Science.gov

Sample records for accessible oxidation states

  1. United States Access Board

    MedlinePlus

    ... disabilities through leadership in accessible design and the development of accessibility guidelines and standards for the built environment, transportation, communication, medical diagnostic equipment, and information technology. ...

  2. Oxidation state in chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Fegley, Bruce; Brett, Robin

    1988-01-01

    An evaluation is made of extant data on chondrite oxidation states and intrinsic O fugacities. A variety of oxidation states are exhibited by the chondritic meteorites; petrologic and chemical data may be used to arrange the major chondrite groups in order of oxidation state. The intrinsic O fugacity measurements on chondrite whole-rock samples are noted to display a corresponding ordering of oxidation states. Metamorphosed chondrites and igneous meteorites that were substantially altered by metamorphic reactions, outgassing, and igneous processes may preserve information on the oxidation state and size of their parent bodies.

  3. Access State Websites | ECHO | US EPA

    EPA Pesticide Factsheets

    State environmental agencies often maintain additional information about compliance and enforcement (beyond what is reported to EPA systems). Access direct links to state enforcement and compliance data.

  4. Yeast cells can access distinct quiescent states.

    PubMed

    Klosinska, Maja M; Crutchfield, Christopher A; Bradley, Patrick H; Rabinowitz, Joshua D; Broach, James R

    2011-02-15

    We conducted a phenotypic, transcriptional, metabolic, and genetic analysis of quiescence in yeast induced by starvation of prototrophic cells for one of three essential nutrients (glucose, nitrogen, or phosphate) and compared those results with those obtained with cells growing slowly due to nutrient limitation. These studies address two related questions: (1) Is quiescence a state distinct from any attained during mitotic growth, and (2) does the nature of quiescence differ depending on the means by which it is induced? We found that either limitation or starvation for any of the three nutrients elicits all of the physiological properties associated with quiescence, such as enhanced cell wall integrity and resistance to heat shock and oxidative stress. Moreover, the starvations result in a common transcriptional program, which is in large part a direct extrapolation of the changes that occur during slow growth. In contrast, the metabolic changes that occur upon starvation and the genetic requirements for surviving starvation differ significantly depending on the nutrient for which the cell is starved. The genes needed by cells to survive starvation do not overlap the genes that are induced upon starvation. We conclude that cells do not access a unique and discrete G(0) state, but rather are programmed, when nutrients are scarce, to prepare for a range of possible future stressors. Moreover, these survival strategies are not unique to quiescence, but are engaged by the cell in proportion to nutrient scarcity.

  5. Experiments with Unusual Oxidation States

    ERIC Educational Resources Information Center

    Kauffman, G. B.

    1975-01-01

    Describes four synthesis experiments, adapted for the general chemistry laboratory, in which compounds in unusual oxidation are prepared. The abnormal oxidation states involved in the synthesis products are: silver (II), chromium (II), lead (IV), and bromine (I). (MLH)

  6. Accessing a low-lying bound electronic state of the alkali oxides, LiO and NaO, using laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Pugh, J. V.; Shen, K. K.; Winstead, C. B.; Gole, J. L.

    1996-01-01

    The first laser based probe for the sodium and lithium monoxides is established. The Li(Na)+N 2O reactions studied in a multiple collision entrainment mode produce the LiO and NaO ground X 2Π and low-lying monoxide excited states. In contrast to the alkali halides, laser induced excitation spectroscopy confirms that the LiO and NaO B 2Π states, counter to recent predictions, are located at energies well below the ground state dissociation asymptote and, as predicted, possess significant binding energies. An assignment of the laser induced excitation spectra (LIF) for the B 2Π-X 2Π transitions of LiO in the region 3940-4300 Å is based on a direct correlation with the observed chemiluminescence (CL) from the lowest level of the LiO B 2Π state ( ˜4000-7000 Å) and high quality ab initio calculations for the ground state. The self-consistent assignment of the observed LIF and CL spectra makes use of the complimentary extended progressions in the X 2Π (CL) and B 2Π (LIF) vibrational level structure which results from the significant shift of the B 2Π excited state potential relative to that of the ground state. The experimental data are consistent with an excited state vibrational frequency separation of order 130 cm -1, and T e( B2Π) ≈ 26078 ± 800 cm-1. The latter value, in correlation with the ground state dissociation energy of LiO, suggests a B 2Π excited state dissociation energy well in excess of 2000 cm -1. The radiative lifetimes of the lowest levels of the LiO B 2Π state, isoergic with the highest levels of the LiO ground state, are determined to be in excess of 600 ns. The corresponding NaO excitation spectra in the range 6680-7250 Å also correlate well with ab initio calculations for the ground electronic state of NaO. Within this study, we provide optical signatures which one might consider to monitor LiO or NaO in process streams. In correlation with the observed chemiluminescence from B 2Π states of the higher alkali oxides KO, RbO, and

  7. Rhodium oxides in unusual oxidation states

    NASA Astrophysics Data System (ADS)

    Reisner, Barbara Alice

    Mixed valence RhIII/RhIV oxides have been proposed as a promising class of candidate compounds for superconductivity. Unfortunately, it is difficult to stabilize rhodates with a formal oxidation state approaching RhIV, as other techniques used for the synthesis of rhodium. oxides favor the most commonly observed formal oxidation state, RhIII. One technique which has been used to stabilize metal oxides in high formal oxidation states is crystallization from molten hydroxides. This thesis explores the use of molten hydroxides to enhance the reactivity of rhodium oxides in order to synthesize rhodates with high formal oxidation states. K0.5RhO2, Rb0.2RhO2, and CsxRhO2 were synthesized from pure alkali metal hydroxides. All crystallized with a previously unobserved polytype in the alkali metal rhodate system. Due to the low activity of dissolved oxygen species in LiOH and NaOH, LiRhO2 and NaRhO2 cannot be crystallized. The formal oxidation state of rhodium in AxRhO2 (A = K, Rb, Cs) is a function of the alkali metal hydroxide used to synthesize these oxides. These materials exhibit remarkable stability for layered metal oxides containing the heavier alkali metals, but all phases are susceptible to intercalation by water. The synthesis, structural characterization, magnetic susceptibility, and reactivity of these oxides are reported. Sr2RhO4 and a new rhodate were crystallized from a KOH-Sr(OH)2 flux. The synthesis and characterization of these materials is reported. Efforts to substitute platinum for rhodium in Sr 2RhO4 are also discussed. Mixed alkali metal-alkaline earth metal hydroxide fluxes were used to crystallize LiSr3RhO6, and NaSr3RhO 6. The synthesis of LiSr3RhO6 and NaSr3RhO 6 represents the first example of the stabilization of a rhodium oxide with a formal oxidation state approaching RhV. X-ray diffraction, electron beam microprobe analysis, thermogravimetric analysis, potentiometric titrations, X-ray photoelectron spectroscopy, and magnetic susceptibility

  8. Process-Accessible States of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, De-Wen; Müller, Marcus

    2017-02-01

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear A C B triblock copolymers after a rapid transformation of the middle C block from B to A . This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the A B B copolymer into a well-defined but unstable, starting state of the A A B copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear A B diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the A A B copolymer possesses the same symmetry as the initial, equilibrium mesophase of the A B B copolymer.

  9. Process-Accessible States of Block Copolymers.

    PubMed

    Sun, De-Wen; Müller, Marcus

    2017-02-10

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear ACB triblock copolymers after a rapid transformation of the middle C block from B to A. This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the ABB copolymer into a well-defined but unstable, starting state of the AAB copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear AB diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the AAB copolymer possesses the same symmetry as the initial, equilibrium mesophase of the ABB copolymer.

  10. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  11. Facile Access to Graphene Oxide from Ferro-Induced Oxidation.

    PubMed

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-28

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers' method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  12. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    PubMed Central

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials. PMID:26818784

  13. United States Strategic Military Access in Northeast Africa.

    DTIC Science & Technology

    1984-12-01

    STATES STRATEGIC MILITARY ACCESS IN NORTHEAST AFRICA * by CD Harold L. Bakken L.J December 1984 Thesis Advisor: M. W. Clough * Approved for public release...ACCESSION NO. 3 RECIPIENT’S CATALOG NUMBER 4. TITLE (..nd Subtitlej S TYPE OF REPORT & PERIOD COVERED United States Strategic Military Access Master’s Thesis ...the state of israel and other important friendly nations in the region. 3. To check the spread of Soviet influence in this strategic region and, by

  14. Residential Broadband Access for Students at Walters State Community College

    ERIC Educational Resources Information Center

    Hurst, Mark A.

    2010-01-01

    The purpose of this study was to determine the availability of internet access for students attending Walters State Community College during the spring semester 2010. In particular, it is unknown to what degree broadband internet access is available in the counties that Walters State considers the service area of the college. The research was…

  15. Broadband Access for Students at East Tennessee State University

    ERIC Educational Resources Information Center

    Sawyer, Thomas Scott

    2013-01-01

    The purpose of this study was to determine the availability of Internet access for students attending East Tennessee State University during the fall semester 2013. It has been unknown to what degree broadband access is available in the East Tennessee State University service area that includes counties in East Tennessee, Southwest Virginia, and…

  16. Access to Emergency Care in the United States

    PubMed Central

    Carr, Brendan G.; Branas, Charles C.; Metlay, Joshua P.; Sullivan, Ashley F.; Camargo, Carlos A.

    2009-01-01

    Objective Rapid access to emergency services is essential for emergency care sensitive conditions such as acute myocardial infarction, stroke, sepsis, and major trauma. We sought to determine US population access to an emergency department (ED). Methods The National Emergency Department Inventories (NEDI) – USA was used to identify the location, annual visit volume, and teaching status of all EDs in the US. EDs were categorized as 1) any ED, 2) by patient volume, and 3) by teaching status. Driving distances, driving speeds, and prehospital times were estimated using validated models and adjusted for population density. Access was determined by summing the population that could reach an ED within the specified time intervals. Results Overall, 71% of the US population has access to an ED within 30 minutes, and 98% has access within 60 minutes. Access to teaching hospitals was more limited, with 16% having access within 30 minutes and 44% within 60 minutes. Rural states had lower access to all types of EDs. Conclusions Although the majority of the US population has access to an ED, there are regional disparities in ED access, especially by rurality. Future efforts should measure the relationship between access to emergency services and outcomes for emergency care sensitive conditions. The development of a regionalized emergency care delivery system should be explored. PMID:19201059

  17. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    SciTech Connect

    Graves, Christopher R; Kiplinger, Jaqueline L

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  18. State Lotteries: Their Effect on Equal Access to Higher Education

    ERIC Educational Resources Information Center

    Bowden, Randall G.; Elrod, Henry E.

    2004-01-01

    Many states (18 of 39) use revenue generated by lotteries to help fund higher education. The revenue is generated as a regressive tax disproportionately collected. As such, do state lotteries contribute toward facilitation of equal access to higher education for low-income and minority citizens? Given population trends, college enrollment, and…

  19. State K-12 Broadband Leadership: Driving Connectivity and Access

    ERIC Educational Resources Information Center

    Fox, Christine; Jones, Rachel

    2016-01-01

    In this report, State Educational Technology Directors Association (SETDA) builds upon the research and recommendations from prior publications with a focus on the role of state leadership in supporting districts and schools to increase high-speed connectivity and access for students and educators. SETDA firmly believes that high-speed broadband…

  20. Current state of web accessibility of Malaysian ministries websites

    NASA Astrophysics Data System (ADS)

    Ahmi, Aidi; Mohamad, Rosli

    2016-08-01

    Despite the fact that Malaysian public institutions have progressed considerably on website and portal usage, web accessibility has been reported as one of the issues deserves special attention. Consistent with the government moves to promote an effective use of web and portal, it is essential for the government institutions to ensure compliance with established standards and guidelines on web accessibility. This paper evaluates accessibility of 25 Malaysian ministries websites using automated tools i.e. WAVE and Achecker. Both tools are designed to objectively evaluate web accessibility in conformance with Web Content Accessibility Guidelines 2.0 (WCAG 2.0) and United States Rehabilitation Act 1973 (Section 508). The findings reported somewhat low compliance to web accessibility standard amongst the ministries. Further enhancement is needed in the aspect of input elements such as label and checkbox to be associated with text as well as image-related elements. This findings could be used as a mechanism for webmasters to locate and rectify errors pertaining to the web accessibility and to ensure equal access of the web information and services to all citizen.

  1. State Data Centers: improving access to census information.

    PubMed

    Redmond, M

    1986-01-01

    "The U.S. Bureau of the Census created the State Data Center program in 1978 to improve public access to census information. This article discusses the background, structure, and services of that program; the role of libraries in the program; and future directions in State Data Center/library relationships. The appendix lists contact person names, as well as addresses and telephone numbers for State Data Center lead agencies."

  2. Materials selection for oxide-based resistive random access memories

    SciTech Connect

    Guo, Yuzheng; Robertson, John

    2014-12-01

    The energies of atomic processes in resistive random access memories (RRAMs) are calculated for four typical oxides, HfO{sub 2}, TiO{sub 2}, Ta{sub 2}O{sub 5}, and Al{sub 2}O{sub 3}, to define a materials selection process. O vacancies have the lowest defect formation energy in the O-poor limit and dominate the processes. A band diagram defines the operating Fermi energy and O chemical potential range. It is shown how the scavenger metal can be used to vary the O vacancy formation energy, via controlling the O chemical potential, and the mean Fermi energy. The high endurance of Ta{sub 2}O{sub 5} RRAM is related to its more stable amorphous phase and the adaptive lattice rearrangements of its O vacancy.

  3. Equity Access Plans: A Regulatory and Educational State Response Model.

    ERIC Educational Resources Information Center

    DeLisle, James

    1984-01-01

    Introduces the basic notion of equity access plans as property-based solutions to the cash flow needs of elderly homeowners and then proposes a normative response model that states can adopt to help manage the risk exposures. The recommended model incorporates regulatory, information dissemination, and educational elements. (BH)

  4. XPS Determination of Uranium Oxidations States

    SciTech Connect

    Ilton, Eugene S.; Bagus, Paul S.

    2011-12-01

    This contribution is both a review of different aspects of the XPS spectra that can help one determine U oxidation states and a personal perspective on how to effectively model the XPS of complicated mixed valence U phases. After a discussion of the valence band, the focus lingers on the U4f region, where the use of binding energies, satellite structures, and peak shapes is discussed in some detail. Binding energies were shown to be very dependent on composition/structure and consequently unreliable guides to oxidation state, particularly where assignment of composition is difficult. Likewise, the spin orbit split 4f7/2 and 4f5/2 peak shapes do not carry significant information on oxidation states. In contrast, both satellite-primary peak binding energy separations, as well as intensities too lesser extent, are relatively insensitive to composition/structure within the oxide-hydroxide-hydrate system and can be used to both identify and help quantify U oxidation states in mixed valence phases. An example of the usefulness of the satellite structure in constraining the interpretation of a complex multivalence U compound is given.

  5. Characteristics and mechanism study of cerium oxide based random access memories

    SciTech Connect

    Hsieh, Cheng-Chih; Roy, Anupam; Rai, Amritesh; Chang, Yao-Feng; Banerjee, Sanjay K.

    2015-04-27

    In this work, low operating voltage and high resistance ratio of different resistance states of binary transition metal oxide based resistive random access memories (RRAMs) are demonstrated. Binary transition metal oxides with high dielectric constant have been explored for RRAM application for years. However, CeO{sub x} is considered as a relatively new material to other dielectrics. Since research on CeO{sub x} based RRAM is still at preliminary stage, fundamental characteristics of RRAM such as scalability and mechanism studies need to be done before moving further. Here, we show very high operation window and low switching voltage of CeO{sub x} RRAMs and also compare electrical performance of Al/CeO{sub x}/Au system between different thin film deposition methods and discuss characteristics and resistive switching mechanism.

  6. Oxidation state of the mantle

    SciTech Connect

    Saxena, S.K. Graduate Center, New York, NY )

    1989-01-01

    Phase equilibrium relations are established in a system Mg-Fe-Si-H-O, with and without C, at high pressures and temperatures. High pressure-temperature equations of state for the fluids including non-ideal mixing are used in the calculations. The computed equilibrium data show that an olivine of appropriate mantle composition is stable over a wide range of temperature and oxygen fugacities in the carbon-free system. If C is introduced, such that the equilibrium assemblage may contain graphite or diamond, the fluid phase in the peridotite + water system consists mostly of H{sub 2}O and little CO{sub 2} and CH{sub 4}. However, the fluid composition is strongly affected by the Fe content of the system. If Fe is increased from undersaturation to that of saturation the CH{sub 4} content of the fluid changes from a low of 1% to a high of 89%. The calculated results show a fluid with as much as 75% methane could be in equilibrium with olivine without metallic Fe as a coexisting phase. The fO{sub 2} of the primitive mantle with such a fluid composition would be several log units below that of the quartz-fayalite-magnetite buffer.

  7. Average oxidation state of carbon in proteins.

    PubMed

    Dick, Jeffrey M

    2014-11-06

    The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (Z(C)) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation-reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between Z(C) and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in Z(C) in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower Z(C) tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales.

  8. Expanded Definition of the Oxidation State

    ERIC Educational Resources Information Center

    Loock, Hans-Peter

    2011-01-01

    A proposal to define the oxidation state of an atom in a compound as the hypothetical charge of the corresponding atomic ion that is obtained by heterolytically cleaving its bonds such that the atom with the higher electronegativity in a bond is allocated all electrons in the bond. Bonds between like atoms are cleaved homolytically. This…

  9. Geographic Access to Hospice in the United States

    PubMed Central

    Bradley, Elizabeth H.; Du, Qingling; Morrison, R. Sean

    2010-01-01

    Abstract Background Despite a 41% increase in the number of hospices since 2000, more than 60% of Americans die without hospice care. Given that hospice care is predominantly home based, proximity to a hospice is important in ensuring access to hospice services. We estimated the proportion of the population living in communities within 30 and 60 minutes driving time of a hospice. Methods We conducted a cross-sectional study of geographic access to U.S. hospices using the 2008 Medicare Provider of Services data, U.S. Census data, and ArcGIS software. We used multivariate logistic regression to identify gaps in hospice availability by community characteristics. Results As of 2008, 88% of the population lived in communities within 30 minutes and 98% lived in communities within 60 minutes of a hospice. Mean time to the nearest hospice was 15 minutes and the range was 0 to 403 minutes. Community characteristics independently associated with greater geographic access to hospice included higher population density, higher median income, higher educational attainment, higher percentage of black residents, and the state not having a Certificate of Need policy. The percentage of each state's population living in communities more than 30 minutes from a hospice ranged from 0% to 48%. Conclusions Recent growth in the hospice industry has resulted in widespread geographic access to hospice care in the United States, although state and community level variation exists. Future research regarding variation and disparities in hospice use should focus on barriers other than geographic proximity to a hospice. PMID:20979524

  10. Higher Americium Oxidation State Research Roadmap

    SciTech Connect

    Mincher, Bruce J.; Law, Jack D.; Goff, George S.; Moyer, Bruce A.; Burns, Jon D.; Lumetta, Gregg J.; Sinkov, Sergey I.; Shehee, Thomas C.; Hobbs, David T.

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  11. Average oxidation state of carbon in proteins

    PubMed Central

    Dick, Jeffrey M.

    2014-01-01

    The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation–reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between ZC and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in ZC in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower ZC tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales. PMID:25165594

  12. Oxidation state of BZ reaction mixtures.

    PubMed

    Sobel, Sabrina G; Hastings, Harold M; Field, Richard J

    2006-01-12

    The unstirred, ferroin (Fe(phen)(3)2+)-catalyzed Belousov-Zhabotinsky (BZ) reaction1-4 is the prototype oscillatory chemical system. After an induction period of several minutes, one sees "spontaneous" formation of "pacemaker" sites, which oscillate between a blue, oxidized state (high [Fe(phen)3(3+)]) and a red, reduced state (low [Fe(phen)(3)3+]). The reaction medium appears red (reduced) during the induction phase, and the pacemaker sites generate target patterns of concentric, outwardly moving waves of oxidation (blue). Auto-oscillatory behavior is also seen in the Oregonator model of Field, Korös, and Noyes (FKN), a robust, reduced model which captures qualitative BZ kinetics in the auto-oscillatory regime. However, the Oregonator model predicts a blue (oxidized) induction phase. Here, we show that including reaction R8 of the FKN mechanism, not incorporated in the original Oregonator, accounts for bromide release during the induction phase, thus producing the observed red oxidation state.

  13. Oxidation state of marine manganese nodules

    USGS Publications Warehouse

    Piper, D.Z.; Basler, J.R.; Bischoff, J.L.

    1984-01-01

    Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.

  14. Accessing Rashba states in electrostatically gated topological insulator devices

    NASA Astrophysics Data System (ADS)

    Banerjee, Abhishek; Sundaresh, Ananthesh; Majhi, Kunjalata; Ganesan, R.; Anil Kumar, P. S.

    2016-12-01

    We study the low temperature electrical transport in gated BiSbTe1.25Se1.75/hexagonal-Boron Nitride van der Waals heterostructure devices. Our experiments indicate the presence of Rashba spin-split states confined to the sample surface. While such states have been observed previously in photo-emission spectroscopy and STM experiments, it has not been possible to unambiguously detect them by electrical means and their transport properties remain mostly unknown. We show that these states support high mobility conduction with Hall effect mobilities ˜2000 to 3000 cm2/V-s that are paradoxically much larger than the mobilities of the topological surface states ˜300 cm2/V-s at T = 2 K. The spin-split nature of these states is confirmed by magneto-resistance measurements that reveal multi-channel weak anti-localization. Our work shows that Rashba spin split states can be electrically accessed in Topological insulators paving the way for future spintronic applications.

  15. Cr K-Edge XANES Spectroscopy: Ligand and Oxidation State Dependence — What is Oxidation State?

    NASA Astrophysics Data System (ADS)

    Tromp, Moniek; Moulin, Jerome; Reid, Gillian; Evans, John

    2007-02-01

    A series of Cr complexes varying in oxidation state, ligand and geometry were studied with Cr K-edge XANES. The main absorption edge energy shift for an oxidation state change from Cr0 to Cr6+ is found to be similar to that for a series of Cr3+ complexes with different ligands. Theoretical XANES and density of states calculations using FEFF8.0 provided detailed insights in the origin of the XANES features for the series of distorted octahedral CrCl3L complexes. The geometry of the CrCl3L complex governs the position of the main absorption edge. Hard versus soft donor effects are overruled by the chlorine ligand for complexes with a facial geometry, whereas the chlorine ligand does not play a significant role in meridional geometry. The combined results call for a redefinition of generally used concepts like oxidation state.

  16. Photochemical oxidants: state of the science.

    PubMed

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.

  17. 22 CFR 9b.1 - Press access to the Department of State.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Press access to the Department of State. 9b.1 Section 9b.1 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.1 Press access to the Department of State. (a) Media correspondents without...

  18. 22 CFR 9b.1 - Press access to the Department of State.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Press access to the Department of State. 9b.1 Section 9b.1 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.1 Press access to the Department of State. (a) Media correspondents without...

  19. Accessing 4f-states in single-molecule spintronics.

    PubMed

    Fahrendorf, Sarah; Atodiresei, Nicolae; Besson, Claire; Caciuc, Vasile; Matthes, Frank; Blügel, Stefan; Kögerler, Paul; Bürgler, Daniel E; Schneider, Claus M

    2013-01-01

    Magnetic molecules are potential functional units for molecular and supramolecular spintronic devices. However, their magnetic and electronic properties depend critically on their interaction with metallic electrodes. Charge transfer and hybridization modify the electronic structure and thereby influence or even quench the molecular magnetic moment. Yet, detection and manipulation of the molecular spin state by means of charge transport, that is, spintronic functionality, mandates a certain level of hybridization of the magnetic orbitals with electrode states. Here we show how a judicious choice of the molecular spin centres determines these critical molecule-electrode contact characteristics. In contrast to late lanthanide analogues, the 4f-orbitals of single bis(phthalocyaninato)-neodymium(III) molecules adsorbed on Cu(100) can be directly accessed by scanning tunnelling microscopy. Hence, they contribute to charge transport, whereas their magnetic moment is sustained as evident from comparing spectroscopic data with ab initio calculations. Our results showcase how tailoring molecular orbitals can yield all-electrically controlled spintronic device concepts.

  20. Chromium oxidation state mapping in human cells

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.

    2003-03-01

    The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.

  1. On the Extreme Oxidation States of Iridium.

    PubMed

    Pyykkö, Pekka; Xu, Wen-Hua

    2015-06-22

    It has recently been suggested that the oxidation states of Ir run from the putative -III in the synthesized solid Na3 [Ir(CO)3 ] to the well-documented +IX in the species IrO4 (+) . Furthermore, [Ir(CO)3 ](3-) was identified as an 18-electron species. A closer DFT study now finds support for this picture: The orbitals spanned by the 6s,6p,5d orbitals of the iridium are all occupied. Although some have considerable ligand character, the deviations from 18 e leave the orbital symmetries unchanged. The isoelectronic systems from Os(-IV) to Au(-I) behave similarly, suggesting further possible species. To paraphrase Richard P. Feynmann "there is plenty of room at the bottom".

  2. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W. Martin...Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W

  3. 36 CFR 293.12 - Access to surrounded State and private lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Access to surrounded State..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.12 Access to surrounded State and private lands. States or persons, and their successors in interest, who own land completely surrounded by...

  4. 36 CFR 293.12 - Access to surrounded State and private lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Access to surrounded State..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.12 Access to surrounded State and private lands. States or persons, and their successors in interest, who own land completely surrounded by...

  5. 36 CFR 293.12 - Access to surrounded State and private lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Access to surrounded State..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.12 Access to surrounded State and private lands. States or persons, and their successors in interest, who own land completely surrounded by...

  6. 36 CFR 293.12 - Access to surrounded State and private lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Access to surrounded State..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.12 Access to surrounded State and private lands. States or persons, and their successors in interest, who own land completely surrounded by...

  7. 36 CFR 293.12 - Access to surrounded State and private lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Access to surrounded State..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.12 Access to surrounded State and private lands. States or persons, and their successors in interest, who own land completely surrounded by...

