, and delayed recovery of respiration relative to photosynthesis.

  20. Population dynamics of anaerobic microbial consortia in thermophilic granular sludge in response to feed composition change.

    PubMed

    Syutsubo, K; Sinthurat, N; Ohashi, A; Harada, H

    2001-01-01

    A thermophilic UASB reactor was operated at 55 degrees C for greater than 470 days in order to investigate the effects of feed composition on the changes in microbial community structure where thermophilic granular sludge was used as the inoculum source. The feed compositions were changed with cultivation days; phase 1 (1-70 days), alcohol distillery wastewater; phase 2 (71-281 days), artificial acetate wastewater; phase 3 (282-474 days), artificial sucrose wastewater. During the first one month of each phase, the methanogenic activity and cell density of methanogens quantified by fluorescence in situ hybridization (FISH) drastically changed as a result of shift in feed composition. When artificial acetate wastewater was used as feed, retained granular sludge was partially disintegrated due to a decrease in the number of symbiotic bacterial community members: acetogens (acidogens) and hydrogenotrophic methanogens. In contrast, when the feed was shifted to sucrose (phase 3), granulation of biomass was promoted by a remarkable proliferation of the symbiotic community. The presence of hydrogen-utilizing methanogens and acetogens (acidogens) are shown to be effective for the enhancement of thermophilic granulation. The cell density of methanogens determined by FISH was strongly correlated with the methane-producing potential of the retained thermophilic granular sludge.

  1. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  2. Identification of Microbial Pathogens in Periodontal disease and Diabetic patients of South Indian Population

    PubMed Central

    Chiranjeevi, Tikka; Prasad, Osuru Hari; Prasad, Uppu Venkateswara; Kumar, Avula Kishor; Chakravarthi, Veeraraghavulu Praveen; Rao, Paramala Balaji; Sarma, Potuguchi Venkata Gurunadha Krishna; Reddy, Nagi reddy Raveendra; Bhaskar, Matcha

    2014-01-01

    Periodontitis have been referred to as the sixth complication of diabetes found in high prevalence among diabetic patients than among healthy controls. The aim of the present study was to examine the periodontal disease status among collected dental plaque samples. Chromosomal DNA was isolated and amplified by universal primers. The DNA was sequenced for bacterial confirmation and phylogenetic analysis performed for the evolutionary relationship with other known pathogens. No amplification products were observed in groups labeled non periodontal and non Diabetes (NP&ND) and non Periodontal and Diabetes (NP&D). But in the case of Periodontal and non Diabetes (P&ND) groups 22 amplified products were observed. In case of Periodontal and Diabetes (P&D), 32 amplified products were positive for microbes. Among the four microbial groups, Treponemadenticola, and Tannerella forsythia were found to be prevalent in P&D. The phylogenetic analysis of 16s rRNA of Treponemadenticola showed the relationship with other Treponema oral pathogen species and with the Spirochaetazuelaera. Tannerella forsythia shows its evolutionary relationship only with four oral pathogens (Macellibacteroidesfermentans, Porphyromadaceae bacterium, Parabacteroidesmeredae and Bacillus fosythus). Prevotellaintermedia also showed its evolutionary relationship only with Prevotella Spcs while Fusobacterium revealed close evolutionary relationship only with Porpiromonasgingivalis. PMID:24966528

  3. Strong inter-population cooperation leads to partner intermixing in microbial communities

    PubMed Central

    Momeni, Babak; Brileya, Kristen A; Fields, Matthew W; Shou, Wenying

    2013-01-01

    Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell–cell and cell–environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observed in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing. DOI: http://dx.doi.org/10.7554/eLife.00230.001 PMID:23359860

  4. Metagenomic Assessment of a Dynamic Microbial Population from Subseafloor Aquifer Fluids in the Cold, Oxygenated Crust

    NASA Astrophysics Data System (ADS)

    Tully, B. J.; Heidelberg, J. F.; Kraft, B.; Girguis, P. R.; Huber, J. A.

