Science.gov

Sample records for access network architectures

  1. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  2. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    NASA Astrophysics Data System (ADS)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  3. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-05-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  4. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New

    2005-04-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  5. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  6. Heterogeneous radio-over-fiber passive access network architecture to mitigate Rayleigh backscattering interferometric beat noise.

    PubMed

    Yeh, C H; Chow, C W

    2011-03-28

    We propose and experimentally demonstrate a hybrid radio-over-fiber (ROF) wavelength division multiplexed and time division multiplexed passive optical network (WDM-TDM PON) architecture to mitigate Rayleigh backscattering (RB) interferometric beat noises. Here, only a single wavelength is needed at the central office (CO) to generate the downstream baseband data for optical wired application and optical millimeter-wave (mm-wave) signal for wireless application. The upstream signal is produced by remodulating the downstream signal. No optical filter is required at the optical network unit/remote antenna unit (ONU/RAU) to separate the optical wired and optical mm-wave signals. In the proposed network, 10 Gb/s differential phase shift keying (DPSK) signal is used for the downstream optical wired application and 2.5 Gb/s on-off keying (OOK) signal on 20 GHz carrier is used for the optical mm-wave signal. In each ONU, a reflective optical semiconductor amplifier (RSOA) is used to remodulate and produce a 2.5 Gb/s OOK format for upstream traffic. As the back-refection produced by the downstream DPSK signal and the upstream OOK signal is traveling in different fiber path, RB noise at the CO can be completely mitigated.

  7. Ultrahigh-capacity access network architecture for mobile data backhaul using integrated W-band wireless and free-space optical links with OAM multiplexing.

    PubMed

    Fang, Yuan; Yu, Jianjun; Zhang, Junwen; Chi, Nan; Xiao, Jiangnan; Chang, Gee-Kung

    2014-07-15

    In this Letter, we propose and experimentally demonstrate a novel access network architecture using hybrid integrated W-band wireless and free-space optical (FSO) links with orbital angular momentum (OAM) multiplexing. The transmission of a 20 GBd quadrature phase-shift keying signal modulated over 10 OAM modes has been demonstrated over a 0.6 m FSO link and a 0.4 m W-band wireless link at 100 GHz. The experimental results show that the architecture can support future ultrahigh-capacity, converged optical-wireless access networks that require extra bandwidth and system flexibility in mobile data networks.

  8. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-01-01

    Call for Papers: Optical Access Networks

    Guest Editors Jun Zheng, University of Ottawa Nirwan Ansari, New Jersey Institute of Technology

    Submission Deadline: 1 June 2005

    Background

    With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the

  9. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-03-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  10. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-02-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  11. Bipartite memory network architectures for parallel processing

    SciTech Connect

    Smith, W.; Kale, L.V. . Dept. of Computer Science)

    1990-01-01

    Parallel architectures are boradly classified as either shared memory or distributed memory architectures. In this paper, the authors propose a third family of architectures, called bipartite memory network architectures. In this architecture, processors and memory modules constitute a bipartite graph, where each processor is allowed to access a small subset of the memory modules, and each memory module allows access from a small set of processors. The architecture is particularly suitable for computations requiring dynamic load balancing. The authors explore the properties of this architecture by examining the Perfect Difference set based topology for the graph. Extensions of this topology are also suggested.

  12. Fixed Access Network Sharing

    NASA Astrophysics Data System (ADS)

    Cornaglia, Bruno; Young, Gavin; Marchetta, Antonio

    2015-12-01

    Fixed broadband network deployments are moving inexorably to the use of Next Generation Access (NGA) technologies and architectures. These NGA deployments involve building fiber infrastructure increasingly closer to the customer in order to increase the proportion of fiber on the customer's access connection (Fibre-To-The-Home/Building/Door/Cabinet… i.e. FTTx). This increases the speed of services that can be sold and will be increasingly required to meet the demands of new generations of video services as we evolve from HDTV to "Ultra-HD TV" with 4k and 8k lines of video resolution. However, building fiber access networks is a costly endeavor. It requires significant capital in order to cover any significant geographic coverage. Hence many companies are forming partnerships and joint-ventures in order to share the NGA network construction costs. One form of such a partnership involves two companies agreeing to each build to cover a certain geographic area and then "cross-selling" NGA products to each other in order to access customers within their partner's footprint (NGA coverage area). This is tantamount to a bi-lateral wholesale partnership. The concept of Fixed Access Network Sharing (FANS) is to address the possibility of sharing infrastructure with a high degree of flexibility for all network operators involved. By providing greater configuration control over the NGA network infrastructure, the service provider has a greater ability to define the network and hence to define their product capabilities at the active layer. This gives the service provider partners greater product development autonomy plus the ability to differentiate from each other at the active network layer.

  13. Information network architectures

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  14. Multistage WDM access architecture employing cascaded AWGs

    NASA Astrophysics Data System (ADS)

    El-Nahal, F. I.; Mears, R. J.

    2009-03-01

    Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.

  15. Modeling, Analysis, and Simulation of an Optical Time-Division Multiple- Access Network Architecture

    DTIC Science & Technology

    1993-11-01

    equation model, the overall system has to be simulated at a rate of l/h. The efficiency improvement of the ANN implementation over the LM method then...From the above equations we see that the ANN implementation is clearly more ef- ficient in the first case, while in the latter cases it still has...method and time step, as opposed to the ANN implementation whose behavior is based on the anticipated "generalization" of the network’s training. 24

  16. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  17. Networks: A Review of Their Technology, Architecture, and Implementation.

    ERIC Educational Resources Information Center

    Learn, Larry L.

    1988-01-01

    This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…

  18. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network

  19. Optical Neural Network Classifier Architectures

    DTIC Science & Technology

    1998-04-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and...function neural network based on a previously demonstrated binary-input version. The greyscale-input capability broadens the range of applications for...a reduced feature set of multiwavelet images to improve training times and discrimination capability of the neural network . The design uses a joint

  20. Data center networks and network architecture

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  1. Quantum secured gigabit optical access networks

    PubMed Central

    Fröhlich, Bernd; Dynes, James F.; Lucamarini, Marco; Sharpe, Andrew W.; Tam, Simon W.-B.; Yuan, Zhiliang; Shields, Andrew J.

    2015-01-01

    Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future. PMID:26656307

  2. Optical access: networks and components (overview)

    NASA Astrophysics Data System (ADS)

    Mynbaev, Djafar K.

    2004-09-01

    The exponential gtowth of traffic delivered to an individual customer both for business and personal needs puts tremendous pressure on the telecommunications networks. Because the development of the long-haul and metro networks has advanced rapidly and their capacity much eceeds demand, tremendous pressure now falls in the local networks to provide customers with access to the global telecom infrastructure. Building a broadband access network enabling fast delivery of high-volume traffic is the current task of network operators. A brief review of broadband access networks brings us to the conclusion that only wired optical networks can serve as an immediate and future solution to the "last-mile" problem. After discussin goptical access network classification, we focus mainly on passive optical networks (PON) because PON is a major technology today. From the network standpoint, we discuss the principle of PON operation, architectures, topologies, protocols and standards, design issues, and network management and services. We also discuss the main problems with PON and the use of WDM technology. From the hardware standpoint, we consider both active and passive components. We analyze the structure and elements of these components, including their technical characteristics.

  3. Scalable Lunar Surface Networks and Adaptive Orbit Access

    NASA Technical Reports Server (NTRS)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  4. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  5. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  6. Establishment of a Spaceport Network Architecture

    NASA Technical Reports Server (NTRS)

    Larson, Wiley J.; Gill, Tracy R.; Mueller, Robert P.; Brink, Jeffrey S.

    2012-01-01

    Since the beginning of the space age, the main actors in space exploration have been governmental agencies, enabling a privileged access to space, but with very restricted and rare missions. The last decade has seen the rise of space tourism, and the founding of ambitious private space mining companies, showing the beginnings of a new exploration era, that is based on a more generalized and regular access to space and which is not limited to the Earth's vicinity. However, the cost of launching sufficient mass into orbit to sustain these inspiring challenges is prohibitive, and the necessary infrastructures to support these missions is still lacking. To provide easy and affordable access into orbital and deep space destinations, there is the need to create a network of spaceports via specific waypoint locations coupled with the use of natural resources, or In Situ Resource Utilization (ISRU), to provide a more economical solution. As part of the International Space University Space Studies Program 2012, the international and intercultural team of Operations and Service Infrastructure for Space (OASIS) proposes an interdisciplinary answer to the problem of economical space access and transportation. This paper presents a summary of a detailed report [1] of the different phases of a project for developing a network of spaceports throughout the Solar System in a timeframe of 50 years. The requirements, functions, critical technologies and mission architecture of this network of spaceports are outlined in a roadmap of the important steps and phases. The economic and financial aspects are emphasized in order to allow a sustainable development of the network in a public-private partnership via the formation of an International Spaceport Authority (ISPA). The approach includes engineering, scientific, financial, legal, policy, and societal aspects. Team OASIS intends to provide guidelines to make the development of space transportation via a spaceports logistics network

  7. Editorial: Next Generation Access Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, Marco; Cincotti, Gabriella; Pizzinat, Anna; Vetter, Peter

    2015-12-01

    Over the past decade we have seen an increasing number of operators deploying Fibre-to-the-home (FTTH) solutions in access networks, in order to provide home users with a much needed network access upgrade, to support higher peak rates, higher sustained rates and a better and more uniform broadband coverage of the territory.

  8. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  9. Broadband access network reference models: a different prospective

    NASA Astrophysics Data System (ADS)

    Mostafa, Mohamed S.

    1996-11-01

    The current view of the fiber-based broadband access network is that it could basically be modeled into two target networks represented by the following architectures, the fiber to the curb, building, home (FTTC/B/H) -- also termed switched digital video (SDV) -- architecture, and the hybrid fiber coax (HFC) architecture. Both architectures support on-demand digital services. One way to distinguish between these two architectures is based on the digital modulation scheme. The SDV/FTTC architecture utilizes baseband digital modulation both in the fiber distribution and the point-to- point drop. Whereas, the HFC architecture is pass-band and utilizes digitally modulated (as well as analog modulated) subcarriers both on the fiber and the coax for distribution to customers. From a network modeling point of view, the distinction between these two architectures is fuzzy. A hybrid between the above two architectures represents other architectural advantages especially bandwidth utilization in the upstream direction. This paper describes this hybrid architecture and provides an evaluation of the different access network configuration scenarios based on an expanded version of the DAVIC reference models.

  10. Wireless Communications. Wireless Network Integration Technology: MIRAI Architecture for Heterogeneous Network

    NASA Astrophysics Data System (ADS)

    Mizuno, Mitsuhiko; Wu, Gang; Havinga, Paul J. M.

    2001-12-01

    One of the keywords that describe next generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the MIRAI (Multimedia Integrated network by Radio Access Innovation) project has, as its goal, the development of new technologies to enable seamless integration of various wireless access systems for practical use by the year 2005. This paper describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multi-service user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-concept experimental demonstration system will be available in March, 2002.

  11. The NASA Space Communications Data Networking Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.

    2006-01-01

    The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.

  12. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  13. LINCS: Livermore's network architecture. [Octopus computing network

    SciTech Connect

    Fletcher, J.G.

    1982-01-01

    Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessing process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.

  14. Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled

    1989-01-01

    The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included.

  15. Broadband passive optical network media access control protocols

    NASA Astrophysics Data System (ADS)

    Quayle, Alan

    1996-11-01

    Most telecommunication operators are currently deciding on how to respond to customers' needs stimulated by the synergy between compression coding of multimedia and the emergence of broadband digital networks. This paper describes a range of broadband access architectures under consideration in the full services access network initiative. All architectures have a common requirement for a broadband ATM PON. A common broadband PON applicable to many operators increases the world-wide market for the product. With greater production volumes manufacturers' costs reduce because of the experience curve effect making broadband access systems economic.

  16. Novel fiber optic subscriber access network and optical amplifier placement

    NASA Astrophysics Data System (ADS)

    Singh, Yatindra N.; Kumar, Arvind; Sakthivel, A.; Singh, Vandana

    2001-09-01

    In this work, a new subscriber access network architecture has been proposed. It uses optical add-drop multiplexer and wavelength division multiplexing. In order to alleviate the limitation on supportable number of users use of OAS has been investigated. It is found that with all the degradation in OAs, the number o users for a typical network is limited to 384.

  17. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  18. MSAT signalling and network management architectures

    NASA Technical Reports Server (NTRS)

    Garland, Peter; Keelty, J. Malcolm

    1989-01-01

    Spar Aerospace has been active in the design and definition of Mobile Satellite Systems since the mid 1970's. In work sponsored by the Canadian Department of Communications, various payload configurations have evolved. In addressing the payload configuration, the requirements of the mobile user, the service provider and the satellite operator have always been the most important consideration. The current Spar 11 beam satellite design is reviewed, and its capabilities to provide flexibility and potential for network growth within the WARC87 allocations are explored. To enable the full capabilities of the payload to be realized, a large amount of ground based Switching and Network Management infrastructure will be required, when space segment becomes available. Early indications were that a single custom designed Demand Assignment Multiple Access (DAMA) switch should be implemented to provide efficient use of the space segment. As MSAT has evolved into a multiple service concept, supporting many service providers, this architecture should be reviewed. Some possible signalling and Network Management solutions are explored.

  19. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey

    1987-01-01

    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.

  20. Universal Network Access System

    DTIC Science & Technology

    2003-11-01

    successfully carried out, however. A multirate and multiprotocol system , based on software configurable, hardware accelerated processing engines has...network interface. The system will support filtering and extracting packets or cells for QoS measurements using filtering criteria, which may be...integrated designs. 6.5 Summary The intent of the research has been successfully carried out. A multirate and multiprotocol system , based on software

  1. SW Architecture for Access to Medical Information for Knowledge Execution

    NASA Astrophysics Data System (ADS)

    Kim, Suntae; Shim, Bingu; Kim, Jeong Ah; Cho, Insook

    Recently, many approaches have been studied to author medical knowledge and verify doctor's diagnosis based on the specified knowledge. During the verification, intensive access to medical information is unavoidable. Also, the access approach should consider modifiability in order to cover diverse medical information from the variety of hospitals. This paper presents an approach to generating query language from medical knowledge, and shows software architecture for accessing medical information from hospitals by executing generated query languages. Implementation of this architecture has been deployed in a hospital of South Korea so that it shows the feasibility of the architecture.

  2. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  3. An economic analysis on optical Ethernet in the access network

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hwi; Nam, Dohyun; Yoo, Gunil; Kim, WoonHa

    2004-04-01

    Nowadays, Broadband service subscribers have increased exponentially and have almost saturated in Korea. Several types of solutions for broadband service applied to the field. Among several types of broadband services, most of subscribers provided xDSL service like ADSL or VDSL. Usually, they who live in an apartment provided Internet service by Ntopia network as FTTC structure that is a dormant network in economical view at KT. Under competitive telecom environment for new services like video, we faced with needing to expand or rebuild portions of our access networks, are looking for ways to provide any service that competitors might offer presently or in the near future. In order to look for new business model like FTTH service, we consider deploying optical access network. In spite of numerous benefits of PON until now, we cannot believe that PON is the best solution in Korea. Because we already deployed optical access network of ring type feeder cable and have densely population of subscribers that mainly distributed inside 6km from central office. So we try to utilize an existing Ntopia network for FTTH service under optical access environment. Despite of such situations, we try to deploy PON solution in the field as FTTC or FTTH architecture. Therefore we analyze PON structure in comparison with AON structure in order to look for optimized structure in Korea. At first, we describe the existing optical access networks and network architecture briefly. Secondly we investigate the cost of building optical access networks by modeling cost functions on AON and PON structure which based on Ethernet protocol, and analyze two different network architectures according to different deployment scenarios: Urban, small town, rural. Finally we suggest the economic and best solution with PON structure to optimize to optical access environment of KT.

  4. The Functional Consequences of Mutualistic Network Architecture

    PubMed Central

    Gómez, José M.; Perfectti, Francisco; Jordano, Pedro

    2011-01-01

    The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks. PMID:21283583

  5. Network architecture functional description and design

    SciTech Connect

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  6. A neural network architecture for data classification.

    PubMed

    Lezoray, O

    2001-02-01

    This article aims at showing an architecture of neural networks designed for the classification of data distributed among a high number of classes. A significant gain in the global classification rate can be obtained by using our architecture. This latter is based on a set of several little neural networks, each one discriminating only two classes. The specialization of each neural network simplifies their structure and improves the classification. Moreover, the learning step automatically determines the number of hidden neurons. The discussion is illustrated by tests on databases from the UCI machine learning database repository. The experimental results show that this architecture can achieve a faster learning, simpler neural networks and an improved performance in classification.

  7. Accessing Geospatial Services in Limited Bandwidth Service-Oriented Architecture (SOA) Environments

    ERIC Educational Resources Information Center

    Boggs, James D.

    2013-01-01

    First responders are continuously moving at an incident site and this movement requires them to access Service-Oriented Architecture services, such as a Web Map Service, via mobile wireless networks. First responders from inside a building often have problems in communicating to devices outside that building due to propagation obstacles. Dynamic…

  8. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  9. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  10. A security architecture for health information networks.

    PubMed

    Kailar, Rajashekar; Muralidhar, Vinod

    2007-10-11

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.

  11. Architecture of a Personal Network Service Layer

    NASA Astrophysics Data System (ADS)

    Joosten, Rieks; den Hartog, Frank; Selgert, Franklin

    We describe a basic service architecture that extends the currently dominant device-oriented approach of Personal Networks (PNs). It specifies functionality for runtime selection and execution of appropriate service components available in the PN, resulting in a highly dynamic, personalized, and context-aware provisioning of PN services to the user. The architectural model clearly connects the responsibilities of the various business roles with the individual properties (resources) of the PN Entities involved.

  12. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  13. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-07

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  14. An evaluation of Access Tier local area network switches.

    SciTech Connect

    Eldridge, John M.; Olsberg, Ronald R.

    2004-06-01

    This reports tabulates the Test and Evaluation results of the Access Class Switch tests conducted by members of Department 9336. About 15 switches were reviewed for use in the enterprise network as access tier switches as defined in a three tier architecture. The Access Switch Tier has several functions including: aggregate customer desktop ports, preserve and apply QoS tags, provide switched LAN access, provide VLAN assignment, as well as others. The typical switch size is 48 or less user ports. The evaluation team reviewed network switch evaluation reports from the Tolly Group as well as other sources. We then used these reports as a starting point to identify particular switches for evaluation. In general we reviewed the products of dominant equipment manufacturers. Also, based on architectural design requirements, the majority of the switches tested were of relatively small monolithic unit variety.

  15. A Security Architecture for Health Information Networks

    PubMed Central

    Kailar, Rajashekar

    2007-01-01

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today’s healthcare enterprise. Recent work on ‘nationwide health information network’ architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately. PMID:18693862

  16. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  17. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  18. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  19. Empirical Memory-Access Cost Models in Multicore NUMA Architectures

    SciTech Connect

    McCormick, Patrick S.; Braithwaite, Ryan Karl; Feng, Wu-chun

    2011-01-01

    Data location is of prime importance when scheduling tasks in a non-uniform memory access (NUMA) architecture. The characteristics of the NUMA architecture must be understood so tasks can be scheduled onto processors that are close to the task's data. However, in modern NUMA architectures, such as AMD Magny-Cours and Intel Nehalem, there may be a relatively large number of memory controllers with sockets that are connected in a non-intuitive manner, leading to performance degradation due to uninformed task-scheduling decisions. In this paper, we provide a method for experimentally characterizing memory-access costs for modern NUMA architectures via memory latency and bandwidth microbenchmarks. Using the results of these benchmarks, we propose a memory-access cost model to improve task-scheduling decisions by scheduling tasks near the data they need. Simple task-scheduling experiments using the memory-access cost models validate the use of empirical memory-access cost models to significantly improve program performance.

  20. Satellite Networks: Architectures, Applications, and Technologies

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul (Compiler)

    1998-01-01

    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled.

  1. Architecture for networked electronic patient record systems.

    PubMed

    Takeda, H; Matsumura, Y; Kuwata, S; Nakano, H; Sakamoto, N; Yamamoto, R

    2000-11-01

    There have been two major approaches to the development of networked electronic patient record (EPR) architecture. One uses object-oriented methodologies for constructing the model, which include the GEHR project, Synapses, HL7 RIM and so on. The second approach uses document-oriented methodologies, as applied in examples of HL7 PRA. It is practically beneficial to take the advantages of both approaches and to add solution technologies for network security such as PKI. In recognition of the similarity with electronic commerce, a certificate authority as a trusted third party will be organised for establishing networked EPR system. This paper describes a Japanese functional model that has been developed, and proposes a document-object-oriented architecture, which is-compared with other existing models.

  2. Fast notification architecture for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hahk

    2013-03-01

    In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.

  3. ARCHITECTURAL FLOOR PLAN OF PROCESS AND ACCESS AREAS HOT PILOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL FLOOR PLAN OF PROCESS AND ACCESS AREAS HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111679. ALTERNATE ID NUMBER 8952-CPP-640-A-2. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    SciTech Connect

    Schuman, Catherine D; Plank, James; Disney, Adam; Reynolds, John

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  5. IP access networks with QoS support

    NASA Astrophysics Data System (ADS)

    Sargento, Susana; Valadas, Rui J. M. T.; Goncalves, Jorge; Sousa, Henrique

    2001-07-01

    The increasing demand of new services and applications is pushing for drastic changes on the design of access networks targeted mainly for residential and SOHO users. Future access networks will provide full service integration (including multimedia), resource sharing at the packet level and QoS support. It is expected that using IP as the base technology, the ideal plug-and-play scenario, where the management actions of the access network operator are kept to a minimum, will be achieved easily. This paper proposes an architecture for access networks based on layer 2 or layer 3 multiplexers that allows a number of simplifications in the network elements and protocols (e.g. in the routing and addressing functions). We discuss two possible steps in the evolution of access networks towards a more efficient support of IP based services. The first one still provides no QoS support and was designed with the goal of reusing as much as possible current technologies; it is based on tunneling to transport PPP sessions. The second one introduces QoS support through the use of emerging technologies and protocols. We illustrate the different phases of a multimedia Internet access session, when using SIP for session initiation, COPS for the management of QoS policies including the AAA functions and RSVP for resource reservation.

  6. Architecture for a Truly Integrated Defense Network

    DTIC Science & Technology

    2004-06-01

    objectives. 7. All element-specific processing must be performed at the originating elements and not at the recipients. The TCN architecture...and wireless communication links. To minimize both data distribution on the network, as well as the processing requirements of participating systems...users receive the amount and type of track data they request or types of data for which they register and are approved. Processing load is reduced

  7. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  8. Challenges of future converged access and metro networks

    NASA Astrophysics Data System (ADS)

    Breuer, D.; Hülsermann, R.; Lange, C.; Weis, E.

    2010-01-01

    Steadily increasing customer demand for more and more bandwidth in excess of 100 Mbit/s per subscriber, new technical options and a strong competitive environment drive the evolution of today's telecommunication networks, particularly in the access network. The physical properties of fibers such as very low loss and almost unlimited bandwidth allow for high bit rate long distance transmission in future access networks compared to the conventional copper based access networks in place today. In future this is expected to lead to much larger service areas which are served from one central office and to a significant reduction of central offices of today's infrastructure facilitating a converged metro-access architecture. One driver for this network consolidation is the need for significant operational expenditure (OpEx) savings which are expected due to reduction of active equipment and footprint. But also the changes from today's "service oriented" network design, where each service is almost realized on a new platform, towards an open standardized multi-layer Next Generation Network where all services will be delivered over a common infrastructure will lead to significant challenges in the network infrastructure.

  9. Re-engineering Nascom's network management architecture

    NASA Technical Reports Server (NTRS)

    Drake, Brian C.; Messent, David

    1994-01-01

    The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated

  10. A Delay Tolerant Networking Architecture for Airborne Networking

    DTIC Science & Technology

    2010-04-01

    the DTN- based routing protocols. We build a MANET environment model using OPNET Simulator considering those physical parameters. The existing OPNET ...opportunistic. The new model will be the first DTN architecture in OPNET simulator. Our third goal is to design a cross-layer framework that uses DTN...in OPNET network simulator [16]. The network consists of 100 nodes distributed over a 1000 meter by 1000 meter area. All the nodes are configured

  11. Optical fiber cabling technologies for flexible access network

    NASA Astrophysics Data System (ADS)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  12. NATO Human View Architecture and Human Networks

    NASA Technical Reports Server (NTRS)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  13. Probabilistic logic modeling of network reliability for hybrid network architectures

    SciTech Connect

    Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.

    1996-10-01

    Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.

  14. Small Satellite Access of the Space Network

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Minnix, Timothy O.; Vigil, J. S.

    1999-01-01

    Small satellites have been perceived as having limited access to NASA's Space Network (SN). The potential for satellite access of the space network when the design utilizes a fixed antenna configuration and low-power, coded transmission is analyzed. From the analysis, satellites using this configuration in high-inclination orbits are shown to have a daily data throughput in the 100 to 1000 Mbit range using the multiple access communications service.

  15. Performance analysis and overload control of an open service access (OSA) architecture

    NASA Astrophysics Data System (ADS)

    Andersson, Jens K.; Nyberg, Christian; Kihl, Maria

    2003-08-01

    The trend of the service architectures developed in telecommunications today is that they should be open in the sense that they can communicate over the borders of different networks. Instead of each network having their own service architecture with their own applications, all networks should be able to use the same applications. 3GPP, the organization developing specifications for the 3G networks has specified the standard Open Service Access (OSA), as a part of the 3G specification. OSA offers different Application Protocol Interfaces that enable an application that resides outside a network to use the capabilities of the network. This paper analyses the performance of an OSA gateway. It is examined how the overload control can be dealt with in a way to best satisfy the operators and the 3'rd parties. There are some guiding principles in the specifications, but a lot of decisions have to be made by the implementors of application servers and OSA gateways. Proposals of different requirements for an OSA architecture exist such as, minimum amount of accepted calls per second and time constraint for the maximal total delay for an application. Maximal and fair throughput have to be prioritized from the 3'rd parties view, but profit is the main interest from the operators point of view. Therefore this paper examines a priority based proposal of an overload control mechanism taking these aspects and requirements into account.

  16. Architecture and System Engineering Development Study of Space-Based Satellite Networks for NASA Missions

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2003-01-01

    Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.

  17. Multipurpose fiber-optic access network

    NASA Astrophysics Data System (ADS)

    Han, Kwan H.; Kim, Hoon; Chung, Yun C.

    2002-10-01

    We propose and demonstrate a multipurpose fiber-optic access network (MFAN). This network uses the same fiber infrastructure for a variety of services including baseband, cable television (CATV), personal communication service (PCS), wireless local loop (WLL), and local multipoint communication service (LMCS). The experimental results show that the proposed network could support the independent operation of these services.

  18. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  19. Highball: A high speed, reserved-access, wide area network

    NASA Technical Reports Server (NTRS)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  20. Enabling access to seismologic data through a service oriented architecture

    NASA Astrophysics Data System (ADS)

    Muench, J.; Kamb, L.; Casey, R.; Weertman, B.; Ahern, T.

    2006-12-01

    As research in the geosciences grows more interdisciplinary in nature, the IRIS Data Management Center is developing services to simplify access for non-domain experts as well as to enable expert users to more efficiently access the data and tools they need for their research. By building a service-oriented architecture (SOA) based on data retrieval, basic processing and visualization tools, IRIS will make seismic data products such as record sections and seismic event visualizations available to users without requiring a detailed knowledge of seismic data analysis. These composable web services will allow our expert users to build automated workflows to extract and pre-process their data requests, reducing the need for manual intervention in the data retrieval phase. A significant aspect of our SOA effort is to facilitate data discovery across disciplines and organizations. To provide our users with access to other geological data sources and help non-domain experts find our data, we are working with UNAVCO and MG&G at LDEO to create interoperable data discovery services, called GeoWS, between our unique data repositories. We also plan to collaborate with JAMSTEC, the host institution for the Earth Simulator. This will bring international data access and products produced on the Earth Simulator into our discovery system. Finally, we will develop a service providing discovery and visualization of community-based velocity models provided by selected individual researchers from IRIS member institutions. In a further effort to create community tools, all our services will be accessible from within portlets based on the GridSphere portal framework. We hope to share data and analysis portlets with other geoscience community web sites such as SCEC CME and GEON. Our long-term aim is to provide reusable, composable services with programmatic and interactive interfaces, enabling users to easily customize seismic data access.

  1. Software Defined Networking for Next Generation Converged Metro-Access Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, M.; Slyne, F.; Bluemm, C.; Kitsuwan, N.; McGettrick, S.

    2015-12-01

    While the concept of Software Defined Networking (SDN) has seen a rapid deployment within the data center community, its adoption in telecommunications network has progressed slowly, although the concept has been swiftly adopted by all major telecoms vendors. This paper presents a control plane architecture for SDN-driven converged metro-access networks, developed through the DISCUS European FP7 project. The SDN-based controller architecture was developed in a testbed implementation targeting two main scenarios: fast feeder fiber protection over dual-homed Passive Optical Networks (PONs) and dynamic service provisioning over a multi-wavelength PON. Implementation details and results of the experiment carried out over the second scenario are reported in the paper, showing the potential of SDN in providing assured on-demand services to end-users.

  2. Efficient Access Control in Multimedia Social Networks

    NASA Astrophysics Data System (ADS)

    Sachan, Amit; Emmanuel, Sabu

    Multimedia social networks (MMSNs) have provided a convenient way to share multimedia contents such as images, videos, blogs, etc. Contents shared by a person can be easily accessed by anybody else over the Internet. However, due to various privacy, security, and legal concerns people often want to selectively share the contents only with their friends, family, colleagues, etc. Access control mechanisms play an important role in this situation. With access control mechanisms one can decide the persons who can access a shared content and who cannot. But continuously growing content uploads and accesses, fine grained access control requirements (e.g. different access control parameters for different parts in a picture), and specific access control requirements for multimedia contents can make the time complexity of access control to be very large. So, it is important to study an efficient access control mechanism suitable for MMSNs. In this chapter we present an efficient bit-vector transform based access control mechanism for MMSNs. The proposed approach is also compatible with other requirements of MMSNs, such as access rights modification, content deletion, etc. Mathematical analysis and experimental results show the effectiveness and efficiency of our proposed approach.

  3. An Open Distributed Architecture for Sensor Networks for Risk Management

    PubMed Central

    Douglas, John; Usländer, Thomas; Schimak, Gerald; Esteban, J. Fernando; Denzer, Ralf

    2008-01-01

    Sensors provide some of the basic input data for risk management of natural and man-made hazards. Here the word ‘sensors’ covers everything from remote sensing satellites, providing invaluable images of large regions, through instruments installed on the Earth's surface to instruments situated in deep boreholes and on the sea floor, providing highly-detailed point-based information from single sites. Data from such sensors is used in all stages of risk management, from hazard, vulnerability and risk assessment in the pre-event phase, information to provide on-site help during the crisis phase through to data to aid in recovery following an event. Because data from sensors play such an important part in improving understanding of the causes of risk and consequently in its mitigation, considerable investment has been made in the construction and maintenance of highly-sophisticated sensor networks. In spite of the ubiquitous need for information from sensor networks, the use of such data is hampered in many ways. Firstly, information about the presence and capabilities of sensor networks operating in a region is difficult to obtain due to a lack of easily available and usable meta-information. Secondly, once sensor networks have been identified their data it is often difficult to access due to a lack of interoperability between dissemination and acquisition systems. Thirdly, the transfer and processing of information from sensors is limited, again by incompatibilities between systems. Therefore, the current situation leads to a lack of efficiency and limited use of the available data that has an important role to play in risk mitigation. In view of this situation, the European Commission (EC) is funding a number of Integrated Projects within the Sixth Framework Programme concerned with improving the accessibility of data and services for risk management. Two of these projects: ‘Open Architecture and Spatial Data Infrastructure for Risk Management’ (ORCHESTRA

  4. 78 FR 59475 - Architectural Barriers Act Accessibility Guidelines; Outdoor Developed Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ...We, the Architectural and Transportation Barriers Compliance Board (Access Board), are issuing a final rule that amends the Architectural Barriers Act Accessibility Guidelines by adding scoping and technical requirements for camping facilities, picnic facilities, viewing areas, trails, and beach access routes constructed or altered by or on behalf of federal agencies. The final rule ensures......