  8. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang

    2016-05-01

    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  9. Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter

    NASA Astrophysics Data System (ADS)

    Lorenz, Thomas

    2004-11-01

    A new approach to materials science at extreme pressures has been developed on the OMEGA laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation. [1] This has been demonstrated at OMEGA at pressures of P = 0.1-2.0 Mbar in Al foils. [2] In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. The material strength is predicted to be as much as an order of magnitude higher at P ˜ 1 Mbar than at ambient pressures. Initial RT measurements testing this prediction in foils of Al and V will be shown. We also use TEM microscopy of recovered targets to show that the samples never melted, and the presence of pressure-induced structural defects. [3,4] Experimental designs based on this drive have been developed for the NIF laser, predicting that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega - accessing new regimes of dense, high-pressure matter. [5] [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K.T. Lorenz et al., submitted, J. Appl. Phys. (2004). [3] J. McNaney et al., in press, Met. Mat. Trans. 35A (2004). [4] E.M. Bringa et al., to be submitted, Nature (2004). [5] B.A. Remington et al., in press, Met. Mat. Trans. 35A (2004). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore

  10. Accessing ultrahigh-pressure, quasi-isentropic states of matter

    SciTech Connect

    Lorenz, K.T.; Edwards, M.J.; Glendinning, S.G.; Jankowski, A.F.; McNaney, J.; Pollaine, S.M.; Remington, B.A.

    2005-05-15

    A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of {approx}200 kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at {approx}200 kbar is a factor of {approx}3.6x over the ambient yield strength of 2.9 kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high

  11. Accessing ultrahigh-pressure, quasi-isentropic states of mattera)

    NASA Astrophysics Data System (ADS)

    Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.

    2005-05-01

    A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.

  12. Equation of state of uranium oxide

    NASA Astrophysics Data System (ADS)

    Ohse, R. W.; Babelot, J.-F.; Cercignani, C.; Hiernaut, J.-P.; Hoch, M.; Hyland, G. J.; Magill, J.

    1985-02-01

    The total and partial pressures over liquid UO 2 have been measured and calculated up to 5000K. A review of previous work is given. The equation of state of UO 2 as the main constituent of the fast breeder oxide fuel is required up to at least 5000K in order to estimate the energy release in a loss of flow (LOF) driven hypothetical core disruptive accident (HCDA) of the liquid metal fast breeder reactor (LMFBR). Two models, a macroscopic "mixture" model and a microscopic "defect" model have been developed to determine the oxygen potential of UO 200 up to 5000 K. A combination of mass spectrometric, Langmuir probe and high tension diode studies, applied for the first time to the laser vaporization process, revealed large quantities of ions emitted directly from the surface, and resolved previous discrepancies between measured and calculated vapour pressures by an enhanced rate of evaporation due to ion emission. As shown theoretically intrinsic ion emission can contribute to the net evaporation rate only if the resulting positive space charge can be neutralised. It is proposed that this can be accomplished by the presence of "hot" electrons in the plasma. The recommended equilibrium total pressure over liquid UO 2.00, valid between the melting point and 5000K, is log p (MPa) = - 2.717 - 20131/T + 1.925 log T.

  13. Performance improvement of gadolinium oxide resistive random access memory treated by hydrogen plasma immersion ion implantation

    SciTech Connect

    Wang, Jer-Chyi Hsu, Chih-Hsien; Ye, Yu-Ren; Ai, Chi-Fong; Tsai, Wen-Fa

    2014-03-15

    Characteristics improvement of gadolinium oxide (Gd{sub x}O{sub y}) resistive random access memories (RRAMs) treated by hydrogen plasma immersion ion implantation (PIII) was investigated. With the hydrogen PIII treatment, the Gd{sub x}O{sub y} RRAMs exhibited low set/reset voltages and a high resistance ratio, which were attributed to the enhanced movement of oxygen ions within the Gd{sub x}O{sub y} films and the increased Schottky barrier height at Pt/Gd{sub x}O{sub y} interface, respectively. The resistive switching mechanism of Gd{sub x}O{sub y} RRAMs was dominated by Schottky emission, as proved by the area dependence of the resistance in the low resistance state. After the hydrogen PIII treatment, a retention time of more than 10{sup 4} s was achieved at an elevated measurement temperature. In addition, a stable cycling endurance with the resistance ratio of more than three orders of magnitude of the Gd{sub x}O{sub y} RRAMs can be obtained.

  14. Access Guide to South Carolina State Parks for People with Special Needs.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Parks, Recreation, and Tourism, Columbia. Div. of Engineering and Planning.

    The guide was developed to assist physically handicapped persons in using South Carolina State Parks. It describes some of the accessibility problems identified in a 1986 Inventory of Handicapped Accessibility in South Carolina State Parks and Welcome Centers. It is noted that building construction since 1967 has met handicapped design criteria…

  15. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, Glenn Geoffrey

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  16. Golf in the United States: an evolution of accessibility.

    PubMed

    Parziale, John R

    2014-09-01

    Golf affords physical and psychological benefits to persons who are physically challenged. Advances in adaptive technology, changes in golf course design, and rules modifications have enabled persons with neurological, musculoskeletal, and other impairments to play golf at a recreational, elite amateur, or professional level. The Americans with Disabilities Act has been cited in both federal and US Supreme Court rulings that have improved access for physically challenged golfers. Medical specialties, including physiatry, have played an important role in this process. This article reviews the history of golf's improvements in accessibility, and provides clinicians and physically challenged golfers with information that will facilitate participation in the sport.

  17. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  18. Accessibility

    EPA Pesticide Factsheets

    Federal laws, including Section 508 of the Rehabilitation Act, mandate that people with disabilities have access to the same information that someone without a disability would have. 508 standards cover electronic and information technology (EIT) products.

  19. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation.

    PubMed

    Chu, Crystal K; Ziegler, Daniel T; Carr, Brian; Wickens, Zachary K; Grubbs, Robert H

    2016-07-11

    An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation.

  20. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  1. Expanding Access and Opportunity: The Washington State Achievers Program

    ERIC Educational Resources Information Center

    Ramsey, Jennifer; Gorgol, Laura

    2010-01-01

    In 2001, the Bill & Melinda Gates Foundation launched a 10-year, multi-million dollar initiative, the Washington State Achievers Program (WSA), to increase opportunities for low-income students to attend postsecondary institutions in Washington State. The Bill & Melinda Gates Foundation granted funds to the College Success Foundation…

  2. Expanding Access and Opportunity: The Washington State Achievers Scholarship

    ERIC Educational Resources Information Center

    O'Brien, Colleen

    2011-01-01

    In 2001, the Bill & Melinda Gates Foundation launched the multi-year, multi-million dollar Washington State Achievers Scholarship program. Concerned about disparities in college participation for low-income students in the state of Washington versus their wealthier peers, the Gates Foundation partnered with the College Success Foundation…

  3. The Common Core State Standards: Comparisons of Access and Quality

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2011-01-01

    Last year the United States unveiled the Common Core State Standards (CCSS) in English and Mathematics for grades K-12. In particular, the authors included two possible sequences of 8-12 mathematics courses that would fulfill the standards. Most notably, the courses titled "3a" and "3b" in these two sequences have become…

  4. A Fiscal Analysis of Proposed Education Access Grants in Minneapolis. School Choice Issues in the State

    ERIC Educational Resources Information Center

    Maas, Ericca

    2005-01-01

    This study examines the fiscal impact of model legislation that would create Education Access Grants in Minnesota. The legislation would provide grants for low-income students to attend private schools. Specifically, this study examines the effect of implementing Education Access Grants in Minneapolis, the state's largest metropolitan area. It…

  5. 36 CFR 212.7 - Access procurement by the United States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Access procurement by the United States. 212.7 Section 212.7 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF..., reconstruction, improvement, or maintenance is essential to provide safe and economical access to National...

  6. 36 CFR 212.7 - Access procurement by the United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Access procurement by the United States. 212.7 Section 212.7 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF..., reconstruction, improvement, or maintenance is essential to provide safe and economical access to National...

  7. Internet Access in the European Union and in the United States.

    ERIC Educational Resources Information Center

    Bauer, Johannes M.; Berne, Michel; Maitland, Carleen F.

    2002-01-01

    Examines the effects of public policies towards traditional communications infrastructures on Internet access in Europe and the United States. Discusses competitive strategies and describes the influence of regulatory policies affecting market entry and the pricing of services on Internet access, based on empirical findings. (Author/LRW)

  8. 77 FR 48199 - Privacy Act; System of Records: State-35, Information Access Programs Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... user must first be granted access to the Department of State computer system. All employees of the... trails of access from the computer media, thereby permitting regular and ad hoc monitoring of computer usage. RETENTION AND DISPOSAL: Records are retired and destroyed in accordance with published...

  9. XPS determination of Mn oxidation states in Mn (hydr)oxides

    SciTech Connect

    Ilton, Eugene S.; Post, Jeffrey E.; Heaney, Peter J.; Ling, Florence T.; Kerisit, Sebastien N.

    2016-03-01

    Hydrous manganese oxides are an important class of minerals that help regulate the geochemical redox cycle in near-surface environments and are also considered to be promising catalysts for energy applications such as the oxidation of water. A complete characterization of these minerals is required to better understand their catalytic activity. In this contribution an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a common layered structure that occurs readily in Nature but is also the oxidized endmember in biomimetic water-oxidation catalysts. The Mn2p3/2, Mn3p, and Mn3s lines of near monovalent Mn(II), Mn(III), and Mn(IV) oxides were fit with component peaks; after the best fit was obtained the relative widths, heights and binding energies of the components were fixed. Unknown multivalent samples were fit such that binding energies, intensities, and widths of each oxidation state, composed of a packet of correlated component peaks, were allowed vary. whereas widths were constrained to maintain the difference between the standards. Both average and individual mole fraction oxidation states for all three energy levels were strongly correlated with close agreement between Mn3s and Mn3p, whereas Mn2p3/2 gave systematically more reduced results. Limited stoichiometric analyses were consistent with Mn3p and Mn3s. Further, evidence indicates the shape of the Mn3p line was less sensitive to the bonding environment than Mn2p. Consequently, fitting the Mn3p and Mn3s lines yields robust quantification of oxidation states over a range of hydrous Mn oxide polytypes and compositions. In contrast, a common method for determining oxidation states that utilizes the multiplet splitting of the Mn3s line is not appropriate for birnessites.

  10. XPS determination of Mn oxidation states in Mn (hydr)oxides

    NASA Astrophysics Data System (ADS)

    Ilton, Eugene S.; Post, Jeffrey E.; Heaney, Peter J.; Ling, Florence T.; Kerisit, Sebastien N.

    2016-03-01

    Hydrous manganese oxides are an important class of minerals that help regulate the geochemical redox cycle in near-surface environments and are also considered to be promising catalysts for energy applications such as the oxidation of water. A complete characterization of these minerals is required to better understand their catalytic and redox activity. In this contribution an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a layered structure that occurs commonly in soils but is also the oxidized endmember in biomimetic water-oxidation catalysts. The Mn2p3/2, Mn3p, and Mn3s lines of near monovalent Mn(II), Mn(III), and Mn(IV) oxides were fit with component peaks; after the best fit was obtained the relative widths, heights and binding energies of the components were fixed. Unknown multivalent samples were fit such that binding energies, intensities, and peak-widths of each oxidation state, composed of a packet of correlated component peaks, were allowed to vary. Peak-widths were constrained to maintain the difference between the standards. Both average and individual mole fraction oxidation states for all three energy levels were strongly correlated, with close agreement between Mn3s and Mn3p analyses, whereas calculations based on the Mn2p3/2 spectra gave systematically more reduced results. Limited stoichiometric analyses were consistent with Mn3p and Mn3s. Further, evidence indicates the shape of the Mn3p line was less sensitive to the bonding environment than that for Mn2p. Consequently, fitting the Mn3p and Mn3s lines yielded robust quantification of oxidation states over a range of Mn (hydr)oxide phases. In contrast, a common method for determining oxidation states that utilizes the multiplet splitting of the Mn3s line was found to be not appropriate for birnessites.

  11. How to Develop State Guidelines for Access Assistants: Scribes, Readers, and Sign Language Interpreters

    ERIC Educational Resources Information Center

    Clapper, Ann T.; Morse, Amanda B.; Thurlow, Martha L.; Thompson, Sandra J.

    2006-01-01

    This manual offers states a tool to assist in the development or enhancement of guidelines for access assistants. Whether a state already has guidelines or is just in the process of establishing them, this manual will provide structure to the process and many examples of criteria already included by states. This manual was developed to accompany…

  12. 22 CFR 9b.1 - Press access to the Department of State.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BUILDING PASSES § 9b.1 Press access to the Department of State. (a) Media correspondents without valid... enjoyed by members of the public. (b) Media correspondents holding valid Department of State press... the Department of State building. (c) Media correspondents, with or without a Department of...

  13. 22 CFR 9b.1 - Press access to the Department of State.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... BUILDING PASSES § 9b.1 Press access to the Department of State. (a) Media correspondents without valid... enjoyed by members of the public. (b) Media correspondents holding valid Department of State press... the Department of State building. (c) Media correspondents, with or without a Department of...

  14. 22 CFR 9b.1 - Press access to the Department of State.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BUILDING PASSES § 9b.1 Press access to the Department of State. (a) Media correspondents without valid... enjoyed by members of the public. (b) Media correspondents holding valid Department of State press... the Department of State building. (c) Media correspondents, with or without a Department of...

  15. Disparities in access to effective treatment for infertility in the United States: an Ethics Committee opinion.

    PubMed

    2015-11-01

    In the United States, economic, racial, ethnic, geographic, and other disparities exist in access to fertility treatment and in treatment outcomes. This opinion examines the factors that contribute to these disparities and proposes actions to address them.

  16. An Argument for the Use of Biometrics to Prevent Terrorist Access to the United States

    DTIC Science & Technology

    2003-12-06

    USAWC STRATEGY RESEARCH PROJECT AN ARGUMENT FOR THE USE OF BIOMETRICS TO PREVENT TERRORIST ACCESS TO THE UNITED STATES By Lieutenant Colonel Ray a...ABSTRACT AUTHOR: Lieutenant Colonel Ray A. Graham TITLE: An Argument for the Use of Biometrics to Prevent Terrorist Access to the United States FORMAT...examples can be traced back to our close political, social and economic relations with the nation of Israel. Other groups have targeted us due to our

  17. What are the oxidation states of manganese required to catalyze photosynthetic water oxidation?

    PubMed

    Kolling, Derrick R J; Cox, Nicholas; Ananyev, Gennady M; Pace, Ron J; Dismukes, G Charles

    2012-07-18

    Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.

  18. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung; Park, Sungkyun; Egami, Takeshi

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  19. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.

  20. Growth control of the oxidation state in vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2 + 3 O 3 , V + 4 O 2 , and V2 + 5 O 5 . A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O2). The films grown either in lower (<10 mTorr) or higher P(O2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  1. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGES

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; ...

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  2. The accessibility of substance abuse treatment facilities in the United States for persons with disabilities.

    PubMed

    West, Steven L

    2007-07-01

    This study assessed the accessibility of a nationally representative sample of substance abuse treatment facilities in the United States for persons with disabilities (PWDs). A stratified random sample of 159 substance abuse treatment facilities in 40 states completed a survey regarding physical accessibility and the provision of services that could enhance the ability to serve individuals with disabilities. Most responding facilities self-reported a variety of barriers to physical accessibility, as well as the lack of services and physical accommodations for persons with sensory limitations. Such widespread inaccessibility may be a factor that promotes the low representation of PWDs in the treatment population.

  3. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    SciTech Connect

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-03-09

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr{sup 1+}, Zr{sup 2+}, and Zr{sup 3+} as non-equilibrium oxidation states, in addition to Zr{sup 4+} in the stoichiometric ZrO{sub 2}. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr{sup 0} and Zr{sup 4+} at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.

  4. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    DOE PAGES

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; ...

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields andmore » the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less

  5. Theoretical Equation of State for Beryllium Oxide

    NASA Astrophysics Data System (ADS)

    Boettger, Jonathan C.; Honnell, Kevin G.; Mori, Yoshihisa; Niiya, Naoto; Mizuno, Takafumi

    2006-07-01

    A new, tabular (SESAME format) equation of state for BeO is developed. The new equation of state combines LGA and GGA density-functional predictions for the 0 K isotherm, the Johnson ionic model (which transitions smoothly from Debye behavior in the solid to ideal-gas behavior at high temperatures), and the Thomas-Fermi-Dirac model for thermal electronic contributions. Results for the compressibility, shock Hugoniots, thermal expansion, and heat capacity are in very good agreement with experimental measurements. At room temperature, the theory predicts a wurtzite-to-rock-salt transition at a pressure of 105 GPa, consistent with new XRD diamond-anvil results.

  6. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    NASA Astrophysics Data System (ADS)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun

    2016-08-01

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>105 s), good endurance (>106 cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  7. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

    PubMed

    Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di

    2017-02-22

    Al2O3- or HfO2-based nanocomposite structures with embedded CoPtx nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPtx NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPtx NCs, ALD-derived Pt/oxide/100 cycle-CoPtx NCs/TiN/SiO2/Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10(2)) of OFF/ON states, better switching endurance up to 10(4) cycles, and longer data retention over 10(5) s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPtx NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPtx NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPtx NCs can effectively improve the formation of conducting filaments due to the CoPtx NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.

  8. Effects of erbium doping of indium tin oxide electrode in resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Lin, Chih-Yang; Jin, Fu-Yuan; Chen, Min-Chen; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2016-03-01

    Identical insulators and bottom electrodes were fabricated and capped by an indium tin oxide (ITO) film, either undoped or doped with erbium (Er), as a top electrode. This distinctive top electrode dramatically altered the resistive random access memory (RRAM) characteristics, for example, lowering the operation current and enlarging the memory window. In addition, the RESET voltage increased, whereas the SET voltage remained almost the same. A conduction model of Er-doped ITO is proposed through current-voltage (I-V) measurement and current fitting to explain the resistance switching mechanism of Er-doped ITO RRAM and is confirmed by material analysis and reliability tests.

  9. Changes in accessibility of cellulose during kraft pulping of wood in deuterium oxide.

    PubMed

    Pönni, Raili; Galvis, Leonardo; Vuorinen, Tapani

    2014-01-30

    Fresh birch chips were treated with different concentrations of sodium hydroxide and sodium sulfide in deuterium oxide in typical kraft pulping conditions and the extent of irreversible deuteration of the chips/pulps was followed by Fourier transform infrared (FT-IR) spectroscopy. Water retention values (WRV) of pulps were measured to evaluate accessibility of cellulose. The kraft pulping with deuterium oxide led to significant proton-deuterium exchange that was not reversed when the chips/pulps were washed with water. The deuteration followed a first order dynamics with a maximum obtained in the beginning of delignification stage. Higher dosages of effective alkali resulted in a higher degree of deuteration and lower WRV. An inverse relationship between the extent of deuteration and WRV suggests that both were induced by cellulose microfibril aggregation. Results also indicate that hemicellulose dissolution plays an important role in the induction of cellulose microfibril aggregation, while lignin dissolution has less influence.

  10. State preemption of local tobacco control policies restricting smoking, advertising, and youth access--United States, 2000-2010.

    PubMed

    2011-08-26

    Preemptive state tobacco control legislation prohibits localities from enacting tobacco control laws that are more stringent than state law. State preemption provisions can preclude any type of local tobacco control policy. The three broad types of state preemption tracked by CDC include preemption of local policies that restrict 1) smoking in workplaces and public places, 2) tobacco advertising, and 3) youth access to tobacco products. A Healthy People 2020 objective (TU-16) calls for eliminating state laws that preempt any type of local tobacco control law. A previous study reported that the number of states that preempt local smoking restrictions in one or more of three settings (government worksites, private-sector worksites, and restaurants) has decreased substantially in recent years. To measure progress toward achieving Healthy People 2020 objectives, this study expands on the previous analysis to track changes in state laws that preempt local advertising and youth access restrictions and to examine policy changes from December 31, 2000, to December 31, 2010. This new analysis found that, in contrast with the substantial progress achieved during the past decade in reducing the number of states that preempt local smoking restrictions, no progress has been made in reducing the number of states that preempt local advertising restrictions and youth access restrictions. Increased progress in removing state preemption provisions will be needed to achieve the relevant Healthy People 2020 objective.

  11. The global oxidation state of the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Smith-Duque, C. E.; Teagle, D. A.

    2012-12-01

    The oxidation state of the oceanic crust is an important component of the Earth system. The widespread oxidation of the crust is a major contributor to the redox state of the mantle due to the subduction of hydrothermally altered oceanic crust, which supplies 10 - 25 % of the net ferric iron flux to the global mantle Fe3+/FeTOT budget (Lécuyer and Ricard, 1999). Secondly, the degree of oxidation of the upper oceanic crust provides a measure of the biomass of microbial life sub-basement (Bach and Edwards, 2003). Thirdly, oxidation state analyses of oceanic basalt give information on the environment and relative timings of local hydrothermal alteration events. To date comprehensive measurements of Fe3+/FeTOT for the oceanic crust are lacking. Post crystallisation oxidation processes, occurring predominantly in the upper basaltic layers of the crust, elevate ratios of ferric to total iron (Fe3+/FeTOT) from mantle levels of 0.16 ± 0.01 (Cottrell and Kelley, 2011). Ferrous (Fe2+/) iron is oxidised to ferric (Fe3+/) iron during reaction with oxidised seawater, which circulates through oceanic crust for tens of millions of years following crustal formation. This study integrates published data with new analyses from six ocean crustal boreholes to categorise the global oxidation state of the upper crust. Samples range from <1 to 129 Ma, and represent basalt from medium to superfast spreading centres, depths between <100 - 2000 mbsf, and at a variety of sedimentary cover rates and thicknesses. Results show that by 1 Ma, the Fe3+/FeTOT ratio of the bulk crust is already raised to an average of 0.28 ± 0.07, implying that the oxidation state is established very early in the lifetime of the ocean crust. Post 1 Ma, Fe3+/FeTOT ratios are more variable, reflecting the effects of prolonged exposure to circulating seawater, but are on average ~0.35.

  12. Existence and accessibility of igniting states in a tokamak inferred from its performance in tritiumless discharges

    SciTech Connect

    Carretta, U.R.; Minardi, E.

    1988-09-01

    The conditions for the existence and accessibility of ignited or subignited deuterium-tritium states are discussed in terms of the performance of the thermonuclear device in tritiumless discharges. The discussion includes the effects of the thermal instability of both the marginally igniting states and the nonstationary states in the start-up phase. These effects are an integral part of the problem of the accessibility to ignition under reliable conditions. Typical examples taken from the next generation of igniting tokamaks are discussed. The necessity of allowing sufficient excursion of the plasma column for a stable drive to ignition by feedback on the vertical field is underlined.

  13. One State's Initiative to Increase Access to Higher Education for People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mock, Martha; Love, Kristen

    2012-01-01

    This article focuses on a state-based initiative to engage youth with intellectual disabilities (ID), their families, universities, schools, agencies, and funders in improving access to inclusive postsecondary education (PSE). As opportunities in higher education for students with ID continue to increase across United States, there are differing…

  14. L2 Cognitive States and the Full Transfer/Full Access Model.

    ERIC Educational Resources Information Center

    Schwartz, Bonnie D.; Sprouse, Rex A.

    1996-01-01

    Defends the full transfer/full access (FT/FA) model, which hypothesizes that the initial state of second-language (L2) acquisition is the final state of L1 acquisition (full transfer) and failure to assign a representation to input data will force subsequent restructuring. The article considers two other competing hypotheses as well as several…

  15. Balancing Quality and Access: Reducing State Policy Barriers to Electronically Delivered Higher Education Programs.

    ERIC Educational Resources Information Center

    Johnstone, Sally M.

    This project was designed to increase student access by addressing Western states' regulations on higher education programs delivered electronically across state lines, and to develop and get region-wide agreement on basic quality standards for distance education programs. The project achieved agreement on a set of "Principles of Good…

  16. Accessibility of State Department of Education Home Pages and Special Education Pages.

    ERIC Educational Resources Information Center

    Opitz, Christine; Savenye, Wilhelmina; Rowland, Cyndi

    2003-01-01

    This study evaluated State Department of Education Internet home pages and special education pages for accessibility compliance with standards of the World Wide Web Consortium and Section 508 of the revised Rehabilitation Act. Only 26% of state department home pages and 52% of special education pages achieved W3C compliance and fewer conformed…

  17. Adding it Up: State Challenges for Increasing College Access and Success

    ERIC Educational Resources Information Center

    Jobs for the Future, 2007

    2007-01-01

    This report, comprised of key indicators and projections related to postsecondary attainment, is designed to help institutional, system, and state leaders advance a conversation about the need to increase college access and success for all students. The profiles included show that while states vary considerably in their current and expected…

  18. A Stateful Multicast Access Control Mechanism for Future Metro-Area-Networks.

    ERIC Educational Resources Information Center

    Sun, Wei-qiang; Li, Jin-sheng; Hong, Pei-lin

    2003-01-01

    Multicasting is a necessity for a broadband metro-area-network; however security problems exist with current multicast protocols. A stateful multicast access control mechanism, based on MAPE, is proposed. The architecture of MAPE is discussed, as well as the states maintained and messages exchanged. The scheme is flexible and scalable. (Author/AEF)

  19. Direct Determination of the Intracellular Oxidation State of Plutonium

    PubMed Central

    Gorman-Lewis, Drew; Aryal, Baikuntha P.; Paunesku, Tatjana; Vogt, Stefan; Lai, Barry; Woloschak, Gayle E.; Jensen, Mark P.

    2013-01-01

    Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1 μm2 areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 hours in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits was always consistent with tetravalent Pu even though the intracellular milieu is generally reducing. PMID:21755934

  20. Oxygenic photosynthesis and the oxidation state of Mars.

    PubMed

    Hartman, H; McKay, C P

    1995-01-01

    The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxgyen is biological oxygen production followed by sequestration of organic material in sediments--as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the Martian subsurface and sediments.

  1. Oxygenic Photosynthesis and the Oxidation State of Mars

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman; McKay, Christopher P.

    1995-01-01

    The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxygen is biological oxygen production followed by sequestration of organic material in sediments - as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the martian subsurface and sediments.

  2. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  3. Disparities and access to healthy food in the United States: A review of food deserts literature.

