Science.gov

Sample records for access multiphoton microscopy

  1. Multimodal multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Légaré, François; Pfeffer, Christian P.; Ganikhanov, Feruz

    2009-02-01

    Multiphoton microscopy is a powerful technique for high spatial resolution thick tissue imaging. In its simple version, it uses a high repetition rate femtosecond oscillator laser source focussed and scanned across biological sample that contains fluorophores. However, not every biological structure is inherently fluorescent or can be stained without causing biochemical changes. To circumvent these limitations, other non-invasive nonlinear optical imaging approaches are currently being developed and investigated with regard to different applications. These techniques are: (1) second harmonic generation (SHG), (2) third harmonic generation (THG), and (3) coherent anti-Stokes Raman scattering (CARS) microscopy. The main advantage of the above mentioned techniques is that they derive their imaging contrast from optical nonlinearities that do not involve fluorescence process. As a particular application example we investigated collagen arrays. We show that combining SHG-THG-CARS onto a single imaging platform provides complementary information about the sub-micron architecture of the tissue. SHG microscopy reveals the fibrillar architecture of collagen arrays and confirm a rather high degree of heterogeneity of χ(2) within the focal volume, THG highlights the boundaries between the collagen sheets, and CH2 spectroscopic contrast with CARS.

  2. Multiphoton microscopy of atheroslcerotic plaques

    NASA Astrophysics Data System (ADS)

    Lilledahl, Magnus B.; de Lange Davies, Catharina; Haugen, Olav A.; Svaasand, Lars O.

    2007-02-01

    Multiphoton microscopy is a techniques that fascilitates three dimensional imaging of intact, unstained tissue. Especially connective tissue has a relatively strong nonlinear optical response and can easily be imaged. Atherosclerosis is a disease where lipids accumulate in the vessel wall and there is a thickening of the intima by growth of a cap of connective tissue. The mechanical strength of this fibrous cap is of clinically importance. If the cap ruptures a thrombosis forms which can block a coronary vessel and therby causing myocardial infarction. Multiphoton microscopy can be used to image the fibrous cap and thereby determine the thickness of the cap and the structure of the connective fibres. This could possibly be developed into a diagnostic and clincal tool to monitor the vulnerability of a plaque and also to better understand the development of a plaque and effects of treatment. We have collected multiphoton microscopy images from atherosclerotic plaque in human aorta, both two photon excited fluorescens and second harmonic generated signal. The feasability of using this technique to determine the state of the plaque is explored.

  3. Multiphoton microscopy in life sciences.

    PubMed

    König, K

    2000-11-01

    Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm(-2) to GW cm(-2), which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi-gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non-invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth-resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non-invasive fluorophore loading into single living plant cells. Non-destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis-like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two-photon excitation process rather than a one-photon or three-photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two-photon vital cell studies. In labelled cells, additional phototoxic effects may occur via

  4. Differential Multiphoton Laser Scanning Microscopy

    SciTech Connect

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2012-01-01

    Multifocal multiphoton laser scanning microscopy (mfMPLSM) in the biological and medical sciences has the potential to become a ubiquitous tool for obtaining high-resolution images at video rates. While current implementations of mfMPLSM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for mfMPLSM in which whole-field detection with a single detector, rather than detection with a matrix of detectors, such as a charge-coupled device (CCD) camera, is implemented. This advance makes mfMPLSM fully compatible for use in imaging through scattering media. Further, we demonstrate that this method makes it possible to simultaneously obtain multiple images and view differences in excitation parameters in a single scan of the specimen.

  5. Differential Multiphoton Laser Scanning Microscopy

    PubMed Central

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2016-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot. PMID:27390511

  6. Multi-photon excitation microscopy

    PubMed Central

    Diaspro, Alberto; Bianchini, Paolo; Vicidomini, Giuseppe; Faretta, Mario; Ramoino, Paola; Usai, Cesare

    2006-01-01

    Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments. PMID:16756664

  7. Multi-photon excitation microscopy.

    PubMed

    Diaspro, Alberto; Bianchini, Paolo; Vicidomini, Giuseppe; Faretta, Mario; Ramoino, Paola; Usai, Cesare

    2006-06-06

    Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.

  8. Multiphoton fluorescence microscopy in biology

    NASA Astrophysics Data System (ADS)

    Heikal, Ahmed A.; Webb, Watt W.

    2002-11-01

    The inherent advantages of nonlinear excitation make multiphoton fluorescence microscopy (MPFM) awell-suited imaging technique for extracting valuable information from turbid and thick biological samples. These advantages include high three-dimensional spatial resolution, large penetration depth, minimum out-of-focus cellular photodamage, and high signal-to-noise contrast. We have investigated the nonlinear spectroscopy of biologically important molecules such as NADH, flavins, and intrinsically fluorescent proteins. Fundamental understanding of the molecular spectroscopy and dynamics of these biomolecules is essential for advancing their applications in biological research. MPFM has been utilized for monitoring a large spectrum of biological processes including metabolic activity and exocytosis. We will discuss two-photon (2P) redox fluorescence microscopy of NADH, which gives a quantitative measure of the respiratory chain activity, thus allowing functional imaging of energy metabolism in neurons and native brain tissue. Finally, a rational design strategy, based on donor-acceptor-donor configuration, will be elucidated for fluorescent probes with large 2P-excitation cross-section. These dyes are water-soluble, yet possess a high affinity to organic phases with site-specific labeling and Ca+2 sensitivity (Kd ~ 350 nM). A brief account on the biological application of nanocrystals and second harmonic imaging will be reviewed.

  9. Multiphoton microscopy: an introduction to gastroenterologists.

    PubMed

    Cho, Hye Jin; Chun, Hoon Jai; Kim, Eun Sun; Cho, Bong Rae

    2011-10-28

    Multiphoton microscopy, relying on the simultaneous absorption of two or more photons by a fluorophore, has come to occupy a prominent place in modern biomedical research with its ability to allow real-time observation of a single cell and molecules in intact tissues. Multiphoton microscopy exhibits nonlinear optical contrast properties, which can make it possible to provide an exceptionally large depth penetration with less phototoxicity. This system becomes more and more an inspiring tool for a non-invasive imaging system to realize "optical biopsy" and to examine the functions of living cells. In this review, we briefly present the physical principles and properties of multiphoton microscopy as well as the current applications in biological fields. In addition, we address what we see as the future potential of multiphoton microscopy for gastroenterologic research.

  10. Multiphoton microscopy of cleared mouse organs

    NASA Astrophysics Data System (ADS)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  11. Multiphoton microscopy in defining liver function

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Crawford, Darrell; Burczynski, Frank J.; Liu, Xin; Liau, Ian; Roberts, Michael S.

    2014-09-01

    Multiphoton microscopy is the preferred method when in vivo deep-tissue imaging is required. This review presents the application of multiphoton microscopy in defining liver function. In particular, multiphoton microscopy is useful in imaging intracellular events, such as mitochondrial depolarization and cellular metabolism in terms of NAD(P)H changes with fluorescence lifetime imaging microscopy. The morphology of hepatocytes can be visualized without exogenously administered fluorescent dyes by utilizing their autofluorescence and second harmonic generation signal of collagen, which is useful in diagnosing liver disease. More specific imaging, such as studying drug transport in normal and diseased livers are achievable, but require exogenously administered fluorescent dyes. If these techniques can be translated into clinical use to assess liver function, it would greatly improve early diagnosis of organ viability, fibrosis, and cancer.

  12. Clinical multiphoton and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Darvin, M. E.; Lademann, J.; König, K.

    2012-03-01

    We report on clinical CARS imaging of human skin in vivo with the certified hybrid multiphoton tomograph CARSDermaInspect. The CARS-DermaInspect provides simultaneous imaging of non-fluorescent intradermal lipid and water as well as imaging of two-photon excited fluorescence from intrinsic molecules. Two different excitation schemes for CARS imaging have been realized: In the first setup, a combination of fs oscillator and optical parametric oscillator provided fs-CARS pump and Stokes pulses, respectively. In the second setup a fs oscillator was combined with a photonic crystal fiber which provided a broadband spectrum. A spectral range out of the broadband-spectrum was selected and used for CARS excitation in combination with the residual fs-oscillator output. In both setups, in addition to CARS, single-beam excitation was used for imaging of two-photon excited fluorescence and second harmonic generation signals. Both CARS-excitation systems were successfully used for imaging of lipids inside the skin in vivo.

  13. Live cell imaging by multifocal multiphoton microscopy.

    PubMed

    Straub, M; Lodemann, P; Holroyd, P; Jahn, R; Hell, S W

    2000-10-01

    Multifocal multiphoton microscopy (MMM) permits parallel multiphoton excitation by scanning an array of high numerical aperture foci across a plane in the sample. MMM is particularly suitable for live cell investigations since it combines advantages of standard multiphoton microscopy such as optical sectioning and suppression of out-of-focus phototoxicity with high recording speeds. Here we describe several applications of MMM to live cell imaging using the neuroendocrine cell line PC12 and bovine chromaffin cells. Stainings were performed with the acidophilic dye acridine orange and the lipophilic dyes FM1-43 and Fast DiA as well as by transfection of the cells with GFP. In both bovine chromaffin and PC12 cells structural elements of nuclear chromatin and the 3-D distribution of acidic organelles inside the cells were visualized. In PC12 cells differentiated by nerve growth factor examples of neurites were monitored. Stainings of membranes were used to reconstruct the morphology of cells and neurites in three dimensions by volume-rendering and by isosurface plots. 3-D reconstructions were composed from stacks of about 50 images each with a diameter of 30-100 microm that were acquired within a few seconds. We conclude that MMM proves to be a technically simple and very effective method for fast 3-D live cell imaging at high resolution.

  14. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  15. Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review

    PubMed Central

    Yew, Elijah; Rowlands, Christopher

    2014-01-01

    This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance. PMID:25075226

  16. Visualizing the podocyte with multiphoton microscopy

    PubMed Central

    Khoury, Charbel C.; Khayat, Mark F.; Yeo, Tet-Kin; Pyagay, Petr E.; Wang, Amy; Asuncion, Allan M.; Sharma, Kumar; Yu, Weiming; Chen, Sheldon

    2012-01-01

    The podocyte is a highly specialized kidney glomerular epithelial cell that plays an essential role in glomerular filtration and is believed to be the target of numerous glomerular diseases leading to proteinuria. Despite the leaps in our understanding of podocyte biology, new methodologies are needed to facilitate research into the cell. Multiphoton microscopy (MPM) was used to image the nephrin knockout/green fluorescent protein (GFP) knock-in heterozygote (Nphs1tm1Rkl/J) mouse. The nephrin promoter restricts GFP expression to the podocytes that fluoresce green under excitation. From the exterior of an intact kidney, MPM can peer into the renal parenchyma and visualize the podocytes that outline the globular shape of the glomeruli. Details as fine as the podocyte’s secondary processes can be resolved. In contrast, podocytes exhibit no fluorescence in the wildtype mouse and are invisible to MPM. Phenotypically, there are no significant differences between wildtype and Nphs1tm1Rkl/J mice in body weight, urinary albumin excretion, creatinine clearance, or glomerular depth. Interestingly, the glomeruli are closer to the kidney capsule in female mice, making the gender the preferred choice for MPM. For the first time, green fluorescent podocytes in a mouse model free of confounding phenotypes can be visualized unequivocally and in the “positive” by MPM, facilitating intravital studies of the podocyte. PMID:23022193

  17. Human bladder cancer diagnosis using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sushmita; Wysock, James S.; Ng, Casey K.; Akhtar, Mohammed; Perner, Sven; Lee, Ming-Ming; Rubin, Mark A.; Maxfield, Frederick R.; Webb, Watt W.; Scherr, Douglas S.

    2009-02-01

    At the time of diagnosis, approximately 75% of bladder cancers are non-muscle invasive. Appropriate diagnosis and surgical resection at this stage improves prognosis dramatically. However, these lesions, being small and/or flat, are often missed by conventional white-light cystoscopes. Furthermore, it is difficult to assess the surgical margin for negativity using conventional cystoscopes. Resultantly, the recurrence rates in patients with early bladder cancer are very high. This is currently addressed by repeat cystoscopies and biopsies, which can last throughout the life of a patient, increasing cost and patient morbidity. Multiphoton endoscopes offer a potential solution, allowing real time, noninvasive biopsies of the human bladder, as well as an up-close assessment of the resection margin. While miniaturization of the Multiphoton microscope into an endoscopic format is currently in progress, we present results here indicating that Multiphoton imaging (using a bench-top Multiphoton microscope) can indeed identify cancers in fresh, unfixed human bladder biopsies. Multiphoton images are acquired in two channels: (1) broadband autofluorescence from cells, and (2) second harmonic generation (SHG), mostly by tissue collagen. These images are then compared with gold standard hematoxylin/eosin (H&E) stained histopathology slides from the same specimen. Based on a "training set" and a very small "blinded set" of samples, we have found excellent correlation between the Multiphoton and histopathological diagnoses. A larger blinded analysis by two independent uropathologists is currently in progress. We expect that the conclusion of this phase will provide us with diagnostic accuracy estimates, as well as the degree of inter-observer heterogeneity.

  18. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  19. Advances in renal (patho)physiology using multiphoton microscopy.

    PubMed

    Sipos, A; Toma, I; Kang, J J; Rosivall, L; Peti-Peterdi, J

    2007-11-01

    Multiphoton excitation fluorescence microscopy is a state-of-the-art confocal imaging technique ideal for deep optical sectioning of living tissues. It is capable of performing ultrasensitive, quantitative imaging of organ functions in health and disease with high spatial and temporal resolution which other imaging modalities cannot achieve. For more than a decade, multiphoton microscopy has been successfully used with various in vitro and in vivo experimental approaches to study many functions of different organs, including the kidney. This study focuses on recent advances in our knowledge of renal (patho)physiological processes made possible by the use of this imaging technology. Visualization of cellular variables like cytosolic calcium, pH, cell-to-cell communication and signal propagation, interstitial fluid flow in the juxtaglomerular apparatus (JGA), real-time imaging of tubuloglomerular feedback (TGF), and renin release mechanisms are reviewed. A brief summary is provided of kidney functions that can be measured by in vivo quantitative multiphoton imaging including glomerular filtration and permeability, concentration, dilution, and activity of the intrarenal renin-angiotensin system using this minimally invasive approach. New visual data challenge a number of existing paradigms in renal (patho)physiology. Also, quantitative imaging of kidney function with multiphoton microscopy has tremendous potential to eventually provide novel non-invasive diagnostic and therapeutic tools for future applications in clinical nephrology.

  20. Rapid mesoscale multiphoton microscopy of human skin

    PubMed Central

    Balu, Mihaela; Mikami, Hideharu; Hou, Jue; Potma, Eric O.; Tromberg, Bruce J.

    2016-01-01

    We present a multiphoton microscope designed for mesoscale imaging of human skin. The system is based on two-photon excited fluorescence and second-harmonic generation, and images areas of ~0.8x0.8 mm2 at speeds of 0.8 fps (800x800 pixels; 12 frame averages) for high signal-to-noise ratio, with lateral and axial resolutions of 0.5µm and 3.3µm, respectively. The main novelty of this instrument is the design of the scan head, which includes a fast galvanometric scanner, optimized relay optics, a beam expander and high NA objective lens. Computed aberrations in focus are below the Marechal criterion of 0.07λ rms for diffraction-limited performance. We demonstrate the practical utility of this microscope by ex-vivo imaging of wide areas in normal human skin. PMID:27895980

  1. Multiphoton fluorescence and second harmonic generation microscopy for imaging keratoconus

    NASA Astrophysics Data System (ADS)

    Sun, Yen; Lo, Wen; Lin, Sung-Jan; Lin, Wei-Chou; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2006-02-01

    The purpose of this study is to assess the possible application of multiphoton fluorescence and second harmonic generation (SHG) microscopy for imaging the structural features of keratoconus cornea and to evaluate its potential as being a clinical in vivo monitoring technique. Using the near-infrared excitation source from a titanium-sapphire laser pumped by a diode-pumped, solid state (DPSS) laser system, we can induce and simultaneously acquire multiphoton autofluorescence and SHG signals from the cornea specimens with keratoconus. A home-modified commercial microscope system with specified optical components is used for optimal signal detection. Keratoconus cornea button from patient with typical clinical presentation of keratoconus was obtained at the time of penetrating keratoplasty. The specimen was also sent for the histological examination as comparison. In all samples of keratoconus, destruction of lamellar structure with altered collagen fiber orientation was observed within whole layer of the diseased stromal area. In addition, the orientation of the altered collagen fibers within the cone area shows a trend directing toward the apex of the cone, which might implicate the biomechanical response of the keratoconus stroma to the intraocular pressure. Moreover, increased autofluorescent cells were also found in the cone area, with increased density as one approaches the apical area. In conclusion, multiphoton autofluorescence and SHG microscopy non-invasively demonstrated the morphological features of keratoconus cornea, especially the structural alternations of the stromal lamellae. We believe that in the future the multiphoton microscopy can be applied in vivo as an effective, non-invasive diagnostic and monitoring technique for keratoconus.

  2. Differentiation of highly metastatic nasopharyngeal carcinoma cells using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhan, Zhenlin; Sun, Zhenzhen; Li, Jingwen; Ye, Qing; Zhuo, Shuangmu; Xie, Shusen

    2016-10-01

    The primary hypothesis tested in the study was that nasopharyngeal carcinoma (NPC) cells at different stage of invasion and metastasis can be differentiated using multiphoton microscopy (MPM). CNE1 and CNE2Z cells were cultured and used in this study. The activity of cell migration and invasion was measured using Transwell assays. At the same time, the morphologic features were quantified from the multiphoton images. The measurements of Transwell migration and invasion showed that the invasion and migration of CNE2Z cells were significantly enhanced when compared with that of CNE1 cells. Also, statistically significant differences in the morphologic features were found between two kinds of cancer cells. In conclusion, it is feasible to use MPM to differentiate cancer cells with different stage of invasion and metastasis.

  3. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  4. Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source.

    PubMed

    Lefort, Claire; O'Connor, Rodney P; Blanquet, Véronique; Magnol, Laetitia; Kano, Hideaki; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-07-01

    Multicolor multiphoton microscopy is experimentally demonstrated for the first time on a spectral bandwidth of excitation of 300 nm (full width half maximum) thanks to the implementation a nanosecond supercontinuum (SC) source compact and simple with a low repetition rate. The interest of such a wide spectral bandwidth, never demonstrated until now, is highlighted in vivo: images of glioma tumor cells stably expressing eGFP grafted on the brain of a mouse and its blood vessels network labelled with Texas Red(®) are obtained. These two fluorophores have a spectral bandwidth covering the whole 300 nm available. In parallel, a similar image quality is obtained on a sample of mouse muscle in vitro when excited with this nanosecond SC source or with a classical high rate, femtosecond and quasi monochromatic laser. This opens the way for (i) a simple and very complete biological characterization never performed to date with multiphoton processes, (ii) multiple means of contrast in nonlinear imaging allowed by the use of numerous fluorophores and (iii) other multiphoton processes like three-photon ones.

  5. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  6. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  7. Multiphoton intravital microscopy setup to visualize the mouse mammary gland

    NASA Astrophysics Data System (ADS)

    Adur, Javier; Herrera Torres, Ana M.; Masedunskas, Andrius; Baratti, Mariana O.; de Thomaz, Andre A.; Pelegati, Vitor B.; Carvalho, Hernandes F.; Cesar, Carlos L.

    2013-06-01

    Recently, light microscopy-based techniques have been extended to live mammalian models leading to the development of a new imaging approach called intravital microscopy (IVM). Although IVM has been introduced at the beginning of the last century, its major advancements have occurred in the last twenty years with the development of non-linear microscopy that has enabled performing deep tissue imaging. IVM has been utilized to address many biological questions in basic research and is now a fundamental tool that provide information on tissues such as morphology, cellular architecture, and metabolic status. IVM has become an indispensable tool in numerous areas. This study presents and describes the practical aspects of IVM necessary to visualize epithelial cells of live mouse mammary gland with multiphoton techniques.

  8. Bleed-through and photobleaching correction in multiphoton FRET microscopy

    NASA Astrophysics Data System (ADS)

    Elangovan, Masilamani; Periasamy, Ammasi

    2001-04-01

    Fluorescence resonance energy transfer (FRET) microscopy provides a tool to visualize the protein with high spatial and temporal resolution. In multi-photon FRET microscopy one experiences considerably less photobleaching compared to one-photon excitation since the illumination is the diffraction limited spot and the excitation is infrared-pulsed laser light. Because of the spectral overlap involved in the selection of the fluorophore pair for FRET imaging, the spectral bleed-through signal in the FRET channel is unavoidable. We describe in this paper the development of dedicated software to correct the bleed-through signal due to donor and acceptor fluorophore molecules. We used living cells expressed with BFP-RFP (DsRed)-C/EBP(alpha) proteins in the nucleus. We acquired images of different combinations like donor alone, acceptor alone, and both acceptor and donor under similar conditions. We statistically evaluated the percentage of bleed-through signal from one channel to the other based on the overlap areas of the spectra. We then reconstructed the images after applying the correction. Characterization of multi-photon FRET imaging system taking into account the intensity, dwell time, concentration of fluorophore pairs, objective lens and the excitation wavelength are described in this paper.

  9. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  10. Reassignment of scattered emission photons in multifocal multiphoton microscopy.

    PubMed

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T C

    2014-06-05

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.

  11. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  12. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  13. Design of a fiber-optic multiphoton microscopy handheld probe

    PubMed Central

    Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo

    2016-01-01

    We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module. PMID:27699109

  14. In vivo multiphoton microscopy of deep tissue with gradient index lenses

    NASA Astrophysics Data System (ADS)

    Levene, Michael J.; Dombeck, Daniel A.; Williams, Rebecca M.; Skoch, Jesse; Hickey, Gregory A.; Kasischke, Karl A.; Molloy, Raymond P.; Ingelsson, Martin; Stern, Edward A.; Klucken, Jochen; Bacskai, Brian J.; Zipfel, Warren R.; Hyman, Bradley T.; Webb, Watt W.

    2004-06-01

    Gradient index lenses enable multiphoton microscopy of deep tissues in the intact animal. In order to assess their applicability to clinical research, we present in vivo multiphoton microscopy with gradient index lenses in brain regions associated with Alzheimer's disease and Parkinson's disease in both transgenic and wild-type mice. We also demonstrate microscopy of ovary in wild type mouse using only intrinsic fluorescence and second harmonic generation, signal sources which may prove useful for both the study and diagnosis of cancer.

  15. Evaluating thermal damage induced by pulsed light with multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Xie, Shusen; Huang, Yimei

    2009-02-01

    Nonablative skin remodeling is a new light treatment approach for photodamaged skin. Compared to ablative CO2 or Er:YAG laser resurfacing, dermabrasion, and chemical peels, the clinical objective of nonablative skin remodeling is to maximize thermal damage to upper dermis while minimizing injury to the epidermis and surrounding tissue, consequently decreasing potential complications and shortening long recuperation periods. Histological analysis of preoperative and postoperative biopsies using H&E or special stains has indicated the dermal thermal injury, which resulting in collagen denaturation, is the most important mechanism of nonablative skin remodeling for improving skin situation. And the extent of improvement of skin situation corresponded to the formation of a new band of dense, compact collagen bundles in the papillary dermis. The diversity of individual skin condition influences the choice of pulsed light treatment parameters, and further influences the degree of dermal thermal damage, thus the efficacy of nonablative skin remodeling remains unstable. Recently, multiphoton microscopy has show a promising application for monitoring skin thermal damage, because collagen could produce strong second harmonic generation (SHG). And SHG intensity is presumably proportional to the percentage of collagen in dermis. In this paper, the auto-fluorescence (AF) intensity and SHG intensity of mice skin irradiated by pulsed Nd:YAG laser were measured and imaged with multiphoton microscope, and the results show the ratio of SHG to AF decreases with the increase of irradiation exposure dose, and could be a quantitative technique to assess dermal thermal damage, and could further benefit the choice of light treatment parameters.

  16. Superresolved multiphoton microscopy with spatial frequency-modulated imaging

    SciTech Connect

    Field, Jeffrey J.; Wernsing, Keith A.; Domingue, Scott R.; Allende Motz, Alyssa M.; DeLuca, Keith F.; Levi, Dean H.; DeLuca, Jennifer G.; Young, Michael D.; Squier, Jeff A.; Bartels, Randy A.

    2016-05-26

    Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2..eta.. below the diffraction limit, where ..eta.. is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.

  17. Spectroscopic analysis of skin intrinsic signals for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Strupler, Mathias; Boulesteix, Thierry; Senni, Karim; Godeau, Gaston; Beaurepaire, Emmanuel; Schanne-Klein, Marie-Claire

    2006-02-01

    We recorded multiphoton images of human skin biopsies using endogenous sources of nonlinear optical signals. We detected simultaneously two-photon excited fluorescence (2PEF) from intrinsic fluorophores and second harmonic generation (SHG) from collagen. We observed SHG from fibrillar collagens in the dermis, whereas no SHG was detectable from the non fibrillar type IV collagen in the basal laminae. We compared these distinct behaviours of collagens I and IV in SHG microscopy to polarization-resolved surface SHG experiments on thin films of collagens I and IV molecules. We observed similar signals for both types of molecular films, except for the chiroptical contributions which are present only for collagen I and enhance the signal typically by a factor of 2. We concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues. In order to elucidate the origin of the endogenous fluorescence signals, we recorded 2PEF spectra at various positions in the skin biopsies, and compared these data to in vitro spectroscopic analysis. In particular, we studied the keratin fluorescence and determined its 2PEF action cross section. We observed a good agreement between 2PEF spectra recorded in the keratinized upper layers of the epidermis and in a solution of purified keratin. Finally, to illustrate the capabilities of this technique, we recorded 2PEF/SHG images of skin biopsies obtained from patients of various ages.

  18. Superresolved multiphoton microscopy with spatial frequency-modulated imaging

    PubMed Central

    Field, Jeffrey J.; Wernsing, Keith A.; Domingue, Scott R.; Allende Motz, Alyssa M.; DeLuca, Keith F.; Levi, Dean H.; DeLuca, Jennifer G.; Young, Michael D.; Squier, Jeff A.; Bartels, Randy A.

    2016-01-01

    Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media. PMID:27231219

  19. In vivo multiphoton microscopy of deep brain tissue.

    PubMed

    Levene, Michael J; Dombeck, Daniel A; Kasischke, Karl A; Molloy, Raymond P; Webb, Watt W

    2004-04-01

    Although fluorescence microscopy has proven to be one of the most powerful tools in biology, its application to the intact animal has been limited to imaging several hundred micrometers below the surface. The rest of the animal has eluded investigation at the microscopic level without excising tissue or performing extensive surgery. However, the ability to image with subcellular resolution in the intact animal enables a contextual setting that may be critical for understanding proper function. Clinical applications such as disease diagnosis and optical biopsy may benefit from minimally invasive in vivo approaches. Gradient index (GRIN) lenses with needle-like dimensions can transfer high-quality images many centimeters from the object plane. Here, we show that multiphoton microscopy through GRIN lenses enables minimally invasive, subcellular resolution several millimeters in the anesthetized, intact animal, and we present in vivo images of cortical layer V and hippocampus in the anesthetized Thy1-YFP line H mouse. Microangiographies from deep capillaries and blood vessels containing fluorescein-dextran and quantum dot-labeled serum in wild-type mouse brain are also demonstrated.

  20. Multiphoton, confocal, and lifetime microscopy for molecular imaging in cartilage

    NASA Astrophysics Data System (ADS)

    Wachsmann-Hogiu, Sebastian; Krakow, Deborah; Kirilova, Veneta T.; Cohn, Daniel H.; Bertolotto, Cristina; Acuna, Dora; Fang, Qiyin; Krivorov, Nikola; Farkas, Daniel L.

    2005-03-01

    It has recently been shown that mutations in Filamin A and B genes produce a large spectrum of skeletal disorders in developing fetuses. However, high-resolution optical microscopy in cartilage growth plate using fluorescent antibody assays, which should elucidate molecular aspects of these disorders, is extremely difficult due to the high level of autofluoresce in this tissue. We apply multiphoton, confocal, lifetime and spectral microscopy to (i) image and characterize autofluorophores in chondrocytes and subtract their contributions to obtain a corrected antibody-marker fluorescence signal, and (ii) measure the interaction between Filamin A and B proteins by detecting the fluorescence resonance energy transfer (FRET) between markers of the two proteins. Taking advantage of the different fluorescence spectra of the endogenous and exogenous markers, we can significantly reduce the autofluorescence background. Preliminary results of the FRET experiments suggest no interaction between Filamin A and B proteins. However, developing of new antibodies targeting the carboxy-terminal immunoglobulin-like domain may be necessary to confirm this result.

  1. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  2. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  3. Improving signal levels in intravital multiphoton microscopy using an objective correction collar

    NASA Astrophysics Data System (ADS)

    Muriello, Pamela A.; Dunn, Kenneth W.

    2008-04-01

    Multiphoton microscopy has enabled biologists to collect high-resolution images hundreds of microns into biological tissues, including tissues of living animals. While the depth of imaging exceeds that possible from any other form of light microscopy, multiphoton microscopy is nonetheless generally limited to depths of less than a millimeter. Many of the advantages of multiphoton microscopy for deep tissue imaging accrue from the unique nature of multiphoton fluorescence excitation. However, the quadratic relationship between illumination level and fluorescence excitation makes multiphoton microscopy especially susceptible to factors that degrade the illumination focus. Here we examine the effect of spherical aberration on multiphoton microscopy in fixed kidney tissues and in the kidneys of living animals. We find that spherical aberration, as evaluated from axial asymmetry in the point-spread function, can be corrected by adjustment of the correction collar of a water immersion objective lens. Introducing a compensatory positive spherical aberration into the imaging system decreases the depth-dependence of signal levels in images collected from living animals, increasing signal by up to 50%.

  4. Characterization of powdered epidermal vaccine delivery with multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Mulholland, William J.; Kendall, Mark A. F.; White, Nick; Bellhouse, Brian J.

    2004-11-01

    Multiphoton laser scanning microscopy (MPLSM) has been adapted to non-invasively characterize hand-held powdered epidermal vaccine delivery technology. A near infrared femtosecond pulsed laser, wavelength at approximately 920 nm, was used to evoke autofluorescence of endogenous fluorophores within ex vivo porcine and human skin. Consequently, sub cellular resolution three-dimensional images of stratum corneum and viable epidermal cells were acquired and utilized to observe the morphological deformation of these cells as a result of micro-particle penetration. Furthermore, the distributional pattern of micro-particles within the specific skin target volume was quantified by measuring the penetration depth as revealed by serial optical sections in the axial plane obtained with MPLSM. Additionally, endogenous fluorescence contrast images acquired at the supra-basal layer reveal cellular structures that may pertain to dendritic Langerhans cells of the epidermis. These results show that MPLSM has advantages over conventional histological approaches, since three-dimensional functional images with sub-cellular spatial resolution to depths beyond the epidermis can be acquired non-invasively. Accordingly, we propose that MPLSM is ideal for investigations of powdered epidermal vaccine delivery.

  5. Multiphoton microscopy of antigen presenting cells in experimental cancer therapies

    NASA Astrophysics Data System (ADS)

    Watkins, Simon C.; Papworth, Glenn D.; Spencer, Lori A.; Larregina, Adriana T.; Hackstein, Holger

    2002-06-01

    The absence of effective conventional therapy for most cancer patients justifies the application of novel, experimental approaches. One alternative to conventional cytotoxic agents is a more defined molecular approach for cancer immune treatment; promotion of the immune system specifically to target and eliminate tumor cells on the basis of expression of tumor-associated antigens (TAA). TAA could be presented to T-cells by professional antigen-presenting cells (APC) that generate a more efficient and effective anti-tumor immune response. In fact, it has been well documented that dendritic cells, the most immunologically potent APC, are capable of recognizing, processing and presenting TAA, in turn initiating a specific antitumor immune response. Results from several laboratories and clinical trials suggested significant but still limited efficacy of TAA-pulsed dendritic cells administered to tumor-bearing hosts. Following such delivery, it is fundamentally necessary to dynamically assess cell abundance within the microenvironment of the tumor in the presence of the appropriate therapeutic agent. Multiphoton microscopy was used to assess the trafficking of pulsed dendritic cells and other APC in skin, lymph nodes and brain of several animal tumor models, following different routes of administration.

  6. The analysis of aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2010-11-01

    Aging is a very important issue not only in dermatology, but also in cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The chronological aging is induced with the passage of time. And the photoaging skin is the extrinsic aging caused by sun exposure. The aim of this study is to use multiphoton microscopy (MPM) in vivo to assess intrinsic-age-related and photo-age-related difference. The changes of dermal collagen are measured in quantitively. The algorithm that we used automatically produced the transversal dermal map from MPM. Others, the texture of dermis are analyzed by Fourier transform and Gray Level Co-occurrence Matrix. And the object extraction in textured images is proposed based on the method in object edge extraction, and the aim of it is to detect the object hidden in the skin texture in difference aging skin. The result demonstrates that the approach is effective in detecting the object in epidermis and dermis textured image in different aging skin. It could help to further understand the aging mechanism.

  7. Investigation of depilatory mechanism by use of multiphoton fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Lee, Gie-ne; Jee, Shiou-Hwa; Dong, Chen-Yuan; Lin, Sung-Jan

    2007-07-01

    Transdermal drug delivery provides a non-invasive route of drug administration, and can be a alternative method to oral delivery and injection. The stratum corneum (SC) of skin acts as the main barrier to transdermal drug delivery. Studies suggest that depilatory enhances permeability of drug through the epidermis. However, transdermal delivery pathway and mechanism are not completely understood. Previous studies have found that depilatory changes the keratinocytes of epidermis, and cause the protein in combination with lipid extraction of SC to become disordered. Nevertheless, those studies did not provide images of those processes. The aim of this study is to characterize the penetration enhancing effect of depilatory agent and the associated structural alterations of stratum corneum. Fresh human foreskin is treated by a depilatory agent for 10 minutes and then subjected to the treatment of fluorescent model drugs of hydrophilic rhodamine and hydrophobic rhodamine-RE. The penetration of model drugs is imaged and quantified by multiphoton microscopy. Our results showed that the penetration of both hydrophilic and hydrophobic agents can be enhanced and multifocal detachment of surface corneocytes is revealed. Nile red staining revealed, instead of a regular motar distribution of lipid around the brick of corneocytes, a disorganized and homogenized pattern of lipid distribution. We concluded that depilatory agents enhance drug penetration by disrupting both the cellular integrity of corneocytes and the regular packing of intercellular lipid of stratum corneum.

  8. Label-Free Detection of Breast Masses Using Multiphoton Microscopy

    PubMed Central

    Lu, Jianping; Zhu, Weifeng; Qiu, Jingting; Chen, Jianxin; Xie, Shusen; Zhuo, Shuangmu; Yan, Jun

    2013-01-01

    Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM) has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues ) that are first imaged (fresh, unfixed, and unstained) with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management. PMID:23755295

  9. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    NASA Astrophysics Data System (ADS)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  10. In Vivo Multiphoton Microscopy of Basal Cell Carcinoma

    PubMed Central

    Balu, Mihaela; Zachary, Christopher B.; Harris, Ronald M.; Krasieva, Tatiana B.; König, Karsten; Tromberg, Bruce J.; Kelly, Kristen M.

    2015-01-01

    Importance Basal cell carcinomas (BCCs) are diagnosed by clinical evaluation, which can include dermoscopic evaluation, biopsy, and histopathologic examination. Recent translation of multiphoton microscopy (MPM) to clinical practice raises the possibility of noninvasive, label-free in vivo imaging of BCCs that could reduce the time from consultation to treatment. Objectives To demonstrate the capability of MPM to image in vivo BCC lesions in human skin, and to evaluate if histopathologic criteria can be identified in MPM images. Design, Setting, and Participants Imaging in patients with BCC was performed at the University of California–Irvine Health Beckman Laser Institute & Medical Clinic, Irvine, between September 2012 and April 2014, with a clinical MPM-based tomograph. Ten BCC lesions were imaged in vivo in 9 patients prior to biopsy. The MPM images were compared with histopathologic findings. Main Outcomes and Measures MPM imaging identified in vivo and noninvasively the main histopathologic feature of BCC lesions: nests of basaloid cells showing palisading in the peripheral cell layer at the dermoepidermal junction and/or in the dermis. Results The main MPM feature associated with the BCC lesions involved nests of basaloid cells present in the papillary and reticular dermis. This feature correlated well with histopathologic examination. Other MPM features included elongated tumor cells in the epidermis aligned in 1 direction and parallel collagen and elastin bundles surrounding the tumors. Conclusions and Relevance This study demonstrates, in a limited patient population, that noninvasive in vivo MPM imaging can provide label-free contrast that reveals several characteristic features of BCC lesions. Future studies are needed to validate the technique and correlate MPM performance with histopathologic examination. PMID:25909650

  11. In vivo microscopy of the mouse brain using multiphoton laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Yoder, Elizabeth J.

    2002-06-01

    The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.

  12. Acousto-optic multiphoton laser scanning microscopy and multiphoton photon counting spectroscopy: Applications and implications for optical neurobiology

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay

    Multiphoton excitation of molecular probes has become an important tool in experimental neurobiology owing to the intrinsic optical sectioning and low light scattering it affords. Using molecular functional indicators, multiphoton excitation allows physiological signals within single neurons to be observed from within living brain tissue. Ideally, it would be possible to record from multiple sites located throughout the elaborately branching dendritic arbors, in order to study the correlations of structure and function both within and across experiments. However, existing multiphoton microscope systems based on scanning mirrors do not allow optical recordings to be obtained from more than a handful of sites simultaneously at the high rates required to capture the fast physiological signals of interest (>100Hz for Ca2+ signals, >1kHz for membrane potential transients). In order to overcome this limitation, two-dimensional acousto-optic deflection was employed, to allow an ultrafast laser beam suited for multiphoton excitation to be rapidly repositioned with low latency (˜15mus). This supports a random-access scanning mode in which the beam can repeatedly visit a succession of user-selected sites of interest within the microscope's field-of-view at high rates, with minimal sacrifice of pixel dwell time. This technique of acousto-optic multiphoton laser scanning microscope (AO-MPLSM) was demonstrated to allow the spatial profile of signals arising in response to physiological stimulation to be rapidly mapped. Means to compensate or avoid problems of dispersion which have hampered AO-MPLSM in the past are presented, with the latter being implemented. Separately, the combination of photon counting detection with multiphoton excitation, termed generally multiphoton photon counting spectroscopy (MP-PCS), was also considered, with particular emphasis on the technique of fluorescence correlation spectroscopy (FCS). MP-PCS was shown to allow information about molecular

  13. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, A.-M.; Strupler, M.; Boulesteix, T.; Schanne-Klein, M.-C.

    2005-08-01

    We recorded one-photon excited fluorescence (1PEF) and two-photon excited fluorescence (2PEF) spectra of purified keratin from human epidermis, and determined the action cross section of this endogenous chromophore. We used this spectroscopic analysis to analyse multiphoton images of skin biopsies and assign the intrinsic fluorescence signals in the epidermis. We observed a good agreement between in situ and in vitro 2PEF spectra of keratin. This study provides a comprehensive characterization of the 2PEF signal of the keratins from the epidermis, and will be of practical interest for multiphoton imaging of the skin.

  14. Ex vivo applications of multiphoton microscopy in urology

    NASA Astrophysics Data System (ADS)

    Jain, Manu; Mukherjee, Sushmita

    2016-03-01

    Background: Routine urological surgery frequently requires rapid on-site histopathological tissue evaluation either during biopsy or intra-operative procedure. However, resected tissue needs to undergo processing, which is not only time consuming but may also create artifacts hindering real-time tissue assessment. Likewise, pathologist often relies on several ancillary methods, in addition to H&E to arrive at a definitive diagnosis. Although, helpful these techniques are tedious and time consuming and often show overlapping results. Therefore, there is a need for an imaging tool that can rapidly assess tissue in real-time at cellular level. Multiphoton microscopy (MPM) is one such technique that can generate histology-quality images from fresh and fixed tissue solely based on their intrinsic autofluorescence emission, without the need for tissue processing or staining. Design: Fresh tissue sections (neoplastic and non-neoplastic) from biopsy and surgical specimens of bladder and kidney were obtained. Unstained deparaffinized slides from biopsy of medical kidney disease and oncocytic renal neoplasms were also obtained. MPM images were acquired using with an Olympus FluoView FV1000MPE system. After imaging, fresh tissues were submitted for routine histopathology. Results: Based on the architectural and cellular details of the tissue, MPM could characterize normal components of bladder and kidney. Neoplastic tissue could be differentiated from non-neoplastic tissue and could be further classified as per histopathological convention. Some of the tumors had unique MPM signatures not otherwise seen on H&E sections. Various subtypes of glomerular lesions were identified as well as renal oncocytic neoplasms were differentiated on unstained deparaffinized slides. Conclusions: We envision MPM to become an integral part of regular diagnostic workflow for rapid assessment of tissue. MPM can be used to evaluate the adequacy of biopsies and triage tissues for ancillary studies

  15. Optical tweezers and multiphoton microscopies integrated photonic tool for mechanical and biochemical cell processes studies

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Faustino, W. M.; Fontes, A.; Fernandes, H. P.; Barjas-Castro, M. d. L.; Metze, K.; Giorgio, S.; Barbosa, L. C.; Cesar, C. L.