  5. Unified Access Architecture for Large-Scale Scientific Datasets

    NASA Astrophysics Data System (ADS)

    Karna, Risav

    2014-05-01

    Data-intensive sciences have to deploy diverse large scale database technologies for data analytics as scientists have now been dealing with much larger volume than ever before. While array databases have bridged many gaps between the needs of data-intensive research fields and DBMS technologies (Zhang 2011), invocation of other big data tools accompanying these databases is still manual and separate the database management's interface. We identify this as an architectural challenge that will increasingly complicate the user's work flow owing to the growing number of useful but isolated and niche database tools. Such use of data analysis tools in effect leaves the burden on the user's end to synchronize the results from other data manipulation analysis tools with the database management system. To this end, we propose a unified access interface for using big data tools within large scale scientific array database using the database queries themselves to embed foreign routines belonging to the big data tools. Such an invocation of foreign data manipulation routines inside a query into a database can be made possible through a user-defined function (UDF). UDFs that allow such levels of freedom as to call modules from another language and interface back and forth between the query body and the side-loaded functions would be needed for this purpose. For the purpose of this research we attempt coupling of four widely used tools Hadoop (hadoop1), Matlab (matlab1), R (r1) and ScaLAPACK (scalapack1) with UDF feature of rasdaman (Baumann 98), an array-based data manager, for investigating this concept. The native array data model used by an array-based data manager provides compact data storage and high performance operations on ordered data such as spatial data, temporal data, and matrix-based data for linear algebra operations (scidbusr1). Performances issues arising due to coupling of tools with different paradigms, niche functionalities, separate processes and output

  6. Transformation of legacy network management system to service oriented architecture

    NASA Astrophysics Data System (ADS)

    Sathyan, Jithesh; Shenoy, Krishnananda

    2007-09-01

    Service providers today are facing the challenge of operating and maintaining multiple networks, based on multiple technologies. Network Management System (NMS) solutions are being used to manage these networks. However the NMS is tightly coupled with Element or the Core network components. Hence there are multiple NMS solutions for heterogeneous networks. Current network management solutions are targeted at a variety of independent networks. The wide spread popularity of IP Multimedia Subsystem (IMS) is a clear indication that all of these independent networks will be integrated into a single IP-based infrastructure referred to as Next Generation Networks (NGN) in the near future. The services, network architectures and traffic pattern in NGN will dramatically differ from the current networks. The heterogeneity and complexity in NGN including concepts like Fixed Mobile Convergence will bring a number of challenges to network management. The high degree of complexity accompanying the network element technology necessitates network management systems (NMS) which can utilize this technology to provide more service interfaces while hiding the inherent complexity. As operators begin to add new networks and expand existing networks to support new technologies and products, the necessity of scalable, flexible and functionally rich NMS systems arises. Another important factor influencing NMS architecture is mergers and acquisitions among the key vendors. Ease of integration is a key impediment in the traditional hierarchical NMS architecture. These requirements trigger the need for an architectural framework that will address the NGNM (Next Generation Network Management) issues seamlessly. This paper presents a unique perspective of bringing service orientated architecture (SOA) to legacy network management systems (NMS). It advocates a staged approach in transforming a legacy NMS to SOA. The architecture at each stage is detailed along with the technical advantages and

  7. Fast-earth: A global image caching architecture for fast access to remote-sensing data

    NASA Astrophysics Data System (ADS)

    Talbot, B. G.; Talbot, L. M.

    We introduce Fast-Earth, a novel server architecture that enables rapid access to remote sensing data. Fast-Earth subdivides a WGS-84 model of the earth into small 400 × 400 meter regions with fixed locations, called plats. The resulting 3,187,932,913 indexed plats are accessed with a rapid look-up algorithm. Whereas many traditional databases store large original images as a series by collection time, requiring long searches and slow access times for user queries, the Fast-Earth architecture enables rapid access. We have prototyped a system in conjunction with a Fast-Responder mobile app to demonstrate and evaluate the concepts. We found that new data could be indexed rapidly in about 10 minutes/terabyte, high-resolution images could be chipped in less than a second, and 250 kB image chips could be delivered over a 3G network in about 3 seconds. The prototype server implemented on a very small computer could handle 100 users, but the concept is scalable. Fast-Earth enables dramatic advances in rapid dissemination of remote sensing data for mobile platforms as well as desktop enterprises.

  8. Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.

    PubMed

    Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José

    2007-12-10

    This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction.

  9. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  10. An Open Distributed Architecture for Sensor Networks for Risk Management.

    PubMed

    Douglas, John; Usländer, Thomas; Schimak, Gerald; Esteban, J Fernando; Denzer, Ralf

    2008-03-13

    Sensors provide some of the basic input data for risk management of natural andman-made hazards. Here the word 'sensors' covers everything from remote sensingsatellites, providing invaluable images of large regions, through instruments installed on theEarth's surface to instruments situated in deep boreholes and on the sea floor, providinghighly-detailed point-based information from single sites. Data from such sensors is used inall stages of risk management, from hazard, vulnerability and risk assessment in the preeventphase, information to provide on-site help during the crisis phase through to data toaid in recovery following an event. Because data from sensors play such an important part inimproving understanding of the causes of risk and consequently in its mitigation,considerable investment has been made in the construction and maintenance of highlysophisticatedsensor networks. In spite of the ubiquitous need for information from sensornetworks, the use of such data is hampered in many ways. Firstly, information about thepresence and capabilities of sensor networks operating in a region is difficult to obtain dueto a lack of easily available and usable meta-information. Secondly, once sensor networkshave been identified their data it is often difficult to access due to a lack of interoperability between dissemination and acquisition systems. Thirdly, the transfer and processing ofinformation from sensors is limited, again by incompatibilities between systems. Therefore,the current situation leads to a lack of efficiency and limited use of the available data thathas an important role to play in risk mitigation. In view of this situation, the EuropeanCommission (EC) is funding a number of Integrated Projects within the Sixth FrameworkProgramme concerned with improving the accessibility of data and services for riskmanagement. Two of these projects: 'Open Architecture and Spatial Data Infrastructure forRisk Management' (ORCHESTRA, http

  11. A study of satellite communication network architectures providing multipoint-to-multipoint connection

    NASA Astrophysics Data System (ADS)

    Ohata, K.

    2002-01-01

    multicasting are currently being sought. Satellite networks can efficiently handle various types of connections because each earth station can directly access all of the satellite network traffic. A multipoint to multipoint (M to N) connection is one such example. Satellite networks consume only M+N network resources, while terrestrial networks basically consume MxN network resources. In the past, there has been little demand for the M-to-N connection type; however, Internet technology is changing this situation. Take for example the case of a network for contents distribution network (CDN) service operators. CDN service operators distribute contents from content providers to caching servers deployed on major Internet service provider (ISP) backbone networks throughout the Internet. Here, a satellite network is the most suitable means of CDN, because both multicasting and M-to-N connection functions are required. However, few satellite systems can handle this type of connection properly. are well accepted as de facto systems for providing high speed Internet access, because they are advantageous in terms of both cost and user terminal size. A DVB VSAT system designed based on a broadcasting network is quite suitable for a network that has a server - client type centralized architecture, but in other cases is not suitable, such as when the network has a de-centralized architecture. In contrast, a network for M-to-N connection can be more efficiently constructed on a de-centralized architecture than on a centralized architecture. already operational. These are candidates for networks that provide efficient M-to-N connection, but their flexibility is a major issue. such as flexible connection, and by nature are suitable for de-centralized networks. In particular, FDMA meshed VSAT systems can be constructed simply, thus ensuring low cost. Also, recently developed technologies can compensate for some drawbacks of the system. The increasing TWTA power on satellites will

  12. Social Network Privacy via Evolving Access Control

    NASA Astrophysics Data System (ADS)

    di Crescenzo, Giovanni; Lipton, Richard J.

    We study the problem of limiting privacy loss due to data shared in a social network, where the basic underlying assumptions are that users are interested in sharing data and cannot be assumed to constantly follow appropriate privacy policies. Note that if these two assumptions do not hold, social network privacy is theoretically very easy to achieve; for instance, via some form of access control and confidentiality transformation on the data.

  13. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  14. Security Aspects of an Enterprise-Wide Network Architecture.

    ERIC Educational Resources Information Center

    Loew, Robert; Stengel, Ingo; Bleimann, Udo; McDonald, Aidan

    1999-01-01

    Presents an overview of two projects that concern local area networks and the common point between networks as they relate to network security. Discusses security architectures based on firewall components, packet filters, application gateways, security-management components, an intranet solution, user registration by Web form, and requests for…

  15. An Architecture for Cooperative Localization in Underwater Acoustic Networks

    DTIC Science & Technology

    2015-10-24

    An Architecture for Cooperative Localization in Underwater Acoustic Networks ∗ Jeffrey M. Walls University of Michigan Ann Arbor, Michigan jmwalls...acoustic cooperative localization. Our system leverages communica- tion within an acoustic network to both share navigation information and measure the...three vehicle cooperative network and provide a performance summary over several field trials. Categories and Subject Descriptors I.2.9 [Robotics

  16. An effective access control approach to support mobility in IPv6 networks

    NASA Astrophysics Data System (ADS)

    Peng, Xue-hai; Lin, Chuang

    2005-11-01

    Access control is an important method to improve network security and prevent protected resources from being used by some nodes without authority. Moreover, mobility is an important trend of internet. In this paper, based on the architecture of hierarchical mobile IPv6, we proposed an effective access control approach to support mobility in IPv6 networks, which can ensure the operation of access control when a mobile node roams in these domains with different polices, with decreased delay of access negotiation and cost of delivering messages.

  17. ROADM architectures and technologies for agile optical networks

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2007-02-01

    We review the different optoelectronic component and module technologies that have been developed for use in ROADM subsystems, and describe their principles of operation, designs, features, advantages, and challenges. We also describe the various needs for reconfigurable optical add/drop switching in agile optical networks. For each network need, we present the different ROADM subsystem architecture options with their pros and cons, and describe the optoelectronic technologies supporting each architecture.

  18. Using overlay network architectures for scalable video distribution

    NASA Astrophysics Data System (ADS)

    Patrikakis, Charalampos Z.; Despotopoulos, Yannis; Fafali, Paraskevi; Cha, Jihun; Kim, Kyuheon

    2004-11-01

    Within the last years, the enormous growth of Internet based communication as well as the rapid increase of available processing power has lead to the widespread use of multimedia streaming as a means to convey information. This work aims at providing an open architecture designed to support scalable streaming to a large number of clients using application layer multicast. The architecture is based on media relay nodes that can be deployed transparently to any existing media distribution scheme, which can support media streamed using the RTP and RTSP protocols. The architecture is based on overlay networks at application level, featuring rate adaptation mechanisms for responding to network congestion.

  19. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  20. Access to Inter-Organization Computer Networks.

    DTIC Science & Technology

    1985-08-01

    provided to the M1T Laboratory for Computer Science by the IBM Corporation . 2 . . o Access to Inter-Organization Computer Networks Abstract Whcn two or...4: Example of category tables for the MIT Multics system. 170 Figure 8-5: Example of category tables for corporate R&D. 172 Figure 12- 1: Background...mail use at Digital Equipment Corporation . He compared the costs of two different internal electronic mail systems with telephone and inter-office

  1. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  2. A Novel Energy-Driven Architecture for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jayakody, D. N. K.; Khan, Z. A.; Rodrigo; de Lamare, C.; Thompson, J.

    2017-01-01

    This paper proposes a novel Energy-Driven Architecture (EDA) as a durable architecture and considers almost all principal energy constituents of wireless sensor networks applications. By creating a single overall model, a tolerable formulation is then offered to communicate the total energy use of a wireless sensor network application regarding the energy constituents. The formulation provides a tangible illustration for analyzing the performance of a wireless sensor network application, optimizing its constituent’s operations, as well as creating more energy saving applications. The simulations are employed to show the feasibility of our model and also energy formulation.

  3. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  4. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  5. Regional Webgis User Access Patterns Based on a Weighted Bipartite Network

    NASA Astrophysics Data System (ADS)

    Li, R.; Shen, Y.; Huang, W.; Wu, H.

    2015-07-01

    With the rapid development of geographic information services, Web Geographic Information Systems (WebGIS) have become an indispensable part of everyday life; correspondingly, map search engines have become extremely popular with users and WebGIS sites receive a massive volume of requests for access. These WebGIS users and the content accessed have regional characteristics; to understand regional patterns, we mined regional WebGIS user access patterns based on a weighted bipartite network. We first established a weighted bipartite network model for regional user access to a WebGIS. Then, based on the massive user WebGIS access logs, we clustered geographic information accessed and thereby identified hot access areas. Finally we quantitatively analyzed the access interests of regional users and the visitation volume characteristics of regional user access to these hot access areas in terms of user access permeability, user usage rate, and user access viscosity. Our research results show that regional user access to WebGIS is spatially aggregated, and the hot access areas that regional users accessed are associated with specific periods of time. Most regional user contact with hot accessed areas is variable and intermittent but for some users, their access to certain areas is continuous as it is associated with ongoing or recurrent objectives. The weighted bipartite network model for regional user WebGIS access provides a valid analysis method for studying user behaviour in WebGIS and the proposed access pattern exhibits access interest of regional user is spatiotemporal aggregated and presents a heavy-tailed distribution. Understanding user access patterns is good for WebGIS providers and supports better operational decision-making, and helpful for developers when optimizing WebGIS system architecture and deployment, so as to improve the user experience and to expand the popularity of WebGIS.

  6. A Stateful Multicast Access Control Mechanism for Future Metro-Area-Networks.

    ERIC Educational Resources Information Center

    Sun, Wei-qiang; Li, Jin-sheng; Hong, Pei-lin

    2003-01-01

    Multicasting is a necessity for a broadband metro-area-network; however security problems exist with current multicast protocols. A stateful multicast access control mechanism, based on MAPE, is proposed. The architecture of MAPE is discussed, as well as the states maintained and messages exchanged. The scheme is flexible and scalable. (Author/AEF)

  7. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes.

    PubMed

    de Anda-Jáuregui, Guillermo; Velázquez-Caldelas, Tadeo E; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes. In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed. Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance. With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer.

  8. The architecture of a network level intrusion detection system

    SciTech Connect

    Heady, R.; Luger, G.; Maccabe, A.; Servilla, M.

    1990-08-15

    This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  9. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes

    PubMed Central

    de Anda-Jáuregui, Guillermo; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes. In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed. Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance. With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer. PMID:27920729

  10. Unstructured Peer-to-Peer Network Architectures

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Chan, S.-H. Gary

    With the rapid growth of the Internet, peer-to-peer P2P networks have been widely studied and deployed. According to CacheLogic Research, P2P traffic has dominated the Internet traffic in 2006, by accounting for over 72% Internet traffic. In this chapter, we focus on unstructured P2P networks, one key type of P2P networks. We first present several unstructured P2P networks for the file sharing application, and then investigate some advanced issues in the network design. We also study two other important applications, i.e., media streaming and voice over Internet Protocol (VoIP). Finally, we discuss unstructured P2P networks over wireless networks.

  11. Efficient VLSI architecture for training radial basis function networks.

    PubMed

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-03-19

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.

  12. A Common Bus In-Vehicle Network Architecture for Ground Army Vehicles

    DTIC Science & Technology

    2009-12-10

    CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Macam S Dattathreya 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...application gateway, circuit level gateway, and proxy server. In addition to network firewalls, the software based program specific access authorizations...Oriented Architecture principle. They are developed using high level languages such as C++ or Java. The software components on the display devices provide

  13. Operational Concepts for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Vaden, Karl R.; Jones, Robert E.; Roberts, Anthony M.

    2015-01-01

    This document is one of three. It describes the Operational Concept (OpsCon) for a generic space exploration communication architecture. The purpose of this particular document is to identify communication flows and data types. Two other documents accompany this document, a security policy profile and a communication architecture document. The operational concepts should be read first followed by the security policy profile and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes: subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  14. Security Policy for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  15. Evaluating the Multicast Control Protocol on a Multicasting Network Architecture

    NASA Astrophysics Data System (ADS)

    Stergiou, E.; Meletiou, G.; Vasiliadis, D. C.; Rizos, G. E.; Margariti, S. V.

    2007-12-01

    In this paper a reliable multicasting architecture presented. This architecture operates using a Multicasting Firewall over the Multicast Control Protocol (MCP). Our aim was to evaluate the transition times of specific packets such as the IGMPv2 reports in the proposed multicasting network. In our study, multicasting experiments presented and analyzed. The obtained results of our experiments clearly show that the average validation times of IGMP reports on the Multicast Control Server smoothly increase versus the number of clients.

  16. An OSI architecture for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Heuser, W. R.

    1992-01-01

    This article presents an Open Systems Interconnection (OSI) architecture developed for the Deep Space Network. An historical review is provided to establish the context for current United States Government policy on interprocessor communication standards. An introduction to the OSI architecture, its seven-layer approach, and an overview of application service entities are furnished as a tutorial. Finally, the results of a prototype system developed for monitor and control of a Deep Space Station are also presented.

  17. Architectural and Markovian factors of echo state networks.

    PubMed

    Gallicchio, Claudio; Micheli, Alessio

    2011-06-01

    Echo State Networks (ESNs) constitute an emerging approach for efficiently modeling Recurrent Neural Networks (RNNs). In this paper we investigate some of the main aspects that can be accounted for the success and limitations of this class of models. In particular, we propose complementary classes of factors related to contractivity and architecture of reservoirs and we study their relative relevance. First, we show the existence of a class of tasks for which ESN performance is independent of the architectural design. The effect of the Markovian factor, characterizing a significant class within these cases, is shown by introducing instances of easy/hard tasks for ESNs featured by contractivity of reservoir dynamics. In the complementary cases, for which architectural design is effective, we investigate and decompose the aspects of network design that allow a larger reservoir to progressively improve the predictive performance. In particular, we introduce four key architectural factors: input variability, multiple time-scales dynamics, non-linear interactions among units and regression in an augmented feature space. To investigate the quantitative effects of the different architectural factors within this class of tasks successfully approached by ESNs, variants of the basic ESN model are proposed and tested on instances of datasets of different nature and difficulty. Experimental evidences confirm the role of the Markovian factor and show that all the identified key architectural factors have a major role in determining ESN performances.

  18. Enterprise Management Network Architecture: The Organization Layer

    DTIC Science & Technology

    1990-11-01

    Distributed Systems capabilities 7 1.25 Distributed Systems Problems 7 2. Enterprise Management Network Node 8 3. Organization Layer 12 3.1 Modeling ...hierarchies, authority relations, etc., and the modeling of technologies being used such as network and database types. " The realizational or physical level...section, we define the content and use of the tools used to acquire the description of the organizational model of the Enterprise Management Network (EMU

  19. A spiking neural network architecture for nonlinear function approximation.

    PubMed

    Iannella, N; Back, A D

    2001-01-01

    Multilayer perceptrons have received much attention in recent years due to their universal approximation capabilities. Normally, such models use real valued continuous signals, although they are loosely based on biological neuronal networks that encode signals using spike trains. Spiking neural networks are of interest both from a biological point of view and in terms of a method of robust signaling in particularly noisy or difficult environments. It is important to consider networks based on spike trains. A basic question that needs to be considered however, is what type of architecture can be used to provide universal function approximation capabilities in spiking networks? In this paper, we propose a spiking neural network architecture using both integrate-and-fire units as well as delays, that is capable of approximating a real valued function mapping to within a specified degree of accuracy.

  20. Convolutional neural network architectures for predicting DNA–protein binding

    PubMed Central

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  1. Neural network based architectures for aerospace applications

    NASA Technical Reports Server (NTRS)

    Ricart, Richard

    1987-01-01

    A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

  2. Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Bonnelycke, B.; Strickland, S.

    1982-01-01

    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.

  3. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  4. Underwater sensor networks: a new energy efficient and robust architecture.

    PubMed

    Climent, Salvador; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan José

    2012-01-01

    The specific characteristics of underwater environments introduce new challenges for networking protocols. In this paper, a specialized architecture for underwater sensor networks (UWSNs) is proposed and evaluated. Experiments are conducted in order to analyze the suitability of this protocol for the subaquatic transmission medium. Moreover, different scheduling techniques are applied to the architecture in order to study their performance. In addition, given the harsh conditions of the underwater medium, different retransmission methods are combined with the scheduling techniques. Finally, simulation results illustrate the performance achievements of the proposed protocol in end-to-end delay, packet delivery ratio and energy consumption, showing that this protocol can be very suitable for the underwater medium.

  5. Optical solutions for unbundled access network

    NASA Astrophysics Data System (ADS)

    Bacîş Vasile, Irina Bristena

    2015-02-01

    The unbundling technique requires finding solutions to guarantee the economic and technical performances imposed by the nature of the services that can be offered. One of the possible solutions is the optic one; choosing this solution is justified for the following reasons: it optimizes the use of the access network, which is the most expensive part of a network (about 50% of the total investment in telecommunications networks) while also being the least used (telephone traffic on the lines has a low cost); it increases the distance between the master station/central and the terminal of the subscriber; the development of the services offered to the subscribers is conditioned by the subscriber network. For broadband services there is a need for support for the introduction of high-speed transport. A proper identification of the factors that must be satisfied and a comprehensive financial evaluation of all resources involved, both the resources that are in the process of being bought as well as extensions are the main conditions that would lead to a correct choice. As there is no single optimal technology for all development scenarios, which can take into account all access systems, a successful implementation is always done by individual/particularized scenarios. The method used today for the selection of an optimal solution is based on statistics and analysis of the various, already implemented, solutions, and on the experience that was already gained; the main evaluation criterion and the most unbiased one is the ratio between the cost of the investment and the quality of service, while serving an as large as possible number of customers.

  6. Towards blueprints for network architecture, biophysical dynamics and signal transduction.

    PubMed

    Coombes, Stephen; Doiron, Brent; Josić, Kresimir; Shea-Brown, Eric

    2006-12-15

    We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations and also coincidence detection in pairs of dendrites and dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools which will ultimately underpin systems neuroscience.

  7. Broadband access technology for passive optical network

    NASA Astrophysics Data System (ADS)

    Chi, Sien; Yeh, Chien-Hung; Chow, Chi-Wai

    2009-01-01

    We will introduce four related topics about fiber access network technologies for PONs. First, an upstream signal powerequalizer is proposed and designed using a FP-LD in optical line terminal applied to the TDM-PON, and a 20dB dynamic upstream power range from -5 to -25dBm having a 1.7dB maximal power variation is retrieved. The fiber-fault protection is also an important issue for PON. We investigate a simple and cost-effective TDM/WDM PON system with self-protected function. Next, using RSOA-based colorless WDM-PON is also demonstrated. We propose a costeffective CW light source into RSOA for 2.5Gb/s upstream in WDM-PON together with self-healing mechanism against fiber fault. Finally, we investigate a 4Gb/s OFDM-QAM for both upstream and downstream traffic in long-reach WDM/TDM PON system under 100km transmission without dispersion compensation. As a result, we believe that these key access technologies are emerging and useful for the next generation broadband FTTH networks.

  8. Impact of network sharing in multi-core architectures.

    SciTech Connect

    Narayanaswamy, G.; Balaji, P.; Feng, W.; Mathematics and Computer Science; Virginia Tech

    2008-01-01

    As commodity components continue to dominate the realm of high-end computing, two hardware trends have emerged as major contributors-high-speed networking technologies and multi-core architectures. Communication middleware such as the Message Passing Interface (MPI) uses the network technology for communicating between processes that reside on different physical nodes, while using shared memory for communicating between processes on different cores within the same node. Thus, two conflicting possibilities arise: (i) with the advent of multi-core architectures, the number of processes that reside on the same physical node and hence share the same physical network can potentially increase significantly, resulting in increased network usage, and (ii) given the increase in intra-node shared-memory communication for processes residing on the same node, the network usage can potentially decrease significantly. In this paper, we address these two conflicting possibilities and study the behavior of network usage in multi-core environments with sample scientific applications. Specifically, we analyze trends that result in increase or decrease of network usage, and we derive insights into application performance based on these. We also study the sharing of different resources in the system in multi-core environments and identify the contribution of the network in this mix. In addition, we study different process allocation strategies and analyze their impact on such network sharing.

  9. Biologically relevant neural network architectures for support vector machines.

    PubMed

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme.

  10. An OSI architecture for the deep space network

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Cooper, Lynne P.

    1993-01-01

    The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.

  11. Mesoscale architecture shapes initiation and richness of spontaneous network activity.

    PubMed

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich

    2017-03-14

    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro. The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo. Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro. In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e. promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics.SIGNIFICANCE STATEMENTComputational studies predict richer and persisting spatio-temporal patterns of spontaneous activity in

  12. Integrated network architecture for sustained human and robotic exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Cesarone, Robert; Deutsch, Leslie; Edwards, Charlie; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazzolla, Sabino; Hastrup, Rolf; Abraham, Douglas

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require telecommunication and navigation services. This paper sets forth presumed requirements for such services and presents strawman lunar and Mars telecommunications network architectures to satisfy the presumed requirements.

  13. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  14. Service Independent Access Control Architecture for User Generated Content (UGC) and Its Implementation

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Kubota, Ayumu; Miyake, Yutaka; Hashimoto, Kazuo

    Using Web-based content management systems such as Blog, an end user can easily publish User Generated Content (UGC). Although publishing of UGCs is easy, controlling access to them is a difficult problem for end users. Currently, most of Blog sites offer no access control mechanism, and even when it is available to users, it is not sufficient to control users who do not have an account at the site, not to mention that it cannot control accesses to content hosted by other UGC sites. In this paper, we propose new access control architecture for UGC, in which third party entities can offer access control mechanism to users independently of UGC hosting sites. With this architecture, a user can control accesses to his content that might be spread over many different UGC sites, regardless of whether those sites have access control mechanism or not. The key idea to separate access control mechanism from UGC sites is to apply cryptographic access control and we implemented the idea in such a way that it requires no modification to UGC sites and Web browsers. Our prototype implementation shows that the proposed access control architecture can be easily deployed in the current Web-based communication environment and it works quite well with popular Blog sites.

  15. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  16. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  17. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  18. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit-switching architecture is described for a 30/20-GHz frequency-division, multiple-access uplink/time-division-multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  19. Building and measuring a high performance network architecture

    SciTech Connect

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  20. An introduction to bio-inspired artificial neural network architectures.

    PubMed

    Fasel, B

    2003-03-01

    In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.

  1. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  2. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc.

  3. Neural network architectures to analyze OPAD data

    NASA Technical Reports Server (NTRS)

    Whitaker, Kevin W.

    1992-01-01

    A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.

  4. Centralized and distributed control architectures under Foundation Fieldbus network.

    PubMed

    Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves

    2013-01-01

    This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations.

  5. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  6. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  7. Optical coherent technologies in next generation access networks

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  8. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  9. Neural Network Architectures for General Image Recognition.

    DTIC Science & Technology

    1992-07-21

    Design Procedure 88 A.5 Examples 92 A.6 Scaling Laws for Cooperative-Competitive Neural Networks 98 A.7 Discussion 100 REFERENCES 101 viii LIST OF...control law for vertical pull-in of the window. The two V2 outputs, NORTH and SOUTH, are subtracted and the window is moved if the thresholds are exceeded...An input pattern, shown in cross-hatching, is irapressed on M neurons. Each input neuron is connected to N hidden neutons and a single output neuron

  10. A FD/DAMA network architecture for the first generation land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Wang, C.; Cheng, U.; Dessouky, K.; Rafferty, W.

    1989-01-01

    A frequency division/demand assigned multiple access (FD/DAMA) network architecture for the first-generation land mobile satellite services is presented. Rationales and technical approaches are described. In this architecture, each mobile subscriber must follow a channel access protocol to make a service request to the network management center before transmission for either open-end or closed-end services. Open-end service requests will be processed on a blocked call cleared basis, while closed-end requests will be processed on a first-come-first-served basis. Two channel access protocols are investigated, namely, a recently proposed multiple channel collision resolution scheme which provides a significantly higher useful throughput, and the traditional slotted Aloha scheme. The number of channels allocated for either open-end or closed-end services can be adaptively changed according to aggregated traffic requests. Both theoretical and simulation results are presented. Theoretical results have been verified by simulation on the JPL network testbed.

  11. A network architecture for Petaflops supercomputers.

    SciTech Connect

    DeBenedictis, Erik P.

    2003-09-01

    If we are to build a supercomputer with a speed of 10{sup 15} floating operations per second (1 PetaFLOPS), interconnect technology will need to be improved considerably over what it is today. In this report, we explore one possible interconnect design for such a network. The guiding principle in this design is the optimization of all components for the finiteness of the speed of light. To achieve a linear speedup in time over well-tested supercomputers of todays' designs will require scaling up of processor power and bandwidth and scaling down of latency. Latency scaling is the most challenging: it requires a 100 ns user-to-user latency for messages traveling the full diameter of the machine. To meet this constraint requires simultaneously minimizing wire length through 3D packaging, new low-latency electrical signaling mechanisms, extremely fast routers, and new network interfaces. In this report, we outline approaches and implementations that will meet the requirements when implemented as a system. No technology breakthroughs are required.

  12. The Effects of a Dynamic Spectrum Access Overlay in LTE-Advanced Networks

    SciTech Connect

    Juan D. Deaton; Ryan E. Irwin; Luiz A. DaSilva

    2011-05-01

    As early as 2014, mobile network operators’ spectral capacity will be overwhelmed by the demand brought on by new devices and applications. To augment capacity and meet this demand, operators may choose to deploy a Dynamic Spectrum Access (DSA) overlay. The signaling and functionality required by such an overlay have not yet been fully considered in the architecture of the planned Long Term Evolution Advanced (LTE+) networks. This paper presents a Spectrum Accountability framework to be integrated into LTE+ architectures, defining specific element functionality, protocol interfaces, and signaling flow diagrams required to enforce the rights and responsibilities of primary and secondary users. We also quantify, through integer programs, the benefits of using DSA channels to augment capacity under a scenario in which LTE+ network can opportunistically use TV and GSM spectrum. The framework proposed here may serve as a guide in the development of future LTE+ network standards that account for DSA.

  13. Social network architecture and the maintenance of deleterious cultural traits

    PubMed Central

    Yeaman, Sam; Schick, Alana; Lehmann, Laurent

    2012-01-01

    How have changes in communications technology affected the way that misinformation spreads through a population and persists? To what extent do differences in the architecture of social networks affect the spread of misinformation, relative to the rates and rules by which individuals transmit or eliminate different pieces of information (cultural traits)? Here, we use analytical models and individual-based simulations to study how a ‘cultural load’ of misinformation can be maintained in a population under a balance between social transmission and selective elimination of cultural traits with low intrinsic value. While considerable research has explored how network architecture affects percolation processes, we find that the relative rates at which individuals transmit or eliminate traits can have much more profound impacts on the cultural load than differences in network architecture. In particular, the cultural load is insensitive to correlations between an individual's network degree and rate of elimination when these quantities vary among individuals. Taken together, these results suggest that changes in communications technology may have influenced cultural evolution more strongly through changes in the amount of information flow, rather than the details of who is connected to whom. PMID:22031730

  14. Social network architecture and the maintenance of deleterious cultural traits.

    PubMed

    Yeaman, Sam; Schick, Alana; Lehmann, Laurent

    2012-05-07

    How have changes in communications technology affected the way that misinformation spreads through a population and persists? To what extent do differences in the architecture of social networks affect the spread of misinformation, relative to the rates and rules by which individuals transmit or eliminate different pieces of information (cultural traits)? Here, we use analytical models and individual-based simulations to study how a 'cultural load' of misinformation can be maintained in a population under a balance between social transmission and selective elimination of cultural traits with low intrinsic value. While considerable research has explored how network architecture affects percolation processes, we find that the relative rates at which individuals transmit or eliminate traits can have much more profound impacts on the cultural load than differences in network architecture. In particular, the cultural load is insensitive to correlations between an individual's network degree and rate of elimination when these quantities vary among individuals. Taken together, these results suggest that changes in communications technology may have influenced cultural evolution more strongly through changes in the amount of information flow, rather than the details of who is connected to whom.