    2016-12-01

    The oceanic crust contains the largest aquifer on Earth with a volume approximately 2% of the global ocean. Ongoing research at the North Pond (NP) site, west of the Mid-Atlantic Ridge, provides an environment representative of oxygenated crustal aquifers beneath oligotrophic surface waters. Using subseafloor CORK observatories for multiple sampling depths beneath the seafloor, crustal fluids were sampled along the predicted aquifer fluid flow path over a two-year period. DNA was extracted and sequenced for metagenomic analysis from 22 crustal fluid samples, along with the overlying bottom. At broad taxonomic groupings, the aquifer system is highly dynamic over time and space, with shifts in dominant taxa and "blooms" of transient groups that appear at discreet time points and sample depths. We were able to reconstruct 194 high-quality, low-contamination bacterial and archaeal metagenomic-assembled genomes (MAGs) with estimated completeness >50% (429 MAGs >20% complete). Environmental genomes were assigned to phylogenies from the major bacterial phyla, putative novel groups, and poorly sampled phylogenetic groups, including the Marinimicrobia, Candidate Phyla Radiation, and Planctomycetes. Biogeochemically relevant processes were assigned to MAGs, including denitrification, dissimilatory sulfur and hydrogen cycling, and carbon fixation. Collectively, the oxic NP aquifer system represents a diverse, dynamic microbial habitat with the metabolic potential to impact multiple globally relevant biogeochemical cycles, including nitrogen, sulfur, and carbon.

  5. Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.

    PubMed

    Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2007-10-01

    Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.

  6. Lagrangian coherent structures are associated with fluctuations in airborne microbial populations

    NASA Astrophysics Data System (ADS)

    Tallapragada, P.; Ross, S. D.; Schmale, D. G.

    2011-09-01

    Many microorganisms are advected in the lower atmosphere from one habitat to another with scales of motion being hundreds to thousands of kilometers. The concentration of these microbes in the lower atmosphere at a single geographic location can show rapid temporal changes. We used autonomous unmanned aerial vehicles equipped with microbe-sampling devices to collect fungi in the genus Fusarium 100 m above ground level at a single sampling location in Blacksburg, Virginia, USA. Some Fusarium species are important plant and animal pathogens, others saprophytes, and still others are producers of dangerous toxins. We correlated punctuated changes in the concentration of Fusarium to the movement of atmospheric transport barriers identified as finite-time Lyapunov exponent-based Lagrangian coherent structures (LCSs). An analysis of the finite-time Lyapunov exponent field for periods surrounding 73 individual flight collections of Fusarium showed a relationship between punctuated changes in concentrations of Fusarium and the passage times of LCSs, particularly repelling LCSs. This work has implications for understanding the atmospheric transport of invasive microbial species into previously unexposed regions and may contribute to information systems for pest management and disease control in the future.

  7. Effect of dietary copper on litter microbial population and broiler performance.

    PubMed

    Johnson, E L; Nicholoson, J L; Doerr, J A

    1985-04-01

    Proprietary broiler diets, containing added copper (125 mg/kg) as sulphate, were fed to broilers in 4 trials (32 pens each) over a one year period without a change of litter. Mould counts in the litter of pens containing birds fed the standard diets decreased to 2 X 10(3) propagules per g in trial 4. Those in the pens with birds fed the diets containing supplemental copper decreased to 6 X 10(2) propagules per g. Litter bacterial counts (10(7) organisms/g) were not affected by dietary copper. Litter copper concentrations in pens where the birds were fed supplemented diets increased significantly to more than 600 mg/kg in trial 4. Dietary copper sulphate addition significantly increased broiler weight gains at 7 weeks in trials 3 and 4 (P less than 0.05) and the efficiency of food utilisation was significantly improved in trial 4. The copper content of the chicks' livers remained unchanged. It is suggested that broiler performance may be independent of dietary copper content. Litter copper concentrations and litter microbial alterations may be important factors.