    PubMed

    Walker, Renee E; Keane, Christopher R; Burke, Jessica G

    2010-09-01

    Increasingly, studies are focusing on the role the local food environment plays in residents' ability to purchase affordable, healthy and nutritious foods. In a food desert, an area devoid of a supermarket, access to healthy food is limited. We conducted a systematic review of studies that focused on food access and food desert research in the United States. The 31 studies identified utilized 9 measures to assess food access. Results from these studies can be summarized primarily into four major statements. Findings from other countries offer insight into ways, in which future research, policy development and program implementation in the U.S. may continue to be explored.

  4. Changes in magmatic oxidation state induced by degassing

    NASA Astrophysics Data System (ADS)

    Brounce, M. N.; Stolper, E. M.; Eiler, J. M.

    2015-12-01

    Temporal variations in the oxygen fugacity (fO2) of the mantle may have been transmitted to Earth's atmosphere and oceans by volcanic degassing. However, it is unclear how redox states of volatiles relate to their source magmas because degassing and assimilation can impact fO2 before or during eruption. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S and laser fluorination measurements of 18O/16O ratios in submarine glasses from two settings where degassing is recorded: 1) submarine glasses from the Reykjanes Ridge as it shoals to Iceland, including subglacial glasses from the Reykjanes Peninsula; and 2) submarine glasses from Mauna Kea recovered by the Hawaii Shield Drilling Program (HSDP). Glasses from both settings are basalts with 5.5-9.9 wt% MgO and 350-1790 ppm S. Submarine Reykjanes glasses are sulfide saturated. Subglacial Reykjanes and HSDP glasses are not sulfide saturated, and S and H2O contents are consistent with S+H2O degassing. Submarine Reykjanes glasses have 18O/16O indistinguishable from MORB and become progressively 18O-depleted as MgO decreases. Subglacial glasses have lower 18O/16O than submarine glasses at a given MgO, but both sample types project to a common 18O/16O near 10 wt% MgO, suggesting that 18O-depletion in these lavas is generated by fractional crystallization and assimilation of an 18O-depleted crustal component. The oxidation state of Fe increases only slightly as 18O/16O decrease, suggesting that the assimilant is not oxidized enough to change magmatic fO2. Fe and S do not oxidize or reduce with decreasing S or H2O, suggesting that relatively reduced magmas at depth degassed S+H2O without changing magmatic fO2, and that the fO2 of these lavas reflect the fO2of their mantle source. The oxidation states of Fe and S in HSDP glasses are broadly correlated and samples with the highest S concentrations are the most oxidized. Both Fe and S reduce with decreasing S and H2O contents. This suggests

  5. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    SciTech Connect

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  6. Oxidation state of iron in plagioclase from lunar basalts.

    NASA Technical Reports Server (NTRS)

    Hafner, S. S.; Virgo, D.; Warburton, D.

    1971-01-01

    Determination of the oxidation state of iron in the plagioclase from the coarse-grained basalts 10044 and 12021, using Mossbauer spectroscopy. The location of iron in the crystal structure was also investigated. The spectra show that iron is in the high-spin ferrous state, and they located at least two distinct positions with different coordination numbers. Some excess resonant absorption is probably due to Fe(3+), although the Fe(3+) doublet could not be positively resolved.

  7. GAS-PHASE FLAME SYNTHESIS AND PROPERTIES OF MAGNETIC IRON OXIDE NANOPARTICLES WITH REDUCED OXIDATION STATE

    PubMed Central

    Kumfer, Benjamin M; Shinoda, Kozo; Jeyadevan, Balachandran; Kennedy, Ian M

    2010-01-01

    Iron oxide nanoparticles of reduced oxidation state, mainly in the form of magnetite, have been synthesized utilizing a new continuous, gas-phase, nonpremixed flame method using hydrocarbon fuels. This method takes advantage of the characteristics of the inverse flame, which is produced by injection of oxidizer into a surrounding flow of fuel. Unlike traditional flame methods, this configuration allows for the iron particle formation to be maintained in a more reducing environment. The effects of flame temperature, oxygen-enrichment and fuel dilution (i.e. the stoichiometric mixture fraction), and fuel composition on particle size, Fe oxidation state, and magnetic properties are evaluated and discussed. The crystallite size, Fe(II) fraction, and saturation magnetization were all found to increase with flame temperature. Flames of methane and ethylene were used, and the use of ethylene resulted in particles containing metallic Fe(0), in addition to magnetite, while no Fe(0) was present in samples synthesized using methane. PMID:20228941

  8. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  9. State Public Policies and the Racial/Ethnic Stratification of College Access and Choice in the State of Maryland

    ERIC Educational Resources Information Center

    Perna, Laura W.; Steele, Patricia; Woda, Susan; Hibbert, Taifa

    2005-01-01

    This study uses descriptive analyses of data from multiple sources to examine changes during the 1990s in the racial/ethnic stratification of college access and choice in Maryland and to explore state public policies that may have influenced changes in the demand for and supply of higher education for students of different racial/ethnic groups…

  10. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    SciTech Connect

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  11. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    PubMed Central

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K.; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-01-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells. PMID:26056725

  12. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles.

    PubMed

    Szymanski, Craig J; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce(3+)/Ce(4+) ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce(3+)/Ce(4+) ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of the cells.

  13. In the United States, "Opt-Out" States Show No Increase in Access to Anesthesia Services for Medicare Beneficiaries Compared with Non-"Opt-Out" States.

    PubMed

    Sun, Eric C; Miller, Thomas R; Halzack, Nicholas M

    2016-05-01

    In the United States, anesthesia care can be provided by anesthesiologists or nurse anesthetists. Since 2001, 17 states have exercised their right to "opt-out" of the federal requirement that a physician supervise the administration of anesthesia by a nurse anesthetist, with the majority citing increased access to anesthesia care as the rationale for their decision. By using Medicare data, we found that most (4 of 5) cohorts of "opt-out" states likely experienced smaller growth in anesthesia utilization rates compared with non-"opt-out" states, suggesting that opt-out was not associated with an increase in access to anesthesia care.

  14. Microstructural transitions in resistive random access memory composed of molybdenum oxide with copper during switching cycles.

    PubMed

    Arita, Masashi; Ohno, Yuuki; Murakami, Yosuke; Takamizawa, Keisuke; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2016-08-21

    The switching operation of a Cu/MoOx/TiN resistive random access memory (ReRAM) device was investigated using in situ transmission electron microscopy (TEM), where the TiN surface was slightly oxidized (ox-TiN). The relationship between the switching properties and the dynamics of the ReRAM microstructure was confirmed experimentally. The growth and/or shrinkage of the conductive filament (CF) can be classified into two set modes and two reset modes. These switching modes depend on the device's switching history, factors such as the amount of Cu inclusions in the MoOx layer and the CF geometry. High currents are needed to produce an observable change in the CF. However, sharp and stable switching behaviour can be achieved without requiring such a major change. The local region around the CF is thought to contribute to the ReRAM switching process.

  15. Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pike, Sebastian D.; White, Edward R.; Shaffer, Milo S. P.; Williams, Charlotte K.

    2016-10-01

    The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use 31P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2-4 nm) nanoparticles.

  16. Mapping the Iron Oxidation State in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Treimann, A. H.; Righter, K.

    2017-01-01

    Several types of Martian igneous meteorites have been identified: clinopyroxenites (nakhlites), basaltic shergottites, peridotitic shergottites, dunites (chassignites) and orthopyroxenites [1,2]. In order to constrain the heterogeneity of the Martian mantle and crust, and their evolution through time, numerous studies have been performed on the iron oxidation state of these meteorites [3,4,5,6,7,8,9]. The calculated fO2 values all lie within the FMQ-5 to FMQ+0.5 range (FMQ representing the Fayalite = Magnetite + Quartz buffer); however, discrepancies appear between the various studies, which are either attributed to the choice of the minerals/melts used, or to the precision of the analytical/calculation method. The redox record in volcanic samples is primarily related to the oxidation state in the mantle source(s). However, it is also influenced by several deep processes: melting, crystallization, magma mixing [10], assimilation and degassing [11]. In addition, the oxidation state in Martian meteorites is potentially affected by several surface processes: assimilation of sediment/ crust during lava flowing at Mars' surface, low temperature micro-crystallization [10], weathering at the surface of Mars and low temperature reequilibration, impact processes (i.e. high pressure phase transitions, mechanical mixing, shock degassing and melting), space weathering, and weathering on Earth (at atmospheric conditions different from Mars). Decoding the redox record of Martian meteorites, therefore, requires large-scale quantitative analysis methods, as well as a perfect understanding of oxidation processes.

  17. Microstructural transitions in resistive random access memory composed of molybdenum oxide with copper during switching cycles

    NASA Astrophysics Data System (ADS)

    Arita, Masashi; Ohno, Yuuki; Murakami, Yosuke; Takamizawa, Keisuke; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2016-08-01

    The switching operation of a Cu/MoOx/TiN resistive random access memory (ReRAM) device was investigated using in situ transmission electron microscopy (TEM), where the TiN surface was slightly oxidized (ox-TiN). The relationship between the switching properties and the dynamics of the ReRAM microstructure was confirmed experimentally. The growth and/or shrinkage of the conductive filament (CF) can be classified into two set modes and two reset modes. These switching modes depend on the device's switching history, factors such as the amount of Cu inclusions in the MoOx layer and the CF geometry. High currents are needed to produce an observable change in the CF. However, sharp and stable switching behaviour can be achieved without requiring such a major change. The local region around the CF is thought to contribute to the ReRAM switching process.The switching operation of a Cu/MoOx/TiN resistive random access memory (ReRAM) device was investigated using in situ transmission electron microscopy (TEM), where the TiN surface was slightly oxidized (ox-TiN). The relationship between the switching properties and the dynamics of the ReRAM microstructure was confirmed experimentally. The growth and/or shrinkage of the conductive filament (CF) can be classified into two set modes and two reset modes. These switching modes depend on the device's switching history, factors such as the amount of Cu inclusions in the MoOx layer and the CF geometry. High currents are needed to produce an observable change in the CF. However, sharp and stable switching behaviour can be achieved without requiring such a major change. The local region around the CF is thought to contribute to the ReRAM switching process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02602h

  18. Kidney transplant access in the Southeastern United States: the need for a top-down transformation.

    PubMed

    Srinivas, T R

    2014-07-01

    End-stage renal disease (ESRD) and poverty are highly prevalent conditions in the Southeastern United States. The American Southeast also has some of the lowest attainments of health status among its constituents. Transplantation rates are particularly low in the Southeast compared with other regions of the United States. These low kidney transplantation rates in the Southeast likely reflect poor access to medical care. This disproportionate lack of access to medical care among ESRD patients in the Southeast reflects the convergence and interaction of socioeconomic and biologic forces at the patient level interacting with the financial and organizational structure of the health-care system. Improving kidney transplant access in the Southeast will take disruptive political, financial and health system changes whose scope transcends transplant centers and dialysis units.

  19. Correlation between static random access memory power-up state and transistor variation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kiyoshi; Mizutani, Tomoko; Saraya, Takuya; Shinohara, Hirofumi; Kobayashi, Masaharu; Hiramoto, Toshiro

    2017-04-01

    The correlation between the static random access memory (SRAM) power-up state (i.e., state 0 or 1 immediately after the power supply is turned on) and cell transistor variation is systematically studied by circuit simulations and mismatch space partitioning. It is revealed that, while both the mismatches of pFETs (pull-up) and nFETs (pull-down and access) contribute, their relative importance changes depending on the voltage ramping speed. The static retention noise margin well correlates with the power-up state only if the ramping speed is sufficiently low. Otherwise, pull-up transistor mismatch dominates the power-up state determination owing to the interference of capacitive current and asymmetrical capacitive coupling of the storage nodes to the ground and power supply.

  20. A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis.

    PubMed

    Michaelos, Thoe K; Shopov, Dimitar Y; Sinha, Shashi Bhushan; Sharninghausen, Liam S; Fisher, Katherine J; Lant, Hannah M C; Crabtree, Robert H; Brudvig, Gary W

    2017-03-08

    highlight the specific complexes studied in more detail. In the iridium work, the isolated mononuclear complexes showed easily accessible Ir(III/IV) redox couples, in some cases with the Ir(IV) state being indefinitely stable in water. We were able to rationalize the unusual geometry-dependent redox properties of the various isomers on the basis of ligand-field effects. Even more striking was the isolation and full characterization of a stable Rh(IV) state, for which prior examples were very reactive and poorly characterized. Importantly, we were able to convert monomeric Ir complexes to [Cl(pyalk)2Ir(IV)-O-Ir(IV)Cl(pyalk)2] derivatives that help model the "blue solution" properties and provide groundwork for rational synthesis of active, well-defined WOCs. More recent work has moved toward the study of first-row transition metal complexes. Manganese-based studies have highlighted the importance of the chelate effect for labile metals, leading to the synthesis of pincer-type pyalk derivatives. Beyond water oxidation, we believe the pyalk ligand and its derivatives will also prove useful in other oxidative transformations.

  1. The Effects of a State Need-based Access Grant on Traditional and Nontraditional Student Persistence

    ERIC Educational Resources Information Center

    Davidson, J. Cody

    2015-01-01

    In 2011-2012, more than 236.7 billion dollars of student financial aid was disbursed to undergraduate and graduate students at postsecondary institutions in the United States. Today, many groups and organizations are advocating for financial aid to increase student access and success as well as to assist the neediest students. The purpose of this…

  2. State Challenges to "Plyler v. Doe": Undocumented Immigrant Students and Public School Access

    ERIC Educational Resources Information Center

    Sutton, Lenford C.; Stewart, Tricia J.

    2013-01-01

    This article presents a review and analysis of selected state laws and initiatives that have attempted to restrict public school access for undocumented immigrant children in the wake of the landmark U.S. Supreme Court decision of "Plyler v. Doe." Sutton and Stewart begin with an overview of the Court's ruling in "Plyler," then…

  3. Access to Care for Methadone Maintenance Patients in the United States

    ERIC Educational Resources Information Center

    Hettema, Jennifer E.; Sorensen, James L.

    2009-01-01

    This policy commentary addresses a significant access to care issue that faces methadone maintenance patients seeking residential treatment in the United States. Methadone maintenance therapy (MMT) has demonstrated strong efficacy in the outpatient treatment of opiate dependence. However, many opiate dependent patients are also in need of more…

  4. The National Instructional Materials Accessibility Standard (NIMAS): Current State Implementation. inForum

    ERIC Educational Resources Information Center

    Muller, Eve; Burdette, Paula

    2007-01-01

    As part of the 2004 reauthorization of the Individuals with Disabilities Education Act (IDEA), states are required to comply with the National Instructional Materials Accessibility Standard (NIMAS) beginning July 19, 2006. NIMAS is defined as "the standard established by the Secretary to be used in the preparation of electronic files suitable…

  5. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  6. Wannier function analysis of charge states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren

    2015-03-01

    The charge (or oxidation) state of a cation has been a crucial concept in analyzing the electronic and magnetic properties of oxides as well as interpreting ``charge ordering'' metal-insulator transitions. In recent years a few methods have been proposed for the objective identification of charge states, beyond the conventional (and occasionally subjective) use of projected densities of states, weighted band structures (fatbands), and Born effective charges. In the past two decades Wannier functions (WFs) and particularly maximally localized WFs (MLWFs), have become an indispensable tool for several different purposes in electronic structure studies. These developments have motivated us to explore the charge state picture from the perspective of MLWFs. We will illustrate with a few transition metal oxide examples such as AgO and YNiO3 that the shape, extent, and location of the charge centers of the MLWFs provide insights into how cation-oxygen hybridization determines chemical bonding, charge distribution, and ``charge ordering.'' DOE DE-FG02-04ER46111.

  7. Crystalline state and acoustic properties of zinc oxide films

    SciTech Connect

    Kal'naya, G.I.; Pryadko, I.F.; Yarovoi, Yu.A.

    1988-08-01

    We study the effect of the crystalline state of zinc oxide films, prepared by magnetron sputtering, on the efficiency of SAW transducers based on the layered system textured ZnO film-interdigital transducer (IDT)-fused quartz substrate. The crystalline perfection of the ZnO films was studied by the x-ray method using a DRON-2.0 diffractometer. The acoustic properties of the layered system fused quartz substrate-IDT-zinc oxide film were evaluated based on the squared electromechanical coupling constant K/sup 2/ for strip filters. It was found that K/sup 2/ depends on the magnitude of the mechanical stresses. When zinc oxide films are deposited by the method of magnetron deposition on fused quartz substrates, depending on the process conditions limitations can arise on the rate of deposition owing to mechanical stresses, which significantly degrade the efficiency of SAW transducers based on them, in the ZnO films.

  8. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    SciTech Connect

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; Yildiz, Bilge

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.

  9. Effects of oxygen content and oxide layer thickness on interface state densities for metal-oxynitride-oxide-silicon devices

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Kapoor, Vik J.

    1991-08-01

    The interface state density of metal-oxynitride-oxide-silicon (MNOS) devices was investigated as a function of the tunnel oxide thickness and the amount of oxygen in the oxynitride films. Nitrous oxide gas was used to introduce oxygen into the oxynitride film during the deposition process. As 17 at. % oxygen was introduced into the oxynitride film, the lowest oxide-silicon interface state density increased from 3.0 to 3.5×1011 cm-2 eV-1 for 90-Å oxide MNOS devices, and decreased from 5.1 to 3.65×1011 cm-2 eV-1 for 20 Å oxide devices. The increase in interface state density with increasing oxygen for 90-Å oxide devices may be due to an increase in the loss of hydrogen passivation at the interfacial regions as more oxygen is introduced into the film. The higher interface state density for the 20 vs 90 Å oxide samples, for a given oxygen content of the oxynitride films, may be due to additional contributions from the trapping states near or at the oxide-oxynitride interface. However, the decrease in the interface state density for increasing oxygen concentration for 20-Å oxide MNOS devices may be due to passivation of trapping states at the oxide-oxynitride interface by oxygen. The silicon dangling bonds responsible for these trapping states may be compensated by oxygen introduced during the deposition process.

  10. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  11. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGES

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  12. Evolution of the Oxidation State of the Earth's Mantle

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  13. Trap States of the Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Yuh, Jin Tae; Park, Sang Hee Ko; Ryu, Min Ki; Yun, Eui Jung; Bae, Byung Seong

    2013-10-01

    We investigated the temperature dependent recovery of the threshold voltage shift observed in both ZnO and indium gallium zinc oxide (IGZO) thin film transistors (TFTs) after application of gate bias and light illumination. Two types of recovery were observed for both the ZnO and IGZO TFTs; low temperature recovery (below 110 °C) which is attributed to the trapped charge and high temperature recovery (over 110 °C) which is related to the annihilation of trap states generated during stresses. From a comparison study of the recovery rate with the analysis of hydrogen diffusion isochronal annealing, a similar behavior was observed for both TFT recovery and hydrogen diffusion. This result suggests that hydrogen plays an important role in the generation and annihilation of trap states in oxide TFTs under gate bias or light illumination stresses.

  14. State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1.

    PubMed

    Rapedius, Markus; Schmidt, Matthias R; Sharma, Chetan; Stansfeld, Phillip J; Sansom, Mark S P; Baukrowitz, Thomas; Tucker, Stephen J

    2012-01-01

    We previously reported that TREK-1 gating by internal pH and pressure occurs close to or within the selectivity filter. These conclusions were based upon kinetic measurements of high-affinity block by quaternary ammonium (QA) ions that appeared to exhibit state-independent accessibility to their binding site within the pore. Intriguingly, recent crystal structures of two related K2P potassium channels were also both found to be open at the helix bundle crossing. However, this did not exclude the possibility of gating at the bundle crossing and it was suggested that side-fenestrations within these structures might allow state-independent access of QA ions to their binding site. In this addendum to our original study we demonstrate that even hydrophobic QA ions do not access the TREK-1 pore via these fenestrations. Furthermore, by using a chemically reactive QA ion immobilized within the pore via covalent cysteine modification we provide additional evidence that the QA binding site remains accessible to the cytoplasm in the closed state. These results support models of K2P channel gating which occur close to or within the selectivity filter and do not involve closure at the helix bundle crossing.

  15. Interface state densities for metal-nitride-oxide-silicon devices

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Kapoor, Vik J.

    1990-10-01

    The interface state density of metal-nitride-oxide-silicon (MNOS) devices was investigated as a function of silicon nitride (Si3N4) deposition temperature and postdeposition annealing conditions. The interface state density around the midgap of the oxide-silicon interface of the MNOS structures as a function of deposition temperature between 650 to 850 °C increased from 1.1 to 8.2×1011 cm-2 eV-1, for as-deposited silicon nitride films,; but decreased from 5.0 to 3.5×1011 cm-2 eV-1, for films annealed in nitrogen at 900 °C for 60 min; and further decreased and remained constant at 1.5×1011 cm-2 eV-1, for films which were further annealed in hydrogen at 900 °C for an additional 60 min. The interface state density increase is due to an increase in the loss of hydrogen at the interfacial region and also due to an increase in the thermal stress caused by differences in thermal expansion coefficients of silicon nitride and silicon dioxide films at higher deposition temperatures. The interface state density is subject to two opposing influences; an increase by thermal stress, and a reduction by hydrogen compensation of these states. Thus either low-temperature processing or subsequent hydrogen annealing after high processing temperatures is warranted.

  16. Oxidation states of uranium in depleted uranium particles from Kuwait.

    PubMed

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Gijsels, L; Danesi, P R

    2005-01-01

    The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based mu-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to mu-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources and sampling sites; small-sized particles (median 13 microm) were identified in swipes taken from the inside of DU penetrators holes in tanks and in sandy soil collected below DU penetrators, while larger particles (median 44 microm) were associated with fire in a DU ammunition storage facility. Furthermore, the (236)U/(235)U ratios obtained from accelerator mass spectrometry demonstrated that uranium in the DU particles originated from reprocessed fuel (about 10(-2) in DU from the ammunition facility, about 10(-3) for DU in swipes). Compared to well-defined standards, all investigated DU particles were oxidized. Uranium particles collected from swipes were characterized as UO(2), U(3)O(8) or a mixture of these oxidized forms, similar to that observed in DU affected areas in Kosovo. Uranium particles formed during fire in the DU ammunition facility were, however, present as oxidation state +5 and +6, with XANES spectra similar to solid uranyl standards. Environmental or health impact assessments for areas affected by DU munitions should therefore take into account the presence of respiratory UO(2), U(3)O(8) and even UO(3) particles, their corresponding weathering rates and the subsequent mobilisation of U from oxidized DU particles.

  17. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    NASA Astrophysics Data System (ADS)

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-01

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (EG). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus EG are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above -4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy -4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/-) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state.

  18. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  19. Achieving unusual oxidation state of matter under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Lin, Haiqing; Ma, Yanming; Miao, Maosheng

    2013-03-01

    Pressure has many effects to matter including the reduction of the volume, the increase of the coordination number and the broadening of the band-widths. In the past, most of the high-pressure studies focused on structural and electronic state phase transitions. Using first principles calculations and a bias-free structural search method, we will demonstrate that high pressure can lead to high oxidation state of elements that can never be achieved under ambient condition, making high pressure technique a nice tool to explore many traditional topics in solid state and molecular chemistry. As an example, we will show that Hg can transfer the electrons in its outmost d shell to F atoms and form HgF4 molecular crystals under pressure, thereby acting as a true transition metal. Group IIB elements, including Zn, Cd, and Hg are usually defined as post-transition metals because they are commonly oxidized only to the +2 state. Their d shells are completely filled and do not participate in the formation of chemical bonds. Although the synthesis of HgF4 molecules in gas phase was reported before, the molecules show strong instabilities and dissociate. Therefore, the transition metal propensity of Hg remains an open question.

  20. Beyond Section 508: The Spectrum of Legal Requirements for Accessible e-Government Web Sites in the United States

    ERIC Educational Resources Information Center

    Jaeger, Paul T.

    2004-01-01

    In the United States, a number of federal laws establish requirements that electronic government (e-government) information and services be accessible to individuals with disabilities. These laws affect e-government Web sites at the federal, state, and local levels. To this point, research about the accessibility of e-government Web sites has…

  1. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw.

    PubMed

    Tian, Jiang-Hao; Pourcher, Anne-Marie; Bureau, Chrystelle; Peu, Pascal

    2017-01-01

    Solid state anaerobic digestion (SSAD) with leachate recirculation is an appropriate method for the valorization of agriculture residues. Rape straw is a massively produced residue with considerable biochemical methane potential, but its degradation in SSAD remains poorly understood. A thorough study was conducted to understand the performance of rape straw as feedstock for laboratory solid state anaerobic digesters. We investigated the methane production kinetics of rape straw in relation to cellulose accessibility to cellulase and the microbial community. Improving cellulose accessibility through milling had a positive influence on both the methane production rate and methane yield. The SSAD of rape straw reached 60% of its BMP in a 40-day pilot-scale test. Distinct bacterial communities were observed in digested rape straw and leachate, with Bacteroidales and Sphingobacteriales as the most abundant orders, respectively. Archaeal populations showed no phase preference and increased chronologically.

  2. Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles

    PubMed Central

    Pike, Sebastian D.; White, Edward R.; Shaffer, Milo S. P.; Williams, Charlotte K.

    2016-01-01

    The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use 31P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2–4 nm) nanoparticles. PMID:27734828

  3. Americium separation from nuclear fuel dissolution using higher oxidation states.

    SciTech Connect

    Bruce J. Mincher

    2009-09-01

    Much of the complexity in current AFCI proposals is driven by the need to separate the minor actinides from the lanthanides. Partitioning and recycling Am, but not Cm, would allow for significant simplification because Am has redox chemistry that may be exploited while Cm does not. Here, we have explored methods based on higher oxidation states of Am (AmV and AmVI) to partition Am from the lanthanides. In a separate but related approach we have also initiated an investigation of the utility of TRUEX Am extraction from thiocyanate solution. The stripping of loaded TRUEX by Am oxidation or SCN- has not yet proved successful; however, the partitioning of inextractable AmV by TRUEX shows promise.

  4. Effective access to justice against state and non-state actors in the Framework Convention on Global Health: A proposal.