  15. Amplified CWDM-based Next Generation Broadband Access Networks

    NASA Astrophysics Data System (ADS)

    Peiris, Sasanthi Chamarika

    The explosive growth of both fixed and mobile data-centric traffic along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks will ultimately lead to an all-packet-based converged fixed-mobile optical transport network from the core all the way out to the access network. To address the increasing capacity and speed requirements in the access networks, Wavelength-Division Multiplexed (WDM) and/or Coarse WDM (CWDM)-based Passive Optical Networks (PONs) are expected to emerge as the next-generation optical access infrastructures. However, due to several techno-economic hurdles, CWDM-PONs are still considered an expensive solution and have not yet made any significant inroads into the current access area. One of the key technology hurdles is the scalability of the CWDM-based PONs. Passive component optical insertion losses limit the reach of the network or the number of served optical network units (ONUs). In the recent years, optical amplified CWDM approaches have emerged and new designs of optical amplifiers have been proposed and demonstrated. The critical design parameter for these amplifiers is the very wide optical amplification bandwidth (e.g., 340 nm combined for both directions). The objective of this PhD dissertation work is first to engineer ring and tree-ring based PON architectures that can achieve longer unamplified PON reach and/or provide service to a greater number of ONUs and customers. Secondly is to develop new novel optical amplifier schemes to further address the scalability limitation of the CWDM-based PONs. Specifically, this work proposes and develops novel ultra wide-band hybrid Raman-Optical parametric amplifier (HROPA) schemes that operate over nearly the entire specified CWDM band to provide 340 nm bidirectional optical gain bandwidth over the amplified PON's downstream and upstream CWDM wavelength bands (about 170 nm in each direction). The performance of the proposed HROPA schemes is assessed

  16. Evolution of network architecture in a granular material under compression

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James G.; Daniels, Karen E.; Bassett, Danielle S.

    2016-09-01

    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study

  17. Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network

    NASA Astrophysics Data System (ADS)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Wang, Hongxiang

    2015-12-01

    Fast bandwidth growth urges large-scale high-density access scenarios, where the multiple Passive Optical Networking (PON) system clustered deployment can be adopted as an appropriate solution to fulfill the huge bandwidth demands, especially for a future 5G mobile network. However, the lack of interaction between different optical line terminals (OLTs) results in part of the bandwidth resources waste. To increase the bandwidth efficiency, as well as reduce bandwidth pressure at the edge of a network, we propose a centralized flexible PON architecture based on Time- and Wavelength-Division Multiplexing PON (TWDM PON). It can provide flexible affiliation for optical network units (ONUs) and different OLTs to support access network traffic localization. Specifically, a dynamic ONU grouping algorithm (DGA) is provided to obtain the minimal OLT outbound traffic. Simulation results show that DGA obtains an average 25.23% traffic gain increment under different OLT numbers within a small ONU number situation, and the traffic gain will increase dramatically with the increment of the ONU number. As the DGA can be deployed easily as an application running above the centralized control plane, the proposed architecture can be helpful to improve the network efficiency for future traffic-intensive access scenarios.

  18. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    NASA Technical Reports Server (NTRS)

    Bonometti, J. A.; Dankanich, J. W.; Frame, K. L.

    2005-01-01

    The primary obstacle to any space-based mission is, and has always been, the cost of access to space. Even with impressive efforts toward reusability, no system has come close to lowering the cost a significant amount. It is postulated here, that architectural innovation is necessary to make reusability feasible, not incremental subsystem changes. This paper shows two architectural approaches of reusability that merit further study investments. Both #inherently# have performance increases and cost advantages to make affordable access to space a near term reality. A rocket launched from a subsonic aircraft (specifically the Crossbow methodology) and a momentum exchange tether, reboosted by electrodynamics, offer possibilities of substantial reductions in the total transportation architecture mass - making access-to-space cost-effective. They also offer intangible benefits that reduce risk or offer large growth potential. The cost analysis indicates that approximately a 50% savings is obtained using today#s aerospace materials and practices.

  19. The TurboLAN project. Phase 1: Protocol choices for high speed local area networks. Phase 2: TurboLAN Intelligent Network Adapter Card, (TINAC) architecture

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit.

  20. High-performance, scalable optical network-on-chip architectures

    NASA Astrophysics Data System (ADS)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  1. Advancing reversible shape memory by tuning the polymer network architecture

    SciTech Connect

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei S.

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loose network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.

  2. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  3. Shifts in the architecture of the Nationwide Health Information Network.

    PubMed

    Lenert, Leslie; Sundwall, David; Lenert, Michael Edward

    2012-01-01

    In the midst of a US $30 billion USD investment in the Nationwide Health Information Network (NwHIN) and electronic health records systems, a significant change in the architecture of the NwHIN is taking place. Prior to 2010, the focus of information exchange in the NwHIN was the Regional Health Information Organization (RHIO). Since 2010, the Office of the National Coordinator (ONC) has been sponsoring policies that promote an internet-like architecture that encourages point to-point information exchange and private health information exchange networks. The net effect of these activities is to undercut the limited business model for RHIOs, decreasing the likelihood of their success, while making the NwHIN dependent on nascent technologies for community level functions such as record locator services. These changes may impact the health of patients and communities. Independent, scientifically focused debate is needed on the wisdom of ONC's proposed changes in its strategy for the NwHIN.

  4. Fast packet switch architectures for broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  5. A Holistic Management Architecture for Large-Scale Adaptive Networks

    DTIC Science & Technology

    2007-09-01

    MANAGEMENT ARCHITECTURE FOR LARGE-SCALE ADAPTIVE NETWORKS by Michael R. Clement September 2007 Thesis Advisor: Alex Bordetsky Second Reader...TECHNOLOGY MANAGEMENT from the NAVAL POSTGRADUATE SCHOOL September 2007 Author: Michael R. Clement Approved by: Dr. Alex ...achieve in life is by His will. Ad Majorem Dei Gloriam. To my parents, my family, and Caitlin: For supporting me, listening to me when I got

  6. 47 CFR 36.213 - Network access services revenues.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Network access services revenues. 36.213 Section 36.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Income Accounts Operating Revenues § 36.213 Network access services revenues. (a) End User...

  7. A multi-agent system architecture for sensor networks.

    PubMed

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  8. A Multi-Agent System Architecture for Sensor Networks

    PubMed Central

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  9. Integrated Network Architecture for Sustained Human and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; Hastrup, Rolf; Abraham, Douglas; Miles, Sue; Manshadi, Farzin

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  10. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments.

  11. An Integrated Architecture to Support Hastily Formed Network (HFN)

    DTIC Science & Technology

    2007-12-01

    Figure 8. EU 1000I, EU 2000I and EU 3000IS...............................................................52 Figure 9. Inmarsat BGAN Satellite Coverage...Hughes 9201 Broadband Satellite IP Terminal with Wireless LAN Access Point, which interfaces over the Inmarsat BGAN satellite network, has many...advantages that make it an attractive solution. (1) Global Coverage BGAN delivers seamless network coverage across most of the world’s land mass

  12. Assessment methodology of protection schemes for next generation optical access networks

    NASA Astrophysics Data System (ADS)

    Mas Machuca, Carmen; Wosinska, Lena; Chen, Jiajia

    2015-12-01

    Optical access networks are evolving towards next generation solutions offering much higher bandwidth per end point. Moreover, the uninterrupted access to the network services is becoming crucial and therefore operators are now considering protecting their access networks. However, the cost factor is still very important due to the relatively low cost sharing in access segment. For this purpose, this paper proposes an assessment methodology that can be used to compare different protection schemes and help to identify the suitable solution for a given scenario. The assessment criteria includes some reliability measures such as Failure Impact Factor (FIF) and connection availability, as well as cost parameters such as the investment required in greenfield and brownfield scenarios and the increase in power consumption compared to the unprotected network. The proposed criteria have been used to compare 7 representative protection schemes shown in literature, which differ mainly in the number of protected network elements and the technology used for protection (fiber, wireless, etc.). The considered protection schemes have been applied to a hybrid wavelength division multiplexing/time division multiplexing Passive Optical Network (Hybrid PON) architecture in an urban area. It has been shown that it is difficult to identify the absolute best scheme with respect to all the considered criteria. However, depending on the requirements from the operator regarding the targeted reliability performance in the network, an appropriate protection scheme can be recommended for either a greenfield or a brownfield scenario.

  13. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  14. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  15. FODA: a novel efficient multiple access protocol for highly dynamic self-organizing networks

    NASA Astrophysics Data System (ADS)

    Li, Hantao; Liu, Kai; Zhang, Jun

    2005-11-01

    Based on the concept of contention reservation for polling transmission and collision prevention strategy for collision resolution, a fair on-demand access (FODA) protocol for supporting node mobility and multihop architecture in highly dynamic self-organizing networks is proposed. In the protocol, a distributed clustering network architecture formed by self-organizing algorithm and a main idea of reserving channel resources to get polling service are adopted, so that the hidden terminal (HT) and exposed terminal (ET) problems existed in traffic transmission due to multihop architecture and wireless transmission can be eliminated completely. In addition, an improved collision prevention scheme based on binary countdown algorithm (BCA), called fair collision prevention (FCP) algorithm, is proposed to greatly eliminate unfair phenomena existed in contention access of newly active ordinary nodes and completely resolve access collisions. Finally, the performance comparison of the FODA protocol with carrier sense multiple access with collision avoidance (CSMA/CA) and polling protocols by OPNET simulation are presented. Simulation results show that the FODA protocol can overcome the disadvantages of CSMA/CA and polling protocols, and achieve higher throughput, lower average message delay and less average message dropping rate.

  16. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    PubMed

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.

  17. Broadband architecture for galvanically accessible superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Bosman, Sal J.; Singh, Vibhor; Bruno, Alessandro; Steele, Gary A.

    2015-11-01

    In many hybrid quantum systems, a superconducting circuit is required, which combines DC-control with a coplanar waveguide (CPW) microwave resonator. The strategy thus far for applying a DC voltage or current bias to microwave resonators has been to apply the bias through a symmetry point in such a way that it appears as an open circuit for certain frequencies. Here, we introduce a microwave coupler for superconducting CPW cavities in the form of a large shunt capacitance to ground. Such a coupler acts as a broadband mirror for microwaves while providing galvanic connection to the center conductor of the resonator. We demonstrate this approach with a two-port λ/4-transmission resonator with linewidths in the MHz regime ( Q ˜103 ) that shows no spurious resonances and apply a voltage bias up to 80 V without affecting the quality factor of the resonator. This resonator coupling architecture, which is simple to engineer, fabricate, and analyse, could have many potential applications in experiments involving superconducting hybrid circuits.

  18. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  19. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  20. Cortical network architecture for context processing in primate brain

    PubMed Central

    Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka

    2015-01-01

    Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition. DOI: http://dx.doi.org/10.7554/eLife.06121.001 PMID:26416139

  1. Accessing and distributing EMBL data using CORBA (common object request broker architecture)

    PubMed Central

    Wang, Lichun; Rodriguez-Tomé, Patricia; Redaschi, Nicole; McNeil, Phil; Robinson, Alan; Lijnzaad, Philip

    2000-01-01

    Background: The EMBL Nucleotide Sequence Database is a comprehensive database of DNA and RNA sequences and related information traditionally made available in flat-file format. Queries through tools such as SRS (Sequence Retrieval System) also return data in flat-file format. Flat files have a number of shortcomings, however, and the resources therefore currently lack a flexible environment to meet individual researchers' needs. The Object Management Group's common object request broker architecture (CORBA) is an industry standard that provides platform-independent programming interfaces and models for portable distributed object-oriented computing applications. Its independence from programming languages, computing platforms and network protocols makes it attractive for developing new applications for querying and distributing biological data. Results: A CORBA infrastructure developed by EMBL-EBI provides an efficient means of accessing and distributing EMBL data. The EMBL object model is defined such that it provides a basis for specifying interfaces in interface definition language (IDL) and thus for developing the CORBA servers. The mapping from the object model to the relational schema in the underlying Oracle database uses the facilities provided by PersistenceTM, an object/relational tool. The techniques of developing loaders and 'live object caching' with persistent objects achieve a smart live object cache where objects are created on demand. The objects are managed by an evictor pattern mechanism. Conclusions: The CORBA interfaces to the EMBL database address some of the problems of traditional flat-file formats and provide an efficient means for accessing and distributing EMBL data. CORBA also provides a flexible environment for users to develop their applications by building clients to our CORBA servers, which can be integrated into existing systems. PMID:11178259

  2. Evolution and genetic architecture of chromatin accessibility and function in yeast.

    PubMed

    Connelly, Caitlin F; Wakefield, Jon; Akey, Joshua M

    2014-07-01

    Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign.

  3. An open, interoperable, and scalable prehospital information technology network architecture.

    PubMed

    Landman, Adam B; Rokos, Ivan C; Burns, Kevin; Van Gelder, Carin M; Fisher, Roger M; Dunford, James V; Cone, David C; Bogucki, Sandy

    2011-01-01

    Some of the most intractable challenges in prehospital medicine include response time optimization, inefficiencies at the emergency medical services (EMS)-emergency department (ED) interface, and the ability to correlate field interventions with patient outcomes. Information technology (IT) can address these and other concerns by ensuring that system and patient information is received when and where it is needed, is fully integrated with prior and subsequent patient information, and is securely archived. Some EMS agencies have begun adopting information technologies, such as wireless transmission of 12-lead electrocardiograms, but few agencies have developed a comprehensive plan for management of their prehospital information and integration with other electronic medical records. This perspective article highlights the challenges and limitations of integrating IT elements without a strategic plan, and proposes an open, interoperable, and scalable prehospital information technology (PHIT) architecture. The two core components of this PHIT architecture are 1) routers with broadband network connectivity to share data between ambulance devices and EMS system information services and 2) an electronic patient care report to organize and archive all electronic prehospital data. To successfully implement this comprehensive PHIT architecture, data and technology requirements must be based on best available evidence, and the system must adhere to health data standards as well as privacy and security regulations. Recent federal legislation prioritizing health information technology may position federal agencies to help design and fund PHIT architectures.

  4. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  5. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  6. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  7. Scalla: Structured Cluster Architecture for Low Latency Access

    SciTech Connect

    Hanushevsky, Andrew; Wang, Daniel L.; /SLAC

    2012-03-20

    Scalla is a distributed low-latency file access system that incorporates novel techniques that minimize latency and maximize scalability over a large distributed system with a distributed namespace. Scalla's techniques have shown to be effective in nearly a decade of service for the high-energy physics community using commodity hardware and interconnects. We describe the two components used in Scalla that are instrumental in its ability to provide low-latency, fault-tolerant name resolution and load distribution, and enable its use as a high-throughput, low-latency communication layer in the Qserv system, the Large Synoptic Survey Telescope's (LSST's) prototype astronomical query system. Scalla arguably exceeded its three main design objectives: low latency, scaling, and recoverability. In retrospect, these objectives were met using a simple but effective design. Low latency was met by uniformly using linear or constant time algorithms in all high-use paths, avoiding locks whenever possible, and using compact data structures to maximize the memory caching efficiency. Scaling was achieved by architecting the system as a 64-ary tree. Nodes can be added easily and as the number of nodes increases, search performance increases at an exponential rate. Recoverability is inherent in that no permanent state information is maintained and whatever state information is needed it can be quickly constructed or reconstructed in real time. This allows dynamic changes in a cluster of servers with little impact on over-all performance or usability. Today, Scalla is being deployed in environments and for uses that were never conceived in 2001. This speaks well for the systems adaptability but the underlying reason is that the system can meet its three fundamental objectives at the same time.

  8. Network architecture underlying maximal separation of neuronal representations

    PubMed Central

    Jortner, Ron A.

    2011-01-01

    One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe–mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon cells (KCs), and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a straightforward way to construct ecologically meaningful representations from this code. PMID:23316159

  9. HOWRAN: An Hybrid Optical Wireless Radio Access Network for WiMAX Antennas Backhauling

    NASA Astrophysics Data System (ADS)

    Gagnaire, Maurice; Youssef, Tony

    In comparison to existing 3G or 3G+ wireless systems, fourth generation (4G), long-term evolution (LTE) or mobile Wimax are characterized by higher bit rates, highly fluctuant traffic matrices and higher antenna’s density. Current backhauling techniques federating radio antennas are not suited to these new characteristics. Several investigations are carried out for the design of new generation radio access networks (NG-RAN) in charge of concentrating radio cellular traffic from the base stations to the core network. In this paper, we propose an original approach based on an Hybrid Optical Wireless Radio Access Network (HOWRAN) exploiting the benefits of radio-over-fiber technologies and of recent advances in the field of optical devices and systems. As an illustration, we apply the HOWRAN concept to the backhauling of fixed or mobile WiMAX base stations. The two main innovative aspects of HOWRAN are depicted: its hardware architecture and its control plane.

  10. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by

  11. Easy Access: Auditing the System Network

    ERIC Educational Resources Information Center

    Wiech, Dean

    2013-01-01

    In today's electronic learning environment, access to appropriate systems and data is of the utmost importance to students, faculty, and staff. Without proper access to the school's internal systems, teachers could be prevented from logging on to an online learning system and students might be unable to submit course work to an online…

  12. Cross-fertilization between connectionist networks and highly parallel architectures

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1989-01-01

    The theoretical and practical connections between connectionist schemes such as neural-network computers and traditional symbolic processing architectures involving a high degree of parallelism are explored, reviewing the results of recent investigations. Topics addressed include data flow, data structure, and control flow; conventional pointers; associative addressing; hashing and reduced representations; the problem of binding values to variables; and levels of parallelism. It is concluded that connectionism is more closely related to traditional computer science and technology than is generally admitted; more cooperation between followers of the two approaches is recommended.

  13. A Modular Ring Architecture for Large Scale Neural Network Implementations

    NASA Astrophysics Data System (ADS)

    Jump, Lance B.; Ligomenides, Panos A.

    1989-11-01

    Constructing fully parallel, large scale, neural networks is complicated by the problems of providing for massive interconnectivity and of overcoming fan in/out limitations in area-efficient VLSI/WSI realizations. A modular, bus switched, neural ring architecture employing primitive ring (pRing) processors is proposed, which solves the fan in/out and connectivity problems by a dynamically reconfigurable communication ring that synchronously serves identical, radially connected, processing elements. It also allows cost versus performance trade-offs by the assignment of variable numbers of logical neurons to each physical processing element.

  14. A hybrid 802.16/802.11 network architecture for a United States coastal area network

    NASA Astrophysics Data System (ADS)

    Burbank, Jack L.; Kasch, William T.; Andrusenko, Julia; Haberman, Brian K.; Nichols, Robert; Zheng, Harold

    2007-04-01

    This paper presents a concept for a United States Coastal Area Network (U-SCAN) that is comprised of IEEE 802.11, 802.16, and satellite communications technologies. The Office of Naval Research (ONR) on behalf of the National Oceanographic Partnership Program (NOPP) has tasked The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to perform an architectural study into the establishment of a United States Coastal Area Network (U-SCAN). The goal of this study is to define a wireless network architecture that can be deployed to enable contiguous coastal area network coverage for scientific, commercial, and homeland security (e.g. Coast Guard) applications within the United States Exclusive Economic Zone (EEZ), in a manner that is flexible, manageable, and affordable. The JHU/APL study will ultimately provide recommendations to NOPP regarding potential network architectures and technologies that could provide the desired capability, with a particular focus on commercial (both existing and emerging) technologies. This paper presents the envisioned U-SCAN architecture, and presents the envisioned technical capabilities and shortcomings of the component candidate technologies.

  15. SANDS: An Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2007-01-01

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics. PMID:18693950

  16. Network design sensitivity studies for use of digital cross-connect systems in survivable network architectures

    NASA Astrophysics Data System (ADS)

    Doverspike, Robert D.; Morgan, Jonathan A.; Leland, Will

    1994-01-01

    This paper provides the results of an economic study on the use of SONET Digital Cross-connect Systems (DCS's) to provide survivable transmission network architectures in local exchange networks. Three fundamental survivable transmission technologies are considered: (1) a SONET self-healing ring; (2) a SONET point-to-point fiber system with 1:1 automatic protection switching and diverse routing of protection facilities; and (3) a DCS mesh with automatic DCS restoration (rerouting) protection. These three technologies are used in various combinations to form six survivable network alternatives for evaluation. Two Local Exchange Carrier (LEC) networks are used (a 15 node network and a 53 node network) and demand, network connectivity, and unit equipment cost sensitivities are evaluated on these alternatives. In addition, the survivability of each alternative in the event of major node failure is calculated. The motivation for the study is to determine the viability of DCS-based survivable network architectures and, in particular, the viability of SONET DCS's with integrated optical terminations. The study has two objectives: (1) given a specific survivable network technology, under what conditions is it economical to place a Broadband DCS (B-DCS) in a central office as opposed Add-Drop Multiplexers (ADM's); and (2) which survivable technologies with B-DCS's are economical, and under networks consists of 'hybrids' of SONET point-to-point, ring and mesh technologies, and that the B-DCS is economically viable for interconnection between these technologies.

  17. Phase transition of the microvascular network architecture in human pathologies.

    PubMed

    Bianciardi, Giorgio; Traversi, Claudio; Cattaneo, Ruggero; De Felice, Claudia; Monaco, Annalisa; Tosi, Gianmarco; Parrini, Stefano; Latini, Giuseppe

    2012-01-01

    We have investigated the microvascular pattern in acquired or genetic diseases in humans. The lower gingival and vestibular oral mucosa, as well as the optic nerve head, was chosen to characterize the vascular pattern complexity due to the simple accessibility and visibility Local fractal dimensions, fractal dimension of the minimum path and Lempel-Ziv complexity have been used as operational numerical tools to characterize the microvascular networks. In the normal healthy subjects microvascular networks show nonlinear values corresponding to the complexity of a diffusion limited aggregation (DLA) model, while in several acquired or genetic diseases they are approaching the ones of an invasion percolation model.

  18. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, B.; Chalmers, H.

    1987-01-01

    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model.

  19. Architectural approach for quality and safety aware healthcare social networks.

    PubMed

    López, Diego M; Blobel, Bernd; González, Carolina

    2012-01-01

    Quality of information and privacy and safety issues are frequently identified as main limitations to make most benefit from social media in healthcare. The objective of the paper is to contribute to the analysis of healthcare social networks (SN), and online healthcare social network services (SNS) by proposing a formal architectural analysis of healthcare SN and SNS, considering the complexity of both systems, but stressing on quality, safety and usability aspects. Quality policies are necessary to control the quality of content published by experts and consumers. Privacy and safety policies protect against inappropriate use of information and users responsibility for sharing information. After the policies are established and documented, a proof of concept online SNS supporting primary healthcare promotion is presented in the paper.

  20. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  1. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  2. User Procedures Standardization for Network Access. NBS Technical Note 799.

    ERIC Educational Resources Information Center

    Neumann, A. J.

    User access procedures to information systems have become of crucial importance with the advent of computer networks, which have opened new types of resources to a broad spectrum of users. This report surveys user access protocols of six representative systems: BASIC, GE MK II, INFONET, MEDLINE, NIC/ARPANET and SPIRES. Functional access…

  3. Engineered skeletal muscle tissue networks with controllable architecture

    PubMed Central

    Bian, Weining; Bursac, Nenad

    2009-01-01

    The engineering of functional skeletal muscle tissue substitutes holds promise for the treatment of various muscular diseases and injuries. However, no tissue fabrication technology currently exists for the generation of a relatively large and thick bioartificial muscle made of densely packed, uniformly aligned, and differentiated myofibers. In this study, we describe a versatile cell/hydrogel micromolding approach where polydimethylsiloxane (PDMS) molds containing an array of elongated posts were used to fabricate relatively large neonatal rat skeletal muscle tissue networks with reproducible and controllable architecture. By combining cell-mediated fibrin gel compaction and precise microfabrication of mold dimensions including the length and height of the PDMS posts, we were able to simultaneously support high cell viability, guide cell alignment along the microfabricated tissue pores, and reproducibly control the overall tissue porosity, size, and thickness. The interconnected muscle bundles within the porous tissue networks were composed of densely packed, aligned, and highly differentiated myofibers. The formed myofibers expressed myogenin, developed abundant cross-striations, and generated spontaneous tissue contractions at the macroscopic spatial scale. The proliferation of non-muscle cells was significantly reduced compared to monolayer cultures. The more complex muscle tissue architectures were fabricated by controlling the spatial distribution and direction of the PDMS posts. PMID:19070360

  4. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    PubMed Central

    2009-01-01

    Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks. PMID:20042075

  5. Firewall Architectures for High-Speed Networks: Final Report

    SciTech Connect

    Errin W. Fulp

    2007-08-20

    Firewalls are a key component for securing networks that are vital to government agencies and private industry. They enforce a security policy by inspecting and filtering traffic arriving or departing from a secure network. While performing these critical security operations, firewalls must act transparent to legitimate users, with little or no effect on the perceived network performance (QoS). Packets must be inspected and compared against increasingly complex rule sets and tables, which is a time-consuming process. As a result, current firewall systems can introduce significant delays and are unable to maintain QoS guarantees. Furthermore, firewalls are susceptible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with illegitimate traffic. Current firewall technology only offers a short-term solution that is not scalable; therefore, the \\textbf{objective of this DOE project was to develop new firewall optimization techniques and architectures} that meet these important challenges. Firewall optimization concerns decreasing the number of comparisons required per packet, which reduces processing time and delay. This is done by reorganizing policy rules via special sorting techniques that maintain the original policy integrity. This research is important since it applies to current and future firewall systems. Another method for increasing firewall performance is with new firewall designs. The architectures under investigation consist of multiple firewalls that collectively enforce a security policy. Our innovative distributed systems quickly divide traffic across different levels based on perceived threat, allowing traffic to be processed in parallel (beyond current firewall sandwich technology). Traffic deemed safe is transmitted to the secure network, while remaining traffic is forwarded to lower levels for further examination. The result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher throughput

  6. Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Larson, Wiley; Mueller, Robert; Roberson, Luke

    2012-01-01

    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport

  7. Proposal of a multi-layer network architecture for OBS/GMPLS network interworking

    NASA Astrophysics Data System (ADS)

    Guo, Hongxiang; Tsuritani, Takehiro; Yin, Yawei; Otani, Tomohiro; Wu, Jian

    2007-11-01

    In order to enable the existing optical circuit switching (OCS) network to support both wavelength and subwavelength granularities, this paper proposes overlay-based multi-layer network architecture for interworking the generalized multi-protocol label switching (GMPLS) controlled OCS network with optical burst switching (OBS) networks. A dedicated GMPLS border controller with necessary GMPLS extensions, including group label switching path (LSP) provisioning, node capability advertisement, and standard wavelength label as well as wavelength availability advertisement, is introduced in this multi-layer network to enable a simple but flexible interworking operation. The feasibility of this proposal is experimentally confirmed by demonstrating an OBS/GMPLS testbed, in which the extended node capability advertisement and group LSP functions successfully enabled the burst header packet (BHP) and data burst (DB) to transmit over a GMPLS-controlled transparent OCS network.

  8. Multiple-Access Techniques for Broadband Networks

    DTIC Science & Technology

    1991-12-20

    satellite-to- earth -station links of corn- some of the transmitted signals either separately (subop- munieation networks. When bursty data or voice traffic...frequency-sclective and lite-to- earth -station links in communication networks such multipath fading. These properties of SSMA are of inter- as the...Muy, nd. Cokle Pat, through the Nati• l Sciemce Foundation’s Enering Rmo&l Ca0 PraSm: NSF CDI NMOIOI MULTI-SENSOR CORRELATION AND QUANTIZATION IN

  9. Extending Digital Repository Architectures to Support Disk Image Preservation and Access

    DTIC Science & Technology

    2011-06-01

    Extending Digital Repository Architectures to Support Disk Image Preservation and Access Kam Woods School of Information and Library Science University...of North Carolina 216 Lenoir Drive, CB #3360 1-(919)-966-3598 kamwoods@email.unc.edu Christopher A. Lee School of Information and Library ... Science University of North Carolina 216 Lenoir Drive, CB #3360 1-(919)-962-7204 callee@ils.unc.edu Simson Garfinkel Graduate School of

  10. WDS Knowledge Network Architecture in Support of International Science

    NASA Astrophysics Data System (ADS)

    Mokrane, M.; Minster, J. B. H.; Hugo, W.

    2014-12-01

    ICSU (International Council for Science) created the World Data System (WDS) as an interdisciplinary body at its General Assembly in Maputo in 2008, and since then the membership of the WDS has grown to include 86 members, of whom 56 are institutions or data centers focused on providing quality-assured data and services to the scientific community, and 10 more are entire networks of such data facilities and services. In addition to its objective of providing universal and equitable access to scientific data and services, WDS is also active in promoting stewardship, standards and conventions, and improved access to products derived from data and services. Whereas WDS is in process of aggregating and harmonizing the metadata collections of its membership, it is clear that additional benefits can be obtained by supplementing such traditional metadata sources with information about members, authors, and the coverages of the data, as well as metrics such as citation indices, quality indicators, and usability. Moreover, the relationships between the actors and systems that populate this metadata landscape can be seen as a knowledge network that describes a subset of global scientific endeavor. Such a knowledge network is useful in many ways, supporting both machine-based and human requests for contextual information related to a specific data set, institution, author, topic, or other entities in the network. Specific use cases that can be realized include decision and policy support for funding agencies, identification of collaborators, ranking of data sources, availability of data for specific coverages, and many more. The paper defines the scope of and conceptual background to such a knowledge network, discusses some initial work done by WDS to establish the network, and proposes an implementation model for rapid operationalization. In this model, established interests such as DataCite, ORCID, and CrossRef have well-defined roles, and the standards, services, and

  11. Architecture of the Florida power grid as a complex network

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Gurfinkel, Aleks Jacob; Rikvold, Per Arne

    2014-05-01

    We study the Florida high-voltage power grid as a technological network embedded in space. Measurements of geographical lengths of transmission lines, the mixing of generators and loads, the weighted clustering coefficient, as well as the organization of edge conductance weights show a complex architecture quite different from random-graph models usually considered. In particular, we introduce a parametrized mixing matrix to characterize the mixing pattern of generators and loads in the Florida Grid, which is intermediate between the random mixing case and the semi-bipartite case where generator-generator transmission lines are forbidden. Our observations motivate an investigation of optimization (design) principles leading to the structural organization of power grids. We thus propose two network optimization models for the Florida Grid as a case study. Our results show that the Florida Grid is optimized not only by reducing the construction cost (measured by the total length of power lines), but also through reducing the total pairwise edge resistance in the grid, which increases the robustness of power transmission between generators and loads against random line failures. We then embed our models in spatial areas of different aspect ratios and study how this geometric factor affects the network structure, as well as the box-counting fractal dimension of the grids generated by our models.

  12. An architecture for distributed video applications based on declarative networking

    NASA Astrophysics Data System (ADS)

    Wang, Xiping; Gonzales, Cesar; Lobo, Jorge; Calo, Seraphin; Verma, Dinesh

    2012-06-01

    Video surveillance applications are examples of complex distributed coalition tasks. Real-time capture and analysis of image sensor data is one of the most important tasks in a number of military critical decision making scenarios. In complex battlefield situations, there is a need to coordinate the operation of distributed image sensors and the analysis of their data as transmitted over a heterogeneous wireless network where bandwidth, power, and computational capabilities are constrained. There is also a need to automate decision making based on the results of the analysis of video data. Declarative Networking is a promising technology for controlling complex video surveillance applications in this sort of environment. This paper presents a flexible and extensible architecture for deploying distributed video surveillance applications using the declarative networking paradigm, which allows us to dynamically connect and manage distributed image sensors and deploy various modules for the analysis of video data to satisfy a variety of video surveillance requirements. With declarative computing, it becomes possible for us not only to express the program control structure in a declarative fashion, but also to simplify the management of distributed video surveillance applications.