    2007-09-01

    The research in biomedical photonics is clearly evolving in the direction of the understanding of biological processes at the cell level. The spatial resolution to accomplish this task practically requires photonics tools. However, an integration of different photonic tools and a multimodal and functional approach will be necessary to access the mechanical and biochemical cell processes. This way we can observe mechanicaly triggered biochemical events or biochemicaly triggered mechanical events, or even observe simultaneously mechanical and biochemical events triggered by other means, e.g. electricaly. One great advantage of the photonic tools is its easiness for integration. Therefore, we developed such integrated tool by incorporating single and double Optical Tweezers with Confocal Single and Multiphoton Microscopies. This system can perform 2-photon excited fluorescence and Second Harmonic Generation microscopies together with optical manipulations. It also can acquire Fluorescence and SHG spectra of specific spots. Force, elasticity and viscosity measurements of stretched membranes can be followed by real time confocal microscopies. Also opticaly trapped living protozoas, such as leishmania amazonensis. Integration with CARS microscopy is under way. We will show several examples of the use of such integrated instrument and its potential to observe mechanical and biochemical processes at cell level.

  16. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  17. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy.

    PubMed

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  18. Three-dimensional tooth imaging using multiphoton and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Min-Huey; Chen, Wei-Liang; Sun, Yen; Fwu, Peter Tramyeon; Lin, Ming-Gu; Dong, Chen-Yuan

    2007-02-01

    Detailed morphological and cellular information relating to the human tooth have traditionally been obtained through histological studies that required decalcification, staining, and fixation. With the recent invention of multiphoton microscopy, it has become possible to acquire high resolution images without histological procedures. Using an epiilluminated multiphoton microscope, we obtained two-photon excited autofluorescence and second harmonic generation (SHG) images of ex vivo human tooth. By combining these two imaging modalities we obtained submicron resolution images of the enamel, dentin, and the periodontal ligaments. The enamel emits endogenous two-photon autofluorescence. The structure of the dentin is visible from both the autofluorescence and second harmonic generation signals. The periodontal ligament composed mostly of collagen can be visualized by SHG imaging. We also constructed three dimensional images of the enamel, dentin, and periodontal ligament. The effectiveness of using multiphoton and second harmonic generation microscopy to obtain structural information of teeth suggest its potential use in dental diagnostics.

  19. Ultrafast pulse-pair control in multiphoton fluorescence laser-scanning microscopy.

    PubMed

    De, Arijit Kumar; Goswami, Debabrata

    2009-01-01

    In multiphoton fluorescence laser-scanning microscopy, ultrafast laser pulses [i.e., light pulses having pulse width multiphoton absorption cross-sections of common fluorophores. Because of the broad overlapping two-photon absorption spectra of fluorophores and the large spectral bandwidth of a short pulse, simultaneous excitation of many fluorophores is common, which justifies a persistent demand for selective excitation of individual fluorophores. We describe the use of pulse-pair excitation with possibilities of controlling molecular fluorescence in laser-scanning microscopy and compare it with coherent control using pulse sequence [De and Goswami, "Coherent control in multiphoton fluorescence imaging," Proc. SPIE 7183, 71832B (2009)].

  20. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

    PubMed Central

    Chen, Guannan; Lui, Harvey

    2015-01-01

    Background Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies. PMID:25694949

  1. Combining multiphoton and CARS microscopy for skin imaging

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Lademann, J.; König, K.

    2013-02-01

    Microscopic imaging based on multiphoton fluorescence, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) imaging has been realized in one common platform which is appropriate for use in hospitals. The different optical modalities non-invasively provide in vivo images from human skin with subcellular resolution, at different depths based on endogenous fluorescent, SHG-active molecules as well as non-fluorescent molecules with vibrational resonances at 2845 cm-1, in particular lipids. An overview of the system employing a Ti:sapphire laser and photonic crystal fiber to generate the excitation light as well as several imaging examples are presented.

  2. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  3. Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Daekeun; Kim, Ki Hean; Yazdanfar, Siavash; So, Peter T. C.

    2005-03-01

    Histological analysis is the clinical standard for assessing tissue health and the identification of pathological states. Its invasive nature dictates that its use should be minimized without compromising diagnostic accuracy. A promising method for minimally invasive histological analysis is optical biopsy, which provides cross sectional or 3D images without any physical sectionings. Optical biopsy method based on multiphoton excitation microscopy can image cross-sectional image for deep tissue structures with subcellular resolution based on tissue endogenous fluorescence molecules. Despite its suitability for tissue imaging, multiphoton microscopy has not been used for in vivo clinical applications due to both compactness and imaging speed problems. We are developing a high-speed, handheld, miniaturized multifocal multiphoton microscope (H2M4) as an optical biopsy probe to enable optical biopsy with subcellular resolution. We incorporate a compact raster scanning actuator based on optimizing a piezo-driven tip tilt mirror by increasing its bandwidth, and reducing its nonlinearity. For flexible light delivery, we choose a photonic bandgap crystal fiber, which transmits ultrashort pulsed laser delivery with reduced spectral distortion and pulse width broadening. We further demonstrate that this fiber produces minimal spatial mode distortion and can achieve comparable image point spread function (PSF) as free space delivery. We further investigate the applicability of multiphoton microscopy for clinical dermal investigation by imaging ex vivo human skins with both normal and abnormal physiologies. This demonstrates the performance of H2M4 and the possibility of optical biopsy for diagnosing skin diseases.

  4. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  5. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    PubMed

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  6. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  7. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen

    2012-10-01

    Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.

  8. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  9. Large field of view multiphoton microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Mikami, Hideharu; Hou, Jue; Potma, Eric O.; Tromberg, Bruce J.

    2016-03-01

    Clinical examination crucially relies on the ability to quickly examine large tissue areas and rapidly zoom in to regions of interest. Skin lesions often show irregularity in color and appearance in general, especially when they start to progress towards malignancy. Large field of view (FOV) and automatic translation of the imaging area are critical in the assessment of the entire lesion. Imaging of limited FOVs of the lesion can easily result in false negative diagnosis. We present a multiphoton microscope based on two-photon excited fluorescence and second-harmonic generation that images FOVs of about 0.8 mm2 (without stitching adjacent FOVs) at speeds of 10 frames/second (800 x 800 pixels) with lateral and axial resolutions of 0.5 μm and 2.5 μm, respectively. The main novelty of this instrument is the design of the scan head, which includes a fast galvanometric scanner, relay optics, a beam expander and a high NA objective lens. We optimized the system based on the Olympus 25x, 1.05NA water immersion lens, that features a long working distance of 1 mm. Proper tailoring of the beam expander, which consists of the scan and tube lens elements, enables scaling of the FOV. The design criteria include a flat wavefront of the beam, minimum field curvature, and suppressed spherical aberrations. All aberrations in focus are below the Marechal criterion of 0.07λ rms for diffraction-limited performance. We demonstrate the practical utility of this microscope by ex-vivo imaging of wide FOVs in normal human skin.

  10. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy.

    PubMed

    Nie, Y T; Wu, Y; Fu, F M; Lian, Y E; Zhuo, S M; Wang, C; Chen, J X

    2015-04-01

    Multiphoton microscopy has become a novel biological imaging technique that allows cellular and subcellular microstructure imaging based on two-photon excited fluorescence and second harmonic generation. In this work, we used multiphoton microscopy to obtain the high-contrast images of human normal breast tissue and two main histologic types of fibroadenoma (intracanalicular, pericanalicular). Moreover, quantitative image analysis was performed to characterize the changes of collagen morphology (collagen content, collagen orientation). The results show that multiphoton microscopy combined with quantitative method has the ability to identify the characteristics of fibroadenoma including changes of the duct architecture and collagen morphology in stroma. With the advancement of multiphoton microscopy, we believe that the technique has great potential to be a real-time histopathological diagnostic tool for intraoperative detection of fibroadenoma in the future.

  11. Identification of normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Chen, Zhifen; Kang, Deyong; li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2016-01-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections.

  12. Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies

    PubMed Central

    Olson, Eben; Levene, Michael J.; Torres, Richard

    2016-01-01

    We present a multiphoton microscopy approach with clearing optimized for pathology evaluation producing image quality comparable to traditional histology. Use of benzyl alcohol/benzyl benzoate with 4',6-diamidino-2-phenylindole and eosin in an optimized imaging setup results in optical sections nearly indistinguishable from traditionally-cut sections. Application to human renal tissue demonstrates diagnostic-level image quality can be maintained through 1 millimeter of tissue. Three dimensional perspectives reveal changes of glomerular capsule cells not evident on single sections. Collagen-derived second harmonic generation can be visualized through entire biopsies. Multiphoton microscopy with clearing has potential for increasing the yield of histologic evaluation of biopsy specimens. PMID:27570700

  13. Detection of the multiphoton signals in stained tissue using nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yaping; Xu, Jian; Kang, Deyong; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging, has become a powerful, important tool for tissue imaging at the molecular level. Recently, MPM is also used to image hematoxylin and eosin (H and E)-stained sections in cancer diagnostics. However, several studies have showed that the MPM images of tissue stained with H and E are significantly different from unstained tissue sections. Our aim was to detect of the multiphoton signals in stained tissue by using MPM. In this paper, MPM was used to image histological sections of esophageal invasive carcinoma tissues stained with H, E, H and E and fresh tissue. To detect of the multiphoton signals in stained tissue, the emission spectroscopic of tissue stained with H, E, H and E were obtained. For comparison, the fresh tissues were also investigated. Our results showed that the tissue stained with H, E, H and E could be detected by their TPEF signals. While the tissue stained with H and fresh tissue could be detected by their TPEF and SHG signals. In this work, we detect of the multiphoton signals in stained tissue. These findings will be useful for choosing suitable staining method so to improve the quality of MPM imaging in the future.

  14. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  15. Intrinsic Indicator of Photodamage during Label-Free Multiphoton Microscopy of Cells and Tissues

    PubMed Central

    Andresen, Elisabeth F.; Geiger, Kathrin D.; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS) or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitutes a marker of photodamage. The effect was studied on mouse brain in vivo and ex vivo, on ex vivo human brain tissue samples, as well as on glioblastoma cells in vitro, demonstrating that this phenomenon is common to a variety of different systems, both ex vivo and in vivo. CARS microscopy and vibrational spectroscopy were used to analyze the photodamage. The development of a standard easy-to-use model that employs rehydrated cryosections allowed the characterization of the irradiation-induced fluorescence and related it to nonlinear photodamage. In conclusion, the monitoring of endogenous two-photon excited fluorescence during label-free multiphoton microscopy enables to estimate damage thresholds ex vivo as well as detect photodamage during in vivo experiments. PMID:25343251

  16. Characterization of human normal and cancerous gastric submucosa based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Jiazhao; Chen, G.; Liu, Y. C.; Zhuo, S. M.; Chen, J. X.; Yan, J.

    2012-03-01

    Gastric cancer is one of the most frequent cancers in the world; almost two-thirds of gastric cancer cases and deaths occur in less developed regions. The initial diagnosis of gastric cancer often is delayed because up to 80 percent of patients are asymptomatic during the early stages of stomach cancer. So the ability to perform real-time in vivo histological diagnosis for early gastric cancer at the cellular level during ongoing endoscopy is a long-standing goal of endoscopists. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), MPM images of human normal and cancerous gastric submucosa were obtained at excitation wavelength of 800 nm. The features such as the appearance of abnormal cells and the large loss of collagen in cancerous gastric submucosa were extracted to be as significant indicators to distinguish cancerous submucosa from normal submucosa. With the implementation of multiphoton microscopy concept in endoscopy applications, multiphoton endoscopy might realize in vivo histological diagnosis goal of endoscopists.

  17. Characterization of human normal and cancerous gastric submucosa based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Jiazhao; Chen, G.; Liu, Y. C.; Zhuo, S. M.; Chen, J. X.; Yan, J.

    2011-11-01

    Gastric cancer is one of the most frequent cancers in the world; almost two-thirds of gastric cancer cases and deaths occur in less developed regions. The initial diagnosis of gastric cancer often is delayed because up to 80 percent of patients are asymptomatic during the early stages of stomach cancer. So the ability to perform real-time in vivo histological diagnosis for early gastric cancer at the cellular level during ongoing endoscopy is a long-standing goal of endoscopists. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), MPM images of human normal and cancerous gastric submucosa were obtained at excitation wavelength of 800 nm. The features such as the appearance of abnormal cells and the large loss of collagen in cancerous gastric submucosa were extracted to be as significant indicators to distinguish cancerous submucosa from normal submucosa. With the implementation of multiphoton microscopy concept in endoscopy applications, multiphoton endoscopy might realize in vivo histological diagnosis goal of endoscopists.

  18. Label-free discrimination of normal and pulmonary cancer tissues using multiphoton fluorescence ratiometric microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Wu, Ruei-Jr; Lin, Sung-Jan; Chen, Yang-Fang; Dong, Chen-Yuan

    2010-07-01

    We performed multiphoton excited autofluorescence and second harmonic generation microscopy for the distinction of normal, lung adenocarcinoma (LAC), and squamous cell carcinoma (SCC) specimens. In addition to morphological distinction, we derived quantitative metrics of cellular redox ratios for cancer discrimination. Specifically, the redox ratios of paired normal/SCC and normal/LAC specimens were found to be 0.53±0.05/0.41±0.06 and 0.56±0.02/0.35±0.06, respectively. The lower redox ratios in cancer specimens, indicating an increase in metabolic activity. These results show that the combination of morphological multiphoton imaging along with redox ratio indices can be used for the discrimination of normal and pulmonary cancer tissues.

  19. Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, G.; Wei, J.; Zheng, Z.; Ye, J.; Zeng, S.

    2014-06-01

    The early diagnosis of intestinal metaplasia (IM) in the stomach together with effective therapeutic interventions is crucial to reducing the mortality-rates of the patients associated with gastric cancer. However, it is challenging during conventional white-light endoscopy, and histological analysis remains the ‘gold standard’ for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), for the identification of IM in the stomach. It was found that multiphoton imaging provides cellular and subcellular details to the identification of IM from normal gastric tissues. In particular, there is significant difference in the population density of goblet cells between normal and IM gastric tissues, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early gastric lesions. To our knowledge, this is the first demonstration of the potential of MPM for the identification of IM.

  20. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas

    PubMed Central

    Gualda, Emilio J.; Vázquez de Aldana, Javier R.; Martínez-García, M. Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M.

    2011-01-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures. PMID:22076258

  1. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas.

    PubMed

    Gualda, Emilio J; Vázquez de Aldana, Javier R; Martínez-García, M Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M

    2011-11-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures.

  2. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-08-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  3. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    PubMed Central

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-01-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo. PMID:27538357

  4. Analysis of somitogenesis using multiphoton laser scanning microscopy (MPLSM)

    NASA Astrophysics Data System (ADS)

    Dickinson, Mary E.; Longmuir, Kenneth J.; Fraser, Scott E.

    2001-04-01

    In order to study complex cellular interactions in the developing somite and nervous system, we have been refining techniques for labeling and imaging individual cells within the living vertebrate embryo. Most recently, we have been using MPLSM to analyze cellular behaviors, such as cell migration, filopodial extension, cell process collapse, and neuron pathfinding using time-lapse microscopy in 3-dimensions (3-d). To enhance the efficiency of two-photon excitation in these samples, we have been using a Zeiss LSM 510 NLO fiber delivery system with a Grating Dispersion Compensator (GDC). This system not only offers the convenience of fiber delivery for coupling our Ti:Sapphire laser to the microscope, but also affords us precise control over the pulsewidth of the mode- locked beam. In addition, we have developed a novel peptide/non-cationic lipid gene delivery system to introduce GFP plasmid into somite cells. This approach has allowed us to generate detailed 3-d images of somite cell morphologies at various stages of somite development in a way that best preserves the vitality of the cells being imaged.

  5. Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Jiun-Yann; Kuo, Chun-Hung; Holland, Daniel B.; Chen, Yenyu; Ouyang, Mingxing; Blake, Geoffrey A.; Zadoyan, Ruben; Guo, Chin-Lin

    2011-11-01

    Optical sectioning provides three-dimensional (3D) information in biological tissues. However, most imaging techniques implemented with optical sectioning are either slow or deleterious to live tissues. Here, we present a simple design for wide-field multiphoton microscopy, which provides optical sectioning at a reasonable frame rate and with a biocompatible laser dosage. The underlying mechanism of optical sectioning is diffuser-based temporal focusing. Axial resolution comparable to confocal microscopy is theoretically derived and experimentally demonstrated. To achieve a reasonable frame rate without increasing the laser power, a low-repetition-rate ultrafast laser amplifier was used in our setup. A frame rate comparable to that of epifluorescence microscopy was demonstrated in the 3D imaging of fluorescent protein expressed in live epithelial cell clusters. In this report, our design displays the potential to be widely used for video-rate live-tissue and embryo imaging with axial resolution comparable to laser scanning microscopy.

  6. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways

    PubMed Central

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-01-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  7. Identification of dirty necrosis in colorectal carcinoma based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Lianhuang; Jiang, Weizhong; Yang, Yinghong; Chen, Zhifen; Feng, Changyin; Li, Hongsheng; Guan, Guoxian; Chen, Jianxin

    2014-06-01

    Dirty necrosis within glandular lumina is often considered as a characteristic of colorectal carcinomas (CRCs) that is a diagnostically useful feature of CRCs with DNA microsatellite instability (MSI). Multiphoton microscopy (MPM), which is based on the second-harmonic generation and two-photon excited fluorescence signals, was used to identify dirty necrosis. Our results demonstrated that MPM has the ability to exhibit the microstructure of dirty necrosis and the signal intensity as well as an emission spectrum that can help to differentiate dirty necrosis from cancer cells. These findings indicate that MPM may be helpful in distinguishing MSI colorectal carcinoma via the identification of dirty necrosis.

  8. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Yang, Hongqin; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2011-04-01

    Multiphoton microscopy was employed for monitoring the structure changes of mouse dermis collagen in the intrinsic- or the extrinsic-age-related processes in vivo. The characteristics of textures in different aging skins were uncovered by fast Fourier transform in which the orientation index and bundle packing of collagen were quantitatively analyzed. Some significant differences in collagen-related changes are found in different aging skins, which can be good indicators for the statuses of aging skins. The results are valuable to the study of aging skin and also of interest to biomedical photonics.

  9. Characterization of corneal damage from Pseudomonas aeruginosa infection by the use of multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Chen, Wei-Liang; Lo, Wen; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2010-11-01

    Using multiphoton autofluorescence (MAF) and second harmonic generation (SHG) microscopy, we investigate the morphology and the structure of the corneal epithelium and stroma collagen of bovine cornea following injection of Pseudomonas aeruginosa. We found that corneal epithelial cells are damaged and stromal collagen becoming increasingly autofluorescent with time. We also characterized infected cornea cultured for 0, 6, 12, and 24 h by quantitative ratiometric MAF to SHG index (MAFSI) analysis. MAFSI results show that the destruction of the stromal collagen corresponds to a decrease in SHG intensity and increase of MAF signal with time.

  10. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles

    PubMed Central

    Gittard, Shaun D; Miller, Philip R; Boehm, Ryan D; Ovsianikov, Aleksandr; Chichkov, Boris N; Heiser, Jeremy; Gordon, John; Monteiro-Riviere, Nancy A; Narayan, Roger J

    2010-01-01

    Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy. PMID:21413181

  11. Rapid volumetric temporal focusing multiphoton microscopy of neural activity: theory, image processing, and experimental realization

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Kruger, Nimrod; Ellman, Aviv; Shoham, Shy

    2012-03-01

    The development of rapid volumetric imaging systems for functional multiphoton microscopy is essential for dynamical imaging of large-scale neuronal network activity. Here, we introduce a line-illuminating temporal-focusing microscope capable of rapid three-dimensional imaging at 10-20 volumes/sec, and study the system's characteristics both theoretically and experimentally. We demonstrate that our system is capable of functional volumetric calcium imaging of distributed neuronal activity patterns, and introduce a computational strategy for activity reconstruction in strongly scattering media.

  12. Real-time in vivo imaging collagen in lymphedematous skin using multiphoton microscopy.

    PubMed

    Wu, Xiufeng; Zhuo, Shuangmu; Chen, Jianxin; Liu, Ningfei

    2011-01-01

    Changes of dermal collagen are characteristic for chronic lymphedema. To evaluate these changes, a real-time imaging based on two-photon excited fluorescence and second-harmonic generation was developed for investigating collagen of lymphedematous mouse and rat tail skin in vivo. Our findings showed that the technique could image the morphological changes and distribution of collagen in lymphedematous mouse and rat tail skin in vivo. More importantly, it may allow visualization of dynamic collagen alteration during the progression of lymphedema. Our findings demonstrated that multiphoton microscopy may have potential in a clinical setting as an in vivo diagnostic and monitoring system for therapy in lymphology.

  13. Multiphoton microscopy using intrinsic signals for pharmacological studies in unstained cardiac and vascular tissue

    NASA Astrophysics Data System (ADS)

    Beaurepaire, Emmanuel; Boulesteix, Thierry; Pena, Ana-Maria; Pages, Nicole; Senni, Karim; Godeau, Gaston; Sauviat, Martin-Pierre; Schanne-Klein, Marie-Claire

    2005-03-01

    We report two novel applications of multiphoton microscopy for pharmacological studies of unstained cardiovascular tissue. First, we show that second harmonic generation (SHG) microscopy of unstained cardiac myocytes can be used to determine the sarcomere length with sub-resolution accuracy, owing to the remarkable contrast of the SHG signal originating from myosin filaments. A measurement precision of 20 nm is achieved, taking the sample variability into account. We used this technique to measure sarcomere contracture in the presence of saxitoxin, and results were in agreement with mechanical measurements of atrial tissue contracture. Second, we characterized multiphoton microscopy of intact unlabeled arteries. We performed simultaneous detection of two-photon-excited fluorescence (2PEF) from elastin laminae and SHG from collagen fibers upon 860 nm excitation. Combined 2PEF/SHG images provide a highly specific, micron scale description of the architecture of these two major components of the vessel wall. We used this methodology to study the effects of lindane (a pesticide) on the artery wall structure and evidenced structural alteration of the vessel morphology.

  14. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  15. PScan 1.0: flexible software framework for polygon based multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Lee, Woei Ming

    2016-12-01

    Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.

  16. A novel multiphoton microscopy images segmentation method based on superpixel and watershed.

    PubMed

    Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong

    2016-04-19

    Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness.

  17. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    NASA Astrophysics Data System (ADS)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  18. Generation of extended light-sheets for single and multi-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Purnapatra, Subhajit B.; Pratim Mondal, Partha

    2013-07-01

    We theoretically propose and computationally demonstrate the generation of extended light-sheet for fluorescence microscopy. This is made possible by the introduction of a specially designed double-window spatial filter that allows the light to pass through the periphery and center of a cylindrical lens. When illuminated with a plane wave, the proposed filter results in an extended depth-of-focus along with side-lobes which are due to other interferences in the transverse focal plane. Computational studies show a maximum extension of light-sheet by 3.38 times for single photon excitation and 3.68 times for multiphoton excitation as compared to state-of-art single plane illumination microscopy system. This technique may facilitate the study of large biological specimens (such as Zebrafish embryo and tissue) with high spatial resolution and reduced photobleaching.

  19. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy.

    PubMed

    Shelton, Ryan L; Mattison, Scott P; Applegate, Brian E

    2014-10-01

    Photoacoustic microscopy (PAM) is an imaging modality well suited to mapping vasculature and other strong absorbers in tissue. However, one of the primary drawbacks to PAM when used for high-resolution imaging is the relatively poor axial resolution due to the inverse dependence on the transducer bandwidth. While submicron lateral resolution PAM can be achieved by tightly focusing the excitation light, the axial resolution is fundamentally limited to 10s of microns for typical transducer frequencies. Here we present a multiphoton PAM technique called transient absorption ultrasonic microscopy (TAUM), which results in a completely optically resolved voxel with an experimentally measured axial resolution of 1.5 microns. This technique is demonstrated by imaging individual red blood cells in three dimensions in blood smear and ex vivo tissues. To the best of our knowledge, this is the first demonstration of fully resolved, volumetric photoacoustic imaging of erythrocytes.

  20. Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Flanders, James; Southard, Teresa L.; Weiss, Robert S.; Webb, Watt W.

    2012-03-01

    Limitations of current medical procedures for detecting early lung cancers inspire the need for new diagnostic imaging modalities for the direct microscopic visualization of lung nodules. Multiphoton microscopy (MPM) provides for subcellular resolution imaging of intrinsic fluorescence from unprocessed tissue with minimal optical attenuation and photodamage. We demonstrate that MPM detects morphological and spectral features of lung tissue and differentiates between normal, inflammatory and neoplastic lung. Ex vivo MPM imaging of intrinsic two-photon excited fluorescence was performed on mouse and canine neoplastic, inflammatory and tumor-free lung sites. Results showed that MPM detected microanatomical differences between tumor-free and neoplastic lung tissue similar to standard histopathology but without the need for tissue processing. Furthermore, inflammatory sites displayed a distinct red-shifted fluorescence compared to neoplasms in both mouse and canine lung, and adenocarcinomas displayed a less pronounced fluorescence emission in the 500 to 550 nm region compared to adenomas in mouse models of lung cancer. These spectral distinctions were also confirmed by two-photon excited fluorescence microspectroscopy. We demonstrate the feasibility of applying MPM imaging of intrinsic fluorescence for the differentiation of lung neoplasms, inflammatory and tumor-free lung, which motivates the application of multiphoton endoscopy for the in situ imaging of lung nodules.

  1. Chronic imaging of amyloid plaques in the live mouse brain using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bacskai, Brian J.; Kajdasz, Stephen T.; Christie, R. H.; Zipfel, Warren R.; Williams, Rebecca M.; Kasischke, Karl A.; Webb, Watt W.; Hyman, B. T.

    2001-04-01

    Transgenic mice expressing the human Amyloid Precursor Protein (APP) develop amyloid plaques as they age. These plaques resemble those found in the human disease. Multiphoton laser scanning microscopy combined with a novel surgical approach was used to measure amyloid plaque dynamics chronically in the cortex of living transgenic mice. Thioflavine S (thioS) was used as a fluorescent marker of amyloid deposits. Multiphoton excitation allowed visualization of amyloid plaques up to 200 micrometers deep into the brain. The surgical site could be imaged repeatedly without overt damage to the tissue, and individual plaques within this volume could be reliably identified over periods of several days to several months. On average, plaque sizes remained constant over time, supporting a model of rapid deposition, followed by relative stability. Alternative reporters for in vivo histology include thiazine red, and FITC-labeled amyloid-(Beta) peptide. We also present examples of multi-color imaging using Hoechst dyes and FITC-labeled tomato lectin. These approaches allow us to observe cell nuclei or microglia simultaneously with amyloid-(Beta) deposits in vivo. Chronic imaging of a variety of reporters in these transgenic mice should provide insight into the dynamics of amyloid-(Beta) activity in the brain.

  2. Label-free imaging of rat spinal cords based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  3. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  4. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    SciTech Connect

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  5. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy.

    PubMed

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  6. Visualization of basement membranes in normal breast and breast cancer tissues using multiphoton microscopy

    PubMed Central

    WU, XIUFENG; CHEN, GANG; QIU, JINGTING; LU, JIANPING; ZHU, WEIFENG; CHEN, JIANXIN; ZHUO, SHUANGMU; YAN, JUN

    2016-01-01

    Since basement membranes represent a critical barrier during breast cancer progression, timely imaging of these signposts is essential for early diagnosis of breast cancer. A label-free method using multiphoton microscopy (MPM) based on two-photon excited fluorescence signals and second harmonic generation signals for analyzing the morphology of basement membrane in normal and cancerous breast tissues is likely to enable a better understanding of the pathophysiology of breast cancer and facilitate improved clinical management and treatment of this disease. The aim of this study was to determine whether MPM has the potential for label-free assessment of the morphology of basement membrane in normal and cancerous breast tissues. A total of 60 tissue section samples (comprising 30 fresh breast cancer specimens and 30 normal breast tissues) were first imaged (fresh, unfixed and unstained) with MPM and are then processed for routine hematoxylin and eosin (H&E) histopathology. Comparisons were made between MPM imaging and gold standard sections for each specimen stained with H&E. Simply by visualizing morphological features appearing on multiphoton images, cancerous lesions may be readily identified by the loss of basement membrane and tumor cells characterized by irregular size and shape, enlarged nuclei and increased nuclear-cytoplasmic ratio. These results suggest that MPM has potential as a label-free method of imaging the morphology of basement membranes and cell features to effectively distinguish between normal and cancerous breast tissues. PMID:27313695

  7. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  8. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EGGS

    EPA Science Inventory

    Multiphoton laser scanning microscopy (MPLSM) is a promising tool to study the tissue distribution of environmental chemical contaminants during fish early life stages. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon that a...

  9. Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy.

    PubMed

    Millington, Owain R; Brewer, James M; Garside, Paul; Maffia, Pasquale

    2010-01-01

    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo.

  10. Pathological process investigation of Jadassohn-Pellizzari anetoderma based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Zhao, Jingjun; Yang, Yinghong; Zhuo, Shuangmu; Jiang, Xingshan; Tian, Wei; Ye, Xiaoyin; Lin, Lihang

    2009-08-01

    Multiphoton microscopy based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) was firstly employed to investigate pathological process from the unaffected skin to the erythematous phase and to finally affected skin of Jadassohn-Pellizzari anetoderma. Our study showed that the normal elastic fibers in unaffected skin were almost completely absent in erthematous skin tissue, then replaced by a lot of elastic fibers with granular morphology in affected skin. The obvious change of collagen fibers and occurrence of inflammatory cell infiltration in erthematous tissue suggested that variation of these two components were also main pathogenesis of anetoderma except for deficiency of elastic fibers. Our results give a sight to noninvasively study the pathological process of skin disease and the other disease with tight relation to variation of collagen and elastic fibers in skin dermis and cell in skin epidermis.

  11. Hypericin-Mediated Destruction of Collagen Fibers Revealed by Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Ararat Zh.; Hovhannisyan, Vladimir A.; Dong, Chen-Yuan

    Collagen is the major component of the extracellular matrix in skin, tendon, cartilage, cornea, bone, etc., and as a main structural protein is the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen fibers is critical for maintaining normal physiologic function; therefore, the modification of collagen fibers in a controlled manner is of high importance for biomedicine. In this work, using second harmonic generation (SHG) and two-photon excited auto-fluorescence (TPEF) microscopy, we revealed that hypericin, a natural pigment extracted from plant, induced structural modification of collagen based tissues. Dynamics of the process was monitored by time-lapse multiphoton imaging. It was demonstrated that hypericin-mediated process was considerably irreversible and has a potential to be used for destroying of abnormal tissues and treatment of some diseases.

  12. Differentiating fibroadenoma and ductal carcinoma in situ from normal breast tissue by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Nie, Yuting; Wu, Yan; Lian, Yuane; Fu, Fangmeng; Wang, Chuan; Chen, Jianxin

    2014-09-01

    Fibroadenoma (FA) is the most common benign tumor of the female breast and several studies have reported that women with it have increased risk of breast cancer. While the ductal carcinoma in situ (DCIS) is a very early form of breast cancer. Thus, early detections of FA and DCIS are critical for improving breast tumor outcome and survival. In this paper, we use multiphoton microscopy (MPM) to obtain the high-contrast images of fresh, unfixed, unstained human breast specimens (normal breast tissue, FA and DCIS). Our results show that MPM has the ability to identify the characteristics of FA and DCIS including changes of duct architecture and collagen morphology. These results are consistent with the histological results. With the advancement of MPM, the technique has potential ability to serve as a real-time noninvasive imaging tool for early detection of breast tumor.

  13. Investigating the effects of Panadol on mouse liver by in vivo multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Feng Chieh; Liang, Huei, Jr.; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Conventional hepatic research relies heavily on histological images for obtaining morphological information of the liver. However, static histological images can not provide real-time dynamic information of in vivo physiological processes such as cellular motion or damage. For a long time, panadol has been used in pain relief. However, Panadol may have unwanted side effects and detailed information of the effects of Panadol on hepatic metabolism is unknown. In this work, we developed a high resolution intravital hepatic imaging chamber to study the effects of Panadol on liver. We expect this methodology to be useful in revealing the detailed metabolism of liver after using Panadol and this approach allows us to achieve a better understanding of hepatic processes. In our approach, we use multiphoton fluorescence (MPF) microscopy to observe the side effect of liver on using Panadol inside the in vivo mouse animal model.

  14. Collagen remodeling in photo-thermal damaged skin with optical coherence tomography and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shu-lian; Li, Hui; Zhang, Xiao-man; Yu, Lili

    2009-08-01

    Cutaneous photo-thermal damage is the common damages in clinical medicine; it is a complex and dynamic process that follows an orderly sequence of events. The sequence can be roughly divided into three distinct, yet sequentially overlapping phases-inflammation, granulation tissue formation, and tissue remodeling. Characteristic structural changes associated with each phase could provide a basis for photo-thermal damage assessment with imaging technologies. Monitoring the skin tissue response during the skin after irradiated by laser and tracing the process of skin remodeling would help to understand the mechanism of photo-thermal. Optical coherence tomography (OCT) and multiphoton microscopy (MPM) imaging were used to observe the process of the collagen remodeling in mouse dermis photo-thermal injured which after irradiated by intense pulsed light source (IPLs) in this paper. Our finding showed that the OCT and MPM techniques can image the process of collagen remodeling in mouse dermis.

  15. The first decade of using multiphoton microscopy for high-power kidney imaging.

    PubMed

    Peti-Peterdi, János; Burford, James L; Hackl, Matthias J

    2012-01-15

    In this review, we highlight the major scientific breakthroughs in kidney research achieved using multiphoton microscopy (MPM) and summarize the milestones in the technological development of kidney MPM during the past 10 years. Since more and more renal laboratories invest in MPM worldwide, we discuss future directions and provide practical, useful tips and examples for the application of this still-emerging optical sectioning technology. Advantages of using MPM in various kidney preparations that range from freshly dissected individual glomeruli or the whole kidney in vitro to MPM of the intact mouse and rat kidney in vivo are reviewed. Potential combinations of MPM with micromanipulation techniques including microperfusion and micropuncture are also included. However, we emphasize the most advanced and complex, quantitative in vivo imaging applications as the ultimate use of MPM since the true mandate of this technology is to look inside intact organs in live animals and humans.

  16. The first decade of using multiphoton microscopy for high-power kidney imaging

    PubMed Central

    Burford, James L.; Hackl, Matthias J.

    2012-01-01

    In this review, we highlight the major scientific breakthroughs in kidney research achieved using multiphoton microscopy (MPM) and summarize the milestones in the technological development of kidney MPM during the past 10 years. Since more and more renal laboratories invest in MPM worldwide, we discuss future directions and provide practical, useful tips and examples for the application of this still-emerging optical sectioning technology. Advantages of using MPM in various kidney preparations that range from freshly dissected individual glomeruli or the whole kidney in vitro to MPM of the intact mouse and rat kidney in vivo are reviewed. Potential combinations of MPM with micromanipulation techniques including microperfusion and micropuncture are also included. However, we emphasize the most advanced and complex, quantitative in vivo imaging applications as the ultimate use of MPM since the true mandate of this technology is to look inside intact organs in live animals and humans. PMID:22031850

  17. Monitoring the progression from intraductal carcinoma to invasive ductal carcinoma based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-09-01

    Intraductal carcinoma is a precancerous lesion of the breast and the immediate precursor of invasive ductal carcinoma. Multiphoton microscopy (MPM) was used to monitor the progression from intraductal carcinoma to invasive ductal carcinoma, which can improve early detection of precursor lesions and halt progression to invasive neoplastic disease. It was found that MPM has the capability to reveal the qualitative changes in features of cells, structure of basement membranes, and architecture of collagens during the development from intraductal carcinoma to invasive ductal carcinoma, as well as the quantitative alterations in nuclear area, circle length of basement membrane, and collagen density. Combined with intra-fiberoptic ductoscopy or transdermal biopsy needle, MPM has the potential to provide immediate histological diagnosis of tumor progression in the field of breast carcinoma.

  18. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    NASA Astrophysics Data System (ADS)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  19. Monitoring the effect of mechanical stress on mesenchymal stem cell collagen production by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Chang, Chia-Cheng; Chiou, Ling-Ling; Li, Tsung-Hsien; Liu, Yuan; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Tissue engineering is emerging as a promising method for repairing damaged tissues. Due to cartilage's common wear and injury, in vitro production of cartilage replacements have been an active area of research. Finding the optimal condition for the generation of the collagen matrix is crucial in reproducing cartilages that closely match those found in human. Using multiphoton autofluorescence and second-harmonic generation (SHG) microscopy we monitored the effect of mechanical stress on mesenchymal stem cell collagen production. Bone marrow mesenchymal stem cells in the form of pellets were cultured and periodically placed under different mechanical stress by centrifugation over a period of four weeks. The differently stressed samples were imaged several times during the four week period, and the collagen production under different mechanical stress is characterized.

  20. Quantitative determination of maximal imaging depth in all-NIR multiphoton microscopy images of thick tissues

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Akers, Walter J.; Sudlow, Gail P.; Yazdanfar, Siavash; Achilefu, Samuel

    2014-02-01

    We report two methods for quantitatively determining maximal imaging depth from thick tissue images captured using all-near-infrared (NIR) multiphoton microscopy (MPM). All-NIR MPM is performed using 1550 nm laser excitation with NIR detection. This method enables imaging more than five-fold deep in thick tissues in comparison with other NIR excitation microscopy methods. In this study, we show a correlation between the multiphoton signal along the depth of tissue samples and the shape of the corresponding empirical probability density function (pdf) of the photon counts. Histograms from this analysis become increasingly symmetric with the imaging depth. This distribution transitions toward the background distribution at higher imaging depths. Inspired by these observations, we propose two independent methods based on which one can automatically determine maximal imaging depth in the all-NIR MPM images of thick tissues. At this point, the signal strength is expected to be weak and similar to the background. The first method suggests the maximal imaging depth corresponds to the deepest image plane where the ratio between the mean and median of the empirical photon-count pdf is outside the vicinity of 1. The second method suggests the maximal imaging depth corresponds to the deepest image plane where the squared distance between the empirical photon-count mean obtained from the object and the mean obtained from the background is greater than a threshold. We demonstrate the application of these methods in all-NIR MPM images of mouse kidney tissues to study maximal depth penetration in such tissues.

  1. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  2. Combining large area fluorescence with multiphoton microscopy for improved detection of oral epithelial neoplasia (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-03-01

    Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.

  3. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  4. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  5. Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Gainey, Christina S.; Mitropoulos, Tanya; Simpson, Mary Jane; Zhang, Jennifer Y.; Warren, Warren S.

    2015-05-01

    We demonstrate a multimodal approach that combines a pump-probe with confocal reflectance and multiphoton autofluorescence microscopy. Pump-probe microscopy has been proven to be of great value in analyzing thin tissue sections of pigmented lesions, as it produces molecular contrast which is inaccessible by other means. However, the higher optical intensity required to overcome scattering in thick tissue leads to higher-order nonlinearities in the optical response of melanin (e.g., two-photon pump and one-photon probe) that present additional challenges for interpreting the data. We show that analysis of pigment composition in vivo must carefully account for signal terms that are nonlinear with respect to the pump and probe intensities. We find that pump-probe imaging gives useful contrast for pigmented structures over a large range of spatial scales (100 μm to 1 cm), making it a potentially useful tool for tracking the progression of pigmented lesions without the need to introduce exogenous contrast agents.

  6. Monitoring chemically enhanced transdermal delivery of zinc oxide nanoparticles by using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Hsu, Chih-Ting; Kuo, Tsung-Rong; Wu, Chung-Long; Chiang, Shu-Jen; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2010-02-01

    Zinc oxide nanoparticles (ZnO NPs) are commonly used in sunscreens to reduce the risk of skin cancer by blocking ultraviolet radiation. ZnO NPs absorption through the transdermal route may not cause high health risk as inhalation or ingestion. However, in practical usage of sunscreens and cosmetics, ZnO NPs are topically applied to a large area of skin with long periods hence the potential absorption amount of ZnO NPs is still need to be concerned. Therefore, if the ZnO NPs are able the pass the barrier of normal skin, the pathways of transdermal delivery and the factors of enhancements become important issues. In this work, multiphoton microscopy provides us a non-invasive visualization of ZnO NPs in skin. Moreover, we quantitatively analyzed the enhancement of oleic acid and ethanol. Due to the fact that photoluminance of ZnO NPs spectrally overlaps autofluorence from skin stratum corneum (SC) and high turbidity of both ZnO NPs and SC, it is difficult to resolve the distribution of ZnO NPs in skin by using fluorescence microscopy. In this work, the second harmonic generation (SHG) signals from ZnO NPs which double the frequency of excitation source to characterize the delivery pathways and penetration depth in skin. Moreover, we quantitatively compare the ZnO NPs delivery efficiency in normal skin and in skins with three chemically enhancing conditions: ethanol, oleic acid and the combination of ethanol and oleic acid.

  7. Multiphoton microscopy for skin wound healing study in terms of cellular metabolism and collagen regeneration

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Okano, Kazunori; Wu, Wei-Wen; Kao, Fu-Jen

    2014-02-01

    Multiphoton microscopy was employed to study normal skin wound healing in live rats noninvasively. Wound healing is a process involving series of biochemical events. This study evaluates the regeneration of collagen and change in cellular metabolic activity during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), respectively. In eukaryotic cells ATP is the molecule that holds the energy for cellular functioning. Whereas NADH is an electron donor in the metabolic pathways, required to generate ATP. Fluorescence lifetime of NADH free to protein bound ratio was evaluated to determine the relative metabolic activity. The FLIM data were acquired by a TCSPC system using SPCM software and analyzed by SPCImage software. Additionally, polarization resolved SHG signals were also collected to observe the changes in optical birefringence and hence the anisotropy of regenerated collagens from rat wound biopsy samples. Mat lab programming was used to process the data to construct the anisotropy images. Results indicated that, cells involved in healing had higher metabolic activity during the first week of healing, which decreases gradually and become equivalent to normal skin upon healing completes. A net degradation of collagen during the inflammatory phase and net regeneration starting from day 5 were observed in terms of SHG signal intensity change. Polarization resolved SHG imaging of the wound biopsy sample indicates higher value of anisotropy in proliferative phase, from day 4th to 8th, of wound formation; however the anisotropy decreases upon healing.