    PubMed

    Hevia, Martin; Vacaflor, Carlos Herrera

    2013-06-14

    A Framework Convention on Global Health (FCGH) seeks to have a profound, effective, and broad impact: bringing access to health rights to the largest global community possible. One of the main issues the FCGH will address is how to make the right to health justiciable. An FCGH must articulate functional remedies for violations of the right to health by state or non-state actors. This paper analyzes one approach to ensuring the recognition of the rights defended in a future FCGH. Following the incremental development approach inspired by the architecture of other successful framework convention protocols, we propose the inclusion of access to health justice guidelines in an FCGH. This proposal is based on the amparo remedy, a figure already extant in the legislation of several Latin American countries; since its incorporation, these countries have witnessed a significant increase in litigation defending health rights. This is only one of many important advantages to broadly adopting guidelines based on the amparo remedy. The proposed guidelines would serve as a basic agreement on broad principles on access to health justice.

  5. Evaluating tantalum oxide stoichiometry and oxidation states for optimal memristor performance

    SciTech Connect

    Brumbach, Michael T. Mickel, Patrick R.; Lohn, Andrew J.; Mirabal, Alex J.; Kalan, Michael A.; Stevens, James E.; Marinella, Matthew J.

    2014-09-01

    Tantalum oxide has shown promising electrical switching characteristics for memristor devices. Consequently, a number of reports have investigated the electrical behavior of TaO{sub x} thin films. Some effort has been made to characterize the composition of the TaO{sub x} films and it is known that there must be an optimal stoichiometry of TaO{sub x} where forming and switching behavior are optimized. However, many previous reports lack details on the methodology used for identifying the chemistry of the films. X-ray photoelectron spectroscopy has been the most commonly used technique; however, peak fitting routines vary widely among reports and a native surface oxide of Ta{sub 2}O{sub 5} often confounds the analysis. In this report a series of large area TaO{sub x} films were deposited via sputtering with controlled O{sub 2} partial pressures in the sputtering gas, resulting in tunable oxide compositions. Spectra from numerous samples from each wafer spanning a range of oxide stoichiometries were used to develop a highly constrained peak fitting routine. This procedure allowed for the composition of the TaO{sub x} films to be identified with greater detail than elemental ratios alone. Additionally, the peak fitting routine was used to evaluate uniformity of deposition across individual wafers. The appearance of a greater contribution of Ta{sup 4+} oxidation states in the oxygen starved films are believed to relate to films with optimal forming characteristics.

  6. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    SciTech Connect

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-15

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (E{sub G}). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus E{sub G} are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above −4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy −4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/−) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state. - Highlights: • Atomic solid-state energies are estimated for 64 elements from experimental data. • The relationship between atomic SSEs and oxidation state is assessed. • Cations are positioned above and absolute energy of −4.5 eV and anions below.

  7. Variation in Access to the Liver Transplant Waiting List in the United States

    PubMed Central

    Mathur, Amit K.; Ashby, Valarie B.; Fuller, Douglas S.; Zhang, Min; Merion, Robert M.; Leichtman, Alan; Kalbfleisch, John

    2014-01-01

    Background We sought to compare liver transplant waiting list access by demographics and geography relative to the pool of potential liver transplant candidates across the United States using a novel metric of access to care, termed a liver wait-listing ratio (LWR). Methods We calculated LWRs from national liver transplant registration data and liver mortality data from the Scientific Registry of Transplant Recipients and the National Center for Healthcare Statistics from 1999 to 2006 to identify variation by diagnosis, demographics, geography, and era. Results Among patients with ALF and CLF, African Americans had significantly lower access to the waiting list compared with whites (acute: 0.201 versus 0.280; pre-MELD 0.201 versus 0.290; MELD era: 0.201 versus 0.274; all, P<0.0001) (chronic: 0.084 versus 0.163; pre-MELD 0.085 versus 0.179; MELD 0.084 versus 0.154; all, P<0.0001). Hispanics and whites had similar LWR in both eras (both P >0.05). In the MELD era, female subjects had greater access to the waiting list compared with male subjects (acute: 0.428 versus 0.154; chronic: 0.158 versus 0.140; all, P<0.0001). LWRs varied by three-fold by state (pre-MELD acute: 0.122–0.418, chronic: 0.092–0.247; MELD acute: 0.121–0.428, chronic: 0.092–0.243). Conclusions The marked inequity in early access to liver transplantation underscores the need for local and national policy initiatives to affect this disparity. PMID:24646768

  8. Effect of microorganisms on the plutonium oxidation states.

    PubMed

    Lukšienė, Benedikta; Druteikienė, Rūta; Pečiulytė, Dalia; Baltrūnas, Dalis; Remeikis, Vidmantas; Paškevičius, Algimantas

    2012-03-01

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to (239)Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state.

  9. Women's perceptions of access to prenatal care in the United States: a literature review.

    PubMed

    Phillippi, Julia C

    2009-01-01

    Women report many barriers to accessing prenatal care. This article reviews the literature from 1990 to the present on women's perceptions of access to prenatal care within the United States. Barriers can be classified into societal, maternal, and structural dimensions. Women may not be motivated to seek care, especially for unintended pregnancies. Societal and maternal reasons cited for poor motivation include a fear of medical procedures or disclosing the pregnancy to others, depression, and a belief that prenatal care is unnecessary. Structural barriers include long wait times, the location and hours of the clinic, language and attitude of the clinic staff and provider, the cost of services, and a lack of child-friendly facilities. Knowledge of women's views of access can help in development of policies to decrease barriers. Structural barriers could be reduced through changes in clinic policy and prenatal care format, and the creation of child-friendly waiting and examination rooms. Maternal and societal barriers can be addressed through community education. A focus in future research on facilitators of access can assist in creating open pathways to perinatal care for all women.

  10. Oxidation states of uranium in DU particles from Kosovo.

    PubMed

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Danesi, P R

    2003-01-01

    The oxidation states of uranium contained in depleted uranium (DU) particles were determined by synchrotron radiation based micro-XANES, applied to individual particles in soil samples collected at Ceja Mountain, Kosovo. Based on scanning electron microscopy (SEM) with XRMA prior to micro-XANES, DU particles ranging from submicrons to about 30 microm (average size: 2 microm or less) were identified. Compared to well-defined standards, all investigated DU particles were oxidized. About 50% of the DU particles were characterized as UO2, the remaining DU particles present were U3O8 or a mixture of oxidized forms (ca. 2/3 UO2, 1/3 U3O8). Since the particle weathering rate is expected to be higher for U3O8 than for UO2, the presence of respiratory U3O8 and UO2 particles, their corresponding weathering rates and subsequent remobilisation of U from DU particles should be included in the environmental or health impact assessments.

  11. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state

    PubMed Central

    1996-01-01

    The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state

  12. Composition and oxidation state of sulfur in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  13. Andreev bound state at a strongly correlated oxide interface

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre; Daley, Andrew; Lu, Shicheng; Veazey, Josh; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Pekker, David; Levy, Jeremy

    Strongly correlated electrons at oxide interfaces give rise to a set of novel physics phenomena including superconductivity and magnetism. At the LaAlO3/SrTiO3 (LAO/STO) interface, signatures of strong electron pairing persist even for conditions where superconductivity is suppressed. Meanwhile, an Andreev bound state (ABS) is a single quasiparticle excitation that mediates pair transport in confined superconductor-normal systems. Here we report a transition from pair resonant transport to ABS in sketched single electron transistors at the LAO/STO interface. This transition is consistent with a change of electron-electron interaction from attractive to repulsive, occurring at or near the Lifshitz transition. Such new electronically tunable electron-electron interaction may be useful for quantum simulation and engineering of novel quantum states in oxide materials. We gratefully acknowledge support from AFOSR FA9550-10-1-0524 (JL, CBE), AFOSR FA9550-12-1-0057 (JL, CBE, AD), NSF DMR-1104191 (JL), ONR N00014-15-1-2847 (JL).

  14. Proteomic indicators of oxidation and hydration state in colorectal cancer.

    PubMed

    Dick, Jeffrey M

    2016-01-01

    New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (Z C) can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue ([Formula: see text]) is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean Z C or [Formula: see text] of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower Z C for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.

  15. The digital divide in public e-health: barriers to accessibility and privacy in state health department websites.

    PubMed

    West, Darrell M; Miller, Edward Alan

    2006-08-01

    State health departments have placed a tremendous amount of information, data, and services online in recent years. With the significant increase in online resources at official health sites, though, have come questions concerning equity of access and the confidentiality of electronic medical materials. This paper reports on an examination of public health department websites maintained by the 50 state governments. Using a content analysis of health department sites undertaken each year from 2000 to 2005, we investigate several dimensions of accessibility and privacy: readability levels, disability access, non-English accessibility, and the presence of privacy and security statements. We argue that although progress has been made at improving the accessibility and confidentiality of health department electronic resources, there remains much work to be done to ensure quality access for all Americans in the area of public e-health.

  16. Minimum Ages of Legal Access for Tobacco in the United States From 1863 to 2015

    PubMed Central

    Apollonio, Dorie E.; Glantz, Stanton A.

    2016-01-01

    In the United States, state laws establish a minimum age of legal access (MLA) for most tobacco products at 18 years. We reviewed the history of these laws with internal tobacco industry documents and newspaper archives from 1860 to 2014. The laws appeared in the 1880s; by 1920, half of states had set MLAs of at least 21 years. After 1920, tobacco industry lobbying eroded them to between 16 and 18 years. By the 1980s, the tobacco industry viewed restoration of higher MLAs as a critical business threat. The industry’s political advocacy reflects its assessment that recruiting youth smokers is critical to its survival. The increasing evidence on tobacco addiction suggests that restoring MLAs to 21 years would reduce smoking initiation and prevalence, particularly among those younger than 18 years. PMID:27196658

  17. A pyridine alkoxide chelate ligand that promotes both unusually high oxidation states and water-oxidation catalysis

    DOE PAGES

    Michaelos, Thoe K.; Shopov, Dimitar Y.; Sinha, Shashi Bhushan; ...

    2017-03-08

    Here, water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so that the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or “pyalk” that fulfills these requirements.

  18. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    PubMed

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

  19. Spin-Orbital Entangled States in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Oleś, Andrzej M.

    The phenomenon of spin-orbital entanglement which occurs in superexchange models for transition metal oxides is introduced and explained. We present its consequences in the RVO_3 Mott insulators, with R=La,Pr,\\cdots ,Yb,Lu, and show that entanglement occurs here in excited states of the spin-orbital d^2 model and determines: (i) the temperature dependence of low-energy optical spectral weight, (ii) the phase diagram of the RVO_3 perovskites, and (iii) the dimerization observed in the magnon excitations in YVO_3. Entangled ground states occur in two other model systems: (i) the bilayer d^9 (Kugel-Khomskii) model, and (ii) the d^1 model on the triangular frustrated lattice. In such cases even the predictions concerning the magnetic exchange constants based on the mean field decoupling of spin and orbital operators are incorrect. On the example of a single hole doped to a Mott insulator with coexisting antiferromagnetic and alternating t_{2g} orbital order we show that transport is hindered by spin-orbital excitations. It is suggested that spin-orbital entanglement in Mott insulators might be controlled by doping, leading to orbital disordered states with possible new opportunities for thermoelectric applications.

  20. 42 CFR 457.495 - State assurance of access to care and procedures to assure quality and appropriateness of care.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., well-child care, well-adolescent care and childhood and adolescent immunizations. (b) Access to covered... & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH...

  1. Oxidation state determination of uranium in various uranium oxides: Photoacoustic spectroscopy complimented by photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Dhobale, A. R.; Kumar, M.; Godbole, S. V.; Natarajan, V.

    2015-03-01

    Photoacoustic spectroscopy (PAS) has been utilized for the determination of U(IV). Initial experiments were carried out for determination of U(IV) in uranium tetra fluoride, and were further extended to the determination of U(IV) in uranium oxide samples having various O/M ratios like UO2.00, UO2.17, U3O8, and U3O7. All these oxides, since dark gray/black in color, were having featureless spectra in the visible region, hence solid state reaction of uranium oxide with ammonium bi-fluoride was utilized for the formation of U(IV) and U(VI) oxyfluorides, having narrow well resolved spectra, prior to estimation by Photoacoustic spectroscopy technique. The strong absorption for U(IV) complex at 630 nm was monitored using a He-Ne laser resulting in good sensitivity for determination of U(IV). It was observed that fluorinated uranium dioxide (UO2) is having spectra similar to U(IV); fluorinated uranium trioxide (UO3) is having spectra of uranyl only whereas Triuranium octoxide (U3O8) spectra consist of both U(IV) and uranyl component. This was further supported by photoluminescence studies.

  2. Molybdenum Catalyzed Ammonia Borane Dehydrogenation: Oxidation State Specific Mechanisms

    PubMed Central

    2015-01-01

    Though numerous catalysts for the dehydrogenation of ammonia borane (AB) are known, those that release >2 equiv of H2 are uncommon. Herein, we report the synthesis of Mo complexes supported by a para-terphenyl diphosphine ligand, 1, displaying metal–arene interactions. Both a Mo0 N2 complex, 5, and a MoII bis(acetonitrile) complex, 4, exhibit high levels of AB dehydrogenation, releasing over 2.0 equiv of H2. The reaction rate, extent of dehydrogenation, and reaction mechanism vary as a function of the precatalyst oxidation state. Several Mo hydrides (MoII(H)2, [MoII(H)]+, and [MoIV(H)3]+) relevant to AB chemistry were characterized. PMID:25034459

  3. Proteomic indicators of oxidation and hydration state in colorectal cancer

    PubMed Central

    2016-01-01

    New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O) is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic

  4. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  5. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Bordignon, Enrica; Joseph, Benesh; Tschaggelar, René; Jeschke, Gunnar

    2012-09-01

    We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 T for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 μM range. The DNP effects at such low concentrations are weak and the experimentally achievable dynamic nuclear polarizations can be below the equilibrium polarization. This sensitivity problem is solved with an optimized home-built DNP probe head consisting of a dielectric microwave resonator and a saddle coil as close as possible to the sample. The performance of the probe head is demonstrated with both a modified pulsed EPR spectrometer and a dedicated CW EPR spectrometer equipped with a commercial NMR console. In comparison to a commercial pulsed ENDOR resonator, the home-built resonator has an FID detection sensitivity improvement of 2.15 and an electron spin excitation field improvement of 1.2. The reproducibility of the DNP results is tested on the water soluble maltose binding protein MalE of the ABC maltose importer, where we determine a net standard deviation of 9% in the primary DNP data in the concentration range between 10 and 100 μM. DNP parameters are measured in a spin-labeled membrane protein, namely the vitamin B12 importer BtuCD in both detergent-solubilized and reconstituted states. The data obtained in different nucleotide states in the presence and absence of binding protein BtuF reveal the applicability of this technique to qualitatively extract water accessibility changes between different conformations by the ratio of primary DNP parameters ɛ. The ɛ-ratio unveils the physiologically relevant transmembrane communication in the transporter in terms of changes in water accessibility at the cytoplasmic gate of the protein induced by both BtuF binding at the periplasmic region of the transporter and ATP binding at the cytoplasmic nucleotide binding domains.

  6. Food access and cost in American Indian communities in Washington State.

    PubMed

    O'Connell, Meghan; Buchwald, Dedra S; Duncan, Glen E

    2011-09-01

    Limited access to foods that make up a nutritious diet at minimal cost may influence eating behaviors and, ultimately, obesity. This study examined the number and type of food stores (convenience, grocery, supermarket) on federal reservations in Washington State, and the availability and cost of foods in the US Department of Agriculture Community Food Security Assessment Toolkit market basket, to describe the food environment of American Indians. Stores were identified by telephone survey of tribal headquarters, a commercial database, and on-site visitation. Foods were assessed using a standardized instrument containing 68 items in seven major food groups during April and May 2009. Store type and availability and cost of foods were recorded on a checklist. Fifty stores were identified on 22 American Indian reservations, including 25 convenience, 16 grocery, and 9 supermarkets. Across all stores, about 38% of checklist items were available, with supermarkets having the most and convenience stores the fewest. Foods from the dairy and sugars/sweets groups were the most prevalent, while fresh fruits/vegetables were the least. Cost of the most commonly available items was lowest in supermarkets. Seventeen reservations did not have a supermarket on their reservation, and the nearest off-reservation supermarket was about 10 miles from the tribe's headquarters, which was used as the standard for distance calculations. These results demonstrate that American Indians living on federal reservations in Washington State may have limited access to foods that make up a nutritious diet at minimal cost.

  7. Redox state of plutonium in irradiated mixed oxide fuels

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Pin, S.; Poonoosamy, J.; Kulik, D. A.

    2014-03-01

    Nowadays, MOX fuels are used in about 20 nuclear power plants around the world. After irradiation, plutonium co-exists with uranium oxide. Due to the redox sensitive nature of UO2 other plutonium oxides than PuO2 potentially present in the fuel may interact with the matrix. The aim of this study is to determine which plutonium species are present in heterogeneous and homogeneous MOX. The results provided by X-ray Absorption Near Edge Spectroscopy (XANES) for non-irradiated as well as irradiated (center and periphery) homogeneous MOX fuel were published earlier and are completed by Extended X-ray Fine Structure (EXAFS) analysis in this work. The EXAFS signals have been extracted using the ATHENA code and the analyses were carried using EXCURE98 as performed earlier for an analogous element. EXAFS shows that plutonium redox state remains tetravalent in the solid solution and that the minor fraction of trivalent Pu must be below 10%. Independently, the study of homogeneous MOX was also approached by thermodynamics of solid solution of (U,Pu)O2. Such solid solutions were modeled using the Gibbs Energy Minimisation (GEM)-Selektor code (developed at LES, NES, PSI) supported by the literature data on such solid solutions. A comparative study was performed showing which plutonium oxides in their respective mole fractions are more likely to occur in (U,Pu)O2. In the modeling, these oxides were set as ideal and non-ideal solid solutions, as well as separate pure phases. Pu exists mainly as PuO2 in the case of separate phases, but can exist under its reduced forms, PuO1.61 and PuO1.5 in minor fraction i.e. ~15% in ideal solid solution (unlikely) and ~10% in non-ideal solid solution (likely) and at temperature around 1300 K. This combined thermodynamic and EXAFS studies confirm independently the results obtained so far by Pu XANES for the same MOX samples.

  8. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.

    PubMed

    Rabe, Stefan; Nachtegaal, Maarten; Vogel, Frédéric

    2007-03-28

    The catalytic partial oxidation of methane to synthesis gas over ruthenium catalysts was investigated by thermogravimetry coupled with infrared spectroscopy (TGA-FTIR) and in situ X-ray absorption spectroscopy (XAS). It was found that the oxidation state of the catalyst influences the product formation. On oxidized ruthenium sites, carbon dioxide was formed. The reduced catalyst yielded carbon monoxide as a product. The influence of the temperature was also investigated. At temperatures below the ignition point of the reaction, the catalyst was in an oxidized state. At temperatures above the ignition point, the catalyst was reduced. This was also confirmed by the in situ XAS spectroscopy. The results indicate that both a direct reaction mechanism as well as a combustion-reforming mechanism can occur. The importance of knowing the oxidation state of the surface is discussed and a method to determine it under reaction conditions is presented.

  9. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  10. Towards models of the oxygen-evolving complex (OEC) of photosystem II: a Mn4Ca cluster of relevance to low oxidation states of the OEC.

    PubMed

    Koumousi, Evangelia S; Mukherjee, Shreya; Beavers, Christine M; Teat, Simon J; Christou, George; Stamatatos, Theocharis C

    2011-10-21

    Synthetic access has been achieved into high oxidation state Mn/Ca chemistry with the 4 : 1 Mn : Ca stoichiometry of the oxygen-evolving complex (OEC) of plants and cyanobacteria; the anion of (Et(3)NH)(2)[Mn(III)(4)Ca(O(2)CPh)(4)(shi)(4)] has a square pyramidal metal topology and an S = 0 ground state.

  11. Iron Partitioning and Oxidation State in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Piet, H.; Badro, J.; Nabiei, F.; Dennenwaldt, T.; Shim, S. H. D.; Cantoni, M.; Hébert, C.; Gillet, P.

    2015-12-01

    Valence state and concentrations of iron in lower mantle phases have strong effects on their chemical and physical properties. Experimental studies have reported stark differences in iron partitioning between bridgmanite (Brg) and ferropericlase (Fp) for San Carlos olivine [1] and pyrolite [2] systems. We recently performed experiments at lower mantle conditions for an Al-rich olivine system [3] and observed an iron enrichment of the silicate phase very similar to that in pyrolite. Mössbauer studies [4] have shown that in the presence of aluminum non negligible amounts of Fe3+ could be incorporated in bridgmanite explaining the observed iron enrichment. Non negligible amounts of Fe3+ in the lower mantle could influence transport properties of the phases [5]. The evaluation of ferrous and ferric iron concentrations in lower mantle mineral assemblages is then key to a thorough understanding of geophysical observations and associated mantle dynamics. We used electron energy loss spectroscopy technique to quantify the proportions of Fe2+ and Fe3+ iron in Brg and Fp phases previously synthesized from Al-rich olivine composition [3]. The oxidation state of iron in the lower mantle will be discussed as well as ensuing implications on transport properties for relevant lower mantle compositions. References [1] Sakai et al., 2009 [2] Prescher et al., 2014 [3] Piet et al., submitted [4] McCammon et al., 1996 [5] Xu et al., 1998

  12. Oxidative Direct Arylation Polymerization Using Oxygen as the Sole Oxidant: Facile, Green Access to Bithiazole-Based Polymers.

    PubMed

    Guo, Qiang; Wu, Di; You, Jingsong

    2016-10-06

    The most appealing oxidant, molecular oxygen, is employed for the first time as the sole oxidant in the transition metal-catalyzed oxidative direct arylation polymerization (C-H/C-H-type DArP), which eliminates by-product formation of stoichiometric metal salts except for water . Compared to conventional approaches, other than the avoidance of an end-capping procedure, the current protocol is remarkably advanced in the aspect of eco-friendliness, step- and cost-economy, and, of special significance, the purity of polymer products. As illustrative examples, six 5,5'-bithiazole-based polymers are synthesized using this new method, demonstrating higher number-average molecular weight (Mn up to 33 700) in better yields (up to 93 %) through only one step. The evolution of C-H/C-H-type DArP from heavy metal salts to O2 alone as the oxidant could solve the problem of metal residues in polymers, which is considered harmful to the performance of devices.

  13. Web Accessibility in Europe and the United States: What We Are Doing to Increase Inclusion

    ERIC Educational Resources Information Center

    Wheaton, Joseph; Bertini, Patrizia

    2007-01-01

    Accessibility is hardly a new problem and certainly did not originate with the Web. Lack of access to buildings long preceded the call for accessible Web content. Although it is unlikely that rehabilitation educators look at Web page accessibility with indifference, many may also find it difficult to implement. The authors posit three reasons why…

  14. The Concept of Oxidation States in Metal Complexes

    ERIC Educational Resources Information Center

    Steinborn, Dirk

    2004-01-01

    The concepts of oxidation numbers when applied means electrons that are shared between atoms in molecules are assigned to a specific atom. Oxidation numbers are assigned from the Lewis structure of a molecule, with knowledge of the electronegativities of elements.

  15. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    DOE PAGES

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; ...

    2015-09-21

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. Here, this study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbonmore » pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. We find that the potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.« less

  16. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    NASA Astrophysics Data System (ADS)

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-01

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration—a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. This study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. The potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.

  17. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed

    Fatehi, Mohammad; Linsdell, Paul

    2008-03-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is gated by intracellular factors; however, conformational changes in the channel pore associated with channel activation have not been identified. We have used patch clamp recording to investigate the state-dependent accessibility of substituted cysteine residues in the CFTR channel pore to a range of cysteine-reactive reagents applied to the extracellular side of the membrane. Using functional modification of the channel current-voltage relationship as a marker of modification, we find that several positively charged reagents are able to penetrate deeply into the pore from the outside irrespective of whether or not the channels have been activated. In contrast, access of three anionic cysteine-reactive reagents, the methanesulfonate sodium (2-sulfonatoethyl)methanesulfonate, the organic mercurial p-chloromercuriphenylsulfonic acid, and the permeant anion Au(CN)(2)(-), to several different sites in the pore is strictly limited prior to channel activation. This suggests that in nonactivated channels some ion selectivity mechanism exists to exclude anions yet permit cations into the channel pore from the extracellular solution. We suggest that activation of CFTR channels involves a conformational change in the pore that removes a strong selectivity against anion entry from the extracellular solution. We propose further that this conformational change occurs in advance of channel opening, suggesting that multiple distinct closed pore conformations exist.

  18. Discovery of New Luminescent Oxides by Combinatorial Solid State Chemistry

    NASA Astrophysics Data System (ADS)

    McFarland, Eric

    1998-03-01

    Combinatorial synthesis and screening of extraordinarily large numbers of different organic compounds has been widely applied in the pharmaceutical industry for drug discovery. Combinatorial chemistry is particularly well suited for ternary and higher order inorganic materials discovery where efforts to predict basic properties have been unsuccessful. New compounds for ultraviolet excited phosphors are important for flat panel displays and for lighting applications. Utilizing automated thin film synthesis and parallel screening techniques, combinatorial libraries with up to 25,000 compositions have been investigated for photoluminescence. Screening of the libraries identified Y_0.845Al_0.070La_0.060Eu_0.025VO4 as a new red phosphor which, when synthesized in bulk, has an intrinsic quantum efficiency under 254 nm excitation of 0.83 ± 0.06 (A COMBINATORIAL APPROACH TO THE DISCOVERY AND OPTIMIZATION OF LUMINESCENT MATERIALS, Earl Danielson, Josh Golden, Eric W. McFarland, Casper M. Reaves, W. Henry Weinberg, and Xin Di Wu, Nature), Vol. 389, (1997). In addition, the first one-dimensional (1-D) luminescent inorganic oxide, Sr_2CeO_4, has been discovered using combinatorial solid state chemistry. The elemental ratios from a diverse discovery library led to the synthesis of a bulk sample of single phase Sr_2CeO4 that was structurally characterized by Rietveld refinement of the powder X-ray data to possess a new structure type for a luminescent oxide built up from 1-D chains of edge sharing CeO6 octahedra, with two terminal O atoms per Ce center isolated from one another by Sr^2+ cations. The cerate shows broad excitation and emission maxima at 310 and 485 nm. The lifetime of the excited state, epr data, crystallographic structure, and magnetic susceptibility all suggest that the mechanism of luminescence originates from a ligand to metal Ce^4+ charge transfer. We speculate that the relatively electron rich terminal O atoms bonded to Ce^4+ in Sr_2CeO_4, which give rise

  19. Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.