  13. Modeling cognitive and emotional processes: a novel neural network architecture.

    PubMed

    Khashman, Adnan

    2010-12-01

    In our continuous attempts to model natural intelligence and emotions in machine learning, many research works emerge with different methods that are often driven by engineering concerns and have the common goal of modeling human perception in machines. This paper aims to go further in that direction by investigating the integration of emotion at the structural level of cognitive systems using the novel emotional DuoNeural Network (DuoNN). This network has hidden layer DuoNeurons, where each has two embedded neurons: a dorsal neuron and a ventral neuron for cognitive and emotional data processing, respectively. When input visual stimuli are presented to the DuoNN, the dorsal cognitive neurons process local features while the ventral emotional neurons process the entire pattern. We present the computational model and the learning algorithm of the DuoNN, the input information-cognitive and emotional-parallel streaming method, and a comparison between the DuoNN and a recently developed emotional neural network. Experimental results show that the DuoNN architecture, configuration, and the additional emotional information processing, yield higher recognition rates and faster learning and decision making.

  14. Architecture of the Florida Power Grid as a Complex Network

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Gurfinkel, Aleks Jacob; Rikvold, Per Arne

    2014-03-01

    Power grids are the largest engineered systems ever built. Our work presents a simple and self-consistent graph-theoretic analysis of the Florida high-voltage power grid as a technological network embedded in two-dimensional space. We take a new perspective on the mixing patterns of generators and loads in power grids, pointing out that the real grid is usually intermediate between the random mixing and semi-bipartite case (in which generator-generator power transmission lines are disallowed). We propose spatial network models for power grids, which are obtained via a Monte Carlo cooling optimization process. Our results suggest some possible design principles behind the complex architecture of the Florida grid, viz. balancing low construction cost (measured by the total length of transmission lines) and an indispensable redundancy (measured by the clustering coefficient and edge multiplicity) responsible for the robustness of the grid. We also study community structures (modularity) of the real and modeled power-grid networks. Such communities can be electrically separated from each other to limit cascading power failures, a technique known as intentional islanding. Supported by NSF Grant No. DMR-1104829.

  15. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  16. Network architectures and protocols for the integration of ACTS and ISDN

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.; Lowry, P. A.

    1992-01-01

    A close integration of satellite networks and the integrated services digital network (ISDN) is essential for satellite networks to carry ISDN traffic effectively. This also shows how a given (pre-ISDN) satellite network architecture can be enhanced to handle ISDN signaling and provide ISDN services. It also describes the functional architecture and high-level protocols that could be implemented in the NASA Advanced Communications Technology Satellite (ACTS) low burst rate communications system to provide ISDN services.

  17. Optimal access to large databases via networks

    SciTech Connect

    Munro, J.K.; Fellows, R.L.; Phifer, D. Carrick, M.R.; Tarlton, N.

    1997-10-01

    A CRADA with Stephens Engineering was undertaken in order to transfer knowledge and experience about access to information in large text databases, with results of queries and searches provided using the multimedia capabilities of the World Wide Web. Data access is optimized by the use of intelligent agents. Technology Logic Diagram documents published for the DOE facilities in Oak Ridge (K-25, X-10, Y-12) were chosen for this effort because of the large number of technologies identified, described, evaluated, and ranked for possible use in the environmental remediation of these facilities. Fast, convenient access to this information is difficult because of the volume and complexity of the data. WAIS software used to provide full-text, field-based search capability can also be used, through the development of an appropriate hierarchy of menus, to provide tabular summaries of technologies satisfying a wide range of criteria. The menu hierarchy can also be used to regenerate dynamically many of the tables that appeared in the original hardcopy publications, all from a single text database of the technology descriptions. Use of the Web environment permits linking many of the Technology Logic Diagram references to on-line versions of these publications, particularly the DOE Orders and related directives providing the legal requirements that were the basis for undertaking the Technology Logic Diagram studies in the first place.

  18. Deep neural network architectures for forecasting analgesic response.

    PubMed

    Nickerson, Paul; Tighe, Patrick; Shickel, Benjamin; Rashidi, Parisa

    2016-08-01

    Response to prescribed analgesic drugs varies between individuals, and choosing the right drug/dose often involves a lengthy, iterative process of trial and error. Furthermore, a significant portion of patients experience adverse events such as post-operative urinary retention (POUR) during inpatient management of acute postoperative pain. To better forecast analgesic responses, we compared conventional machine learning methods with modern neural network architectures to gauge their effectiveness at forecasting temporal patterns of postoperative pain and analgesic use, as well as predicting the risk of POUR. Our results indicate that simpler machine learning approaches might offer superior results; however, all of these techniques may play a promising role for developing smarter post-operative pain management strategies.

  19. Controlled architecture for improved macromolecular memory within polymer networks.

    PubMed

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms.

  20. Knowledge Network Architecture in Support of International Science

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    ICSU (The International Council for Science) created the World Data System (WDS) as an interdisciplinary body at its General Assembly in Maputo in 2008, and since then the membership of the WDS has grown to include 86 members, of whom 56 are institutions or data centres focused on providing quality-assured data and services to the scientific community. In addition to its objective of providing universal and equitable access to such data and services, WDS is also active in promoting stewardship, standards and conventions, and improved access to products derived from data and services. Whereas WDS is in process of aggregating and harmonizing the meta-data collections of its membership, it is clear that additional benefits can be obtained by supplementing such traditional meta-data sources with information about members, authors, and the coverages of the data, as well as metrics such as citation indices, quality indicators, and usability. Moreover, the relationships between the actors and systems that populate this meta-data landscape can be seen as a knowledge network that describes a sub-set of global scientific endeavor. Such a knowledge network is useful in many ways, supporting both machine-based and human requests for contextual information related to a specific data set, institution, author, topic, or other entities in the network. Specific use cases that can be realised include decision and policy support for funding agencies, identification of collaborators, ranking of data sources, availability of data for specific coverages, and many more. The paper defines the scope of and conceptual background to such a knowledge network, discusses some initial work done by WDS to establish the network, and proposes an implementation model for rapid operationalisation. In this model, established interests such as DataCITE, ORCID, and CrossRef have well-defined roles, and the standards, services, and registries required to build a community-maintained, scalable knowledge

  1. Optimizing Libraries’ Content Findability Using Simple Object Access Protocol (SOAP) With Multi-Tier Architecture

    NASA Astrophysics Data System (ADS)

    Lahinta, A.; Haris, I.; Abdillah, T.

    2017-03-01

    The aim of this paper is to describe a developed application of Simple Object Access Protocol (SOAP) as a model for improving libraries’ digital content findability on the library web. The study applies XML text-based protocol tools in the collection of data about libraries’ visibility performance in the search results of the book. Model from the integrated Web Service Document Language (WSDL) and Universal Description, Discovery and Integration (UDDI) are applied to analyse SOAP as element within the system. The results showed that the developed application of SOAP with multi-tier architecture can help people simply access the website in the library server Gorontalo Province and support access to digital collections, subscription databases, and library catalogs in each library in Regency or City in Gorontalo Province.

  2. Distributed Prognostics and Health Management with a Wireless Network Architecture

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the

  3. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    NASA Astrophysics Data System (ADS)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  4. Research on mixed network architecture collaborative application model

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  5. Implementing wireless sensor networks for architectural heritage conservation

    NASA Astrophysics Data System (ADS)

    Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.

    2012-04-01

    Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other

  6. Phenotype accessibility and noise in random threshold gene regulatory networks.

    PubMed

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes.

  7. Next generation communications satellites: Multiple access and network studies

    NASA Technical Reports Server (NTRS)

    Stern, T. E.; Schwartz, M.; Meadows, H. E.; Ahmadi, H. K.; Gadre, J. G.; Gopal, I. S.; Matsmo, K.

    1980-01-01

    Following an overview of issues involved in the choice of promising system architectures for efficient communication with multiple small inexpensive Earth stations serving hetergeneous user populations, performance evaluation via analysis and simulation for six SS/TDMA (satellite-switched/time-division multiple access) system architectures is discussed. These configurations are chosen to exemplify the essential alternatives available in system design. Although the performance evaluation analyses are of fairly general applicability, whenever possible they are considered in the context of NASA's 30/20 GHz studies. Packet switched systems are considered, with the assumption that only a part of transponder capacit is devoted to packets, the integration of circuit and packet switched traffic being reserved for further study. Three types of station access are distinguished: fixed (FA), demand (DA), and random access (RA). Similarly, switching in the satellite can be assigned on a fixed (FS) or demand (DS) basis, or replaced by a buffered store-and-forward system (SF) onboard the satellite. Since not all access/switching combinations are practical, six systems are analyzed in detail: three FS SYSTEMS, FA/FS, DA/ES, RA/FS; one DS system, DA/DS; and two SF systems, FA/SF, DA/SF. Results are presented primarily in terms of delay-throughput characteristics.

  8. Overview of the Smart Network Element Architecture and Recent Innovations

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.

    2008-01-01

    In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.

  9. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  10. Dynamic Resource Allocation in Hybrid Access Femtocell Network

    PubMed Central

    Islam, Mohammad Tariqul

    2014-01-01

    Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA) for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP) owners' satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners' satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network. PMID:24782662

  11. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  12. A RAM architecture for concurrent access and on-chip testing

    NASA Technical Reports Server (NTRS)

    Liu, Jyh-Charn; Shin, Kang G.

    1991-01-01

    A novel RAM architecture supporting concurrent memory access and on-chip testing (CMAT) is proposed. A large-capacity memory chip is decomposed into test neighborhoods (TNDs), each of which is tested independently. When there are data stored in a TND, the data are saved into a buffer before testing the TND, and the TND's contents are restored using buffered data after testing the TND. If an external request is not made to the TND, the request can be directed to the addressed memory cells. Otherwise, the buffered data can be loaded back into the TND, or the request is detoured to a corresponding buffer. By deriving an analytical model, the performance penalty and hardware overhead of the CMAT architecture are shown to be very small.

  13. Effective number of accessed nodes in complex networks.

    PubMed

    Viana, Matheus P; Batista, João L B; Costa, Luciano da F

    2012-03-01

    The measurement called accessibility has been proposed as a means to quantify the efficiency of the communication between nodes in complex networks. This article reports results regarding the properties of accessibility, including its relationship with the average minimal time to visit all nodes reachable after h steps along a random walk starting from a source, as well as the number of nodes that are visited after a finite period of time. We characterize the relationship between accessibility and the average number of walks required in order to visit all reachable nodes (the exploration time), conjecture that the maximum accessibility implies the minimal exploration time, and confirm the relationship between the accessibility values and the number of nodes visited after a basic time unit. The latter relationship is investigated with respect to three types of dynamics: traditional random walks, self-avoiding random walks, and preferential random walks.

  14. Monitoring architectural heritage by wireless sensors networks: San Gimignano--a case study.

    PubMed

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-03

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the "Rognosa" tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached.

  15. Neural network architecture for cognitive navigation in dynamic environments.

    PubMed

    Villacorta-Atienza, José Antonio; Makarov, Valeri A

    2013-12-01

    Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution.

  16. A remote data access architecture for home-monitoring health-care applications.

    PubMed

    Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son

    2007-03-01

    With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.

  17. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    PubMed

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator.

  18. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  19. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  20. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  1. Distributed policy based access to networked heterogeneous ISR data sources

    NASA Astrophysics Data System (ADS)

    Bent, G.; Vyvyan, D.; Wood, David; Zerfos, Petros; Calo, Seraphin

    2010-04-01

    Within a coalition environment, ad hoc Communities of Interest (CoI's) come together, perhaps for only a short time, with different sensors, sensor platforms, data fusion elements, and networks to conduct a task (or set of tasks) with different coalition members taking different roles. In such a coalition, each organization will have its own inherent restrictions on how it will interact with the others. These are usually stated as a set of policies, including security and privacy policies. The capability that we want to enable for a coalition operation is to provide access to information from any coalition partner in conformance with the policies of all. One of the challenges in supporting such ad-hoc coalition operations is that of providing efficient access to distributed sources of data, where the applications requiring the data do not have knowledge of the location of the data within the network. To address this challenge the International Technology Alliance (ITA) program has been developing the concept of a Dynamic Distributed Federated Database (DDFD), also know as a Gaian Database. This type of database provides a means for accessing data across a network of distributed heterogeneous data sources where access to the information is controlled by a mixture of local and global policies. We describe how a network of disparate ISR elements can be expressed as a DDFD and how this approach enables sensor and other information sources to be discovered autonomously or semi-autonomously and/or combined, fused formally defined local and global policies.

  2. Performance Evaluation of Peer-to-Peer Progressive Download in Broadband Access Networks

    NASA Astrophysics Data System (ADS)

    Shibuya, Megumi; Ogishi, Tomohiko; Yamamoto, Shu

    P2P (Peer-to-Peer) file sharing architectures have scalable and cost-effective features. Hence, the application of P2P architectures to media streaming is attractive and expected to be an alternative to the current video streaming using IP multicast or content delivery systems because the current systems require expensive network infrastructures and large scale centralized cache storage systems. In this paper, we investigate the P2P progressive download enabling Internet video streaming services. We demonstrated the capability of the P2P progressive download in both laboratory test network as well as in the Internet. Through the experiments, we clarified the contribution of the FTTH links to the P2P progressive download in the heterogeneous access networks consisting of FTTH and ADSL links. We analyzed the cause of some download performance degradation occurred in the experiment and discussed about the effective methods to provide the video streaming service using P2P progressive download in the current heterogeneous networks.

  3. Design of an Efficient CAC for a Broadband DVB-S/DVB-RCS Satellite Access Network

    NASA Astrophysics Data System (ADS)

    Inzerilli, Tiziano; Montozzi, Simone

    2003-07-01

    This paper deals with efficient utilization of network resources in an advanced broadband satellite access system. It proposes a technique for admission control of IP streams with guaranteed QoS which does not interfere with the particular BoD (Bandwidth on Demand) algorithm that handles access to uplink bandwidth, an essential part of a DVB- RCS architecture. This feature of the admission control greatly simplify its integration in the satellite network. The purpose of this admission control algorithm in particular is to suitably and dynamically configure the overall traffic control parameters, in the access terminal of the user and service segment, with a simple approach which does not introduces limitations and/or constraints to the BoD algorithm. Performance of the proposed algorithm is evaluated thorugh Opnet simulations using an ad-hoc platform modeling DVB-based satellite access.The results presented in this paper were obtained within SATIP6 project, which is sponsored within the 5th EU Research Programme, IST. The aims of the project are to evaluate and demonstrate key issues of the integration of satellite-based access networks into the Internet in order to support multimedia services over wide areas. The satellite link layer is based on DVB-S on the forward link and DVB-RCS on the return link. Adaptation and optimization of the DVB-RCS access standard in order to support QoS provision are central issues of the project. They are handled through an integration of Connection Admission Control (CAC), Traffic Shaping and Policing techniques.

  4. A secure network access system for mobile IPv6

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Yuan, Man; He, Rui; Jiang, Luliang; Ma, Jian; Qian, Hualin

    2004-03-01

    With the fast development of Internet and wireless and mobile communication technology, the Mobile Internet Age is upcoming. For those providing Mobile Internet services, especially from the view of ISP (Internet Service Provider), current mobile IP protocol is insufficient. Since the Mobile IPv6 protocol will be popular in near future, how to provide a secure mobile IPv6 service is important. A secure mobile IPv6 network access system is highly needed for mobile IPv6 deployment. Current methods and systems are still inadequate, including EAP, PANA, 802.1X, RADIUS, Diameter, etc. In this paper, we describe main security goals for a secure mobile IPv6 access system, and propose a secure network access system to achieve them. This access system consists of access router, attendant and authentication servers. The access procedure is divided into three phases, which are initial phase, authentication and registration phase and termination phase. This system has many advantages, including layer two independent, flexible and extensible, no need to modify current IPv6 address autoconfiguration protocols, binding update optimization, etc. Finally, the security of the protocol in this system is analyzed and proved with Extended BAN logic method, and a brief introduction of system implementation is given.

  5. Visual pattern recognition network: its training algorithm and its optoelectronic architecture

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Liren

    1996-07-01

    A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition.

  6. Electrical Spreading Code-Based OFDM Optical Access Networks for Budget Enhancement and Reduced System Bandwidth Requirement

    NASA Astrophysics Data System (ADS)

    Kumar, Pravindra; Srivastava, Anand

    2015-12-01

    Passive optical networks based on orthogonal frequency division multiplexing (OFDM-PON) give better performance in high-speed optical access networks. For further improvement in performance, a new architecture of OFDM-PON based on spreading code in electrical domain is proposed and analytically analyzed in this paper. This approach is referred as hybrid multi-carrier code division multiple access-passive optical network (MC-CDMA-PON). Analytical results show that at bit error rate (BER) of 10-3, there is 9.4 dB and 14.2 dB improvement in optical power budget for downstream and upstream, respectively, with MC-CDMA-PON system as compared to conventional OFDM-PON system for the same number of optical network units (ONUs).

  7. The middleware architecture supports heterogeneous network systems for module-based personal robot system

    NASA Astrophysics Data System (ADS)

    Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun

    2005-12-01

    On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general

  8. Alternatives for Monitoring and Limiting Network Access to Students in Network-Connected Classrooms

    ERIC Educational Resources Information Center

    Almeroth, Kevin; Zhang, Hangjin

    2013-01-01

    With the advent of laptop computers and network technology, many classrooms are now being equipped with Internet connections, either through wired connections or wireless infrastructure. Internet access provides students an additional source from which to obtain course-related information. However, constant access to the Internet can be a…

  9. A hybrid behavioural rule of adaptation and drift explains the emergent architecture of antagonistic networks

    PubMed Central

    Nuwagaba, S.; Zhang, F.; Hui, C.

    2015-01-01

    Ecological processes that can realistically account for network architectures are central to our understanding of how species assemble and function in ecosystems. Consumer species are constantly selecting and adjusting which resource species are to be exploited in an antagonistic network. Here we incorporate a hybrid behavioural rule of adaptive interaction switching and random drift into a bipartite network model. Predictions are insensitive to the model parameters and the initial network structures, and agree extremely well with the observed levels of modularity, nestedness and node-degree distributions for 61 real networks. Evolutionary and community assemblage histories only indirectly affect network structure by defining the size and complexity of ecological networks, whereas adaptive interaction switching and random drift carve out the details of network architecture at the faster ecological time scale. The hybrid behavioural rule of both adaptation and drift could well be the key processes for structure emergence in real ecological networks. PMID:25925104

  10. Spectrally efficient next-generation optical access network incorporating a novel CWDM uplink combiner.

    PubMed

    Ha, J Y; Wonfor, A; Ghiggino, P; Penty, R V; White, I H

    2009-01-19

    A novel wavelength division multiplexed subcarrier multiplexed (WDM/SCM) broadband (1-Gb/s per user) optical access network (OAN) architecture incorporating a coarse WDM (CWDM) uplink combiner is proposed. The concept is demonstrated through theoretical and experimental validation of a 10 x1-Gb/s quadurature-phase-shift keying (QPSK) SCM optical network. Low penalty transmission is demonstrated for a proof-of-principle dual channel system with a range of 25 km. In agreement with simulation, experiments show that channel spacings of only 1 GHz are viable for Q factors of more than 18 dB. Simulations indicate that the system will operate with 40 wavelengths, each carrying 10 SCM channels at 1 Gb/s.

  11. NSSDC provides network access to key data via NDADS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; King, Joseph

    1994-01-01

    The National Space Science Data Center (NSSDC) is making a growing fraction of its most customer-desirable data electronically accessible via both the local and wide area networks. NSSDC is witnessing a great increase in its data dissemination owing to this network accessibility. To provide its customers the best data accessibility, the NSSDC makes data available from a nearline, mass storage system, the NSSDC Data Archive and Dissemination Service (NDADS). The NDADS, the initial version was made available in January 1992, is a customized system of hardware and software that provides users access to the nearline data via ANONYMOUS FTP, an e-mail interface (ARMS), and a C-based software library. In January 1992, the NDADS registered 416 requests for 1,957 files. By December of 1994, NDADS had been populated with 800 gigabytes of electronically accessible data and had registered 1458 requests for 20,887 files. In this report we describe the NDADS system, both hardware and software. Later in the report, we discuss some of the lessons that were learned as a result of operating NDADS, particularly in the area of ingest and dissemination.

  12. Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON.

    PubMed

    Shachaf, Y; Chang, C-H; Kourtessis, P; Senior, J M

    2007-06-11

    An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.

  13. Hybrid WDM/OCDMA for next generation access network

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi

    2007-11-01

    Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.

  14. Modeling of a 3DTV service in the software-defined networking architecture

    NASA Astrophysics Data System (ADS)

    Wilczewski, Grzegorz

    2014-11-01

    In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.

  15. An optical circuit switching network architecture and reconfiguration schemes for datacenter

    NASA Astrophysics Data System (ADS)

    Zhou, Luying; Xu, Zhaowen; Cheng, Xiaofei; Huang, Qirui

    2015-01-01

    The paper presents an optical circuit switching network architecture and its control and traffic scheduling schemes. This optical switch network is built on a 32×32 AWG and fast wavelength tunable transmitters and is able to support up to 128 interface ports. The feasibility of the architecture is verified through an experimental study. The traffic scheduling scheme takes into account the transmitter wavelength tuning time so as to avoid frequent connection reconfiguration. The simulation results show that fast connection reconfiguration speed and efficient traffic scheduling scheme enable optical circuit switching network to deliver high transmission bandwidth and low packet delay performance in datacenter network.

  16. A physical layer perspective on access network sharing

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Thomas

    2015-12-01

    Unlike in copper or wireless networks, there is no sharing of resources in fiber access networks yet, other than bit stream access or cable sharing, in which the fibers of a cable are let to one or multiple operators. Sharing optical resources on a single fiber among multiple operators or different services has not yet been applied. While this would allow for a better exploitation of installed infrastructures, there are operational issues which still need to be resolved, before this sharing model can be implemented in networks. Operating multiple optical systems and services over a common fiber plant, autonomously and independently from each other, can result in mutual distortions on the physical layer. These distortions will degrade the performance of the involved systems, unless precautions are taken in the infrastructure hardware to eliminate or to reduce them to an acceptable level. Moreover, the infrastructure needs to be designed such as to support different system technologies and to ensure a guaranteed quality of the end-to-end connections. In this paper, suitable means are proposed to be introduced in fiber access infrastructures that will allow for shared utilization of the fibers while safeguarding the operational needs and business interests of the involved parties.

  17. Architectural and operational considerations emerging from hybrid RF-optical network loading simulations

    NASA Astrophysics Data System (ADS)

    Chen, Yijiang; Abraham, Douglas S.; Heckman, David P.; Kwok, Andrew; MacNeal, Bruce E.; Tran, Kristy; Wu, Janet P.

    2016-03-01

    A technology demonstration of free space optical communication at interplanetary distances is planned via one or more future NASA deep-space missions. Such demonstrations will "pave the way" for operational use of optical communications on future robotic/potential Human missions. Hence, the Deep Space Network architecture will need to evolve. Preliminary attempts to model the anticipated future mission set and simulate how well it loads onto assumed architectures with combinations of RF and optical apertures have been evaluated. This paper discusses the results of preliminary loading simulations for hybrid RF-optical network architectures and highlights key mission and ground infrastructure considerations that emerge.

  18. Optical network architectures for dynamic reconfiguration of full duplex multiwavelength, radio over fiber

    NASA Astrophysics Data System (ADS)

    Attard, J. C.; Mitchell, J. E.

    2006-06-01

    In recent years there have been rapid advances in the techniques to generate and transport radio signals over optical fiber, but very little has been done to date to develop the concept of a full duplex, multiwavelength, radio-over-fiber network architecture that intrinsically supports and facilitates the dynamic reconfiguration of the wireless network. Recently the development of suitable architectures has received attention, with some approaches concentrating on the fiber radio link layer [Fiber Integr. Opt.19, 167 (2000)] and others focusing on the optical wavelength division multiplexing layer [L. Lim , in International Topical Meeting on Microwave Photonics: MWP'99 (IEEE, 1999), p. 127; also Fiber Opt. Business (15 November 2000)]. Here we present, for the first time to our knowledge, an approach that aims to vertically integrate the cellular radio layer, the fiber radio layer, the optical networking layer, and the physical layer to achieve a network architecture that enables the dynamic reconfiguration of the cellular wireless network layer.

  19. A neural network architecture for implementation of expert systems for real time monitoring

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  20. A low power medium access control protocol for wireless medical sensor networks.

    PubMed

    Lamprinos, I; Prentza, A; Sakka, E; Koutsouris, D

    2004-01-01

    The concept of a wireless integrated network of sensors, already applied in several sectors of our everyday life, such as security, transportation and environment monitoring, can as well provide an advanced monitor and control resource for healthcare services. By networking medical sensors wirelessly, attaching them in patient's body, we create the appropriate infrastructure for continuous and real-time monitoring of patient without discomforting him. This infrastructure can improve healthcare by providing the means for flexible acquisition of vital signs, while at the same time it provides more convenience to the patient. Given the type of wireless network, traditional medium access control (MAC) protocols cannot take advantage of the application specific requirements and information characteristics occurring in medical sensor networks, such as the demand for low power consumption and the rather limited and asymmetric data traffic. In this paper, we present the architecture of a low power MAC protocol, designated to support wireless networks of medical sensors. This protocol aims to improve energy efficiency by exploiting the inherent application features and requirements. It is oriented towards the avoidance of main energy wastage sources, such as idle listening, collision and power outspending.

  1. Architecture and implementation for a system enabling smartphones to access smart card based healthcare records.

    PubMed

    Karampelas, Vasilios; Pallikarakis, Nicholas; Mantas, John

    2013-01-01

    The healthcare researchers', academics' and practitioners' interest concerning the development of Healthcare Information Systems has been on a steady rise for the last decades. Fueling this steady rise has been the healthcare professional need of quality information, in every healthcare provision incident, whenever and wherever this incident may take place. In order to address this need a truly mobile health care system is required, one that will be able to provide a healthcare provider with accurate patient-related information regardless of the time and place that healthcare is provided. In order to fulfill this role the present study proposes the architecture for a Healthcare Smartcard system, which provides authenticated healthcare professionals with remote mobile access to a Patient's Healthcare Record, through their Smartphone. Furthermore the research proceeds to develop a working prototype system.

  2. System and method for integrating and accessing multiple data sources within a data warehouse architecture

    DOEpatents

    Musick, Charles R.; Critchlow, Terence; Ganesh, Madhaven; Slezak, Tom; Fidelis, Krzysztof

    2006-12-19

    A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.

  3. Ubiquitous map-image access through wireless overlay networks

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Huang, Haijie; Ni, Zefeng; Chen, Chang Wen

    2004-10-01

    With the availability of various wireless link-layer technologies, such as Bluetooth, WLAN and GPRS, in one wireless device, ubiquitous communications can be realized through managing vertical handoff in the environment of wireless overlay networks. In this paper, we propose a vertical handoff management system based on mobile IPv6, which can automatically manage the multiple network interfaces on the mobile device, and make decisions on network interface selection according to the current situation. Moreover, we apply our proposed vertical handoff management with JPEG-2000 codec to the wireless application of map image access. The developed system is able to provide seamless communications, as well as fast retrieve any interested map region with any block size, in different resolutions and different color representations directly from the compressed bitstream.

  4. A novel protection scheme for Ethernet PON FTTH access network

    NASA Astrophysics Data System (ADS)

    P'ng, W. T.; Abdullah, M. K.; Khatun, S.; Ahmad-Anas, S. B.; Shaari, S.

    2008-03-01

    Massive deployment of FTTH fiber network causes protection to FTTH network a crucial need. Most FTTH access networks are protected from failure by having redundant network equipments. These are not economical approaches, as the redundant systems are not efficiently utilized by the network. In this paper, the authors propose a protection method where redundant equipments are not required and protection is provided to end user through sharing of bandwidth during the failure time. A protection control unit and an optical switch is employed connecting four Optical Line Terminations (OLTs) with each one serving only 32 Optical Network Units (ONUs). Protection control unit collects information of ONUs served by each OLT and when an OLT fails, it will instruct an active OLT to serve its original ONUs together with the ONUs served by the failed OLT. It also provides information of ONUs served and inform the involved 64 ONUs of their new timeslot allocation. Then, the signal is switched from failed OLT's line to the instructed active OLT. The results show that through sharing of bandwidth, adequate protection is provided without redundant equipment for more than one OLT failure.

  5. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  6. A network access control framework for 6LoWPAN networks.

    PubMed

    Oliveira, Luís M L; Rodrigues, Joel J P C; de Sousa, Amaro F; Lloret, Jaime

    2013-01-18

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes.

  7. GiPSiNet: an open source/open architecture network middleware for surgical simulations.

    PubMed

    Liberatore, Vincenzo; Cavuşoğlu, M Cenk; Cai, Qingbo

    2006-01-01

    In this paper, we present the design and techniques of GiPSiNet, an open source/open architecture network middleware being developed for surgical simulations. GiPSiNet extends GiPSi (General Interactive Physical Simulation Interface), our framework for developing organ level surgical simulations, to network environments. This network extension is non-trivial, since the network settings pose several serious problems for distributed surgical virtual environments such as band-width limit, delays, and packet losses. Our goal is to enhance the quality (fidelity and realism) of networked simulations in the absence of network QoS (Quality of Service) through the GiPSiNet middleware.

  8. An Integrated Architecture and Feature Selection Algorithm for Radial Basis Neural Networks

    DTIC Science & Technology

    2002-03-01

    The research contribution of this thesis is the first known integrated architecture and feature selection algorithm for Radial Basis Neural Networks (RBNNs...Additionally, this thesis compares three different classification techniques, Discriminant Analysis (DA), Feed-Forward Neural Networks (FFN) and RBNNs against

  9. Supporting Dynamic Spectrum Access in Heterogeneous LTE+ Networks

    SciTech Connect

    Luiz A. DaSilva; Ryan E. Irwin; Mike Benonis

    2012-08-01

    As early as 2014, mobile network operators’ spectral capac- ity is expected to be overwhelmed by the demand brought on by new devices and applications. With Long Term Evo- lution Advanced (LTE+) networks likely as the future one world 4G standard, network operators may need to deploy a Dynamic Spectrum Access (DSA) overlay in Heterogeneous Networks (HetNets) to extend coverage, increase spectrum efficiency, and increase the capacity of these networks. In this paper, we propose three new management frameworks for DSA in an LTE+ HetNet: Spectrum Accountability Client, Cell Spectrum Management, and Domain Spectrum Man- agement. For these spectrum management frameworks, we define protocol interfaces and operational signaling scenar- ios to support cooperative sensing, spectrum lease manage- ment, and alarm scenarios for rule adjustment. We also quan- tify, through integer programs, the benefits of using DSA in an LTE+ HetNet, that can opportunistically reuse vacant TV and GSM spectrum. Using integer programs, we consider a topology using Geographic Information System data from the Blacksburg, VA metro area to assess the realistic benefits of DSA in an LTE+ HetNet.

  10. A network architecture for International Business Satellite communications

    NASA Astrophysics Data System (ADS)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  11. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  12. Comparison of Different Artificial Neural Network (ANN) Architectures in Modeling of Chlorella sp. Flocculation.

    PubMed

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-01-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae specie, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network (ANN). Neural network architectures of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  13. Access to Max '91 information via computer networks

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.

    1989-01-01

    Various types of flare information, activity, active region reports, x ray plots and daily Campaign Action notices are now available on SPAN, and INTERNET. Although this system was developed for use by Max '91 participants during campaigns, it is updated daily and maintained at times outside of campaigns. Thus it is available for general use outside of campaigns. The Space Environment Laboratory maintains VAX and Apollo systems, both of which are on INTERNET. The VAX is also on the SPAN network as node SELVAX or 9555. Details of access to files on the VAX are given.

  14. Experimental Investigation on Transmission Control Protocol Throughput Behavior in Optical Fiber Access Networks

    NASA Astrophysics Data System (ADS)

    Tego, Edion; Matera, Francesco; del Buono, Donato

    2016-03-01

    This article describes an experimental investigation on the behavior of transmission control protocol in throughput measurements to be used in the verification of the service-level agreement between the Internet service provider and user in terms of line capacity for ultra-broadband access networks typical of fiber-to-the-x architectures. It is experimentally shown different conditions in high bandwidth-delay product links where the estimation of the line capacity based on a single transmission control protocol session results are unreliable. Simple equations reported in this work, and experimentally verified, point out the conditions in terms of packet loss, time delay, and line capacity, that allow consideration of the reliability of the measurement carried out with a single transmission control protocol session test by adopting a suitable measurement time duration.