  8. Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity

    PubMed Central

    2011-01-01

    Background Multiphoton microscopy (MPM) offers many advantages over conventional wide-field and confocal laser scanning microscopy (CLSM) for imaging biological samples such as 3D resolution of excitation, reduced phototoxicity, and deeper tissue imaging. However, adapting MPM for critical multi-color measurements presents a challenge because of the largely overlapping two-photon absorption (TPA) peaks of common biological fluorophores. Currently, most multi-color MPM relies on the absorbance at one intermediate wavelength of multiple dyes, which introduces problems such as decreased and unequal excitation efficiency across the set of dyes. Results Here we describe an MPM system incorporating two, independently controlled sources of two-photon excitation whose wavelengths are adjusted to maximally excite one dye while minimally exciting the other. We report increased signal-to-noise ratios and decreased false positive emission bleed-through using this novel multiple-excitation MPM (ME-MPM) compared to conventional single-excitation MPM (SE-MPM) in a variety of multi-color imaging applications. Conclusions Similar to the tremendous gain in popularity of CLSM after the introduction of multi-color imaging, we anticipate that the ME-MPM system will further increase the popularity of MPM. In addition, ME-MPM provides an excellent tool to more rapidly design and optimize pairs of fluorescence probes for multi-color two-photon imaging, such as CFP/YFP or GFP/DsRed for CLSM. PMID:21366923

  9. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in

  10. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  11. Preclinical study of using multiphoton microscopy to diagnose liver cancer and differentiate benign and malignant liver lesions

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zhuo, Shuangmu; Chen, Gang; Wu, Xiufeng; Zhou, Dong; Xie, Shusen; Jiang, Jiahao; Ying, Mingang; Jia, Fan; Chen, Jianxin; Zhou, Jian

    2012-02-01

    Recently, the miniaturized multiphoton microscopy (MPM) and multiphoton probe allow the clinical use of multiphoton endoscopy for diagnosing cancer via ``optical biopsy''. The purpose of this study was to establish MPM optical diagnostic features for liver cancer and evaluate the sensitivity, specificity, and accuracy of MPM optical diagnosis. Firstly, we performed a pilot study to establish the MPM diagnostic features by investigating 60 surgical specimens, and found that high-resolution MPM images clearly demonstrated apparent differences between benign and malignant liver lesions in terms of their tissue architecture and cell morphology. Cancer cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, were identified by MPM images, which were comparable to hematoxylin-eosin staining images. Secondly, we performed a blinded study to evaluate the sensitivity, specificity, and accuracy of MPM optical diagnosis by investigating another 164 specimens, and found that the sensitivity, specificity, and accuracy of MPM diagnosis was 96.32%, 96.43%, and 96.34%, respectively. In conclusion, it is feasible to use MPM to diagnose liver cancer and differentiate benign and malignant liver lesions. This preclinical study provides the groundwork for further using multiphoton endoscopy to perform real-time noninvasive ``optical biopsy'' for liver lesions in the near future.

  12. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    PubMed

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  13. Identifying and quantifying the stromal fibrosis in muscularis propria of colorectal carcinoma by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Sijia; Yang, Yinghong; Jiang, Weizhong; Feng, Changyin; Chen, Zhifen; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2014-10-01

    The examination of stromal fibrosis within colorectal cancer is overlooked, not only because the routine pathological examinations seem to focus more on tumour staging and precise surgical margins, but also because of the lack of efficient diagnostic methods. Multiphoton microscopy (MPM) can be used to study the muscularis stroma of normal and colorectal carcinoma tissue at the molecular level. In this work, we attempt to show the feasibility of MPM for discerning the microstructure of the normal human rectal muscle layer and fibrosis colorectal carcinoma tissue practicably. Three types of muscularis propria stromal fibrosis beneath the colorectal cancer infiltration were first observed through the MPM imaging system by providing intercellular microstructural details in fresh, unstained tissue samples. Our approach also presents the capability of quantifying the extent of stromal fibrosis from both amount and orientation of collagen, which may further characterize the severity of fibrosis. By comparing with the pathology analysis, these results show that the MPM has potential advantages in becoming a histological tool for detecting the stromal fibrosis and collecting prognosis evidence, which may guide subsequent therapy procedures for patients into good prognosis.

  14. A study on the application of chirped photonic crystal fiber in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Jiali; Zeng, Haishan; Lui, Harvey; Skibina, Julia S.; Steinmeyer, Günter; Tang, Shuo

    2013-02-01

    Multiphoton microscopy (MPM) is a powerful technique for high resolution imaging of biological tissues. A specially-designed chirped photonic crystal fiber (CPCF) is introduced for MPM applications. The CPCF eliminates most pulse broadening effects in a broad transmission window because its cell-size radial chirp in the cladding structure localizes the reflection of different wavelengths in different resonant layers of the cladding, similar to chirped mirrors. In contrast, traditional hollow core fiber (HCF) consists of several identical reflective layers that produce substantial higher-order dispersion. The feasibility of applying the CPCF for MPM imaging is studied. The propagation properties of the CPCF are characterized by autocorrelation traces measured with and without the CPCF, which confirms an extremely low dispersion of the CPCF. The dispersion from other optics in the MPM imaging system is further compensated by a double-folded prism pair. In the autocorrelation trace measurement, satellite peaks are observed when the length of the CPCF is short (~40 cm), which disappear when the fiber length is chosen sufficiently long. The satellite peaks appear to originate from modal dispersion. With propagation lengths above 1 m, single mode propagation can be achieved in the CPCF. The extremely low dispersion of CPCF over a wide transmission window is promising in MPM applications for the fiber delivery of femtosecond pulses, especially in sub-20fs or tunable laser illumination.

  15. Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains

    NASA Astrophysics Data System (ADS)

    Chen, Youting; Chen, Jing; Chen, Hong; Hong, Zhipeng; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Yanling; Chen, Jianxin

    2014-09-01

    Hematoxylin and eosin (H&E) staining of tissue samples is the standard approach in histopathology for imaging and diagnosing cancer. Recent reports have shown that multiphoton microscopy (MPM) provides better sample interface with single-cell resolution, which enhances traditional H&E staining and offers a powerful diagnostic tool with potential applications in oncology. The purpose of this study was to further expand the versatility of MPM by establishing the optical parameters required for imaging unstained histological sections of pancreatic neoplasms, thereby providing an efficient and environmentally sustainable alternative to H&E staining while improving the accuracy of pancreatic cancer diagnoses. We found that the high-resolution MPM images clearly distinguish between the structure of normal pancreatic tissues compared with pancreatic neoplasms in unstained histological sections, and discernable differences in tissue architecture and cell morphology between normal versus tumorigenic cells led to enhanced optical diagnosis of cancerous tissue. Moreover, quantitative assessment of the cytomorphological features visualized from MPM images showed significant differences in the nuclear-cytoplasmic ratios of pancreatic neoplasms compared with normal pancreas, as well as further distinguished pancreatic malignant tumors from benign tumors. These results indicate that the MPM could potentially serve as an optical tool for the diagnosis of pancreatic neoplasms in unstained histological sections.

  16. Identification of non-neoplastic and neoplastic gastric polyps using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Gastric polyps can be broadly defined as luminal lesions projecting above the plane of the mucosal surface. They are generally divided into non-neoplastic and neoplastic polyps. Accurate diagnosis of neoplastic polyps is important because of their well-known relationship with gastric cancer. Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) is one of the most important recent inventions in biological imaging. In this study, we used MPM to image the microstructure of gastric polyps, including fundic gland polyps, hyperplastic polyps, inflammatory fibroid polyps and adenomas, then compared with gold-standard hematoxylin- eosin(H-E)-stained histopathology. MPM images showed that different gastric polyps have different gland architecture and cell morphology. Dilated, elongated or branch-like hyperplastic polyps are arranged by columnar epithelial cells. Inflammatory fibroid polyps are composed of small, thin-walled blood vessels surrounded by short spindle cells. Fundic glands polyps are lined by parietal cells and chief cells, admixed with normal glands. Gastric adenomas are generally composed of tubules or villi of dysplastic epithelium, which usually show some degree of intestinal-type differentiation toward absorptive cells, goblet cells, endocrine cells. Our results demonstrated that MPM can be used to identify non- neoplastic and neoplastic gastric polyps without the need of any staining procedure.

  17. Label-free identification of the hippocampus and surrounding structures by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Jiang, Liwei; Du, Huiping; Wang, Xingfu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-05-01

    The hippocampus is one of the essential neuroanatomical substrates and plays an important role in different neurological illnesses. In this work, multiphoton microscopy (MPM) based on intrinsic nonlinear optical processes two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), was applied to label-freely detect the entire hippocampus and surrounding structures in high-magnification imaging, as well as acquire large-scale MPM images at subcellular resolution. It was found that MPM has the capability to identify cornu ammonis, dentate gyrus (DG), alveus, and fimbria of the entire hippocampus, choroid plexus in lateral ventricles, and white matter tracts. MPM also can be used to quantitatively describe the differences of the cellular nucleus in the cornu ammonis and the DG, further identify the morphological features of hippocampal subfields. In addition, the surrounding structures of the hippocampus including the lateral ventricles and white matter serve as useful information to determine the position of the hippocampus. Our results suggest that with the development of the clinical feasibility of two-photon fiberscopes and microendoscope probes, MPM has the potential for in vivo intraoperative identification and monitoring of hippocampus-related lesions without the need for tissue labelling or fluorescent markers.

  18. Multi-photon microscopy of tobacco-exposed organotypic skin models

    NASA Astrophysics Data System (ADS)

    Dao, Belinda; Yamazaki, Alissa; Sun, Chung Ho; Wang, Zifu; Pham, Nguyen; Oldham, Michael; Wong, Brian J. F.

    2006-02-01

    Cigarette smoking is the most preventable cause of death in the United States. Researchers have extensively studied smoking in regards to its association with cancer, cardiovascular, and pulmonary disease. In contrast, the impact of cigarette smoking on skin has received much less attention. To provide a better understanding of the effect of cigarette smoking on the human dermal layer, this study used multi-photon microscopy (MPM) to examine collagen in organotypic skin models exposed to cigarette smoke condensate (CSC). Adult and neonatal organotypic tissue-engineered artificial skin models (RAFTs) were constructed and exposed to varying concentrations of CSC. Imaging of the RAFTs was performed using MPM and second-harmonic generation signals (SHG), which allowed for collagen structure to be viewed and analyzed as well as for collagen density to be assessed from derived depth-dependent decay (DDD) values. RAFT contraction as related to exposure concentration was monitored as well. Results indicated a dose dependent between contraction rates and CSC concentration. Collagen structure showed more preservation of its original structure at a greater depth in RAFTs with higher concentrations of CSC. No clear trends could be drawn from analysis of derived DDD values.

  19. Imaging Mitochondrial Organization in Living Primate Oocytes and Embryos using Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Squirrell, J. M.; Schramm, R. D.; Paprocki, A. M.; Wokosin, D. L.; Bavister, B. D.

    2003-06-01

    We employed multiphoton laser scanning microscopy (MPLSM) to image changes in mitochondrial distribution in living rhesus monkey embryos. This method of imaging does not impair development; thus, the same specimen can be visualized multiple times at various developmental stages. Not only does this increase the amount of information that can be gathered on a single specimen but it permits the correlation of early events with subsequent development in the same specimen. Here we demonstrate the utility of MPLSM for determining changes in mitochondrial organization at various developmental stages and show that rhesus zygotes possess a distinct accumulation of mitochondria between the pronuclei prior to syngamy. We present evidence that suggests that this pronuclear accumulation may be positively correlated with development to the blastocyst stage—in the same embryo—thereby illustrating how MPLSM can be used to correlate cellular dynamics of primate oocytes and early embryos with their developmental potential. Understanding the relationship between mitochondrial distribution and the subsequent development of mammalian embryos, particularly primates, will increase our ability to improve embryo culture technologies, including those used for human assisted reproduction.

  20. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.

    PubMed

    Cui, Jason Z; Tehrani, Arash Y; Jett, Kimberly A; Bernatchez, Pascal; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-09-01

    In a mouse model of Marfan syndrome, conventional Verhoeff-Van Gieson staining displays severe fragmentation, disorganization and loss of the aortic elastic fiber integrity. However, this method involves chemical fixatives and staining, which may alter the native morphology of elastin and collagen. Thus far, quantitative analysis of fiber damage in aorta and skin in Marfan syndrome has not yet been explored. In this study, we have used an advanced noninvasive and label-free imaging technique, multiphoton microscopy to quantify fiber fragmentation, disorganization, and total volumetric density of aortic and cutaneous elastin and collagen in a mouse model of Marfan syndrome. Aorta and skin samples were harvested from Marfan and control mice aged 3-, 6- and 9-month. Elastin and collagen were identified based on two-photon excitation fluorescence and second-harmonic-generation signals, respectively, without exogenous label. Measurement of fiber length indicated significant fragmentation in Marfan vs. control. Fast Fourier transform algorithm analysis demonstrated markedly lower fiber organization in Marfan mice. Significantly reduced volumetric density of elastin and collagen and thinner skin dermis were observed in Marfan mice. Cutaneous content of elastic fibers and thickness of dermis in 3-month Marfan resembled those in the oldest control mice. Our findings of early signs of fiber degradation and thinning of skin dermis support the potential development of a novel non-invasive approach for early diagnosis of Marfan syndrome.

  1. Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains.

    PubMed

    Chen, Youting; Chen, Jing; Chen, Hong; Hong, Zhipeng; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Yanling; Chen, Jianxin

    2014-09-01

    Hematoxylin and eosin (H&E) staining of tissue samples is the standard approach in histopathology for imaging and diagnosing cancer. Recent reports have shown that multiphoton microscopy (MPM) provides better sample interface with single-cell resolution, which enhances traditional H&E staining and offers a powerful diagnostic tool with potential applications in oncology. The purpose of this study was to further expand the versatility of MPM by establishing the optical parameters required for imaging unstained histological sections of pancreatic neoplasms, thereby providing an efficient and environmentally sustainable alternative to H&E staining while improving the accuracy of pancreatic cancer diagnoses. We found that the high-resolution MPM images clearly distinguish between the structure of normal pancreatic tissues compared with pancreatic neoplasms in unstained histological sections, and discernable differences in tissue architecture and cell morphology between normal versus tumorigenic cells led to enhanced optical diagnosis of cancerous tissue. Moreover, quantitative assessment of the cytomorphological features visualized from MPM images showed significant differences in the nuclear–cytoplasmic ratios of pancreatic neoplasms compared with normal pancreas, as well as further distinguished pancreatic malignant tumors from benign tumors. These results indicate that the MPM could potentially serve as an optical tool for the diagnosis of pancreatic neoplasms in unstained histological sections.

  2. Identification of tumor cells infiltrating into connective tissue in esophageal cancer by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.

  3. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    SciTech Connect

    Cha, Jae Won; Yew, Elijah Y. S.; Kim, Daekeun; Subramanian, Jaichandar; Nedivi, Elly; So, Peter T. C.

    2015-08-15

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.

  4. Identifying three different architectural subtypes of mammary ductal carcinoma in situ using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, shuangmu; Wang, Chuan; Chen, Jianxin

    2015-10-01

    Ductal carcinoma in situ (DCIS) is often considered as the precursor of invasive breast cancer, and the risk of DCIS progression to IBC has been estimated based on the evaluation of pathological features, among which the architectural subtype is the most common one. In this study, multiphoton microscopy (MPM) is applied to identify three different architectural subtypes of DCIS (solid, cribriform and comedo). It is found that MPM has the capability to visualize the proliferating pattern of tumor cells, the presence of intraluminal necrosis and the morphology of basement membrane, which are all taken into account in subtyping DCIS. In addition, MPM also can be used to quantify the cellular metabolism, for quantitatively identifying tumor staging during tumor progression. This result highlights the potential of MPM as an advanced technique to assess the pathological characters of the breast tumor in real-time and reflect the degree of tumor progression in vivo, by integrating into the intra-fiberoptic ductoscopy or transdermal biopsy needle.

  5. Fringe-free, Background-free, Collinear Third Harmonic Generation FROG Measurements for Multiphoton Microscopy

    SciTech Connect

    Chadwick, R; Spahr, E; Squier, J A; Durfee, C G; Walker, B C; Fittinghoff, D N

    2006-07-21

    Collinear pulse measurement tools useful at the full numerical aperture (NA) of multiphoton microscope objectives are a necessity for a quantitative characterization of the femtosecond pulses focused by these systems. In this letter, we demonstrate a simple new technique, for characterizing the pulse at the focus in a multiphoton microscope. This technique, a background-free, fringe-free, form of frequency-resolved optical gating, uses the third harmonic signal generated from a glass coverslip. Here it is used to characterize 100 fs pulses (typical values for a multiphoton microscope) at the focus of a 0.65 NA objective.

  6. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.

    PubMed

    Chen, Zhixing; Wei, Lu; Zhu, Xinxin; Min, Wei

    2012-08-13

    It is highly desirable to be able to optically probe biological activities deep inside live organisms. By employing a spatially confined excitation via a nonlinear transition, multiphoton fluorescence microscopy has become indispensable for imaging scattering samples. However, as the incident laser power drops exponentially with imaging depth due to scattering loss, the out-of-focus fluorescence eventually overwhelms the in-focal signal. The resulting loss of imaging contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation intensity. Herein we propose to significantly extend this depth limit by multiphoton activation and imaging (MPAI) of photo-activatable fluorophores. The imaging contrast is drastically improved due to the created disparity of bright-dark quantum states in space. We demonstrate this new principle by both analytical theory and experiments on tissue phantoms labeled with synthetic caged fluorescein dye or genetically encodable photoactivatable GFP.

  7. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy.

    PubMed

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-02-24

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP](mi2004) zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.

  8. Temperature alters solute transport in growth plate cartilage measured by in vivo multiphoton microscopy

    PubMed Central

    Serrat, Maria A.; Williams, Rebecca M.; Farnum, Cornelia E.

    2009-01-01

    Solute delivery to avascular cartilaginous plates is critical to bone elongation, and impaired transport of nutrients and growth factors in cartilage matrix could underlie many skeletal abnormalities. Advances in imaging technology have revolutionized our ability to visualize growth plates in vivo, but quantitative methods are still needed. We developed analytical standards for measuring solute delivery, defined by amount and rate of intravenous tracer entry, in murine growth plates using multiphoton microscopy. We employed an acute temperature model because of its well-established impact on bone circulation and tested the hypothesis that solute delivery changes positively with limb temperature when body core and respiration are held constant (36°C, 120 breaths/min). Tibial growth plates were surgically exposed in anesthetized 5-wk-old mice, and their hindlimbs were immersed in warm (36°C) or cool (23°C) saline (n = 6/group). After 30 min of thermal equilibration, we administered an intracardiac injection of fluorescein (50 μl, 0.5%) and captured sequentially timed growth plate images spanning 10 min at standardized depth. Absolute growth plate fluorescence was normalized to vascular concentrations for interanimal comparisons. As predicted, more fluorescein infiltrated growth plates at 36°C, with standardized values nearly double those at 23°C. Changing initial limb temperature did not alter baseline values, suggesting a sustained response period. These data validate the sensitivity of our system and have relevance to strategies for enhancing localized delivery of therapeutic agents to growth plates of children. Applications of this technique include assessment of solute transport in models of growth plate dysfunction, particularly chondrodysplasias with matrix irregularities. PMID:19372302

  9. Promising new wavelengths for multi-photon microscopy: thinking outside the Ti:Sapphire box

    NASA Astrophysics Data System (ADS)

    Norris, Greg; Amor, Rumelo; Dempster, John; Amos, William B.; McConnell, Gail

    2013-02-01

    Multi-photon excitation (MPE) imaging is dominated by the Ti:Sapphire laser as the source for excitation. However, it is limited when considering 3PE of common fluorophores and efficient 2PE of UV dyes which require wavelengths beyond the range of the Ti:Sapphire. Two ultra-short pulsed sources are presented as alternatives: a novel optical parametric oscillator (OPO) geometry (1400-1600nm) and the sum-frequency mixing of an OPO and Yb-doped fibre laser, providing a tunable output (626-635nm). For long wavelengths, we report three-photon laser scanning microscopy (3PLSM) using a bi-directional pumped optical parametric oscillator (OPO) with signal wavelength output at 1500 nm. This novel laser was used to overcome the high optical loss in the infrared spectral region observed in laser scanning microscopes and objective lenses that renders them otherwise difficult to use for imaging. To test our system, we performed 3PLSM auto-fluorescence imaging of live plant cells at 1500 nm, specifically Spirogyra, and compared performance with two-photon excitation (2PLSM) imaging using a femtosecond pulsed Ti:Sapphire laser at 780 nm. Analysis of cell viability based on cytoplasmic organelle streaming and structural changes of cells revealed that at similar peak powers, 2PLSM caused gross cell damage after 5 minutes but 3PLSM showed little or no interference with cell function after 15 minutes. The 1500 nm OPO was thus shown to be a practical laser source for live cell imaging. For short wavelengths, we report the use of an all-solid-state ultra-short pulsed source specifically for two-photon microscopy at wavelengths shorter than those of the conventional Ti:Sapphire laser. Our approach involved sumfrequency mixing of the output from the long-wavelength OPO described above with residual pump radiation to generate fs-pulsed output in the red spectral region. We demonstrated the performance of our ultra-short pulsed system using fluorescently labelled and autofluorescent tissue

  10. Characterization of dermal structural assembly in normal and pathological connective tissues by intrinsic signal multiphoton optical microscopy

    NASA Astrophysics Data System (ADS)

    Lyubovitsky, Julia G.; Xu, Xiaoman; Sun, Chung-ho; Andersen, Bogi; Krasieva, Tatiana B.; Tromberg, Bruce J.

    2008-02-01

    Employing a reflectance multi-photon microscopy (MPM) technique, we developed novel method to quantitatively study the three-dimensional assembly of structural proteins within bulk of dermal ECMs. Using a structurally simplified model of skin with enzymatically dissected epidermis, we find that low resolution MPM clearly discriminates between normal and pathological dermis. High-resolution images revealed that the backscattered MPM signals are affected by the assembly of collagen fibrils and fibers within this system. Exposure of tissues to high concentrations of potentially denaturing chemicals also resulted in the reduction of SHG signals from structural proteins which coincided with the appearance of aggregated fluorescent structures.

  11. The layered resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Jiang, Xingshan; Xie, Shusen; Chen, Rong; Cao, Ning; Zou, Qilian; Xiong, Shuyuan

    2007-08-01

    The layered-resolved microstructure and spectroscopy of mouse oral mucosa are obtained using a combination of multiphoton imaging and spectral analysis with different excitation wavelengths. In the keratinizing layer, the keratinocytes microstructure can be characterized and the keratinizing thickness can be measured. The keratin fluorescence signal can be further characterized by emission maxima at 510 nm. In the epithelium, the cellular microstructure can be quantitatively visualized with depth and the epithelium thickness can be determined by multiphoton imaging excited at 730 nm. The study also shows that the epithelial spectra excited at 810 nm, showing a combination of NADH and FAD fluorescence, can be used for the estimation of the metabolic state in epithelium. Interestingly, a second-harmonic generation (SHG) signal from DNA was observed for the first time within the epithelial layer in backscattering geometry and provides the possibility of analyzing the chromatin structure. In the stroma, the combination of multiphoton imaging and spectral analysis excited at 850 nm in tandem can obtain quantitative information regarding the biomorphology and biochemistry of stroma. Specifically, the microstructure of collagen, minor salivary glands and elastic fibers, and the optical property of the stroma can be quantitatively displayed. Overall, these results suggest that the combination of multiphoton imaging and spectral analysis with different excitation wavelengths has the potential to provide important and comprehensive information for early diagnosis of oral cancer.

  12. Novel techniques with multiphoton microscopy: Deep-brain imaging with microprisms, neurometabolism of epilepsy, and counterfeit paper money detection

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.

    Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (<400 microm). We present a method of imaging 1 mm deep into mouse neocortex by using a glass microprism to relay the excitation and emission light. This technique enables simultaneous imaging of multiple cortical layers, including layer V, at an angle typical of slice preparations. At high-magnification imaging using an objective with 1-mm of coverglass correction, resolution was sufficient to resolve dendritic spines on layer V GFP neurons. Functional imaging of blood flow at various neocortical depths is also presented, allowing for quantification of red blood cell flux and velocity. Multiphoton fluorescence lifetime imaging (FLIM) of NADH reveals information on neurometabolism. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic coenzyme, has a lifetime dependent on enzymatic binding. A novel NADH FLIM algorithm is presented that produces images showing spatially distinct NADH fluorescence lifetimes in mammalian brain slices. This program provides advantages over traditional FLIM processing of multi-component lifetime data. We applied this technique to a GFP-GFAP pilocarpine mouse model of temporal lobe epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used

  13. Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Fagot, Dominique; Olive, Christian; Michelet, Jean-François; Galey, Jean-Baptiste; Leroy, Frédéric; Beaurepaire, Emmanuel; Martin, Jean-Louis; Colonna, Anne; Schanne-Klein, Marie-Claire

    2010-09-01

    Dermal fibroblasts are responsible for the generation of mechanical forces within their surrounding extracellular matrix and can be potentially targeted by anti-aging ingredients. Investigation of the modulation of fibroblast contraction by these ingredients requires the implementation of three-dimensional in situ imaging methodologies. We use multiphoton microscopy to visualize unstained engineered dermal tissue by combining second-harmonic generation that reveals specifically fibrillar collagen and two-photon excited fluorescence from endogenous cellular chromophores. We study the fibroblast-induced reorganization of the collagen matrix and quantitatively evaluate the effect of Y-27632, a RhoA-kinase inhibitor, on dermal substitute contraction. We observe that collagen fibrils rearrange around fibroblasts with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA-kinase inhibitor. Moreover, we show that the inhibitory effects are reversible. Our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the extracellular matrix induced by fibroblast contraction or other processes.

  14. Multiphoton microscopy of engineered dermal substitutes: assessment of 3D collagen matrix remodeling induced by fibroblasts contraction

    NASA Astrophysics Data System (ADS)

    Pena, A.-M.; Olive, C.; Michelet, J.-F.; Galey, J.-B.; Fagot, D.; Leroy, F.; Martin, J.-L.; Colonna, A.; Schanne-Klein, M.-C.

    2010-02-01

    One of the main functions of dermal fibroblasts is the generation of mechanical forces within their surrounding extracellular matrix. Investigating molecules that could modulate fibroblast contraction and act as potent anti aging ingredients requires the development of three-dimensional in situ imaging methodologies for dermal substitute analysis. Here we use multiphoton microscopy in order to investigate the fibroblast-induced collagen matrix reorganization in engineered dermal tissue and to evaluate the effect of Y27632, a RhoA kinase inhibitor on dermal substitutes contraction. We observe that collagen fibrils rearrange around fibroblast with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA kinase inhibitor. Moreover, when the culture medium containing the inhibitor was replaced with a control medium, the dermal substitutes presented the same 3D reorganization as the control samples, which indicates that the inhibitory effects are reversible. In conclusion, our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the matrix induced by fibroblast contraction.

  15. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  16. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    SciTech Connect

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J; Gonchukov, S A; Koenig, K

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  17. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.

    PubMed

    Serrat, Maria A; Efaw, Morgan L; Williams, Rebecca M

    2014-02-15

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.

  18. Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging

    PubMed Central

    Chong, Shau Poh; Lai, Tom; Zhou, Yifeng; Tang, Shuo

    2013-01-01

    Multi-scale multimodal microscopy is a very useful technique by providing multiple imaging contrasts with adjustable field of views and spatial resolutions. Here, we present a tri-modal microscope combining multiphoton microscopy (MPM), optical coherence microscopy (OCM) and optical coherence tomography (OCT) for subsurface visualization of biological tissues. The advantages of the tri-modal system are demonstrated on various biological samples. It enables the visualization of multiple intrinsic contrasts including scattering, two-photon excitation fluorescence (TPEF), and second harmonic generation (SHG). It also enables a rapid scanning over a large tissue area and a high resolution zoom-in for cellular-level structures on regions of interest. The tri-modal microscope can be important for label-free imaging to obtain a sufficient set of parameters for reliable sample analysis. PMID:24049679

  19. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  20. In situ multiphoton microscopy for monitoring femtosecond laser eye surgery in the human cornea and sclera

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Albert, Olivier; Giulieri, Damien; Donate, David; May, Frank; Giraud, Jean-Marie; Legeais, Jean-Marc

    2005-08-01

    We present a multiphoton imaging system mounted on a microsurgery experimental set-up using a Nd:glass femtosecond laser. The system permits to induce laser incisions in human cornea and sclera and to perform nonlinear imaging during the intervention. The laser is a chirped pulse amplification (CPA) system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ at repetition rates up to 10 kHz. The delivery system provides spot sizes down to the micron range. The samples are human corneas retracted from the transplant circuit mounted on a moveable anterior chamber system. Photons generated by non-linear processes in the cornea travel backwards through the beam delivery optics and are captured by a photomultiplier tube behind a dichroic mirror. The signal is filtered by a lock-in amplifier tuned to the laser repetition rate. Scanning the sample permits the acquisition of three-dimensional microscopic images. Above the incision threshold the set-up permits to induce laser cuts in human cornea following complex geometries. Below the threshold the laser pulses create secondary photons by the stimulation of non-linear optical processes in the samples which could be identified as being predominantly second harmonic generation (SHG). The in situ images obtained from the multi-photon module permit to control and optimise the surgical intervention. The combination of multiphoton imaging and corneal surgery necessitates only minimal modifications of the optical system of a femtosecond surgical laser system. A combined system significantly improves parameter control and permits the monitoring of the surgical procedure.

  1. Multi-photon microscopy based on resonant four-wave mixing of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Masia, F.; Langbein, W.; Borri, P.

    2009-02-01

    We demonstrate a novel multi-photon imaging modality based on the detection of four-wave mixing (FWM) from colloidal nanoparticles. Four-wave mixing is a third-order signal which can be excited and detected in resonance with the ground-state excitonic transition of CdSe/ZnS quantum dots. The coherent FWM signal is detected interferometrically to reject incoherent backgrounds for improved image contrast compared to fluorescence methods. We measure transversal and axial resolutions of 140nm and 590nm respectively, significantly beating the one-photon diffraction limit. We also demonstrate optical imaging of quantum-dot-labeled Golgi structures of HepG2 cells.

  2. COMPACT NON-CONTACT TOTAL EMISSION DETECTION FOR IN-VIVO MULTI-PHOTON EXCITATION MICROSCOPY

    PubMed Central

    Glancy, Brian; Karamzadeh, Nader S.; Gandjbakhche, Amir H.; Redford, Glen; Kilborn, Karl; Knutson, Jay R.; Balaban, Robert S.

    2014-01-01

    Summary We describe a compact, non-contact design for a Total Emission Detection (c-TED) system for intra-vital multi-photon imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), while murine skeletal muscle and rat kidney showed gains of over two and just under two-fold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a two-fold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers (enabled by greater light collection efficiency) yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multi-photon imaging methods is discussed. PMID:24251437

  3. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  4. In vivo three-dimensional optical coherence tomography and multiphoton microscopy in a mouse model of ovarian neoplasia

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.; Marion, Samuel L.; Rice, Photini Faith; Bentley, David L.; Besselsen, David; Utzinger, Urs; Hoyer, Patricia B.; Barton, Jennifer K.

    2013-03-01

    Our goal is to use optical coherence tomography (OCT) and multiphoton microscopy (MPM) to detect early tumor development in a mouse model of ovarian neoplasia. We hope to use information regarding early tumor development to create a diagnostic test for high-risk patients. In this study we collect in vivo images using OCT, second harmonic generation and two-photon excited fluorescence from non-vinylcyclohexene diepoxide (VCD)-dosed and VCD-dosed mice. VCD causes follicular apoptosis (simulating menopause) and leads to tumor development. Using OCT and MPM we visualized the ovarian microstructure and were able to see differences between non-VCD-dosed and VCD-dosed animals. This leads us to believe that OCT and MPM may be useful for detecting changes due to early tumor development.

  5. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator

    PubMed Central

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z.

    2013-01-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution. PMID:22743445

  6. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator.

    PubMed

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-07-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.

  7. Optical characters and texture maps of skin and the aging mechanism by use of multiphoton microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Zhang, Xiaoman; Huang, Yudian; Xu, Xiaohui

    2012-03-01

    Cutaneous aging is a complicated biological process affecting different constituents of skin, which can be divided into two types: the chronological aging and the photo-aging. The two cutaneous aging processes often co-exist accompanying with each other. The effects are often overlapped including changes in epithelium and dermis. The degeneration of collagen is a major factor in dermal alteration with aging. In this study, multiphoton microscopy (MPM) with its high resolution imaging and optical coherence tomography (OCT) with its depth resolved imaging were used to study the anti-aging dermatology in vivo. It was attempted to make the optical parameter and texture feature to evaluate the process of aging skin using mathematical image processing. The links among optical parameter, spectrum and texture feature in collagen with aging process were established to uncover mechanism of aging skin.

  8. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    SciTech Connect

    Zhuo, Shuangmu E-mail: hanry-yu@nuhs.edu.sg; Yan, Jie; Kang, Yuzhan; Peng, Qiwen; and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  9. Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy.

    PubMed

    Masters, B R; So, P T; Gratton, E

    1998-02-09

    Two-photon excitation microscopy has the potential as an effective, noninvasive, diagnostic tool for in vivo examination of human deep tissue structure at the subcellular level. By using infrared photons as the excitation source in two-photon microscopy, a significant improvement in penetration depth can be achieved because of the much lower tissue scattering and absorption coefficients in the infrared wavelengths. Two-photon absorption occurs primarily at the focal point and provides the physical basis for optical sectioning. Multiphoton excitation microscopy at 730 nm was used to image in vivo human skin autofluorescence from the surface to a depth of about 200 microns. The spectroscopic data suggest that reduced pyridine nucleotides, NAD(P)H, are the primary source of the skin autofluorescence using 730 nm excitation. This study demonstrates the use of multiphoton excitation microscopy for functional imaging of the metabolic states of in vivo human skin cells and provides a functional and morphological optical biopsy.

  10. Multimodal, multiphoton microscopy and image correlation analysis for characterizing corneal thermal damage

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Chang, Yu-Lin; Liu, Jia-Shiu; Hseuh, Chiu-Mei; Hovhannisyan, Vladimir; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2009-09-01

    We used the combination of multiphoton autofluorescence (MAF), forward second-harmonic generation (FWSHG), and backward second-harmonic generation (BWSHG) imaging for the qualitative and quantitative characterization of thermal damage of ex vivo bovine cornea. We attempt to characterize the structural alterations by qualitative MAF, FWSHG, and BWSHG imaging in the temperature range of 37 to 90°C. In addition to measuring the absolute changes in the three types of signals at the stromal surface, we also performed image correlation analysis between FWSHG and BWSHG and demonstrate that with increasing thermal damage, image correlation between FWSHG and BWSHG significantly increases. Our results show that while MAF and BWSHG intensities may be used as preliminary indicators of the extent of corneal thermal damage, the most sensitive measures are provided by the decay in FWSHG intensity and the convergence of FWSHG and BWSHG images.

  11. Second- and third-harmonic generation and multiphoton excitation fluorescence microscopy for simultaneous imaging of cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Barzda, Virginijus; Greenhalgh, Catherine; Aus der Au, Juerg; Squier, Jeffrey A.; Elmore, Steven; van Beek, Johannes H.

    2004-06-01

    Simultaneous detection of second harmonic generation (SHG), third harmonic generation (THG) and multiphoton excitation fluorescence with ultrafast laser pulses from a Nd:Glass laser was used to image isolated adult rat cardiomyocytes. The simultaneous detection enabled visualization of different organelles of cardiomyocytes, based on the different contrast mechanisms. It was found that SHG signal depicted characteristic patterns of sarcomeres in a myofilament lattice. The regular pattern of the THG signal, which was anticorrelated with the SHG signal, suggested that the third harmonic is generated within mitochondria. By labeling the cardiomyocytes with the mitochondrial dye tetramethylrhodamine methyl ester (TMRM), comparisons could be made between the TMRM fluorescence, THG, and SHG images. The TMRM fluorescence had significant correlation with THG signal confirming that part of the THG signal originates from mitochondria.

  12. Multiphoton Fluorescence Microscopy with GRIN Objective Aberration Correction by Low Order Adaptive Optics

    PubMed Central

    Bortoletto, Favio; Bonoli, Carlotta; Panizzolo, Paolo; Ciubotaru, Catalin D.; Mammano, Fabio

    2011-01-01

    Graded Index (GRIN) rod microlenses are increasingly employed in the assembly of optical probes for microendoscopy applications. Confocal, two–photon and optical coherence tomography (OCT) based on GRIN optical probes permit in–vivo imaging with penetration depths into tissue up to the centimeter range. However, insertion of the probe can be complicated by the need of several alignment and focusing mechanisms along the optical path. Furthermore, resolution values are generally not limited by diffraction, but rather by optical aberrations within the endoscope probe and feeding optics. Here we describe a multiphoton confocal fluorescence imaging system equipped with a compact objective that incorporates a GRIN probe and requires no adjustment mechanisms. We minimized the effects of aberrations with optical compensation provided by a low–order electrostatic membrane mirror (EMM) inserted in the optical path of the confocal architecture, resulting in greatly enhanced image quality. PMID:21814575

  13. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy

    PubMed Central

    Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Prignano, Francesca; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2014-01-01

    Psoriasis is a skin autoimmune disease characterized by hyperkeratosis, hyperproliferation of the epidermis and dilatation of dermal papillary blood vessels. Healthy skin (5 volunteers) and psoriatic lesions (3 patients) were visualized in vivo, with high contrast and resolution, with a Polarization Multispectral Dermoscope and a Multiphoton Microscope. Psoriatic features were identified and quantified. The effective diameter of the superficial blood vessels was measured at 35.2 ± 7.2 μm and the elongated dermal papillae had an effective diameter of 64.2 ± 22.6 μm. The methodologies developed could be employed for quantitative diagnostic purposes and furthermore serve as a monitoring method of the effect of personalized treatments. PMID:25071974

  14. Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy

    PubMed Central

    Bueno, Juan M.; Palacios, Raquel; Giakoumaki, Anastasia; Gualda, Emilio J.; Schaeffel, Frank; Artal, Pablo

    2014-01-01

    Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes. PMID:24688804

  15. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.

    2015-06-01

    The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ˜5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ˜30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.

  16. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy

    PubMed Central

    Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.

    2015-01-01

    Abstract. The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ∼5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ∼30–65  μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types. PMID:26065839

  17. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy.

    PubMed

    Saager, Rolf B; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J; Kelly, Kristen M; Tromberg, Bruce J

    2015-06-01

    The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ~30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R² = 0.8895). SFDS melanin distribution thickness is correlated to MPM values (R² = 0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.

  18. Accessible Microscopy Workstation for Students and Scientists with Mobility Impairments

    ERIC Educational Resources Information Center

    Duerstock, Bradley S.

    2006-01-01

    An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for…

  19. Long Term Intravital Multiphoton Microscopy Imaging of Immune Cells in Healthy and Diseased Liver Using CXCR6.Gfp Reporter Mice

    PubMed Central

    Peusquens, Julia; Ergen, Can; Kohlhepp, Marlene; Mossanen, Jana C.; Schneider, Carlo; Vogt, Michael; Tolba, Rene H.; Trautwein, Christian; Martin, Christian; Tacke, Frank

    2015-01-01

    Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements regarding sample preparation and fixation, optical resolution and long-term animal survival. Yet, the dynamics of inflammatory processes as well as cellular interaction studies could provide critical information to better understand the initiation, progression and regression of inflammatory liver disease. Therefore, a highly sensitive and reliable method was established to study migration and cell-cell-interactions of different immune cells in mouse liver over long periods (about 6 hr) by intravital two-photon laser scanning microscopy (TPLSM) in combination with intensive care monitoring. The method provided includes a gentle preparation and stable fixation of the liver with minimal perturbation of the organ; long term intravital imaging using multicolor multiphoton microscopy with virtually no photobleaching or phototoxic effects over a time period of up to 6 hr, allowing tracking of specific leukocyte subsets; and stable imaging conditions due to extensive monitoring of mouse vital parameters and stabilization of circulation, temperature and gas exchange. To investigate lymphocyte migration upon liver inflammation CXCR6.gfp knock-in mice were subjected to intravital liver imaging under baseline conditions and after acute and chronic liver damage induced by intraperitoneal injection(s) of carbon tetrachloride (CCl4). CXCR6 is a chemokine receptor expressed on lymphocytes, mainly on Natural Killer T (NKT)-, Natural Killer (NK)- and subsets of T lymphocytes such as CD4 T cells but also mucosal associated invariant (MAIT) T cells1. Following the migratory pattern and positioning of CXCR6.gfp+ immune cells allowed a

  20. Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source.

    PubMed

    Betz, Timo; Teipel, Jörn; Koch, Daniel; Härtig, Wolfgang; Guck, Jochen; Käs, Josef; Giessen, Harald

    2005-01-01

    Confocal and multiphoton microscopy are essential tools in modern life sciences. They allow fast and highly resolved imaging of a steadily growing number of fluorescent markers, ranging from fluorescent proteins to quantum dots and other fluorophores, used for the localization of molecules and the quantitative detection of molecular properties within living cells and organisms. Up to now, only one physical limitation seemed to be unavoidable. Both confocal and multiphoton microscopy rely on lasers as excitation sources, and their monochromatic radiation allows only a limited number of simultaneously usable dyes, which depends on the specific number of laser lines available in the used microscope. We have overcome this limitation by successfully replacing all excitation lasers in a standard confocal microscope with pulsed white light ranging from 430 to 1300 nm generated in a tapered silica fiber. With this easily reproducible method, simultaneous confocal and multiphoton microscopy was demonstrated. By developing a coherent and intense laser source with spectral width comparable to a mercury lamp, we provide the flexibility to excite any desired fluorophore combination.