    2007-12-01

    Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.

  20. Oxidation State of Nakhlites as inferred from Fe-Ti oxide Equilibria and Augite/Melt Europium Partitioning

    NASA Technical Reports Server (NTRS)

    Makishima, J.; McKay, G.; Le, L.; Miyamoto, M.; Mikouchi, T.

    2007-01-01

    Recent studies have shown that Martian magmas had wide range of oxygen fugacities (fO2) and that this variation is correlated with the variation of La/Yb ratio and isotopic characteristics of the Martian basalts, shergottite meteorites. The origin of this correlation must have important information about mantle sources and Martian evolution. In order to understand this correlation, it is necessary to know accurate value of oxidation state of other Martian meteorite groups. Nakhlites, cumulate clinopyroxenites, are another major group of Martian meteorites and have distinctly different trace element and isotopic characteristics from shergottites. Thus, estimates of oxidation state of nakhlites will give us important insight into the mantle source in general. Several workers have estimated oxidation state of nakhlites by using Fe-Ti oxide equilibrium. However, Fe-Ti oxides may not record the oxidation state of the parent melt of the nakhlite because it is a late-stage mineral. Furthermore, there is no comprehensive study which analyzed all nakhlite samples at the same time. Therefore, in this study (1) we reduced the uncertainty of the estimate using the same electron microprobe and the same standards under the same condition for Fe-Ti oxide in 6 nakhlites and (2) we also performed crystallization experiments to measure partition coefficients of Eu into pyroxene in the nakhlite system in order to estimate fO2 when the pyroxene core formed (i.e. Eu oxybarometer [e.g. 2,6]).

  1. Spin-patterned plasmonics: towards optical access to topological-insulator surface states.

    PubMed

    Spektor, Grisha; David, Asaf; Bartal, Guy; Orenstein, Meir; Hayat, Alex

    2015-12-14

    Topological insulators (TI) are new phases of matter with topologically protected surface states (SS) possessing novel physical properties such as spin-momentum locking. Coupling optical angular momentum to the SS is of interest for both fundamental understanding and applications in future spintronic devices. However, due to the nanoscale thickness of the surface states, the light matter interaction is dominated by the bulk. Here we propose and experimentally demonstrate a plasmonic cavity enabling both nanoscale light confinement and control of surface plasmon-polariton (SPP) spin angular momentum (AM)--towards coupling to topological-insulator SS. The resulting SPP field components within the cavity are arranged in a chess-board-like pattern. Each chess-board square exhibits approximately a uniform circular polarization (spin AM) of the local in-plane field interleaved by out-of-plane field vortices (orbital AM). As the first step, we demonstrate the predicted pattern experimentally by near-field measurements on a gold-air interface, with excellent agreement to our theory. Our results pave the way towards efficient optical access to topological-insulator surface states using plasmonics.

  2. [Regionalization and access to healthcare in Brazilian states: historical and political-institutional conditioning factors].

    PubMed

    de Lima, Luciana Dias; Viana, Ana Luiza d'Ávila; Machado, Cristiani Vieira; de Albuquerque, Mariana Vercesi; de Oliveira, Roberta Gondim; Iozzi, Fabíola Lana; Scatena, João Henrique Gurtler; Mello, Guilherme Arantes; Pereira, Adelyne Maria Mendes; Coelho, Ana Paula Santana

    2012-11-01

    This article examines the healthcare regionalization process in the Brazilian states in the period from 2007 to 2010, seeking to identify the conditions that favor or impede this process. Referential analysis of public policies and especially of historical institutionalism was used. Three dimensions sum up the conditioning factors of regionalization: context (historical-structural, political-institutional and conjunctural), directionality (ideology, object, actors, strategies and instruments) and regionalization features (institutionality and governance). The empirical research relied mainly on the analysis of official documents and interviews with key actors in 24 states. Distinct patterns of influence in the states were observed, with regionalization being marked by important gains in institutionality and governance in the period. Nevertheless, inherent difficulties of the contexts prejudice greater advances. There is a pressing need to broaden the territorial focus in government planning and to integrate sectorial policies for medium and long-term regional development in order to empower regionalization and to overcome obstacles to the access to healthcare services in Brazil.

  3. Understanding health-care access and utilization disparities among Latino children in the United States

    PubMed Central

    Langellier, Brent A; Chen, Jie; Vargas-Bustamante, Arturo; Inkelas, Moira; Ortega, Alexander N

    2014-01-01

    It is important to understand the source of health-care disparities between Latinos and other children in the United States. We examine parent-reported health-care access and utilization among Latino, White, and Black children (≤17 years old) in the United States in the 2006–2011 National Health Interview Survey. Using Blinder-Oaxaca decomposition, we portion health-care disparities into two parts (1) those attributable to differences in the levels of sociodemographic characteristics (e.g., income) and (2) those attributable to differences in group-specific regression coefficients that measure the health-care ‘return’ Latino, White, and Black children receive on these characteristics. In the United States, Latino children are less likely than Whites to have a usual source of care, receive at least one preventive care visit, and visit a doctor, and are more likely to have delayed care. The return on sociodemographic characteristics explains 20–30% of the disparity between Latino and White children in the usual source of care, delayed care, and doctor visits and 40–50% of the disparity between Latinos and Blacks in emergency department use and preventive care. Much of the health-care disadvantage experienced by Latino children would persist if Latinos had the sociodemographic characteristics as Whites and Blacks. PMID:25395597

  4. Welcome to the wild west: protecting access to cross border fertility care in the United States.

    PubMed

    Mutcherson, Kimberley M

    2012-01-01

    As has been the case with other types of medical tourism, the phenomenon of cross border fertility care ("CBFC") has sparked concern about the lack of global or even national harmonization in the regulation of the fertility industry. The diversity of laws around the globe leads would-be parents to forum shop for a welcoming place to make babies. Focusing specifically on the phenomenon of travel to the United States, this Article takes up the question of whether there should be any legal barriers to those who come to the United States seeking CBFC. In part, CBFC suffers from the same general concerns raised about the use of fertility treatment in general, but it is possible to imagine a subset of arguments that would lead to forbidding or at least discouraging people from coming to the United States for CBFC, either as a matter of law or policy. This paper stands in opposition to any such effort and contemplates the moral and ethical concerns about CBFC and how, and if, those concerns warrant expression in law. Part I describes the conditions that lead some couples and individuals to leave their home countries to access fertility treatments abroad and details why the United States, with its comparatively liberal regulation of ART, has become a popular CBFC destination for travelers from around the world. Part II offers and refutes arguments supporting greater domestic control over those who seek to satisfy their desires for CBFC in the United States by reasserting the importance of the right of procreation while also noting appropriate concerns about justice and equality in the market for babies. Part III continues the exploration of justice by investigating the question of international cooperation in legislating against perceived wrongs. This Part concludes that consistent legislation across borders is appropriate where there is consensus about the wrong of an act, but it is unnecessary and inappropriate where there remain cultural conflicts about certain

  5. 34 CFR Appendix A to Subpart C of... - Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 4 2013-07-01 2013-07-01 false Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study A Appendix A to Subpart C of Part 692 Education Regulations of the Offices of... Program (GAP) State Grant Allotment Case Study ER29OC09.010 ER29OC09.011 ER29OC09.012...

  6. 34 CFR Appendix A to Subpart C of... - Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 4 2011-07-01 2011-07-01 false Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study A Appendix A to Subpart C of Part 692 Education Regulations of the Offices of... Program (GAP) State Grant Allotment Case Study ER29OC09.010 ER29OC09.011 ER29OC09.012...

  7. 34 CFR Appendix A to Subpart C of... - Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 4 2012-07-01 2012-07-01 false Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study A Appendix A to Subpart C of Part 692 Education Regulations of the Offices of... Program (GAP) State Grant Allotment Case Study ER29OC09.010 ER29OC09.011 ER29OC09.012...

  8. 34 CFR Appendix A to Subpart C of... - Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 4 2014-07-01 2014-07-01 false Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study A Appendix A to Subpart C of Part 692 Education Regulations of the Offices of... Program (GAP) State Grant Allotment Case Study ER29OC09.010 ER29OC09.011 ER29OC09.012...

  9. Quantum confinement-induced tunable exciton states in graphene oxide

    PubMed Central

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M.; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology. PMID:23872608

  10. Genomics and Public Health Research: Can the State Allow Access to Genomic Databases?

    PubMed Central

    Cousineau, J; Girard, N; Monardes, C; Leroux, T; Jean, M Stanton

    2012-01-01

    Because many diseases are multifactorial disorders, the scientific progress in genomics and genetics should be taken into consideration in public health research. In this context, genomic databases will constitute an important source of information. Consequently, it is important to identify and characterize the State’s role and authority on matters related to public health, in order to verify whether it has access to such databases while engaging in public health genomic research. We first consider the evolution of the concept of public health, as well as its core functions, using a comparative approach (e.g. WHO, PAHO, CDC and the Canadian province of Quebec). Following an analysis of relevant Quebec legislation, the precautionary principle is examined as a possible avenue to justify State access to and use of genomic databases for research purposes. Finally, we consider the Influenza pandemic plans developed by WHO, Canada, and Quebec, as examples of key tools framing public health decision-making process. We observed that State powers in public health, are not, in Quebec, well adapted to the expansion of genomics research. We propose that the scope of the concept of research in public health should be clear and include the following characteristics: a commitment to the health and well-being of the population and to their determinants; the inclusion of both applied research and basic research; and, an appropriate model of governance (authorization, follow-up, consent, etc.). We also suggest that the strategic approach version of the precautionary principle could guide collective choices in these matters. PMID:23113174

  11. Valence-state reflectometry of complex oxide heterointerfaces

    SciTech Connect

    Hamann-Borrero, Jorge E.; Macke, Sebastian; Choi, Woo Seok; Sutarto, Ronny; He, Feizhou; Radi, Abdullah; Elfimov, Ilya; Green, Robert J.; Haverkort, Maurits W.; Zabolotnyy, Volodymyr B.; Lee, Ho Nyung; Sawatzky, George A.; Hinkov, Vladimir

    2016-09-16

    Emergent phenomena in transition-metal-oxide heterostructures such as interface superconductivity and magnetism have been attributed to electronic reconstruction, which, however, is difficult to detect and characterise. Here we overcome the associated difficulties to simultaneously address the electronic degrees of freedom and distinguish interface from bulk effects by implementing a novel approach to resonant X-ray reflectivity (RXR). Our RXR study of the chemical and valance profiles along the polar (001) direction of a LaCoO3 film on NdGaO3 reveals a pronounced valence-state reconstruction from Co3+ in the bulk to Co2+ at the surface, with an areal density close to 0.5 Co2+ ions per unit cell. An identical film capped with polar (001) LaAlO3 maintains the Co3+ valence over its entire thickness. As a result, we interpret this as evidence for electronic reconstruction in the uncapped film, involving the transfer of 0.5e per unit cell to the subsurface CoO2 layer at its LaO-terminated polar surface.

  12. Valence-state reflectometry of complex oxide heterointerfaces

    DOE PAGES

    Hamann-Borrero, Jorge E.; Macke, Sebastian; Choi, Woo Seok; ...

    2016-09-16

    Emergent phenomena in transition-metal-oxide heterostructures such as interface superconductivity and magnetism have been attributed to electronic reconstruction, which, however, is difficult to detect and characterise. Here we overcome the associated difficulties to simultaneously address the electronic degrees of freedom and distinguish interface from bulk effects by implementing a novel approach to resonant X-ray reflectivity (RXR). Our RXR study of the chemical and valance profiles along the polar (001) direction of a LaCoO3 film on NdGaO3 reveals a pronounced valence-state reconstruction from Co3+ in the bulk to Co2+ at the surface, with an areal density close to 0.5 Co2+ ions permore » unit cell. An identical film capped with polar (001) LaAlO3 maintains the Co3+ valence over its entire thickness. As a result, we interpret this as evidence for electronic reconstruction in the uncapped film, involving the transfer of 0.5e– per unit cell to the subsurface CoO2 layer at its LaO-terminated polar surface.« less

  13. Switching operation and degradation of resistive random access memory composed of tungsten oxide and copper investigated using in-situ TEM

    NASA Astrophysics Data System (ADS)

    Arita, Masashi; Takahashi, Akihito; Ohno, Yuuki; Nakane, Akitoshi; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2015-11-01

    In-situ transmission electron microscopy (in-situ TEM) was performed to investigate the switching operation of a resistive random access memory (ReRAM) made of copper, tungsten oxide and titanium nitride (Cu/WOx/TiN). In the first Set (Forming) operation to initialize the device, precipitation appeared inside the WOx layer. It was presumed that a Cu conducting filament was formed, lowering the resistance (on-state). The Reset operation induced a higher resistance (the off-state). No change in the microstructure was identified in the TEM images. Only when an additional Reset current was applied after switching to the off-state could erasure of the filament be seen (over-Reset). Therefore, it was concluded that structural change relating to the resistance switch was localized in a very small area around the filament. With repeated switching operations and increasing operational current, the WOx/electrode interfaces became indistinct. At the same time, the resistance of the off-state gradually decreased. This is thought to be caused by Cu condensation at the interfaces because of leakage current through the area other than through the filament. This will lead to device degradation through mechanisms such as endurance failure. This is the first accelerated aging test of ReRAM achieved using in-situ TEM.

  14. Switching operation and degradation of resistive random access memory composed of tungsten oxide and copper investigated using in-situ TEM

    PubMed Central

    Arita, Masashi; Takahashi, Akihito; Ohno, Yuuki; Nakane, Akitoshi; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2015-01-01

    In-situ transmission electron microscopy (in-situ TEM) was performed to investigate the switching operation of a resistive random access memory (ReRAM) made of copper, tungsten oxide and titanium nitride (Cu/WOx/TiN). In the first Set (Forming) operation to initialize the device, precipitation appeared inside the WOx layer. It was presumed that a Cu conducting filament was formed, lowering the resistance (on-state). The Reset operation induced a higher resistance (the off-state). No change in the microstructure was identified in the TEM images. Only when an additional Reset current was applied after switching to the off-state could erasure of the filament be seen (over-Reset). Therefore, it was concluded that structural change relating to the resistance switch was localized in a very small area around the filament. With repeated switching operations and increasing operational current, the WOx/electrode interfaces became indistinct. At the same time, the resistance of the off-state gradually decreased. This is thought to be caused by Cu condensation at the interfaces because of leakage current through the area other than through the filament. This will lead to device degradation through mechanisms such as endurance failure. This is the first accelerated aging test of ReRAM achieved using in-situ TEM. PMID:26611856

  15. [Oxidative modification of proteins, its role in pathologic states].

    PubMed

    Dubinina, E E; Pustygina, A V

    2008-01-01

    Generalized literature data covering principal mechanisms of oxidative modification of protein and its role in various pathologies are presented in the paper. It is emphasized that due to peculiarities of protein structure organization the process of oxidative modification is of complicated and specific character, which is determined by amino acid composition of the protein. Oxidative modification of protein can be connected with impairment of not only a polypeptide chain itself, but also particular amino acid residues with formation of several types of radicals. Mechanisms of formation of long-life hydroperoxides and their role in oxidative stress are discussed. The role of electron-transfer (migratory) reactions in formation of radical centers on a protein molecule surface is elucidated. Oxidative modification of protein is considered as a process of regulation of their synthesis and degradation connected with activation of multicatalytic proteases. Oxidative destruction of protein is one of early and most reliable markers of tissue lesion in reactive species pathology.

  16. The oxidation state of sulfur in magmatic fluids

    NASA Astrophysics Data System (ADS)

    Binder, Bernd; Keppler, Hans

    2011-01-01

    Sulfur compounds in volcanic gases are responsible for the global cooling after explosive eruptions and they probably controlled the early evolution of the Earth's atmosphere. We have therefore studied the oxidation state of sulfur in aqueous fluids under the pressure and temperature conditions and oxygen fugacities typical for magma chambers (0.5-3 kbar, 650-950 °C, Ni-NiO to Re-ReO2 buffer conditions). Sulfur speciation was determined by Raman spectroscopy of quenched fluids trapped as inclusions in quartz. Our results show that sulfur in hydrothermal fluids and volcanic gases is much more oxidized than previously thought and in particular, some explosive eruptions may release a significant fraction of sulfur as SO3 or its hydrated forms. In the pressure range from 500 to 2000 bar, the equilibrium constant K1 of the reaction 2H2S + 3O2 = 2SO2 + 2H2O in aqueous fluids can be described by lnK1 = -(57.1 ± 7.1) + (173,480 ± 7592)T- 1, where T is temperature in Kelvin. The equilibrium constant K2 for the reaction SO2 + ½O2 = SO3 in aqueous fluids, where SO3 may include hydrated forms, such as H2SO4, was found to be strongly pressure dependent, with lnK2 = -(5.2 ± 5.7) + (19,243 ± 5993)T- 1 at 1500 bar; lnK2 = -(11.1 ± 1.3) + (25,383 ± 1371)T- 1 at 2000 bar and lnK2 = -(22.1 ± 2.2) + (37,082 ± 2248)T- 1 at 2500 bar. Our data imply that volcanoes may directly inject hexavalent sulfur in the form of H2SO4 into the atmosphere, not only on Earth, but possibly also on Venus and on Mars, when it was still tectonically active. Remote measurements from satellites may have underestimated the sulfur yield of some recent eruptions. Moreover, the mechanisms of the interaction of volcanic gases with the stratosphere need to be reconsidered.

  17. Interconversion, reactivity and thermal stability of polyaniline in selected oxidation states

    SciTech Connect

    Masters, J.G.

    1992-01-01

    The objectives of this study were: (i) to determine if the base form of the conducting polymer, polyaniline, existed in a continuum of oxidation states ranging from the completely reduced leucoemeraldine oxidation state, (1 [minus] y) = 0, to the completely oxidized pernigraniline oxidation state, (1 [minus] y = 1). (ii) To investigate a novel type of reductive ring amination reaction of protonated polyaniline, of oxidation state 1 [minus] y = 0.50. (iii) Tascertain whether certain forms of polyaniline exhibited thermochromic behavior. (iv) To study factors responsible for enhancing the thermal/oxidative stability of [open quotes]doped[close quotes] polyaniline. (v) To study the reaction between polyaniline and C[sub 60]. The significant results and conclusions are: (a) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 1.0, polyaniline base exists in only three discrete oxidation states at the molecular level in the solid state and also in N-methylpyrrolidinone (NMP) solution. (b) Equimolar quantities of the two extreme oxidation states of polyaniline in the base form, leucoemeraldine, (1 [minus] y = 0.0), and pernigraniline, (1 [minus] y = 1.0), undergo a [open quotes]mutual[close quotes] oxidation and reduction when mixed in NMP solution. (c) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 0.50, only two species are observed in NMP solution of the polymer after the addition of excess aq. HCl, viz., fully protonated emeraldine salt and non-protonated leucoemeraldine base. (d) Protonation of emeraldine base, (1 [minus] y = 0.50), with nonvolatile acids has allowed the determination of the intrinsic thermal stability of the [open quotes]doped[close quotes] polymer. (e) A new reaction between emeraldine HCl and anhydrous amines results in reductive ring amination to produce leucoemeraldine base derivatives. (f) Reactions of the bases gave reversible thermochromic behavior and the formation of insoluble fullerenes.

  18. Epilepsy in adults and access to care--United States, 2010.

    PubMed

    2012-11-16

    Epilepsy is a neurologic disorder that negatively affects the quality of life for millions of persons in the United States; however, nationally representative U.S. estimates of the prevalence of epilepsy are scant. To determine epilepsy prevalence among adults, assess their access to care, and provide baseline estimates for a Healthy People 2020 objective ("Increase the proportion of persons with epilepsy and uncontrolled seizures who receive appropriate medical care"), CDC analyzed data from the 2010 National Health Interview Survey (NHIS). The results of that analysis indicated that, in 2010, an estimated 1.0% of U.S. adults and 1.9% of those with annual family income levels ≤$34,999 had active epilepsy. In addition, only 52.8% of adults with active epilepsy reported seeing a neurologic specialist in the preceding 12 months. Public health agencies can work with Epilepsy Foundation state affiliates and other health and human service providers to eliminate identified barriers to care for persons with epilepsy.

  19. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.

    PubMed

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a scanning-probe microscope is developed. When a micrometer-scale scanning-probe tip is near a voltage-biased nanometer-scale pore (10–100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, the relative pore resistance increases due to the tip and ΔR/R0 is estimated as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R0 also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ≈10 nm, experiments show that ΔR/R0 depends on salt concentration as predicted by the Poisson and Nernst–Planck equations. Furthermore, the measurements show that ΔR/R0 goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally; they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip.

  20. Probing Access Resistance of Solid-state Nanopores with a Scanning Probe Microscope Tip.

    PubMed

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a Scanning Probe Microscope has been developed. When a micrometer-scale scanning probe tip is near a voltage biased nanometer-scale pore (10-100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, we estimate the relative pore resistance increase due to the tip, ΔR/R(0), as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R(0) also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ~10 nm, our experiments show that ΔR/R(0) depends on salt concentration as predicted by the Poisson and Nernst-Planck equations. Furthermore, our measurements show that ΔR/R(0) goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally, they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip.

  1. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    SciTech Connect

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-21

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. Here, this study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. We find that the potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.

  2. Research access to privately owned wetland basins in the prairie pothole region of the United States

    USGS Publications Warehouse

    Fellows, David P.; Buhl, Thomas K.

    1995-01-01

    We describe efforts to obtain access for research to 81 wetland basins on 69 farms in four zones of the Prairie Pothole Region of North Dakota, South Dakota, and Minnesota. Access was obtained to 54% of the farms in areas where land was intensively cropped and 87% of farms in areas of low cropping intensity. On average, 1.35 operators had to be contacted and 1.70 interviews were required to obtain a decision on access to a farm. On 77% of the farms, cooperators placed at least one restriction on access, most commonly requiring walking access only or notification before nighttime work. Cost of obtaining access averaged $265/farm in wages and travel expenses. No cooperators were willing to sign written access agreements. Operators rescinded access to four farms and drained three wetland basins during the first year; six of the seven sites lost were in the intensively cropped portion of a low-wetland-density zone. The difficulty of obtaining and retaining research access to privately owned wetland basins in intensively cropped areas may be related to landowner attitudes towards wetlands. Researchers may have to rely on remote sensing or consider payment for access to secure representative research sites in such areas. Unwillingness of cooperators to sign access agreements may jeopardize research by the newly formed National Biological Service and other resource management agencies.

  3. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; Su, Hang; Pöschl, Ulrich; Wang, Jian; Knopf, Daniel A.

    2017-02-01

    Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation of liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.

  4. Implementation of Inverse Photoelectron Spectroscopy for Measuring the Empty Electronic States of Metal Oxide Surfaces

    DTIC Science & Technology

    2014-11-05

    and initial results on oxidized zirconium have been performed. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers...the electronic states of the surface with changes in the photoluminescence spectrum. The results of some of our first experiments on zirconium ...clean” zirconium oxide. The occupied valence electronic states are mainly composed of oxygen 2p electrons. The unoccupied states are zirconium 4d

  5. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  6. Solid State, Surface and Catalytic Studies of Oxides

    SciTech Connect

    Kung, H. H.

    2004-11-23

    This project investigates the catalytic properties of oxides for the selective oxidative dehydrogenation of light alkanes and for hydrocarbon reduction of NO{sub x}. Various vanadium oxide based catalysts were investigated to elucidate the relationship between the chemical and structural properties of the catalysts and their selectivity for the formation of alkenes. It was found that vanadium oxide units that are less reducible give higher selectivities. For hydrocarbon reduction of NO{sub x}, it was found that alumina-based catalysts can be effective at higher temperatures than the corresponding zeolite-based catalysts. On some catalysts, such as SnO{sub 2}/Al{sub 2}O{sub 3}. Ag/Al{sub 2}O{sub 3}, the alumina participates directly in the reaction, making the catalyst bifunctional. These results are useful in research to improve the performance of this stress of catalysts.

  7. The Effects of Decomposition on the Oxidative Ratio and Carbon Oxidation State of Organic Matter

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Clark, N.; Randerson, J. T.; Robertson, G. P.

    2006-12-01

    Ecosystem oxidative ratio (OR) and the related parameter carbon oxidation state (Cox) are critical in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the biosphere and the atmosphere (Fba and Fab). Accurate measurements of OR have been challenging (Seibt et al. 2004); instead we approach the problem by measuring Cox and calculating OR from biomass reservoirs. Cox can range from -4 to +4 (CH4 to CO2) and is driven by photosynthesis, respiration, and decomposition. The net OR of the biosphere varies with ecosystem type, and this can affect the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean reservoirs (Randerson et al. 2006). This makes it essential to constrain ecosystem Cox and OR values. Although small variations in global ecosystem OR have the potential to cause shifts in atmospheric O2 concentrations, no whole ecosystem measurements of Cox yet exist. To constrain ORba and ORab, and improve our understanding of how decomposition affects Cox, we performed a litter bag experiment at the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) in Michigan at the end of the 2005 agricultural season. We placed 15 corn biomass litter bags in an agricultural field and collected 3 bags at 2, 4, 7, 26, and 29 weeks. These samples were analyzed for %C, %H, %N, and %O via elemental analysis, and these data were used to calculate Cox. Aboveground Cox was measured similarly. We anticipated that the Cox of the corn litter would become more reduced with decomposition, as the percentage of carbohydrates would decrease with time, while that of protein, lignin, and lipids would increase (Baldock et al. 2004). We report differences between the Cox of biomass fixation and biomass degradation from our experiments. Using simple assumptions about ecosystem nitrogen cycling, we convert Cox to OR and report the existence or absence of a

  8. 34 CFR Appendix A to Subpart C of... - Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Grants for Access and Persistence Program (GAP) State Grant Allotment Case Study A Appendix A to Subpart C of Part 692 Education Regulations of the Offices of...) State Grant Allotment Case Study ER29OC09.010 ER29OC09.011 ER29OC09.012 ER29OC09.013...