  8. Changes in psychrotrophic microbial populations during milk creaming to produce Grana Trentino cheese.

    PubMed

    Franciosi, Elena; De Sabbata, Giorgia; Gardini, Fausto; Cavazza, Agostino; Poznanski, Elisa

    2011-02-01

    The aim of this study was to study the psychrotrophic microbiota developing during milk creaming of Grana Trentino cheese-making. 138 isolates from raw whole milk, cream and skim milk samples were screened by Randomly amplified polymorphic DNA PCR biotyping and representative strains of each biotype were characterised by partial 16S rRNA gene sequencing and enzymatic activity. Pseudomonadaceae were commonly isolated in cream samples while Streptococcaceae and Enterobacteriaceae in milk samples. Moraxellaceae and Flavobacteriaceae were found in both cream and milk samples. More than 80% of psychrotrophic isolates could grow at 37°C. All Flavobacteriaceae and half of Pseudomonadaceae biotypes displayed proteolytic activity on milk agar even at low temperatures such as 10°C. All Streptococcaceae and some of Enterobacteriaceae displayed acidifying activity and almost all Acinetobacter spp. (Moraxellaceae) displayed lipolytic activity towards tributyrin. Even if psychrotrophic bacteria is not the dominant microbial group in raw milk, their total number increases during creaming and becomes one of the most present group together with Lactic Acid Bacteria. Their enzymatic activities may be key players in determining milk quality for cheese making.

  9. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations.

    PubMed

    Smart, D R; Ferro, A; Ritchie, K; Bugbee, B G

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  10. PCR-based detection of bioluminescent microbial populations in Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Gentile, Gabriela; De Luca, Massimo; Denaro, Renata; La Cono, Violetta; Smedile, Francesco; Scarfì, Simona; De Domenico, Emilio; De Domenico, Maria; Yakimov, Michail M.

    2009-05-01

    The present study is focused on the development of a cultivation-independent molecular approach for specific detection of bioluminescent bacteria within microbial communities by direct amplification of luxA gene from environmental DNA. A new set of primers, specifically targeting free-living bioluminescent bacteria, was designed on the base of l uxA sequences available from the public database. Meso- and bathypelagic seawater samples were collected from two stations in Tyrrhenian Sea at the depths of 500 and 2750 m. The same seawater samples also were used to isolate bioluminescent bacteria that were further subjected to luxA and 16S rRNA gene sequencing. PCR products obtained by amplification with designed primers were cloned, and the phylogenetic affiliation of 40 clones was determined. All of them were clustered into three groups, only distantly related to the Photobacterium phosphoreum and Photobacterium kishitanii clades. The half of all clones formed a tight monophyletic clade, while the rest of clones were organized in "compartment"-specific, meso- and bathypelagic ecotypes. No matches with luxA gene sequences of four bioluminescent strains, isolated from the same seawater samples, were observed. These findings indicate that the PCR-based approach developed in present manuscript, allowed us to detect the novel, "yet to be cultivated" lineages of bioluminescent bacteria, which are likely specific for distinct warm bathypelagic realms of Mediterranean Sea.

  11. Effects of corn silage and grass silage in ruminant rations on diurnal changes of microbial populations in the rumen of dairy cows.

    PubMed

    Lengowski, Melanie B; Witzig, Maren; Möhring, Jens; Seyfang, Gero M; Rodehutscord, Markus

    2016-12-01

    Here, we examined diurnal changes in the ruminal microbial community and fermentation characteristics of dairy cows fed total mixed rations containing either corn silage (CS) or grass silage (GS) as forage. The rations, which consisted of 52% concentrate and 48% GS or CS, were offered for ad libitum intake over 20 days to three ruminal-fistulated lactating Jersey cows during three consecutive feeding periods. Feed intake, ruminal pH, concentrations of short chain fatty acids and ammonia in rumen liquid, as well as abundance change in the microbial populations in liquid and solid fractions, were monitored in 4-h intervals on days 18 and 20. The abundance of total bacteria and Fibrobacter succinogenes increased in solids in cows fed CS instead of GS, and that of protozoa increased in both solid and liquid fractions. Feeding GS favored numbers of F. succinogenes and Selenomonas ruminantium in the liquid fraction as well as the numbers of Ruminobacter amylophilus, Prevotella bryantii and ruminococci in both fractions. Minor effects of silage were detected on populations of methanogens. Despite quantitative changes in the composition of the microbial community, fermentation characteristics were less affected by forage source. These results suggest a functional adaptability of the ruminal microbiota to total mixed rations containing either GS or CS as the source of forage. Diurnal changes in microbial populations were primarily affected by feed intake and differed between species and fractions, with fewer temporal fluctuations evident in the solid than in the liquid fraction. Interactions between forage source and sampling time were of minor importance to most of the microbial species examined. Thus, diurnal changes of microbial populations and fermentative activity were less affected by the two silages.