  15. Convergence of broadband optical and wireless access networks

    NASA Astrophysics Data System (ADS)

    Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun

    2009-01-01

    This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.

  16. Exploratory Inquiry: Disparate Air Force Base Area Network Architectures

    DTIC Science & Technology

    2005-03-01

    Lieutenant Jamie Sharkey conducted a thesis on the key issues pertaining to Air Force enterprise architecture management. Discussion of...experience in fixed and tactical communications. His first duty station was McGuire AFB, New Jersey followed by assignments to Spangdahlem AB, Germany; the

  17. Fiber linked distributed data acquisition in an open network architecture

    SciTech Connect

    Pawelski, F.J.

    1995-03-01

    Flexible and easily expanded process control systems can be achieved through the use of an open and distributed architecture. This paper discusses how to achieve a truly open and distributed process control system as well as some of the goals, concerns and advantages of such a system.

  18. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram ( ECG ) and arterial blood pressure (ABP) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...alarms into true alarms and false alarms. These authors then developed an algorithm that classified alarms based on both electrocardiogram ( ECG ) and

  19. A Study of Artificial Neural Network Architectures for Othello Evaluation Functions

    NASA Astrophysics Data System (ADS)

    Binkley, Kevin J.; Seehart, Ken; Hagiwara, Masafumi

    In this study, we use temporal difference learning (TDL) to investigate the ability of 20 different artificial neural network (ANN) architectures to learn othello game board evaluation functions. The ANN evaluation functions are applied to create a strong othello player using only 1-ply search. In addition to comparing many of the ANN architectures seen in the literature, we introduce several new architectures that consider the game board symmetry. Both embedding the game board symmetry into the network architecture through weight sharing and the outright removal of symmetry through symmetry removal are explored. Experiments varying the number of inputs per game board square from one to three, the number of hidden nodes, and number of hidden layers are also performed. We found it advantageous to consider game board symmetry in the form of symmetry by weight sharing; and that an input encoding of three inputs per square outperformed the one input per square encoding that is commonly seen in the literature. Furthermore, architectures with only one hidden layer were strongly outperformed by architectures with multiple hidden layers. A standard weighted-square board heuristic evaluation function from the literature was used to evaluate the quality of the trained ANN othello players. One of the ANN architectures introduced in this study, an ANN implementing weight sharing and consisting of three hidden layers, using only a 1-ply search, outperformed a weighted-square test heuristic player using a 6-ply minimax search.

  20. Modulation of the brain's functional network architecture in the transition from wake to sleep.

    PubMed

    Larson-Prior, Linda J; Power, Jonathan D; Vincent, Justin L; Nolan, Tracy S; Coalson, Rebecca S; Zempel, John; Snyder, Abraham Z; Schlaggar, Bradley L; Raichle, Marcus E; Petersen, Steven E

    2011-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes.

  1. A study of multiple access schemes in satellite control network

    NASA Astrophysics Data System (ADS)

    Mo, Zijian; Wang, Zhonghai; Xiang, Xingyu; Wang, Gang; Chen, Genshe; Nguyen, Tien; Pham, Khanh; Blasch, Erik

    2016-05-01

    Satellite Control Networks (SCN) have provided launch control for space lift vehicles; tracking, telemetry and commanding (TTC) for on-orbit satellites; and, test support for space experiments since the 1960s. Currently, SCNs encounter a new challenge: how to maintain the high reliability of services when sharing the spectrum with emerging commercial services. To achieve this goal, the capability of multiple satellites reception is deserved as an update/modernization of SCN in the future. In this paper, we conducts an investigation of multiple access techniques in SCN scenario, e.g., frequency division multiple access (FDMA) and coded division multiple access (CDMA). First, we introduce two upgrade options of SCN based on FDMA and CDMA techniques. Correspondingly, we also provide their performance analysis, especially the system improvement in spectrum efficiency and interference mitigation. Finally, to determine the optimum upgrade option, this work uses CRISP, i.e., Cost, Risk, Installation, Supportability and Performance, as the baseline approach for a comprehensive trade study of these two options. Extensive numerical and simulation results are presented to illustrate the theoretical development.

  2. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  3. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  4. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  5. Graphene-network-backboned architectures for high-performance lithium storage.

    PubMed

    Gong, Yongji; Yang, Shubin; Liu, Zheng; Ma, Lulu; Vajtai, Robert; Ajayan, Pulickel M

    2013-08-07

    An efficient hydrothermal approach is demonstrated to fabricate a series of graphene-network-backboned hybrid architectures such as MoS₂/graphene and FeOx/graphene, showing high specific surface area, porous structure, and continuous graphene networks. Such unique architectures exhibit a high reversible capacity (about 1100 mA h g⁻¹) for lithium ion batteries. High-rate capabilities of full charge to discharge in 25-45 s with a long cycle life (1500 cycles) are achieved at different rates.

  6. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  7. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an...

  8. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an...

  9. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an...

  10. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an...

  11. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an...

  12. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    NASA Astrophysics Data System (ADS)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  13. An Architectural Concept for Intrusion Tolerance in Air Traffic Networks

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Miner, Paul S.

    2003-01-01

    The goal of an intrusion tolerant network is to continue to provide predictable and reliable communication in the presence of a limited num ber of compromised network components. The behavior of a compromised network component ranges from a node that no longer responds to a nod e that is under the control of a malicious entity that is actively tr ying to cause other nodes to fail. Most current data communication ne tworks do not include support for tolerating unconstrained misbehavio r of components in the network. However, the fault tolerance communit y has developed protocols that provide both predictable and reliable communication in the presence of the worst possible behavior of a limited number of nodes in the system. One may view a malicious entity in a communication network as a node that has failed and is behaving in an arbitrary manner. NASA/Langley Research Center has developed one such fault-tolerant computing platform called SPIDER (Scalable Proces sor-Independent Design for Electromagnetic Resilience). The protocols and interconnection mechanisms of SPIDER may be adapted to large-sca le, distributed communication networks such as would be required for future Air Traffic Management systems. The predictability and reliabi lity guarantees provided by the SPIDER protocols have been formally v erified. This analysis can be readily adapted to similar network stru ctures.

  14. Architectural Design for the Global Legal Information Network

    NASA Technical Reports Server (NTRS)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  15. 42 CFR 423.124 - Special rules for out-of-network access to covered Part D drugs at out-of-network pharmacies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Part D drugs at out-of-network pharmacies. 423.124 Section 423.124 Public Health CENTERS FOR MEDICARE... for out-of-network access to covered Part D drugs at out-of-network pharmacies. (a) Out-of-network access to covered part D drugs—(1) Out-of-network pharmacy access. A Part D sponsor must ensure that...

  16. 42 CFR 423.124 - Special rules for out-of-network access to covered Part D drugs at out-of-network pharmacies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Part D drugs at out-of-network pharmacies. 423.124 Section 423.124 Public Health CENTERS FOR MEDICARE... for out-of-network access to covered Part D drugs at out-of-network pharmacies. (a) Out-of-network access to covered part D drugs—(1) Out-of-network pharmacy access. A Part D sponsor must ensure that...

  17. 42 CFR 423.124 - Special rules for out-of-network access to covered Part D drugs at out-of-network pharmacies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Part D drugs at out-of-network pharmacies. 423.124 Section 423.124 Public Health CENTERS FOR MEDICARE... for out-of-network access to covered Part D drugs at out-of-network pharmacies. (a) Out-of-network access to covered part D drugs—(1) Out-of-network pharmacy access. A Part D sponsor must ensure that...

  18. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  19. Analysis and Simulation of Traffic Control for Resource Management in DVB-Based Broadband Satellite Access Networks

    NASA Astrophysics Data System (ADS)

    Impemba, Ernesto; Inzerilli, Tiziano

    2003-07-01

    Integration of satellite access networks with the Internet is seen as a strategic goal to achieve in order to provide ubiquitous broadband access to Internet services in Next Generation Networks (NGNs). One of the main interworking aspects which has been most studied is an efficient management of satellite resources, i.e. bandwidth and buffer space, in order to satisfy most demanding application requirements as to delay control and bandwidth assurance. In this context, resource management in DVB-S/DVB-RCS satellite technologies, emerging technologies for broadband satellite access and transport of IP applications, is a research issue largely investigated as a means to provide efficient bi-directional communications across satellites. This is in particular one of the principal goals of the SATIP6 project, sponsored within the 5th EU Research Programme Framework, i.e. IST. In this paper we present a possible approach to efficiently exploit bandwidth, the most critical resource in a broadband satellite access network, while pursuing satisfaction of delay and bandwidth requirements for applications with guaranteed QoS through a traffic control architecture to be implemented in ground terminals. Performance of this approach is assessed in terms of efficient exploitation of the uplink bandwidth and differentiation and minimization of queuing delays for most demanding applications over a time-varying capacity. Opnet simulations is used as analysis tool.

  20. A New High-Resolution Direction Finding Architecture Using Photonics and Neural Network Signal Processing for Miniature Air Vehicle Applications

    DTIC Science & Technology

    2015-09-01

    RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS by Robert...RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS 5. FUNDING...unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This paper investigates the design of an interferometric direction finding receiver

  1. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results for a real-life recognition problem of distinguishing defects in a glass ribbon, and for a benchmark problen of telling two spirals apart are shown and discussed.

  2. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  3. Re-building distribution networks to assure future microbicide access.

    PubMed

    Forbes, Anna; Engle, Nicole

    2005-01-01

    The first candidate topical microbicides--products designed to reduce women's risk of HIV infection--are now in the final stages of efficacy testing, and, if successful, could start to be available by the end of the decade. Advocates in public health and international development are already discussing how to expedite access to this new technology in countries where it could have the largest public health impact. The World Health Organization (WHO), World Bank, and the European Union support the integration of family planning and HIV programs. Such integration is impeded by U.S. policy, funding restrictions, and reluctance to integrate family planning and HIV/AIDS funding. This article describes how these policies weaken, rather than strengthen, the capacity of distribution networks to play an urgently needed role in microbicide roll-out when the time comes.

  4. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  5. 77 FR 36231 - Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA) Accessibility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... standards for residential facilities are the Uniform Federal Accessibility Standards (UFAS). When HUD... residential facilities covered by the ABA are the Uniform Federal Accessibility Standards (UFAS).\\5\\ HUD...

  6. The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters

    NASA Technical Reports Server (NTRS)

    Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)

    1998-01-01

    We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.

  7. Architecture of the human regulatory network derived from ENCODE data.

    PubMed

    Gerstein, Mark B; Kundaje, Anshul; Hariharan, Manoj; Landt, Stephen G; Yan, Koon-Kiu; Cheng, Chao; Mu, Xinmeng Jasmine; Khurana, Ekta; Rozowsky, Joel; Alexander, Roger; Min, Renqiang; Alves, Pedro; Abyzov, Alexej; Addleman, Nick; Bhardwaj, Nitin; Boyle, Alan P; Cayting, Philip; Charos, Alexandra; Chen, David Z; Cheng, Yong; Clarke, Declan; Eastman, Catharine; Euskirchen, Ghia; Frietze, Seth; Fu, Yao; Gertz, Jason; Grubert, Fabian; Harmanci, Arif; Jain, Preti; Kasowski, Maya; Lacroute, Phil; Leng, Jing; Lian, Jin; Monahan, Hannah; O'Geen, Henriette; Ouyang, Zhengqing; Partridge, E Christopher; Patacsil, Dorrelyn; Pauli, Florencia; Raha, Debasish; Ramirez, Lucia; Reddy, Timothy E; Reed, Brian; Shi, Minyi; Slifer, Teri; Wang, Jing; Wu, Linfeng; Yang, Xinqiong; Yip, Kevin Y; Zilberman-Schapira, Gili; Batzoglou, Serafim; Sidow, Arend; Farnham, Peggy J; Myers, Richard M; Weissman, Sherman M; Snyder, Michael

    2012-09-06

    Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.

  8. Advancing Reversible Shape Memory by Tuning Network Architecture

    NASA Astrophysics Data System (ADS)

    Li, Qiaoxi; Zhou, Jing; Vatankhah Varnosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei; University of north carolina at chapel hill Collaboration; Brookhaven National Lab-CFN Collaboration

    Recently, reversible shape memory (RSM) has been realized in conventional semi-crystalline elastomers without applying any external force and synthetic programming. The mechanism is ascribed to counteraction between thermodynamically driven relaxation of a strained polymer network and kinetically preferred self-seeding recrystallization of constrained network strands. In order to maximize RSM's performance in terms of (i) range of reversible strain, (ii) rate of strain recovery, and (iii) relaxation time of reversibility, we have designed a systematic series of networks with different topologies and crosslinking densities, including purposely introduced dangling chains and irregular meshes. Within a broad range of crosslink density ca. 50-1000 mol/m3, we have demonstrated that the RSM's properties improve significantly with increasing crosslink density, regardless of network topology. Actually, one of the most irregular networks with densest crosslinking allowed achieving up to 80% of the programmed strain being fully reversible, fast recovery rate up to 0.05 K-1, and less than 15% decrease of reversibility after hours of annealing at partial melt state. With this understanding and optimization of RSM, we pursue an idea of shape control through self-assembly of shape-memory particles. For this purpose, 3D printing has been employed to prepare large assemblies of particles possessing specific shapes and morphologies.

  9. Habitat loss alters the architecture of plant--pollinator interaction networks.

    PubMed

    Spiesman, Brian J; Inouye, Brian D

    2013-12-01

    Habitat loss can have a negative effect on the number, abundance, and composition of species in plant-pollinator communities. Although we have a general understanding of the negative consequences of habitat loss for biodiversity, much less is known about the resulting effects on the pattern of interactions in mutualistic networks. Ecological networks formed by mutualistic interactions often exhibit a highly nested architecture with low modularity, especially in comparison with antagonistic networks. These patterns of interaction are thought to confer stability on mutualistic communities. With the growing threat of environmental change, it is important to expand our understanding of the factors that affect biodiversity and the stability of the communities that provide critical ecosystem functions and services. We studied the effects of habitat loss on plant--pollinator network architecture and found that regional habitat loss contributes directly to species loss and indirectly to the reorganization of interspecific interactions in a local community. Networks became more highly connected and more modular with habitat loss. Species richness and abundance were the primary drivers of variation in network architecture, though species compositi n affected modularity. Theory suggests that an increase in modularity with habitat loss will threaten community stability, which may contribute to an extinction debt in communities already affected by habitat loss.

  10. A traffic-depended multi-buffer node architecture and an effective access technique under symmetric and asymmetric IP traffic scenarios for unslotted ring WDM MANs

    NASA Astrophysics Data System (ADS)

    Baziana, Peristera A.

    2016-09-01

    This study aims to put forward an extensive discussion about the increasing demand for available bandwidth to serve the multiple types of traffic in modern wavelength division multiplexing (WDM) metropolitan area networks (MANs). A traffic-depended multi-buffer node architecture in conjunction with an efficient asynchronous transmission WDM access (WDMA) protocol to serve the variable size Internet packets in ring MANs is proposed. The structure of the multi-buffer node architecture is determined by the probability distribution of each packet size category in the MAN traffic, providing storage and dropping events equity among the nodes. The adopted WDMA algorithm satisfies the requirement for high performance efficiency especially under high offered load, by taking care to optimally face the bandwidth fragmentation problem and to maximize the bandwidth exploitation, while it effectively avoids both the packets collisions over the wavelengths and the destination conflicts. Numerical results prove that the proposed network model achieves throughput improvement up to 334% as compared with the relative study of Pranggono and Elmirghani (2011). An analytical framework is developed for the protocol throughput predictions under both symmetric and asymmetric IP traffic scenarios. Also, the proposed protocol performance is thoroughly investigated through simulation results based on Poisson and self-similar traffic model statistics, for both traffic scenarios.

  11. ACCESS Mars: A Mission Architecture for an initial settlement on Mars; using caves as habitation

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gallardo, Beatriz; Laufer, Ren; Zavaleta, Jhony; Davila, Alfonso; de Carufel, Guy; Antonakopoulos, Konstantinos; Husseini, A. Al; Alvarez Sánchez, L.; Antonakopoulos, K.; Apeldoorn, J.; Ashford, K., Jr.; Atabay, D.; Barrios, I.; Baydaroglu, Y.; Bennell, K. M.; Chen, J.; Chen, X.; Cormier, D.; Crowley, P.; de Carufel, G.; Deper, B.; Drube, L.; Duffy, P.; Edwards, P.; Gutiérrez Fernandez, E.; Haider, O.; Kumar, G.; Henselowsky, C.; Hirano, D.; Hirmer, T.; Hogan, B.; Albalat, A. Jaime; Jens, E.; Jivenescu, I.; Jojaghaian, A.; Kerrigan, M.; Kodachi, Y.; Langston, S.; Macintosh, R.; Miguélez, X.; Panek, N.; Pegg, C.; Peldszus, R.; Peng, X.; Perez-Poch, A.; Perron, A.; Qiu, J.; Renten, P.; Ricardo, J.; Saraceno, T.; Sauceda, F.; Shaghaghi Varzeghani, A.; Shimmin, R.; Solaz, R.; Solé, A.; Suresh, E. R.; Mar Vaquero Escribano, T.; Vargas Muñoz, M.; Vaujour, P. D.; Zeile, D. Veilette, Y. Winetraub, O.

    This paper summarizes a team project report produced during the Summer Space Program of the International Space University, held at Nasa-Ames Research Center (CA, USA) by 56 students from 15 countries. Chair of the team project was Rene Laufer. Facilitators were Alfonso Davila and Jhonny Zavaleta, and teacher associate supporting the team was Beatriz Gallardo. The human race has evolved, grown and expanded through the exploration of Earth. After initial steps on the Moon, our next challenge is to explore the solar system. Mars shows potential for both scientific discovery and future human settlement, and therefore represents a prime candidate for the next leap of human exploration. Such a bold endeavor will be a driver for an unprecedented worldwide cooperative effort and the catalyst for a new era of international, intercultural and interdisciplinary human relations. Scientific and technological progress will also accelerate as mankind is ushered into a new era of space exploration. Currently proposed Mars missions have identified a number of challenges such as high levels of radiation, harsh climate and limited launch windows. Recently discovered lava tubes on Mars present potential solutions to some of these issues, but raise a variety of intriguing new challenges. This paper reviews existing reference missions and identifies areas of further research essential for adapting mission architectures to utilize caves. Different mission scenarios are proposed and analyzed, with a number of different recommendations given. An analysis of the feasibility of using Martian lava tubes as habitation is given in another paper by the same authors at COSPAR 2010 F34 Technical Session. Literature suggests a low radiation environment within Martian caves, allowing for extended duration missions. The ACCESS Mars Team concludes that the use of lava tubes as human habitats will be more beneficial for human Mars exploration than currently proposed surface solutions.

  12. Weaknesses and drawbacks of a password authentication scheme using neural networks for multiserver architecture.

    PubMed

    Ku, Wei-Chi

    2005-07-01

    In 2001, Li et al. proposed a password authentication scheme for the multiserver architecture by using a pattern classification system based on neural networks. Herein, we demonstrate that Li et al's scheme is vulnerable to an offline password guessing attack and a privileged insider's attack, and is not reparable. Additionally, we show that Li et al.'s scheme has several drawbacks in practice.

  13. Architectures and economics for pervasive broadband satellite networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. L.

    1979-01-01

    The size of a satellite network necessary to provide pervasive high-data-rate business communications is estimated, and one possible configuration is described which could interconnect most organizations in the United States. Within an order of magnitude, such a network might reasonably have a capacity equivalent to 10,000 simultaneous 3-Mbps channels, and rely primarily upon a cluster of approximately 3-5 satellites in a single orbital slot. Nominal prices for 3-6 Mbps video conference services might then be approximately $2000 monthly lease charge plus perhaps 70 cents per minute one way.

  14. Reconfigurable middleware architectures for large scale sensor networks

    SciTech Connect

    Brennan, Sean M.

    2010-03-01

    Wireless sensor networks, in an e ffort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task recon figuration and high-level object recomposition.

  15. Texas coastal ocean observation network: data access and archive software

    NASA Astrophysics Data System (ADS)

    Jeffress, Gary A.; Duff, J. Scott

    2011-06-01

    The Conrad Blucher Institute for Surveying and Science (CBI) at Texas A&M University-Corpus Christi operates the Texas Coastal Ocean Observation Network (TCOON.) The network collects near real-time physical oceanographic data at 31 coastal stations along the Texas coast. The data includes water level, wind speed & direction, barometric pressure, water temperature, and air temperature from stations placed in bays and estuaries along the Texas coast. TCOON provides this critical data to many users, including those in the commercial shipping industry, marine construction, legal water-land boundaries, recreational boaters, and those responsible for marine safety and emergency evacuation in the event of a hurricane. Data sets are available in near real time via the Internet and some sets are accessible via voice over the telephone. All data collected since 1991 is available online along with data search tools. TCOON sponsors and developers believe that the more users and uses the system supports, the more valuable the data becomes. The highest scientific standards are used in collection the data as the data often ends up in litigation in the courts. Database software and the online tools used for data downloads are also open source.

  16. Modelling high data rate communication network access protocol

    NASA Technical Reports Server (NTRS)

    Khanna, S.; Foudriat, E. C.; Paterra, Frank; Maly, Kurt J.; Overstreet, C. Michael

    1990-01-01

    Modeling of high data rate communication systems is different from the low data rate systems. Three simulations were built during the development phase of Carrier Sensed Multiple Access/Ring Network (CSMA/RN) modeling. The first was a model using SIMCRIPT based upon the determination and processing of each event at each node. The second simulation was developed in C based upon isolating the distinct object that can be identified as the ring, the message, the node, and the set of critical events. The third model further identified the basic network functionality by creating a single object, the node which includes the set of critical events which occur at the node. The ring structure is implicit in the node structure. This model was also built in C. Each model is discussed and their features compared. It should be stated that the language used was mainly selected by the model developer because of his past familiarity. Further the models were not built with the intent to compare either structure or language but because the complexity of the problem and initial results contained obvious errors, so alternative models were built to isolate, determine, and correct programming and modeling errors. The CSMA/RN protocol is discussed in sufficient detail to understand modeling complexities. Each model is described along with its features and problems. The models are compared and concluding observations and remarks are presented.

  17. Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks.

    PubMed

    Lord, Louis-David; Expert, Paul; Fernandes, Henrique M; Petri, Giovanni; Van Hartevelt, Tim J; Vaccarino, Francesco; Deco, Gustavo; Turkheimer, Federico; Kringelbach, Morten L

    2016-01-01

    In recent years, the application of network analysis to neuroimaging data has provided useful insights about the brain's functional and structural organization in both health and disease. This has proven a significant paradigm shift from the study of individual brain regions in isolation. Graph-based models of the brain consist of vertices, which represent distinct brain areas, and edges which encode the presence (or absence) of a structural or functional relationship between each pair of vertices. By definition, any graph metric will be defined upon this dyadic representation of the brain activity. It is however unclear to what extent these dyadic relationships can capture the brain's complex functional architecture and the encoding of information in distributed networks. Moreover, because network representations of global brain activity are derived from measures that have a continuous response (i.e., interregional BOLD signals), it is methodologically complex to characterize the architecture of functional networks using traditional graph-based approaches. In the present study, we investigate the relationship between standard network metrics computed from dyadic interactions in a functional network, and a metric defined on the persistence homological scaffold of the network, which is a summary of the persistent homology structure of resting-state fMRI data. The persistence homological scaffold is a summary network that differs in important ways from the standard network representations of functional neuroimaging data: (i) it is constructed using the information from all edge weights comprised in the original network without applying an ad hoc threshold and (ii) as a summary of persistent homology, it considers the contributions of simplicial structures to the network organization rather than dyadic edge-vertices interactions. We investigated the information domain captured by the persistence homological scaffold by computing the strength of each node in the

  18. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    SciTech Connect

    Disney, Adam; Reynolds, John

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  19. Shaping Networked Theatre: Experience Architectures, Behaviours and Creative Pedagogies

    ERIC Educational Resources Information Center

    Sutton, Paul

    2012-01-01

    Since 2006 the UK based applied theatre company C&T has been using its experience and expertise in mixing drama, learning and digital media to create a new online utility for shaping collaborative educational drama experiences. C&T describes this practice as "Networked Theatre". This article describes both the motivations for…

  20. Context Aware Routing Management Architecture for Airborne Networks

    DTIC Science & Technology

    2012-03-22

    21 MBps Megabytes per second . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 RF Radio Frequency...collection of mobile nodes that generate a network automatically by creating several short-lived radio frequency links based on node proximity and mutual...can be lost due to to blocking , obstacles or other types of interference. Two nodes can establish communication directly in a MANET if the recipient is

  1. Sub-Network Access Control Technology Demonstrator: Software Design of the Network Management System

    DTIC Science & Technology

    2002-08-01

    validdes. En d’autres mots, ce projet est une 6tape suppldmentaire dans le dessein de migrer ces technologies radio vers la Flotte Op ~ rationnelle ...Defence Research and Recherche et ddveloppement Development Canada pour la defense Canada DEFENCE • I7 DEFENSE Sub-Network Access Control...dans l’optique qu’ils op ~rent sur des liens avec une large bande passantes dont la topologie 6volue Tentement. Les produites con-nerciaux de gestion de

  2. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  3. Intelligent Middle-Ware Architecture for Mobile Networks

    NASA Astrophysics Data System (ADS)

    Rayana, Rayene Ben; Bonnin, Jean-Marie

    Recent advances in electronic and automotive industries as well as in wireless telecommunication technologies have drawn a new picture where each vehicle became “fully networked”. Multiple stake-holders (network operators, drivers, car manufacturers, service providers, etc.) will participate in this emerging market, which could grow following various models. To free the market from technical constraints, it is important to return to the basics of the Internet, i.e., providing embarked devices with a fully operational Internet connectivity (IPv6).

  4. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture.

    PubMed

    Plotnikov, S A; Lehnert, J; Fradkov, A L; Schöll, E

    2016-07-01

    We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchronization for parameter values where synchronization without control is absent. We demonstrate our results in networks with different topologies. Particular attention is given to hierarchical (fractal) topologies, which are relevant for the architecture of the brain.

  5. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.

    2016-07-01

    We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchronization for parameter values where synchronization without control is absent. We demonstrate our results in networks with different topologies. Particular attention is given to hierarchical (fractal) topologies, which are relevant for the architecture of the brain.

  6. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors.

    PubMed

    Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin

    2012-01-11

    We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.

  7. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  8. Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.

    PubMed

    Alshinina, Remah; Elleithy, Khaled

    2017-03-08

    Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.

  9. Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks

    PubMed Central

    Alshinina, Remah; Elleithy, Khaled

    2017-01-01

    Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs. PMID:28282896

  10. A hybrid layer-multiplexing and pipeline architecture for efficient FPGA-based multilayer neural network

    NASA Astrophysics Data System (ADS)

    Dong, Yiping; Li, Ce; Lin, Zhen; Watanabe, Takahiro

    This paper presents a novel architecture for an FPGA-based implementation of multilayer Artificial Neural Network (ANN), which integrates both the layer-multiplexing and pipeline architecture. Given a kind of FPGA to be used, the proposed method aims at enhancing the efficiency of resource usage of the FPGA and improving the forward speed at the module level, so that a larger ANN can be implemented on traditional FPGAs and also a high performance is achieved. Usually FPGA board is not changed for every applications, thus, we need not mind about the usage of it if the application can be implemented within the resource limitation. We developed a new mapping method from ANN schematic to FPGA by using this hybrid architecture, and also developed an algorithm to automatically determine the architecture by optimizing the application specific neural network topology. The experimental results show that the proposed architecture can produce a very compact circuit for multilayer ANN to meet resource limitation of a given FPGA. Furthermore, higher performance is obtained as compared with conventional methods.

  11. 42 CFR 423.124 - Special rules for out-of-network access to covered Part D drugs at out-of-network pharmacies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Part D drugs at out-of-network pharmacies. 423.124 Section 423.124 Public Health CENTERS FOR MEDICARE... access to covered Part D drugs at out-of-network pharmacies. (a) Out-of-network access to covered part D drugs—(1) Out-of-network pharmacy access. A Part D sponsor must ensure that Part D enrollees...

  12. 42 CFR 423.124 - Special rules for out-of-network access to covered Part D drugs at out-of-network pharmacies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Part D drugs at out-of-network pharmacies. 423.124 Section 423.124 Public Health CENTERS FOR MEDICARE... access to covered Part D drugs at out-of-network pharmacies. (a) Out-of-network access to covered part D drugs. (1) Out-of-network pharmacy access. A Part D sponsor must ensure that Part D enrollees...

  13. Social Capital for College: Network Composition and Access to Selective Institutions among Urban High School Students

    ERIC Educational Resources Information Center

    Hill, Lori Diane; Bregman, Allyson; Andrade, Fernando

    2015-01-01

    This study examines the relationship between networks that provide high school students with "social capital for college" (SCFC) and their access to selective institutions. It also explores the link between racial disparities in access to selective colleges and the composition of students' SCFC networks. Findings indicate that while…

  14. Architecture of the parallel hierarchical network for fast image recognition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  15. Cross-Layer Design for Downlink Multihop Cloud Radio Access Networks With Network Coding

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Yu, Wei

    2017-04-01

    There are two fundamentally different fronthaul techniques in the downlink communication of cloud radio access network (C-RAN): the data-sharing strategy and the compression-based strategy. Under the former strategy, each user's message is multicast from the central processor (CP) to all the serving remote radio heads (RRHs) over the fronthaul network, which then cooperatively serve the users through joint beamforming; while under the latter strategy, the user messages are first beamformed then quantized at the CP, and the compressed signal is unicast to the corresponding RRH, which then decompresses its received signal for wireless transmission. Previous works show that in general the compression-based strategy outperforms the data-sharing strategy. This paper, on the other hand, point s out that in a C-RAN model where the RRHs are connected to the CP via multi-hop routers, data-sharing can be superior to compression if the network coding technique is adopted for multicasting user messages to the cooperating RRHs, and the RRH's beamforming vectors, the user-RRH association, and the network coding design over the fronthaul network are jointly optimized based on the techniques of sparse optimization an d successive convex approximation. This is in comparison to the compression-based strategy, where information is unicast over the fronthaul network by simple routing, and the RRH's compression noise covariance and beamforming vectors, as well as the routing strategy over the fronthaul network are jointly optimized based on the successive convex approximation technique. The observed gain in overall network throughput is due to that information multicast is more efficient than information unicast over the multi-hop fronthaul of a C-RAN.

  16. PNNI routing support for ad hoc mobile networking: A flat architecture

    SciTech Connect

    Martinez, L.; Sholander, P.; Tolendino, L.

    1997-12-01

    This contribution extends the Outside Nodal Hierarchy List (ONHL) procedures described in ATM Form Contribution 97-0766. These extensions allow multiple mobile networks to form either an ad hoc network or an extension of a fixed PNNI infrastructure. This contribution covers the simplest case where the top-most Logical Group Nodes (LGNs), in those mobile networks, all reside at the same level in a PNNI hierarchy. Future contributions will cover the general case where those top-most LGNs reside at different hierarchy levels. This contribution considers a flat ad hoc network architecture--in the sense that each mobile network always participates in the PNNI hierarchy at the preconfigured level of its top-most LGN.

  17. Survivable architectures for time and wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  18. Traffic-Adaptive, Flow-Specific Medium Access for Wireless Networks

    DTIC Science & Technology

    2009-09-01

    free medium access and proposes a flow-specific medium access scheme for networked satellite systems that is based on traffic-adaptive CWS-MAC and...layer; Medium access control; Wireless; Energy-efficiency; Preamble sampling; Networked satellite systems 16. PRICE CODE 17. SECURITY... systems that is based on traffic-adaptive CWS- MAC and is shown to outperform both CSMA- and TDMA-based solutions. vi THIS PAGE INTENTIONALLY LEFT

  19. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  20. A common network architecture efficiently implements a variety of sparsity-based inference problems.