  9. 43 CFR 6305.10 - How will BLM allow access to State and private land within wilderness areas?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... improvements BLM determines are necessary to protect wilderness resources from degradation. (f) If you own land... private land within wilderness areas? 6305.10 Section 6305.10 Public Lands: Interior Regulations Relating... CONSERVATION (6000) MANAGEMENT OF DESIGNATED WILDERNESS AREAS Access to State and Private Lands Or...

  10. Evaluation of Cross River State Access of Matching Grants for the Implementation of UBE Policies between 2010 and 2014

    ERIC Educational Resources Information Center

    Enu, Donald Bette; Opoh, Fredrick Awhen; Esu, A. E. O.

    2016-01-01

    This study focused on the evaluation of access of matching grants for the implementation of UBE policies in upper basic in Cross River State, Nigeria. To achieve the purpose of this study, a research question was posed to guide the study. Data were generated from SUBEB office and downloaded from UBE web site (www.ubec.com). The result was…

  11. Public Perception of the Millennium Development Goals on Access to Safe Drinking Water in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Eni, David D.; Ojong, William M.

    2014-01-01

    This study evaluated the public perception of Millennium Development Goals (MDGs) of environmental sustainability with focus on the MDG target which has to do with reducing the proportion of people without access to safe drinking water in Cross River State, Nigeria. The stratified and systematic sampling techniques were adopted for the study,…

  12. 40 CFR 1400.9 - Access to off-site consequence analysis information by State and local government officials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... local government official in electronic form, unless the official specifically requests the information... analysis information by State and local government officials. 1400.9 Section 1400.9 Protection of... Consequence Analysis Information by Government Officials. § 1400.9 Access to off-site consequence...

  13. Access Assistants for State Assessments: A Study of State Guidelines for Scribes, Readers, and Sign Language Interpreters. Synthesis Report 58

    ERIC Educational Resources Information Center

    Clapper, Ann T.; Morse, Amanda B.; Thompson, Sandra J.; Thurlow, Martha L.

    2005-01-01

    For several years, states have listed accommodations allowed on state assessments. States soon found that the definitions of these accommodations varied not only across states, but also within states and even in schools. Over the past few years, states have made greater attempts to define each accommodation and to decide whether the accommodation…

  14. The oxidation state of the surface of Venus. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Klingelhofer, G.; Brackett, R. A.; Izenberg, N.

    1994-01-01

    We present experimental results showing that basalt is oxidized in CO-CO2 gas mixtures having CO number densities close to those (approximately 2 times higher) at the surface of Venus. The results suggest that the red color observed by Pieters et al at the Venera 9 and 10 landing sites is due to subaerial oxidation of Fe(2+)-bearing basalt on the surface of Venus, and that hematite, instead of magnetite, is present on the surface of Venus. Well-characterized basalt powder was iosthermally heated in 1000 ppm CO-CO2 gas mixtures at atmospheric pressure for several days. The starting material and reacted samples were analyzed by Mossbauer spectroscopy to determine the amount of Fe(2+) and Fe(3+) in the samples. X-ray diffraction and optical microscopy were also used to characterize samples. The basalt oxidation occurs because the CO and CO2 do not equilibrate in the gas mixture at the low temperatures used. Thus, the basalt reacts with the more abundant CO2 and is oxidized. We propose that the red color of the surface of Venus is due to failure of CO and CO2 to equilibrate with one another in the near-surface atmosphere of Venus, leading to subaerial oxidation of erupted Fe(2+)-bearing basalts. Our interpretation is supported by our studies of magnetite oxidation, which show that synthetic magnetite powders are oxidized to hematite in CO-CO2 gas mixtures inside the magnetite stability field, by our studies of pyrite decomposition, and by independent work on CO-CO2 equilibration in furnace gases.

  15. Oxidation state of multivalent elements in high-level nuclear waste glass

    SciTech Connect

    Reynolds, J.G.

    2007-07-01

    Nuclear waste contains many different elements that have more than one oxidation state. When the nuclear waste is treated by vitrification, the behavior of the element in the melter and resulting glass product depends on the stable oxidation state. The stable oxidation state in any medium can be calculated from the standard potential in that medium. Consequently, the standard potential of multi-valent elements has been measured in many silicate-melts, including ones relevant to nuclear waste treatment. In this study, the relationship between the standard potential in molten nuclear waste glass and the standard potential in water will be quantified so that the standard potential of elements that have not been measured in glass can be estimated. The regression equation was found to have an R{sup 2} statistic of 0.96 or 0.83 depending on the number of electrons transferred in the reaction. The Nernst equation was then used to calculate the oxidation state of other relevant multi-valent elements in nuclear waste glass from these standard potentials and the measured ferrous to ferric iron ratio. The calculated oxidation states were consistent with all oxidation state measurements available. The calculated oxidation states were used to rationalize the behavior of many of the multi-valent elements. For instance, chromium increases glass crystallization because it is in the trivalent-state, iodine volatilises from the melter because it is in the volatile zero-valent state, and the leaching behavior of arsenic is driven by its oxidation state. Thus, these thermodynamic calculations explain the behavior of many trace elements during the vitrification process. (authors)

  16. X-ray Raman Scattering at Extreme Conditions: Insights to Local Structure, Oxidation and Spin state

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Sternemann, C.; Sahle, C.; Spiekermann, G.; Nyrow, A.; Weis, C.; Cerantola, V.; Schmidt, C.; Yavas, H.

    2015-12-01

    In the last decades, X-ray spectroscopic techniques using very intense synchrotron radiation (SR) have become indispensable tools for studying geomaterials. Due to the rather low absorption of hard X-rays, SR opens up the possibility to perform measurements in high-pressure, high temperature cells. The range of elements accessible by X-ray absorption spectroscopy (XAFS) techniques in these cells is limited by the absorption of X-rays due to the sample environment, i.e. the diamond windows. The indirect measurement of XAFS spectra by inelastic X-ray Raman scattering (XRS) provides a workaround to access absorption edges at low energies (e.g. low Z elements). Therefore, XRS enables measurements that are similar to electron energy loss spectroscopy but offer to measure at in-situ conditions and not just in vacuum. Measurements of the O K-edge of H2O from ambient to supercritical PT-conditions (up to 600°C @ 134 MPa; 400°C @ 371 MPa) were used to trace structural changes of the hydrogen-bonded network, which controls many physical and chemical properties of H2O [1]. The Fe M3,2-edge measured by XRS were used to characterize the oxidation state and local structure in crystalline compounds and glasses [2]. Furthermore, the M3,2 yields detailed insight to the crystal-field splitting and electronic spin state. In a reconnaissance study, the pressure-induced high-spin to low-spin transition of Fe in FeS between 6 and 8 GPa was measured. By multiplet calculations of the spectra for octahedral Fe2+, a difference in crystal field splitting between the two states of ca. 1.7 eV was estimated [3]. Finally, we successfully assessed the electronic structure of Fe in siderite by measurements of M and L-edge up to 50 GPa, covering the spin transition between 40 and 45 GPa. [1] Sahle et al. (2013) PNAS, doi: 10.1073/pnas.1220301110.. [2] Nyrow et al. (2014) Contrib Mineral Petrol 167, 1012. [3] Nyrow et al. (2014) Appl Phys Lett 104, 262408.

  17. United States Federal Health Care Websites: A Multimethod Evaluation of Website Accessibility for Individuals with Disabilities

    ERIC Educational Resources Information Center

    Brobst, John L.

    2012-01-01

    The problem addressed by this study is the observed low levels of compliance with federal policy on website accessibility. The study examines the two key federal policies that promote website accessibility, using a side-by-side policy analysis technique. The analysis examines the Americans with Disabilities Act of 1990 and Section 508 of the…

  18. Solid-state, surface, and catalytic properties of oxides

    NASA Astrophysics Data System (ADS)

    Kung, H. H.

    1981-08-01

    Catalysis by transition metal oxides was investigated and four areas are emphasized. In the first area, an adsorbed oxygen species on iron oxide was characterized. This species desorb, with an activation energy of 38 kcal/mole, and it has a coverage of 1.4 x 10(16) molecules/m(2). Its desorption follows a second order kinetics suggesting that it is an atomic species. The high activation energy suggests that the species may only be active in total oxidation. In the second area, ZnO surfaces containing controlled defects in the form of steps were studied. It is found that the nonpolar flat a stepped and a polar surface behave differently. The CO2 adsorbs with increasing strength on these three surfaces in this order. Methanol does not decompose on a stoichiometric. The stepped surface is active in methanol decomposition in the manner like the vacancy.

  19. Gender-related differences in the oxidant state of cells in Fanconi anemia heterozygotes.

    PubMed

    Petrovic, Sandra; Leskovac, Andreja; Kotur-Stevuljevic, Jelena; Joksic, Jelena; Guc-Scekic, Marija; Vujic, Dragana; Joksic, Gordana

    2011-07-01

    Abstract Fanconi anemia (FA) is a rare cancer-prone genetic disorder characterized by progressive bone marrow failure, chromosomal instability and redox abnormalities. There is much biochemical and genetic data, which strongly suggest that FA cells experience increased oxidative stress. The present study was designed to elucidate if differences in oxidant state exist between control, idiopathic bone marrow failure (idBMF) and FA cells, and to analyze oxidant state of cells in FA heterozygous carriers as well. The results of the present study confirm an in vivo prooxidant state of FA cells and clearly indicate that FA patients can be distinguished from idBMF patients based on the oxidant state of cells. Female carriers of FA mutation also exhibited hallmarks of an in vivo prooxidant state behaving in a similar manner as FA patients. On the other hand, the oxidant state of cells in FA male carriers and idBMF families failed to show any significant difference vs. controls. We demonstrate that the altered oxidant state influences susceptibility of cells to apoptosis in both FA patients and female carriers. The results highlight the need for further research of the possible role of mitochondrial inheritance in the pathogenesis of FA.

  20. The state of the components in copper-cerium catalysts supported on different oxides

    NASA Astrophysics Data System (ADS)

    Kosmambetova, G. R.; Kriventsov, V. V.; Moroz, E. M.; Pakharukova, V. P.; Strizhak, P. E.; Zyuzin, D. A.

    2009-05-01

    The phase composition and the state of the active components in the catalysts used for preferential oxidation (PROX) of CO in hydrogen-containing mixtures are considered. Cu-Ce catalysts supported on different oxides (ZrO 2, TiO 2, Al 2O 3, MnO 2) before and after PROX reaction are characterized.

  1. Oxidative N-Heterocyclic Carbene-Catalyzed γ-Carbon Addition of Enals to Imines: Mechanistic Studies and Access to Antimicrobial Compounds.

    PubMed

    Zheng, Peng-Cheng; Cheng, Jiajia; Su, Shihu; Jin, Zhichao; Wang, Yu-Huang; Yang, Song; Jin, Lin-Hong; Song, Bao-An; Chi, Yonggui Robin

    2015-07-06

    The reaction mechanism of the γ-carbon addition of enal to imine under oxidative N-heterocyclic carbene catalysis is studied experimentally. The oxidation, γ-carbon deprotonation, and nucleophilic addition of γ-carbon to imine were found to be facile steps. The results of our study also provide highly enantioselective access to tricyclic sulfonyl amides that exhibit interesting antimicrobial activities against X. oryzae, a bacterium that causes bacterial disease in rice growing.

  2. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  3. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  4. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  5. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.

    PubMed

    Kroll, Jesse H; Donahue, Neil M; Jimenez, Jose L; Kessler, Sean H; Canagaratna, Manjula R; Wilson, Kevin R; Altieri, Katye E; Mazzoleni, Lynn R; Wozniak, Andrew S; Bluhm, Hendrik; Mysak, Erin R; Smith, Jared D; Kolb, Charles E; Worsnop, Douglas R

    2011-02-01

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number.

  6. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  7. Chronic Kidney Disease in Nigeria: An Evaluation of the Spatial Accessibility to Healthcare for Diagnosed Cases in Edo State

    PubMed Central

    Oviasu, Osaretin; Rigby, Janette E.; Ballas, Dimitris

    2015-01-01

    Chronic kidney disease (CKD) is a growing problem in Nigeria, presenting challenges to the nation’s health and economy. This study evaluates the accessibility to healthcare in Edo State of CKD patients diagnosed between 2006 and 2009. Using cost analysis techniques within a geographical information system, an estimated travel time to the hospital was used to examine the spatial accessibility of diagnosed patients to available CKD healthcare in the state. The results from the study indicated that although there was an annual rise in the number of diagnosed cases, there were no significant changes in the proportion of patients that were diagnosed at the last stage of CKD. However, there were indications that the travel time to the hospital for CKD treatment might be a contributing factor to the number of diagnosed CKD cases. This implies that the current structure for CKD management within the state might not be adequate. PMID:28299133

  8. Towards a Predictive Thermodynamic Model of Oxidation States of Uranium Incorporated in Fe (hydr) oxides

    SciTech Connect

    Bagus, Paul S.

    2013-01-01

    -Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2

  9. Tuning resistance states by thickness control in an electroforming-free nanometallic complementary resistance random access memory

    SciTech Connect

    Yang, Xiang; Lu, Yang; Lee, Jongho; Chen, I-Wei

    2016-01-04

    Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics for memory arrays.

  10. Structural evolution and valence electron-state change during ultra thin silicon-oxide growth

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Abe, S.; Nakayama, H.; Nishino, T.; Iida, S.

    2000-06-01

    We have studied valence electron-state changes of Si during initial oxidation of Si(111) clean surface, HF-treated Si(001) and Si(111) surfaces by Auger valence electron spectroscopy (AVES). The results showed that the valence electron-state changes during initial oxidation were sensitively reflected in Si[2s,2p,V] (V=3s,3p) AVES spectra and that they depended on both initial surface treatment and surface orientation. The local valence electron-states, local density of states in other words, showed the characteristic-structure evolution depending on the initial surface treatment and surface orientation.

  11. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  12. Temperature induced complementary switching in titanium oxide resistive random access memory

    NASA Astrophysics Data System (ADS)

    Panda, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2016-07-01

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device to initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.

  13. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  14. Harm reduction or women's rights? Debating access to emergency contraceptive pills in Canada and the United States.

    PubMed

    Wynn, L L; Erdman, Joanna N; Foster, Angel M; Trussell, James

    2007-12-01

    This article compares the ethical pivot points in debates over nonprescription access to emergency contraceptive pills in Canada and the United States. These include women's right to be informed about the contraceptive method and its mechanism of action, pharmacists' conscientious objection concerning the dispensing of emergency contraceptive pills, and rights and equality of access to the method, especially for poor women and minorities. In both countries, arguments in support of expanding access to the pills were shaped by two competing orientations toward health and sexuality. The first, "harm reduction," promotes emergency contraception as attenuating the public health risks entailed in sex. The second orientation regards access to pills as a question of women's right to engage in nonprocreative sex and to choose from among all reproductive health-care options. The authors contend that arguments for expanding access to emergency contraceptive pills that frame issues in terms of health and science are insufficient bases for drug regulation; ultimately, women's health is also a matter of women's rights.

  15. States in the Driver's Seat: Leveraging State Aid to Align Policies and Promote Access, Success, and Affordability

    ERIC Educational Resources Information Center

    Prescott, Brian T.; Longanecker, David A.

    2014-01-01

    With increasingly widespread calls to raise educational attainment levels without substantially growing public investment in higher education, policymakers and others have devoted growing attention to the role of financial aid programs in providing access to, promoting affordability for, and incentivizing success in college. Given relative levels…

  16. Access and closure of the left ventricular apex: state of play.

    PubMed

    Ziegelmueller, Johannes Amadeus; Lange, Rüdiger; Bleiziffer, Sabine

    2015-09-01

    Calcific aortic stenosis is the most frequent manifestation of valvular heart disease. The preferred treatment for patients of all age groups is surgical aortic valve replacement. Recently, transcatheter aortic valve implantation (TAVI) has become the standard of care for patients that are deemed to be at high risk for open heart surgery. The most common access route for TAVI is the retrograde transfemoral (TF) approach, followed by the antegrade transapical (TA) approach. Both access routes have distinct indications. While the TF route is least invasive and the access of choice at most centers, the apical route is used complementary in patients with poor femoral access. In addition, the TA approach holds various benefits such as a short distance from the operator to the annulus facilitating exact positioning of the valve and the possibility to accommodate larger sheaths. Furthermore, the TA approach not only provides direct access to the aortic valve but also the mitral valve allowing for a wide range of interventions. Various apical closure devices are currently being developed under the premise of increasing overall safety of the TA-TAVI approach by further standardizing the procedure, alleviating left ventricular access and minimizing the risk of complications, such as apical bleeding. The aim of this article is to give an overview of current devices for apical closure. The ideal apical closure device should be easy to put in place, leave a minimum of foreign material, provide complete hemostasis and have a minimal risk of displacement. So far the range of commercially available devices in Europe is very limited with only one CE-certified device on the market and one device that is expected to receive CE-certification soon. Off-the-shelf closure devices could help flatten the initial operator learning curve and facilitate a safe apical access, ultimately leading to an entirely percutaneous TA-TAVI approach.

  17. A simple method of interface-state reduction in metal-nitride-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Sheu, Yea-Dean

    1991-04-01

    A method for reducing the interface-state density in polysilicon gate metal-nitride-oxide-semiconductor (MNOS) capacitors is reported. The method involves deposition of a sacrificial blanket aluminum layer on top of a chemical-vapor-deposition (CVD) oxide over MNOS capacitors. The entire stack was then annealed at 450 °C in nitrogen and then the metal and CVD oxide were stripped away. The interface state density was reduced from 1011 to 1010 cm-2 eV-1 after this anneal. It is believed that Al reacts with trace water in the CVD oxide and generates active hydrogen. The hydrogen diffuses to the Si/SiO2 interface and passivates the interface states.

  18. Access to enforcement and disciplinary data: information practices of state health professional regulatory boards of dentistry, medicine and nursing.

    PubMed

    Strong, Denise E

    2011-01-01

    This article describes a study of public access to enforcement and disciplinary information provided by the websites of health professional regulatory boards. The study explored the current state of transparency by specifically examining the availability of disciplinary data on the websites of state boards of medicine, nursing and dentistry. Web sites were reviewed regarding availability of enforcement and disciplinary data on the aforementioned state boards in each of the 50 states and the District of Columbia. The study found that there is more information about individual practitioners available from the boards than ever before. On the other hand, there has not been a comparable increase in information about the administrative practices and the work of the boards. Increased availability of this information would allow public administration and policy researchers to develop performance indicators of state boards and assist in improving policy decisions and allocation of resources.

  19. Progress on Broadband Access to the Internet and Use of Mobile Devices in the United States.

    PubMed

    Serrano, Katrina J; Thai, Chan L; Greenberg, Alexandra J; Blake, Kelly D; Moser, Richard P; Hesse, Bradford W

    Healthy People 2020 (HP2020) aims to improve population health outcomes through several objectives, including health communication and health information technology. We used 7 administrations of the Health Information National Trends Survey to examine HP2020 goals toward access to the Internet through broadband and mobile devices (N = 34 080). We conducted descriptive analyses and obtained predicted marginals, also known as model-adjusted risks, to estimate the association between demographic characteristics and use of mobile devices. The HP2020 target (7.7% of the US population) for accessing the Internet through a cellular network was surpassed in 2014 (59.7%), but the HP2020 target (83.2%) for broadband access fell short (63.8%). Sex and age were associated with accessing the Internet through a cellular network throughout the years (Wald F test, P <.05). The increase in the percentage of people accessing the Internet through mobile devices presents an opportunity for technology-based health interventions that should be explored.

  20. United States registered nurses' self-report of access to the Web.

    PubMed

    Kleib, Manal; Sales, Anne E; Andrea Baylon, Melba; Beaith, Amy; Lima, Isac

    2011-05-01

    The aim of this study was to identify the proportion and characteristics of Registered Nurses who reported having had an access to the Web in the year 2000 National Sample Survey of Registered Nurses. We conducted a secondary data analysis using more than 25 000 respondents to the year 2000 National Sample Survey of Registered Nurses. Using bivariate and logistic regression, we examined the association of reporting access to the Web with demographic, educational, and other characteristics of Registered Nurse respondents to the survey. We found that several factors were associated with the increased likelihood of Registered Nurses' reporting having had an access to the Web in the year 2000. These included race/ethnicity, marital and family status, highest level of nursing education, current enrollment in a nursing education program, annual household income, and continuing education in informatics. The likelihood of reporting having had access decreased with sex, age, experience since first nursing degree, and primary job responsibility. The results of this study indicate that having access to the Web enhances Registered Nurses' participation in professional development and continuing education opportunities.

  1. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  2. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  3. Monomethylioarsenicals are substratres for human arsenic (+3 oxidation state) methyltransferase

    EPA Science Inventory

    Monomethylthioarsenicals are substrates for human arsenic (+3 oxida1tion state) methyltransferase Methylated thioarsenicals are structural analogs of methylated oxyarsenic in which one or more oxygen atom bound t...

  4. GaAs-oxide interface states - A gigantic photoionization effect and its implications to the origin of these states

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Walukiewicz, W.; Kazior, T. E.; Gatos, H. C.; Siejka, J.

    1981-01-01

    Gigantic photoionization was discovered on GaAs-oxide interfaces leading to the discharge of deep surface states with rates exceeding 1000 times those of photoionization transitions to the conduction band. It exhibits a peak similar to acceptor-donor transitions and is explained as due to energy transfer from photo-excited donor-acceptor pairs to deep surface states. This new process indicates the presence of significant concentrations of shallow donor and acceptor levels not recognized in previous interface models.

  5. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in whi...

  6. Water and the Oxidation State of Subduction Zone Magmas

    SciTech Connect

    Kelley, K.; Cottrell, E

    2009-01-01

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe{sup 3+}/{Sigma}Fe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H{sub 2}O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe{sup 3+}/{Sigma}Fe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H{sub 2}O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  7. Water and the oxidation state of subduction zone magmas.

    PubMed

    Kelley, Katherine A; Cottrell, Elizabeth

    2009-07-31

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  8. State Law, Policy, and Access to Information: The Case of Mandated Openness in Higher Education

    ERIC Educational Resources Information Center

    McLendon, Michael K.; Hearn, James C.

    2010-01-01

    Background/Context: Every state in the nation has legal requirements, state "sunshine laws," to ensure accountability and fairness in institutions receiving state funds and operating under state authority. These laws have come to significantly influence the ways in which the business of higher education is conducted. Purpose/Objective/Research…

  9. Identification of the oxidation state of americium by thin-layer chromatography using domestic plates

    SciTech Connect

    Molochnikova, N.P.; Myasoedov, B.F.

    1994-10-01

    Methods of precipitation, solvent extraction, ion exchange, and extraction chromatography were suggested to identify trace amounts of americium in different oxidation states. Thin-layer chromatography (TLC) has not been used previously for these purposes. At the same time, this method is widely used in the separation of small quantities of elements in different valence states. Previously, the chromatographic mobility of actinide ions on thin layers of silica gel and cellulose on Silufol plates (CSFR) and plates from Merck (Germany) was investigated. The behavior of americium in different oxidation states on domestic TLC plates in nitric acid solutions was determined to be of interest.

  10. Effect of environment on iodine oxidation state and reactivity with aluminum.

    PubMed

    Smith, Dylan K; McCollum, Jena; Pantoya, Michelle L

    2016-04-28

    Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments. Specifically, aluminum fuel and iodine oxide powder are combined using a carrier fluid to aid intermixing. The carrier fluid is shown to significantly affect the oxidation state of iodine oxide, thereby affecting the reactivity of the mixture. Four carrier fluids were investigated ranging in polarity and water miscibility in increasing order from hexane < acetone < isopropanol < water as well as untreated, dry-mixed reactants. Oxidation state and reactivity were examined with experimental techniques including X-ray photoelectric spectroscopy (XPS) and differential scanning calorimetry (DSC). Results are compared with thermal equilibrium simulations. Flame speeds increased with polarity of the fluid used to intermix the powder and ranged from 180 to 1202 m s(-1). The I2O5 processed in the polar fluids formed hydrated states of iodine oxide: HIO3 and HI3O8; and, the nonpolar and dry-mixed samples formed: I2O4 and I4O9. During combustion, the hydrated iodine oxides rapidly dehydrated from HIO3 to HI3O8 and from HI3O8 to I2O5. Both steps release 25% of their mass as vapor during combustion. Increased gas generation enhances convective energy transport and accounts for the increase in reactivity seen in the mixtures processed in polar fluids. These results explain the chemical mechanisms underlying the variable reactivity of I2O5 that are a function of the oxide's highly reactive nature with its surrounding environment. These results will significantly impact the selection of carrier fluid in the synthesis approach for iodine containing reactive mixtures.

  11. Cpmmw Spectroscopy of Rydberg States of Nitric Oxide

    NASA Astrophysics Data System (ADS)

    Barnum, Timothy J.; Saladrigas, Catherine A.; Grimes, David; Coy, Stephen; Eyler, Edward E.; Field, Robert W.

    2016-06-01

    The spectroscopy of Rydberg states of NO has a long history [1], stimulating both experimental and theoretical advances in our understanding of Rydberg structure and dynamics. The closed-shell ion-core (1Σ+) and small NO+ dipole moment result in regular patterns of Rydberg series in the Hund's case (d) limit, which are well-described by long-range electrostatic models (e.g., [2]). We will present preliminary data on the core-nonpenetrating Rydberg states of NO (orbital angular momentum, ℓ ≥ 3) collected by chirped-pulse millimeter-wave (CPmmW) spectroscopy. Our technique directly detects electronic free induction decay (FID) between Rydberg states with Δn* ≈ 1 in the region of n* ˜ 40-50, providing a large quantity (12 GHz bandwidth in a single shot) of high quality (resolution ˜ 350 kHz) spectra. Transitions between high-ℓ, core-nonpenetrating Rydberg states act as reporters on the subtle details of the ion-core electric structure. * * [1] Huber KP. Die Rydberg-Serien im Absorptions-spektrum des NO-Molekuuls. Helv. Phys. Acta 3, 929 (1961). * * [2] Biernacki DT, Colson SD, Eyler EE. Rotationally resolved double resonance spectra of NO Rydberg states near the first ionization limit. J. Chem. Phys. 88, 2099 (1988).