  12. [Accessibility unmet needs for preventive actions seen from the population's perspective in Monterrey, México, during 2005].

    PubMed

    Garza-Elizondo, María Eugenia; Salinas-Martínez, Ana María; Núñez-Rocha, Georgina; Villarreal-Ríos, Enrique; Moreno-Monsiváis, María Guadalupe

    2008-01-01

    Integrated programs make the task of concentrating preventive actions for specific groups easier. However, health services must firstly be accessible, an essential condition for the population to use them. Hence, the objective of this study was to identify municipalities with the highest needs of accessibility of preventive actions through information synthesized in an accessibility index. This cross-sectional study considered eight metropolitan municipalities of Monterrey, Mexico and 323 individuals sampled at random. We measured attendance for at least one preventive action the year before the survey, including vaccination, diabetes or hypertension diagnosis, and cervical or breast cancer among women. The accessibility index consisted of use and access barriers, quality and resource indicators standardized using Z-scores. Ninety-nine percent had attended health services for some preventive action. The municipality with the highest unmet need was Santa Catarina (Z -6.9) followed by Apodaca (Z -1.5) and Benito Juárez (Z -1.2). San Pedro registered the highest unmet need concerning economical access barriers (Z -3.5), whereas Apodaca was not good enough with quality perception (Z -4.7) and Santa Catarina with perception of sufficient physical, human and material resources (Z -4.9). Three of the eight studied metropolitan municipalities registered the highest unmet need.

  13. Peace impact on health: population access to iodized salt in south Sudan in post-conflict period.

    PubMed

    Gaffar, Abdelrahim Mutwakel; Mahfouz, Mohamed Salih

    2011-04-15

    To determine the population access to salt/iodized salt during and after the armed conflict in south Sudan and to illustrate geographical variations in population consumption of iodized salt in south Sudan after the armed conflict. The sources of data for the conflict period were the 2004 Toward a Baseline: Best Estimates of Social Indicators for Southern Sudan study report and the 2000 Multiple Indicators Cluster Survey, and for the post-conflict period the 2005 Sudan Household Health Survey (SHHS) data set. After peace agreement, population access to salt increased by 6.8% (Z=5.488, P<0.001) and the consumption of iodized salt increased by 32.9% (Z=24.668, P<0.001). More than 73% of families were using iodized salt but geographical differences existed between states. Peace had positive impact on population access to iodized salt in south Sudan. Public health authorities in south Sudan need to establish quality monitoring and surveillance systems to track progress toward Universal Salt Iodization goal defined by the World Health Organization, United Nations Children's Fund, and the International Council for the Control of Iodine Deficiency Disorders.

  14. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Tremblay, Julien [DOE JGI

    2016-07-12

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  15. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Tremblay, Julien

    2012-06-01

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  16. The effects of methyl bromide alternatives on soil and seedling microbial populations, weeds, and seedling morphology in Oregon and Washington forest tree nurseries

    USDA-ARS?s Scientific Manuscript database

    Six fumigant treatments were evaluated at two forest tree nurseries in Oregon and one forest tree nursery in Washington for their effects on soil microbial populations, weeds, and seedling morphology during a 2-year study. Fusarium commune, F. oxysporum, Gibberella fujikuroi complex, P. irregulare,...

  17. Fate of the microbial population and the physico-chemical parameters of "Sanganel" a typical blood sausages of the Friuli, a north-east region of Italy.

    PubMed

    Iacumin, Lucilla; Manzano, Marisa; Stella, Simone; Comi, Giuseppe

    2017-05-01

    In Friuli, a Northeastern region of Italy, a blood sausage called Sanganel is produced by farmers, butchers, shops, and factories. This sausage is made with pork meat, boiled blood, lard, spices, and salt. It is stored at 4 ± 2 °C and usually eaten fresh or boiled within 14 days of its manufacture. Little is known about its microbial populations and safety for consumption. The aim of this study is to characterise the microbial populations and the physico-chemical parameters of Sanganel to establish its quality and the safety of consuming it. The microbial population of Sanganel is typical of meat products, and psychrotrophic enterobacteria and lactic acid bacteria (LAB) grow while it is stored. Enterobacteria produce total basic volatile nitrogen (TVB-N) and biogenic amines that, despite the presence of LAB, increase the pH of the sausage to approximately 6.9. Considering the concentrations of Enterobacteriaceae and TVB-N in the sausage, a shelf-life of 14 days is suggested. However, at 30 days the sausage is safe to eat and presents normal odours and flavours. In addition, boiling the sausage for 30 min before consumption eliminates the asporogenous microbial population.