    PubMed

    Charles, Adam S; Garrigues, Pierre; Rozell, Christopher J

    2012-12-01

    The sparse coding hypothesis has generated significant interest in the computational and theoretical neuroscience communities, but there remain open questions about the exact quantitative form of the sparsity penalty and the implementation of such a coding rule in neurally plausible architectures. The main contribution of this work is to show that a wide variety of sparsity-based probabilistic inference problems proposed in the signal processing and statistics literatures can be implemented exactly in the common network architecture known as the locally competitive algorithm (LCA). Among the cost functions we examine are approximate l(p) norms (0 ≤ p ≤ 2), modified l(p)-norms, block-l1 norms, and reweighted algorithms. Of particular interest is that we show significantly increased performance in reweighted l1 algorithms by inferring all parameters jointly in a dynamical system rather than using an iterative approach native to digital computational architectures.

  1. Novel L1 neural network adaptive control architecture with guaranteed transient performance.

    PubMed

    Cao, Chengyu; Hovakimyan, Naira

    2007-07-01

    In this paper, we present a novel neural network (NN) adaptive control architecture with guaranteed transient performance. With this new architecture, both input and output signals of an uncertain nonlinear system follow a desired linear system during the transient phase, in addition to stable tracking. This new architecture uses a low-pass filter in the feedback loop, which consequently enables to enforce the desired transient performance by increasing the adaptation gain. For the guaranteed transient performance of both input and output signals of the uncertain nonlinear system, the L1 gain of a cascaded system, comprised of the low-pass filter and the closed-loop desired reference model, is required to be less than the inverse of the Lipschitz constant of the unknown nonlinearities in the system. The tools from this paper can be used to develop a theoretically justified verification and validation framework for NN adaptive controllers. Simulation results illustrate the theoretical findings.

  2. A TDMA Broadcast Satellite/Ground Architecture for the Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.; Raghavan, Rajesh S.

    2003-01-01

    An initial evaluation of a TDMA satellite broadcast architecture with an integrated ground network is proposed in this study as one option for the Aeronautical Telecommunications Network (ATN). The architecture proposed consists of a ground based network that is dedicated to the reception and transmissions of Automatic Dependent Surveillance Broadcast (ADS-B) messages from Mode-S or UAT type systems, along with tracks from primary and secondary surveillance radars. Additionally, the ground network could contain VHF Digital Link Mode 2, 3 or 4 transceivers for the reception and transmissions of Controller-Pilot Data Link Communications (CPDLC) messages and for voice. The second part of the ATN network consists of a broadcast satellite based system that is mainly dedicated for the transmission of surveillance data as well as En-route Flight Information Service Broadcast (FIS-B) to all aircraft. The system proposed integrates those two network to provide a nation wide comprehensive service utilizing near term or existing technologies and hence keeping the economic factor in prospective. The next few sections include a background introduction, the ground subnetwork, the satellite subnetwork, modeling and simulations, and conclusion and recommendations.

  3. Nogo-A regulates vascular network architecture in the postnatal brain.

    PubMed

    Wälchli, Thomas; Ulmann-Schuler, Alexandra; Hintermüller, Christoph; Meyer, Eric; Stampanoni, Marco; Carmeliet, Peter; Emmert, Maximilian Y; Bozinov, Oliver; Regli, Luca; Schwab, Martin E; Vogel, Johannes; Hoerstrup, Simon P

    2017-02-01

    Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.

  4. Next-Generation Ground Network Architecture for Communications and Tracking of Interplanetary Smallsats

    NASA Astrophysics Data System (ADS)

    Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.

    2015-08-01

    As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking

  5. Novel Scheme of Carrier Tri-reuse and Distribution Fiber Protection Based on Round Shift Method in Optical Access Network

    NASA Astrophysics Data System (ADS)

    Chen, Haibin; Gan, Chaoqin; Yin, Maojun; Ni, Cuiping

    2015-06-01

    A novel architecture of optical access network based on round shift method is proposed. Round shift method is composed by round service mode of carriers and cycle characteristic of 2×N arrayed waveguide grating (AWG). By utilizing the round service mode, every carrier is tri-reused to provide service for three different optical network units. Besides, in remote node, the 2×3N AWG can be replaced by three 2×N AWGs and AWGs' channel spacing is increased. So, the demand on RN's AWGs is decreased. Furthermore, based on the cycle characteristic of 2×N AWG, a 1+1 protection scheme is presented to provide independent protection for distribution fibers. Simulation and analysis show the proposed scheme works well.

  6. Heterogeneous sensor networks: a bio-inspired overlay architecture

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  7. Neural Network Classifier Architectures for Phoneme Recognition. CRC Technical Note No. CRC-TN-92-001.

    ERIC Educational Resources Information Center

    Treurniet, William

    A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…

  8. RLIN and Avery: The Online Index to Architectural Periodicals.

    ERIC Educational Resources Information Center

    Uchitelle, Daniel

    1984-01-01

    Reviews the Avery Index to Architectural Periodicals, an online special database of the Research Libraries Information Network that analyzes the contents of journals, listing only those articles dealing with architecture. Access and fees, access points, browsing, and search strategies are covered and examples are given. (EJS)

  9. The development of hub architecture in the human functional brain network.

    PubMed

    Hwang, Kai; Hallquist, Michael N; Luna, Beatriz

    2013-10-01

    Functional hubs are brain regions that play a crucial role in facilitating communication among parallel, distributed brain networks. The developmental emergence and stability of hubs, however, is not well understood. The current study used measures of network topology drawn from graph theory to investigate the development of functional hubs in 99 participants, 10-20 years of age. We found that hub architecture was evident in late childhood and was stable from adolescence to early adulthood. Connectivity between hub and non-hub ("spoke") regions, however, changed with development. From childhood to adolescence, the strength of connections between frontal hubs and cortical and subcortical spoke regions increased. From adolescence to adulthood, hub-spoke connections with frontal hubs were stable, whereas connectivity between cerebellar hubs and cortical spoke regions increased. Our findings suggest that a developmentally stable functional hub architecture provides the foundation of information flow in the brain, whereas connections between hubs and spokes continue to develop, possibly supporting mature cognitive function.

  10. Low-Power Direct-Sequence Spread-Spectrum Modem Architecture for Distributed Wireless Sensor Networks

    SciTech Connect

    Chien, C; Elgorriaga, I; McConaghy, C

    2001-07-03

    Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mW for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.

  11. A Hybrid Architecture of Neural Networks for Daily Streamflow Forecasting

    NASA Astrophysics Data System (ADS)

    Moradkhani, H.

    2001-12-01

    Streamflow forecasting has always been a challenging task for water resources engineers and managers and the major component of water resources system control. For years numerous techniques have been suggested and employed for streamflow forecasting. Computational Neural Networks (NNs), which are capable of recognizing hidden patterns in data, have recently become popular in many hydrologic applications. In this study, hybrid NN is developed for one step ahead forecasting of daily streamflow. Radial Basis Function (RBF) composed of a group of Gausian functions is used in conjunction with Self-Organizing Feature Map (SOFM) used in data classification. RBF transfers those classified input variables into the desired output estimate. Eight years of daily rainfall, streamflow, and temperature in Salt River basin were used for calibration and validation. Since 60%-80% of the water supply produced by the basin comes in the form of snow, further consideration of the existing time delay of snow melting process in the basin to the watershed outlet is important. Therefore two separated settings were considered in this simulation: the first one only includes several short-term daily rainfall and streamflow in the input sequence; the second setting, on the other hand, includes a longer time period (three-months) of temperature data sequence. Various statistical analyses, such as root mean square error, bias estimate, noise to signal ratio, and correlation coefficients of estimates and observations, were done to evaluate the forecast models. The preliminary results show that the accuracy of the model once considering the long-term effect of the snowmelt is conspicuous with respect to short-term effect. The effectiveness of the proposed and current operational models is evaluated.

  12. Experimental realization of an entanglement access network and secure multi-party computation

    PubMed Central

    Chang, X.-Y.; Deng, D.-L.; Yuan, X.-X.; Hou, P.-Y.; Huang, Y.-Y.; Duan, L.-M.

    2016-01-01

    To construct a quantum network with many end users, it is critical to have a cost-efficient way to distribute entanglement over different network ends. We demonstrate an entanglement access network, where the expensive resource, the entangled photon source at the telecom wavelength and the core communication channel, is shared by many end users. Using this cost-efficient entanglement access network, we report experimental demonstration of a secure multiparty computation protocol, the privacy-preserving secure sum problem, based on the network quantum cryptography. PMID:27404561

  13. Experimental realization of an entanglement access network and secure multi-party computation

    NASA Astrophysics Data System (ADS)

    Chang, X.-Y.; Deng, D.-L.; Yuan, X.-X.; Hou, P.-Y.; Huang, Y.-Y.; Duan, L.-M.

    2016-07-01

    To construct a quantum network with many end users, it is critical to have a cost-efficient way to distribute entanglement over different network ends. We demonstrate an entanglement access network, where the expensive resource, the entangled photon source at the telecom wavelength and the core communication channel, is shared by many end users. Using this cost-efficient entanglement access network, we report experimental demonstration of a secure multiparty computation protocol, the privacy-preserving secure sum problem, based on the network quantum cryptography.

  14. The Architecture of Information Fusion System Ingreenhouse Wireless Sensor Network Based on Multi-Agent

    NASA Astrophysics Data System (ADS)

    Zhu, Wenting; Chen, Ming

    In view of current unprogressive situation of factory breeding in aquaculture, this article designed a standardized, informationized and intelligentized aquaculture system, proposed a information fusion architecture based on multi-agent in greenhouse wireless sensor network (GWSN), and researched mainly the structural characteristic of the four-classed information fusion based on distributed multi-agent and the method to construct the structure inside of every agent.

  15. The Role of Social Network Locations in the College Access Mentoring of Urban Youth

    ERIC Educational Resources Information Center

    Ahn, June

    2010-01-01

    This study uses social network analysis to describe the social network of college mentors in a college access program. Urban students in the program are paired with college mentors-students, professors, and other institutional agents-to help improve their college going process. The study analyzes the social networks within which the mentors are…

  16. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains

    PubMed Central

    Finlay, Barbara L.

    2016-01-01

    The cerebral cortex retains its fundamental organization, layering, and input–output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features. PMID:27631433

  17. Architectural style classification of Mexican historical buildings using deep convolutional neural networks and sparse features

    NASA Astrophysics Data System (ADS)

    Obeso, Abraham Montoya; Benois-Pineau, Jenny; Acosta, Alejandro Álvaro Ramirez; Vázquez, Mireya Saraí García

    2017-01-01

    We propose a convolutional neural network to classify images of buildings using sparse features at the network's input in conjunction with primary color pixel values. As a result, a trained neuronal model is obtained to classify Mexican buildings in three classes according to the architectural styles: prehispanic, colonial, and modern with an accuracy of 88.01%. The problem of poor information in a training dataset is faced due to the unequal availability of cultural material. We propose a data augmentation and oversampling method to solve this problem. The results are encouraging and allow for prefiltering of the content in the search tasks.

  18. Paving the Way to Novel Phosphorus-Based Architectures: A Noncatalyzed Protocol to Access Six-Membered Heterocycles.

    PubMed

    Romero-Nieto, Carlos; López-Andarias, Alicia; Egler-Lucas, Carolina; Gebert, Florian; Neus, Jens-Peter; Pilgram, Oliver

    2015-12-21

    Phosphorus-based heterocycles provide access to materials with properties that are inaccessible from all-carbon architectures. The unique hybridization of phosphorus gives rise to electron-accepting capacities, a large variety of coordination reactions, and the possibility of controlling the electronic properties through phosphorus postfunctionalization. Herein, we describe a new noncatalyzed synthetic protocol to prepare fused six-membered phosphorus heterocycles. In particular, we report the synthesis of novel phosphaphenalenes. These fused systems exhibit the benefits of both five- and six-membered phosphorus heterocycles and enable a series of versatile postfunctionalization reactions. This work thus opens up new horizons in the field of conjugated materials.

  19. Channel Access in Erlang

    SciTech Connect

    Nicklaus, Dennis J.

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  20. Novel photonic bandgap based architectures for quantum computers and networks

    NASA Astrophysics Data System (ADS)

    Guney, Durdu

    All of the approaches for quantum information processing have their own advantages, but unfortunately also their own drawbacks. Ideally, one would merge the most attractive features of those different approaches in a single technology. We envision that large-scale photonic crystal (PC) integrated circuits and fibers could be the basis for robust and compact quantum circuits and processors of the next generation quantum computers and networking devices. Cavity QED, solid-state, and (non)linear optical models for computing, and optical fiber approach for communications are the most promising candidates to be improved through this novel technology. In our work, we consider both digital and analog quantum computing. In the digital domain, we first perform gate-level analysis. To achieve this task, we solve the Jaynes-Cummings Hamiltonian with time-dependent coupling parameters under the dipole and rotating-wave approximations for a 3D PC single-mode cavity with a sufficiently high Q-factor. We then exploit the results to show how to create a maximally entangled state of two atoms and how to implement several quantum logic gates: a dual-rail Hadamard gate, a dual-rail NOT gate, and a SWAP gate. In all of these operations, we synchronize atoms, as opposed to previous studies with PCs. The method has the potential for extension to N-atom entanglement, universal quantum logic operations, and the implementation of other useful, cavity QED-based quantum information processing tasks. In the next part of the digital domain, we study circuit-level implementations. We design and simulate an integrated teleportation and readout circuit on a single PC chip. The readout part of our device can not only be used on its own but can also be integrated with other compatible optical circuits to achieve atomic state detection. Further improvement of the device in terms of compactness and robustness is possible by integrating with sources and detectors in the optical regime. In the analog

  1. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01

    Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.

  2. Predicting electrocardiogram and arterial blood pressure waveforms with different Echo State Network architectures.

    PubMed

    Fong, Allan; Mittu, Ranjeev; Ratwani, Raj; Reggia, James

    2014-01-01

    Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.

  3. Architecture and statistical model of a pulse-mode digital multilayer neural network.

    PubMed

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A new architecture and a statistical model for a pulse-mode digital multilayer neural network (DMNN) are presented. Algebraic neural operations are replaced by stochastic processes using pseudo-random pulse sequences. Synaptic weights and neuron states are represented as probabilities and estimated as average rates of pulse occurrences in corresponding pulse sequences. A statistical model of error (or noise) is developed to estimate relative accuracy associated with stochastic computing in terms of mean and variance. The stochastic computing technique is implemented with simple logic gates as basic computing elements leading to a high neuron-density on a chip. Furthermore, the use of simple logic gates for neural operations, the pulse-mode signal representation, and the modular design techniques lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Any size of a feedforward network can be configured where processing speed is independent of the network size. Multilayer feedforward networks are modeled and applied to pattern classification problems such as encoding and character recognition.

  4. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions

    PubMed Central

    Potter, Gail E.; Smieszek, Timo; Sailer, Kerstin

    2015-01-01

    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0–5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models. PMID:26634122

  5. Network architecture design of an agile sensing system with sandwich wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Dorvash, S.; Li, X.; Pakzad, S.; Cheng, L.

    2012-04-01

    Wireless sensor network (WSN) is recently emerged as a powerful tool in the structural health monitoring (SHM). Due to the limitations of wireless channel capacity and the heavy data traffic, the control on the network is usually not real time. On the other hand, many SHM applications require quick response when unexpected events, such as earthquake, happen. Realizing the need to have an agile monitoring system, an approach, called sandwich node, was proposed. Sandwich is a design of complex sensor node where two Imote2 nodes are connected with each other to enhance the capabilities of the sensing units. The extra channel and processing power, added into the nodes, enable agile responses of the sensing network, particularly in interrupting the network and altering the undergoing tasks for burst events. This paper presents the design of a testbed for examination of the performance of wireless sandwich nodes in a network. The designed elements of the network are the software architecture of remote and local nodes, and the triggering strategies for coordinating the sensing units. The performance of the designed network is evaluated through its implementation in a monitoring test in the laboratory. For both original Imote2 and the sandwich node, the response time is estimated. The results show that the sandwich node is an efficient solution to the collision issue in existing interrupt approaches and the latency in dense wireless sensor networks.

  6. Project Integration Architecture (PIA) and Computational Analysis Programming Interface (CAPRI) for Accessing Geometry Data from CAD Files

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2002-01-01

    Integration of a supersonic inlet simulation with a computer aided design (CAD) system is demonstrated. The integration is performed using the Project Integration Architecture (PIA). PIA provides a common environment for wrapping many types of applications. Accessing geometry data from CAD files is accomplished by incorporating appropriate function calls from the Computational Analysis Programming Interface (CAPRI). CAPRI is a CAD vendor neutral programming interface that aids in acquiring geometry data directly from CAD files. The benefits of wrapping a supersonic inlet simulation into PIA using CAPRI are; direct access of geometry data, accurate capture of geometry data, automatic conversion of data units, CAD vendor neutral operation, and on-line interactive history capture. This paper describes the PIA and the CAPRI wrapper and details the supersonic inlet simulation demonstration.

  7. Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks

    PubMed Central

    Lord, Louis-David; Expert, Paul; Fernandes, Henrique M.; Petri, Giovanni; Van Hartevelt, Tim J.; Vaccarino, Francesco; Deco, Gustavo; Turkheimer, Federico; Kringelbach, Morten L.

    2016-01-01

    In recent years, the application of network analysis to neuroimaging data has provided useful insights about the brain's functional and structural organization in both health and disease. This has proven a significant paradigm shift from the study of individual brain regions in isolation. Graph-based models of the brain consist of vertices, which represent distinct brain areas, and edges which encode the presence (or absence) of a structural or functional relationship between each pair of vertices. By definition, any graph metric will be defined upon this dyadic representation of the brain activity. It is however unclear to what extent these dyadic relationships can capture the brain's complex functional architecture and the encoding of information in distributed networks. Moreover, because network representations of global brain activity are derived from measures that have a continuous response (i.e., interregional BOLD signals), it is methodologically complex to characterize the architecture of functional networks using traditional graph-based approaches. In the present study, we investigate the relationship between standard network metrics computed from dyadic interactions in a functional network, and a metric defined on the persistence homological scaffold of the network, which is a summary of the persistent homology structure of resting-state fMRI data. The persistence homological scaffold is a summary network that differs in important ways from the standard network representations of functional neuroimaging data: (i) it is constructed using the information from all edge weights comprised in the original network without applying an ad hoc threshold and (ii) as a summary of persistent homology, it considers the contributions of simplicial structures to the network organization rather than dyadic edge-vertices interactions. We investigated the information domain captured by the persistence homological scaffold by computing the strength of each node in the

  8. A cost model for broadband access networks: FTTx versus WiMAX

    NASA Astrophysics Data System (ADS)

    Pereira, João Paulo Ribeiro

    2007-09-01

    Local communities and governments are taking various steps to fight the so-called "digital divide" between well served urban communities and undeserved areas. In order to make broadband access available to these under served areas, several technical solutions are available with the capacity to provide high speed Internet access, video, telephony services, etc. This paper presents a cost-model and a tool for the evaluation of broadband access technologies (xDSL, HFC, FTTx, WiMAX, PLC and satellite), and compares two technologies: FTTx and WiMAX. Our tool compares these different access technologies in different scenarios, and examining the capital expense and deployment of building access networks with the same requisite performance using each technology. The cost model is limited to the access part of the network. The results obtained by our evaluation tool give the possibility to compare several BB access technologies, and support the decision about which is the better technological solution for a given scenario

  9. Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions.

    PubMed

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Friedmann, Michael C; Hannemann, Jan; Ehlting, Juergen; El-Kassaby, Yousry A; Mansfield, Shawn D; Douglas, Carl J

    2013-11-01

    High-throughput approaches have been widely applied to elucidate the genetic underpinnings of industrially important wood properties. Wood traits are polygenic in nature, but gene hierarchies can be assessed to identify the most important gene variants controlling specific traits within complex networks defining the overall wood phenotype. We tested a large set of genetic, genomic, and phenotypic information in an integrative approach to predict wood properties in Populus trichocarpa. Nine-yr-old natural P. trichocarpa trees including accessions with high contrasts in six traits related to wood chemistry and ultrastructure were profiled for gene expression on 49k Nimblegen (Roche NimbleGen Inc., Madison, WI, USA) array elements and for 28,831 polymorphic single nucleotide polymorphisms (SNPs). Pre-selected transcripts and SNPs with high statistical dependence on phenotypic traits were used in Bayesian network learning procedures with a stepwise K2 algorithm to infer phenotype-centric networks. Transcripts were pre-selected at a much lower logarithm of Bayes factor (logBF) threshold than SNPs and were not accommodated in the networks. Using persistent variables, we constructed cross-validated networks for variability in wood attributes, which contained four to six variables with 94-100% predictive accuracy. Accommodated gene variants revealed the hierarchy in the genetic architecture that underpins substantial phenotypic variability, and represent new tools to support the maximization of response to selection.

  10. Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul

    2010-10-01

    In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server

  11. Architecture of the Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet)

    SciTech Connect

    Aiken, R.J.; Carlson, R.A.; Foster, I.T.

    1997-01-01

    The research and education (R&E) community requires persistent and scaleable network infrastructure to concurrently support production and research applications as well as network research. In the past, the R&E community has relied on supporting parallel network and end-node infrastructures, which can be very expensive and inefficient for network service managers and application programmers. The grand challenge in networking is to provide support for multiple, concurrent, multi-layer views of the network for the applications and the network researchers, and to satisfy the sometimes conflicting requirements of both while ensuring one type of traffic does not adversely affect the other. Internet and telecommunications service providers will also benefit from a multi-modal infrastructure, which can provide smoother transitions to new technologies and allow for testing of these technologies with real user traffic while they are still in the pre-production mode. The authors proposed approach requires the use of as much of the same network and end system infrastructure as possible to reduce the costs needed to support both classes of activities (i.e., production and research). Breaking the infrastructure into segments and objects (e.g., routers, switches, multiplexors, circuits, paths, etc.) gives the capability to dynamically construct and configure the virtual active networks to address these requirements. These capabilities must be supported at the campus, regional, and wide-area network levels to allow for collaboration by geographically dispersed groups. The Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet) described in this report is an initial architecture and framework designed to identify and support the capabilities needed for the proposed combined infrastructure and to address related research issues.

  12. Position Estimation of Access Points in 802.11 Wireless Networks

    SciTech Connect

    Kent, C A; Dowla, F U; Atwal, P K; Lennon, W J

    2003-12-05

    We developed a technique to locate wireless network nodes using multiple time-of-flight range measurements in a position estimate. When used with communication methods that allow propagation through walls, such as Ultra-Wideband and 802.11, we can locate network nodes in buildings and in caves where GPS is unavailable. This paper details the implementation on an 802.11a network where we demonstrated the ability to locate a network access point to within 20 feet.

  13. On the complexity of neural network classifiers: a comparison between shallow and deep architectures.

    PubMed

    Bianchini, Monica; Scarselli, Franco

    2014-08-01

    Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g., vision and human language understanding. However, the actual theoretical results supporting such a claim are still few and incomplete. In this paper, we propose a new approach to study how the depth of feedforward neural networks impacts on their ability in implementing high complexity functions. First, a new measure based on topological concepts is introduced, aimed at evaluating the complexity of the function implemented by a neural network, used for classification purposes. Then, deep and shallow neural architectures with common sigmoidal activation functions are compared, by deriving upper and lower bounds on their complexity, and studying how the complexity depends on the number of hidden units and the used activation function. The obtained results seem to support the idea that deep networks actually implements functions of higher complexity, so that they are able, with the same number of resources, to address more difficult problems.

  14. Hybrid RF and Digital Beamformer for Cellular Networks: Algorithms, Microwave Architectures, and Measurements

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Vijay; Pivit, Florian; Guan, Lei

    2016-07-01

    Modern wireless communication networks, particularly cellular networks utilize multiple antennas to improve the capacity and signal coverage. In these systems, typically an active transceiver is connected to each antenna. However, this one-to-one mapping between transceivers and antennas will dramatically increase the cost and complexity of a large phased antenna array system. In this paper, firstly we propose a \\emph{partially adaptive} beamformer architecture where a reduced number of transceivers with a digital beamformer (DBF) is connected to an increased number of antennas through an RF beamforming network (RFBN). Then, based on the proposed architecture, we present a methodology to derive the minimum number of transceivers that are required for marco-cell and small-cell base stations, respectively. Subsequently, in order to achieve optimal beampatterns with given cellular standard requirements and RF operational constraints, we propose efficient algorithms to jointly design DBF and RFBN. Starting from the proposed algorithms, we specify generic microwave RFBNs for optimal marco-cell and small-cell networks. In order to verify the proposed approaches, we compare the performance of RFBN using simulations and anechoic chamber measurements. Experimental measurement results confirm the robustness and performance of the proposed hybrid DBF-RFBN concept eventually ensuring that theoretical multi-antenna capacity and coverage are achieved at a little incremental cost.

  15. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    PubMed

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  16. How to Solve Dilemmas Arising from the Idea of Improving Physical Accessibility in Relation to Aesthetics and Architectural Heritage.

    PubMed

    Asmervik, Sigmund

    2016-01-01

    The Norwegian state has been working for more than fifteen years on various ways of improving accessibility for the general public. An important part of this work has been to develop new legislation and other forms of formal guidelines to reduce physical barriers. The new Anti-Discrimination and Accessibility Act, Obligation to ensure general accommodation (universal design), came into force January 2009, and introduces some complicated dilemmas, especially when it states: "When assessing whether the design or accommodation entails an undue burden, particular importance shall be attached to the effect of the accommodation on the dismantling of disabling barriers, the necessary costs associated with the accommodation, the undertaking's resources, whether the normal function of the undertaking is of a public nature, safety considerations and cultural heritage considerations." What is an "undue burden" in relation to architectural visual qualities and to the historical heritage expressed in buildings and townscapes? This paper will look into these dilemmas by discussing specific cases from some cities in different countries. What kinds of procedure are suitable and decisive when it comes to these complicated questions? Is this a task exclusively reserved for professionals, or should the voice of lay people be heard and taken into consideration? By presenting examples from architecture and landscape architecture, I will show how universal design even can be implemented in old buildings and environments. The paper will argue for more focus on procedures than just physical solutions. The procedures should be based on accepted principles for changing historical monuments, such as wholeness, readability, reversibility and sustainability.

  17. Architectural improvements and 28 nm FPGA implementation of the APEnet+ 3D Torus network for hybrid HPC systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lo Cicero, Francesca; Stanislao Paolucci, Pier; Lonardo, Alessandro; Rossetti, Davide; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2014-06-01

    Modern Graphics Processing Units (GPUs) are now considered accelerators for general purpose computation. A tight interaction between the GPU and the interconnection network is the strategy to express the full potential on capability computing of a multi-GPU system on large HPC clusters; that is the reason why an efficient and scalable interconnect is a key technology to finally deliver GPUs for scientific HPC. In this paper we show the latest architectural and performance improvement of the APEnet+ network fabric, a FPGA-based PCIe board with 6 fully bidirectional off-board links with 34 Gbps of raw bandwidth per direction, and X8 Gen2 bandwidth towards the host PC. The board implements a Remote Direct Memory Access (RDMA) protocol that leverages upon peer-to-peer (P2P) capabilities of Fermi- and Kepler-class NVIDIA GPUs to obtain real zero-copy, low-latency GPU-to-GPU transfers. Finally, we report on the development activities for 2013 focusing on the adoption of the latest generation 28 nm FPGAs and the preliminary tests performed on this new platform.

  18. Beyond 'furballs' and 'dumpling soups' - towards a molecular architecture of signaling complexes and networks.

    PubMed

    Lewitzky, Marc; Simister, Philip C; Feller, Stephan M

    2012-08-14

    The molecular architectures of intracellular signaling networks are largely unknown. Understanding their design principles and mechanisms of processing information is essential to grasp the molecular basis of virtually all biological processes. This is particularly challenging for human pathologies like cancers, as essentially each tumor is a unique disease with vastly deranged signaling networks. However, even in normal cells we know almost nothing. A few 'signalosomes', like the COP9 and the TCR signaling complexes have been described, but detailed structural information on their architectures is largely lacking. Similarly, many growth factor receptors, for example EGF receptor, insulin receptor and c-Met, signal via huge protein complexes built on large platform proteins (Gab, Irs/Dok, p130Cas[BCAR1], Frs families etc.), which are structurally not well understood. Subsequent higher order processing events remain even more enigmatic. We discuss here methods that can be employed to study signaling architectures, and the importance of too often neglected features like macromolecular crowding, intrinsic disorder in proteins and the sophisticated cellular infrastructures, which need to be carefully considered in order to develop a more mature understanding of cellular signal processing.

  19. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  20. The dynamic nature of mollusc egg surface architecture and its relation to the microtubule network.

    PubMed

    Tyler, Sheena E B; Kimber, Susan J

    2006-01-01

    Dynamic changes in the surface architecture pattern of embryos of the slipper limpet (Crepidula fornicata, Mollusca) were found in this study to correlate with the dynamic activity and pattern of the underlying mitotic spindle microtubule network, revealed by fluorescent labelling and confocal imaging techniques. Examination of a series of optical sections indicate that this network appears to be spatially co-ordinated together as a whole throughout the embryo. The microtubule pattern also associated with abnormal multipolar spindles resulting from an applied static magnetic field, indicating that the pattern may be generated by a natural endogenous field source. The patterning characteristics of the surface and microtubule network together provide further morphological evidence for a primary morphogenetic or developmental field system which organises the primary body axis and co-ordinates the pattern of cleavage.

  1. The Design of Passive Optical Networking+Ethernet over Coaxial Cable Access Networking and Video-on-Demand Services Carrying

    NASA Astrophysics Data System (ADS)

    Ji, Wei

    2013-07-01

    Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.

  2. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    SciTech Connect

    Dumidu Wijayasekara; Milos Manic; Piyush Sabharwall; Vivek Utgikar

    2011-07-01

    Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or overlearning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing error achieved was in the order of magnitude of within 10{sup -5} - 10{sup -3}. It was also show that the absolute error achieved by EBaLM-OTR was an order of magnitude better than the lowest error achieved by EBaLM-THP.

  3. Detectability models and waveform design for multiple access Low-Probability-of-Intercept networks

    NASA Astrophysics Data System (ADS)

    Mills, Robert F.

    1994-04-01

    Increased connectivity demands in the tactical battlefield have led to the development of multiple access low probability-of-intercept (LPI) communication networks. Most detectability studies of LPI networks have focused on the individual network links, in which detectability calculations are carried out for a single network emitter. This report, however, presents a different approach to network detectability analysis: it is assumed that the interceptor does not attempt to distinguish one emitter from another, but rather decides only if a network is operating or not. What distinguishes this approach from conventional link intercept analysis is that detection decisions are based on energy received from multiple sources. The following multiple access schemes are considered: frequency division, time division, direct sequence code division, and frequency hop code division. The wideband radiometer and its hybrids, such as the channelized radiometer, are used as potential network intercept receivers.

  4. Simulation and measurement of optical access network with different types of optical-fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-01-01

    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  5. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    PubMed

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  6. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    PubMed Central

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-01-01

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.  PMID:28208787

  7. Lossless photonic switched networks for metro-access

    NASA Astrophysics Data System (ADS)

    Martins, Yara; Rudge Barbosa, F.; Bertoldi, Indaya; Moschim, E.

    2016-02-01

    We evaluate through computer simulation the performance of Photonic switching OPS/OBS networks of various sizes and configurations, based on a lossless (amplified) photonic switching node experimentally demonstrated previously. The great advantage of photonic switching is transparency to signal rate and format. Thus we propose a basic flexible network, with low-energy consumption and high-efficiency. In simulations traffic load is varied and network parameters such as, average number of hops (ANH), network latency (delay) and packet loss fraction are evaluated. Consistent results for the various configurations are presented, analyzed and discussed; and Interesting conclusions emerge.