  12. Approaches to Determining the Oxidation State of Nitrogen and Carbon Atoms in Organic Compounds for High School Students

    ERIC Educational Resources Information Center

    Jurowski, Kamil; Krzeczkowska, Malgorzata Krystyna; Jurowska, Anna

    2015-01-01

    The concept of oxidation state (or oxidation number) and related issues have always been difficult for students. In addition, there are misunderstandings and obscurities, which can cause improper balancing of the chemical equations (mostly in organic reactions). In particular, these problems are related to determination of the oxidation state of…

  13. Autodetachment spectroscopy of the aluminum oxide anion dipole bound state

    SciTech Connect

    Mascaritolo, Kyle J.; Gardner, Adrian M.; Heaven, Michael C.

    2015-09-21

    The {sup 1}Σ{sup +}←X{sup 1}Σ{sup +} ground state to dipole bound state (DBS) electronic transition of AlO{sup −} has been studied by means of autodetachment spectroscopy. Vibrational and rotational molecular constants for AlO{sup −} have been determined for both the ground state (υ″ = 0, 1) and the excited DBS (υ′ = 0, 1). These data provide an improved determination of the electron affinity for AlO (2.6110(7) eV) that is consistent with an earlier measurement. The electron binding energy of the DBS was found to be 52 ± 6 cm{sup −1}. Experimental results are compared with the predictions from high level ab initio calculations.

  14. Preserving Long-Term Access to United States Government Documents in Legacy Digital Formats

    ERIC Educational Resources Information Center

    Woods, Kam A.

    2010-01-01

    Over the past several decades, millions of digital objects of significant scientific, economic, cultural, and historic value have been published and distributed to libraries and archives on removable media. Providing long-term access to these documents, media files, and software executables is an increasingly complex task because of dependencies…

  15. 28 CFR 16.81 - Exemption of United States Attorneys Systems-limited access.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems-limited access. 16.81 Section 16.81 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR...) Consumer Complaints (JUSTICE/USA-006). (4) Criminal Case Files (JUSTICE/USA-007). (5) Kline-District of Columbia and Maryland-Stock and Land Fraud Interrelationship Filing System (JUSTICE/USA-009). (6)...

  16. Accessibility of Early Childhood Education and Care: A State of Affairs

    ERIC Educational Resources Information Center

    Vandenbroeck, Michel; Lazzari, Arianna

    2014-01-01

    We analyse both academic literature and practice reports to discover the main causes for unequal accessibility of high quality early childhood care and education (ECEC). In order to understand and to remedy this inequality we need to consider the interplay between elements of governance, of the management of services and elements on the level of…

  17. Improving College Access in the United States: Barriers and Policy Responses. NBER Working Paper No. 21781

    ERIC Educational Resources Information Center

    Page, Lindsay C.; Scott-Clayton, Judith

    2015-01-01

    Socioeconomic gaps in college enrollment and attainment have widened over time, despite increasing returns to postsecondary education and significant policy efforts to improve access. We describe the barriers that students face during the transition to college and review the evidence on potential policy solutions. We focus primarily on research…

  18. Assessment and Access: Hispanics in Higher Education. SUNY Series, United States Hispanic Studies.

    ERIC Educational Resources Information Center

    Keller, Gary D., Ed.; And Others

    This book contains 10 papers on solutions and barriers to improving the access of Hispanic American students to higher education. Following an introductory essay on: "Advances in Assessment and the Potential for Increasing the Number of Hispanics in Higher Education" (G. D. Keller), the papers are organized into four parts. Papers in…

  19. Expanding Access to Early Head Start: State Initiatives for Infants & Toddlers at Risk

    ERIC Educational Resources Information Center

    Colvard, Jamie; Schmit, Stephanie

    2012-01-01

    The federal Early Head Start (EHS) program was created in 1994 to address the comprehensive needs of children under age 3 in low-income families and vulnerable low-income pregnant women. In addition to early learning opportunities, EHS's comprehensive early childhood development programs provide children and families with access to a range of…

  20. Solid oxide fuel cell commercialization in the United States

    SciTech Connect

    Williams, M.C.

    1995-03-01

    This paper discusses aspects of solid oxide fuel cell (SOFC) technology commercialization in the US. It provides the status of the major SOFC developments occurring in the US by addressing both intermediate- and high-temperature SOFC`s, several SOFC designs, including both planar and tubular, and SOFC system configurations. This paper begins with general characteristics, proceeds with designs and system configurations, and finishes with a discussion of commercialization, funding, and policies. The US Department of Energy`s (DOE) Morgantown Energy Technology Center (METC) is the lead US DOE center for the implementation of a Research, Development, and Demonstration Program to develop fuel cells for stationary power. METC`s stakeholders include the electric power and gas industries, as well as fuel cell developers and others. This paper offers some new perspectives on SOFC development and commercialization which come from the broad consideration of the commercialization efforts of the entire fuel cell industry.

  1. Content and Accessibility of Shoulder and Elbow Fellowship Web Sites in the United States

    PubMed Central

    Young, Bradley L.; Oladeji, Lasun O.; Cichos, Kyle

    2016-01-01

    Abstract Background Increasing numbers of training physicians are using the Internet to gather information about graduate medical education programs. The content and accessibility of web sites that provide this information have been demonstrated to influence applicants’ decisions. Assessments of orthopedic fellowship web sites including sports medicine, pediatrics, hand and spine have found varying degrees of accessibility and material. The purpose of this study was to evaluate the accessibility and content of the American Shoulder and Elbow Surgeons (ASES) fellowship web sites (SEFWs). Methods A complete list of ASES programs was obtained from a database on the ASES web site. The accessibility of each SEFWs was assessed by the existence of a functioning link found in the database and through Google®. Then, the following content areas of each SEFWs were evaluated: fellow education, faculty/previous fellow information, and recruitment. Results At the time of the study, 17 of the 28 (60.7%) ASES programs had web sites accessible through Google®, and only five (17.9%) had functioning links in the ASES database. Nine programs lacked a web site. Concerning web site content, the majority of SEFWs contained information regarding research opportunities, research requirements, case descriptions, meetings and conferences, teaching responsibilities, attending faculty, the application process, and a program description. Fewer than half of the SEFWs provided information regarding rotation schedules, current fellows, previous fellows, on-call expectations, journal clubs, medical school of current fellows, residency of current fellows, employment of previous fellows, current research, and previous research. Conclusions: A large portion of ASES fellowship programs lacked functioning web sites, and even fewer provided functioning links through the ASES database. Valuable information for potential applicants was largely inadequate across present SEFWs. PMID:27528833

  2. OXIDIZED NITROGEN DEPOSITION IN THE EASTERN UNITED STATES

    EPA Science Inventory


    Air quality and selected meteorological parameters have been monitored at rural sites in the United States (US) by EPA's Clean Air Status and Trends Network, (CASTNet) sites. The National Atmospheric Deposition Program (NADP) monitors wet deposition of numerous ions in precip...

  3. Access or Barrier? Tuition and Fee Legislation for Undocumented Students across the States

    ERIC Educational Resources Information Center

    Nguyen, David H. K.; Serna, Gabriel R.

    2014-01-01

    States have responded in a variety of ways to undocumented immigration and its implications for higher education. Some states have allowed undocumented students to seek an affordable college education while others have created barriers. This article highlights the piecemeal legislation that the states have passed in order to respond to the needs…

  4. The Impact of State Appropriations and Grants on Access to Higher Education and Outmigration

    ERIC Educational Resources Information Center

    Toutkoushian, Robert K.; Hillman, Nicholas W.

    2012-01-01

    The question of how states can best use financial policy to achieve their goals is very important for many higher education stakeholders. In this study, the authors use panel data for all 50 states over a 20-year period to examine how state appropriations, need-based grants, and merit-based grants affect student enrollment in college and whether…

  5. Data, Data Everywhere, but Access Remains a Big Issue for Researchers: A Review of Access Policies for Publicly-Funded Patient-Level Health Care Data in the United States

    PubMed Central

    Doshi, Jalpa A.; Hendrick, Franklin B.; Graff, Jennifer S.; Stuart, Bruce C.

    2016-01-01

    Introduction: High quality research regarding treatment effectiveness, quality, and value is critical for improving the U.S. health care system. Recognition of this has led federal and state officials to better leverage existing data sources such as medical claims and survey data, but access must be balanced with privacy concerns. Methods: We reviewed and catalogued data access policies for a selection of publicly-funded federal and state datasets to investigate how such policies may be promoting or limiting research activities. Results: We found significant variation in data access policies across federal agencies and across state agencies, including variation for multiple datasets available from the same agency. We also observed numerous indirect hurdles to use of data, including complex data use application procedures, high user fees, and prolonged wait times for data delivery. Conclusions: Policy makers and data owners should consider making changes to data access policies to maximize the utility and availability of these valuable resources. PMID:27141517

  6. The Effects of Iron Oxidation State on Clay Swelling,

    DTIC Science & Technology

    1983-03-07

    swelling, montmorillonite , nontronite, smectite, water, DLVO theory, surface charge, dissolution, methods, aluminum, silicon, inert atmosphere. 2G...that many physical properties of bulk water are changed when it is adsorbed between layers of Na4- montmorillonite (e.g., Oster and Low, 1964; Kolaian...Na+- montmorillonite accounted for about 13% of the total water content in the free-swelling state. We can therefore express the total water content

  7. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance.

    PubMed

    Wang, Yan-Jie; Dong, Hao; Lyu, Guang-Ming; Zhang, Huai-Yuan; Ke, Jun; Kang, Li-Qun; Teng, Jia-Li; Sun, Ling-Dong; Si, Rui; Zhang, Jing; Liu, Yan-Jun; Zhang, Ya-Wen; Huang, Yun-Hui; Yan, Chun-Hua

    2015-09-07

    Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation mechanism of CeO2 nanoparticles. Adsorbed peroxide species are detected during the anti-oxidation process, which are responsible for the red-shifted UV-vis absorption spectra of CeO2 nanoparticles. Furthermore, the coordination number of Ce in the first coordination shell slightly increased after the addition of H2O2. On the basis of these experimental results, the reactivity of coordination sites for peroxide species is considered to play a key role in the anti-oxidation performance of CeO2 nanoparticles. Furthermore, we present a robust method to engineer the anti-oxidation performance of CeO2 nanoparticles through the modification of the defect state and reducibility by doping with Gd(3+). Improved anti-oxidation performance is also observed in cell culture, where the biocompatible CeO2-based nanoparticles can protect INS-1 cells from oxidative stress induced by H2O2, suggesting the potential application of CeO2 nanoparticles in the treatment of diabetes.

  8. The surface accessibility of the glycine receptor M2-M3 loop is increased in the channel open state.

    PubMed

    Lynch, J W; Han, N L; Haddrill, J; Pierce, K D; Schofield, P R

    2001-04-15

    Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

  9. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state

    DOE PAGES

    Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...

    2017-01-27

    Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less

  10. Associations of supermarket accessibility with obesity and fruit and vegetable consumption in the conterminous United States

    PubMed Central

    2010-01-01

    Background Limited access to supermarkets may reduce consumption of healthy foods, resulting in poor nutrition and increased prevalence of obesity. Most studies have focused on accessibility of supermarkets in specific urban settings or localized rural communities. Less is known, however, about how supermarket accessibility is associated with obesity and healthy diet at the national level and how these associations differ in urban versus rural settings. We analyzed data on obesity and fruit and vegetable (F/V) consumption from the Behavioral Risk Factor Surveillance System for 2000-2006 at the county level. We used 2006 Census Zip Code Business Patterns data to compute population-weighted mean distance to supermarket at the county level for different sizes of supermarket. Multilevel logistic regression models were developed to test whether population-weighted mean distance to supermarket was associated with both obesity and F/V consumption and to determine whether these relationships varied for urban (metropolitan) versus rural (nonmetropolitan) areas. Results Distance to supermarket was greater in nonmetropolitan than in metropolitan areas. The odds of obesity increased and odds of consuming F/V five times or more per day decreased as distance to supermarket increased in metropolitan areas for most store size categories. In nonmetropolitan areas, however, distance to supermarket had no associations with obesity or F/V consumption for all supermarket size categories. Conclusions Obesity prevalence increased and F/V consumption decreased with increasing distance to supermarket in metropolitan areas, but not in nonmetropolitan areas. These results suggest that there may be a threshold distance in nonmetropolitan areas beyond which distance to supermarket no longer impacts obesity and F/V consumption. In addition, obesity and food environments in nonmetropolitan areas are likely driven by a more complex set of social, cultural, and physical factors than a single

  11. Open access of publications by veterinary faculty in the United States and Canada.

    PubMed

    Nault, André J

    2011-01-01

    The free availability of full-text veterinary publications in MEDLINE-indexed journals by US and Canadian veterinary faculty from 2006-7 was determined. Additionally, publishing databases were searched to obtain general statistics on veterinary publishing. A survey of institutional initiatives to promote open-access journals and institutional repositories was also performed. Veterinary faculty published a total of 4,872 articles indexed by MEDLINE in 679 different journals. Of these articles, 1,334 (27%) were available as free full text and were published in 245 different journals. Although 51 veterinary-specific journals offering immediate and free full-text access were identified, few articles in this study appeared in these titles. Rather, most free scholarly articles by veterinary faculty appeared in journals with an embargo period. Academic veterinary institutions may want to recommend acceptance of alternate forms of information dissemination (such as open-access journals and journals published only digitally) to encourage greater global dissemination of their research findings. The promotion and use of digital institutional repositories is also an area for future investment and warrants additional research.

  12. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  13. Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ming; Chang, Kuan-Chang; Chang, Ting-Chang; Syu, Yong-En; Liao, Kuo-Hsiao; Tseng, Bae-Heng; Sze, Simon M.

    2012-09-01

    The tin-doped can supply conduction path to induce resistance switching behavior. However, the defect of tin-doped silicon oxide (Sn:SiOx) increased the extra leakage path lead to power consumption and joule heating degradation. In the study, supercritical CO2 fluids treatment was used to improve resistive switching property. The current conduction of high resistant state in post-treated Sn:SiOx film was transferred to Schottky emission from Frenkel-Poole due to the passivation effect. The molecular reaction model is proposed that the defect was passivated through dehydroxyl effect of supercritical fluid technology, verified by material analyses of x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy.

  14. Private sector participation in delivering tertiary health care: a dichotomy of access and affordability across two Indian states

    PubMed Central

    Katyal, Anuradha; Singh, Prabal Vikram; Bergkvist, Sofi; Samarth, Amit; Rao, Mala

    2015-01-01

    Poor quality care in public sector hospitals coupled with the costs of care in the private sector have trapped India's poor in a vicious cycle of poverty, ill health and debt for many decades. To address this, the governments of Andhra Pradesh (AP) and Maharashtra (MH), India, have attempted to improve people’s access to hospital care by partnering with the private sector. A number of government-sponsored schemes with differing specifications have been launched to facilitate this strategy. Aims This article aims to compare changes in access to, and affordability and efficiency of private and public hospital inpatient (IP) treatments between MH and AP from 2004 to 2012 and to assess whether the health financing innovations in one state resulted in larger or smaller benefits compared with the other. Methods We used data from household surveys conducted in 2004 and 2012 in the two states and undertook a difference-in-difference (DID) analysis. The results focus on hospitalization, out-of-pocket expenditure and length of stay. Results The average IP expenditure for private hospital care has increased in both states, but more so in MH. There was also an observable increase in both utilization of and expenditure on nephrology treatment in private hospitals in AP. The duration of stay recorded in days for private hospitals has increased slightly in MH and declined in AP with a significant DID. The utilization of public hospitals has reduced in AP and increased in MH. Conclusion The state of AP appears to have benefited more than MH in terms of improved access to care by involving the private sector. The Aarogyasri scheme is likely to have contributed to these impacts in AP at least in part. Our study needs to be followed up with repeated evaluations to ascertain the long-term impacts of involving the private sector in providing hospital care. PMID:25759452

  15. Graphene oxide modification of plexciton states in the strong coupling limit

    NASA Astrophysics Data System (ADS)

    Fedele, Stefano; Murphy, Antony; Pollard, Robert; Rice, James

    2017-03-01

    We demonstrate that gold nanorod arrays support LSPR modes which coincide with Frankel excitons in an organic J-aggregate complex forming plexciton hybrid states when tuned to within the strong coupling limit. The addition of graphene oxide modifies the strong coupling resonance conditions and Rabi frequency. This demonstrates that the formation of exciton–plasmon plexciton states in the strong coupling limit can be modified and potentially controlled through the introduction of graphene oxide which can have implications for energy harvesting or biosensor device design.

  16. Photoemission study of praseodymia in its highest oxidation state: The necessity of in situ plasma treatment

    SciTech Connect

    Schaefer, A.; Zielasek, V.; Baeumer, M.; Gevers, S.; Wollschlaeger, J.; Schroeder, T.; Falta, J.

    2011-02-07

    A cold radio frequency oxygen plasma treatment is demonstrated as a successful route to prepare clean, well-ordered, and stoichiometric PrO{sub 2} layers on silicon. High structural quality of these layers is shown by x-ray diffraction. So far unobserved spectral characteristics in Pr 3d x-ray photoelectron (XP) spectra of PrO{sub 2} are presented as a fingerprint for praseodymia in its highest oxidized state. They provide insight in the electronic ground state and the special role of praseodymia among the rare earth oxides. They also reveal that former XP studies suffered from a significant reduction at the surface.

  17. How far can we go? Quantum-chemical investigations of oxidation state +IX.

    PubMed

    Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian

    2010-03-15

    The highest known oxidation state of any element is +VIII. After the recent discovery of Ir(VIII)O(4) under cryogenic conditions, we have investigated the stability of cationic species [MO(4)](+) (M=Rh,Ir,Mt). Such compounds would formally represent the new oxidation state +IX, which is experimentally unknown so far for the whole periodic table. [IrO(4)](+) is predicted to be the most promising candidate. The calculated spin-orbit (SO) coupling shows only minor effects on the stability of the iridium species, whereas SO-coupling increases enormously for the corresponding Eka-Iridium (Meitnerium) complexes and destabilizes these.

  18. US state variation in autism insurance mandates: Balancing access and fairness

    PubMed Central

    Johnson, Rebecca A; Danis, Marion; Hafner-Eaton, Chris

    2016-01-01

    This article examines how nations split decision-making about health services between federal and sub-federal levels, creating variation between states or provinces. When is this variation ethically acceptable? We identify three sources of ethical acceptability—procedural fairness, value pluralism, and substantive fairness—and examine these sources with respect to a case study: the fact that only 30 out of 51 US states or territories passed mandates requiring private insurers to offer extensive coverage of autism behavioral therapies, creating variation for privately insured children living in different US states. Is this variation ethically acceptable? To address this question, we need to analyze whether mandates go to more or less needy states and whether the mandates reflect value pluralism between states regarding government’s role in health care. Using time-series logistic regressions and data from National Survey of Children with Special Health Care Needs, Individual with Disabilities Education Act, legislature political composition, and American Board of Pediatrics workforce data, we find that the states in which mandates are passed are less needy than states in which mandates have not been passed, what we call a cumulative advantage outcome that increases between-state disparities rather than a compensatory outcome that decreases between-state disparities. Concluding, we discuss the implications of our analysis for broader discussions of variation in health services provision. PMID:24789870

  19. High oxidation state during formation of Martian nakhlites

    NASA Astrophysics Data System (ADS)

    Szymanski, Anja; Brenker, Frank E.; Palme, Herbert; El Goresy, Ahmed

    2010-01-01

    The oxygen fugacities recorded in the nakhlites Nakhla, Yamato-000593 (Y-000593), Lafayette, and NWA998 were studied by applying the Fe,Ti-oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite-Magnetite-Quartz) buffer (NWA998=FMQ-0.8 Y-000593=FMQ-0.7 Nakhla=FMQ Lafayette=FMQ+ 0.1). The corresponding equilibration temperatures are 810°C for Nakhla and Y-000593, 780°C for Lafayette and 710°C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ-1 to FMQ-4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)-enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle (Brandon et al. 2000) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of

  20. Current state of open access to journal publications from the University of Zagreb School of Medicine

    PubMed Central

    Škorić, Lea; Vrkić, Dina; Petrak, Jelka

    2016-01-01

    Aims To identify the share of open access (OA) papers in the total number of journal publications authored by the members of the University of Zagreb School of Medicine (UZSM) in 2014. Methods Bibliographic data on 543 UZSM papers published in 2014 were collected using PubMed advanced search strategies and manual data collection methods. The items that had “free full text” icons were considered as gold OA papers. Their OA availability was checked using the provided link to full-text. The rest of the UZSM papers were analyzed for potential green OA through self-archiving in institutional repository. Papers published by Croatian journals were particularly analyzed. Results Full texts of approximately 65% of all UZSM papers were freely available. Most of them were published in gold OA journals (55% of all UZSM papers or 85% of all UZSM OA papers). In the UZSM repository, there were additional 52 freely available authors’ manuscripts from subscription-based journals (10% of all UZSM papers or 15% of all UZSM OA papers). Conclusion The overall proportion of OA in our study is higher than in similar studies, but only half of gold OA papers are accessible via PubMed directly. The results of our study indicate that increased quality of metadata and linking of the bibliographic records to full texts could assure better visibility. Moreover, only a quarter of papers from subscription-based journals that allow self-archiving are deposited in the UZSM repository. We believe that UZSM should consider mandating all faculty members to deposit their publications in UZSM OA repository to increase visibility and improve access to its scientific output. PMID:26935617

  1. Health and access to care among employed and unemployed adults: United States, 2009-2010.

    PubMed

    Driscoll, Anne K; Bernstein, Amy B

    2012-01-01

    Lack of health insurance has been shown to be associated with problems obtaining needed health care (3), and the unemployed are less likely to have health insurance than are their employed counterparts. The number and rate of adults aged 18–64 years lacking health insurance has been increasing, in part due to the historically high unemployment rates. However, even having comprehensive health insurance coverage does not guarantee access to needed services, in part because of cost-sharing, including copayments and deductibles. Unemployed persons may retain their health insurance through the Consolidated Omnibus Budget Reconciliation Act (COBRA) or through other programs, but COBRA payments in particular may be quite expensive, and individual insurance plans may be less comprehensive than many employer-sponsored plans (4). Thus, although some unemployed adults may retain coverage for some period of time, they may be less able to meet cost-sharing requirements because of reduced income associated with unemployment. This analysis compares the health status and access to care of employed and unemployed adults and shows that unemployment is associated with unfavorable health and access to care among adults in the labor force over and above the loss of health insurance. However, it is not possible to know from these data the extent to which unemployment is a cause or effect of poor health. Poor health may be both a cause and effect of unemployment. Adults with private health insurance were more likely to have serious psychological distress and respondent-reported fair or poor health status if they were unemployed. In fact, unemployed privately insured persons were more than three times as likely to have serious psychological distress as their employed counterparts. Similar patterns were found for adults with public insurance and no health insurance. There were no significant differences between employed and unemployed adults in the percentage who had ever been diagnosed

  2. Ensuring Equitable Access to Strong Teachers: Important Elements of an Effective State Action Plan

    ERIC Educational Resources Information Center

    Metz, Rachel

    2015-01-01

    Every community has strong teachers who help their students learn to high levels. But far too often low-income students and students of color are short-changed when it comes to teacher quality. Federal law requires states to end these disparities. But states, recognizing that most hiring, compensation, and promotional decisions, not to mention…

  3. Design Guidelines: Study of Handicapped Accessibility in South Carolina State Parks.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Parks, Recreation, and Tourism, Columbia. Div. of Engineering and Planning.

    The publication provides guidelines for the design of new facilities or rehabilitation of existing facilities to accommodate physically handicapped persons in the South Carolina State Parks system. The guidelines are also recommended for use in regional, special district, county, and municipal parks within the state. The guidelines were developed…

  4. State-Dependent Accessibility of Retrieval Cues in the Retention of a Categorized List

    ERIC Educational Resources Information Center

    Eich, James Eric; And Others

    1975-01-01

    Subjects were asked to encode and recall lists of words under the influences of marijuana and a marijuana placebo. Free recall was more complete when both encoding and recall were after marijuana use than in the encode-marijuana, recall-placebo state. Recall must depend on restoration of dissociated encoding state. (CHK)

  5. Legislative Agenda Setting for In-State Resident Tuition Policies: Immigration, Representation, and Educational Access

    ERIC Educational Resources Information Center

    McLendon, Michael K.; Mokher, Christine G.; Flores, Stella M.

    2011-01-01

    Few recent issues in higher education have been as contentious as that of legislation extending in-state college tuition benefits to undocumented students, initiatives now known as in-state resident tuition (ISRT) policies. Building on several strands of literature in political science and higher education studies, we analyze the effects of…

  6. Improving Access to Malaria Rapid Diagnostic Test in Niger State, Nigeria: An Assessment of Implementation up to 2013

    PubMed Central

    Awoleye, Olatunji Joshua; Thron, Chris

    2016-01-01

    Nigeria's 2009–2013 malaria strategic plan adopted WHO diagnosis and treatment guidelines, which include the use of rapid diagnostic tests (RDTs) prior to prescribing treatment with artemisinin combination therapies (ACTs). The current study explores accessibility barriers to the use of RDTs in Niger State and makes recommendations for improving the uptake of RDTs. The study employs literature review, review of data from the Niger State Health Management Information System for January–October 2013, and application of Peters' conceptual framework for assessing access to health services. Data showed that 27 percent of public health facilities (HFs) implemented RDTs, with the aid of donor funds. In these facilities, 77 percent of fever cases presented during the study period were tested with RDTs; 53 percent of fever cases were confirmed cases of malaria, while 60 percent of fever cases were treated. Stockouts of RDTs were a major constraint, and severe fever tended to trigger presumptive treatment. We conclude that although implementation of RDTs led to a reduction in the use of ACTs at HFs, more substantial reduction could be achieved if the state government directed more resources towards the acquisition of RDTs as well as raising the level of awareness of potential users. PMID:27042376

  7. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies.