  1. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    PubMed Central

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-01-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues. PMID:26631592

  2. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect

    NASA Astrophysics Data System (ADS)

    Pominova, Daria V.; Ryabova, Anastasia V.; Grachev, Pavel V.; Romanishkin, Igor D.; Kuznetsov, Sergei V.; Rozhnova, Julia A.; Yasyrkina, Daria S.; Fedorov, Pavel P.; Loschenov, Victor B.

    2016-09-01

    The great interest in upconversion nanoparticles exists due to their high efficiency under multiphoton excitation. However, when these particles are used in scanning microscopy, the upconversion luminescence causes a streaking effect due to the long lifetime. This article describes a method of upconversion microparticle luminescence lifetime determination with help of modified Lucy-Richardson deconvolution of laser scanning microscope (LSM) image obtained under near-IR excitation using nondescanned detectors. Determination of the upconversion luminescence intensity and the decay time of separate microparticles was done by intensity profile along the image fast scan axis approximation. We studied upconversion submicroparticles based on fluoride hosts doped with Yb3+-Er3+ and Yb3+-Tm3+ rare earth ion pairs, and the characteristic decay times were 0.1 to 1.5 ms. We also compared the results of LSM measurements with the photon counting method results; the spread of values was about 13% and was associated with the approximation error. Data obtained from live cells showed the possibility of distinguishing the position of upconversion submicroparticles inside and outside the cells by the difference of their lifetime. The proposed technique allows using the upconversion microparticles without shells as probes for the presence of OH- ions and CO2 molecules.

  3. Polarization multiplexing in large-mode-area waveguides and its application to signal enhancement in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    He, Jiexing; Wang, Yuxin; Wen, Wenhui; Wang, Kai; Liu, Hongji; Qiu, Ping; Wang, Ke

    2017-01-01

    Soliton self-frequency shift (SSFS) is an efficient technique of generating broadband tunable femtosecond optical pulses. By using large-mode-area (LMA) waveguides such as photonic-crystal (PC) rods or LMA fibers, SSFS is capable of generating solitons with tens of or even >100 nJ pulse energy, enabling deep-tissue multiphoton microscopy (MPM) with the unprecedented imaging depth. MPM signals are proportional to the repetition rate of the laser. Here, we demonstrate an efficient technique of enhancing MPM signals in LMA waveguides, through polarization multiplexing, in both a PC rod with no polarization-maintaining (PM) structure and a PM LMA fiber. The collinear output soliton pulses with orthogonal linear polarizations show similar pulse energy, pulse width, and spectrum. We also demonstrate the application of this polarization multiplexing technique to MPM signal enhancement in biological tissues. Compared with single-polarization soliton excitation, excitation with polarization-multiplexed solitons can efficiently boost MPM signals in different modalities of MPM.

  4. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  5. Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser

    PubMed Central

    Sakadić, Sava; Demirbas, Umit; Mempel, Thorsten R.; Moore, Anna; Ruvinskaya, Svetlana; Boas, David A.; Sennaroglu, Alphan; Kartner, Franz X.; Fujimoto, James G.

    2009-01-01

    Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates ~70-fs duration, 1.8-nJ pulses at ~800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications. PMID:19065223

  6. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Zhuo, Shuangmu; Jiang, Xingshan; Zhu, Xiaoqin; Zheng, Liqin; Xie, Shusen; Lin, Bifang; Zeng, Haishan

    2011-05-01

    Multiphoton microscopy was used to study the extracellular matrix of keloid at the molecular level without tissue fixation and staining. Direct imaging of collagen and elastin was achieved by second harmonic generation and two-photon excited fluorescence, respectively. The morphology and quantity of collagen and elastin in keloid were characterized and quantitatively analyzed in comparison to normal skin. The study demonstrated that in keloid, collagen content increased in both the upper dermis and the deep dermis, while elastin mostly showed up in the deep dermis and its quantity is higher compared to normal skin. This suggests the possibility that abnormal fibroblasts synthesized an excessive amount of collagen and elastin at the beginning of keloid formation, corresponding to the observed deep dermis, while after a certain time point, the abnormal fibroblast produced mostly collagen, corresponding to the observed upper dermis. The morphology of collagen and elastin in keloid was disrupted and presented different variations. In the deep dermis, elastic fibers showed node structure, while collagen showed obviously regular gaps between adjacent bundles. In the upper dermis, collagen bundles aligned in a preferred direction, while elastin showed as sparse irregular granules. This new molecular information provided fresh insight about the development process of keloid.

  7. Quantification of Cy-5 siRNA signal in the intra-vital multi-photon microscopy images.

    PubMed

    Chen, Antong; Dogdas, Belma; Mehta, Saurin; Haskell, Kathleen; Ng, Bruce; Keough, Ed; Howell, Bonnie; Meacham, D Adam; Aslamkhan, Amy G; Davide, Joseph; Stanton, Matthew; Bagchi, Ansuman; Sepp-Lorenzino, Laura; Tao, Weikang

    2012-01-01

    Transgenic mice with Tie2- green fluorescent protein (GFP) are used as a model to study the kinetic distribution of the Cy5-siRNA delivered by lipid nanoparticles (LNP) into the liver. After the mouse is injected with the LNP, it undergoes a procedure of intra-vital multi-photon microscopy imaging over a period of two hours, during which the process for the nanoparticle to diffuse into the hepatocytes from the vasculature system is monitored. Since the images are obtained in-vivo, the quantification of Cy5 kinetics suffers from the moving field of view (FOV). A method is proposed to register the sequence of images through template matching. Based on the semi-automatic segmentations of the vessels in the common FOV, the registered images are segmented into three regions of interest (ROI) in which the Cy5 signals are quantified. Computation of the percentage signal strength in the ROIs over time allows for the analysis of the diffusion of Cy5-siRNA into the hepatocytes, and helps demonstrate the effectiveness of the Cy5-siRNA delivery vehicle.

  8. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  9. Analysis of microparticle penetration into human and porcine skin: non-invasive imaging with multiphoton excitation microscopy

    NASA Astrophysics Data System (ADS)

    Mulholland, William J.; Kendall, Mark A.; Bellhouse, Brian J.; White, Nick

    2002-06-01

    At the University of Oxford and PowderJect Pharmaceuticals plc, a unique form of needle-free injection technology has been developed. Powdered vaccines and drugs in micro-particle form are accelerated in a high-speed gas flow to sufficient velocity to enter the skin, subsequently achieving a pharmaceutical effect. To optimize the delivery of vaccines and drugs with this method a detailed understanding of the interactive processes that occur between the microparticles and the skin is necessary. Investigations to date of micro-particle delivery into excised human and animal tissue have involved image analyses of histology sections. In the present study, a series of investigations were conducted on excised human and porcine skin using the technique of Multi-Photon fluorescence excitation Microscopy (MPM) to image particles and skin structures post-penetration. Micro-particles of various size and composition were imaged with infrared laser excitation. Three-dimensional images of stratum corneum and epidermal cell deformation due to micro-particle penetration were obtained. Measurements of micro-particle penetration depth taken from z-scan image stacks were used to successfully quantify micro-particle distribution within the skin, without invasively disrupting the skin target. This study has shown that MPM has great potential for the non-invasive imaging of particle skin interactive processes that occur with the transdermal delivery of powdered micro-particle vaccines and drugs.

  10. Label-free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy.

    PubMed

    Jiang, L W; Wang, X F; Wu, Z Y; Lin, P H; DU, H P; Wang, S; Li, L H; Fang, N; Zhuo, S M; Kang, D Z; Chen, J X

    2017-02-01

    Glioblastoma multiforme (GBM-WHO grade IV) is the most common and the most aggressive form of brain tumors in adults with the median survival of 10-12 months. The diagnostic detection of extracellular matrix (ECM) component in the tumour microenvironment is of prognostic value. In this paper, the fibrillar collagen deposition associated with vascular elements in GBM were investigated in the fresh specimens and unstained histological slices by using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our study revealed the existence of fibrillar collagen deposition in the adventitia of remodelled large blood vessels and in glomeruloid vascular structures in GBM. The degree of fibrillar collagen deposition can be quantitatively evaluated by measuring the adventitial thickness of blood vessels or calculating the ratio of SHG pixel to the whole pixel of glomeruloid vascular structure in MPM images. These results indicated that MPM can not only be employed to perform a retrospective study in unstained histological slices but also has the potential to apply for in vivo brain imaging to understand correlations between malignancy of gliomas and fibrillar collagen deposition.

  11. Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood

    PubMed Central

    Saytashev, Ilyas; Glenn, Rachel; Murashova, Gabrielle A.; Osseiran, Sam; Spence, Dana; Evans, Conor L.; Dantus, Marcos

    2016-01-01

    Red blood cells (RBC) in two-photon excited fluorescence (TPEF) microscopy usually appear as dark disks because of their low fluorescent signal. Here we use 15fs 800nm pulses for TPEF, 45fs 1060nm pulses for three-photon excited fluorescence, and third harmonic generation (THG) imaging. We find sufficient fluorescent signal that we attribute to hemoglobin fluorescence after comparing time and wavelength resolved spectra of other expected RBC endogenous fluorophores: NADH, FAD, biliverdin, and bilirubin. We find that both TPEF and THG microscopy can be used to examine erythrocyte morphology non-invasively without breaching a blood storage bag. PMID:27699111

  12. Simultaneous optical coherence and multiphoton microscopy of skin-equivalent tissue models

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tang, Shuo; Lim, Ryan; Tromberg, Bruce J.

    2007-07-01

    Three-layer skin-equivalent models (rafts) were created consisting of a collagen/fibroblast layer and an air-exposed keratinocyte layer. Rafts were imaged with a tri-modality microscope including optical coherence (OC), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) channels. Some rafts were stained with Hoechst 33343 or rhodamine 123, and some were exposed to dimethyl sulfoxide (DMSO). OC microscopy revealed signal in cell cytoplasm and nuclear membranes, and a characteristic texture in the collagen/fibroblast layer. TPEF showed signal in cell cytoplasm and from collagen, and stained specimens revealed cell nuclei or mitochondria. There was little SHG in the keratinocyte layer, but strong signal from collagen bundles. Endogenous signals were severely attenuated in DMSO treated rafts; stained samples revealed shrunken and distorted cell structure. OC, TPEF, and SHG can provide complementary and non-destructive information about raft structure and effect of chemical agents.

  13. Multiphoton microscopy: an efficient tool for in-situ study of cultural heritage artifacts

    NASA Astrophysics Data System (ADS)

    Latour, Gaël.; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2013-05-01

    We present multimodal nonlinear optical imaging of historical artifacts by combining Two-Photon Excited Fluorescence (2PEF) and Second Harmonic Generation (SHG) microscopies. Three-dimensional (3D) non-contact laser-scanning imaging with micrometer resolution is performed without any preparation of the objects under study. 2PEF signals are emitted by a wide range of fluorophores such as pigments and binder, which can be discriminated thanks to their different emission spectral bands by using suitable spectral filters in the detection channel. SHG signals are specific for dense non-centrosymmetric organizations such as the crystalline cellulose within the wood cell walls. We also show that plaster particles exhibit SHG signals. These particles are bassanite crystals with a non-centrosymmetric crystalline structure, while the other types of calcium sulphates exhibit a centrosymmetric crystalline structure with no SHG signal. In our study, we first characterize model single-layered samples: wood, gelatin-based films containing plaster or cochineal lake and sandarac film containing cochineal lake. We then study multilayered coating systems on wood and show that multimodal nonlinear microscopy successfully reveals the 3D distribution of all components within the stratified sample. We also show that the fine structure of the wood can be assessed, even through a thick multilayered varnish coating. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as an efficient non-destructive and contactless 3D imaging technique for in situ investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.

  14. Quantifying local heterogeneity of in vivo transport dynamics using stochastic scanning multiphoton multifocal microscopy and segmented spatiotemporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hee Y.; Jureller, Justin E.; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2008-02-01

    Elucidating the mechanisms of insulin granule trafficking in pancreatic β-cells is a critical step in understanding Type II Diabetes and abnormal insulin secretion. In this paper, rapid-sampling stochastic scanning multiphoton multifocal microscopy (SS-MMM) was developed to capture fast insulin granule dynamics in vivo. Stochastic scanning of (a diffractive optic generated) 10×10 hexagonal array of foci with a galvanometer yields a uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. In addition, segmented spatio-temporal image correlation spectroscopy (Segmented STICS) was developed to extract dynamics of insulin granules from the image sequences. Measurements we conducted on MIN6 cells, which exhibit an order of magnitude lower granule number density, allow comparison of particle tracking with Segmented-STICS. Segmentation of the images into 8×8 pixel segments (similar to a size of one granule) allows some amount of spatial averaging, which can reduce the computation time required to calculate the correlation function, yet retains information about the local spatial heterogeneity of transport. This allows the correlation analysis to quantify the dynamics within each of the segments producing a "map" of the localized properties of the cell. The results obtained from Segmented STICS are compared with dynamics determined from particle tracking analysis of the same images. The resulting range of diffusion coefficients of insulin granules are comparable to previously published values indicating that SS-MMM and segmented- STICS will be useful to address the imaging challenges presented by β-cells, particularly the extremely large number density of granules.

  15. Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy

    SciTech Connect

    Himmelhuber, R. Mehravar, S. S.; Herrera, O. D.; Demir, V.; Kieu, K.; Norwood, R. A.; Peyghambarian, N.; Luo, J.; Jen, A. K.-Y.

    2014-04-21

    We imaged coplanar poled electro optic (EO) polymer films on transparent substrates with a multiple-photon microscope in reflection and correlated the second-harmonic light intensity with the results of Pockels coefficient (r{sub 33}) measurements. This allowed us to make quantitative measurements of poled polymer films on non-transparent substrates like silicon, which are not accessible with traditional Pockels coefficient measurement techniques. Phase modulators consisting of silicon waveguide devices with EO polymer claddings with a known Pockels coefficient (from V{sub π} measurements) were used to validate the correlation between the second-harmonic signal and r{sub 33}. This also allowed us to locally map the r{sub 33} coefficient in the poled area.

  16. Technical parameters of vertical in vivo multiphoton microscopy: a critical evaluation of the flyscanning method

    NASA Astrophysics Data System (ADS)

    Czekalla, C.; Schönborn, K. H.; Markworth, S.; Ulrich, M.; Göppner, D.; Gollnick, H.; Röwert-Huber, J.; Darvin, M. E.; Lademann, J.; Meinke, M. C.

    2015-08-01

    The optical biopsy could be a quick and painless support or alternative to a punch biopsy. In this letter the first in vivo vertical wide field two photon microscopy (2PM) images of healthy volunteers are shown. The 2PM images are fused images of two photon excited auto fluorescence (AF) and second harmonic generation (SHG) signals given as false-color images of 200 μm  ×  7 mm in size. By using these two nonlinear effects, the epidermis can be easily distinguished from the dermis at a glance. The auto fluorescence provides cellular resolution of the epidermal cells, and elastin fibers are partly visible in the dermis. Collagen, visible by SHG signal, is the dominant structure in the dermis. As contact agent water was evaluated to increase the AF signal, especially in the deeper layers of epidermis and dermis. For further improvement any terminal hairs should be removed by shaving and by taking tape strips of the first five layers of the stratum corneum. The first images illustrated that young skin compared to aged skin shows remarkably different dermal elastin and collagen signals in the dermis.

  17. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources

    PubMed Central

    Esipova, Tatiana V.; Ye, Xingchen; Collins, Joshua E.; Sakadžić, Sava; Mandeville, Emiri T.; Murray, Christopher B.; Vinogradov, Sergei A.

    2012-01-01

    We report a group of optical imaging probes, comprising upconverting lanthanide nanoparticles (UCNPs) and polyanionic dendrimers. Dendrimers with rigid cores and multiple carboxylate groups at the periphery are able to tightly bind to surfaces of UCNPs pretreated with NOBF4, yielding stable, water-soluble, biocompatible nanomaterials. Unlike conventional linear polymers, dendrimers adhere to UCNPs by donating only a fraction of their peripheral groups to the UCNP–surface interactions. The remaining termini make up an interface between the nanoparticle and the aqueous phase, enhancing solubility and offering multiple possibilities for subsequent modification. Using optical probes as dendrimer cores makes it possible to couple the UCNPs signal to analyte-sensitive detection via UCNP-to-chromophore excitation energy transfer (EET). As an example, we demonstrate that UCNPs modified with porphyrin–dendrimers can operate as upconverting ratiometric pH nanosensors. Dendritic UCNPs possess excellent photostability, solubility, and biocompatibility, which make them directly suitable for in vivo imaging. Polyglutamic dendritic UCNPs injected in the blood of a mouse allowed mapping of the cortical vasculature down to 400 μm under the tissue surface, thus demonstrating feasibility of in vivo high-resolution two-photon microscopy with continuous wave (CW) excitation sources. Dendrimerization as a method of solubilization of UCNPs opens up numerous possibilities for use of these unique agents in biological imaging and sensing. PMID:23213211

  18. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

    PubMed Central

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-01-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  19. Label-free structural characterization of mitomycin C-modulated wound healing after photorefractive keratectomy by the use of multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Wang, Tsung-Jen; Chen, Wei-Liang; Hsueh, Chiu-Mei; Chen, Shean-Jen; Chen, Yang-Fang; Chou, Hsiu-Chu; Lin, Pi-Jung; Hu, Fung-Rong; Dong, Chen-Yuan

    2010-05-01

    We applied multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) microscopy to monitor corneal wound healing after photorefractive keratectomy (PRK). Our results show that keratocyte activation can be observed by an increase in its MAF, while SHG imaging of corneal stroma can show the depletion of Bowman's layer after PRK and the reticular collagen deposition in the wound healing stage. Furthermore, quantification of the keratocyte activation and collagen deposition in conjunction with immunohistochemistry and histological images demonstrate the effectiveness of mitomycin C (MMC) in suppressing myofibroblast proliferation and collagen regeneration in the post-PRK wound healing process.

  20. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EARLY LIFE STAGES

    EPA Science Inventory

    Multiphoton laser scanning micrsocopy holds promise as a tool to study the tissue distribution of environmental chemical contaminants during fish early life stage development. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polyaromatic hydrocarbon that a...

  1. Quantitative structural markers of colorectal dysplasia in a cross sectional study of ex vivo murine tissue using label-free multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.

    2016-03-01

    Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity.

  2. A custom image-based analysis tool for quantifying elastin and collagen micro-architecture in the wall of the human aorta from multi-photon microscopy.

    PubMed

    Koch, Ryan G; Tsamis, Alkiviadis; D'Amore, Antonio; Wagner, William R; Watkins, Simon C; Gleason, Thomas G; Vorp, David A

    2014-03-21

    The aorta possesses a micro-architecture that imparts and supports a high degree of compliance and mechanical strength. Alteration of the quantity and/or arrangement of the main load-bearing components of this micro-architecture--the elastin and collagen fibers--leads to mechanical, and hence functional, changes associated with aortic disease and aging. Therefore, in the future, the ability to rigorously characterize the wall fiber micro-architecture could provide insight into the complicated mechanisms of aortic wall remodeling in aging and disease. Elastin and collagen fibers can be observed using state-of-the-art multi-photon microscopy. Image-analysis algorithms have been effective at characterizing fibrous constructs using various microscopy modalities. The objective of this study was to develop a custom MATLAB-language automated image-based analysis tool to describe multiple parameters of elastin and collagen micro-architecture in human soft fibrous tissue samples using multi-photon microscopy images. Human aortic tissue samples were used to develop the code. The tool smooths, cleans and equalizes fiber intensities in the image before segmenting the fibers into a binary image. The binary image is cleaned and thinned to a fiber skeleton representation of the image. The developed software analyzes the fiber skeleton to obtain intersections, fiber orientation, concentration, porosity, diameter distribution, segment length and tortuosity. In the future, the developed custom image-based analysis tool can be used to describe the micro-architecture of aortic wall samples in a variety of conditions. While this work targeted the aorta, the software has the potential to describe the architecture of other fibrous materials, tube-like networks and connective tissues.

  3. Accessible microscopy workstation for students and scientists with mobility impairments.

    PubMed

    Duerstock, Bradley S

    2006-01-01

    An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.

  4. Flexible digital signal processing architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and time-resolved spectroscopy.

    PubMed

    Wilson, Jesse W; Park, Jong Kang; Warren, Warren S; Fischer, Martin C

    2015-03-01

    The lock-in amplifier is a critical component in many different types of experiments, because of its ability to reduce spurious or environmental noise components by restricting detection to a single frequency and phase. One example application is pump-probe microscopy, a multiphoton technique that leverages excited-state dynamics for imaging contrast. With this application in mind, we present here the design and implementation of a high-speed lock-in amplifier on the field-programmable gate array (FPGA) coprocessor of a data acquisition board. The most important advantage is the inherent ability to filter signals based on more complex modulation patterns. As an example, we use the flexibility of the FPGA approach to enable a novel pump-probe detection scheme based on spread-spectrum communications techniques.

  5. Flexible digital signal processing architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and time-resolved spectroscopy

    PubMed Central

    Wilson, Jesse W.; Park, Jong Kang; Warren, Warren S.

    2015-01-01

    The lock-in amplifier is a critical component in many different types of experiments, because of its ability to reduce spurious or environmental noise components by restricting detection to a single frequency and phase. One example application is pump-probe microscopy, a multiphoton technique that leverages excited-state dynamics for imaging contrast. With this application in mind, we present here the design and implementation of a high-speed lock-in amplifier on the field-programmable gate array (FPGA) coprocessor of a data acquisition board. The most important advantage is the inherent ability to filter signals based on more complex modulation patterns. As an example, we use the flexibility of the FPGA approach to enable a novel pump-probe detection scheme based on spread-spectrum communications techniques. PMID:25832238

  6. Label-free and depth resolved optical sectioning of iron-complex deposits in sickle cell disease splenic tissue by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Vigil, Genevieve D.; Adami, Alexander J.; Ahmed, Tahsin; Khan, Aamir; Chapman, Sarah; Andemariam, Biree; Thrall, Roger S.; Howard, Scott S.

    2015-06-01

    Multiphoton microscopy (MPM) imaging of intrinsic two-photon excited fluorescence (TPEF) is performed on humanized sickle cell disease (SCD) mouse model splenic tissue. Distinct morphological and spectral features associated with SCD are identified and discussed in terms of diagnostic relevance. Specifically, spectrally unique splenic iron-complex deposits are identified by MPM; this finding is supported by TPEF spectroscopy and object size to standard histopathological methods. Further, iron deposits are found at higher concentrations in diseased tissue than in healthy tissue by all imaging methods employed here including MPM, and therefore, may provide a useful biomarker related to the disease state. These newly characterized biomarkers allow for further investigations of SCD in live animals as a means to gain insight into the mechanisms impacting immune dysregulation and organ malfunction, which are currently not well understood.

  7. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  8. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy.

    PubMed

    Wright, Amanda J; Burns, David; Patterson, Brett A; Poland, Simon P; Valentine, Gareth J; Girkin, John M

    2005-05-01

    We report on the introduction of active optical elements into confocal and multiphoton microscopes in order to reduce the sample-induced aberration. Using a flexible membrane mirror as the active element, the beam entering the rear of the microscope objective is altered to produce the smallest point spread function once it is brought to a focus inside the sample. The conventional approach to adaptive optics, commonly used in astronomy, is to utilise a wavefront sensor to determine the required mirror shape. We have developed a technique that uses optimisation algorithms to improve the returned signal without the use of a wavefront sensor. We have investigated a number of possible optimisation methods, covering hill climbing, genetic algorithms, and more random search methods. The system has demonstrated a significant enhancement in the axial resolution of a confocal microscope when imaging at depth within a sample. We discuss the trade-offs of the various approaches adopted, comparing speed with resolution enhancement.

  9. High speed multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  10. Compact clinical high-NA multiphoton endoscopy

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2012-02-01

    Multiphoton imaging methods are excellent for non-invasive imaging of living tissue without any need of additional contrast agents. The increasing demand for endoscopic techniques has forced the development of multiphoton endoscopes for imaging of areas with reduced accessibility like chronic wounds. Gradient index (GRIN) lenses can miniaturize the bulky distal focusing optics of conventional tomographs to a diameter of less than 1.4 mm and a numerical aperture (NA) of 0.8. We combined a high NA clinical multiphoton endoscope with existing multiphoton tomographs like the DermaInspect® and the MPTflex® to enable the examination of wound healing processes.

  11. Motion correction for cellular-resolution multi-photon fluorescence microscopy imaging of awake head-restrained mice using speed embedded HMM.

    PubMed

    Chen, Taoyi; Xue, Zhong; Wang, Changhong; Qu, Zhenshen; Wong, Kelvin K; Wong, Stephen T C

    2012-04-01

    Multi-photon fluorescence microscopy (MFM) captures high-resolution fluorescence image sequences and can be used for the intact brain imaging of small animals. Recently, it has been extended from anesthetized and head-stabilized mice to awake and head-restrained ones for in vivo neurological study. In these applications, motion correction is an important pre-processing step since brain pulsation and body movement can cause motion artifact and prevent stable serial image acquisition at such high spatial resolution. This paper proposes a speed embedded Hidden Markov model (SEHMM) for motion correction in MFM imaging of awake head-restrained mice. The algorithm extends the traditional Hidden Markov model (HMM) method by embedding a motion prediction model to better estimate the state transition probability. The novelty of the method lies in using adaptive probability to estimate the linear motion, while the state-of-the-art method assumes that the highest probability is assigned to the case with no motion. In experiments we demonstrated that SEHMM is more accurate than the traditional HMM using both simulated and real MFM image sequences.

  12. Measurement of absorption spectrum of deuterium oxide (D{sub 2}O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    SciTech Connect

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Wang, Ke; Zhai, Peng; Qiu, Ping

    2016-01-11

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.

  13. Integrated coherent Raman scattering and multiphoton microscopy for label-free imaging of the dentin in the tooth

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Lin, Jian; Hsu, Chin-Ying; Huang, Zhiwei

    2014-02-01

    We report the implementation of a unique multimodal nonlinear optical microscopy (i.e., coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), third harmonic generation (THG) and two photon excitation fluorescence (TPEF)) platform for label-free imaging of dentin. A picosecond tunable laser together with an OPO is used as the excitation source for simultaneously multimodal imaging. CARS shows similar information as TPEF in dentin, but it has a higher sectioning performance than TPEF and thus it is a good alternative for TPEF. Microtubule structure is revealed nearby dentin enamel junction (DEJ) from the multimodal images. This work demonstrates that combining different nonlinear optical imaging modalities can provide new insights into the understanding of morphological structures and biochemical/biomolecular distributions of the dentine without the need of labeling.

  14. Use of multi-photon laser-scanning microscopy to describe the distribution of xenobiotic chemicals in fish early life stages.

    PubMed

    Hornung, Michael W; Cook, Philip M; Flynn, Kevin M; Lothenbach, Doug B; Johnson, Rodney D; Nichols, John W

    2004-03-30

    To better understand the mechanisms by which persistent bioaccumulative toxicants (PBTs) produce toxicity during fish early life stages (ELS), dose-response relationships need to be understood in relation to the dynamic distribution of chemicals in sensitive tissues. In this study, a multi-photon laser scanning microscope (MPLSM) was used to determine the multi-photon excitation spectra of several polyaromatic hydrocarbons (PAHs) and to describe chemical distribution among tissues during fish ELS. The multi-photon excitation spectra revealed intense fluorescent signal from the model fluorophore, pentamethyl-difluoro-boro-indacene (BODIPY), less signal from benzo[a]pyrene and fluoranthene, and no detectable signal from pyrene. The imaging method was tested by exposing newly fertilized medaka (Oryzias latipes) eggs to BODIPY or fluoranthene for 6 h, followed by transfer to clean media. Embryos and larvae were then imaged through 5 days post-hatch. The two test chemicals partitioned similarly throughout development and differences in fluorescence intensity among tissues were evident to a depth of several hundred microns. Initially, the most intense signal was observed in the oil droplet within the yolk, while a moderate signal was seen in the portion of the yolk containing the yolk-platelets. As embryonic development progressed, the liver biliary system, gall bladder, and intestinal tract accumulated strong fluorescent signal. After hatch, once the gastrointestinal tract was completely developed, most of the fluorescent signal was cleared. The MPLSM is a useful tool to describe the tissue distribution of fluorescent PBTs during fish ELS.

  15. MULTIPHOTON IMAGING CAN BE USED FOR MICROSCOPIC EXAMINATION OF INTACT HUMAN GASTROINTESTINAL MUCOSA EX VIVO

    PubMed Central

    Rogart, Jason N.; Nagata, Jun; Loeser, Caroline S.; Roorda, Robert D.; Aslanian, Harry; Robert, Marie E.; Zipfel, Warren R.; Nathanson, Michael H.

    2008-01-01

    Background & Aims The ability to observe cellular and subcellular detail during routine endoscopy is a major goal in the development of new endoscopic imaging techniques. Multiphoton microscopy, which relies on nonlinear infared optical processes, has the potential to identify cellular details by excitation of endogenous fluorescent molecules. We examined the feasibility of using multiphoton microscopy to characterize mucosal histology in the human gastrointestinal tract. Methods A multiphoton microscope was used to determine the optimal excitation wavelength for examination of gastrointestinal mucosa. Fresh, unfixed, and unstained biopsy specimens obtained during routine endoscopy in human subjects were then examined by confocal microscopy and multiphoton microscopy. Multiphoton images also were compared to standard H&E images obtained from paired biopsy specimens. A prototype miniaturized multiphoton probe was used to examine intact rat colon. Results Peak multiphoton autofluorescence intensity was detected in mucosa excited at 735 nm. Multiphoton microscopic examination of unstained biopsy specimens revealed improved cellular detail relative to either unstained or stained specimens examined by confocal imaging. Resolution of structures such as epithelial nuclei, goblet cells, and interstitial fibers and cells was comparable to what was obtained using standard H&E histology. Similar findings were observed when using a prototype miniaturized multiphoton probe. Conclusions Multiphoton microscopy can be used to examine gastrointestinal mucosa at the cellular level, without the need for fluorescent dyes. The construction of a multiphoton endomicroscope could therefore provide a practical means of performing “virtual biopsies” during the course of routine endoscopy, with advantages over currently available endomicroscopy technologies. PMID:18065276

  16. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  17. Random access three-dimensional two-photon microscopy.

    PubMed

    Rózsa, Balázs; Katona, Gergely; Vizi, E Sylvester; Várallyay, Zoltán; Sághy, Attila; Valenta, Lásló; Maák, Pál; Fekete, Júlia; Bányász, Akos; Szipocs, Róbert

    2007-04-01

    We propose a two-photon microscope scheme capable of real-time, three-dimensional investigation of the electric activity pattern of neural networks or signal summation rules of individual neurons in a 0.6 mm x 0.6 mm x 0.2 mm volume of the sample. The points of measurement are chosen according to a conventional scanning two-photon image, and they are addressed by separately adjustable optical fibers. This allows scanning at kilohertz repetition rates of as many as 100 data points. Submicrometer spatial resolution is maintained during the measurement similarly to conventional two-photon microscopy.

  18. Studies on wide-field-of-view multiphoton imaging using the flexible clinical multiphoton tomograph MPTflex

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2012-03-01

    Multiphoton imaging systems are capable of high-resolution 3-D image acquisition of deep tissue. A first commercially available CE-certified biomedical system for subcelluar resolution of human skin has been launched by JenLab company with the DermaInspectR in 2002. The demand for more flexibility caused the development of the MPTflexR, which provides an increased flexibility and accessibility especially for clinical and cosmetic examinations. However the high resolution of clinical multiphoton tomographs are adherent with a small field-of-view (FOV) of about 360×360μm2. Especially time-consuming is the relocation of areas of interest (AOI) like lesions, sweat glands or hair shafts during a multiphoton examination. This limitation can be be overcome by macroscopic large-area (wide-field-ofview) multiphoton tomography, which is tested first within this work.

  19. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  20. Multiphoton imaging of renal tissues in vitro.

    PubMed

    Peti-Peterdi, János

    2005-06-01

    The highly inhomogeneous and light-scattering structure of living renal tissue makes the application of conventional imaging techniques more difficult compared with other parenchymal organs. On the other hand, key physiological processes of the kidney, such as regulation of glomerular filtration, hemodynamics, concentration, and dilution, involve complex interactions between multiple cell types and otherwise inaccessible structures that necessitate visual approaches. An ideal solution is multiphoton excitation fluorescence microscopy, a state-of-the-art imaging technique superior for deep optical sectioning of living tissue samples. Here, we review the basics and advantages of multiphoton microscopy and provide examples for its application in renal physiology using dissected cortical and medullary tissues in vitro. In combination with microperfusion techniques, the major functions of the juxtaglomerular apparatus, tubuloglomerular feedback and renin release, can be studied with high spatial and temporal resolution. Salt-dependent changes in macula densa cell volume, vasoconstriction of the afferent arteriole, and activity of an intraglomerular precapillary sphincter composed of renin granular cells are visualized in real time. Release and tissue activity of renin can be studied on the individual granule level. Imaging of the living inner medulla shows how interstitial cells interconnect cells of the vasa recta, loop of Henle, and collecting duct. In summary, multiphoton microscopy is an exciting new optical sectioning technique that has great potential for numerous future developments and is ideal for applications that require deep optical sectioning of living tissue samples.

  1. Photobleaching imprinting microscopy: seeing clearer and deeper.

    PubMed

    Gao, Liang; Garcia-Uribe, Alejandro; Liu, Yan; Li, Chiye; Wang, Lihong V

    2014-01-15

    We present a generic sub-diffraction-limited imaging method - photobleaching imprinting microscopy (PIM) - for biological fluorescence imaging. A lateral resolution of 110 nm was measured, more than a twofold improvement over the optical diffraction limit. Unlike other super-resolution imaging techniques, PIM does not require complicated illumination modules or specific fluorescent dyes. PIM is expected to facilitate the conversion of super-resolution imaging into a routine lab tool, making it accessible to a much broader biological research community. Moreover, we show that PIM can increase the image contrast of biological tissue, effectively extending the fundamental depth limit of multi-photon fluorescence microscopy.

  2. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education

    PubMed Central

    Kim, Honesty; Gerber, Lukas Cyrill; Chiu, Daniel; Lee, Seung Ah; Cira, Nate J.; Xia, Sherwin Yuyang; Riedel-Kruse, Ingmar H.

    2016-01-01

    For centuries, observational microscopy has greatly facilitated biology education, but we still cannot easily and playfully interact with the microscopic world we see. We therefore developed the LudusScope, an accessible, interactive do-it-yourself smartphone microscopy platform that promotes exploratory stimulation and observation of microscopic organisms, in a design that combines the educational modalities of build, play, and inquire. The LudusScope’s touchscreen and joystick allow the selection and stimulation of phototactic microorganisms such as Euglena gracilis with light. Organismal behavior is tracked and displayed in real time, enabling open and structured game play as well as scientific inquiry via quantitative experimentation. Furthermore, we used the Scratch programming language to incorporate biophysical modeling. This platform is designed as an accessible, low-cost educational kit for easy construction and expansion. User testing with both teachers and students demonstrates the educational potential of the LudusScope, and we anticipate additional synergy with the maker movement. Transforming observational microscopy into an interactive experience will make microbiology more tangible to society, and effectively support the interdisciplinary learning required by the Next Generation Science Standards. PMID:27706189

  3. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education.

    PubMed

    Kim, Honesty; Gerber, Lukas Cyrill; Chiu, Daniel; Lee, Seung Ah; Cira, Nate J; Xia, Sherwin Yuyang; Riedel-Kruse, Ingmar H

    2016-01-01

    For centuries, observational microscopy has greatly facilitated biology education, but we still cannot easily and playfully interact with the microscopic world we see. We therefore developed the LudusScope, an accessible, interactive do-it-yourself smartphone microscopy platform that promotes exploratory stimulation and observation of microscopic organisms, in a design that combines the educational modalities of build, play, and inquire. The LudusScope's touchscreen and joystick allow the selection and stimulation of phototactic microorganisms such as Euglena gracilis with light. Organismal behavior is tracked and displayed in real time, enabling open and structured game play as well as scientific inquiry via quantitative experimentation. Furthermore, we used the Scratch programming language to incorporate biophysical modeling. This platform is designed as an accessible, low-cost educational kit for easy construction and expansion. User testing with both teachers and students demonstrates the educational potential of the LudusScope, and we anticipate additional synergy with the maker movement. Transforming observational microscopy into an interactive experience will make microbiology more tangible to society, and effectively support the interdisciplinary learning required by the Next Generation Science Standards.

  4. Multiphoton imaging of renal regulatory mechanisms.

    PubMed

    Peti-Peterdi, János; Toma, Ildikó; Sipos, Arnold; Vargas, Sarah L

    2009-04-01

    Most physiological functions of the kidneys, including the clearance of metabolic waste products, maintenance of body fluid, electrolyte homeostasis, and blood pressure, are achieved by complex interactions between multiple renal cell types and previously inaccessible structures in many organ parts that have been difficult to study. Multiphoton fluorescence microscopy offers a state-of-the-art imaging technique for deep optical sectioning of living tissues and organs with minimal deleterious effects. Dynamic regulatory processes and multiple functions in the intact kidney can be quantitatively visualized in real time, noninvasively, and with submicron resolution. This article reviews innovative multiphoton imaging technologies and their applications that provided the most complex, immediate, and dynamic portrayal of renal function-clearly depicting as well as analyzing the components and mechanisms involved in renal (patho)physiology.

  5. Assessing and benchmarking multiphoton microscopes for biologists

    PubMed Central

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F.

    2017-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs. PMID:24974026

  6. Assessing and benchmarking multiphoton microscopes for biologists.

    PubMed

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F

    2014-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs.

  7. DMD-based random-access optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Zhou, Yong; Winkler, Amy W.; Wang, Lidai; Maslov, Konstantin I.; Li, Chiye; Wang, Lihong V.

    2014-03-01

    The scanning mechanism is a major technical focus in optical-resolution photoacoustic microscopy. Flexible scanning access with fast scanning speed is desired to monitor biological and physiological dynamics with high temporal resolution. We developed random-access optical-resolution photoacoustic microscopy (RA-OR-PAM) using a digital micromirror device (DMD). Each micromirror on the DMD can be independently controlled, allowing imaging of regions of interest with arbitrary user-selected shapes without extraneous information. A global structural image is first acquired, and the regions of interest are selected. The laser beam then scans these regions exclusively, resulting in a faster frame rate than in a conventional raster scan. This system can rapidly scan arbitrarily shaped regions of interest with a lateral resolution of 3.6 μm within a 40×40 μm2 imaging area, a size comparable to the focal spot size of a 50 MHz ultrasound transducer. We demonstrated the random-access ability of RA-OR-PAM by imaging a monolayer of red blood cells. This system was then used to monitor blood flow in vivo within user-selected capillaries in a mouse ear. By imaging only the capillary of interest, the frame rate was increased by up to 13.3 times.

  8. Accessing the third dimension in localization-based super-resolution microscopy.

    PubMed

    Hajj, Bassam; El Beheiry, Mohamed; Izeddin, Ignacio; Darzacq, Xavier; Dahan, Maxime

    2014-08-21

    Only a few years after its inception, localization-based super-resolution microscopy has become widely employed in biological studies. Yet, it is primarily used in two-dimensional imaging and accessing the organization of cellular structures at the nanoscale in three dimensions (3D) still poses important challenges. Here, we review optical and computational techniques that enable the 3D localization of individual emitters and the reconstruction of 3D super-resolution images. These techniques are grouped into three main categories: PSF engineering, multiple plane imaging and interferometric approaches. We provide an overview of their technical implementation as well as commentary on their applicability. Finally, we discuss future trends in 3D localization-based super-resolution microscopy.

  9. Clinical multiphoton endoscopy with FLIM capability

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2013-02-01

    Multiphoton endoscopy can be applied for intra-corporeal imaging as well as to examine otherwise hard-to-access tissue areas like chronic wounds. Using high-NA (NA = 0.8) gradient-index (GRIN) lens-based endoscopes with a diameter of 1.4 mm and effective lengths of 7 mm and 20 mm, respectively, two-photon excitation of endogenous fluorophores and second-harmonic generation (SHG) is used for multimodal in vivo imaging of human skin. A further imaging modality is fluorescence lifetime imaging (FLIM) which allows functional imaging to investigate the healing mechanism of chronic wounds and the corresponding cell metabolism. We performed first in vivo measurements using FLIM endoscopy with the medically-certified multiphoton tomograph MPTflex® in combination with a computer-controlled motorized scan head and a GRIN-lens endoscope.

  10. Multiphoton Assisted Recombination

    NASA Astrophysics Data System (ADS)

    Shuman, E. S.; Jones, R. R.; Gallagher, T. F.

    2008-12-01

    We have observed multiphoton assisted recombination in the presence of a 38.8 GHz microwave field. Stimulated emission of up to ten microwave photons results in energy transfer from continuum electrons, enabling recombination. The maximum electron energy loss is far greater than the 2Up predicted by the standard “simpleman’s” model. The data are well reproduced by both an approximate analytic expression and numerical simulations in which the combined Coulomb and radiation fields are taken into account.

  11. Clinical multiphoton FLIM tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  12. In vivo multiphoton nanosurgery on cortical neurons.