  18. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep.

    PubMed

    Liu, H; Vaddella, V; Zhou, D

    2011-12-01

    This study was conducted to evaluate the effects of chestnut tannins (CT) and coconut oil (CO) on growth performance, methane (CH₄) emission, ruminal fermentation, and microbial populations in sheep. A total of 48 Rideau Arcott sheep (average body weight 31.5±1.97 kg, 16 wk old) were randomly assigned into 6 treatment groups in a 3 × 2 factorial design, with CT and CO as the main effects (8 sheep per group). The treatments were control diet (CTR), 10 or 30 g of CT/kg of diet (CT10 and CT30), 25 g of CO/kg of concentrate (CO25), and 10 or 30 g of CT/kg of diet+25 g of CO/kg of concentrate (CT10CO25 and CT30CO25). After the feeding trial (60 d), all sheep were moved to respiratory chambers to measure CH₄ emission. After CH₄ emission measurements, all sheep were slaughtered to obtain rumen fluid samples. Results showed that the addition of CT, CO, and CT+CO had no significant effects on growth performance of sheep but reduced CH₄ emission. Addition of CT reduced the NH₃-N concentration in rumen fluid in CT30. Addition of CO decreased the concentration of total volatile fatty acids in rumen fluid. No significant differences were observed in pH and molar proportion of volatile fatty acids among treatments. Addition of CT, CO, and CT+CO significantly decreased methanogen and protozoa populations. Moreover, CO decreased counts of Fibrobacter succinogenes. No significant differences were observed in populations of fungi, Ruminococcus flavefaciens, or Ruminococcus albus among treatments. In conclusion, supplementation of CT and CO seemed to be a feasible means of decreasing emissions of CH₄ from sheep by reduction of methanogen and protozoa populations with no negative effect on growth performance. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat.

    PubMed

    Wirsen, C O; Molyneaux, S J

    1999-12-01

    Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.

  20. Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden.

    PubMed

    Pedersen, Karsten

    2012-07-01

    Pressure-resistant circulating systems were constructed to enable the investigation of attached and unattached microbial populations under in situ pressure (2.5 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the effect on microbial metabolic activity of adding 3 mM hydrogen or 2.4 mM acetate, compared with an untreated control. Hydrogen addition reduced the generation time fourfold to 2 weeks, doubled the sulphide production rate and increased acetate production by approximately 50%. The acetate addition induced acetate consumption. The studied subterranean microbial processes appeared to proceed very slowly in terms of volume and time, although the results suggest that individual cells could be very active. Lytic bacteriophages are hypothesized to have caused this contradictive observation. Phages may consequently significantly reduce the rates of subterranean microbial processes. Furthermore, the results suggest that hydrogen from corroding underground constructions could induce significant local microbial activity and that the low concentrations of hydrogen often observed in pristine subterranean environments may support slow but sustainable microbial activity in deep groundwater. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Population dynamics and current-generation mechanisms in cassette-electrode microbial fuel cells.