  8. Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks

    NASA Astrophysics Data System (ADS)

    Vadrevu, Sree Krishna Chaitanya

    Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will

  9. Architecture of an Antagonistic Tree/Fungus Network: The Asymmetric Influence of Past Evolutionary History

    PubMed Central

    Vacher, Corinne; Piou, Dominique; Desprez-Loustau, Marie-Laure

    2008-01-01

    Background Compartmentalization and nestedness are common patterns in ecological networks. The aim of this study was to elucidate some of the processes shaping these patterns in a well resolved network of host/pathogen interactions. Methology/Principal Findings Based on a long-term (1972–2005) survey of forest health at the regional scale (all French forests; 15 million ha), we uncovered an almost fully connected network of 51 tree taxa and 157 parasitic fungal species. Our analyses revealed that the compartmentalization of the network maps out the ancient evolutionary history of seed plants, but not the ancient evolutionary history of fungal species. The very early divergence of the major fungal phyla may account for this asymmetric influence of past evolutionary history. Unlike compartmentalization, nestedness did not reflect any consistent phylogenetic signal. Instead, it seemed to reflect the ecological features of the current species, such as the relative abundance of tree species and the life-history strategies of fungal pathogens. We discussed how the evolution of host range in fungal species may account for the observed nested patterns. Conclusion/Significance Overall, our analyses emphasized how the current complexity of ecological networks results from the diversification of the species and their interactions over evolutionary times. They confirmed that the current architecture of ecological networks is not only dependant on recent ecological processes. PMID:18320058

  10. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  11. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    PubMed

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.

  12. An Ounce of Prevention: Technologists Use Network-Access Control to Protect System Resources, Students

    ERIC Educational Resources Information Center

    Bolch, Matt

    2009-01-01

    Whether for an entire district, a single campus, or one classroom, allowing authorized access to a computer network can be fraught with challenges. The login process should be fairly seamless to approved users, giving them speedy access to approved Web sites, databases, and other sources of information. It also should be tough on unauthorized…

  13. The Cybermobile: A Gateway for Public Access to Network-Based Information.

    ERIC Educational Resources Information Center

    Drumm, John E.; Groom, Frank M.

    1997-01-01

    Though the bookmobile has fallen on hard times, the cybermobile, a technology platform combining personal computing, CD-ROMs, fiber network, and wireless access to the Internet, may be the next step in mobile library services. Discusses standard vehicle, computer hardware, software, wireless access, and alliances with users, vendors, and community…

  14. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph; Frame, Kyle L.; Dankanich, John W.

    2005-01-01

    Two transportation architecture changes are presented at either end of a conventional two-stage rocket flight: 1) Air launch using a large, conventional, pod hauler design (i.e., Crossbow)ans 2) Momentum exchange tether (i.e., an in-space asset like MXER). Air launch has ana analytically justified cost reduction of approx. 10%, but its intangible benefits suggest real-world operations cost reductions much higher: 1) Inherent launch safety; 2) Mission Risk Reduction; 3) Favorable payload/rocket limitations; and 4) Leveraging the aircraft for other uses (military transport, commercial cargo, public outreach activities, etc.)

  15. Cellular computational networks--a scalable architecture for learning the dynamics of large networked systems.

    PubMed

    Luitel, Bipul; Venayagamoorthy, Ganesh Kumar

    2014-02-01

    Neural networks for implementing large networked systems such as smart electric power grids consist of multiple inputs and outputs. Many outputs lead to a greater number of parameters to be adapted. Each additional variable increases the dimensionality of the problem and hence learning becomes a challenge. Cellular computational networks (CCNs) are a class of sparsely connected dynamic recurrent networks (DRNs). By proper selection of a set of input elements for each output variable in a given application, a DRN can be modified into a CCN which significantly reduces the complexity of the neural network and allows use of simple training methods for independent learning in each cell thus making it scalable. This article demonstrates this concept of developing a CCN using dimensionality reduction in a DRN for scalability and better performance. The concept has been analytically explained and empirically verified through application.

  16. Space Communications and Navigation (SCaN) Integrated Network Architecture Definition Document (ADD). Volume 1; Executive Summary; Revision 1

    NASA Technical Reports Server (NTRS)

    Younes, Badri A.; Schier, James S.

    2010-01-01

    The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture

  17. Effects of molecular architecture on fluid ingress behavior of glassy polymer networks

    NASA Astrophysics Data System (ADS)

    Jaskson, Matthew Blaine

    This manuscript demonstrates the synthesis of glassy polymer network isomers to control morphological variations and study solvent ingress behavior independent of chemical affinity. Well-controlled network architectures with varying free volume average hole-sizes have been shown to substantially influence solvent ingress within glassy polymer networks. Bisphenol-A diglycidyl ether (DGEBA), bisphenol-F diglycidyl ether (DGEBF), Triglycidyl p-aminophenol (pAP, MY0510), Triglycidyl maminophenol (mAP, MY0610), and tetraglydicyl-4,4'-diamino-diphenyl methane (TGDDM, MY721) were cured with 3,3'- and 4,4'-diaminodiphenyl sulfone (DDS) at a stoichiometric ratio of 1:1 oxirane to amine active hydrogen to generate a series of network architectures with an average free volume hole-size (Vh) ranging between 54-82 A3. Polymer networks were exposed to water and a broad range of organic solvents ranging in van der Waals (vdW) volumes from 18-88 A3 for up to 10,000h time. A clear relationship between glassy polymer network Vh and fluid penetration has been established. As penetrant vdW volume approached Vh, uptake kinetics significantly decreased, and as penetrant vdW volume exceeded Vh, a blocking mechanism dominated ingress and prevented penetrant transport. These results suggest that reducing the free volume hole-size is a reasonable approach to control solvent properties for glassy polymer networks. New techniques to monitor and predict the diffusion behavior of liquids through glassy networks are also presented. Digital Image Correlation (DIC) was employed to accurately measure the strain developed during case II diffusion. This technique also presented a new theory for a relationship between sample topology and irreversible macroscopic brittle failure induced by solvent absorption. A new modeling technique has been developed which can accurately predict the chemical and physical interactions a solvent may have with a glassy network. This new model can be used as a

  18. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  19. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay

  20. Interferon-α acutely impairs whole-brain functional connectivity network architecture - A preliminary study.

    PubMed

    Dipasquale, Ottavia; Cooper, Ella A; Tibble, Jeremy; Voon, Valerie; Baglio, Francesca; Baselli, Giuseppe; Cercignani, Mara; Harrison, Neil A

    2016-11-01

    Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis C infection. Though clinically effective, IFN-α rapidly impairs mood, motivation and cognition, effects that can appear indistinguishable from major depression and provide powerful empirical support for the inflammation theory of depression. Though inflammation has been shown to modulate activity within discrete brain regions, how it affects distributed information processing and the architecture of whole brain functional connectivity networks have not previously been investigated. Here we use a graph theoretic analysis of resting state functional magnetic resonance imaging (rfMRI) to investigate acute effects of systemic interferon-alpha (IFN-α) on whole brain functional connectivity architecture and its relationship to IFN-α-induced mood change. Twenty-two patients with Hepatitis-C infection, initiating IFN-α-based therapy were scanned at baseline and 4h after their first IFN-α dose. The whole brain network was parcellated into 110 cortical and sub-cortical nodes based on the Oxford-Harvard Atlas and effects assessed on higher-level graph metrics, including node degree, betweenness centrality, global and local efficiency. IFN-α was associated with a significant reduction in global network connectivity (node degree) (p=0.033) and efficiency (p=0.013), indicating a global reduction of information transfer among the nodes forming the whole brain network. Effects were similar for highly connected (hub) and non-hub nodes, with no effect on betweenness centrality (p>0.1). At a local level, we identified regions with reduced efficiency of information exchange and a sub-network with decreased functional connectivity after IFN-α. Changes in local and particularly global functional connectivity correlated with associated changes in mood measured on the Profile of Mood States (POMS) questionnaire. IFN-α rapidly induced a profound shift in whole brain network structure

  1. A remote password authentication scheme for multiserver architecture using neural networks.

    PubMed

    Li, L H; Lin, L C; Hwang, M S

    2001-01-01

    Conventional remote password authentication schemes allow a serviceable server to authenticate the legitimacy of a remote login user. However, these schemes are not used for multiserver architecture environments. We present a remote password authentication scheme for multiserver environments. The password authentication system is a pattern classification system based on an artificial neural network. In this scheme, the users only remember user identity and password numbers to log in to various servers. Users can freely choose their password. Furthermore, the system is not required to maintain a verification table and can withstand the replay attack.

  2. The Changing Role of Community Networks in Providing Citizen Access to the Internet.

    ERIC Educational Resources Information Center

    Keenan, Thomas P.; Trotter, David Mitchell

    1999-01-01

    Examines the changing role of community network associations or freenets in providing Internet access by examining the case of the Calgary Community Network Association (CCNA) in Alberta, Canada. Discusses the withdrawal of states from the telecommunications field, priorities of the Canadian government, and the role of the private sector.…

  3. Tort Liability, the First Amendment, Equal Access, and Commercialization of Electronic Networks.

    ERIC Educational Resources Information Center

    Perritt, Henry H., Jr.

    1992-01-01

    Discusses the legal concerns of free access to information, tort liability, and free speech in a commercial electronic networking environment. Recommends that legal questions be addressed through case law, Congressional hearings, and agency solicitations, and that network service providers protect themselves by posting notice of equal access…

  4. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    PubMed

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  5. Architecture and design of optical path networks utilizing waveband virtual links

    NASA Astrophysics Data System (ADS)

    Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2016-02-01

    We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.

  6. Taking the 'work' out of networking: strategies for smarter, simpler network architecture and administration

    NASA Technical Reports Server (NTRS)

    Luna, C. de

    2003-01-01

    This session will help you tune up your skills and knowledge on the latest advances in network design and management, to keep your agency's data communications running at peak performance, with minimal cost and effort.

  7. Architecture for a Web-based clinical information system that keeps the design open and the access closed.

    PubMed

    Cimino, J J; Sengupta, S; Clayton, P D; Patel, V L; Kushniruk, A; Huang, X

    1998-01-01

    We are developing the Patient Clinical Information System (PatCIS) project at Columbia-Presbyterian Medical Center to provide patients with access to health information, including their own medical records (permitting them to contribute selected aspects to the record), educational materials and automated decision support. The architecture of the system allows for multiple, independent components which make use of central services for managing security and usage logging functions. The design accommodates a variety of data entry, data display and decision support tools and provides facilities for tracking system usage and questionnaires. The user interface minimizes hypertext-related disorientation and cognitive overload; our success in this regard is the subject of on-going evaluation.

  8. Effects of the Wireless Channel, Signal Compression and Network Architecture on Speech Quality in Voip Networks

    DTIC Science & Technology

    2007-06-01

    coding and compression on the received speech quality. Both simulation and experimentation are conducted using Matlab code and Speex software and...using Matlab code and Speex software and across commercial VoIP networks. Simulation shows that fading channel parameters can heavily affect the...experimentation. Simulation is implemented using Matlab and Speex software , and the experiments are conducted on commercial VoIP networks. xvi Simulation

  9. A Unified Access Model for Interconnecting Heterogeneous Wireless Networks

    DTIC Science & Technology

    2015-05-01

    Hector Garcia-Molina on a project entitled Categorical Analyses of Web Traffic Data, which was concerned with organizing and graphing internet...also as the foundation for a new physical design over which the heterogeneous networks operate seamlessly. 15. SUBJECT TERMS MAC layer, Software ... traffic data for discovering trends. In the future, he hopes to continue exploring new paradigms for networking. 1 1. Introduction/Background

  10. Application of Fiber-Optical Techniques in the Access Transmission and Backbone Transport of Mobile Networks

    NASA Astrophysics Data System (ADS)

    Hilt, Attila; Pozsonyi, László

    2012-09-01

    Fixed access networks widely employ fiber-optical techniques due to the extremely wide bandwidth offered to subscribers. In the last decade, there has also been an enormous increase of user data visible in mobile systems. The importance of fiber-optical techniques within the fixed transmission/transport networks of mobile systems is therefore inevitably increasing. This article summarizes a few reasons and gives examples why and how fiber-optic techniques are employed efficiently in second-generation networks.

  11. A study on new nursing information accessibility mechanism using the digital broadcasting network.

    PubMed

    Oh, Jina

    2006-01-01

    There have been efforts to add an interoperability function to TV systems. The digital technology has changed all our lifestyles. Now TV systems do indeed have interoperability functions. However, this means more than interoperable TV. It announces the birth of a digital broadcasting network (one-source and many-destination digital communication mechanism)--the new digital communication network as a broadcasting style. As a viewpoint of nursing informatics, this mechanism provides a new accessibility mechanism to structured and interoperable data. This paper introduces the technology and the basic scenarios on the data accessibility mechanism using the digital broadcasting network.

  12. Virus spreading in wireless sensor networks with a medium access control mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qi; Yang, Xiao-Yuan

    2013-04-01

    In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.

  13. Frontier: High Performance Database Access Using Standard Web Components in a Scalable Multi-Tier Architecture

    SciTech Connect

    Kosyakov, S.; Kowalkowski, J.; Litvintsev, D.; Lueking, L.; Paterno, M.; White, S.P.; Autio, Lauri; Blumenfeld, B.; Maksimovic, P.; Mathis, M.; /Johns Hopkins U.

    2004-09-01

    A high performance system has been assembled using standard web components to deliver database information to a large number of broadly distributed clients. The CDF Experiment at Fermilab is establishing processing centers around the world imposing a high demand on their database repository. For delivering read-only data, such as calibrations, trigger information, and run conditions data, we have abstracted the interface that clients use to retrieve data objects. A middle tier is deployed that translates client requests into database specific queries and returns the data to the client as XML datagrams. The database connection management, request translation, and data encoding are accomplished in servlets running under Tomcat. Squid Proxy caching layers are deployed near the Tomcat servers, as well as close to the clients, to significantly reduce the load on the database and provide a scalable deployment model. Details the system's construction and use are presented, including its architecture, design, interfaces, administration, performance measurements, and deployment plan.

  14. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions

    PubMed Central

    Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    Background In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding—after data editing—57000 polymorphic and informative SNPS, among which 54% were in genic regions. Results In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10−7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10−7) and for plant height on chromosome 6 (FDR = 0.011). Conclusions We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies. PMID:27228161

  15. Link Performance Analysis for a Proposed Future Architecture of the Air Force Satellite Control Network

    DTIC Science & Technology

    2011-12-01

    Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of...computing is an interesting approach to link performance prediction. A paper was authored by the Global Educational Network for Spacecraft Operations...GENSO is a conglomerate of multiple ground stations shared by educational organizations most of which need access to LEO spacecraft. As with any

  16. An Architecture for Coexistence with Multiple Users in Frequency Hopping Cognitive Radio Networks

    DTIC Science & Technology

    2013-03-01

    22 2.2.2 Bluetooth (802.15.1) & WLAN (802.11) . . . . . . . . . . . . . . 23 2.2.3 Dynamic Adaptive...wideband VHDL VHSIC Hardware Description Language VHSIC Very High Speed Integrated Circuit WARP Wireless Open Access Research Platform WLAN Wireless Local...control channel and related management schemes, but does not contribute to either area. Security in this network is a noble consideration and one that must

  17. Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures.

    PubMed

    Xue, Yanming; Dai, Pengcheng; Zhou, Min; Wang, Xi; Pakdel, Amir; Zhang, Chao; Weng, Qunhong; Takei, Toshiaki; Fu, Xiuwei; Popov, Zakhar I; Sorokin, Pavel B; Tang, Chengchun; Shimamura, Kiyoshi; Bando, Yoshio; Golberg, Dmitri

    2017-01-24

    Construction of cellular architectures has been expected to enhance materials' mechanical tolerance and to stimulate and broaden their efficient utilizations in many potential fields. However, hitherto, there have been rather scarce developments in boron nitride (BN)-type cellular architectures because of well-known difficulties in the syntheses of BN-based structures. Herein, cellular-network multifunctional foams made of interconnective nanotubular hexagonal BN (h-BN) architectures are developed using carbothermal reduction-assisted in situ chemical vapor deposition conversion from N-doped tubular graphitic cellular foams. These ultralight, chemically inert, thermally stable, and robust-integrity (supporting about 25,000 times of their own weight) three-dimensional-BN foams exhibit a 98.5% porosity, remarkable shape recovery (even after cycling compressions with 90% deformations), excellent resistance to water intrusion, thermal diffusion stability, and high strength and stiffness. They remarkably reduce the coefficient of thermal expansion and dielectric constant of polymeric poly(methyl methacrylate) composites, greatly contribute to their thermal conductivity improvement, and effectively limit polymeric composite softening at elevated temperatures. The foams also demonstrate high-capacity adsorption-separation and removal ability for a wide range of oils and organic chemicals in oil/water systems and reliable recovery under their cycling usage as organic adsorbers. These created multifunctional foams should be valuable in many high-end practical applications.

  18. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.

    PubMed

    Hinman, Veronica F; Yankura, Kristen A; McCauley, Brenna S

    2009-04-01

    Developmental gene regulatory networks (GRNs) explain how regulatory states are established in particular cells during development and how these states then determine the final form of the embryo. Evolutionary changes to the sequence of the genome will direct reorganization of GRN architectures, which in turn will lead to the alteration of developmental programs. A comparison of GRN architectures must consequently reveal the molecular basis for the evolution of developmental programs among different organisms. This review highlights some of the important findings that have emerged from the most extensive direct comparison of GRN architectures to date. Comparison of the orthologous GRNs for endomesodermal specification in the sea urchin and sea star, provides examples of several discrete, functional GRN subcircuits and shows that they are subject to diverse selective pressures. This demonstrates that different regulatory linkages may be more or less amenable to evolutionary change. One of the more surprising findings from this comparison is that GRN-level functions may be maintained while the factors performing the functions have changed, suggesting that GRNs have a high capacity for compensatory changes involving transcription factor binding to cis regulatory modules.

  19. Architecture and methods for UAV-based heterogeneous sensor network applications

    NASA Astrophysics Data System (ADS)

    Antonio, Pedro; Caputo, Davide; Gandelli, Alessandro; Grimaccia, Francesco; Mussetta, Marco

    2012-09-01

    Wireless sensor netwoks (WSN) employ miniaturized devices which integrate sensing, processing, and communication capabilities. In this paper an innovative mobile platform for heterogeneous sensor networks is presented, combined with adaptive methods to optimize the communication architecture for novel potential applications even in coastal and marine environment monitoring. In fact, in the near future, WSN data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. This procedure is here applied to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based remote sensing of the ocean, sea ice, coastal waters, and large water regions.

  20. Architecture and Design of IP Broadcasting System Using Passive Optical Network

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroki; Sugawa, Jun; Ashi, Yoshihiro; Sakamoto, Kenichi

    We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.

  1. Adaptive coded spreading OFDM signal for dynamic-λ optical access network

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-12-01

    This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.

  2. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  3. Homeless Families' Education Networks: An Examination of Access and Mobilization

    ERIC Educational Resources Information Center

    Miller, Peter M.

    2011-01-01

    Purpose: This study sought deeper understanding of how sheltered families accessed and mobilized educationally related relationships and resources during periods of homelessness. Such work is posited to be especially relevant considering that there is a growing crisis of family homelessness in the United States and school- and community-based…

  4. Ethernet access network based on free-space optic deployment technology

    NASA Astrophysics Data System (ADS)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  5. Architecture for an integrated real-time air combat and sensor network simulation

    NASA Astrophysics Data System (ADS)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  6. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  7. An efficient architecture for the integration of sensor and actuator networks into the future internet

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.

    2011-08-01

    In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.

  8. Destination-directed, packet-switched architecture for a geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark

    1993-01-01

    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.

  9. MASM: a market architecture for sensor management in distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya

    2005-03-01

    Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.

  10. Volume server: A scalable high speed and high capacity magnetic tape archive architecture with concurrent multi-host access

    NASA Technical Reports Server (NTRS)

    Rybczynski, Fred

    1993-01-01

    A major challenge facing data processing centers today is data management. This includes the storage of large volumes of data and access to it. Current media storage for large data volumes is typically off line and frequently off site in warehouses. Access to data archived in this fashion can be subject to long delays, errors in media selection and retrieval, and even loss of data through misplacement or damage to the media. Similarly, designers responsible for architecting systems capable of continuous high-speed recording of large volumes of digital data are faced with the challenge of identifying technologies and configurations that meet their requirements. Past approaches have tended to evaluate the combination of the fastest tape recorders with the highest capacity tape media and then to compromise technology selection as a consequence of cost. This paper discusses an architecture that addresses both of these challenges and proposes a cost effective solution based on robots, high speed helical scan tape drives, and large-capacity media.

  11. A Distributed Multiagent System Architecture for Body Area Networks Applied to Healthcare Monitoring

    PubMed Central

    Laza, Rosalía; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches. PMID:25874202

  12. Massively parallel network architectures for automatic recognition of visual speech signals. Final technical report

    SciTech Connect

    Sejnowski, T.J.; Goldstein, M.

    1990-01-01

    This research sought to produce a massively-parallel network architecture that could interpret speech signals from video recordings of human talkers. This report summarizes the project's results: (1) A corpus of video recordings from two human speakers was analyzed with image processing techniques and used as the data for this study; (2) We demonstrated that a feed forward network could be trained to categorize vowels from these talkers. The performance was comparable to that of the nearest neighbors techniques and to trained humans on the same data; (3) We developed a novel approach to sensory fusion by training a network to transform from facial images to short-time spectral amplitude envelopes. This information can be used to increase the signal-to-noise ratio and hence the performance of acoustic speech recognition systems in noisy environments; (4) We explored the use of recurrent networks to perform the same mapping for continuous speech. Results of this project demonstrate the feasibility of adding a visual speech recognition component to enhance existing speech recognition systems. Such a combined system could be used in noisy environments, such as cockpits, where improved communication is needed. This demonstration of presymbolic fusion of visual and acoustic speech signals is consistent with our current understanding of human speech perception.

  13. A distributed multiagent system architecture for body area networks applied to healthcare monitoring.

    PubMed

    Felisberto, Filipe; Laza, Rosalía; Fdez-Riverola, Florentino; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches.

  14. A Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive Control.

    PubMed

    Donnarumma, Francesco; Prevete, Roberto; Chersi, Fabian; Pezzulo, Giovanni

    2015-09-01

    There is wide consensus that the prefrontal cortex (PFC) is able to exert cognitive control on behavior by biasing processing toward task-relevant information and by modulating response selection. This idea is typically framed in terms of top-down influences within a cortical control hierarchy, where prefrontal-basal ganglia loops gate multiple input-output channels, which in turn can activate or sequence motor primitives expressed in (pre-)motor cortices. Here we advance a new hypothesis, based on the notion of programmability and an interpreter-programmer computational scheme, on how the PFC can flexibly bias the selection of sensorimotor patterns depending on internal goal and task contexts. In this approach, multiple elementary behaviors representing motor primitives are expressed by a single multi-purpose neural network, which is seen as a reusable area of "recycled" neurons (interpreter). The PFC thus acts as a "programmer" that, without modifying the network connectivity, feeds the interpreter networks with specific input parameters encoding the programs (corresponding to network structures) to be interpreted by the (pre-)motor areas. Our architecture is validated in a standard test for executive function: the 1-2-AX task. Our results show that this computational framework provides a robust, scalable and flexible scheme that can be iterated at different hierarchical layers, supporting the realization of multiple goals. We discuss the plausibility of the "programmer-interpreter" scheme to explain the functioning of prefrontal-(pre)motor cortical hierarchies.

  15. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  16. RoCoMAR: robots' controllable mobility aided routing and relay architecture for mobile sensor networks.

    PubMed

    Le, Duc Van; Oh, Hoon; Yoon, Seokhoon

    2013-07-05

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  17. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence.

    PubMed

    Xu, Yanhong; Chen, Long; Guo, Zhaoqi; Nagai, Atsushi; Jiang, Donglin

    2011-11-09

    Herein we report a strategy for the design of highly luminescent conjugated polymers by restricting rotation of the polymer building blocks through a microporous network architecture. We demonstrate this concept using tetraphenylethene (TPE) as a building block to construct a light-emitting conjugated microporous polymer. The interlocked network successfully restricted the rotation of the phenyl units, which are the major cause of fluorescence deactivation in TPE, thus providing intrinsic luminescence activity for the polymers. We show positive "CMP effects" that the network promotes π-conjugation, facilitates exciton migration, and improves luminescence activity. Although the monomer and linear polymer analogue in solvents are nonemissive, the network polymers are highly luminescent in various solvents and the solid state. Because emission losses due to rotation are ubiquitous among small chromophores, this strategy can be generalized for the de novo design of light-emitting materials by integrating the chromophores into an interlocked network architecture.

  18. Fairness problems at the media access level for high-speed networks

    NASA Technical Reports Server (NTRS)

    Maly, Kurt J.; Zhang, L.; Game, David

    1990-01-01

    Most lower speed (approx. 10 Mbps) local area networks use adaptive or random access protocols like Ethernet. Others at higher speed use demand assignment like token or slotted rings. These include Cambridge ring and electronic token ring systems. Fairness issues in representatives of such protocols are discussed. In particular, Fiber Distributed Data Interface (FDDI) was selected as a demand access protocol using tokens, Carrier Sensed Multiple Access/Ring Network (CSMA/RN) a random access protocol, and Distributed Queue Dual Bus (DQDB) a demand access protocol using reservations. Fairness at the media access level was the focus, i.e., attaining access or being excessively delayed when a message is queued to be sent as a function of network location. Within that framework, the essential fairness of FDDI was observed along with severe fairness problems in DQDB and some problems for CSMA/RN. Several modifications were investigated and their ameliorative effect is shown. Finally, a unified presentation which allows comparisons of the three protocols' fairness when normalized to their capacity is given.

  19. Comparative analysis of tools for live cell imaging of actin network architecture.

    PubMed

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes--fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin--we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics.

  20. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus.

    PubMed

    Drost, Derek R; Benedict, Catherine I; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R D B; Yu, Qibin; Dervinis, Christopher; Maia, Jessica M; Yap, John; Miles, Brianna; Kirst, Matias

    2010-05-04

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.

  1. Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder

    PubMed Central

    Zhang, Tijiang; Wang, Jinhui; Yang, Yanchun; Wu, Qizhu; Li, Bin; Chen, Long; Yue, Qiang; Tang, Hehan; Yan, Chaogan; Lui, Su; Huang, Xiaoqi; Chan, Raymond C.K.; Zang, Yufeng; He, Yong; Gong, Qiyong

    2011-01-01

    Background Obsessive–compulsive disorder (OCD) is a common neuropsychiatric disorder that is characterized by recurrent intrusive thoughts, ideas or images and repetitive ritualistic behaviours. Although focal structural and functional abnormalities in specific brain regions have been widely studied in populations with OCD, changes in the functional relations among them remain poorly understood. This study examined OCD–related alterations in functional connectivity patterns in the brain’s top–down control network. Methods We applied resting-state functional magnetic resonance imaging to investigate the correlation patterns of intrinsic or spontaneous blood oxygen level–dependent signal fluctuations in 18 patients with OCD and 16 healthy controls. The brain control networks were first constructed by thresholding temporal correlation matrices of 39 brain regions associated with top–down control and then analyzed using graph theory-based approaches. Results Compared with healthy controls, the patients with OCD showed decreased functional connectivity in the posterior temporal regions and increased connectivity in various control regions such as the cingulate, precuneus, thalamus and cerebellum. Furthermore, the brain’s control networks in the healthy controls showed small-world architecture (high clustering coefficients and short path lengths), suggesting an optimal balance between modularized and distributed information processing. In contrast, the patients with OCD showed significantly higher local clustering, implying abnormal functional organization in the control network. Further analysis revealed that the changes in network properties occurred in regions of increased functional connectivity strength in patients with OCD. Limitations The patient group in the present study was heterogeneous in terms of symptom clusters, and most of the patients with OCD were medicated. Conclusion Our preliminary results suggest that the organizational patterns of

  2. Comparative analysis of tools for live cell imaging of actin network architecture

    PubMed Central

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Abstract Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes—fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin—we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics. PMID:26317264

  3. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces

    DOE PAGES

    Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan; ...

    2016-05-26

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less

  4. A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces

    PubMed Central

    Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung-Yan; Hatch, Anson V.

    2016-01-01

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work. PMID:27227828

  5. A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces.

    PubMed

    Abhyankar, Vinay V; Wu, Meiye; Koh, Chung-Yan; Hatch, Anson V

    2016-01-01

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young's modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.

  6. Temporal Pattern Recognition: A Network Architecture For Multi-Sensor Fusion

    NASA Astrophysics Data System (ADS)

    Priebe, C. E.; Marchette, D. J.

    1989-03-01

    A self-organizing network architecture for the learning and recognition of temporal patterns is proposed. This multi-layered architecture has as its focal point a layer of multi-dimensional Gaussian classification nodes, and the learning scheme employed is based on standard statistical moving mean and moving covariance calculations. The nodes are implemented in the network architecture by using a Gaussian, rather than sigmoidal, transfer function acting on the input from numerous connections. Each connection is analogous to a separate dimension for the Gaussian function. The learning scheme is a one-pass method, eliminating the need for repetitive presentation of the teaching stimuli. The Gaussian classes developed are representative of the statistics of the teaching data and act as templates in classifying novel inputs. The input layer employs a time-based decay to develop a time-ordered representation of the input stimuli. This temporal pattern recognition architecture is used to perform multi-sensor fusion and scene analysis for ROBART II, an autonomous sentry robot employing heterogeneous and homogeneous binary (on / off) sensors. The system receives sensor packets from ROBART indicating which sensors are active. The packets from various sensors are integrated in the input layer. As time progresses these sensor outputs become ordered, allowing the system to recognize activities which are dependent, not only on the individual events which make up the activity, but also on the order in which these events occur and their relative spacing throughout time. Each Gaussian classification node, representing a learned activity as an ordered sequence of sensor outputs, calculates its activation value independently, based on the activity in the input layer. These Gaussian activation values are then used to determine which, if any, of the learned sequences are present and with what confidence. The classification system is capable of recognizing activities despite missing

  7. Scheduling of network access for feedback-based embedded systems

    NASA Astrophysics Data System (ADS)

    Liberatore, Vincenzo

    2002-07-01

    nd communication capabilities. Examples range from smart dust embedded in building materials to networks of appliances in the home. Embedded devices will be deployed in unprecedented numbers, will enable pervasive distributed computing, and will radically change the way people interact with the surrounding environment [EGH00a]. The paper targets embedded systems and their real-time (RT) communication requirements. RT requirements arise from the

  8. Analytical Modeling of Medium Access Control Protocols in Wireless Networks

    DTIC Science & Technology

    2006-03-01

    provide the basic functionalities that are common to any com - puter network. The proposed modeling framework focuses on the interactions between the...colleagues I had the pleasure to meet at the Computer Com - munication Research Group (CCRG). In particular, I would like to thank Marco Spohn, Re- nato...Brazil), the Baskin Chair of Com - puter Engineering at UCSC, the National Science Foundation under Grant CNS-0435522, the UCOP CLC under Grant SC-05

  9. Random Access in Wireless Networks With Overlapping Cells

    DTIC Science & Technology

    2010-06-01

    Downloaded on May 19,2010 at 21:13:10 UTC from IEEE Xplore . Restrictions apply. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Authorized licensed use limited to: NRL. Downloaded on May 19,2010 at 21:13:10 UTC from IEEE Xplore . Restrictions apply. NGUYEN et al.: RANDOM ACCESS IN...21:13:10 UTC from IEEE Xplore . Restrictions apply. 2890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010 5) For a single

  10. Internet access in the libraries of the National Network of Libraries of Medicine.

    PubMed Central

    Lyon, B J; Stavri, P Z; Hochstein, D C; Nardini, H G

    1998-01-01

    As the National Library of Medicine expands access to its products and services by making them available on the Internet, more accurate information about current and future access in medical libraries is needed. The National Network Office of the National Library of Medicine conducted a survey of all network member libraries to determine the extent of connectivity and the barriers preventing 100% connectivity. Respondents called a toll-free number and, using interactive voice technology, answered questions concerning Internet access in their library. Seventy-eight percent of the network member libraries responded. Four percent of academic libraries, 27% of hospital libraries, and 10% of "other" libraries reported that they were not connected. Computer cost, lack of in-house expertise, and lack of management support were the highest ranked barriers to connecting. The National Library of Medicine and the Regional Medical Libraries will use information from this survey to develop strategies to help all member libraries achieve full connectivity. PMID:9803289

  11. Cost effective Internet access and video conferencing for a community cancer network.

    PubMed Central

    London, J. W.; Morton, D. E.; Marinucci, D.; Catalano, R.; Comis, R. L.