    PubMed

    Sacconi, Leonardo; O'Connor, Rodney P; Jasaitis, Audrius; Masi, Alessio; Buffelli, Mario; Pavone, Francesco S

    2007-01-01

    Two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex of living mice. Multiphoton absorption has also been used as a tool for the selective disruption of cellular structures in living cells and simple organisms. In this work, we exploit the spatial localization of multiphoton excitation to perform selective lesions on the neuronal processes of cortical neurons in living mice expressing fluorescent proteins. Neurons are irradiated with a focused, controlled dose of femtosecond laser energy delivered through cranial optical windows. The morphological consequences are then characterized with time lapse 3-D two-photon imaging over a period of minutes to days after the procedure. This methodology is applied to dissect single dendrites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. The spatial precision of this method is demonstrated by ablating individual dendritic spines, while sparing the adjacent spines and the structural integrity of the dendrite. The combination of multiphoton nanosurgery and in vivo imaging in mammals represents a promising tool for neurobiology and neuropharmacology research.

  13. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo

    NASA Astrophysics Data System (ADS)

    Larson, Daniel R.; Zipfel, Warren R.; Williams, Rebecca M.; Clark, Stephen W.; Bruchez, Marcel P.; Wise, Frank W.; Webb, Watt W.

    2003-05-01

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

  14. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.

    PubMed

    Larson, Daniel R; Zipfel, Warren R; Williams, Rebecca M; Clark, Stephen W; Bruchez, Marcel P; Wise, Frank W; Webb, Watt W

    2003-05-30

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

  15. Three-dimensional structure of human chromatin accessibility complex hCHRAC by electron microscopy

    SciTech Connect

    Hu, M.; Hainfeld, J.; Zhang, Y.-B.; Qian, L.; Brinas, R. P.; Kuznetsova, L.

    2008-12-01

    ATP-dependent chromatin remodeling complexes modulate the dynamic assembly and remodeling of chromatin involved in DNA transcription, replication, and repair. There is little structural detail known about these important multiple-subunit enzymes that catalyze chromatin remodeling processes. Here we report a three-dimensional structure of the human chromatin accessibility complex, hCHRAC, using single particle reconstruction by negative stain electron microscopy. This structure shows an asymmetric 15 x 10 x 12 nm disk shape with several lobes protruding out of its surfaces. Based on the factors of larger contact area, smaller steric hindrance, and direct involvement of hCHRAC in interactions with the nucleosome, we propose that four lobes on one side form a multiple-site contact surface 10 nm in diameter for nucleosome binding. This work provides the first determination of the three-dimensional structure of the ISWI-family of chromatin remodeling complexes.

  16. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  17. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  18. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  19. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  20. Transverse correlations in multiphoton entanglement

    SciTech Connect

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-10-15

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case.

  1. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  2. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator.

    PubMed

    König, Karsten; Andersen, Peter; Le, Tuan; Breunig, Hans Georg

    2015-12-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its imaging capability using different biological samples, i.e. cell monolayers, corneal tissue, and human skin. With the novel laser, the realization of very compact Ti:sapphire-based systems for high-quality multiphoton imaging at a significantly size and weight compared to current systems will become possible.

  3. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions.

  4. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  5. In vivo multiphoton imaging of the cornea: polarization-resolved second harmonic generation from stromal collagen

    NASA Astrophysics Data System (ADS)

    Latour, G.; Gusachenko, I.; Kowalczuk, L.; Lamarre, I.; Schanne-Klein, M.-C.

    2012-03-01

    Multiphoton microscopy provides specific and contrasted images of unstained collagenous tissues such as tendons or corneas. Polarization-resolved second harmonic generation (SHG) measurements have been implemented in a laserscanning multiphoton microscope. Distortion of the polarimetric response due to birefringence and diattenuation during propagation of the laser excitation has been shown in rat-tail tendons. A model has been developed to account for these effects and correct polarization-resolved SHG images in thick tissues. This new modality is then used in unstained human corneas to access two quantitative parameters: the fibrils orientation within the collagen lamellae and the ratio of the main second-order nonlinear tensorial components. Orientation maps obtained from polarization resolution of the trans-detected SHG images are in good agreement with the striated features observed in the raw images. Most importantly, polarization analysis of the epi-detected SHG images also enables to map the fibrils orientation within the collagen lamellae while epi-detected SHG images of corneal stroma are spatially homogenous and do not enable direct visualization of the fibrils orientation. Depth profiles of the polarimetric SHG response are also measured and compared to models accounting for orientation changes of the collagen lamellae within the focal volume. Finally, in vivo polarization-resolved SHG is performed in rat corneas and structural organization of corneal stroma is determined using epi-detected signals.

  6. Optical Spectroscopy and Multiphoton Imaging for the Diagnosis and Characterization of Hyperplasias in the Mouse Mammary Gland

    DTIC Science & Technology

    2007-09-01

    epithelial tissues in vivo using diffuse reflectance spectroscopy . Optics Express. Accepted (2007). Thesis • MC Skala. “Multiphoton Microscopy...breast cancer using diffuse reflectance spectroscopy : Comparison of a Monte Carlo versus partial least squares analysis based feature extraction

  7. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  8. Multiphoton Effects in Rutile.

    NASA Astrophysics Data System (ADS)

    Royce, Gerald A.

    Multiphoton effects are investigated in crystalline rutile TiO(,2) using Nd:YAG laser photons. The 1.06 micron laser is operated in Q-switched mode with intensities up to 1.4 x 10('6) watts/cm('2) on the rutile crystal. Photoconductivity measurements provide data indicating a mixture of modes for electrons to be photoionized. Assuming aluminum impurity as the contributing sites, the first order photionization cross section is found to be 1.5 x 10('-26) cm('2) and second order cross section is found to be 7.7 x 10('-51) cm('4)-s. No appreciable change in cross section is observed for circular versus linear polarization of the laser. Observations of the photo-emission of the laser illuminated crystal provide radiative relaxation times on the order of 100 nanoseconds with emission peaks at 4500 and 5000 angstroms plus a near infrared continuum out to 1 micron. The thermoluminescence of rutile shows a number of trapping levels between 0.4 and 0.8 eV below the conduction band. These are attributed to an aluminum impurity.

  9. Quantitative multiphoton imaging

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  10. Multiphoton imaging with a nanosecond supercontinuum source

    NASA Astrophysics Data System (ADS)

    Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.

  11. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jhih; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2009-07-01

    We utilize multiphoton microscopy for the label-free diagnosis of noncancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from humans. Our results show that the combination of second-harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from noncancerous lung tissues. Specifically, noncancerous lung tissues are largely fibrotic in structure, while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55+/-0.23 and 0.87+/-0.15, respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13, respectively. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from noncancerous tissues.

  12. Multiphoton laser lithography for the fabrication of plasmonic components

    NASA Astrophysics Data System (ADS)

    Passinger, Sven; Koch, Jürgen; Kiyan, Roman; Reinhardt, Carsten; Chichkov, Boris N.

    2006-08-01

    In this contribution, we demonstrate multi-photon femtosecond laser lithography for the fabrication and rapid prototyping of plasmonic components. Using this technology different dielectric and metallic SPP-structures can be fabricated in a low-cost and time-efficient way. Resolution limits of this technology will be discussed. Investigations of the optical properties of the fabricated SPP-structures by far-field leakage radiation microscopy will be reported.

  13. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jr; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2010-02-01

    In this work, we utilized multiphoton microscopy for the label-free diagnosis of non-cancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from human. Our results show that the combination of second harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from non-cancerous lung tissues. Specifically, non-cancerous lung tissues are largely fibrotic in structure while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI or SAAID) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55 +/-0.23 and 0.87+/-0.15 respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13 respectively. Intrinsic fluorescence ratio (FAD/NADH) of SCC and non-cancerous tissues are 0.40+/-0.05 and 0.53+/-0.05 respectively, the redox ratio of SCC diminishes significantly, indicating that increased cellular metabolic activity. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from non-cancerous tissues. With additional development, multiphoton microscopy may be used for the clinical diagnosis of lung cancers.

  14. Multiphoton FLIM: a reliable FRET detection tool in cell biological applications

    NASA Astrophysics Data System (ADS)

    Krishnan, Ramanujan V.; Biener, Eva; Centonze, Victoria E.; Gertler, Arieh; Herman, Brian A.

    2004-06-01

    Fluorescence lifetime imaging microscopy (FLIM) using multiphoton excitation is emerging as a reliable quantitative tool for measuring fluorescence resonance energy transfer (FRET) in living cells. By virtue of being free from spectroscopic artifacts encountered in conventional FRET detection methods, multiphoton FLIM methods offer the advantages of high spatial and temporal resolution, faster data acquisition and data analysis. We compare the FRET results obtained by two different methods namely (i) multiphoton excitation lifetime-based FRET and (ii) single photon excitation intensity-based acceptor photobleaching FRET. Using the same biological samples, we apply these two different methods in understanding the growth hormone receptor dimerization kinetics at the cell surface of human embryonic kidney cells. We conclude that the multiphoton FLIM using the streak-camera approach provides the best ability to monitor FRET in dynamic situations where high temporal and spatial resolution are required with minimal photodamage/phototoxicity.

  15. Multiphoton nanosurgery in cells and tissues

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Anhut, Tiemo; Stracke, Frank; Le Harzic, Ronan; Koenig, Karsten

    2005-04-01

    Multiphoton Microscopy with a femtosecond pulsed Ti:sapphire laser in the near infrared (NIR) enables the user not only to image cells and tissues with a subcellular resolution but also to perform highly precise nanosurgery. Intratissue compartments, single cells and even cell organelles like mitochondria, membranes or chromosomes can be manipulated and optically knocked out. Working at transient TW/cm2 laser intensities, single cells of tumor-sphaeroids were eliminated efficiently inside the sphaeroid without damaging the neighbour cells. Also single organelles of cells inside tissues could be optically knocked out with the nanoscalpel without collateral damage. Tissue structures inside a human tooth have been ablated with sizes below 1 μm. This method may become a useful instrument for nano-manipulating and surgery in several fields of science, including targeted transfection.

  16. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    SciTech Connect

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  17. Multi-photon microscope driven by novel green laser pump

    NASA Astrophysics Data System (ADS)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  18. Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, Washington Y.; Prow, Tarl W.; Sanchez, Washington H.; Grice, Jeffrey E.; Roberts, Michael S.

    2010-07-01

    Ex vivo human skin has been used extensively for cosmeceutical and drug delivery studies, transplantable skin allografts, or skin flaps. However, it has a half-life of a few days due to ischemic necrosis. Traditional methods of assessing viability can be time-consuming and provide limited metabolic information. Using multiphoton tomography and fluorescence lifetime imaging (MPT-FLIM) we assess ischemic necrosis of ex vivo skin by NAD(P)H autofluorescence intensity and fluorescence lifetime. Ex vivo skin is stored in the presence and absence of nutrient media (Dulbecco Modified Eagle Medium) at -20, 4, and 37 °C and room temperature over a 7-day time course to establish different rates of metabolic deterioration. At higher temperatures we observe a decrease in NAD(P)H autofluorescence, higher image noise, and a significant increase in the average fluorescence lifetime (τm) from ~1000 to 2000 ps. Additionally, significant distortions in NAD(P)H fluorescence lifetime histograms correspond to the reduction in autofluorescence. Skin kept at 4 °C, with or without media, showed the least change. Our findings suggest that MPT-FLIM enables useful noninvasive optical biopsies to monitor the metabolic state and deterioration of human skin for research and clinical purposes.

  19. Multiphoton fluorescent images with a spatially varying background signal: a ML deconvolution method.

    PubMed

    Crivaro, M; Enjieu-Kadji, H; Hatanaka, R; Nakauchi, S; Bosch, J; Judin, J; Riera, J; Kawashima, R

    2011-06-01

    By means of multiphoton laser scanning microscopy, neuroscientists can look inside the brain deeper than has ever been possible before. Multiphoton fluorescent images, as all optical images, suffer from degradation caused by a variety of sources (e.g. light dispersion and absorption in the tissue, laser fluctuations, spurious photodetection and staining deficiency). From a modelling perspective, such degradations can be considered the sum of stochastic noise and a background signal. Among the methods proposed in the literature to perform image deconvolution in either confocal or multiphoton fluorescent microscopy, Vicidomini et al. (2009) were the first to incorporate models for noise (a Poisson process) and background signal (spatially constant) in the context of regularized inverse problems. Unfortunately, the so-called split-gradient deconvolution method (SGM) they used did not consider possible spatial variations in the background signal. In this paper, we extend the SGM by adding a maximum-likelihood estimation step for the determination of a spatially varying background signal. We demonstrate that the assumption of a constant background is not always valid in multiphoton laser microscopy and by using synthetic and actual multiphoton fluorescent images, we evaluate the face of validity of the proposed method, and compare its accuracy with the previously introduced SGM algorithm.

  20. Nanoscale hydroxyl radical generation from multiphoton ionization of tryptophan.

    PubMed

    Bisby, Roger H; Crisostomo, Ana G; Botchway, Stanley W; Parker, Anthony W

    2009-01-01

    Exposure of solutions containing both tryptophan and hydrogen peroxide to a pulsed ( approximately 180 fs) laser beam at 750 nm induces luminescence characteristic of 5-hydroxytryptophan. The results indicate that 3-photon excitation of tryptophan results in photoionization within the focal volume of the laser beam. The resulting hydrated electron is scavenged by hydrogen peroxide to produce the hydroxyl radical. The latter subsequently reacts with tryptophan to form 5-hydroxytryptophan. The involvement of hydroxyl radicals is confirmed by the use of ethanol and nitrous oxide as scavengers and their effects on the fluorescence yield in this system. It is postulated that such multiphoton ionization of tryptophanyl residues in cellular proteins may contribute to the photodamage observed during imaging of cells and tissues using multiphoton microscopy.

  1. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  2. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    PubMed Central

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  3. In vivo microscopy.

    PubMed

    Peti-Peterdi, János

    2016-04-01

    This article summarizes the past, present, and future promise of multiphoton excitation fluorescence microscopy for intravital kidney imaging. During the past 15years, several high-power visual research approaches have been developed using multiphoton imaging to study the normal functions of the healthy, intact, living kidney, and the various molecular and cellular mechanisms of the development of kidney diseases. In this review, the main focus will be on intravital multiphoton imaging of the glomerulus, the structure and function of the glomerular filtration barrier, especially the podocyte. Examples will be given for the combination of two powerful research tools, in vivo multiphoton imaging and mouse genetics using commercially available whole animal models for the detailed characterization of glomerular cell types, their function and fate, and for the better understanding of the molecular mechanisms of glomerular pathologies. One of the new modalities of multiphoton imaging, serial imaging of the same glomerulus in the same animal over several days will be emphasized for its potential for further advancing the field of nephrology research.

  4. 48-channel coincidence counting system for multiphoton experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Li, Wei; Hu, Yi; Yang, Tao; Jin, Ge; Jiang, Xiao

    2016-11-01

    In this paper, we demonstrate a coincidence counting system with 48 input channels which is aimed to count all coincidence events, up to 531 441 kinds, in a multiphoton experiment. Using the dynamic delay adjusting inside the Field Programmable Gate Array, the alignment of photon signals of 48 channels is achieved. After the alignment, clock phase shifting is used to sample signal pulses. Logic constraints are used to stabilize the pulse width. The coincidence counting data stored in a 1G bit external random access memory will be sent to the computer to analyze the amount of 2-, 3-, 4-, 5-, and 6-fold coincidence events. This system is designed for multiphoton entanglement experiments with multiple degrees of freedom of photons.

  5. Accessing nuclear structure for field emission, in lens, scanning electron microscopy (FEISEM).

    PubMed

    Allen, T D; Bennion, G R; Rutherford, S A; Reipert, S; Ramalho, A; Kiseleva, E; Goldberg, M W

    1996-01-01

    Scanning electron microscopy (SEM) has had a shorter time course in biology than conventional transmission electron microscopy (TEM) but has nevertheless produced a wealth of images that have significantly complemented our perception of biological structure and function from TEM information. By its nature, SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by the considerably reduced resolution in conventional SEM in comparison to TEM. This restriction has been removed by the recent advent of high-brightness sources used in lensfield emission instruments (FEISEM) which have produced resolution of around 1 nanometre, which is not usually a limiting figure for biological material. This communication reviews our findings in the use of FEISEM in the imaging of nuclear surfaces, then associated structures, such as nuclear pore complexes, and the relationships of these structures with cytoplasmic and nucleoplasmic elements. High resolution SEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding, its functional significance. Clearly, intracellular surfaces require separation from surrounding structural elements in vivo to allow surface imaging, and we review a combination of biochemical and mechanical isolation methods for nuclear surfaces.

  6. Multiphoton excited fluorescence spectroscopy of biomolecular systems

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.

    2001-09-01

    Recent work on the emerging application of multiphoton excitation to fluorescence studies of biomolecular dynamics and structure is reviewed. The fundamental principles and experimental techniques of multiphoton excitation are outlined, fluorescence lifetimes, anisotropy and spectra in membranes, proteins, hydrocarbons, skin, tissue and metabolites are featured, and future opportunities are highlighted.

  7. Accessibility of gonococcal and meningococcal surface antigens: immunogold labeling for quantitative electron microscopy.

    PubMed Central

    Pâques, M; Teppema, J S; Beuvery, E C; Abdillahi, H; Poolman, J T; Verkleij, A J

    1989-01-01

    The parallel application of two electron microscopic immunogold labeling procedures was used to assess the surface exposure and accessibility of gonococcal and meningococcal surface antigens. Monoclonal antibodies were used as markers for the surface antigens, i.e., outer membrane proteins and lipooligosaccharides. To evaluate the labeling densities obtained after incubation of whole bacteria in suspension or ultrathin cryosections of bacteria, a method of electron microscopic quantitation was developed. Incubation of whole bacterial suspensions with monoclonal antibodies and protein A-gold resulted in specific labeling of the bacterial surfaces. However, the labeling densities varied largely in each cell. By contrast, cryosections showed uniform heavy labeling densities at the surface of the outer membranes of all cells. Apparently, by sectioning the cells the antigen-masking barrier could be evaded, and steric hindrance was no longer restrictive. Thus, a better estimate of both the presence and the surface exposure, i.e., the accessibility of antigens, could be made. Such information is essential for us to better understand host-bacterial interactions and to develop new vaccines. Images PMID:2492264

  8. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    NASA Astrophysics Data System (ADS)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  9. Multiphoton Imaging of Rabbit Cornea Treated with Mitomycin C after Photorefractive Keratectomy

    NASA Astrophysics Data System (ADS)

    Hsueh, Chiu-Mei; Lo, Wen; Wang, Tsung-Jen; Hu, Fung-Rong; Dong, Chen-Yuan

    2007-07-01

    In this work we use multiphoton microscopy to observe the post surgery structure variation of rabbit cornea after photorefractive keratectomy (PRK). In addition, we added mitomycin C (MMC) to the post surgery rabbit cornea in order to investigate the effect of MMC treatment on the postoperative regeneration.

  10. High-resolution multiphoton cryomicroscopy.

    PubMed

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers.

  11. Compact diode laser source for multiphoton biological imaging

    PubMed Central

    Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.

    2016-01-01

    We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420

  12. Intravital multiphoton imaging of mouse tibialis anterior muscle

    PubMed Central

    Lau, Jasmine; Goh, Chi Ching; Devi, Sapna; Keeble, Jo; See, Peter; Ginhoux, Florent; Ng, Lai Guan

    2016-01-01

    ABSTRACT Intravital imaging by multiphoton microscopy is a powerful tool to gain invaluable insight into tissue biology and function. Here, we provide a step-by-step tissue preparation protocol for imaging the mouse tibialis anterior skeletal muscle. Additionally, we include steps for jugular vein catheterization that allow for well-controlled intravenous reagent delivery. Preparation of the tibialis anterior muscle is minimally invasive, reducing the chances of inducing damage and inflammation prior to imaging. The tibialis anterior muscle is useful for imaging leukocyte interaction with vascular endothelium, and to understand muscle contraction biology. Importantly, this model can be easily adapted to study neuromuscular diseases and myopathies. PMID:28243520

  13. Multiphoton laser direct writing of two-dimensional silver structures.

    PubMed

    Baldacchini, Tommaso; Pons, Anne-Cécile; Pons, Josefina; Lafratta, Christopher; Fourkas, John; Sun, Yong; Naughton, Michael

    2005-02-21

    We report a novel and efficient method for the laser direct writing of two-dimensional silver structures. Multiphoton absorption of a small fraction of the output of a Ti:sapphire oscillator is sufficient to photoreduce silver nitrate in a thin film of polyvinylpyrrolidone that has been spin-coated on a substrate. The polymer can then be washed away, leaving a pattern consisting of highly interconnected silver nanoparticles. We report the characterization of the silver patterns using scanning electron and atomic force microscopies, and demonstrate the application of this technique in the creation of diffraction gratings.

  14. Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging.

    PubMed

    Mancuso, James J; Larson, Adam M; Wensel, Theodore G; Saggau, Peter

    2009-01-01

    The Nikon C1 confocal laser scanning microscope is a relatively inexpensive and user-friendly instrument. We describe a straightforward method to convert the C1 for multiphoton microscopy utilizing direct coupling of a femtosecond near-infrared laser into the scan head and fiber optic transmission of emission light to the three-channel detector box. Our adapted system can be rapidly switched between confocal and multiphoton mode, requires no modification to the original system, and uses only a few custom-made parts. The entire system, including scan mirrors and detector box, remain under the control of the user-friendly Nikon EZ-C1 software without modification.

  15. Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging.

    PubMed

    Lee, Jang Hyuk; Kim, Jong Chul; Tae, Giyoong; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2013-07-01

    A multimodal multiphoton nonlinear optical (NLO) microspectroscopy imaging system was developed using a femtosecond laser and a photonic crystal fiber. Coherent anti-Stokes Raman scattering (CARS) microspectroscopy was combined with two-photon excitation fluorescence and second-harmonic generation microscopy in one platform and the system was applied to diagnose liver fibrosis. Normal and liver fibrosis tissues were clearly distinguished with the great difference from CARS spectra as well as multimodal multiphoton NLO images. We expect the system to be a rapid diagnosis tool for liver fibrosis at tissue level with label-free imaging of significant biochemical components.

  16. Multiphoton cryo microscope with sample temperature control

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2013-02-01

    We present a multiphoton microscope system which combines the advantages of multiphoton imaging with precise control of the sample temperature. The microscope provides online insight in temperature-induced changes and effects in plant tissue and animal cells with subcellular resolution during cooling and thawing processes. Image contrast is based on multiphoton fluorescence intensity or fluorescence lifetime in the range from liquid nitrogen temperature up to +600°C. In addition, micro spectra from the imaged regions can be recorded. We present measurement results from plant leaf samples as well as Chinese hamster ovary cells.

  17. Two-color multiphoton emission from nanotips

    NASA Astrophysics Data System (ADS)

    Cheng-Wei Huang, Wayne; Becker, Maria; Beck, Joshua; Batelaan, Herman

    2017-02-01

    Two-color multiphoton emission from polycrystalline tungsten nanotips has been demonstrated using two-color laser fields. The two-color photoemission is assisted by a three-photon multicolor quantum channel, which leads to a twofold increase in quantum efficiency. Weak-field control of two-color multiphoton emission was achieved by changing the efficiency of the quantum channel with pulse delay. The result of this study complements two-color tunneling photoemission in strong fields, and has potential applications for nanowire-based photonic devices. Moreover, the demonstrated two-color multiphoton emission may be important for realizing ultrafast spin-polarized electron sources via optically injected spin current.

  18. Two-photon imaging of intact living plants during freezing with a flexible multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; König, K.

    2015-02-01

    We describe the combination of a flexible multiphoton tomograph (MPTflex) with a heating and cooling stage. The stage allows temperature control in the range of (-196 °C) (77 K) to +600 °C (873 K) with selectable heating/freezing rates between 0.01 K min-1 and 150 K min-1. To illustrate the imaging capabilities of the combined system, fluorescence intensity and lifetime of intrinsic molecules from a plant leaf were imaged with submicron resolution during freezing in vivo without detaching the leaf from the plant. An increase of fluorescence intensity and decay times with decreasing temperature was observed. The measurements illustrate the usefulness of multiphoton imaging as a non-invasive online tool to investigate temperature-induced effects. The flexible multiphoton tomograph with its adjustable mechano-optical arm and scan head allows imaging at otherwise hardly accessible sample regions.

  19. Multibeam multifocal multiphoton photon counting imaging in scattering media

    NASA Astrophysics Data System (ADS)

    Hoover, Erich E.

    Multiphoton microscopy is an invaluable technique for the neurological community, allowing for deep explorations within highly scattering tissues such as the brain. However, prior to this research multiphoton microscopy was limited in its ability to rapidly construct volumetric images deep within scattering specimens. This work establishes a technique that permits such exploration through the application of multiple beams separated in both space and time, where signal photons corresponding to those beams are demultiplexed through the use of a field programmable gate array. With this system a number of improvements are provided to research in scattering media, including the coveted ability to perform photon-counting imaging with multiple beams. The ability to perform these measurements with multiple beams permits unique quantitative measurements of fluorophores within living specimens, allowing new research into dynamic three-dimensional behavior occurring within the brain. Additionally, the ability to perform multimodal measurements without filtering allows for unique avenues of research where the harmonic generation is indistinguishable from the two-photon excited fluorescence. These improvements provide neuroscience researchers with a large assortment of technological tools that will permit them to perform numerous novel experiments within the brain and other highly-scattering specimens, which should one day lead to significant advances in our understanding of complex neuronal activity.

  20. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  1. Invited Review Article: Pump-probe microscopy

    PubMed Central

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  2. Invited Review Article: Pump-probe microscopy

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  3. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    SciTech Connect

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi-photon

  4. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  5. Multi-Photon Quantum Interferometry

    NASA Astrophysics Data System (ADS)

    Bouwmeester, Dirk

    2007-06-01

    Based on the investigation of multi-photon entanglement, as produced by stimulated parametric down-conversion, a technique is presented to create heralded ``noon'' states. The relevance for interferometry will be discussed. Furthermore we explored the use of photon-number resolving detectors in Mach-Zehnder type of interferometers. Our current detectors can distinguish 0, 1, 2, to7, photon impacts. Although the overall collection and detection efficiency of photons is well below unity (about 0.3) the photon number resolving property is still very useful if combined with coherent input states since those state are eigenstates of the photon annihilation operator. First we analyze the coherent state interferometer with a single photon-number resolving detector, revealing the strong non-linear response of an interferometer in the case of Fock-state projection. Second, we use two such detectors together with a Baysian phase estimation strategy to demonstrate that it is possible to achieve the standard quantum limit independently from the true value of the phase shift. This protocol is unbiased and saturates the Cramer-Rao phase uncertainty bound and, therefore, is an optimal phase estimation strategy. As a final topic it will be shown how quantum interferometry combined with micromechanical structures can be used to investigate quantum superpositions and quantum decoherence of macroscopic objects.

  6. Accessibility

    EPA Pesticide Factsheets

    Federal laws, including Section 508 of the Rehabilitation Act, mandate that people with disabilities have access to the same information that someone without a disability would have. 508 standards cover electronic and information technology (EIT) products.

  7. Design and development of compact multiphoton microscopes

    NASA Astrophysics Data System (ADS)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  8. Polarization phenomena in multiphoton ionization of atoms.

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photo-electron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  9. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  10. Rigid and high NA multiphoton fluorescence GRIN-endoscopes

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Ehlers, Alexander; Le Harzic, Ronan; Stark, Martin; Riemann, Iris; Messerschmidt, Bernhard; Kaatz, Martin; König, Karsten

    2007-07-01

    Multiphoton autofluorescence imaging offers minimal-invasive examination of cells without the need of staining and complicated confocal detection systems. Therefore, it is especially interesting for non-invasive clinical diagnostics. To extend this sophisticated technique from superficial regions to deep lying cell layers, internal body parts and specimens difficult of access, the bulky optics need to be reduced in diameter. This is done by tiny GRIN-optics, based on a radial gradient in the reflective index. Of especial interest for multi-photon applications is the newly developed GRIN-lens assembly with increased numerical aperture. High resolution images of plant tissue, hair and cells show the improved image quality,compared to classical GRIN-lenses. The rigid GRIN-endoscopes are already applied in wound healing studies. Here, the GRIN-lenses with diameters smaller than 3 mm enter small skin depressions. They reproduce the focus of a conventional laser scanning tomograph tens of mm apart in the specimen under study. We present first clinical measurements of elastin and SHG of collagen of in-vivo human skin of venous ulcers (ulcer curis).

  11. Organic Materials for Multiphoton Absorption: Time-Dependent Density Functional Theory Calculations

    DTIC Science & Technology

    2007-06-01

    In addition, the interest in recent years due to applications in application of quadratic response within TDDFT was photodynamic therapy[I’ 2 ...multiphoton microscopy3 1, investigated 2 ° , proven important for the accuracy of the photopolymerization 4 1, and optical storage[’]. At the results, as...characteristics of fluorene- were elucidated for meso-tetraaza substitutions and based materials were also recently explained[Z’ 2 3 ].’ tetrabenzo

  12. New developments in multimodal clinical multiphoton tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  13. Multiphoton polymerization using optical trap assisted nanopatterning

    NASA Astrophysics Data System (ADS)

    Leitz, Karl-Heinz; Tsai, Yu-Cheng; Flad, Florian; Schäffer, Eike; Quentin, Ulf; Alexeev, Ilya; Fardel, Romain; Arnold, Craig B.; Schmidt, Michael

    2013-06-01

    In this letter, we show the combination of multiphoton polymerization and optical trap assisted nanopatterning (OTAN) for the additive manufacturing of structures with nanometer resolution. User-defined patterns of polymer nanostructures are deposited on a glass substrate by a 3.5 μm polystyrene sphere focusing IR femtosecond laser pulses, showing minimum feature sizes of λ/10. Feature size depends on the applied laser fluence and the bead surface spacing. A finite element model describes the intensity enhancement in the microbead focus. The results presented suggest that OTAN in combination with multiphoton processing is a viable technique for additive nanomanufacturing with sub-diffraction-limited resolution.

  14. Molecule-specific darkfield and multiphoton imaging using gold nanocages

    NASA Astrophysics Data System (ADS)

    Powless, Amy J.; Jenkins, Samir V.; McKay, Mary Lee; Chen, Jingyi; Muldoon, Timothy J.

    2015-03-01

    Due to their robust optical properties, biological inertness, and readily adjustable surface chemistry, gold nanostructures have been demonstrated as contrast agents in a variety of biomedical imaging applications. One application is dynamic imaging of live cells using bioconjugated gold nanoparticles to monitor molecule trafficking mechanisms within cells; for instance, the regulatory pathway of epidermal growth factor receptor (EGFR) undergoing endocytosis. In this paper, we have demonstrated a method to track endocytosis of EGFR in MDA-MB-468 breast adenocarcinoma cells using bioconjugated gold nanocages (AuNCs) and multiphoton microscopy. Dynamic imaging was performed using a time series capture of 4 images every minute for one hour. Specific binding and internalization of the bioconjugated AuNCs was observed while the two control groups showed non-specific binding at fewer surface sites, leading to fewer bound AuNCs and no internalization.

  15. In vivo multiphoton imaging of bile duct ligation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  16. Compact fixed wavelength femtosecond oscillators for multi-photon imaging

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.; Zadoyan, R.; Baldacchini, T.; Franke, T.

    2015-03-01

    In recent years two-photon microscopy with fixed-wavelength has raised increasing interest in life-sciences: Two-photon (2P) absorption spectra of common dyes are broader than single-photon ones. Therefore, excitation of several dyes simultaneously with a single IR laser wavelength is feasible and could be seen as an advantage in 2P microscopy. We used pulsed fixed-wavelength infrared lasers with center wavelength at 1040 nm, for two-photon microscopy in a variety of biologically relevant samples, among these a mouse brain sample, a mouse artery (within the animal, acute preparation), and a preparation of mouse bladder. The 1040 nm laser proved to be efficient not only in exciting fluorescence from yellow fluorescent protein (YFP) and red fluorescent dyes, but also for second harmonic generation (SHG) signals from muscle tissue and collagen. With this work we demonstrate that economical, small-footprint fixedwavelength lasers can present an interesting alternative to tunable lasers that are commonly used in multiphoton microscopy.

  17. The Infrared Multiphoton Dissociation of Three Nitrolkanes.

    DTIC Science & Technology

    1986-01-24

    eam experiment, using infrared multiphoton dissociation where the concept of temperature has no place, can be quantitatively related to pyrolysis ...respectively. This large release of translational energy is suggested to be due to the nature of the transition state mechanical barrier which is largely...to pyrolysis experiments which are conducted under collisional, thermal conditions and measure phenomenological quantities such as activation energies

  18. Experimental observation of multiphoton Thomson scattering

    NASA Astrophysics Data System (ADS)

    Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald

    2016-10-01

    With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  19. Theory of multiphoton ionization of atoms

    SciTech Connect

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  20. High speed microscopy techniques for signaling detection in live cells

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, Giulia; Urbani, A.; Mongillo, M.; Pavone, F. S.

    2014-05-01

    Alterations in intracellular cardiomyocyte calcium handling have a key role in initiating and sustaining arrhythmias. Arrhythmogenic calcium leak from sarcoplasmic reticulum (SR) can be attributed to all means by which calcium exits the SR store in an abnormal fashion. Abnormal SR calcium exit maymanifest as intracellular Ca2+ sparks and/or Ca2+ waves. Ca2+ signaling in arrhythmogenesis has been mainly studied in isolated cardiomyocytes and given that the extracellular matrix influences both Ca2+ and membrane potential dynamics in the intact heart and underlies environmentally mediated changes, understanding how Ca2+ and voltage are regulated in the intact heart will represent a tremendous advancement in the understanding of arrhythmogenic mechanisms. Using novel high-speed multiphoton microscopy techinques, such as multispot and random access, we investigated animal models with inherited and acquired arrhythmias to assess the role of Ca2+ and voltage signals as arrhythmia triggers in cell and subcellular components of the intact heart and correlate these with electrophysiology.

  1. Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs.

    PubMed

    Pantazis, Periklis; González-Gaitán, Marcos

    2007-01-01

    In biological imaging of fluorescent molecules, multiphoton laser scanning microscopy (MPLSM) has become the favorite method of fluorescence microscopy in tissue explants and living animals. The great power of MPLSM with pulsed lasers in the infrared wavelength lies in its relatively deep optical penetration and reduced ability to cause potential nonspecific phototoxicity. These properties are of crucial importance for long time-lapse imaging. Since the excited area is intrinsically confined to the high-intensity focal volume of the illuminating beam, MPLSM can also be applied as a tool for selectively manipulating fluorophores in a known, three-dimensionally defined volume within the tissue. Here we introduce localized multiphoton photoactivation (MP-PA) as a technique suitable for analyzing the dynamics of photoactivated molecules with three-dimensional spatial resolution of a few micrometers. Short, intense laser light pulses uncage photoactivatable molecules via multiphoton excitation in a defined volume. MP-PA is demonstrated on photoactivatable paGFP in Drosophila wing imaginal discs. This technique is especially useful for extracting quantitative information about the properties of photoactivatable fusion proteins in different cellular locations in living tissue as well as to label single or small patches of cells in tissue to track their subsequent lineage.

  2. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates

    PubMed Central

    Botcherby, Edward J.; Smith, Christopher W.; Kohl, Michael M.; Débarre, Delphine; Booth, Martin J.; Juškaitis, Rimas; Paulsen, Ole; Wilson, Tony

    2012-01-01

    Multiphoton microscopy is a powerful tool in neuroscience, promising to deliver important data on the spatiotemporal activity within individual neurons as well as in networks of neurons. A major limitation of current technologies is the relatively slow scan rates along the z direction compared to the kHz rates obtainable in the x and y directions. Here, we describe a custom-built microscope system based on an architecture that allows kHz scan rates over hundreds of microns in all three dimensions without introducing aberration. We further demonstrate how this high-speed 3D multiphoton imaging system can be used to study neuronal activity at millisecond resolution at the subcellular as well as the population level. PMID:22315405

  3. Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections

    PubMed Central

    Monaghan, Michael G.; Kroll, Sebastian; Brucker, Sara Y.

    2016-01-01

    Nonlinear microscopy, namely multiphoton imaging and second harmonic generation (SHG), is an established noninvasive technique useful for the imaging of extracellular matrix (ECM). Typically, measurements are performed in vivo on freshly excised tissues or biopsies. In this article, we describe the effect of rehydrating paraffin-embedded sections on multiphoton and SHG emission signals and the acquisition of nonlinear images from hematoxylin and eosin (H&E)-stained sections before and after a destaining protocol. Our results reveal that bringing tissue sections to a physiological state yields a significant improvement in nonlinear signals, particularly in SHG. Additionally, the destaining of sections previously processed with H&E staining significantly improves their SHG emission signals during imaging, thereby allowing sufficient analysis of collagen in these sections. These results are important for researchers and pathologists to obtain additional information from paraffin-embedded tissues and archived samples to perform retrospective analysis of the ECM or gain additional information from rare samples. PMID:27018844

  4. Early development of cutaneous cancer revealed by intravital nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Lin, Wei-Chou; Chen, Yang-Fang; Chen, Shean-Jen; Lin, Sung-Jan; Dong, Chen-Yuan

    2010-09-01

    We performed intravital multiphoton microscopy to image and analyze normal and carcinogen treated skin tissues of nude mice in vivo. Using intravital images and the quantitative pixel to pixel ratiometric processing of multiphoton autofluorescence to second harmonic generation index (MAFSI), we can visualize the interaction between epithelial cells and extracellular matrix. We found that as the imaging depth increases, MAFSI has different distribution in normal and treated cutaneous specimens. Since the treated skin eventually became squamous cell carcinoma, our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by multiphoton microscopy.

  5. Multiphoton imaging for assessing renal disposition in acute kidney injury

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  6. Multiphoton adiabatic passage for atom optics applications

    SciTech Connect

    Demeter, Gabor; Djotyan, Gagik P.

    2009-04-15

    We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counterpropagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several configurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such multiphoton adiabatic transitions for the manipulation of the atoms' mechanical state. In particular, we compare the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the heating, and compare them to the numerical results.

  7. Multiphoton tomography of intratissue tattoo nanoparticles

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  8. In vivo multiphoton tomography of skin cancer

    NASA Astrophysics Data System (ADS)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Buckle, Rainer; Dimitrow, Enrico; Kaatz, Martin; Fluhr, Joachim; Elsner, Peter

    2006-02-01

    The multiphoton tomograph DermaInspect was used to perform first clinical studies on the early non-invasive detection of skin cancer based on non-invasive optical sectioning of skin by two-photon autofluorescence and second harmonic generation. In particular, deep-tissue pigmented lesions -nevi- have been imaged with intracellular resolution using near infrared (NIR) femtosecond laser radiation. So far, more than 250 patients have been investigated. Cancerous tissues showed significant morphological differences compared to normal skin layers. In the case of malignant melanoma, the occurrence of luminescent melanocytes has been detected. Multiphoton tomography will become a novel non-invasive method to obtain high-resolution 3D optical biopsies for early cancer detection, treatment control, and in situ drug screening.

  9. Multiphoton tomography to detect chemo- and biohazards

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2015-03-01

    In vivo high-resolution multiphoton/CARS tomography provides optical biopsies with 300 nm lateral resolution with chemical fingerprints. Thousands of volunteers and patients have been investigated for early cancer diagnosis, evaluation of anti-ageing cosmetic products, and changes of cellular metabolism by UV exposure and decreased oxygen supply. The skin as the outermost and largest organ is also the major target of CB agents. Current UV-based sensors are useful for bio-aerosol sensing but not for evaluating exposed in vivo skin. Here we evaluate the use of 4D multiphoton/CARS tomographs based on near infrared femtosecond laser radiation, time-correlated single photon counting (FLIM) and white light generation by photonic crystal fibers to detect bio- and chemohazards in human in vivo skin using twophoton fluorescence, SHG, and Raman signals.

  10. First multiphoton tomography of brain in man

    NASA Astrophysics Data System (ADS)

    König, Karsten; Kantelhardt, Sven R.; Kalasauskas, Darius; Kim, Ella; Giese, Alf

    2016-03-01

    We report on the first two-photon in vivo brain tissue imaging study in man. High resolution in vivo histology by multiphoton tomography (MPT) including two-photon FLIM was performed in the operation theatre during neurosurgery to evaluate the feasibility to detect label-free tumor borders with subcellular resolution. This feasibility study demonstrates, that MPT has the potential to identify tumor borders on a cellular level in nearly real-time.

  11. Multiphoton spectroscopy of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  12. Superresolving multiphoton interferences with independent light sources.

    PubMed

    Oppel, S; Büttner, T; Kok, P; von Zanthier, J

    2012-12-07

    We propose to use multiphoton interferences from statistically independent light sources in combination with linear optical detection techniques to enhance the resolution in imaging. Experimental results with up to five independent thermal light sources confirm this approach to improve the spatial resolution. Since no involved quantum state preparation or detection is required, the experiment can be considered an extension of the Hanbury Brown-Twiss experiment for spatial intensity correlations of order N>2.

  13. Studies of atmospheric molecules by multiphoton spectroscopy

    SciTech Connect

    Johnson, P.M.