    PubMed

    Watanabe, Kazuya; Miyahara, Morio; Shimoyama, Takefumi; Hashimoto, Kazuhito

    2011-12-01

    Cassette-electrode microbial fuel cells (CE-MFCs) have been demonstrated useful to treat biomass wastes and recover electric energy from them. In order to reveal electricity-generation mechanisms in CE-MFCs, the present study operated a bench-scale reactor (1 l in capacity; approximately 1,000 cm(2) in anode and cathode areas) for treating a high-strength model organic wastewater (comprised of starch, peptone, and fish extract). Approximately 1 month was needed for the bench reactor to attain a stable performance, after which volumetric maximum power densities persisted between 120 and 150 mW/l throughout the experiment (for over 2 months). Temporal increases in the external resistance were found to induce subsequent increases in power outputs. After electric output became stable, electrolyte and anode were sampled from the reactor for evaluating their current-generation abilities; it was estimated that most of current (over 80%) was generated by microbes in the electrolyte. Cyclic voltammetry of an electrolyte supernatant detected several electron shuttles with different standard redox potentials at high concentrations (equivalent to or more than 100 μM 5-hydroxy-1,4-naphthoquinone). Denaturing gradient gel electrophoresis and quantitative real-time PCR of 16S ribosomal RNA gene fragments showed that bacteria related to the genus Dysgonomonas occurred abundantly in association with the increases in power outputs. These results suggest that mediated electron transfer was the main mechanism for electricity generation in CE-MFC, where high-concentration electron shuttles and Dysgonomonas bacteria played important roles.

  2. Microbial populations associated with commercially produced South African sorghum beer as determined by conventional and Petrifilm plating.

    PubMed

    Pattison, T L; Geornaras, I; von Holy, A

    1998-08-18

    Microbial populations of 46 commercially produced sorghum beer samples from retail outlets in Johannesburg, South Africa, were enumerated and characterized. Aerobic plate counts, lactic acid bacteria counts and yeast counts were performed by conventional and Petrifilm plating. Conventional methods yielded yeast counts of 7.84 log CFU/ml, lactic acid bacteria counts of 6.44 log CFU/ml and aerobic plate counts of 5.96 log CFU/ml. In comparison, Petrifilm counts were 7.85 log CFU/ml for yeasts, 5.31 log CFU/ml for lactic acid bacteria and 5.34 log CFU/ml for aerobic bacteria. Characterization of 419 predominant bacterial isolates from Standard One Nutrient Agar, MRS Agar and corresponding Petrifilm plates yielded 88.0% lactic acid bacteria, 8.4% Bacillus species, 2.9% Micrococcus species and 0.7% Gram negative bacteria. Composition of predominant lactic acid bacteria populations from Standard One Nutrient Agar and both types of Petrifilm plates showed marginal differences. Increased proportions of heterofermentative lactic acid bacteria were, however, isolated from conventional MRS Agar compared to the modified Petrifilm product which represented the equivalent to MRS Agar.

  3. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population.

    PubMed

    Andoh, Akira; Nishida, Atsushi; Takahashi, Kenichiro; Inatomi, Osamu; Imaeda, Hirotsugu; Bamba, Shigeki; Kito, Katsuyuki; Sugimoto, Mitsushige; Kobayashi, Toshio

    2016-07-01

    Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. In this study, we performed 16S rRNA sequence analysis of the gut microbiota profiles of obese and lean Japanese populations. The V3-V4 hypervariable regions of 16S rRNA of fecal samples from 10 obese and 10 lean volunteers were sequenced using the Illumina MiSeq(TM)II system. The average body mass index of the obese and lean group were 38.1 and 16.6 kg/m(2), respectively (p<0.01). The Shannon diversity index was significantly higher in the lean group than in the obese group (p<0.01). The phyla Firmicutes and Fusobacteria were significantly more abundant in obese people than in lean people. The abundance of the phylum Bacteroidetes and the Bacteroidetes/Firmicutes ratio were not different between the obese and lean groups. The genera Alistipes, Anaerococcus, Corpococcus, Fusobacterium and Parvimonas increased significantly in obese people, and the genera Bacteroides, Desulfovibrio, Faecalibacterium, Lachnoanaerobaculum and Olsenella increased significantly in lean people. Bacteria species possessing anti-inflammatory properties, such as Faecalibacterium prausnitzii, increased significantly in lean people, but bacteria species possessing pro-inflammatory properties increased in obese people. Obesity-associated gut microbiota in the Japanese population was different from that in Western people.