    1995-01-01

    Utilizing the ubiquitous personal computer as a platform, and Integrated Services Digital Network (ISDN) communications, cost effective medical information access and consultation can be provided for physicians at geographically remote sites. Two modes of access are provided: information retrieval via the Internet, and medical consultation video conferencing. Internet access provides general medical information such as current treatment options, literature citations, and active clinical trials. During video consultations, radiographic and pathology images, and medical text reports (e.g., history and physical, pathology, radiology, clinical laboratory reports), may be viewed and simultaneously annotated by either video conference participant. Both information access modes have been employed by physicians at community hospitals which are members of the Jefferson Cancer Network, and oncologists at Thomas Jefferson University Hospital. This project has demonstrated the potential cost effectiveness and benefits of this technology. Images Figure 1 Figure 2 Figure 3 PMID:8563397

  12. Setting Access Permission through Transitive Relationship in Web-based Social Networks

    NASA Astrophysics Data System (ADS)

    Hong, Dan; Shen, Vincent Y.

    The rising popularity of various social networking websites has created a huge problem on Internet privacy. Although it is easy to post photos, comments, opinions on some events, etc. on the Web, some of these data (such as a person’s location at a particular time, criticisms of a politician, etc.) are private and should not be accessed by unauthorized users. Although social networks facilitate sharing, the fear of sending sensitive data to a third party without knowledge or permission of the data owners discourages people from taking full advantage of some social networking applications. We exploit the existing relationships on social networks and build a ‘‘trust network’’ with transitive relationship to allow controlled data sharing so that the privacy and preferences of data owners are respected. The trust network linking private data owners, private data requesters, and intermediary users is a directed weighted graph. The permission value for each private data requester can be automatically assigned in this network based on the transitive relationship. Experiments were conducted to confirm the feasibility of constructing the trust network from existing social networks, and to assess the validity of permission value assignments in the query process. Since the data owners only need to define the access rights of their closest contacts once, this privacy scheme can make private data sharing easily manageable by social network participants.

  13. Exploring thermal spray gray alumina coating pore network architecture by combining stereological protocols and impedance electrochemical spectroscopy

    NASA Astrophysics Data System (ADS)

    Antou, G.; Montavon, G.; Hlawka, F.; Cornet, A.; Coddet, C.

    2006-12-01

    Complex multiscale pore network architecture characterized by multimodal pore size distribution and connectivity develops during the manufacture of ceramic thermal spray coatings from intra- and interlamellar cracks generated when each lamella spreads and solidifies to globular pores resulting from lamella stacking defects. This network significantly affects the coating properties and their in-service behaviors. De Hoff stereological analysis permits quantification of the three-dimensional (3D) distribution of spheroids (i.e., pores) from the determination of their two-dimensional (2D) distribution estimated by image analysis when analyzing the coating structure from a polished plane. Electrochemical impedance spectroscopy electrochemically examines a material surface by frequency variable current and potential and analyzes the complex impedance. When a coating covers the material surface, the electrolyte percolates through the more or less connected pore network to locally passivate the substrate. The resistive and capacitive characteristics of the equivalent electrical circuit will depend upon the connected pore network architecture. Both protocols were implemented to quantify thermal spray coating structures. Al2O3-13TiO2 coatings were atmospherically plasma sprayed using several sets of power parameters, are current intensity, plasma gas total flow rate, and plasma gas composition in order to determine their effects on pore network architecture. Particle characteristics upon impact, especially their related dimensionless numbers, such as Reynolds, Weber, and Sommerfeld criteria, were also determined. Analyses permitted identification of (a) the major effects of power parameters upon pore architecture and (b) the related formation mechanisms.

  14. Modelling of Medium Access Control (MAC) Protocols for Mobile Ad-Hoc Networks

    DTIC Science & Technology

    2005-06-01

    Slot IP Internet Protocol LAN Local Area Network MAC Medium Access Control MACAW Medium Access Protocol for Wireless LANs MANET Mobile Ad-hoc...Unforced state – It waits after entering the state until it is invoked by another process or an interrupt. It is in dark grey on this report, and red ... green in OPNET. A MAC process model is built for general initialisations of the MAC module, and to invoke the selected MAC protocol process model

  15. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks.

    PubMed

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-10-12

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  16. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    PubMed Central

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-01-01

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316

  17. The probabilistic neural network architecture for high speed classification of remotely sensed imagery

    NASA Technical Reports Server (NTRS)

    Chettri, Samir R.; Cromp, Robert F.

    1993-01-01

    In this paper we discuss a neural network architecture (the Probabilistic Neural Net or the PNN) that, to the best of our knowledge, has not previously been applied to remotely sensed data. The PNN is a supervised non-parametric classification algorithm as opposed to the Gaussian maximum likelihood classifier (GMLC). The PNN works by fitting a Gaussian kernel to each training point. The width of the Gaussian is controlled by a tuning parameter called the window width. If very small widths are used, the method is equivalent to the nearest neighbor method. For large windows, the PNN behaves like the GMLC. The basic implementation of the PNN requires no training time at all. In this respect it is far better than the commonly used backpropagation neural network which can be shown to take O(N6) time for training where N is the dimensionality of the input vector. In addition the PNN can be implemented in a feed forward mode in hardware. The disadvantage of the PNN is that it requires all the training data to be stored. Some solutions to this problem are discussed in the paper. Finally, we discuss the accuracy of the PNN with respect to the GMLC and the backpropagation neural network (BPNN). The PNN is shown to be better than GMLC and not as good as the BPNN with regards to classification accuracy.

  18. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  19. Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks.

    PubMed

    Lin, Zih-Rong; Liu, Cheng-Kuang; Jhang, Yu-Jhu; Keiser, Gerd

    2010-08-16

    We have proposed a stable, wideband, and tunable directly modulated fiber ring laser (TDMFRL) by using a reflective semiconductor optical amplifier (RSOA) and an optical tunable filter (OTF). For use in a bidirectional access network, the TDMFRL not only generates downstream data traffic but also serves as the wavelength-selecting injection light source for the Fabry-Pérot laser diode (FP-LD) located at the subscriber site. We experimentally demonstrated a bidirectional transmission at 1.25-Gb/s direct modulation over a 25-km single-mode fiber (SMF), thereby showing good performance in a wavelength division multiplexing (WDM) access network.

  20. Next generation communications satellites: multiple access and network studies

    NASA Technical Reports Server (NTRS)

    Meadows, H. E.; Schwartz, M.; Stern, T. E.; Ganguly, S.; Kraimeche, B.; Matsuo, K.; Gopal, I.

    1982-01-01

    Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed.

  1. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    PubMed

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  2. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    PubMed Central

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-01-01

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351

  3. Development of an ease-of-use remote healthcare system architecture using RFID and networking technologies.

    PubMed

    Lin, Shih-Sung; Hung, Min-Hsiung; Tsai, Chang-Lung; Chou, Li-Ping

    2012-12-01

    The study aims to provide an ease-of-use approach for senior patients to utilize remote healthcare systems. An ease-of-use remote healthcare system (RHS) architecture using RFID (Radio Frequency Identification) and networking technologies is developed. Specifically, the codes in RFID tags are used for authenticating the patients' ID to secure and ease the login process. The patient needs only to take one action, i.e. placing a RFID tag onto the reader, to automatically login and start the RHS and then acquire automatic medical services. An ease-of-use emergency monitoring and reporting mechanism is developed as well to monitor and protect the safety of the senior patients who have to be left alone at home. By just pressing a single button, the RHS can automatically report the patient's emergency information to the clinic side so that the responsible medical personnel can take proper urgent actions for the patient. Besides, Web services technology is used to build the Internet communication scheme of the RHS so that the interoperability and data transmission security between the home server and the clinical server can be enhanced. A prototype RHS is constructed to validate the effectiveness of our designs. Testing results show that the proposed RHS architecture possesses the characteristics of ease to use, simplicity to operate, promptness in login, and no need to preserve identity information. The proposed RHS architecture can effectively increase the willingness of senior patients who act slowly or are unfamiliar with computer operations to use the RHS. The research results can be used as an add-on for developing future remote healthcare systems.

  4. Random access to mobile networks with advanced error correction

    NASA Technical Reports Server (NTRS)

    Dippold, Michael

    1990-01-01

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  5. Random access to mobile networks with advanced error correction

    NASA Astrophysics Data System (ADS)

    Dippold, Michael

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  6. A carrier sensed multiple access protocol for high data base rate ring networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, Kurt J.; Overstreet, C. Michael; Khanna, S.; Paterra, Frank

    1990-01-01

    The results of the study of a simple but effective media access protocol for high data rate networks are presented. The protocol is based on the fact that at high data rates networks can contain multiple messages simultaneously over their span, and that in a ring, nodes used to detect the presence of a message arriving from the immediate upstream neighbor. When an incoming signal is detected, the node must either abort or truncate a message it is presently sending. Thus, the protocol with local carrier sensing and multiple access is designated CSMA/RN. The performance of CSMA/RN with TTattempt and truncate is studied using analytic and simulation models. Three performance factors, wait or access time, service time and response or end-to-end travel time are presented. The service time is basically a function of the network rate, it changes by a factor of 1 between no load and full load. Wait time, which is zero for no load, remains small for load factors up to 70 percent of full load. Response time, which adds travel time while on the network to wait and service time, is mainly a function of network length, especially for longer distance networks. Simulation results are shown for CSMA/RN where messages are removed at the destination. A wide range of local and metropolitan area network parameters including variations in message size, network length, and node count are studied. Finally, a scaling factor based upon the ratio of message to network length demonstrates that the results, and hence, the CSMA/RN protocol, are applicable to wide area networks.

  7. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution

    NASA Technical Reports Server (NTRS)

    Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.

    2003-01-01

    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.

  8. From Basic Network Principles to Neural Architecture: Emergence of Spatial-Opponent Cells

    NASA Astrophysics Data System (ADS)

    Linsker, Ralph

    1986-10-01

    The functional architecture of mammalian visual cortex has been elucidated in impressive detail by experimental work of the past 20-25 years. The origin of many of the salient features of this architecture, however, has remained unexplained. This paper is the first of three (the others will appear in subsequent issues of these Proceedings) that address the origin and organization of feature-analyzing (spatial-opponent and orientation-selective) cells in simple systems governed by biologically plusible development rules. I analyze the progressive maturation of a system composed of a few layers of cells, with connections that develop according to a simple set of rules (including Hebb-type modification). To understand the prenatal origin of orientation-selective cells in certain primates, I consider the case in which there is no external input, with the first layer exhibiting random spontaneous electrical activity. No orientation preference is specified to the system at any stage, and none of the basic developmental rules is specific to visual processing. Here I introduce the theory of ``modular self-adaptive networks,'' of which this system is an example, and explicitly demonstrate the emergence of a layer of spatial-opponent cells. This sets the stage for the emergence, in succeeding layers, of an orientation-selective cell population.

  9. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.

    PubMed

    Hinman, Veronica F; Nguyen, Albert T; Cameron, R Andrew; Davidson, Eric H

    2003-11-11

    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.

  10. Historical building monitoring using an energy-efficient scalable wireless sensor network architecture.

    PubMed

    Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  11. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network.

    PubMed

    Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R

    2016-08-15

    Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  12. Data Optical Networking Architecture Using Wavelength-Division Multiplexing Method for Optical Sensors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    2008-01-01

    Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.

  13. Architectures engender crises: The emergence of power laws in social networks

    NASA Astrophysics Data System (ADS)

    Tohmé, Fernando; Larrosa, Juan M. C.

    2016-05-01

    Recent financial crises posed a number of questions. The most salient were related to the cogency of derivatives and other sophisticated hedging instruments. One claim is that all those instruments rely heavily on the assumption that events in the world are guided by normal distributions while, instead, all the evidence shows that they actually follow fat-tailed power laws. Our conjecture is that it is the very financial architecture that engenders extreme events. Not on purpose but just because of its complexity. That is, the system has an internal connection structure that is able to propagate and enhance initially small disturbances. The final outcome ends up not being correlated with its triggering event. To support this claim, we appeal to the intuition drawn from the behavior of social networks. Most of the interesting cases constitute scale-free structures. In particular, we contend, those that arise from strategic decisions of the agents.

  14. Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science

    NASA Astrophysics Data System (ADS)

    Choi, Hoon; Lee, Junehawk

    In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.

  15. The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks.

    PubMed

    Aon, Miguel Antonio; O'Rourke, Brian; Cortassa, Sonia

    2004-01-01

    In this work, we highlight the links between fractals and scaling in cells and explore the kinetic consequences for biochemical reactions operating in fractal media. Based on the proposal that the cytoskeletal architecture is organized as a percolation lattice, with clusters emerging as fractal forms, the analysis of kinetics in percolation clusters is especially emphasized. A key consequence of this spatiotemporal cytoplasmic organization is that enzyme reactions following Michaelis-Menten or allosteric type kinetics exhibit higher rates in fractal media (for short times and at lower substrate concentrations) at the percolation threshold than in Euclidean media. As a result, considerably faster and higher amplification of enzymatic activity is obtained. Finally, we describe some of the properties bestowed by cytoskeletal organization and dynamics on metabolic networks.

  16. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  17. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  18. Control for Intelligent Tutoring Systems: A Comparison of Blackboard Architectures and Discourse Management Networks. Report No. R-6267.

    ERIC Educational Resources Information Center

    Murray, William R.

    This paper compares two alternative computer architectures that have been proposed to provide the control mechanism that enables an intelligent tutoring system to decide what instructional action to perform next, i.e., discourse management networks and blackboards. The claim that an intelligent tutoring system controlled by a blackboard…

  19. Neural Networks

    DTIC Science & Technology

    1990-01-01

    FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1

  20. Role of feedback and network architecture in controlling virulence gene expression in Bordetella.

    PubMed

    Prajapat, Mahendra Kumar; Saini, Supreet

    2013-11-01

    Bordetella is a Gram-negative bacterium responsible for causing whooping cough in a broad range of host organisms. For successful infection, Bordetella controls expression of four distinct classes of genes (referred to as class 1, 2, 3, and 4 genes) at distinct times in the infection cycle. This control is executed by a single two-component system, BvgAS. Interestingly, the transmembrane component of the two-component system, BvgS, consists of three phospho-transfer domains leading to phosphorylation of the response regulator, BvgA. Phosphorylated BvgA then controls expression of virulence genes and also controls bvgAS transcription. In this work, we perform simulations to characterize the role of the network architecture in governing gene expression in Bordetella. Our results show that the wild-type network is locally optimal for controlling the timing of expression of the different classes of genes involved in infection. In addition, the interplay between environmental signals and positive feedback aids the bacterium identify precise conditions for and control expression of virulence genes.

  1. Accessibility

    EPA Pesticide Factsheets

    Federal laws, including Section 508 of the Rehabilitation Act, mandate that people with disabilities have access to the same information that someone without a disability would have. 508 standards cover electronic and information technology (EIT) products.

  2. Fair Scheduling and Throughput Maximization for IEEE 802.16 Mesh Mode Broadband Wireless Access Networks

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad Mahbub; Hamid, Md. Abdul; Razzaque, Md. Abdur; Hong, Choong Seon

    Broadband wireless access networks are promising technology for providing better end user services. For such networks, designing a scheduling algorithm that fairly allocates the available bandwidth to the end users and maximizes the overall network throughput is a challenging task. In this paper, we develop a centralized fair scheduling algorithm for IEEE 802.16 mesh networks that exploits the spatio-temporal bandwidth reuse to further enhance the network throughput. The proposed mechanism reduces the length of a transmission round by increasing the number of non-contending links that can be scheduled simultaneously. We also propose a greedy algorithm that runs in polynomial time. Performance of the proposed algorithms is evaluated by extensive simulations. Results show that our algorithms achieve higher throughput than that of the existing ones and reduce the computational complexity.

  3. A secure WDM ring access network employing silicon micro-ring based remote node

    NASA Astrophysics Data System (ADS)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Xu, Ke; Hsu, Chin-Wei; Su, Hong-Quan; Tsang, Hon-Ki

    2014-08-01

    A secure and scalable wavelength-division-multiplexing (WDM) ring-based access network is proposed and demonstrated using proof-of-concept experiments. In the remote node (RN), wavelength hopping for specific optical networking unit (ONU) is deployed by using silicon micro-ring resonators (SMR). Using silicon-based devices could be cost-effective for the cost-sensitive access network. Hence the optical physical layer security is introduced. The issues of denial of service (DOS) attacks, eavesdropping and masquerading can be made more difficult in the proposed WDM ring-based access network. Besides, the SMRs with different dropped wavelengths can be cascaded, such that the signals pass through the preceding SMRs can be dropped by a succeeding SMR. This can increase the scalability of the RN for supporting more ONUs for future upgrade. Here, error-free 10 Gb/s downlink and 1.25 Gb/s uplink transmission are demonstrated to show the feasibility of the proposed network.

  4. Multi-core fiber technology for highly reliable optical network in access areas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Lee, Yong; Nomoto, Etsuko; Arimoto, Hideo; Sugawara, Toshiki

    2015-03-01

    A failure recovery system utilizing a multi-core fiber (MCF) link with field programmable gate array-based optical switch units was developed to achieve high capacity and highly reliable optical networks in access areas. We describe the novel MCF link based on a multi-ring structure and a protection scheme to prevent link failures. Fan-in/ -out devices and connectors are also presented to demonstrate the development status of the MCF connection technology for the link. We demonstrated path recovery by switching operation within a sufficiently short time, which is required by ITU-T. The selection of a protecting path as a failure working path was also optimized as the minimum passage of units for low loss transmission. The results we obtained indicate that our proposed link has potential for the network design of highly reliable network topologies in access areas such as data centers, systems in business areas, and fiber to the home systems in residential areas.

  5. Toward a Rosetta stone for the stem cell genome: stochastic gene expression, network architecture, and external influences.

    PubMed

    Halley, Julianne D; Winkler, David A; Burden, Frank R

    2008-09-01

    We review literature relating to three types of factors known to influence stem cell behavior. These factors are stochastic gene expression, regulatory network architecture, and the influence of external signals, such as those emanating from the niche. Although these factors are considered separately, their shared evolutionary history necessitates integration. Stochastic gene expression pervades network components; network architecture controls, modulates, or exploits this noise while performing additional computation; and such complexity also interplays with factors external to cells. Adequate understanding of each of these components, and how they interact, will lead to a conceptual model of the stem cell regulatory system that can be used to drive hypothesis-driven research and facilitate interpretation of experimental data.

  6. Tunable Drug-loading Capability of Chitosan Hydrogels with Varied Network Architectures

    PubMed Central

    Tronci, Giuseppe; Ajiro, Hiroharu; Russell, Stephen J.; Wood, David J.; Akashi, Mitsuru

    2016-01-01

    Advanced bioactive systems with defined macroscopic properties and spatio-temporal sequestration of extracellular biomacromolecules are highly desirable for next generation therapeutics. Here, chitosan hydrogels were prepared with neutral or negatively-charged crosslinkers in order to promote selective electrostatic complexation with charged drugs. Chitosan (CT) was functionalized with varied dicarboxylic acids, such as tartaric acid (TA), poly(ethylene glycol) bis(carboxymethyl) ether (PEG), 1.4-Phenylenediacetic acid (4Ph) and 5-Sulfoisophthalic acid monosodium salt (PhS), whereby PhS was hypothesized to act as a simple mimetic of heparin. ATR FT-IR showed the presence of C=O amide I, N-H amide II and C=O ester bands, providing evidence of covalent network formation. The crosslinker content was reversely quantified by 1H-NMR on partially-degraded network oligomers, so that 18 mol.-% PhS was exemplarily determined. Swellability (SR: 299±65–1054±121 wt.-%), compressability (E: 2.1±0.9–9.2±2.3 kPa), material morphology, and drug-loading capability were successfully adjusted based on the selected network architecture. Here, hydrogel incubation with model drugs of varied electrostatic charge, i.e. allura red (AR, --), methyl orange (MO, -) or methylene blue (MB, +), resulted in direct hydrogel-dye electrostatic complexation. Importantly, the cationic compound, MB, showed different incorporation behaviours, depending on the electrostatic character of the selected crosslinker. In light of this tuneable drug-loading capability, these CT hydrogels would be highly attractive as drug reservoirs towards e.g. the fabrication of tissue models in vitro. PMID:24157693

  7. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    NASA Astrophysics Data System (ADS)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  8. [Principles and stakes of external communication of healthcare networks: the case of heathcare networks for health services accessibility].

    PubMed

    Plu, Isabelle; Gignon, Maxime; Emery, Sophie; Purssell-François, Irène; Moutel, Grégoire; Hervé, Christian

    2009-01-01

    Healthcare networks which purpose is to manage patients through better coordination of the care, need to develop a communication strategy to be recognized by the public and by healthcare professionals and to be inserted in the healthcare landscape. We firstly will present legal requirements related to external communication of healthcare networks. Then, we will describe the different tools which can be used to communicate about healthcare networks in its area, with the example from a healthcare network for health services accessibility. In the French Public health code, the legal status and the ethical charter of the healthcare network have to be delivered to the healthcare professionals in its area and to the patients. Moreover, the example healthcare network informed collectively and individually the healthcare professionals of its area about its activities. It made it known to the public by the way of departmental prevention manifestations and health education sessions in community social associations. From these examples, we will conduct an ethical reflection on the modalities and stakes of the external communication of healthcare networks.

  9. Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi

    Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a

  10. A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration.

    PubMed

    Jantvik, Tamas; Gustafsson, Lennart; Papliński, Andrew P

    2011-08-01

    The multimodal self-organizing network (MMSON), an artificial neural network architecture carrying out sensory integration, is presented here. The architecture is designed using neurophysiological findings and imaging studies that pertain to sensory integration and consists of interconnected lattices of artificial neurons. In this artificial neural architecture, the degree of recognition of stimuli, that is, the perceived reliability of stimuli in the various subnetworks, is included in the computation. The MMSON's behavior is compared to aspects of brain function that deal with sensory integration. According to human behavioral studies, integration of signals from sensory receptors of different modalities enhances perception of objects and events and also reduces time to detection. In neocortex, integration takes place in bimodal and multimodal association areas and result, not only in feedback-mediated enhanced unimodal perception and shortened reaction time, but also in robust bimodal or multimodal percepts. Simulation data from the presented artificial neural network architecture show that it replicates these important psychological and neuroscientific characteristics of sensory integration.

  11. A CDMA Spotbeam Architecture for the Next Generation Satellite System (NGSS) for the Aeronautical Telecommunications Network (ATN)

    NASA Technical Reports Server (NTRS)

    Raghavan, Rajesh S.; Shamma, Mohammed A.

    2003-01-01

    This paper will present work being done to model and simulate a CDMA based Mobile Satellite System architecture for providing all or part of the future Air Traffic Management (ATM) services. Such a system, will help in relieving the dependence on ground based networks, if not eliminate it. Additionally such an architecture can be used in parallel or as a supplementary service along with ground based links to help alleviate any capacity bottlenecks, or in areas where such services are difficult to make available such as in oceanic, remote areas outside the jet highways, or in developing countries where ground services are less available.

  12. Geoscience Information Network (USGIN) Solutions for Interoperable Open Data Access Requirements

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Patten, K.

    2014-12-01

    The geosciences are leading development of free, interoperable open access to data. US Geoscience Information Network (USGIN) is a freely available data integration framework, jointly developed by the USGS and the Association of American State Geologists (AASG), in compliance with international standards and protocols to provide easy discovery, access, and interoperability for geoscience data. USGIN standards include the geologic exchange language 'GeoSciML' (v 3.2 which enables instant interoperability of geologic formation data) which is also the base standard used by the 117-nation OneGeology consortium. The USGIN deployment of NGDS serves as a continent-scale operational demonstration of the expanded OneGeology vision to provide access to all geoscience data worldwide. USGIN is developed to accommodate a variety of applications; for example, the International Renewable Energy Agency streams data live to the Global Atlas of Renewable Energy. Alternatively, users without robust data sharing systems can download and implement a free software packet, "GINstack" to easily deploy web services for exposing data online for discovery and access. The White House Open Data Access Initiative requires all federally funded research projects and federal agencies to make their data publicly accessible in an open source, interoperable format, with metadata. USGIN currently incorporates all aspects of the Initiative as it emphasizes interoperability. The system is successfully deployed as the National Geothermal Data System (NGDS), officially launched at the White House Energy Datapalooza in May, 2014. The USGIN Foundation has been established to ensure this technology continues to be accessible and available.

  13. A simple, effective media access protocol system for integrated, high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Khanna, S.; Zhang, L.

    1992-01-01

    The operation and performance of a dual media access protocol for integrated, gigabit networks are described. Unlike other dual protocols, each protocol supports a different class of traffic. The Carrier Sensed Multiple Access-Ring Network (CSMA/RN) protocol and the Circulating Reservation Packet (CRP) protocol support asynchronous and synchronous traffic, respectively. The two protocols operate with minimal impact upon each other. Performance information demonstrates that they support a complete range of integrated traffic loads, do not require call setup/termination or a special node for synchronous traffic control, and provide effective pre-use and recovery. The CRP also provides guaranteed access and fairness control for the asynchronous system. The paper demonstrates that the CSMA-CRP system fulfills many of the requirements for gigabit LAN-MAN networks most effectively and simply. To accomplish this, CSMA-CRP features are compared against similar ring and bus systems, such as Cambridge Fast Ring, Metaring, Cyclic Reservation Multiple Access, and Distributed Dual Queue Data Bus (DQDB).

  14. Coalitional Games in Partition Form for Joint Spectrum Sensing and Access in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Saad, Walid; Han, Zhu; Zheng, Rong; Hjorungnes, Are; Basar, Tamer; Poor, H. Vincent

    2012-04-01

    Unlicensed secondary users (SUs) in cognitive radio networks are subject to an inherent tradeoff between spectrum sensing and spectrum access. Although each SU has an incentive to sense the primary user (PU) channels for locating spectrum holes, this exploration of the spectrum can come at the expense of a shorter transmission time, and, hence, a possibly smaller capacity for data transmission. This paper investigates the impact of this tradeoff on the cooperative strategies of a network of SUs that seek to cooperate in order to improve their view of the spectrum (sensing), reduce the possibility of interference among each other, and improve their transmission capacity (access). The problem is modeled as a coalitional game in partition form and an algorithm for coalition formation is proposed. Using the proposed algorithm, the SUs can make individual distributed decisions to join or leave a coalition while maximizing their utilities which capture the average time spent for sensing as well as the capacity achieved while accessing the spectrum. It is shown that, by using the proposed algorithm, the SUs can self-organize into a network partition composed of disjoint coalitions, with the members of each coalition cooperating to jointly optimize their sensing and access performance. Simulation results show the performance improvement that the proposed algorithm yields with respect to the non-cooperative case. The results also show how the algorithm allows the SUs to self-adapt to changes in the environment such as the change in the traffic of the PUs, or slow mobility.

  15. Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop

    DTIC Science & Technology

    2006-08-01

    Important? 26 4.2.2 Current State of the Practice 26 4.2.3 Technical Gaps and Issues 28 4.2.4 Next Steps 28 4.3 Architecture Evolution 30 4.3.1...architecture evolution . Presentations showed how participants are applying the methods and emphasized combinations of methods and techniques in a broader...System and Software Architecture c. Architecture Evolution ® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

  16. Quality of Recovery Evaluation of the Protection Schemes for Fiber-Wireless Access Networks

    NASA Astrophysics Data System (ADS)

    Fu, Minglei; Chai, Zhicheng; Le, Zichun

    2016-03-01

    With the rapid development of fiber-wireless (FiWi) access network, the protection schemes have got more and more attention due to the risk of huge data loss when failures occur. However, there are few studies on the performance evaluation of the FiWi protection schemes by the unified evaluation criterion. In this paper, quality of recovery (QoR) method was adopted to evaluate the performance of three typical protection schemes (MPMC scheme, OBOF scheme and RPMF scheme) against the segment-level failure in FiWi access network. The QoR models of the three schemes were derived in terms of availability, quality of backup path, recovery time and redundancy. To compare the performance of the three protection schemes comprehensively, five different classes of network services such as emergency service, prioritized elastic service, conversational service, etc. were utilized by means of assigning different QoR weights. Simulation results showed that, for the most service cases, RPMF scheme was proved to be the best solution to enhance the survivability when planning the FiWi access network.

  17. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  18. Analysis of normal human retinal vascular network architecture using multifractal geometry

    PubMed Central

    Ţălu, Ştefan; Stach, Sebastian; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina; Nicoară, Simona Delia

    2017-01-01

    AIM To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. METHODS Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. RESULTS The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax − αmin) and the spectrum arms' heights difference (|Δf|) of the normal images were expressed as mean±standard deviation (SD): for segmented versions, D0=1.7014±0.0057; D1=1.6507±0.0058; D2=1.5772±0.0059; Δα=0.92441±0.0085; |Δf|= 0.1453±0.0051; for skeletonised versions, D0=1.6303±0.0051; D1=1.6012±0.0059; D2=1.5531±0.0058; Δα=0.65032±0.0162; |Δf|= 0.0238±0.0161. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα) and the spectrum arms' heights difference (|Δf|) of the segmented versions was slightly greater than the skeletonised versions. CONCLUSION The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases. PMID:28393036

  19. Mapping the accessibility of the disulfide crosslink network in the wool fiber cortex.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Rao, Kelsey; Lee, Erin; van Koten, Chikako; Clerens, Stefan; Dyer, Jolon M; Harland, Duane P

    2015-02-01

    The disulfide bond network within the cortex of mammalian hair has a critical influence on the physical and mechanical characteristics of the fiber. The location, pattern, and accessibility of free and crosslinked cysteines underpin the properties of this network, but have been very difficult to map and understand, because traditional protein extraction techniques require the disruption of these disulfide bonds. Cysteine accessibility in both trichocyte keratins and keratin associated proteins (KAPs) of wool was investigated using staged labeling, where reductants and chaotropic agents were used to expose cysteines in a stepwise fashion according to their accessibility. Cysteines thus exposed were labeled with distinguishable alkylation agents. Proteomic profiling was used to map peptide modifications and thereby explore the role of KAPs in crosslinking keratins. Labeled cysteines from KAPs were detected when wool was extracted with reductant only. Among them were sequences from the end domains of KAPs, indicating that those cysteines were easily accessible in the fiber and could be involved in forming interdisulfide linkages with keratins or with other KAPs. Some of the identified peptides were from the rod domains of Types I and II keratins, with their cysteines positioned on the exposed surface of the α-helix. Peptides were also identified from keratin head and tail domains, demonstrating that they are not buried within the filament structure and, hence, have a possible role in forming disulfide linkages. From this study, a deeper understanding of the accessibility and potential reactivity of cysteine residues in the wool fiber cortex was obtained.

  20. Universal filtered multi-carrier system for asynchronous uplink transmission in optical access network

    NASA Astrophysics Data System (ADS)

    Kang, Soo-Min; Kim, Chang-Hun; Han, Sang-Kook

    2016-02-01

    In passive optical network (PON), orthogonal frequency division multiplexing (OFDM) has been studied actively due to its advantages such as high spectra efficiency (SE), dynamic resource allocation in time or frequency domain, and dispersion robustness. However, orthogonal frequency division multiple access (OFDMA)-PON requires tight synchronization among multiple access signals. If not, frequency orthogonality could not be maintained. Also its sidelobe causes inter-channel interference (ICI) to adjacent channel. To prevent ICI caused by high sidelobes, guard band (GB) is usually used which degrades SE. Thus, OFDMA-PON is not suitable for asynchronous uplink transmission in optical access network. In this paper, we propose intensity modulation/direct detection (IM/DD) based universal filtered multi-carrier (UFMC) PON for asynchronous multiple access. The UFMC uses subband filtering to subsets of subcarriers. Since it reduces sidelobe of each subband by applying subband filtering, it could achieve better performance compared to OFDM. For the experimental demonstration, different sample delay was applied to subbands to implement asynchronous transmission condition. As a result, time synchronization robustness of UFMC was verified in asynchronous multiple access system.