    1991-10-01

    Carbon dioxide presents a great challenge to spectroscopy because of its propensity toward dissociation in all of its excited states. Multiphoton ionization spectroscopy is usually not applicable to the study of dissociating molecules because the dissociation competes effectively with ionization, resulting in no signal. We reasoned, however, that with high enough laser fluence, ionization could compete with dissociation in the longer lived states, exposing them for study from the continuous spectral background resulting from rapidly dissociating states. We describe the various spectroscopic and photophysical effects found through the multiphoton ionization and multiphoton photoelectron spectra. A recently developed variant of threshold ionization spectroscopy, usually called ZEKE, has shown a great deal of usefulness in providing the same information as traditional photoelectron spectroscopy but with higher resolution and much better signal-to-noise when using standard laboratory lasers. Threshold ionization techniques locate the states of an ion by scanning a light source across the ionization continuum of a neutral and somehow detecting when electrons are produced with no kinetic energy. We chose to develop our capabilities in threshold ionization spectroscopy using aromatic molecules because of their importance and because their electronic structure allows a pump-probe type of excitation scheme which avoids the use of vacuum ultraviolet laser beams. Among aromatics, the azines are noted for their small S{sub 1}-T{sub 1} energy gap which give them unique and interesting photophysical properties. We have continued our work on the multiphoton spectrum of metastable nitrogen produced by an electric discharge in supersonic beam. We have been able to assign more of the lines and simulated their rotational structure but many peaks remain unassigned.

  14. Unified approach to multiphoton coherent states

    NASA Astrophysics Data System (ADS)

    Shanta, P.; Chaturvedi, S.; Srinivasan, V.; Agarwal, G. S.; Mehta, C. L.

    1994-03-01

    We obtain a large class of multiphoton annihilation operator (F) eigenstates by constructing an operator G° such that [F,G°]=1. We show that almost all known coherent states, including the squeezed states and other nonclassical states such as the cat and the kitten states follow from our approach. Further, we show that all of them can be expressed as an exponential operator acting on the vacuum of the operator F. The technique can be easily generalized to deformed bosons.

  15. Intravital Multiphoton Imaging of the Kidney: Tubular Structure and Metabolism.

    PubMed

    Small, David M; Sanchez, Washington Y; Gobe, Glenda C

    2016-01-01

    Multiphoton microscopy (MPM) allows the visualization of dynamic pathophysiological events in real time in live animals. Intravital imaging can be applied to investigate novel mechanisms and treatments of different forms of kidney disease as well as improve our understanding of normal kidney physiology. Using rodent models, in conjunction with endogenous fluorescence and infused exogenous fluorescent dyes, measurement can be made of renal processes such as glomerular permeability, juxtaglomerular apparatus function, interactions of the tubulointerstitium, tubulovascular interactions, vascular flow rate, and the renin-angiotensin-aldosterone system. Subcellular processes including mitochondrial dynamics, reactive oxygen species production, cytosolic ion concentrations, and death processes of apoptosis and necrosis can also be seen and measured by MPM. The current methods chapter presents an overview of MPM with a focus on techniques for intravital kidney imaging and gives examples of instances where intravital MPM has been utilized to study renal pathophysiology. Suggestions are provided for MPM methods within the confines of intravital microscopy and selected kidney structure. MPM is undoubtedly a powerful new technique for application in experimental nephrology, and we believe it will continue to create new paradigms for understanding and treating kidney disease.

  16. Optical investigation of the intergrowth structure and accessibility of Brønsted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy.

    PubMed

    Sommer, Linn; Svelle, Stian; Lillerud, Karl Petter; Stöcker, Michael; Weckhuysen, Bert M; Olsbye, Unni

    2010-11-02

    Template decomposition followed by confocal fluorescence microscopy reveals a tetragonal-pyramidal intergrowth of subunits in micrometer-sized nearly cubic SSZ-13 zeolite crystals. In order to accentuate intergrowth boundaries and defect-rich areas within the individual large zeolite crystals, a treatment with an etching NaOH solution is applied. The defective areas are visualized by monitoring the spatial distribution of fluorescent tracer molecules within the individual SSZ-13 crystals by confocal fluorescence microscopy. These fluorescent tracer molecules are formed at the inner and outer crystal surfaces by utilizing the catalytic activity of the zeolite in the oligomerization reaction of styrene derivatives. This approach reveals various types of etching patterns that are an indication for the defectiveness of the studied crystals. We can show that specially one type of crystals, denoted as core-shell type, is highly accessible to the styrene molecules after etching. Despite the large crystal dimensions, the whole core-shell type SSZ-13 crystal is utilized for catalytic reaction. Furthermore, the confocal fluorescence microscopy measurements indicate a nonuniform distribution of the catalytically important Brønsted acid sites underlining the importance of space-resolved measurements.

  17. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    NASA Astrophysics Data System (ADS)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  18. Some simple mechanisms of multiphoton excitation in many - level systems

    NASA Astrophysics Data System (ADS)

    Donley, E. A.; Marquardt, R.; Quack, M.; Stohner, J.; Thanopulos, I.; Wallenborn, E.-U.

    Results are reported on coherent monochromatic multiphoton excitation in many-level systems, which are representative for some of the basic mechanisms for atomic and molecular multiphoton processes. Numerical solutions are discussed that use the Floquet and quasiresonant approximations in the framework of the URIMIR program package. The excitation schemes include direct three-photon excitation, two-photon excitation with diagonal coupling, Göppert-Mayer-type two-photon processes, multiphoton excitation with off-resonant intermediates, and practically irreversible coherent excitation into dense spectral structures. Several interesting phenomena are observed, such as nonlinear line shifts and broadenings of multiphoton resonances of relevance for multiphoton spectroscopy and almost constant intermediate population inversions, potentially useful for laser design. The accurate numerical results are compared with approximate solutions from perturbation theory, and with simple analytical solutions from Rabi-type formulae.

  19. In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope

    NASA Astrophysics Data System (ADS)

    Brown, Christopher M.; Rivera, David R.; Pavlova, Ina; Ouzounov, Dimitre G.; Williams, Wendy O.; Mohanan, Sunish; Webb, Watt W.; Xu, Chris

    2012-04-01

    We use a compact and flexible multiphoton microendoscope (MPME) to acquire in vivo images of unstained liver, kidney, and colon from an anesthetized rat. The device delivers femtosecond pulsed 800 nm light from the core of a raster-scanned dual-clad fiber (DCF), which is focused by a miniaturized gradient-index lens assembly into tissue. Intrinsic fluorescence and second-harmonic generation signal from the tissue is epi-collected through the core and inner clad of the same DCF. The MPME has a rigid distal tip of 3 mm in outer diameter and 4 cm in length. The image field-of-view measures 115 μm by 115 μm and was acquired at 4.1 frames/s with 75 mW illumination power at the sample. Organs were imaged after anesthetizing Sprague-Dawley rats with isofluorane gas, accessing tissues via a ventral-midline abdominal incision, and isolating the organs with tongue depressors. In vivo multiphoton images acquired from liver, kidney, and colon using this device show features similar to that of conventional histology slides, without motion artifact, in ~75% of imaged frames. To the best of our knowledge, this is the first demonstration of multiphoton imaging of unstained tissue from a live subject using a compact and flexible MPME device.

  20. Statistical analysis on activation and photo-bleaching of step-wise multi-photon activation fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Gu, Zetong; Lai, Zhenhua; Zhang, Xi; Yin, Jihao; DiMarzio, Charles A.

    2015-03-01

    Melanin is regarded as the most enigmatic pigments/biopolymers found in most organisms. We have shown previously that melanin goes through a step-wise multi-photon absorption process after the fluorescence has been activated with high laser intensity. No melanin step-wise multi-photon activation fluorescence (SMPAF) can be obtained without the activation process. The step-wise multi-photon activation fluorescence has been observed to require less laser power than what would be expected from a non-linear optical process. In this paper, we examined the power dependence of the activation process of melanin SMPAF at 830nm and 920nm wavelengths. We have conducted research using varying the laser power to activate the melanin in a point-scanning mode for multi-photon microscopy. We recorded the fluorescence signals and position. A sequence of experiments indicates the relationship of activation to power, energy and time so that we can optimize the power level. Also we explored regional analysis of melanin to study the spatial relationship in SMPAF and define three types of regions which exhibit differences in the activation process.

  1. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    SciTech Connect

    Oosthoek, J. L. M.; Kooi, B. J.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  2. Electron Vortices in Femtosecond Multiphoton Ionization

    NASA Astrophysics Data System (ADS)

    Pengel, D.; Kerbstadt, S.; Johannmeyer, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.

    2017-02-01

    Multiphoton ionization of potassium atoms with a sequence of two counter-rotating circularly polarized femtosecond laser pulses produces vortex-shaped photoelectron momentum distributions in the polarization plane describing Archimedean spirals. The pulse sequences are produced by polarization shaping and the three-dimensional photoelectron distributions are tomographically reconstructed from velocity map imaging measurements. We show that perturbative ionization leads to electron vortices with c6 rotational symmetry. A change from c6 to c4 rotational symmetry of the vortices is demonstrated for nonperturbative interaction.

  3. Generation of multiphoton entangled quantum states by means of integrated frequency combs.

    PubMed

    Reimer, Christian; Kues, Michael; Roztocki, Piotr; Wetzel, Benjamin; Grazioso, Fabio; Little, Brent E; Chu, Sai T; Johnston, Tudor; Bromberg, Yaron; Caspani, Lucia; Moss, David J; Morandotti, Roberto

    2016-03-11

    Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies.

  4. Multiphoton imaging to distinguish grana and starch inside an intact leaf

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Yu; Zhuo, Guan-Yu; Chen, Po-Fu; Wu, Pei-Chun; Liu, Tzu-Ming; Chu, Shi-Wei

    2013-02-01

    We have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. Grana and starch are the major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two photon fluorescence (2PF) and second harmonic generation (SHG) signals. Consequently, SHG is found on both grana and starch while 2PF from chlorophyll indicates the identity of grana.

  5. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Argondizzo, Adam; Wang, Cong; Cui, Xuefeng; Petek, Hrvoje

    2017-01-01

    Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  6. Sub-cycle dynamics of multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Nasiri Avanaki, K.; Chu, Shih-I.

    2014-05-01

    Sub-cycle oscillatory structures are revealed in calculated time-dependent multiphoton ionization rates. Both atomic and molecular targets manifest multiple ionization bursts per one optical cycle of the laser field. Using the accurate and efficient time-dependent generalized pseudospectral method to solve the time-dependent Schrödinger equation, we have performed calculations on H, He+, H2+,and HHe2+, for the laser fields with several intensities and wavelengths in the near-infrared range (750 nm to 1064 nm). The sub-cycle structures appear a universal feature of multiphoton ionization and become well pronounced for sufficiently strong laser fields depending on the target atom or molecule. Analysis of the electron density distributions on the sub-femtosecond time scale shows several time moments per optical cycle (not necessarily corresponding to the peak values of the laser field) when significant portions of the electron density move away from the nucleus giving rise to the bursts in the ionization rate. The nature of the phenomenon can be related to ionization through different pathways, including direct ionization as well as population of the excited states by the laser field with subsequent ionization at later times. This work is partially supported by DOE.

  7. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  8. Multiphoton Imaging of the Glomerular Permeability of Angiotensinogen

    PubMed Central

    Nakano, Daisuke; Kobori, Hiroyuki; Burford, James L.; Gevorgyan, Haykanush; Seidel, Saskia; Hitomi, Hirofumi; Nishiyama, Akira

    2012-01-01

    Patients and animals with renal injury exhibit increased urinary excretion of angiotensinogen. Although increased tubular synthesis of angiotensinogen contributes to the increased excretion, we do not know to what degree glomerular filtration of systemic angiotensinogen, especially through an abnormal glomerular filtration barrier, contributes to the increase in urinary levels. Here, we used multiphoton microscopy to visualize and quantify the glomerular permeability of angiotensinogen in the intact mouse and rat kidney. In healthy mice and Munich-Wistar-Frömter rats at the early stage of glomerulosclerosis, the glomerular sieving coefficient of systemically infused Atto565-labeled human angiotensinogen (Atto565-hAGT), which rodent renin cannot cleave, was only 25% of the glomerular sieving coefficient of albumin, and its urinary excretion was undetectable. In a more advanced phase of kidney disease, the glomerular permeability of Atto565-hAGT was slightly higher but still very low. Furthermore, unlike urinary albumin, the significantly higher urinary excretion of endogenous rat angiotensinogen did not correlate with either the Atto565-hAGT or Atto565-albumin glomerular sieving coefficients. These results strongly suggest that the vast majority of urinary angiotensinogen originates from the tubules rather than glomerular filtration. PMID:22997258

  9. Multiphoton imaging of the glomerular permeability of angiotensinogen.

    PubMed

    Nakano, Daisuke; Kobori, Hiroyuki; Burford, James L; Gevorgyan, Haykanush; Seidel, Saskia; Hitomi, Hirofumi; Nishiyama, Akira; Peti-Peterdi, Janos

    2012-11-01

    Patients and animals with renal injury exhibit increased urinary excretion of angiotensinogen. Although increased tubular synthesis of angiotensinogen contributes to the increased excretion, we do not know to what degree glomerular filtration of systemic angiotensinogen, especially through an abnormal glomerular filtration barrier, contributes to the increase in urinary levels. Here, we used multiphoton microscopy to visualize and quantify the glomerular permeability of angiotensinogen in the intact mouse and rat kidney. In healthy mice and Munich-Wistar-Frömter rats at the early stage of glomerulosclerosis, the glomerular sieving coefficient of systemically infused Atto565-labeled human angiotensinogen (Atto565-hAGT), which rodent renin cannot cleave, was only 25% of the glomerular sieving coefficient of albumin, and its urinary excretion was undetectable. In a more advanced phase of kidney disease, the glomerular permeability of Atto565-hAGT was slightly higher but still very low. Furthermore, unlike urinary albumin, the significantly higher urinary excretion of endogenous rat angiotensinogen did not correlate with either the Atto565-hAGT or Atto565-albumin glomerular sieving coefficients. These results strongly suggest that the vast majority of urinary angiotensinogen originates from the tubules rather than glomerular filtration.

  10. Multiphoton imaging the disruptive nature of sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J.; Braue, Catherine R.; Dillman, James F.

    2005-03-01

    Sulfur mustard [bis-2-chloroethyl sulfide] is a vesicating agent first used as a weapon of war in WWI. It causes debilitating blisters at the epidermal-dermal junction and involves molecules that are also disrupted by junctional epidermolysis bullosa (JEB) and other blistering skin diseases. Despite its recurring use in global conflicts, there is still no completely effective treatment. We have shown by imaging human keratinocytes in cell culture and in intact epidermal tissues that the basal cells of skin contain well-organized molecules (keratins K5/K14, α6β4 integrin, laminin 5 and α3β1 integrin) that are early targets of sulfur mustard. Disruption and collapse of these molecules is coincident with nuclear displacement, loss of functional asymmetry, and loss of polarized mobility. The progression of this pathology precedes basal cell detachment by 8-24 h, a time equivalent to the "clinical latent phase" that defines the extant period between agent exposure and vesication. Our images indicate that disruption of adhesion-complex molecules also impairs cytoskeletal proteins and the integration of structures required for signal transduction and tissue repair. We have recently developed an optical system to test this hypothesis, i.e., to determine whether and how the early disruption of target molecules alters signal transduction. This environmentally controlled on-line system provides a nexus for real-time correlation of imaged lesions with DNA microarray analysis, and for using multiphoton microscopy to facilitate development of more effective treatment strategies.

  11. Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs

    NASA Astrophysics Data System (ADS)

    Rowlands, Christopher J.; Bruns, Oliver T.; Bawendi, Moungi G.; So, Peter T. C.

    2015-06-01

    Temporal focusing is a technique for performing axially resolved widefield multiphoton microscopy with a large field of view. Despite significant advantages over conventional point-scanning multiphoton microscopy in terms of imaging speed, the need to collect the whole image simultaneously means that it is expected to achieve a lower penetration depth in common biological samples compared to point-scanning. We assess the penetration depth using a rigorous objective criterion based on the modulation transfer function, comparing it to point-scanning multiphoton microscopy. Measurements are performed in a variety of mouse organs in order to provide practical guidance as to the achievable penetration depth for both imaging techniques. It is found that two-photon scanning microscopy has approximately twice the penetration depth of temporal-focusing microscopy, and that penetration depth is organ-specific; the heart has the lowest penetration depth, followed by the liver, lungs, and kidneys, then the spleen, and finally white adipose tissue.

  12. Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs

    PubMed Central

    Rowlands, Christopher J.; Bruns, Oliver T.; Bawendi, Moungi G.; So, Peter T. C.

    2015-01-01

    Abstract. Temporal focusing is a technique for performing axially resolved widefield multiphoton microscopy with a large field of view. Despite significant advantages over conventional point-scanning multiphoton microscopy in terms of imaging speed, the need to collect the whole image simultaneously means that it is expected to achieve a lower penetration depth in common biological samples compared to point-scanning. We assess the penetration depth using a rigorous objective criterion based on the modulation transfer function, comparing it to point-scanning multiphoton microscopy. Measurements are performed in a variety of mouse organs in order to provide practical guidance as to the achievable penetration depth for both imaging techniques. It is found that two-photon scanning microscopy has approximately twice the penetration depth of temporal-focusing microscopy, and that penetration depth is organ-specific; the heart has the lowest penetration depth, followed by the liver, lungs, and kidneys, then the spleen, and finally white adipose tissue. PMID:25844509

  13. Complete QED theory of multiphoton Trident pair production in strong laser fields.

    PubMed

    Hu, Huayu; Müller, Carsten; Keitel, Christoph H

    2010-08-20

    Electron-positron pair creation by multiphoton absorption in the collision of a relativistic electron with a strong laser beam is calculated within laser-dressed quantum electrodynamics. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. We study the process in a manifestly nonperturbative domain which is shown accessible to future experiments utilizing the electron beam lines at novel x-ray laser facilities or all-optical setups based on laser acceleration. Our theory moreover allows us to add further insights into the experimental data from SLAC [D. Burke, Phys. Rev. Lett. 79, 1626 (1997).].

  14. Design, synthesis, characterization and applications of multi-photon absorbing chromophores

    NASA Astrophysics Data System (ADS)

    Zheng, Qingdong

    Recent development in multi-photon based applications including optical power limiting, frequency up-conversion lasing, three-dimensional data storage, two-photon fluorescence microscopy and two-photon photodynamic therapy has benefited a lot from a number of chromophores with large multi-photon absorption. This thesis was focused on the development of novel two- and three-photon active chromophores and their applications. Chapter 1 describes a theoretical background of multi-photon absorption, and recent development of multi-photon based applications. Some molecular design strategies were proposed after a literature review of chromophores with large two-photon absorption. In Chapter 2, a series of stilbazolium salts with varying electron donors and anions were synthesized and characterized. The two-photon absorption and two-photon pumped cavity lasing properties for these dyes were studied by using 1064 nm nano-second laser beam. By using tunable femto-second laser, three-photon pumped cavity-less lasing properties of these dyes have also been comprehensively studied. Four-photon pumped stimulated emission was achieved in some of these stilbazolium dyes. Unsymmetrical emission behaviors under 3- and 4-photon pump conditions for all these stilbazolium dyes were observed, explained and verified. In Chapter 3, DNA was successfully used as a matrix for one-, two-, and three-photon pumped stimulated emission or lasing by intercalating a multi-photon active chromophore. In Chapter 4, it is experimentally shown that both two- and three-photon absorption in a highly concentrated chromophore system can be more efficiently utilized to accomplish optical power limiting and stabilization at laser wavelengths of 1.064 mum and ˜1.3 mum, respectively. In Chapter 5, three novel 1,10-phenanthroline containing pi-conjugated chromophores with varied electron donors were synthesized and characterized together with their corresponding nickel(II) chelated complexes. Large two

  15. Nonperturbative multiphoton processes and electron-positron pair production

    NASA Astrophysics Data System (ADS)

    Hatsagortsyan, K. Z.; Müller, C.; Keitel, C. H.

    2006-04-01

    Various regimes of pair production in laser fields are analyzed. Particularly, the question of the observability of pair production in a nonperturbative multiphoton regime is discussed. A simple heuristic method is employed which gives order-of-magnitude estimates for probabilities of multiphoton processes and allows to describe its main features. The method is initially probed upon the known process of pair production in a Coulomb and a strong laser field. Then it is applied to the nonperturbative multiphoton regime of the pair production process in a standing laser wave.

  16. Calcium and voltage imaging in arrhythmia models by high-speed microscopy

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Urbani, A.; Mongillo, M.; Pavone, F. S.

    2014-03-01

    Alterations in intracellular cardiomyocyte calcium handling have a key role in initiating and sustaining arrhythmias. Arrhythmogenic calcium leak from sarcoplasmic reticulum (SR) can be attributed to all means by which calcium exits the SR store in an abnormal fashion. Abnormal SR calcium exit maymanifest as intracellular Ca2+ sparks and/or Ca2+ waves. Ca2+ signaling in arrhythmogenesis has been mainly studied in isolated cardiomyocytes and given that the extracellular matrix influences both Ca2+ and membrane potential dynamics in the intact heart and underlies environmentally mediated changes, understanding how Ca2+ and voltage are regulated in the intact heart will represent a tremendous advancement in the understanding of arrhythmogenic mechanisms. Using novel high-speed multiphoton microscopy techinques, such as multispot and random access, we investigated animal models with inherited and acquired arrhythmias to assess the role of Ca2+ and voltage signals as arrhythmia triggers in cell and subcellular components of the intact heart and correlate these with electrophysiology.

  17. Multiphoton fluorescence microscopic imaging through double-layer turbid tissue media

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyuan; Gan, Xiaosong; Gu, Min

    2002-04-01

    Image formation in multiphoton fluorescence microscopy through double-layer turbid tissue media is investigated using Monte Carlo simulation. With the help of the concept of the effective point spread function, the relationship of image resolution and signal level to the thickness and scattering properties of the double-layer turbid media under single-, two-, and three-photon excitation is revealed. Results show that for a double-layer turbid medium of a given thickness, small particles in the top layer result in a quicker degradation of signal level than large particles in the top layer. This model is then applied to study the penetration depth of multiphoton fluorescence microscopy through human skin tissue which exhibits a layered structure. It is predicated that using 3p excitation leads to a signal level up to two orders of magnitude higher than that under 2p excitation, while diffraction-limited image resolution can be maintained for skin tissue of thickness up to 500 μm.

  18. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection.

    PubMed

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; Dimarzio, Charles A

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  19. Multiphoton imaging of biological samples during freezing and heating

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-02-01

    We applied multiphoton microscopic imaging to observe freezing and heating effects in plant- and animal cell samples. The experimental setups consisted of a multiphoton imaging system and a heating and cooling stage which allows for precise temperature control from liquid nitrogen temperature (-196°C 77 K) up to +600°C (873 K) with heating/freezing rates between 0.01 K/min and 150 K/min. Two multiphoton imaging systems were used: a system based on a modified optical microscope and a flexible mobile system. To illustrate the imaging capabilities, plant leafs as well as animal cells were microscopically imaged in vivo during freezing based on autofluorescence lifetime and intensity of intrinsic molecules. The measurements illustrate the usefulness of multiphoton imaging to investigate freezing effects on animal and plant cells.

  20. Intensity dependence of multiphoton dissociation in formaldehyde

    NASA Astrophysics Data System (ADS)

    Koren, G.

    1980-01-01

    The paper reports a new intensity-dependent measurement of multiple-photon dissociation (MPD) in H2CO, HDCO, and D2CO gases using an intense pulsed CO2 TEA laser. In this measurement the energy and duration of the laser pulses are constant, and the intensity is varied by irradiating the sample with concave mirrors of different focal lengths. A model calculation is used to analyze and fit the MPD data of HDCO and D2CO which assumes that dissociation is obtained by a repeated mechanism in which coherent multiphoton excitation (CME) of the molecule to high vibration-rotation states is followed by intramolecular transfer of the excitation energy (ITEE) to the other molecule modes. It is concluded that the results are consistent with the absorption of 14 plus or minus 4 and 17 plus or minus 5 photons per molecule of HDCO and D2CO, respectively.

  1. Point spread function engineering with multiphoton SPIFI

    NASA Astrophysics Data System (ADS)

    Wernsing, Keith A.; Field, Jeffrey J.; Domingue, Scott R.; Allende-Motz, Alyssa M.; DeLuca, Keith F.; Levi, Dean H.; DeLuca, Jennifer G.; Young, Michael D.; Squier, Jeff A.; Bartels, Randy A.

    2016-03-01

    MultiPhoton SPatIal Frequency modulated Imaging (MP-SPIFI) has recently demonstrated the ability to simultaneously obtain super-resolved images in both coherent and incoherent scattering processes -- namely, second harmonic generation and two-photon fluorescence, respectively.1 In our previous analysis, we considered image formation produced by the zero and first diffracted orders from the SPIFI modulator. However, the modulator is a binary amplitude mask, and therefore produces multiple diffracted orders. In this work, we extend our analysis to image formation in the presence of higher diffracted orders. We find that tuning the mask duty cycle offers a measure of control over the shape of super-resolved point spread functions in an MP-SPIFI microscope.

  2. Rotational averaging of multiphoton absorption cross sections

    NASA Astrophysics Data System (ADS)

    Friese, Daniel H.; Beerepoot, Maarten T. P.; Ruud, Kenneth

    2014-11-01

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  3. Rotational averaging of multiphoton absorption cross sections.

    PubMed

    Friese, Daniel H; Beerepoot, Maarten T P; Ruud, Kenneth

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  4. Multi-photon entanglement in high dimensions

    NASA Astrophysics Data System (ADS)

    Malik, Mehul; Erhard, Manuel; Huber, Marcus; Krenn, Mario; Fickler, Robert; Zeilinger, Anton

    2016-04-01

    Forming the backbone of quantum technologies today, entanglement has been demonstrated in physical systems as diverse as photons, ions and superconducting circuits. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure only appears in multiparticle entangled states with d > 2. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.

  5. Minimally invasive imaging method based on second harmonic generation and multiphoton excitation fluorescence in translational respiratory research.

    PubMed

    Abraham, Thomas; Wadsworth, Samuel; Carthy, Jon M; Pechkovsky, Dmitri V; McManus, Bruce

    2011-01-01

    For translational respiratory research including in the development of clinical diagnostic tools, a minimally invasive imaging method, which can provide both cellular and extracellular structural details with sufficient specificity, sensitivity and spatial resolution, is particularly useful. Multiphoton microscopy causes excitation of endogenously fluorescent macromolecular systems and induces highly specific second harmonic generation signals from non-centrosymmetric macromolecules such as fibrillar collagens. Both these signals can be captured simultaneously to provide spatially resolved 3D structural organization of extracellular matrix as well as the cellular morphologies in their native states. Besides briefly discussing the fundamentals of multiphoton excitation fluorescence and harmonic generation signals and the instrumentation details, this review focuses on the specific applications of these imaging modalities in lung structural imaging, particularly morphological features of alveolar structures, visualizing and quantifying extracellular matrix remodelling accompanying emphysematous destructions as well as the IPF, detecting lung cancers and the potential use in the tissue engineering applications.

  6. Continuous-variable entanglement via multiphoton catalysis

    NASA Astrophysics Data System (ADS)

    Hu, Liyun; Liao, Zeyang; Zubairy, M. Suhail

    2017-01-01

    We theoretically investigate the performance of multiphoton catalysis applied on the two-mode squeezed state by examining the entropy of entanglement, logarithmic negativity, Eistein-Podolsky-Rosen (EPR), and Hillery-Zubairy (HZ) correlations, and the fidelity of teleportation. It is found that the entanglement increases with the number of catalysis operations if the squeezing parameter is low initially. Our comparisons show that the HZ correlation presents a better performance than the EPR correlation for detecting the entanglement, and the improvement of HZ correlation definitely results in the improvement of entropy of entanglement rather than negativity; the region of enhanced EPR correlation is a subregion of all other entanglement properties. In addition, we consider the performances of the fidelity by comparing such operations applied before or after the amplitude damping channel. It is shown that the catalysis operation of m =n =1 before the channel presents the best performance in the initial-low squeezing regime. This may provide a useful insight for a long-distance quantum communication.

  7. The multiphoton ionization of uranium hexafluoride

    SciTech Connect

    Armstrong, D.P. . UEO Enrichment Technical Operations Div.)

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  8. Multiphoton excitation of fluorescent DNA base analogs.

    PubMed

    Katilius, Evaldas; Woodbury, Neal W

    2006-01-01

    Multiphoton excitation was used to investigate properties of the fluorescent DNA base analogs, 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI). 2-aminopurine, a fluorescent analog of adenine, was excited by three-photon absorption. Fluorescence correlation measurements were attempted to evaluate the feasibility of using three-photon excitation of 2AP for DNA-protein interaction studies. However, high excitation power and long integration times needed to acquire high signal-to-noise fluorescence correlation curves render three-photon excitation FCS of 2AP not very useful for studying DNA base dynamics. The fluorescence properties of 6-methylisoxanthopterin, a guanine analog, were investigated using two-photon excitation. The two-photon absorption cross-section of 6MI was estimated to be about 2.5 x 10(-50) cm(4)s (2.5 GM units) at 700 nm. The two-photon excitation spectrum was measured in the spectral region from 700 to 780 nm; in this region the shape of the two-photon excitation spectrum is very similar to the shape of single-photon excitation spectrum in the near-UV spectral region. Two-photon excitation of 6MI is suitable for fluorescence correlation measurements. Such measurements can be used to study DNA base dynamics and DNA-protein interactions over a broad range of time scales.

  9. Infrared multiphoton dissociation for quantitative shotgun proteomics.

    PubMed

    Ledvina, Aaron R; Lee, M Violet; McAlister, Graeme C; Westphall, Michael S; Coon, Joshua J

    2012-05-15

    We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low-pressure trap of a dual-cell quadrupole linear ion trap (dual-cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly, outperforms resonant-excitation collisional-activated dissociation (CAD) for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT rf amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass to charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides.

  10. Infrared Multiphoton Dissociation for Quantitative Shotgun Proteomics

    PubMed Central

    Ledvina, Aaron R.; Lee, M. Violet; McAlister, Graeme C.; Westphall, Michael S.; Coon, Joshua J.

    2012-01-01

    We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low pressure trap of a dual-cell quadrupole linear ion trap (dual cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly outperforms resonant excitation CAD for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT RF amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass-to-charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides. PMID:22480380

  11. Soliton dynamics in the multiphoton plasma regime

    PubMed Central

    Husko, Chad A.; Combrié, Sylvain; Colman, Pierre; Zheng, Jiangjun; De Rossi, Alfredo; Wong, Chee Wei

    2013-01-01

    Solitary waves have consistently captured the imagination of scientists, ranging from fundamental breakthroughs in spectroscopy and metrology enabled by supercontinuum light, to gap solitons for dispersionless slow-light, and discrete spatial solitons in lattices, amongst others. Recent progress in strong-field atomic physics include impressive demonstrations of attosecond pulses and high-harmonic generation via photoionization of free-electrons in gases at extreme intensities of 1014 W/cm2. Here we report the first phase-resolved observations of femtosecond optical solitons in a semiconductor microchip, with multiphoton ionization at picojoule energies and 1010 W/cm2 intensities. The dramatic nonlinearity leads to picojoule observations of free-electron-induced blue-shift at 1016 cm−3 carrier densities and self-chirped femtosecond soliton acceleration. Furthermore, we evidence the time-gated dynamics of soliton splitting on-chip, and the suppression of soliton recurrence due to fast free-electron dynamics. These observations in the highly dispersive slow-light media reveal a rich set of physics governing ultralow-power nonlinear photon-plasma dynamics.

  12. A large area liquid scintillation multiphoton detector

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V. K.; Cain, M. P.; Caldwell, D. O.; Denby, B. H.; Eisner, A. M.; Joshi, U. P.; Kennett, R. G.; Lu, A.; Morrison, R. J.; Pfost, D. R.; Stuber, H. R.; Summers, D. J.; Yellin, S. J.; Appel, J. A.

    1985-01-01

    A 60 layer lead-liquid scintillator shower detector, which we call the SLIC, has been used for multiphoton detection in the Fermilab tagged photon spectrometer. The detector has an unimpeded active area which is 2.44 m by 4.88 m and is segmented, by means of teflon coated channels, into 3.17 cm wide strips. The 60 layers in depth are broken into three directions of alternating readouts so that three position coordinates are determined for each shower. At present the readouts are made by 334 photomultiplier tubes coupled to BBQ doped wavelength shifter bars which integrate the entire depth of the detector. It is relatively straightforward to increase the number of readouts to include longitudinal segmentation and to increase the segmentation of the outer region which are at present read out two strips to a readout. The energy and position resolutions of isolated showers are about {12%}/{√E} and 3 mm., respectively. The SLIC has been used to study the K-π+π0 decay of the D 0 [1], as well as for electron and muon identification in ψ → e +e - and ψ → μ+μ- plus π0 identification in γp → ψχ [8].

  13. Hybrid Multiphoton Volumetric Functional Imaging of Large Scale Bioengineered Neuronal Networks

    PubMed Central

    Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-01-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bio-engineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes/sec of structures with mm-scale dimensions containing a network of over 1000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances. PMID:24898000

  14. Multiphoton microscopic imaging of fibrotic focus in invasive ductal carcinoma of the breast

    NASA Astrophysics Data System (ADS)

    Chen, Sijia; Nie, Yuting; Lian, Yuane; Wu, Yan; Fu, Fangmeng; Wang, Chuan; Zhuo, Shuangmu; Chen, Jianxin

    2014-11-01

    During the proliferation of breast cancer, the desmoplastic can evoke a fibrosis response by invading healthy tissue. Fibrotic focus (FF) in invasive ductal carcinoma (IDC) of the breast had been reported to be associated with significantly poorer survival rate than IDC without FF. As an important prognosis indicator, it's difficult to obtain the exact fibrotic information from traditional detection method such as mammography. Multiphoton imaging based on two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) has been recently employed for microscopic examination of unstained tissue. In this study, multiphoton microscopy (MPM) was used to image the fibrotic focus in invasive ductal carcinoma tissue. The morphology and distribution of collagen in fibrotic focus can be demonstrated by the SHG signal. Variation of collagen between IDC with and without FF will be examined and further characterized, which may be greatly related to the metastasis of breast cancer. Our result suggested that the MPM can be efficient in identifying and locating the fibrotic focus in IDC. Combining with the pathology analysis and other detecting methods, MPM owns potential in becoming an advanced histological tool for detecting the fibrotic focus in IDC and collecting prognosis information, which may guide the subsequent surgery option and therapy procedure for patients.

  15. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  16. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  17. In vivo multi-photon nanosurgery on cortical neurons: focusing on network organization

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; O'Connor, R. P.; Jasaitis, A.; Masi, A.; Buffelli, M.; Pavone, F. S.

    2008-02-01

    Two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex of living mice. Multi-photon absorption has also been used as a tool for the selective disruption of cellular structures in living cells and simple organisms. In this work we exploit the spatial localization of multi-photon excitation to perform selective lesions on the neuronal processes of cortical neurons in living mice expressing fluorescent proteins. This methodology was applied to dissect single dendrites with sub-micrometric precision without causing any visible collateral damage to the surrounding neuronal structures. The spatial precision of this method was demonstrated by ablating individual dendritic spines, while sparing the adjacent spines and the structural integrity of the dendrite. The morphological consequences were then characterized with time lapse 3D two-photon imaging over a period of minutes to days after the procedure. Here we present the results of our systematic study of the morphological response of cortical pyramidal neurons to nanosurgical perturbations. Dendritic branches were followed after transecting distal segments, whilst the plasticity and remodeling of individual dendritic spines on a given branch was also followed after removing of a subset of spines.

  18. Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2017-04-01

    Esophageal squamous cell carcinoma (ESCC) is devastating because of its aggressive lymphatic spread and clinical course. It is believed to occur through low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal invasive cancer (IMC) before transforming to submucosal cancer. In particular, these early lesions (LGIN, HGIN and IMC), which involve no lymph node nor distant metastasis, can be cured by endoscopic treatment. Therefore, early identification of these lesions is important so as to offer a curative endoscopic resection, thus slowing down the development of ESCC. In this work, spectral information and morphological features of the normal esophageal mucosa are first studied. Then, the morphological changes of LGIN, HGIN and IMC are described. Lastly, quantitative parameters are also extracted by calculating the nuclear-to-cytoplasmic ratio of epithelial cells and the pixel density of collagen in the lamina propria. These results show that multiphoton microscopy (MPM) has the ability to identify normal esophageal mucosa, LGIN, HGIN and IMC. With the development of multiphoton endoscope systems for in vivo imaging, combined with a laser ablation system, MPM has the potential to provide immediate pathologic diagnosis and curative treatment of ESCC before the transformation to submucosal cancer in the future.

  19. Multiphoton photochemistry of red fluorescent proteins in solution and live cells.

    PubMed

    Drobizhev, Mikhail; Stoltzfus, Caleb; Topol, Igor; Collins, Jack; Wicks, Geoffrey; Mikhaylov, Alexander; Barnett, Lauren; Hughes, Thomas E; Rebane, Aleksander

    2014-08-07

    Genetically encoded fluorescent proteins (FPs), and biosensors based on them, provide new insights into how living cells and tissues function. Ultimately, the goal of the bioimaging community is to use these probes deep in tissues and even in entire organisms, and this will require two-photon laser scanning microscopy (TPLSM), with its greater tissue penetration, lower autofluorescence background, and minimum photodamage in the out-of-focus volume. However, the extremely high instantaneous light intensities of femtosecond pulses in the focal volume dramatically increase the probability of further stepwise resonant photon absorption, leading to highly excited, ionizable and reactive states, often resulting in fast bleaching of fluorescent proteins in TPLSM. Here, we show that the femtosecond multiphoton excitation of red FPs (DsRed2 and mFruits), both in solution and live cells, results in a chain of consecutive, partially reversible reactions, with individual rates driven by a high-order (3-5 photon) absorption. The first step of this process corresponds to a three- (DsRed2) or four-photon (mFruits) induced fast isomerization of the chromophore, yielding intermediate fluorescent forms, which then subsequently transform into nonfluorescent products. Our experimental data and model calculations are consistent with a mechanism in which ultrafast electron transfer from the chromophore to a neighboring positively charged amino acid residue triggers the first step of multiphoton chromophore transformations in DsRed2 and mFruits, consisting of decarboxylation of a nearby deprotonated glutamic acid residue.

  20. High-resolution multimodal clinical multiphoton tomography of skin

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  1. Vibrational resonance enhanced broadband multiphoton absorption in a triphenylamine derivative

    SciTech Connect

    Lu Changgui; Cui Yiping; Huang Wei; Yun Binfeng; Wang Zhuyuan; Hu Guohua; Cui Jing; Lu Zhifeng; Qian Ying

    2007-09-17

    Multiphoton absorption of 2,5-bis[4-(2-N,N-diphenylaminostyryl)phenyl]-1,3,4-oxadiazole was experimentally studied by using femtosecond laser pulses. This material demonstrates a very broad multiphoton absorption band of around 300 nm width with two peaks of 1250 and 1475 nm. The first peak results from the three-photon absorption process while the second is attributed to the vibrational resonance enhanced four-photon absorption process. Combination of these two processes provides a much broader multiphoton absorption band. In this letter, the analytical solution to nonlinear transmission of a three-photon absorption process is also given when the incident beam has a Gaussian transverse spatial profile.

  2. Preparation of metallo-dielectric photonic crystals by multi-photon direct laser writing

    NASA Astrophysics Data System (ADS)

    Kuebler, Stephen M.; Tal, Amir; Chen, Yun-Sheng

    2008-02-01

    Metallo-dielectric photonic crystals (MDPCs) can exhibit intriguing and potentially useful optical properties, including ultra-wide photonic bandgaps, engineered thermal emission, and negative refractive index. But access to such materials has been limited by the lack of suitable methods for their preparation. We have developed a route to three-dimensional (3D) MDPCs that involves fabricating a polymeric pre-form by multi-photon direct laser writing and then conformally depositing metal onto the pre-form by electroless metallization. We use the approach to prepare silver- and copper-plated "woodpile" PCs having face-centered tetragonal symmetry and unit-cell period of several micrometers. The resulting 3D metallized structures exhibit mid-infrared reflectance that is consistent with theory and experimental observations obtained for MDPCs prepared by other routes. These data indicate that multi-photon direct laser writing coupled with electroless metallization is a viable route to complex 3D MDPCs of many symmetries and basis sets and provides a path for integrating such structures with other micron-scale optical elements.

  3. Unambiguous atomic Bell measurement assisted by multiphoton states

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Bernád, József Zsolt; Alber, Gernot

    2016-05-01

    We propose and theoretically investigate an unambiguous Bell measurement of atomic qubits assisted by multiphoton states. The atoms interact resonantly with the electromagnetic field inside two spatially separated optical cavities in a Ramsey-type interaction sequence. The qubit states are postselected by measuring the photonic states inside the resonators. We show that if one is able to project the photonic field onto two coherent states on opposite sites of phase space, an unambiguous Bell measurement can be implemented. Thus, our proposal may provide a core element for future components of quantum information technology such as a quantum repeater based on coherent multiphoton states, atomic qubits and matter-field interaction.

  4. Label-free multi-photon imaging of dysplasia in Barrett’s esophagus

    PubMed Central

    Mehravar, Soroush; Banerjee, Bhaskar; Chatrath, Hemant; Amirsolaimani, Babak; Patel, Krunal; Patel, Charmi; Norwood, Robert A; Peyghambarian, Nasser; Kieu, Khanh

    2015-01-01

    Barrett’s esophagus (BE) is a metaplastic disorder where dysplastic and early cancerous changes are invisible to the naked eye and where the practice of blind biopsy is hampered by large sampling errors. Multi-photon microscopy (MPM) has emerged as an alternative solution for fast and label-free diagnostic capability for identifying the histological features with sub-micron accuracy. We developed a compact, inexpensive MPM system by using a handheld mode-locked fiber laser operating at 1560nm to study mucosal biopsies of BE. The combination of back-scattered THG, back-reflected forward THG and SHG signals generate images of cell nuclei and collagen, leading to label-free diagnosis in Barrett’s. PMID:26819824

  5. Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging.