  4. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population

    PubMed Central

    Andoh, Akira; Nishida, Atsushi; Takahashi, Kenichiro; Inatomi, Osamu; Imaeda, Hirotsugu; Bamba, Shigeki; Kito, Katsuyuki; Sugimoto, Mitsushige; Kobayashi, Toshio

    2016-01-01

    Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. In this study, we performed 16S rRNA sequence analysis of the gut microbiota profiles of obese and lean Japanese populations. The V3–V4 hypervariable regions of 16S rRNA of fecal samples from 10 obese and 10 lean volunteers were sequenced using the Illumina MiSeqTMII system. The average body mass index of the obese and lean group were 38.1 and 16.6 kg/m2, respectively (p<0.01). The Shannon diversity index was significantly higher in the lean group than in the obese group (p<0.01). The phyla Firmicutes and Fusobacteria were significantly more abundant in obese people than in lean people. The abundance of the phylum Bacteroidetes and the Bacteroidetes/Firmicutes ratio were not different between the obese and lean groups. The genera Alistipes, Anaerococcus, Corpococcus, Fusobacterium and Parvimonas increased significantly in obese people, and the genera Bacteroides, Desulfovibrio, Faecalibacterium, Lachnoanaerobaculum and Olsenella increased significantly in lean people. Bacteria species possessing anti-inflammatory properties, such as Faecalibacterium prausnitzii, increased significantly in lean people, but bacteria species possessing pro-inflammatory properties increased in obese people. Obesity-associated gut microbiota in the Japanese population was different from that in Western people. PMID:27499582

  5. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing.

    PubMed

    Metzler-Zebeli, B U; Khol-Parisini, A; Gruber, L; Zebeli, Q

    2015-12-01

    To evaluate the effects of treating barley grain with lactic acid (LA) and heat on postprandial dynamics of 19 microbial taxa and fermentation in the rumen of dairy cows. This study was designed as a double 3 × 3 Latin square with six rumen-cannulated cows and three diets either containing untreated control barley or barley treated with 1% LA and 1% LA and heat (LAH, 55°C). Microbial populations, pH and volatile fatty acids were assessed in rumen liquid and solids during the postprandial period. Propionate increased and butyrate decreased in rumen solids of cows fed LA and LAH treated barley compared to the control barley. The LA but not LAH treatment depressed Fibrobacter succinogenes in rumen liquid and solids, whereas the opposite effect was observed for Ruminococcus albus in both fractions and Ruminococcus flavefaciens in rumen solids. LA promoted Ruminobacter amylophilus with the effect being more pronounced with LAH. The Lactobacillus group and Megasphaera elsdenii increased in both fractions with LA but not with LAH. LA and LAH treatment of barley differently altered ruminal abundance of certain bacterial taxa and fungi and increased propionate fermentation in rumen solids, whereby LA and LAH effects were consistent and mostly independent of the rumen fraction and time after barley feeding. Results provided evidence that LA and LAH treatment of barley can enhance rumen propionate fermentation without adversely affecting rumen pH. As propionate is the major contributor to gluconeogenesis in ruminants, the present barley treatment may have practical application to enhance energy supply in dairy cows. © 2015 The Society for Applied Microbiology.

  6. Persistence of Soil Organic Carbon can be Explained as an Emergent Property of Microbial Ecology and Population Dynamics

    NASA Astrophysics Data System (ADS)

    Woolf, D.; Lehmann, J.

    2016-12-01

    The exchange of carbon between soils and the atmosphere represents an important uncertainty in climate predictions. Current Earth system models apply soil organic matter (SOM) models based on independent carbon pools with 1st order decomposition dynamics. It has been widely argued over the last decade that such models do not accurately describe soil processes and mechanisms. For example, the long term persistence of soil organic carbon (SOC) is only adequately described by such models by the post hoc assumption of passive or inert carbon pools. Further, such 1st order models also fail to account for microbially-mediated dynamics such as priming interactions. These shortcomings may limit their applicability to long term predictions under conditions of global environmental change. In addition to incorporating recent conceptual advances in the mechanisms of SOM decomposition and protection, next-generation SOM models intended for use in Earth system models need to meet further quality criteria. Namely, that they should (a) accurately describe historical data from long term trials and the current global distribution of soil organic carbon, (b) be computationally efficient for large number of iterations involved in climate modeling, and (c) have sufficiently simple parameterization that they can be run on spatially-explicit data available at global scale under varying conditions of global change over long time scales. Here we show that linking fundamental ecological principles and microbial population dynamics to SOC turnover rates results in a dynamic model that meets all of these quality criteria. This approach simultaneously eliminates the need to postulate biogeochemically-implausible passive or inert pools, instead showing how SOM persistence emerges from ecological principles, while also reproducing observed priming interactions.