    PubMed

    Zhu, Xiaoqin; Zhuo, Shuangmu; Zheng, Liqin; Jiang, Xingshan; Chen, Jianxin; Lin, Bifang

    2011-01-01

    Multiphoton microscopy (MPM) was applied to examine the marginal region at dermis of keloid compared with atrophic scar. High-resolution large-area image showed an obvious boundary at the scar margin and different morphological patterns of elastin and collagen on the two sides, further visualized by the focused three-dimensional images. Content alteration of elastin or collagen between the two sides of boundary was quantified to show significant difference between keloid and atrophic scar. Owing to the raised property of keloid with overproduced collagen on the scar side, the content alteration was positive for elastin and negative for collagen. On the contrary, the content alteration was negative for elastin and positive for collagen in the atrophic scar case due to the atrophic collagen on the scar side. It indicated that examination of the scar margin by MPM may lead a new way to discriminate different types of scars and better understand the scarring mechanisms.

  6. Dictionary of Microscopy

    NASA Astrophysics Data System (ADS)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  7. Advances in time-dependent methods for multiphoton processes

    SciTech Connect

    Kulander, K.C.; Schafer, K.J.; Krause, J.L.

    1990-09-01

    This paper discusses recent theoretical results on above threshold ionization harmonic generation and high-frequency, high intensity suppression of ionization. These studies of multiphoton processes in atoms and molecules for short, intense pulsed optical lasers have been carried out using techniques which involve the explicit solution of the time-dependent Schroedinger equation. 43 refs., 5 figs.

  8. Influence of Vacuum Cooling on Escherichia coli O157:H7 Infiltration in Fresh Leafy Greens via a Multiphoton-Imaging Approach.

    PubMed

    Vonasek, Erica; Nitin, Nitin

    2015-10-16

    Microbial pathogen infiltration in fresh leafy greens is a significant food safety risk factor. In various postharvest operations, vacuum cooling is a critical process for maintaining the quality of fresh produce. The overall goal of this study was to evaluate the risk of vacuum cooling-induced infiltration of Escherichia coli O157:H7 into lettuce using multiphoton microscopy. Multiphoton imaging was chosen as the method to locate E. coli O157:H7 within an intact lettuce leaf due to its high spatial resolution, low background fluorescence, and near-infrared (NIR) excitation source compared to those of conventional confocal microscopy. The variables vacuum cooling, surface moisture, and leaf side were evaluated in a three-way factorial study with E. coli O157:H7 on lettuce. A total of 188 image stacks were collected. The images were analyzed for E. coli O157:H7 association with stomata and E. coli O157:H7 infiltration. The quantitative imaging data were statistically analyzed using analysis of variance (ANOVA). The results indicate that the low-moisture condition led to an increased risk of microbial association with stomata (P < 0.05). Additionally, the interaction between vacuum cooling levels and moisture levels led to an increased risk of infiltration (P < 0.05). This study also demonstrates the potential of multiphoton imaging for improving sensitivity and resolution of imaging-based measurements of microbial interactions with intact leaf structures, including infiltration.

  9. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  10. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.

    PubMed

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  11. Nonlinear Optical Microscopy of Single Nanostructures

    NASA Astrophysics Data System (ADS)

    Huang, Libai; Cheng, Ji-Xin

    2013-07-01

    We review recent advances in nonlinear optical (NLO) microscopy studies of single nanostructures. NLO signals are intrinsically sensitive to the electronic, vibrational, and structural properties of such nanostructures. Ultrafast excitation allows for mapping of energy relaxation pathways at the single-particle level. The strong nonlinear response of nanostructures makes them highly attractive for applications as novel NLO imaging agents in biological and biomedical research. NLO modalities based on harmonic generation, multiphoton photoluminescence, four-wave mixing, and pump-probe processes are discussed in detail.

  12. Phase matching alters spatial multiphoton processes in dense atomic ensembles.

    PubMed

    Leszczyński, Adam; Parniak, Michał; Wasilewski, Wojciech

    2017-01-09

    Multiphoton processes in dense atomic vapors such as four-wave mixing or coherent blue light generation are typically viewed from single-atom perspective. Here we study the surprisingly important effect of phase matching near two-photon resonances that arises due to spatial extent of the atomic medium within which the multiphoton process occurs. The non-unit refractive index of the atomic vapor may inhibit generation of light in nonlinear processes, significantly shift the efficiency maxima in frequencies and redirect emitted beam. We present these effects on an example of four-wave mixing in dense rubidium vapors in a double-ladder configuration. By deriving a simple theory that takes into account essential spatial properties of the process, we give precise predictions and confirm their validity in the experiment. The model allows us to improve on the geometry of the experiment and engineer more efficient four-wave mixing.

  13. Multiphoton imaging of freezing and heating effects in plant leaves.

    PubMed

    Breunig, Hans Georg; Tümer, Fatma; König, Karsten

    2013-08-01

    Thermally-induced changes in Arabidopsis thaliana leaves were investigated with a novel cryo microscope by multiphoton, fluorescence lifetime and spectral imaging as well as micro spectroscopy. Samples were excited with fs pulses in the near-infrared range and cooled/heated in a cryogenic chamber. The results show morphological changes in the chloroplast distribution as well as a shift from chlorophyll to cell-wall fluorescence with decreasing temperature. At temperatures below -40 °C, also second harmonic generation was observed. The measurements illustrate the suitability of multiphoton imaging to investigate thermally-induced changes at temperatures used for cryopreservation as well as for basic investigations of thermal effects on plant tissue in general.

  14. A simple model of multiphoton micromachining in silk hydrogels

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene; Kaplan, David L.; Omenetto, Fiorenzo G.

    2016-06-01

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or other photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.

  15. Highly Resolved Intravital Striped-illumination Microscopy of Germinal Centers

    PubMed Central

    Andresen, Volker; Sporbert, Anje

    2014-01-01

    Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 µm tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells – on the level of a few protein molecules in germinal centers. PMID:24748007

  16. Relaxation channels of multi-photon excited xenon clusters

    SciTech Connect

    Serdobintsev, P. Yu.; Melnikov, A. S.; Rakcheeva, L. P. Murashov, S. V.; Khodorkovskii, M. A.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  17. Relaxation channels of multi-photon excited xenon clusters.

    PubMed

    Serdobintsev, P Yu; Rakcheeva, L P; Murashov, S V; Melnikov, A S; Lyubchik, S; Timofeev, N A; Pastor, A A; Khodorkovskii, M A

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  18. Multi-Photon Micro-Spectroscopy of Biological Specimens

    DTIC Science & Technology

    2000-07-01

    point. As a result, the technology has the capacity for micro-spectroscopy of biological specimen at high spatial resolution. Mesophyll protoplasts of...Micro-spectroscopy, multi-photon fluorescence spectroscopy, second harmonic generation, plant tissues, stem, chloroplast, protoplast , maize, Arabidopsis...noise may be greatly reduced due to the naturally limited excitation volume of the focused laser beam. In this study, leaf protoplasts of Arabidopsis

  19. Relaxation channels of multi-photon excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Rakcheeva, L. P.; Murashov, S. V.; Melnikov, A. S.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.; Khodorkovskii, M. A.

    2015-09-01

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  20. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  1. Multiphoton imaging of basal cell carcinoma (BCC)

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Carli, P.; Massi, D.; Sestini, S.; Stambouli, D.; Pavone, F. S.

    2006-02-01

    We used two-photon microscopy towards the imaging of cutaneous basal cell carcinoma (BCC). Our aim was to evaluate the morphology of BCC using two-photon fluorescence excitation and to establish a correlation with histopathology. We built a custom two-photon microscope and we measured the system capabilities. The system allowed to perform a preliminary measurement on a fresh human skin tissue sample. A human skin tissue sample of BCC excised during dermatological surgery procedures were used. The clinical diagnosis of BCC was confirmed by subsequent histopathological examination. The sample was imaged using endogenous tissue fluorescence within 2-3 hours from the excision with a two photon laser scanning fluorescence microscope. The acquired images allowed an obvious discrimination of the neoplastic areas toward normal tissue, based on morphological differences and aberrations of the intensity of the fluorescence signal. Our results showed that BCC tissue has a more homogeneous structure in comparison to normal tissue as well as a higher fluorescent response. The images obtained by two photon microscopy were further compared to the images acquired by an optical microscope after the conventional histopathological examination on one part of the respective sample. Our suggested method may represent a new diagnostic tool that improves the diagnostic accuracy of clinical examination alone, enabling the accurate discrimination of basal cell carcinoma from normal tissue.

  2. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  3. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    PubMed Central

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-01-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy. PMID:27004454

  4. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  5. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  6. Leica solution: CARS microscopy at video rates

    NASA Astrophysics Data System (ADS)

    Lurquin, V.

    2008-02-01

    Confocal and multiphoton microscopy are powerful techniques to study morphology and dynamics in cells and tissue, if fluorescent labeling is possible or autofluorescence is strong. For non-fluorescent molecules, Coherent anti-Stokes Raman scattering (CARS) microscopy provides chemical contrast based on intrinsic and highly specific vibrational properties of molecules eliminating the need for labeling. Just as other multiphoton techniques, CARS microscopy possesses three-dimensional sectioning capabilities. Leica Microsystems has combined the CARS imaging technology with its TCS SP5 confocal microscope to provide several advantages for CARS imaging. For CARS microscopy, two picosecond near-infrared lasers are overlapped spatially and temporally and sent into the scanhead of the confocal system. The software allows programmed, automatic switching between these light sources for multi-modal imaging. Furthermore the Leica TCS SP5 can be equipped with a non-descanned detector which will significantly enhance the signal. The Leica TCS SP5 scanhead combines two technologies in one system: a conventional scanner for maximum resolution and a resonant scanner for high time resolution. The fast scanner allows imaging speeds as high as 25 images/per second at a resolution of 512×512 pixel. This corresponds to true video-rate allowing to follow processes at these time-scales as well as the acquisition of three-dimensional stacks in a few seconds. This time resolution is critical to study live animals or human patients for which heart beat and muscle movements lead to a blurring of the image if the acquisition time is high. Furthermore with the resonant scanhead the sectioning is truly confocal and does not suffer from spatial leakage. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS SP5 a powerful tool for three-dimensional, label-free imaging of chemical and biological samples in vitro and in vivo.

  7. Optimization of multi-photon event discrimination levels using Poisson statistics

    NASA Astrophysics Data System (ADS)

    Soukka, Juri M.; Virkki, Arho; Hänninen, Pekka E.; Soini, Juhani T.

    2004-01-01

    In applications where random multi-photon events must be distinguishable from the background, detection of the signals must be based on either analog current measurement or photon counting and multi-level discrimination of single and multi-photon events. In this paper a novel method for optimizing photomultiplier (PMT) pulse discrimination levels in single- and multi-photon counting is demonstrated. This calibration method is based on detection of photon events in coincidence to short laser pulses. The procedure takes advantage of Poisson statistics of single- and mult-iphoton signals and it is applicable to automatic calibration of photon counting devices on production line. Results obtained with a channel photomultiplier (CPM) are shown. By use of three parallel discriminators and setting the discriminator levels according to the described method resulted in a linear response over wide range of random single- and multi-photon signals.

  8. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  9. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  10. Circular Dichroism in Multiphoton Ionization of Resonantly Excited He+ Ions

    NASA Astrophysics Data System (ADS)

    Ilchen, M.; Douguet, N.; Mazza, T.; Rafipoor, A. J.; Callegari, C.; Finetti, P.; Plekan, O.; Prince, K. C.; Demidovich, A.; Grazioli, C.; Avaldi, L.; Bolognesi, P.; Coreno, M.; Di Fraia, M.; Devetta, M.; Ovcharenko, Y.; Düsterer, S.; Ueda, K.; Bartschat, K.; Grum-Grzhimailo, A. N.; Bozhevolnov, A. V.; Kazansky, A. K.; Kabachnik, N. M.; Meyer, M.

    2017-01-01

    Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He+(3 p ) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

  11. The nature of multiphoton fluorescence from red blood cells

    NASA Astrophysics Data System (ADS)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  12. Volumetric display with holographic multi-photon excitations

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Kumagai, Kota

    2016-10-01

    We developed a volumetric display with holographic two- and multi-photon excitations using a computer-generated hologram displayed on a liquid crystal spatial light modulator. The holographic technique has advantages of increasing the number of voxels of the volumetric graphics per unit time, increasing the total input energy to the volumetric display because the maximum energy incident at a point in the display material is limited by the damage threshold, and controlling the size, shape and spatial position of voxels. We demonstrated a volumetric display with stacked multi-color fluorescence plates.

  13. Quantum Radiation Reaction Effects in Multiphoton Compton Scattering

    SciTech Connect

    Di Piazza, A.; Hatsagortsyan, K. Z.; Keitel, C. H.

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  14. Quantum radiation reaction effects in multiphoton Compton scattering.

    PubMed

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  15. Anomalous multiphoton photoelectric effect in ultrashort time scales.

    PubMed

    Kupersztych, J; Raynaud, M

    2005-09-30

    In a multiphoton photoelectric process, an electron needs to absorb a given number of photons to escape the surface of a metal. It is shown for the first time that this number is not a constant depending only on the characteristics of the metal and light, but varies with the interaction duration in ultrashort time scales. The phenomenon occurs when electromagnetic energy is transferred, via ultrafast excitation of electron collective modes, to conduction electrons in a duration less than the electron energy damping time. It manifests itself through a dramatic increase of electron production.

  16. Stimulated Raman scattering microscopy for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; He, Chengwei; Kang, Jing X.; Xie, X. Sunney

    2009-02-01

    Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a 3D multi-photon vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS is significantly greater than that of spontaneous Raman scattering, and is further enhanced by high-frequency (MHz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and easily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast.

  17. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways.

    PubMed

    Geneva, Ivayla I; Tan, Han Yen; Calvert, Peter D

    2017-02-15

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein-coupled receptors (GPCRs)-the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells.

  18. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  19. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy.

    PubMed

    Winter, Peter W; Chandris, Panagiotis; Fischer, Robert S; Wu, Yicong; Waterman, Clare M; Shroff, Hari

    2015-02-23

    Three-dimensional super-resolution imaging in thick, semi-transparent biological specimens is hindered by light scattering, which increases background and degrades both contrast and optical sectioning. We describe a simple method that mitigates these issues, improving image quality in our recently developed two-photon instant structured illumination microscope without requiring any hardware modifications to the instrument. By exciting the specimen with three laterally-structured, phase-shifted illumination patterns and post-processing the resulting images, we digitally remove both scattered and out-of-focus emissions that would otherwise contaminate our raw data. We demonstrate the improved performance of our approach in biological samples, including pollen grains, primary mouse aortic endothelial cells cultured in a three-dimensional collagen matrix and live tumor-like cell spheroids.

  20. Investigation of prostate cancer cells using NADH and Tryptophan as biomarker: multiphoton FLIM-FRET microscopy

    NASA Astrophysics Data System (ADS)

    Rehman, Shagufta; O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Chandra, Dhyan; Periasamy, Ammasi

    2016-03-01

    Fluorescence Lifetime Imaging (FLIM) can be used to understand the metabolic activity in cancer. Prostate cancer is one of the leading cancers in men in the USA. This research focuses on FLIM measurements of NAD(P)H and Tryptophan, used as biomarkers to understand the metabolic activity in prostate cancer cells. Two prostate cancers and one normal cell line were used for live-cell FLIM measurements on Zeiss780 2P confocal microscope with SPCM FLIM board. Glucose uptake and glycolysis proceeds about ten times faster in cancer than in non-cancerous tissues. Therefore, we assessed the glycolytic activity in the prostate cancer in comparison to the normal cells upon glucose stimulation by analyzing the NAD(P)H and Trp lifetime distribution and efficiency of energy transfer (E%). Furthermore, we treated the prostate cancer cells with 1μM Doxorubicin, a commonly used anti-cancer chemotherapeutic. Increase in NADH a2%, an indicator of increased glycolysis and increased E% between Trp and NAD(P)H were seen upon glucose stimulation for 30min. The magnitude of shift to the right for NAD(P)H a2% and E% distribution was higher in prostate cancer versus the normal cells. Upon treatment with Doxorubicin decrease in cellular metabolism was seen at 15 and 30 minutes. The histogram for NAD(P)H a2% post-treatment for prostate cancer cells showed a left shift compared to the untreated control suggesting decrease in glycolysis and metabolic activity opposite to what was observed after glucose stimulation. Hence, NAD(P)H and Trp lifetimes can be used biomarkers to understand metabolic activity in prostate cancer and upon chemotherapeutic interventions.

  1. Multiscale structural analysis of mouse lingual myoarchitecture employing diffusion spectrum magnetic resonance imaging and multiphoton microscopy.

    PubMed

    Gaige, Terry A; Kwon, Hyuk Sang; Dai, Guangping; Cabral, Victor C; Wang, Ruopeng; Nam, Yoon Sung; Engelward, Bevin P; Wedeen, Van J; So, Peter T C; Gilbert, Richard J

    2008-01-01

    The tongue consists of a complex, multiscale array of myofibers that comprise the anatomical underpinning of lingual mechanical function. 3-D myoarchitecture was imaged in mouse tongues with diffusion spectrum magnetic resonance imaging (DSI) at 9.4 T (b(max) 7000 smm, 150-microm isotropic voxels), a method that derives the preferential diffusion of water/voxel, and high-throughput (10 fps) two-photon microscope (TPM). Net fiber alignment was represented for each method in terms of the local maxima of an orientational distribution function (ODF) derived from the local diffusion (DSI) and 3-D structural autocorrelation (TPM), respectively. Mesoscale myofiber tracts were generated by alignment of the principal orientation vectors of the ODFs. These data revealed a consistent relationship between the properties of the respective ODFs and the virtual superimposition of the distributed mesoscale myofiber tracts. The identification of a mesoscale anatomical construct, which specifically links the microscopic and macroscopic spatial scales, provides a method for relating the orientation and distribution of cells and subcellular components with overall tissue morphology, thus contributing to the development of multiscale methods for mechanical analysis.

  2. Multiphoton microscopic imaging of histological sections without hematoxylin and eosin staining differentiates carcinoma in situ lesion from normal oesophagus

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Xu, Jian; Kang, Deyong; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Jiang, Xingshan

    2013-10-01

    Multiphoton microscopy (MPM) has become a powerful, important tool for tissues imaging at the molecular level. In this paper, this technique was extended to histological investigations, differentiating carcinoma in situ (CIS) lesion from normal oesophagus by imaging histological sections without hematoxylin and eosin (H&E) staining. The results show that the histology procedures of dehydration, paraffin embedding, and de-paraffinizing highlighted two photon excited fluorescence of cytoplasm and nucleolus of epithelial cell and collagen in stroma. MPM has the ability to identify the characteristics of CIS lesion including changes of squamous cells and full epithelium, identification of basement membrane, especially prominent nucleolus. The studies described here show that MPM has the potential for future retrospective studies of tumor staging by employing on histological section specimens without H&E staining.

  3. Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts

    PubMed Central

    Bardet, Sylvia M.; Carr, Lynn; Soueid, Malak; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2016-01-01

    Despite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs. We demonstrate for the first time that a single 10 ns, high voltage electric pulse (35–45 kV/cm), collapses the perfusion of neovasculature, and also alters the diameter of capillaries and larger vessels in normal tissue. These results contribute to the fundamental understanding of nsPEF effects in complex tissue environments, and confirm the potential of nsPEFs to disrupt the microenvironment of solid tumors such as glioblastoma. PMID:27698479

  4. Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation

    PubMed Central

    Kwan, Alex C.; Duff, Karen; Gouras, Gunnar K.; Webb, Watt W.

    2010-01-01

    Intrinsic optical emissions, such as autofluorescence and second harmonic generation (SHG), are potentially useful for functional fluorescence imaging and biomedical disease diagnosis for neurodegenerative diseases such as Alzheimer’s disease (AD). Here, using multiphoton and SHG microscopy, we identified sources of intrinsic emissions in ex vivo, acute brain slices from AD transgenic mouse models. We observed autofluorescence and SHG at senile plaques as well as characterized their emission spectra. The utility of intrinsic emissions was demonstrated by imaging senile plaque autofluorescence in conjunction with SHG from microtubule arrays to assess the polarity of microtubules near pathological lesions. Our results suggest that tissues from AD transgenic models contain distinct intrinsic emissions, which can provide valuable information about the disease mechanisms. PMID:19259208

  5. Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation

    PubMed Central

    Lu, Ju; Min, Wei; Conchello, José-Angel; Xie, Xiaoliang Sunney; Lichtman, Jeff W.

    2009-01-01

    Super-resolution optical microscopy has attracted great interest among researchers in many fields, especially in biology where the scale of physical structures and molecular processes fall below the diffraction limit of resolution for light. As one of the emerging techniques, structured illumination microscopy can double the resolution by shifting unresolvable spatial frequencies into the pass-band of the microscope through spatial frequency mixing with a wide-field structured illumination pattern. However, such a wide-field scheme typically can only image optically thin samples and is incompatible with multiphoton processes such as two-photon fluorescence, which require point scanning with a focused laser beam. Here, we propose two new super-resolution schemes for laser scanning microscopy by generalizing the concept of a spatially nonuniform imaging system. One scheme, scanning patterned illumination (SPIN) microscopy, employs modulation of the excitation combined with temporally cumulative imaging by a nondescanned array detector. The other scheme, scanning patterned detection (SPADE) microscopy, utilizes detection modulation together with spatially cumulative imaging, in this case by a nondescanned single-element detector. When combined with multiphoton excitation, both schemes can image thick samples with three-dimensional optical sectioning and much improved resolution. PMID:19743870

  6. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    PubMed

    Giacomelli, Michael G; Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E; Hornegger, Joachim; Connolly, James L; Fujimoto, James G

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  7. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging

    PubMed Central

    Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Hornegger, Joachim; Connolly, James L.; Fujimoto, James G.

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems. PMID:27500636

  8. Optical-resolution photoacoustic microscopy of amyloid-β deposits in vivo

    NASA Astrophysics Data System (ADS)

    Hu, Song; Yan, Ping; Maslov, Konstantin; Lee, Jin-Moo; Wang, Lihong V.

    2010-02-01

    Advances in high-resolution imaging have permitted microscopic observations within the brains of living animals. Applied to Alzheimer's disease (AD) mouse models, multiphoton microscopy has opened a new window to study the real-time appearance and growth of amyloid plaques. Here, we report an alternative technology-optical-resolution photoacoustic microscopy (OR-PAM)-for in vivo imaging of amyloid plaques in a transgenic AD mouse model. In vivo validation using multiphoton microscopy shows that OR-PAM has sufficient sensitivity and spatial resolution to identify amyloid plaques in living brains. In addition, with dual-wavelength OR-PAM, the three-dimensional morphology of amyloid plaques and the surrounding microvasculature are imaged simultaneously through a cranial window. In vivo transcranial OR-PAM imaging of amyloid plaques is highly likely once the imaging parameters are optimized.

  9. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  10. Multi-photon photoelectron spectromicroscopy of supported polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Gerhard; Lindla, Florian; Senft, Christoph; Daum, Winfried

    2008-08-01

    Multi-photon photoemission excited by 100 fs, 400 nm laser pulses leads to an unexpected high contrast in photoelectron images of polystyrene spheres on a platinum substrate. The total, energy-integrated photoelectron yield shows clear signatures of two-photon photoemission from the substrate while photoemission from polystyrene is dominated by one-photon processes for low laser power and multi-photon processes for higher laser power. For excitation with UV light from a conventional Hg arc lamp, we observe a marked energy shift of the photoelectron spectrum of polystyrene with respect to that of the substrate. This shift is related to the different surface potentials of the conductive substrate and the dielectric spheres in the strong electric field of the objective lens of the microscope. Laser illumination causes photoconductivity in polystyrene by efficient two-photon excitation of long-lived states and induces a shifting of the surface potential of the polystyrene spheres. Pump-probe experiments support our conclusion that photoemission from polystyrene takes place from these long-lived intermediate states via a one-photon process for sufficiently low laser power. We suggest that photoelectron spectromicroscopy might be useful as a non-scanning method for fast height profiling of supported dielectric structures.

  11. The effect of radial polarization in multiphoton lithography

    NASA Astrophysics Data System (ADS)

    Lin, Le; Zheng, Mei-Ling; Dong, Xian-Zi; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2015-10-01

    Considering the axially symmetric polarization and intensity distribution, radially polarized (RP) laser beam has comparatively higher axial component of electric field and smaller size of focal spot compared to linearly polarized (LP) laser. In this study, the effect of radial polarization on multiphoton fabrication has been studied, and polymer spots and lines are chosen as the study objects of 2D micro/nano structures of multiphoton lithography. These structures were fabricated with IP-L, a commercial negative photoresist, by RP fs-pulse laser beam which was tightly focused by an objective lens with high numerical aperture. Multiple experimental conditions, such as fabrication power, exposure time and scanning velocity, were verified in order to observe the structural variation of these polymer structures. On the basis of measurement from images of the scanning electron microscope, the transverse and longitudinal sizes of polymer spots and lines could be analyzed, and the relationship between the aspect ratio (AR) and the above experimental conditions could be acquired. The statistical results agree with our predictions that the RP laser beam can significantly reduce the AR, and the AR in RP laser fabrication has little correlation with conditions besides fabrication power, such as exposure time and scanning velocity.

  12. In vivo multiphoton endoscopy of endogenous skin fluorophores

    NASA Astrophysics Data System (ADS)

    Ehlers, Alexander; Schenkl, Selma; Riemann, Iris; Messerschmidt, Bernhard; Kaatz, Martin; Bückle, Rainer; König, Karsten

    2007-02-01

    Multiphoton tomography offers a painless method to examine patients under natural physiological conditions in vivo. Multiphoton excitation induces a weak autofluorescence of naturally endogenous fluorescent bio-molecules, such as flavines, NAD(P)H, metal-free porphyrines, components of lipofuscin, elastin and keratin. Additionally, collagen can be detected by second harmonic generation (SHG). Due to the nonlinearity, the effects occur only in a very tight focus, where the photon density is high enough. This leads to high axial and lateral resolution of <1μm without any need of a confocal detection and avoids out-of-focus damage. The limited depth range, given by the working distance of the focusing optics, is overcome with a gradient index-lens (GRIN-lens) based endoscope. In this work we present the first results of clinical applications in vivo of gradient-index lens endoscopes. Images of e.g. elastin and collagen (SHG) in the dermal layer of human skin are presented.

  13. Multiphoton imaging: a view to understanding sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J. S.; Madren-Whalley, Janna S.

    2003-07-01

    It is well known that topical exposure to sulfur mustard (SM) produces persistent, incapacitating blisters of the skin. However, the primary lesions effecting epidermal-dermal separation and disabling of mechanisms for cutaneous repair remain uncertain. Immunofluorescent staining plus multiphoton imaging of human epidermal tissues and keratinocytes exposed to SM (400 μM x 5 min)have revealed that SM disrupts adhesion-complex molecules which are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Images of keratin-14 showed early, progressive, postexposure collapse of the K5/K14 cytoskeleton that resulted in ventral displacement of the nuclei beneath its collapsing filaments. This effectively corrupted the dynamic filament assemblies that link basal-cell nuclei to the extracellular matrix via α6β4-integrin and laminin-5. At 1 h postexposure, there was disruption in the surface organization of α6β4 integrins, associated displacement of laminin-5 anchoring sites and a concomitant loss of functional asymmetry. Accordingly, our multiphoton images are providing compelling evidence that SM induces prevesicating lesions that disrupt the receptor-ligand organization and cytoskeletal systems required for maintaining dermal-epidermal attachment, signal transduction, and polarized mobility.

  14. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

    NASA Astrophysics Data System (ADS)

    Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

  15. Clinical studies of pigmented lesions in human skin by using a multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Kelly, Kristen M.; Zachary, Christopher B.; Harris, Ronald M.; Krasieva, Tatiana B.; König, Karsten; Tromberg, Bruce J.

    2013-02-01

    In vivo imaging of pigmented lesions in human skin was performed with a clinical multiphoton microscopy (MPM)-based tomograph (MPTflex, JenLab, Germany). Two-photon excited fluorescence was used for visualizing endogenous fluorophores such as NADH/FAD, keratin, melanin in the epidermal cells and elastin fibers in the dermis. Collagen fibers were imaged by second harmonic generation. Our study involved in vivo imaging of benign melanocytic nevi, atypical nevi and melanoma. The goal of this preliminary study was to identify in vivo the characteristic features and their frequency in pigmented lesions at different stages (benign, atypical and malignant) and to evaluate the ability of in vivo MPM to distinguish atypical nevi from melanoma. Comparison with histopathology was performed for the biopsied lesions. Benign melanocytic nevi were characterized by the presence of nevus cell nests at the epidermal-dermal junction. In atypical nevi, features such as lentiginous hyperplasia, acanthosis and architectural disorder were imaged. Cytological atypia was present in all the melanoma lesions imaged, showing the strongest correlation with malignancy. The MPM images demonstrated very good correlation with corresponding histological images, suggesting that MPM could be a promising tool for in vivo non-invasive pigmented lesion diagnosis, particularly distinguishing atypical nevi from melanoma.

  16. Multi-photon Imaging of Actin Filament Formation and Mitochondrial Energetics of Human ACBT Gliomas

    PubMed Central

    Hwang, Yu-Jer; Kolettis, Nomiki; Yang, Miso; Gillard, Elizabeth R.; Sanchez, Edgar; Sun, Chung-ho; Tromberg, Bruce J.; Krasieva, Tatiana B.; Lyubovitsky, Julia G.

    2011-01-01

    We studied the three-dimensional (3D) distribution of actin filaments and mitochondria in relation to ACBT glioblastoma cells migration. We embedded the cells in the spheroid form within collagen hydrogels and imaged them by in-situ multi-photon microscopy (MPM). The static 3D overlay of the distribution of actin filaments and mitochondria provided a greater understanding of cell-to-cell and cell-to-substrate interactions and morphology. While imaging mitochondria to obtain ratiometric redox index based on cellular fluorescence from reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD) we observed differential sensitivity of the migrating ACBT glioblastoma cells to femtosecond laser irradiation employed in MPM. We imaged actin-GFP fluorescence in live ACBT glioma cells and for the first time observed dynamic modulation of the pools of actin during migration in 3D. The MPM imaging, which probes cells directly within the 3D cancer models, could potentially aid in working out a link between the functional performance of mitochondria, actin distribution and cancer invasiveness. PMID:21143483

  17. Combined multiphoton imaging and automated functional enucleation of porcine oocytes using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Lucas-Hahn, Andrea; Petersen, Bjoern; Lemme, Erika; Hassel, Petra; Niemann, Heiner; Heisterkamp, Alexander

    2010-07-01

    Since the birth of ``Dolly'' as the first mammal cloned from a differentiated cell, somatic cell cloning has been successful in several mammalian species, albeit at low success rates. The highly invasive mechanical enucleation step of a cloning protocol requires sophisticated, expensive equipment and considerable micromanipulation skill. We present a novel noninvasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically identified the metaphase plate. Subsequent irradiation of the metaphase chromosomes with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation (functional enucleation). We show that fs laser-based functional enucleation of porcine oocytes completely inhibited the parthenogenetic development without affecting the oocyte morphology. In contrast, nonirradiated oocytes were able to develop parthenogenetically to the blastocyst stage without significant differences to controls. Our results indicate that fs laser systems have great potential for oocyte imaging and functional enucleation and may improve the efficiency of somatic cell cloning.

  18. Flexible polygon-mirror based laser scanning microscope platform for multiphoton in-vivo imaging.

    PubMed

    Li, Y X; Gautam, V; Brüstle, A; Cockburn, I A; Daria, V R; Gillespie, C; Gaus, K; Alt, C; Lee, W M

    2017-02-06

    Commercial microscopy systems make use of tandem scanning i.e. either slow or fast scanning. We constructed, for the first time, an advanced control system capable of delivering a dynamic line scanning speed ranging from 2.7 kHz to 27 kHz and achieve variable frame rates from 5 Hz to 50 Hz (512 × 512). The dynamic scanning ability is digitally controlled by a new customized open-source software named PScan1.0. This permits manipulation of scanning rates either to gain higher fluorescence signal at slow frame rate without increasing laser power or increase frame rates to capture high speed events. By adjusting imaging speed from 40 Hz to 160 Hz, we capture a range of calcium waves and transient peaks from soma and dendrite of single fluorescence neuron (CAL-520AM). Motion artifacts arising from respiratory and cardiac motion in small animal imaging reduce quality of real-time images of single cells in-vivo. An image registration algorithm, integrated with PScan1.0, was shown to perform both real time and post-processed motion correction. The improvement is verified by quantification of blood flow rates. This work describes all the steps necessary to develop a high performance and flexible polygon-mirror based multiphoton microscope system for in-vivo biological imaging.

  19. Plasmon-Induced Optical Field Enhancement studied by Correlated Scanning and Photoemission Electron Microscopy

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2013-04-21

    We use multi-photon photoemission electron microscopy (PEEM) to image the enhanced electric fields of silver nanoparticles supported on a silver thin film substrate. Electromagnetic field enhancement is measured by comparing the photoelectron yield of the nanoparticles with respect to the photoelectron yield of the surrounding silver thin film. We investigate the dependence of the photoelectron yield of the nanoparticle as a function of size and shape. Multi-photon PEEM results are presented for three average nanoparticle diameters: 122 ± 6, 75 ± 6, and 34 ± 2 nm. The enhancement in photoelectron yield of single nanoparticles illuminated with femtosecond laser pulses (400 nm, ~3.1 eV) is found to be a factor of 102 to 103 times greater than that produced by the flat silver thin film. High-resolution, multi-photon PEEM images of single silver nanoparticles reveal that the greatest enhancement in photoelectron yield is localized at distinct regions on the surface of the nanoparticle whose magnitude and spatial extent is dependent on the incident electric field polarization. In conjunction with correlated scanning electron microscopy (SEM), nanoparticles that deviate from nominally spherical shapes are found to exhibit irregular spatial distributions in the multi-photon PEEM images that are correlated with the unique shape and topology of the nanoparticle.

  20. Post-processing strategies in image scanning microscopy.

    PubMed

    McGregor, J E; Mitchell, C A; Hartell, N A

    2015-10-15

    Image scanning microscopy (ISM) coupled with pixel reassignment offers a resolution improvement of √2 over standard widefield imaging. By scanning point-wise across the specimen and capturing an image of the fluorescent signal generated at each scan position, additional information about specimen structure is recorded and the highest accessible spatial frequency is doubled. Pixel reassignment can be achieved optically in real time or computationally a posteriori and is frequently combined with the use of a physical or digital pinhole to reject out of focus light. Here, we simulate an ISM dataset using a test image and apply standard and non-standard processing methods to address problems typically encountered in computational pixel reassignment and pinholing. We demonstrate that the predicted improvement in resolution is achieved by applying standard pixel reassignment to a simulated dataset and explore the effect of realistic displacements between the reference and true excitation positions. By identifying the position of the detected fluorescence maximum using localisation software and centring the digital pinhole on this co-ordinate before scaling around translated excitation positions, we can recover signal that would otherwise be degraded by the use of a pinhole aligned to an inaccurate excitation reference. This strategy is demonstrated using experimental data from a multiphoton ISM instrument. Finally we investigate the effect that imaging through tissue has on the positions of excitation foci at depth and observe a global scaling with respect to the applied reference grid. Using simulated and experimental data we explore the impact of a globally scaled reference on the ISM image and, by pinholing around the detected maxima, recover the signal across the whole field of view.

  1. Generating Nanostructures with Multiphoton Absorption Polymerization using Optical Trap Assisted Nanopatterning

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Cheng; Leitz, Karl-Heinz; Fardel, Romain; Schmidt, Michael; Arnold, Craig B.

    The need to generate sub 100 nm features is of interest for a variety of applications including optics, optoelectronics, and plasmonics. To address this requirement, several advanced optical lithography techniques have been developed based on either multiphoton absorption polymerization or near-field effects. In this paper, we combine strengths from multiphoton absorption and near field using optical trap assisted nanopatterning (OTAN). A Gaussian beam is used to position a microsphere in a polymer precursor fluid near a substrate. An ultrafast laser is focused by that microsphere to induce multiphoton polymerization in the near field, leading additive direct-write nanoscale processing.

  2. Correlative Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microscopy and Imaging offers many opportunities to collaborate and cooperate with scientists in many different fields nationally and internationally. Images have proven to be very important components in basic research, product development and understanding structure/function relationships in addit...

  3. Multiphoton fluorescence recovery after photobleaching: Advancements for novel in vivo applications

    NASA Astrophysics Data System (ADS)

    Sullivan, Kelley Diane

    Multiphoton fluorescence recovery after photobleaching (MP-FRAP) is a laser microscopy technique used to probe the transport properties of macromolecules in biological systems. MP-FRAP utilizes two-photon fluorescence and photobleaching to produce a three-dimensionally resolved diffusion coefficient for an ensemble of molecules in the region of the two-photon focal volume. This thesis describes two fundamental improvements to the MP-FRAP technique, which are vital steps to enable MP-FRAP to be applied to the complex in vivo environment. In Chapter 1, we lay the groundwork for our discussion of these advancements by introducing the MP-FRAP technique and the physics upon which it is based. We begin with a description of fluorescence and diffusion and discuss their importance in biomedical research. Next, we describe how two-photon fluorescence and photobleaching are applied to a diffusing system to measure the diffusion coefficient via fluorescence recovery after photobleaching (FRAP). Then, we take the reader through the evolution of FRAP, which leads to the application of two- photon fluorescence and photobleaching to produce MP-FRAP. Along the way, we highlight applications and advancements of the FRAP techniques, and introduce fluorescence correlation spectroscopy, a popular complement to FRAP. In Chapter 2, we collect the experimental methods for the studies presented in Chapters 3 and 4. We begin with an in-depth discussion of our work to build and troubleshoot our MP-FRAP apparatus, followed by a detailed description of our data analysis protocol. Next, we delve into the specific methods for producing computer generated data and fits, as well as in vitro and in vivo experimental data, for our work in Chap. 3 on improving MP-FRAP to measure diffusion in the presence of convective flow. We end with a description of the Monte Carlo algorithm we developed for our work in Chap. 4 to model diffusion and multiphoton fluorescence recovery after photobleaching in the

  4. Correlative microscopy.

    PubMed

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  5. Resonance Enhanced Multi-photon Spectroscopy of DNA

    NASA Astrophysics Data System (ADS)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  6. Imaging melanin by two-photon absorption microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Yurtsever, Gunay; Fischer, Martin; Simon, John D.; Warren, Warren S.

    2006-02-01

    Multiphoton excitation fluorescence microscopy has proven to be a powerful method for non-invasive, in vivo, thick tissue imaging with molecular specificity. However, many important endogenous biomolecules do not fluoresce (NAD) or fluoresce with low efficiency (Melanin). In this report femtosecond pulse shaping methods are used to measure two-photon absorption (TPA) directly with very high sensitivity. Combining with the laser scanning microscope, this Two-photon Absorption Microscopy (TPAM) retains the penetration and localization advantages of two-photon fluorescence microscopy and permits direct observation of important endogenous molecular markers (melanin or hemoglobin) which are invisible in multiphoton fluorescence microscopy. We have demonstrated here for the first time that TPAM can successfully and more efficiently image melanoma cells and tissues and provide a good melanin contrast in optical sectioning of the melanoma lesions which are comparable to pathological histology. Combining with the two-photon fluorescence images acquired simultaneously, the distribution patterns of the melanocytes and their intratissue behavior could be studied without cutting the lesions from patients. TPAM will undoubtedly find the applications in the clinical diagnosis and biomedical research.

  7. High performance multimodal CARS microscopy using a single femtosecond source

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian F.; Slepkov, Aaron D.; Ridsdale, Andrew; Lyn, Rodney K.; Moffatt, Douglas J.; Pezacki, John Paul; Thomas, Brian K.; Fu, Libin; Dong, Liang; Fermann, Martin E.; Stolow, Albert

    2010-02-01

    Traditional CARS microscopy using picosecond (ps) lasers has been applied to a wide variety of applications; however, the lasers required are expensive and require an environmentally stable lab. In our work, we demonstrate CARS microscopy using a single femtosecond (fs) laser combined with a photonic crystal fiber (PCF) and optimal chirping to achieve similar performance to the ps case with important added advantages: fs-CARS utilizes versatile source that allows CARS to be combined with other multiphoton techniques (e.g. SHG, TPF) for multimodal imaging without changing laser sources. This provides an attractive entry point for many researchers to the field. Furthermore, optimal chirping in fs-CARS also opens the door to the combination and extension of other techniques used in ps CARS microscopy such as multiplex and FM imaging. The key advantage with chirped fs pulses is that time delay corresponds to spectral scanning and allows for rapid modulation of the resonant CARS signal. The combination of a fs oscillator with a PCF leads to a natural extension of the technology towards an all-fiber source for multimodal multiphoton microscopy. An all-fiber system should be more robust against environmental fluctuations while being more compact than free-space systems. We have constructed and demonstrated a proof of concept all-fiber based source that can be used for simultaneous CARS, TPF and SHG imaging. This system is capable of imaging tissue samples and live cell cultures with 4 μs/pixel dwell time at low average powers.