  7. Availability and access in modern obstetric care: a retrospective population-based study.

    PubMed

    Engjom, H M; Morken, N-H; Norheim, O F; Klungsøyr, K

    2014-02-01

    To assess the availability of obstetric institutions, the risk of unplanned delivery outside an institution and maternal morbidity in a national setting in which the number of institutions declined from 95 to 51 during 30 years. Retrospective population-based, three cohorts and two cross-sectional analyses. Census data, Statistics Norway. The Medical Birth Registry of Norway from 1979 to 2009. Women (15-49 years), 2000 (n = 1,050,269) and 2010 (n = 1,127,665). Women who delivered during the period 1979-2009 (n = 1,807,714). Geographic Information Systems software for travel zone calculations. Cross-table and multiple logistic regression analysis of change over time and regional differences. World Health Organization Emergency Obstetric and Newborn Care (EmOC) indicators. Proportion of women living outside the 1-hour travel zone to obstetric institutions. Risk of unplanned delivery outside obstetric institutions. Maternal morbidity. The proportion of women living outside the 1-hour zone for all obstetric institutions increased from 7.9% to 8.8% from 2000 to 2010 (relative risk, 1.1; 95% confidence interval, 1.11-1.12), and for emergency obstetric care from 11.0% to 12.1% (relative risk, 1.1; 95% confidence interval, 1.09-1.11). The risk of unplanned delivery outside institutions increased from 0.4% in 1979-83 to 0.7% in 2004-09 (adjusted odds ratio, 2.0; 95% confidence interval, 1.9-2.2). Maternal morbidity increased from 1.7% in 2000 to 2.2% in 2009 (adjusted odds ratio, 1.4; 95% confidence interval, 1.2-1.5) and the regional differences increased. The availability of and access to obstetric institutions was reduced and we did not observe the expected decrease in maternal morbidity following the centralisation. © 2013 The Authors. BJOG An International Journal of Obstetrics and Gynaecology published by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  8. Comparison of knowledge and accessibility to information sources of HIV/AIDS between blind and sighted populations in Nigeria.

    PubMed

    Otte, Willem M; van der Maas, Frank; de Boer, Anthonius

    2008-10-01

    The aim of this study was to compare the HIV/AIDS knowledge and accessibility to HIV/AIDS information between blind and sighted individuals in Nigeria. A cross-sectional survey was undertaken among rural and urban blind (57) and sighted (62) adolescents in 2006. A structured questionnaire was used to collect data about HIV/AIDS symptoms, transmission and prevention knowledge, as well as accessibility to sources of HIV/AIDS information. Binary logistic regression and chi-square statistics were applied to compare responses between the two populations. Blindness was found to be associated with diminished knowledge of HIV/AIDS transmission, prevention and symptoms. At the same time, the blind rely on different sources of HIV/AIDS information than sighted respondents. A lack of knowledge and limited accessibility to proper sources of information causes the blind disabled to be more vulnerable. It is necessary to supply them with proper information and increase their HIV/AIDS knowledge.

  9. Bioremediation of chlorinated ethenes in fractured bedrock and associated changes in dechlorinating and nondechlorinating microbial populations.

    PubMed

    Pérez-de-Mora, Alfredo; Zila, Anna; McMaster, Michaye L; Edwards, Elizabeth A

    2014-05-20

    The use of enhanced in situ anaerobic bioremediation (EISB) and bioaugmentation in fractured bedrock is limited compared to its use in granular media. We evaluated EISB for the treatment of trichloroethene (TCE)-impacted groundwater in fractured carbonate rock at a site in Southern Ontario, Canada, with cool average groundwater temperature (∼ 13 °C). Borehole-connectivity, contaminant concentrations, and groundwater properties were investigated. Changes in dechlorinating and nondechlorinating populations (fermenters, acetogens, methanogens, and sulfate reducers) were assessed via quantitative PCR (qPCR). During biostimulation with ethanol, concentrations of TCE daughter products cis-dichloroethene (cDCE) and vinyl chloride (VC) decreased in association with an enrichment of vcrA (VC reductive dehalogenase)-carrying Dehalococcoides, whereas ethene production was only moderate. Following bioaugmentation with the mixed dechlorinating culture KB-1, greater concentrations of chloride-a product of dechlorination-