  8. Photoacoustic microscopy: superdepth, superresolution, and superb contrast.

    PubMed

    Yao, Junjie; Song, Liang; Wang, Lihing V

    2015-01-01

    Since its invention in the 17th century, optical microscopy has revolutionized biomedical studies by scrutinizing the biological realm on cellular levels, taking advantage of its excellent light-focusing capability. However, most biological tissues scatter light highly. As light travels in tissue, cumulative scattering events cause the photons to lose their original propagation direction and, thus, their ability to be focused, which has largely limited the penetration depth of optical microscopy. Conventional planar optical microscopy can provide penetration of only ~100 ?m before photons begin to be scattered. The penetration of modern optical microcopy, such as confocal microscopy and multiphoton microscopy, is still limited to approximately the optical diffusion limit (~1 mm in the skin as approximated by one optical transport mean free path), where scattered photons retain a strong memory of the original propagation direction. So far, it still remains a challenge for pure optical methods to achieve high-resolution in vivo imaging beyond the diffusion limit (i.e., superdepth imaging).

  9. Multiphoton Processes: ICOMP VIII: 8th International Conference, AIP Conference Proceedings, No. 525 [APCPCS

    SciTech Connect

    DiMauro, L.F.; Freeman, R.R.; Kulander, K.C.

    2000-12-31

    Topics include: atoms in strong fields; stabilization; double ionization and multi-electron calculations; high-order harmonics; molecules in strong fields; multiphoton processes in clusters; coherent control; light sources; and relativistic effects.

  10. High-throughput multiphoton-induced three-dimensional ablation and imaging for biotissues.

    PubMed

    Lin, Chun-Yu; Li, Pei-Kao; Cheng, Li-Chung; Li, Yi-Cheng; Chang, Chia-Yuan; Chiang, Ann-Shyn; Dong, Chen Yuan; Chen, Shean-Jen

    2015-02-01

    In this study, a temporal focusing-based high-throughput multiphoton-induced ablation system with axially-resolved widefield multiphoton excitation has been successfully applied to rapidly disrupt biotissues. Experimental results demonstrate that this technique features high efficiency for achieving large-area laser ablation without causing serious photothermal damage in non-ablated regions. Furthermore, the rate of tissue processing can reach around 1.6 × 10(6) μm(3)/s in chicken tendon. Moreover, the temporal focusing-based multiphoton system can be efficiently utilized in optical imaging through iterating high-throughput multiphoton-induced ablation machining followed by widefield optical sectioning; hence, it has the potential to obtain molecular images for a whole bio-specimen.

  11. High-throughput multiphoton-induced three-dimensional ablation and imaging for biotissues

    PubMed Central

    Lin, Chun-Yu; Li, Pei-Kao; Cheng, Li-Chung; Li, Yi-Cheng; Chang, Chia-Yuan; Chiang, Ann-Shyn; Dong, Chen Yuan; Chen, Shean-Jen

    2015-01-01

    In this study, a temporal focusing-based high-throughput multiphoton-induced ablation system with axially-resolved widefield multiphoton excitation has been successfully applied to rapidly disrupt biotissues. Experimental results demonstrate that this technique features high efficiency for achieving large-area laser ablation without causing serious photothermal damage in non-ablated regions. Furthermore, the rate of tissue processing can reach around 1.6 × 106 μm3/s in chicken tendon. Moreover, the temporal focusing-based multiphoton system can be efficiently utilized in optical imaging through iterating high-throughput multiphoton-induced ablation machining followed by widefield optical sectioning; hence, it has the potential to obtain molecular images for a whole bio-specimen. PMID:25780739

  12. Plasma induced by resonance enhanced multiphoton ionization in inert gas

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2007-12-15

    We present a detailed model for the evolution of resonance enhanced multiphoton ionization (REMPI) produced plasma during and after the ionizing laser pulse in inert gas (argon, as an example) at arbitrary pressures. Our theory includes the complete process of the REMPI plasma generation and losses, together with the changing gas thermodynamic parameters. The model shows that the plasma expansion follows a classical ambipolar diffusion and that gas heating results in a weak shock or acoustic wave. The gas becomes involved in the motion not only from the pressure gradient due to the heating, but also from the momentum transfer from the charged particles to gas atoms. The time dependence of the total number of electrons computed in theory matches closely with the results of coherent microwave scattering experiments.

  13. Multiphoton quantum interference in a multiport integrated photonic device.

    PubMed

    Metcalf, Benjamin J; Thomas-Peter, Nicholas; Spring, Justin B; Kundys, Dmytro; Broome, Matthew A; Humphreys, Peter C; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Gates, James C; Smith, Brian J; Langford, Nathan K; Smith, Peter G R; Walmsley, Ian A

    2013-01-01

    Increasing the complexity of quantum photonic devices is essential for many optical information processing applications to reach a regime beyond what can be classically simulated, and integrated photonics has emerged as a leading platform for achieving this. Here we demonstrate three-photon quantum operation of an integrated device containing three coupled interferometers, eight spatial modes and many classical and nonclassical interferences. This represents a critical advance over previous complexities and the first on-chip nonclassical interference with more than two photonic inputs. We introduce a new scheme to verify quantum behaviour, using classically characterised device elements and hierarchies of photon correlation functions. We accurately predict the device's quantum behaviour and show operation inconsistent with both classical and bi-separable quantum models. Such methods for verifying multiphoton quantum behaviour are vital for achieving increased circuit complexity. Our experiment paves the way for the next generation of integrated photonic quantum simulation and computing devices.

  14. Monitoring wound healing by multiphoton tomography/endoscopy

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  15. Multi-photon absorption limits to heralded single photon sources

    NASA Astrophysics Data System (ADS)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; de Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-11-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources.

  16. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  17. Resonance Enhanced Multiphoton Ionization (rempi) Spectroscopy of Weakly Bound Complexes

    NASA Astrophysics Data System (ADS)

    Muzangwa, Lloyd; Nyambo, Silver; Uhler, Brandon; Reid, Scott A.

    2012-06-01

    We have recently implemented Resonance Enhanced Multiphoton Ionization (REMPI) spectroscopy in our laboratory as a spectroscopic probe of transient species. We will report on initial gas-phase studies of the spectra of weakly bound van der Waals and halogen bonded complexes involving aromatic organic donors. The complexes are formed in the rarified environment of a supersonic molecular beam, which is skimmed prior to passing into the differentially pumped flight tube of a linear time-of-flight mass spectrometer. Ionization is initiated both by 1+1 and 1+1' REMPI schemes; the latter is used to minimize fragmentation. Our initial studies have examined van der Waals and halogen bonded complexes involving the phenol and toluene chromophores. Progress in the coupling of a discharge source into this apparatus will also be discussed.

  18. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    SciTech Connect

    He Yonglin

    2011-11-15

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  19. Clinical multiphoton tomography and clinical two-photon microendoscopy

    NASA Astrophysics Data System (ADS)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  20. In vivo multiphoton tomography in skin aging studies

    NASA Astrophysics Data System (ADS)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Köhler, Johannes; Elsner, Peter; Kaatz, Martin

    2009-02-01

    High-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspect has been performed on hundreds of patients and volunteers in Australia, Asia, and Europe. The system enables the in vivo detection of the elastin and the collagen network as well as the imaging of melanin clusters in aging spots. The epidermis-dermis junction can be detected with submicron resolution. One major applications of this novel HighTech imaging tool is the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In particular, the stimulated biosynthesis of collagen can be investigated over long periods of time. The system with its sub-500 nm lateral resolution is able to image age-related modifications of the extracellular matrix on the level of a single elastin fiber.

  1. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration.

  2. Expansion Microscopy

    PubMed Central

    Chen, Fei; Tillberg, Paul W.; Boyden, Edward S.

    2014-01-01

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. Here we report the discovery that, by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable super-resolution microscopy with diffraction-limited microscopes. We demonstrate ExM with effective ~70 nm lateral resolution in both cultured cells and brain tissue, performing three-color super-resolution imaging of ~107 μm3 of the mouse hippocampus with a conventional confocal microscope. PMID:25592419

  3. Complex effective Hamiltonian approach for ir multiphoton dissociation

    NASA Astrophysics Data System (ADS)

    Flosnik, Thomas M.; Wyatt, Robert E.

    1989-11-01

    A complex effective Hamiltonian (CEH) approach is formulated in the semiclassical (quantum-molecule-classical-field) representation for the study of ir multiphoton-dissociation processes. This formulation enables one to evaluate the dissociation dynamics in terms of the discrete states only. The effects of the bound-continuum-state interactions are manifested in the CEH matrix by the addition of level shifts and imaginary decay widths to the unperturbed bound-state energies and bound-bound dipole-coupling elements. The periodicity of the CEH matrix in time is preserved, allowing the use of Floquet theory to exactly evaluate the time development of the system. This CEH formulation requires that transitions between continuum states can be safely ignored, that the bound-continuum dipole couplings vary slowly with the continuum state energy ɛ, and that time t is sufficiently long. High field intensities also tend to make these requirements more stringent. It is found that the CEH matrix in the semiclassical representation can be asymmetric with respect to the level shifts and decay widths. For the ir multiphoton dissociation of a nonrotating model diatomic molecule in the ground electronic state, a rather truncated form of the CEH is tested against a discretized continuum plus optical potential method. Despite the high field intensity and relatively short laser pulse used in these tests, the results indicate that this CEH method works well provided the bound-continuum dipole-coupling elements vary slowly with ɛ. As can be expected, the validity of the CEH is limited when the bound-continuum dipole couplings vary strongly with ɛ, which is the case with our model diatomic molecule. The nature of the bound-continuum interactions can apparently have considerable effect on the dissociation dynamics.

  4. High-Resolution Spectroscopy and Dynamics of Multiphoton Processes in Atoms and Molecules.

    DTIC Science & Technology

    1985-06-13

    perform photoion-photoelectron coincidence studies using a resonance lamp , is presently operated Independently of the photoelectron spectrometer. The mass...photoionization of excited states of atomic carbon. Atomic carbon in both the 3 p ground state and the 1D excited state was prepared by UV multiphoton...34 Gordon Conference on UV /Visible Multiphoton Ionization and Dissociation Processes, 12-16 July 1982 (no abstract available). 5. P. M. Dehmer, "VUV

  5. High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Ehlers, A.; Riemann, I.; Martin, S.; Le Harzic, R.; Bartels, A.; Janke, C.; König, K.

    2007-07-01

    Multiphoton tomography of human skin and nanosurgery of human chromosomes have been performed with a 1GHz repetition rate laser by the use of the commercially available femtosecond multiphoton laser tomograph DermaInspect as well as a compact galvoscanning microscope. We performed the autofluorescence tomography up to 100μm in the depth of human skin. Submicron cutting lines and hole drillings have been conducted on labeled human chromosomes.

  6. Applications of coherent Raman scattering microscopies to clinical and biological studies.

    PubMed

    Schie, Iwan W; Krafft, Christoph; Popp, Jürgen

    2015-06-21

    Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.

  7. Virtual microscopy in pathology education.

    PubMed

    Dee, Fred R

    2009-08-01

    Technology for acquisition of virtual slides was developed in 1985; however, it was not until the late 1990s that desktop computers had enough processing speed to commercialize virtual microscopy and apply the technology to education. By 2000, the progressive decrease in use of traditional microscopy in medical student education had set the stage for the entry of virtual microscopy into medical schools. Since that time, it has been successfully implemented into many pathology courses in the United States and around the world, with surveys indicating that about 50% of pathology courses already have or expect to implement virtual microscopy. Over the last decade, in addition to an increasing ability to emulate traditional microscopy, virtual microscopy has allowed educators to take advantage of the accessibility, efficiency, and pedagogic versatility of the computer and the Internet. The cost of virtual microscopy in education is now quite reasonable after taking into account replacement cost for microscopes, maintenance of glass slides, and the fact that 1-dimensional microscope space can be converted to multiuse computer laboratories or research. Although the current technology for implementation of virtual microscopy in histopathology education is very good, it could be further improved upon by better low-power screen resolution and depth of field. Nevertheless, virtual microscopy is beginning to play an increasing role in continuing education, house staff education, and evaluation of competency in histopathology. As Z-axis viewing (focusing) becomes more efficient, virtual microscopy will also become integrated into education in cytology, hematology, microbiology, and urinalysis.

  8. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  9. Improved intravital microscopy via synchronization of respiration and holder stabilization

    NASA Astrophysics Data System (ADS)

    Lee, Sungon; Vinegoni, Claudio; Feruglio, Paolo Fumene; Weissleder, Ralph

    2012-09-01

    A major challenge in high-resolution intravital confocal and multiphoton microscopy is physiologic tissue movement during image acquisition. Of the various physiological sources of movement, respiration has arguably the largest and most wide-ranging effect. We describe a technique for achieving stabilized microscopy imaging using a dual strategy. First, we designed a mechanical stabilizer for constraining physical motion; this served to simultaneously increase the in-focus range over which data can be acquired as well as increase the reproducibility of imaging a certain position within each confocal imaging plane. Second, by implementing a retrospective breathing-gated imaging modality, we performed selective image extraction gated to a particular phase of the respiratory cycle. Thanks to the high reproducibility in position, all gated images presented a high degree of correlation over time. The images obtained using this technique not only showed significant improvements over images acquired without the stabilizer, but also demonstrated accurate in vivo imaging during longitudinal studies. The described methodology is easy to implement with any commercial imaging system, as are used by most biological imaging laboratories, and can be used for both confocal and multiphoton laser scanning microscopy.

  10. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  11. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  12. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  13. In vivo non-invasive multiphoton tomography of human skin

    NASA Astrophysics Data System (ADS)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  14. Resolution doubling using confocal microscopy via analogy with structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi

    2016-08-01

    Structured illumination microscopy (SIM) is a super-resolution fluorescence microscopy with a 2-fold higher lateral resolution than conventional wide-field fluorescence (WF) microscopy. Confocal fluorescence (CF) microscopy has approximately the same optical cutoff frequency as SIM; however, the maximum theoretical increase in lateral resolution over that of WF is 1.4-fold with an infinitesimal pinhole diameter. Quantitative comparisons based on an analytical imaging formula revealed that modulation transfer functions (MTFs) of SIM reconstructed images before postprocessing are nearly identical to those of CF images recorded with an infinitesimal pinhole diameter. Here, we propose a new method using an adequate pinhole diameter combined with the use of an apodized Fourier inverse filter to increase the lateral resolution of CF images to as much as that SIM images without significant noise degradation in practice. Furthermore, the proposed method does not require a posteriori parameterization and has reproducibility. This approach can be easily applied to conventional laser scanning CF, spinning disk CF, and multiphoton microscopies.

  15. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    PubMed Central

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively. PMID:26817674

  16. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    NASA Astrophysics Data System (ADS)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  17. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  18. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements.

    PubMed

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-28

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  19. Characterization of multiphoton emission from aggregated gold nano particles

    NASA Astrophysics Data System (ADS)

    Eguchi, Akira; Lu, Phat; Kim, Youngsik; Milster, Tom D.

    2016-09-01

    Although gold nanoparticles (GNPs) are promising probes for biological imaging because of their attracting optical properties and bio-friendly nature, properties of the multi-photon (MP) emission from GNP aggregates produced by a short-wave infrared (SWIR) laser have not been examined. In this paper, characterization of MP emission from aggregated 50 nm GNPs excited by a femtosecond (fs) laser at 1560 nm is discussed with respect to aggregate structures. The key technique in this work is single particle spectroscopy. A pattern matching technique is applied to correlate MP emission and SEM images, which includes an optimization processes to maximize cross correlation coefficients between a binary microscope image and a binary SEM image with respect to xy displacement, image rotation angle, and image magnification. Once optimization is completed, emission spots are matched to the SEM image, which clarifies GNP ordering and emission properties of each aggregate. Correlation results showed that GNP aggregates have stronger MP emission than single GNPs. By combining the pattern matching technique with spectroscopy, MP emission spectrum is characterized for each GNP aggregate. A broad spectrum in the visible region and near infrared (NIR) region is obtained from GNP dimers, unlike previously reported surface plasmon enhanced emission spectrum.

  20. The multiphoton ionization of uranium hexafluoride. Revision 1

    SciTech Connect

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  1. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  2. In vivo multiphoton imaging of immune cell dynamics.

    PubMed

    Okada, Takaharu; Takahashi, Sonoko; Ishida, Azusa; Ishigame, Harumichi

    2016-11-01

    Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.

  3. Multiphoton catalysis with coherent state input: nonclassicality and decoherence

    NASA Astrophysics Data System (ADS)

    Hu, Li-Yun; Wu, Jia-Ni; Liao, Zeyang; Zubairy, M. Suhail

    2016-09-01

    We propose a scheme to generate a new kind of non-Gaussian state—the Laguerre polynomial excited coherent state (LPECS)—by using multiphoton catalysis with coherent state input. The nonclassical properties of the LPECS are studied in terms of nonclassical depth, Mandel’s parameter, second-order correlation, quadrature squeezing, and the negativity of the Wigner function (WF). It is found that the LPECS is highly nonclassical and its nonclassicality depends on the amplitude of the coherent state, the catalysis photon number, and the parameters of the unbalanced beam splitter (BS). In particular, the maximum degree of squeezing can be enhanced by increasing the catalysis photon number. In addition, we examine the effect of decoherence using the WF, which shows that the negative region, the characteristic time of decoherence, and the structure of the WF are affected by catalysis photon number and the parameters of the unbalanced BS. Our work provides general analysis on how to prepare polynomial quantum states, which may be useful in the fields of quantum information and quantum computation.

  4. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  5. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  6. Wavelength Dependence of Nanosecond IR Laser-Induced Breakdown in Water: Evidence for Multiphoton Initiation via an Intermediate State

    DTIC Science & Technology

    2015-04-29

    Wavelength dependence of nanosecond IR laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state Norbert...band. Theoretical analysis based on these assumptions suggests that the seed electron density required for initiating avalanche ionization drops from...powerful for supporting higher order multiphoton processes [15-18]. However, conclusive evidence for the relevance of photoionization in ns breakdown is

  7. Label-free multiphoton imaging and photoablation of preinvasive cancer cells

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Wu, Guizhu; Zhu, Xiaoqin; Jiang, Xingshan; Xie, Shusen

    2012-01-01

    Detection and treatment of early lesions in epithelial tissue offer several possibilities for curing cancer, but it is challenging. Here, we present an optical technique, the combination of multiphoton imaging and absorption, to label-freely detect and ablate preinvasive cancer cells in epithelial tissue. We find that multiphoton imaging can label-freely visualize the principal features of nuclear atypia associated with epithelial precancerous lesions, and the spatial localization of multiphoton absorption can perform targeted ablation of preinvasive cancer cells with micrometer-sized volume precision. These results indicate that this optical technique has the capability to label-freely visualize and remove preinvasive cancer cells in epithelial tissue. This study highlights the potential of this technique as a "seek-and-treat" tool for early lesions in epithelial tissue.

  8. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  9. Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging

    PubMed Central

    Yan, Jun; Zheng, Yu; Zheng, Xiaoling; Liu, Zhangyuanzhu; Liu, Wenju; Chen, Dexin; Dong, Xiaoyu; Li, Kai; Liu, Xiumin; Chen, Gang; Lu, Jianping; Chen, Jianxin; Zhuo, Shuangmu; Li, Guoxin

    2016-01-01

    A real-time optical biopsy, which could determine tissue histopathology, would be of extraordinary benefit to staging laparoscopy for gastric cancer with serosal invasion (T4) that requires downstage treatment. We investigated the feasibility of using multiphoton imaging to perform a real-time optical diagnosis of gastric cancer with or without serosal invasion. First, a pilot study was performed to establish the optical diagnostic features of gastric cancer with or without serosal invasion using multiphoton imaging compared with hematoxylin-eosin staining and Masson’s trichrome staining. Second, a blinded study was performed to compare the diagnostic sensitivity, specificity, and accuracy of multiphoton imaging and endoscopic ultrasonography (EUS) for T4 gastric cancer. In the pilot study, multiphoton imaging revealed collagen loss and degradation and cellular and nuclear pleomorphism in gastric cancer with serosal invasion. The collagen content in gastric cancer with or without serosal invasion was 0.36 ± 0.18 and 0.79 ± 0.16 (p < 0.001), respectively. In the blinded study, the sensitivity, specificity, and accuracy of EUS and multiphoton imaging for T4 gastric cancer were 70% and 90% (p = 0.029), 66.67% and 96.67% (p = 0.003), and 68.33% and 93.33% (p = 0.001), respectively. It is feasible to use multiphoton imaging to make a real-time optical diagnosis of gastric cancer with or without serosal invasion. PMID:27499365

  10. Multiphoton absorption in graphene and metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Weiqiang, Chen

    Materials possessing large multiphoton absorption are of direct relevance to both photonics applications and materials physics. In this dissertation, we present our investigations into two novel materials: namely, (1) graphene and (2) metal-organic frameworks (MOFs). The dissertation divides into two parts. The first part of the dissertation reports our systematical Z-scan measurements onto two-photon absorption (2PA) in graphene in the spectral range of 435-1100 nm with femtosecond laser pulses. We report that the measured 2PA coefficients of graphene in the near-infrared (NIR) range of 800-1100 nm can be explained by a theoretical model based on the optical transitions near the Dirac point (K point). We also determine the 2PA coefficients of graphene in the visible spectrum (435-700 nm) and observe an enhancement induced by the excitonic Fano resonance at the saddle point (M point). By applying the second-order, time-dependent perturbation theory on interband transitions among three states near the saddle point, we develop a semi-empirical model to take excitons in graphene into consideration. And the model is in agreement with the photon-energy dependence of the observed 2PA spectrum with a scaling factor of B = (1 5) x 102 cm/MW/eV5. Our results verify, for the first time, that the excitonic Fano resonance plays an important role for the 2PA of graphene in the visible spectrum. Besides, we also detail our measurements on the spectral dependence of one-photon absorption (1PA) saturation in graphene over the visible-NIR range. A quadratic photon energy dependence of the measured saturation intensity/fluence is observed over the investigated spectral range. The underlying photo-dynamics is discussed. In the second part of the dissertation, we investigate multiphoton excited photoluminescence (MEPL) from three solid-state crystals of metal-organic frameworks (MOFs): (1) [Zn2(trans,trans-4,4 stilbenedicarboxylic acid (SDC))2(trans, trans-9, 10-bis (4-pyridylethenyl

  11. Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2011-11-15

    We present a diagrammatic method for complete characterization of multiphoton processes in three-level atomic systems. By considering the interaction routes of the coupling and probe photons for a ladder-type, three-level, noncycling (or cycling) atomic system, we are able to completely discriminate between the pure one-photon and the pure two-photon resonance effects, and the effect of their combination in electromagnetically induced transparency (EIT) using our diagrammatic method. We show that the proposed diagrammatic method is very useful for the analysis of multiphoton processes in ladder-type EIT.

  12. Switching the vibrational excitation of a polyatomic ion in multi-photon strong field ionization

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Gerber, Thomas; Radi, Peter; Sych, Yaroslav; Knopp, Gregor

    2014-08-01

    The multiphoton ionization (MPI) of CH3I has been investigated by angular resolved photoelectron spectroscopy as a function of femtosecond laser excitation intensity. A sudden change in the electron kinetic energy is observed above a specific field strength. The multiphoton excitation at a fixed wavelength of 800 nm becomes vibronically resonant due to Stark shifting of intermediate Rydberg state levels. The present letter gives an experimental evidence for ultrafast optical control of the vibrational excitation in a polyatomic ion by adjusting the intensity of a femtosecond laser pulse.

  13. SiPM for fast Photon-Counting and Multiphoton Detection.

    PubMed

    Eraerds, P; Legré, M; Rochas, A; Zbinden, H; Gisin, N

    2007-10-29

    We demonstrate fast counting and multiphoton detection abilities of a Silicon Photo Multiplier (SiPM). In fast counting mode we are able to detect two consecutive photons separated by only 2.3 ns corresponding to 430 MHz. The counting efficiency for small optical intensities at lambda= 532 nm was found to be around 16% with a dark count rate of 52 kHz at T= -5 masculine C. Using the SiPM in multiphoton detection mode, we find a good signal discrimination for different numbers of simultaneously detected photons.

  14. Multi-photon resonance phenomena using Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Hamideh Kazemi, Seyedeh; Mahmoudi, Mohammad

    2016-12-01

    We study the influence of laser profile on the linewidth of the optical spectrum of multi-photon resonance phenomena. First, we investigate the dependence of the absorption spectrum on the laser profile in a two-level system. Thanks to the Laguerre-Gaussian field, the linewidth of the one-photon optical pumping and two-photon absorption peaks are explicitly narrower than that obtained with a Gaussian field. In the next section, it is shown that, compared to the Gaussian fields, the Laguerre-Gaussian ones reduce the linewidth of the optical spectrum in the coherent population trapping. Interestingly, it turns out that the use of a Laguerre-Gaussian beam makes the linewidth of the spectrum narrower as compared with a Gaussian one in Doppler-broadened electromagnetically induced transparency. Moreover, we study the effect of the laser profile on the Autler-Townes doublet structure in the absorption spectrum for a laser-driven four-level atomic system. We also consider the different values of the Laguerre-Gaussian mode beam waist, and, perhaps more remarkably, we find that for the small waist values, the Autler-Townes doublet can be removed and a prominent narrow central peak appears in the absorption spectrum. Finally, we investigate the effect of the laser profile on the linewidth of the sub-natural three-photon absorption peak of double dark resonance. The differences in the linewidth are quite large, offering potential applications in metrology and isotope separation methods. Our results can be used for super ultra-high resolution laser spectroscopy and to improve the resolution of the technology of isotope/isomer separation and photo-biology even at essential overlap of the spectra of the different particles.

  15. Resonance enhanced multiphoton ionization spectroscopy of carbonyl sulphide

    NASA Astrophysics Data System (ADS)

    Morgan, Ross A.; Orr-Ewing, Andrew J.; Ascenzi, Daniela; Ashfold, Michael N. R.; Buma, Wybren Jan; Scheper, Connie R.; de Lange, Cornelis A.

    1996-08-01

    Rydberg excited states of the OCS molecule in the energy range 70500-86000 cm-1 have been investigated via the two and three photon resonance enhancements they provide in the mass resolved multiphoton ionization (MPI) spectrum of a jet-cooled sample of the parent molecule. Spectral interpretation has been assisted by companion measurements of the kinetic energies of the photoelectrons that accompany the various MPI resonances. The present study supports the earlier conclusions of Weinkauf and Boesl [J. Chem. Phys. 98, 4459 (1993)] regarding five Rydberg origins in the 70500-73000 cm-1 energy range, attributable to, respectively, states of 3Π, 1Π, 3Δ, 1Δ and 1Σ+ symmetry arising from the 4pλ←3π orbital promotion. We also identify a further 21 Rydberg origins at higher energies. These partition into clumps with quantum defects ca. 3.5 and 4.5, which we associate with the orbital promotions npλ←3π (n=5,6), and others with near integer quantum defect which are interpretable in terms of excitation to s,d and (possibly) f Rydberg orbitals. We also identify MPI resonances attributable to CO(X 1Σ+) fragments and to S atoms in both their ground (3P) and excited (1D) electronic states. Analysis of the former resonances confirms that the CO(X) fragments resulting from one photon dissociation of OCS at excitation wavelengths ca. 230 nm are formed with a highly inverted, bimodal rotational state population distribution, whilst the latter are consistent with previous reports of the wavelength dependence for forming ground and excited state S atoms in the near uv photolysis of OCS.

  16. Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags.

    PubMed

    Hackl, Matthias J; Burford, James L; Villanueva, Karie; Lam, Lisa; Suszták, Katalin; Schermer, Bernhard; Benzing, Thomas; Peti-Peterdi, János

    2013-12-01

    Podocytes are critical in the maintenance of a healthy glomerular filter; however, they have been difficult to study in the intact kidney because of technical limitations. Here we report the development of serial multiphoton microscopy (MPM) of the same glomeruli over several days to visualize the motility of podocytes and parietal epithelial cells (PECs) in vivo. In podocin-GFP mice, podocytes formed sporadic multicellular clusters after unilateral ureteral ligation and migrated into the parietal Bowman's capsule. The tracking of single cells in podocin-confetti mice featuring cell-specific expression of CFP, GFP, YFP or RFP revealed the simultaneous migration of multiple podocytes. In phosphoenolpyruvate carboxykinase (PEPCK)-GFP mice, serial MPM found PEC-to-podocyte migration and nanotubule connections. Our data support a highly dynamic rather than a static nature of the glomerular environment and cellular composition. Future application of this new approach should advance our understanding of the mechanisms of glomerular injury and regeneration.

  17. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.

    PubMed

    Duan, Yubo; Chen, Nanguang

    2015-11-15

    Wide-field optical microscopy is efficient and robust in biological imaging, but it lacks depth sectioning. In contrast, scanning microscopic techniques, such as confocal microscopy and multiphoton microscopy, have been successfully used for three-dimensional (3D) imaging with optical sectioning capability. However, these microscopic techniques are not very suitable for dynamic real-time imaging because they usually take a long time for temporal and spatial scanning. Here, a hybrid imaging technique combining wide-field microscopy and scanning microscopy is proposed to accelerate the image acquisition process while maintaining the 3D optical sectioning capability. The performance was demonstrated by proof-of-concept imaging experiments with fluorescent beads and zebrafish liver.

  18. Multiphoton Spectral Analysis of Benzo[a]pyrene Uptake and Metabolism in a Rat Liver Cell Line

    PubMed Central

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C

    2011-01-01

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an “advanced unmixing process”, identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 hr. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis. PMID:21420996

  19. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    SciTech Connect

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.

    2011-05-15

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.

  20. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    PubMed

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles.

  1. Multiphoton amplification processes and quantum-path interferences in a coherently driven atomic vapor

    SciTech Connect

    Fernandez-Soler, J.J.; Font, J.L.; Vilaseca, R.; Gauthier, Daniel J.; Kul'minskii, A.

    2003-10-01

    We develop a theoretical model of two-photon amplification in laser-driven potassium atoms and use it to analyze the recent experiments reported by Pfister et al. [Phys. Rev. A 60, R4249 (1999)]. The model takes into account most of the essential factors influencing the amplification process, including the atomic hyperfine structure (which makes multiphoton emission possible) and the simultaneous interaction with intense drive and probe beams with arbitrary detunings. We determine the origin and analyze the properties of different multiphoton gain resonances that appear in the light-matter interaction. In particular, the influence of the drive and probe field amplitudes and detunings on the strength and frequency of the two-photon amplification resonance is studied in detail, showing clearly the differences with respect to the behavior of single-photon or other multiphoton amplification processes. In addition, we investigate interferences between different quantum pathways originating from the hyperfine structure and determine the conditions under which they can enhance or suppress multiphoton resonances. The predictions of the model are in good agreement with the observations, indicating that it can be used to understand recent experiments on two-photon lasing reported by Pfister et al. [Phys. Rev. Lett. 86, 4512 (2001)].

  2. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  3. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  4. Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser

    NASA Astrophysics Data System (ADS)

    Way, Jesse; Hummelt, Jason; Scharer, John

    2009-10-01

    This work presents density, spectroscopic temperature, and shockwave measurements of laser induced breakdown plasma in atmospheric air by subthreshold intensity (5.5×109 W/cm2) 193 nm laser radiation. Using molecular spectroscopy and two-wavelength interferometry, it is shown that substantial ionization (>1016 cm-3) occurs that is not predicted by collisional cascade (CC) breakdown theory. While the focused laser irradiance is three orders of magnitude below the theoretical collisional breakdown threshold, the substantial photon energy at 193 nm (6.42 eV/photon) compared with the ionization potential of air (15.6 eV) significantly increases the probability of multiphoton ionization effects. By spectroscopically monitoring the intensity of the N2+ first negative system (B Σu+2-X Σg+2) vibrational bandhead (v'=0,v″=0) at low pressure (20 Torr) where multiphoton effects are dominant, it is shown that two photon excitation, resonant enhanced multiphoton ionization is the primary mechanism for quantized ionization of N2 to the N2+(B Σu+2) state. This multiphoton effect then serves to amplify the collisional breakdown process at higher pressures by electron seeding, thereby reducing the threshold intensity from that required via CC processes for breakdown and producing high density laser formed plasmas.

  5. Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

    SciTech Connect

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2004-06-01

    We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability.

  6. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  7. tritium isotope separation by CO 2 laser-induced multiphoton dissociation of CTF 3

    NASA Astrophysics Data System (ADS)

    Makide, Yoshihiro; Hagiwara, Satoru; Tominaga, Takeshi; Takeuchi, Kazuo; Nakane, Ryohei

    1981-08-01

    Isotope separation of tritium at ppm concentration level was achieved by CO 2 laser-induced multiphoton dissociation of CTF 3 in CHF 3 with single-step separation factors exceeding 500. The effects of laser frequency, pulse energy, pulse duration, irradiation geometry, tritium concentration, sample pressure, and buffer gas were investigated.

  8. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  9. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  10. Photoelectron momentum spectra for multiphoton ionization of Hydrogen atoms by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Serge; Macek, Joseph

    2007-06-01

    Full three-dimensional electron momentum distribution for multiphoton ionization of Hydrogen atoms by intense laser pulses are calculated by solving the time-dependent solutions of Schr"odinger equation on a three-dimensional lattice in a scaled coordinate representation (CSLTDSE). This approach allows one to circumvent many difficulties related to the propagation of wave function to macroscopic distances.

  11. Exploring the potential of Multiphoton Laser Ablation Lithography (MP-LAL) as a reliable technique for sub-50nm patterning

    NASA Astrophysics Data System (ADS)

    Manouras, Theodoros; Angelakos, Evangelos; Vamvakaki, Maria; Argitis, Panagiotis

    2016-03-01

    In this work, direct-write, high-resolution multiphoton photolithography using doped random methacrylic co-polymer thin films is demonstrated, using a continuous wave ultraviolet (UV) 375 nm diode laser source. The random copolymers are specifically designed for enhancing resolution and addressing issues arising from laser ablation processes, such as the berm-formation around the created holes in the film, which can be accessed by tuning the polymeric material properties including Tg, surface adhesion etc. The methacrylic copolymer is composed of monomers, each of them especially selected to improve individual properties. The material formulations comprise perylene molecules absorbing at the exposure wavelength where the polymeric matrix is transparent. It was found that if the radiation intensity exceeds a certain threshold, the perylene molecules transfer the absorbed light energy to the acrylate polymer matrix leading to polymer degradation and ablation of the exposed areas. The non-linear nature of the light absorption and energy transfer processes resulted in the creation of holes with critical dimensions well below the used wavelength reaching the sub 50 nm domain. Arrays of holes having various dimensions were fabricated in the laser ablation experiments using a directwrite laser system developed specifically for the purposes of this project.

  12. Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non-invasive diagnostics.

    PubMed

    Seidenari, Stefania; Arginelli, Federica; Dunsby, Christopher; French, Paul; König, Karsten; Magnoni, Cristina; Manfredini, Marco; Talbot, Clifford; Ponti, Giovanni

    2012-11-01

    Multiphoton laser tomography (MPT) combined with fluorescence lifetime imaging (FLIM) is a non-invasive imaging technique, which gives access to the cellular and extracellular morphology of the skin. The aim of our study was to assess the sensitivity and specificity of MPT/FLIM descriptors for basal cell carcinoma (BCC), to improve BCC diagnosis and the identification of tumor margins. In the preliminary study, FLIM images referring to 35 BCCs and 35 healthy skin samples were evaluated for the identification of morphologic descriptors characteristic of BCC. In the main study, the selected parameters were blindly evaluated on a test set comprising 63 BCCs, 63 healthy skin samples and 66 skin lesions. Moreover, FLIM values inside a region of interest were calculated on 98 healthy skin and 98 BCC samples. In the preliminary study, three epidermal descriptors and 7 BCC descriptors were identified. The specificity of the diagnostic criteria versus 'other lesions' was extremely high, indicating that the presence of at least one BCC descriptor makes the diagnosis of 'other lesion' extremely unlikely. FLIM values referring to BCC cells significantly differed from those of healthy skin. In this study, we identified morphological and numerical descriptors enabling the differentiation of BCC from other skin disorders and its distinction from healthy skin in ex vivo samples. In future, MPT/FLIM may be applied to skin lesions to provide direct clinical guidance before biopsy and histological examination and for the identification of tumor margins allowing a complete surgical removal.

  13. Arteriovenous Access

    PubMed Central

    MacRae, Jennifer M.; Dipchand, Christine; Oliver, Matthew; Moist, Louise; Yilmaz, Serdar; Lok, Charmaine; Leung, Kelvin; Clark, Edward; Hiremath, Swapnil; Kappel, Joanne; Kiaii, Mercedeh; Luscombe, Rick; Miller, Lisa M.

    2016-01-01

    Complications of vascular access lead to morbidity and may reduce quality of life. In this module, we review both infectious and noninfectious arteriovenous access complications including neuropathy, aneurysm, and high-output access. For the challenging patients who have developed many complications and are now nearing their last vascular access, we highlight some potentially novel approaches. PMID:28270919

  14. High-fidelity spatially resolved multiphoton counting for quantum imaging applications.

    PubMed

    Chrapkiewicz, Radosław; Wasilewski, Wojciech; Banaszek, Konrad

    2014-09-01

    We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics of multiphoton states is demonstrated for coherent states and their statistical mixtures. The results consistently exhibit classical values of the Mandel parameter and the noise reduction factor in contrast to raw statistics of camera photo-events. Detector operation is reliable for illumination levels up to the average of one detected photon per an event area-substantially higher than in previous approaches to characterize quantum statistical properties of light with spatial resolution.

  15. Multiphoton tomography, transfection, and nanosurgery with <2-nJ, 80-MHz femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-06-01

    Biomedical applications of low-energy (< 2nJ) near infrared (NIR) femtosecond laser pulses provided by compact, turn-key Ti:sapphire lasers are presented in this review. Applications include (i) ultrahigh resolution optical diagnostics ("optical biopsies"), (ii) gene therapy by optical targeted transfection of cells, and (iii) ultraprecise laser therapy ("nanosurgery"). The novel femtosecond laser system DermaInspec (JenLab GmbH) enables for the first time in vivo deep tissue imaging of intracellular compartments with submicron spatial and picosecond temporal resolution in patients with dermatological disorders. Using the system FemtOcut, intracellular surgery, optical gene transfer, and intraocular refractive surgery can be performed. The major process behind the diagnostical and therapeutical laser effects is non-resonant multiphoton absorption which results in two-photon autofluorescence and second harmonic generation at transient intensities of GW/cm2 as well as multiphoton ionization and plasma formation at TW/cm2 intensities, respectively.

  16. Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator

    SciTech Connect

    Fox, Ronald F.; Vela-Arevalo, Luz V.

    2002-11-01

    The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances.

  17. Effect of Size-Dependent Photodestructive Efficacy by Gold Nanomaterials with Multiphoton Laser.

    PubMed

    Chang, Wen-Tsan; Chen, Shean-Jen; Chang, Chia-Yuan; Liu, Yi-Hsien; Chen, Chang-Hsin; Yang, Chen-Han; Chou, Lawrence Chao-Shan; Chang, Jui-Cheng; Cheng, Li-Chung; Kuo, Wen-Shuo; Wang, Jiu-Yao

    2015-08-12

    The photostability, photodestructive efficacy, two-photon excitation cross section, and two-photon fluorescence of gold nanoparticles conjugated with a hydrophilic photosensitizer, indocyanine green, via multiphoton laser exhibited an increased size effect in methicillin-resistant Staphylococcus aureus and A549 cancer cells that was dependent on the size of multifunctional gold nanomaterials, but the effect only occurred when nanomaterials within 100 nm in diameter were used. Besides, the enhanced effectiveness of photodestruction, photostability, and contrast probe indicated an additive effect in the therapeutic and imaging efficiency of multifunctional gold nanomaterials. Consequently, the preparation of the multifunctional gold nanomaterials and their use in biomedical applications via multiphoton laser is an alternative and potential therapeutic approach for killing bacteria and for ablating cancer cells.

  18. Quantum teleportation and entanglement swapping of matter qubits with coherent multiphoton states

    NASA Astrophysics Data System (ADS)

    Torres, J. M.; Bernád, J. Z.; Alber, G.

    2014-07-01

    Protocols for probabilistic entanglement-assisted quantum teleportation and for entanglement swapping of material qubits are presented. They are based on a protocol for postselective Bell- state projection which is capable of projecting two material qubits onto a Bell state with the help of ancillary coherent multiphoton states and postselection by balanced homodyne photodetection. Provided this photonic postselection is successful, we explore the theoretical possibilities of realizing unit-fidelity quantum teleportation and entanglement swapping with 25% success probability. This photon-assisted Bell projection is generated by coupling almost resonantly the two material qubits to single modes of the radiation field in two separate cavities in a Ramsey-type interaction sequence and by measuring the emerged field states in a balanced homodyne detection scenario. As these quantum protocols require basic tools of quantum state engineering of coherent multiphoton states and balanced homodyne photodetection, they may offer interesting perspectives in particular for current quantum optical applications in quantum information processing.

  19. Statistical properties of multiphoton time-dependent three-boson coupled oscillators

    SciTech Connect

    Abdalla, M. Sebawe; Perina, Jan; Krepelka, Jaromir

    2006-06-15

    We investigate the quantum statistics of three time-dependent coupled oscillators in the presence of multiphoton processes. The system is connected with the two-atom multiphoton Tavis-Cummings model. The solution of the Heisenberg equations of the motion is obtained in a compact form. We assume that the modes are initially prepared in coherent states, and we discuss nonclassical phenomena (squeezing and sub-Poissonian behavior). Further, we examine the joint quasi-distribution functions as well as photon-number distribution and its factorial moments. The system has shown that the nonclassical effect is apparent in compound modes (1,3) and (2,3). Moreover, the superstructure phenomenon is observed when the photon transition is increased.

  20. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    DTIC Science & Technology

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av...Trabalhador Saocarlense 400 Sao Carlos, SP, 13566-590 Brazil 8. PERFORMING ORGANIZATION REPORT NUMBER Report 3 - Final 9. SPONSORING/MONITORING AGENCY