    PubMed

    Yang, Rong; Jain, Tushar; Lynaugh, Heather; Nobrega, R Paul; Lu, Xiaojun; Boland, Todd; Burnina, Irina; Sun, Tingwan; Caffry, Isabelle; Brown, Michael; Zhi, Xiaoyong; Lilov, Asparouh; Xu, Yingda

    2017-02-14

    Susceptibility of methionine to oxidation is an important concern for chemical stability during the development of a monoclonal antibody (mAb) therapeutic. To minimize downstream risks, leading candidates are usually screened under forced oxidation conditions to identify oxidation-labile molecules. Here we report results of forced oxidation on a large set of in-house expressed and purified mAbs with variable region sequences corresponding to 121 clinical stage mAbs. These mAb samples were treated with 0.1% H2O2 for 24 hours before enzymatic cleavage below the hinge, followed by reduction of inter-chain disulfide bonds for the detection of the light chain, Fab portion of heavy chain (Fd) and Fc by liquid chromatography-mass spectrometry. This high-throughput, middle-down approach allows detection of oxidation site(s) at the resolution of 3 distinct segments. The experimental oxidation data correlates well with theoretical predictions based on the solvent-accessible surface area of the methionine side-chains within these segments. These results validate the use of upstream computational modeling to predict mAb oxidation susceptibility at the sequence level.

  8. Stabilisation and humanitarian access in a collapsed state: the Somali case.

    PubMed

    Menkhaus, Ken

    2010-10-01

    Somalia today is the site of three major threats: the world's worst humanitarian crisis; the longest-running instance of complete state collapse; and a robust jihadist movement with links to Al-Qa'ida. External state-building, counter-terrorism and humanitarian policies responding to these threats have worked at cross-purposes. State-building efforts that insist humanitarian relief be channelled through the nascent state in order to build its legitimacy and capacity undermine humanitarian neutrality when the state is a party to a civil war. Counter-terrorism policies that seek to ensure that no aid benefits terrorist groups have the net effect of criminalising relief operations in countries where poor security precludes effective accountability. This paper argues that tensions between stabilisation and humanitarian goals in contemporary Somalia reflect a long history of politicisation of humanitarian operations in the country.

  9. Sulfur-Bridged Terthiophene Dimers: How Sulfur Oxidation State Controls Interchromophore Electronic Coupling.

    PubMed

    Cruz, Chad D; Christensen, Peter R; Chronister, Eric L; Casanova, David; Wolf, Michael O; Bardeen, Christopher J

    2015-10-07

    Symmetric dimers have the potential to optimize energy transfer and charge separation in optoelectronic devices. In this paper, a combination of optical spectroscopy (steady-state and time-resolved) and electronic structure theory is used to analyze the photophysics of sulfur-bridged terthiophene dimers. This class of dimers has the unique feature that the interchromophore (intradimer) electronic coupling can be modified by varying the oxidation state of the bridging sulfur from sulfide (S), to sulfoxide (SO), to sulfone (SO2). Photoexcitation leads to the formation of a delocalized charge resonance state (S1) that relaxes quickly (<10 ps) to a charge-transfer state (S1*). The amount of charge-transfer character in S1* can be enhanced by increasing the oxidation state of the bridging sulfur group as well as the solvent polarity. The S1* state has a decreased intersystem crossing rate when compared to monomeric terthiophene, leading to an enhanced photoluminescence quantum yield. Computational results indicate that electrostatic screening by the bridging sulfur electrons is the key parameter that controls the amount of charge-transfer character. Control of the sulfur bridge oxidation state provides the ability to tune interchromophore interactions in covalent assemblies without altering the molecular geometry or solvent polarity. This capability provides a new strategy for the design of functional supermolecules with applications in organic electronics.

  10. Racial Disparities in Access and Outcomes of Cholecystectomy in the United States.

    PubMed

    Gahagan, John V; Hanna, Mark H; Whealon, Matthew D; Maximus, Steven; Phelan, Michael J; Lekawa, Michael; Barrios, Cristobal; Bernal, Nicole P

    2016-10-01

    Disparities in access to health care between white and minority patients are well described. We aimed to analyze the trends and outcomes of cholecystectomy based on racial classification. The Nationwide Inpatient Sample database was reviewed for all patients undergoing cholecystectomy from 2009 to 2012. Patients were stratified as white or non-white. A total of 243,536 patients were analyzed: 159,901 white and 83,635 non-white. Non-white patients had significantly higher proportions of Medicaid (25% vs 9.3%), self-pay (14% vs 7.1%), and no-charge (1.8% vs 0.64%). Non-white patients had significantly higher rates of emergent admission (84% vs 78%) compared with the white patients. Multivariate analysis revealed that non-whites had a significantly longer length of stay [mean difference of 0.14 days, 95% confidence interval (CI) 0.08-0.20] and higher total hospital charges (mean difference of $6748.00, 95% CI 5994.19-7501.81) than whites, despite a lower morbidity (odds ratio 0.94, 95% CI 0.90-0.98). Use of laparoscopy and mortality were not different. These differences persisted on subgroup analysis by insurance type. These findings suggest a gap in access to and outcomes of cholecystectomy in the minority population nationwide.

  11. Effect of oxidation state on Bi mineral speciation in oxidized and reduced granitoids from the Uetsu region, NE Japan

    NASA Astrophysics Data System (ADS)

    Izumino, Yuya; Maruoka, Teruyuki; Nakashima, Kazuo

    2016-06-01

    The relationship between bismuth (Bi) mineral speciation and redox state in three types of granitoids from the Uetsu region, northeast Japan is investigated. Electron microprobe analysis of Bi minerals, sphalerite, Mg-Fe-bearing carbonate minerals, and muscovite, as well as sulfur isotope analysis of sulfide minerals and microthermometric study of fluid inclusions reveal that Bi mineral speciation varies according to the redox state of the granitoids. For example, native bismuth and bismuthinite are abundant and Bi sulfosalts are rare in the lowest fS2 and fO2 mineralized zones of the reduced Iwafune granite (S-type, ilmenite-series) while Bi sulfosalts (Bi3+) are abundant and trace amounts of native bismuth (Bi0) and bismuthinite are found in the highest fS2 and fO2 mineralized zones of the oxidized Wasada granodiorite (I-type, magnetite-series). Bismuthinite is a major Bi mineral, and native bismuth and Bi sulfosalts occur in only minor amounts in the mineralized zones of the Nishitagawa granodiorite (I-type, ilmenite-series), which has intermediate fS2 and fO2 to that of the Iwafune and Wasada samples. Our study indicates that Bi mineral speciation related to granitic intrusive activity is controlled by the redox state of the magmatism, such that native bismuth is typical of reducing conditions, whereas Bi sulfosalts are typical of oxidizing conditions.

  12. Avenues and barriers to access of services for immigrant elders: state and local policies for OAA units on aging.

    PubMed

    Okafor, Maria C

    2009-07-01

    The diversification and aging of the US population has been at the root of many political and policy debates in recent years. Of particular interest has been the place of immigrants in an aging society, and what rights these immigrants are entitled to. The objective of this article is to describe the current avenues and barriers to access of services for immigrant elders and examine potential solutions for reform. The article begins with a historical overview of the policy issue, followed by the current status of the issue in the United States and suggestions for reform.

  13. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    NASA Astrophysics Data System (ADS)

    Baltrusaitis, Jonas; Mendoza-Sanchez, Beatriz; Fernandez, Vincent; Veenstra, Rick; Dukstiene, Nijole; Roberts, Adam; Fairley, Neal

    2015-01-01

    Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  14. Methionine oxidation of monomeric lambda repressor: the denatured state ensemble under nondenaturing conditions.

    PubMed

    Chugha, Preeti; Sage, Harvey J; Oas, Terrence G

    2006-03-01

    Although poorly understood, the properties of the denatured state ensemble are critical to the thermodynamics and the kinetics of protein folding. The most relevant conformations to cellular protein folding are the ones populated under physiological conditions. To avoid the problem of low expression that is seen with unstable variants, we used methionine oxidation to destabilize monomeric lambda repressor and predominantly populate the denatured state under nondenaturing buffer conditions. The denatured ensemble populated under these conditions comprises conformations that are compact. Analytical ultracentrifugation sedimentation velocity experiments indicate a small increase in Stokes radius over that of the native state. A significant degree of alpha-helical structure in these conformations is detected by far-UV circular dichroism, and some tertiary interactions are suggested by near-UV circular dichroism. The characteristics of the denatured state populated by methionine oxidation in nondenaturing buffer are very different from those found in chemical denaturant.

  15. Access road from State Route 240 to the 200 West Area, Hanford Site, Richland, Washington: Environmental assessment

    SciTech Connect

    Not Available

    1994-02-01

    The US Department of Energy (DOE) proposes to construct an access road on the Hanford Site, from State Route (SR) 240 to Beloit Avenue in the 200 West Area. Traffic volume during shift changes creates an extremely serious congestion and safety problem on Route 4S from the Wye barricade to the 200 Areas. A Risk Evaluation (Trost 1992) indicated that there is a probability of 1.53 fatal accidents on Route 4S within 2 years. To help alleviate this danger, a new 3.5-kilometer (2.2-mile)-long access road would be constructed from Beloit Avenue in the 200 West Area to SR 240. In addition, administrative controls such as redirecting traffic onto alternate routes would be used to further reduce traffic volume. The proposed access road would provide an alternative travel-to-work route for many outer area personnel, particularly those with destinations in the 200 West Area. This proposal is the most reasonable alternative to reduce the problem. While traffic safety would be greatly improved, a small portion of the shrub-steppe habitat would be disturbed. The DOE would offset any habitat damage by re-vegetation or other appropriate habitat enhancement activities elsewhere on the Hanford Site. This Environmental Assessment (EA) provides information about the environmental impacts of the proposed action, so a decision can be made to either prepare an Environmental Impact Statement or issue a Finding of No Significant Impact.

  16. [Factors associated with waiting time and access to kidney transplants in Belo Horizonte, Minas Gerais State, Brazil'].

    PubMed

    Machado, Elaine Leandro; Gomes, Isabel Cristina; Acurcio, Francisco de Assis; César, Cibele Comini; Almeida, Maria Cristina de Mattos; Cherchiglia, Mariangela Leal

    2012-12-01

    The objective of this study was to analyze factors associated with access to kidney transplants from living and cadaver donors in Belo Horizonte, Minas Gerais State, Brazil. The authors conducted a non-concurrent cohort study of patients on the waiting list for kidney transplants from 2000 to 2004 and followed until transplantation, death, exclusion, or continued presence on the line at the end of the study on December 31, 2005. The Cox model was used for competing risks. Of the 835 patients, 22.7% were transplanted. Lower risk of transplantation from living donors and cadavers was observed in patients with more time on dialysis and blood type O. Lower risk of transplantation from living donors was observed in residents in a high health risk area and in recipients with diabetes. The greatest disparity in access was observed in transplants from living donors, since there were no significant socio-demographic differences in transplants from cadaver donors. One can infer that the organ allocation system contributed to mitigating socio-demographic inequalities, and that clinical issues were more relevant in access to transplants from cadaver donors.

  17. How different oxidation states of crystalline myoglobin are influenced by X-rays.

    PubMed

    Hersleth, Hans-Petter; Andersson, K Kristoffer

    2011-06-01

    X-ray induced radiation damage of protein crystals is well known to occur even at cryogenic temperatures. Redox active sites like metal sites seem especially vulnerable for these radiation-induced reductions. It is essential to know correctly the oxidation state of metal sites in protein crystal structures to be able to interpret the structure-function relation. Through previous structural studies, we have tried to characterise and understand the reactions between myoglobin and peroxides. These reaction intermediates are relevant because myoglobin is proposed to take part as scavenger of reactive oxygen species during oxidative stress, and because these intermediates are similar among the haem peroxidases and oxygenases. We have in our previous studies shown that these different myoglobin states are influenced by the X-rays used. In this study, we have in detail investigated the impact that X-rays have on these different oxidation states of myoglobin. An underlying goal has been to find a way to be able to determine mostly unreduced states. We have by using single-crystal light absorption spectroscopy found that the different oxidation states of myoglobin are to a different extent influenced by the X-rays (e.g. ferric Fe(III) myoglobin is faster reduced than ferryl Fe(IV)═O myoglobin). We observe that the higher oxidation states are not reduced to normal ferrous Fe(II) or ferric Fe(III) states, but end up in some intermediate and possibly artificial states. For ferric myoglobin, it seems that annealing of the radiation-induced/reduced state can reversibly more or less give the starting point (ferric myoglobin). Both scavengers and different dose-rates might influence to which extent the different states are affected by the X-rays. Our study shows that it is essential to do a time/dose monitoring of the influence X-rays have on each specific redox-state with spectroscopic techniques like single-crystal light absorption spectroscopy. This will determine to which

  18. Fast Photochemical Oxidation of Proteins for Comparing Solvent-Accessibility Changes Accompanying Protein Folding: Data Processing and Application to Barstar

    PubMed Central

    Gau, Brian C.; Chen, Jiawei; Gross, Michael L.

    2013-01-01

    Mass spectrometry-based protein footprinting reveals regional and even amino-acid structural changes and fills the gap for many proteins and protein interactions that cannot be studied by X-ray crystallography or NMR spectroscopy. Hydroxyl radical-mediated labeling has proven to be particularly informative in this pursuit because many solvent-accessible residues can be labeled by •OH in a protein or protein complex, thus providing more coverage than does specific amino-acid modifications. Finding all the •OH-labeling sites requires LC/MS/MS analysis of a proteolyzed sample, but data processing is daunting without the help of automated software. We describe here a systematic means for achieving a comprehensive residue-resolved analysis of footprinting data in an efficient manner, utilizing software common to proteomics core laboratories. To demonstrate the method and the utility of •OH-mediated labeling, we show that FPOP easily distinguishes the buried and exposed residues of barstar in its folded and unfolded states. PMID:23485913

  19. Assessing the impact of state "opt-out" policy on access to and costs of surgeries and other procedures requiring anesthesia services.

    PubMed

    Schneider, John E; Ohsfeldt, Robert; Li, Pengxiang; Miller, Thomas R; Scheibling, Cara

    2017-12-01

    In 2001, the U.S. government released a rule that allowed states to "opt-out" of the federal requirement that a physician supervise the administration of anesthesia by a nurse anesthetist. To date, 17 states have opted out. The majority of the opt-out states cited increased access to anesthesia care as the primary rationale for their decision. In this study, we assess the impact of state opt-out policy on access to and costs of surgeries and other procedures requiring anesthesia services. Our null hypothesis is that opt-out rule adoption had little or no effect on surgery access or costs. We estimate an inpatient model of surgeries and costs and an outpatient model of surgeries. Each model uses data from multiple years of U.S. inpatient hospital discharges and outpatient surgeries. For inpatient cost models, the coefficient of the opt-out variable was consistently positive and also statistically significant in most model specifications. In terms of access to inpatient surgical care, the opt-out rules did not increase or decrease access in opt-out states. The results for the outpatient access models are less consistent, with some model specifications indicating a reduction in access associated with opt-out status, while other model specifications suggesting no discernable change in access. Given the sensitivity of model findings to changes in model specification, the results do not provide support for the belief that opt-out policy improves access to outpatient surgical care, and may even reduce access to outpatient surgical care (among freestanding facilities).

  20. Model for determination of mid-gap states in amorphous metal oxides from thin film transistors

    NASA Astrophysics Data System (ADS)

    Bubel, S.; Chabinyc, M. L.

    2013-06-01

    The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.

  1. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.

    PubMed

    Lehninger, A L; Vercesi, A; Bababunmi, E A

    1978-04-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca(2+) and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca(2+) is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as beta-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca(2+). Successive cycles of Ca(2+) release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca(2+)-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca(2+), mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport.

  2. Teaching the Properties of Chromium's Oxidation States with a Case Study Method

    ERIC Educational Resources Information Center

    Ozdilek, Zehra

    2015-01-01

    The purpose of this study was to investigate how a mixed-method case study affects pre-service science teachers' awareness of hexavalent chromium pollution and content knowledge about the properties of chromium's different oxidation states. The study was conducted in Turkey with 55 sophomores during the fall semester of 2013-2014. The students…

  3. Iron Oxidation States of Matrix in Carbonaceous Chondrites Acfer 094 and MIL 07687

    NASA Astrophysics Data System (ADS)

    Vaccaro, E.; King, A. J.; Schofield, P. F.; Abyaneh, M. K.; Kaulich, B.; Russell, S. S.

    2016-08-01

    STXM Fe-oxidation state study in Acfer 094 and MIL 07687 matrix revealed high Fe3+/ΣFe ratios likely to be a primordial signature. Terrestrial weathering cannot be ruled out but is unlikely to have a pervasive effect throughout entire meteorites.

  4. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    PubMed Central

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  5. Compositional and Oxidation State Zoning in Martian Pyroxene: Paradox or Process Indicator

    NASA Technical Reports Server (NTRS)

    Delaney, Jeremy S.; Dyar, M. D.

    2002-01-01

    Coordinated zoning studies of major, minor, trace elements and oxidation states in Martian minerals elucidate the magmatic evolution of QUE94201 and suggest an important role for olivine and volatile fluxing in a complex magmatic history. Additional information is contained in the original extended abstract.

  6. ENVIRONMENTAL VARIABLES CONTROLLING NITRIC OXIDE EMISSIONS FROM AGRICULTURAL SOILS IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Fluxes of nitric oxide (NO) were measured during the summer of 1994 (12 July to 11 August) in the Upper Coastal Plain of North Carolina in a continuing effort to characterize NO emissions from intensively managed agricultural soils in the southeastern United States. Previous work...

  7. The Silver Complexes of Porphyrins, Corroles, and Carbaporphyrins: Silver in the Oxidation States II and III

    ERIC Educational Resources Information Center

    Bruckner, Christian

    2004-01-01

    Studies in relation to the silver complexes of porphyrins, corroles and carbaporphyrins are presented especially with relation to silver in the oxidation states II and III. It is seen that the Ag(sub III) complex was electrochemically readily and reversibly reduced to the corresponding Ag(sub II) complex, thus indicating that the complex could be…

  8. Theoretical comparison of advanced methods for calculating nitrous oxide fluxes using non-steady state chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...

  9. Accessing the Dark Exciton States in Semiconducting Single-Walled Carbon Nanotubes with Terahertz Pulses

    NASA Astrophysics Data System (ADS)

    Luo, Liang; Chatzakis, Ioannis; Wang, Jigang; Wang Team, Dr

    2014-03-01

    Singled-walled carbon nanotubes (SWNTs) represent a model system to systematically investigate correlated charge excitation in 1-D limits. One of the most outstanding issues both in fundamental nanotube physics and for their technological development is to detect and understand optically-forbidden, dark collective states. Thus far supporting evidence of dark states has been demonstrated in static magneto-optics and light scattering. However, the unique internal transitions from dark excitonic ground states and their dynamic evolution remain highly elusive. We report our investigation of this problem using optical pump, terahertz probe spectroscopy of (6,5) and (7,5) SWNTs. We measure transient THz conductivity from 0.5-2.5 THz (2-10.5 meV) at low temperature down to 5 K with resonant and off-resonant excitation at the E22 transitions of (6,5) and (7,5) nanotubes. These results reveal, for the first time, dynamics of lowest dark excitons and density-dependent renormalization of these many-particle states. The internal-excitonic spectroscopy with THz pulses represents a fundamentally new spectroscopy tools to study dark excitons and shine new lights on the correlation physics of excitonic ground states.

  10. Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+3 oxidation state) methyltransferase-knockout mice.

    PubMed

    Currier, Jenna M; Douillet, Christelle; Drobná, Zuzana; Stýblo, Miroslav

    2016-11-01

    Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAs(III)) in drinking water. WT mice were exposed to 50mg/L As and As3mt-KO mice that cannot tolerate 50mg/L As were exposed to 0, 15, 20, 25 or 30mg/L As. iAs(III) accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAs(III), MAs(III) and DMAs(III) represented 55%-68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAs(III), were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure.

  11. Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+3 oxidation state) methyltransferase-knockout mice

    PubMed Central

    Currier, Jenna M.; Douillet, Christelle; Drobná, Zuzana; Stýblo, Miroslav

    2017-01-01

    Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50 mg/L As and As3mt-KO mice that cannot tolerate 50 mg/L As were exposed to 0, 15, 20, 25 or 30 mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%–68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure. PMID:28007165

  12. Comparing racial and immigrant health status and health care access in later life in Canada and the United States.

    PubMed

    Prus, Steven G; Tfaily, Rania; Lin, Zhiqiu

    2010-09-01

    Little comparative research exists on health experiences and conditions of minority groups in Canada and the United States, despite both countries having a racially diverse population with a significant proportion of immigrants. This article explores race and immigrant disparities in health and health care access across the two countries. The study focus was on middle and old age given the change and increasing diversity in health and health care policy, such as Medicare. Logistic regression analysis of data from the 2002-2003 Joint Canada/United States Survey of Health shows that the joint effect of race and nativity on health outcomes - health differences between native and foreign-born Whites and non-Whites - is largely insignificant in Canada but considerable in the U.S. Non-White native and foreign-born Americans within both 45-to-64 and 65-and-over age groups experience significant disadvantage in health status and access to care, irrespective of health insurance coverage, demographic, socio-economic, and lifestyle factors.

  13. Paying the price works: increasing goal-state access cost improves problem solving and mitigates the effect of interruption.

    PubMed

    Morgan, Phillip L; Patrick, John

    2013-01-01

    The aim of this paper was to investigate whether it was possible to induce more internal planning in the four-disk Tower of Hanoi (ToH) in order not only to produce more efficient problem solving but also to make it more resistant to the negative effect of interruption. The theoretical frameworks of soft constraints and the memory for goals model underpinned Experiments 1 and 2. In both experiments, three goal-state access cost conditions were used: high (mouse movements and 2.5-s delay), medium (mouse movements) and low (goal state always available). In Experiment 1, more memory-based planning was induced by the high cost condition, which resulted in fewer moves to solution and the gradual development of an efficient subgoaling strategy, resulting in more perfect solutions. In Experiment 2, the same condition protected performance against a 10-s interruption irrespective of the interrupting task (blank screen, mental arithmetic, or three-disk ToH). The more memory-based planning strategy, induced by high access cost, presumably strengthened participants' goals during planning and problem solving, making them less susceptible to decay and interference from interruption. These novel results are discussed in the context of other recent studies.

  14. Racial/Ethnic Disparities in Chronic Diseases of Youths and Access to Health Care in the United States

    PubMed Central

    Price, James H.; Braun, Robert

    2013-01-01

    Racial/ethnic minorities are 1.5 to 2.0 times more likely than whites to have most of the major chronic diseases. Chronic diseases are also more common in the poor than the nonpoor and this association is frequently mediated by race/ethnicity. Specifically, children are disproportionately affected by racial/ethnic health disparities. Between 1960 and 2005 the percentage of children with a chronic disease in the United States almost quadrupled with racial/ethnic minority youth having higher likelihood for these diseases. The most common major chronic diseases of youth in the United States are asthma, diabetes mellitus, obesity, hypertension, dental disease, attention-deficit/hyperactivity disorder, mental illness, cancers, sickle-cell anemia, cystic fibrosis, and a variety of genetic and other birth defects. This review will focus on the psychosocial rather than biological factors that play important roles in the etiology and subsequent solutions to these health disparities because they should be avoidable and they are inherently unjust. Finally, this review examines access to health services by focusing on health insurance and dental insurance coverage and access to school health services. PMID:24175301

  15. Direct optical access to the triplet manifold of states in H2

    NASA Astrophysics Data System (ADS)

    Jungen, Ch.; Glass-Maujean, M.

    2016-03-01

    A number of unassigned lines in the absorption spectrum of diatomic hydrogen are attributed to nominally forbidden transitions from the ground state to the n f manifold of states (Rydberg electron with ℓ =3 orbital momentum). They appear via weak ℓ - mixing interactions leading to local level perturbations. Our analysis is based on multichannel quantum defect theory and uses known theoretical information from the literature. The upper levels of most of these transitions are known to give rise to molecular fluorescence, and they are shown to be singlet-triplet mixed. We conclude that the well-known metastable c 3Πu- state can be populated via one-photon absorption of uv photons followed by cascade emission 4 f →3 d →2 p .

  16. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    SciTech Connect

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois; Ams, David; Richmann, M. K.; Khaing, H.; Swanson, J. S.

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  17. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    SciTech Connect

    Liang, Wenchuan

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  18. Hamiltonian Tomography in an Access-Limited Setting without State Initialization

    NASA Astrophysics Data System (ADS)

    di Franco, C.; Paternostro, M.; Kim, M. S.

    2009-05-01

    We propose a scheme for the determination of the coupling parameters in a chain of interacting spins. This requires only time-resolved measurements over a single particle, simple data postprocessing and no state initialization or prior knowledge of the state of the chain. The protocol fits well into the context of quantum-dynamics characterization and is efficient even when the spin chain is affected by general dissipative and dephasing channels. We illustrate the performance of the scheme by analyzing explicit examples and discuss possible extensions.

  19. Electronic Structure and Oxidation State Changes in the Mn (4) Ca Cluster of Photosystem II

    SciTech Connect

    Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.; /SLAC

    2012-08-17

    Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i = 0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  20. Electronic Structure and Oxidation State Changes in the Mn4Ca Cluster of Photosystem II

    SciTech Connect

    Yano, Junko; Pushkar, Yulia; Messinger, Johannes; Bergmann, Uwe; Glatzel, Pieter; Yachandra, Vittal K

    2007-08-03

    Oxygen-evolving complex (Mn4Ca cluster) of Photosystem II cycles through five intermediate states (Si-states, i =0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn4(III2,IV2) and Mn4(III,IV3) for S1 and S2 states, while it is still controversial for the S0 and S3 states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn4Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mncomplexes. The spectral changes in the Mn 1s2p3/2 RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S0 to S1, and S1 to S2 transitions is twice as large as that during the S2 to S3 transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  1. Dependence on State Funding, Local Educational Opportunities, and Access to High School Credentials in Israel

    ERIC Educational Resources Information Center

    Addi-Raccah, Audrey; Mazawi, Andre Elias

    2004-01-01

    A major shortcoming of macro-spatial research undertaken to date in Israel pertains to the neglect of state investment-related measures and the extent to which they mediate unequal opportunities to learn (OTL) and educational opportunities between localities. In the present study, OTL refer to class size and high-school tracking patterns.…

  2. US State Variation in Autism Insurance Mandates: Balancing Access and Fairness

    ERIC Educational Resources Information Center

    Johnson, Rebecca A.; Danis, Marion; Hafner-Eaton, Chris

    2014-01-01

    This article examines how nations split decision-making about health services between federal and sub-federal levels, creating variation between states or provinces. When is this variation ethically acceptable? We identify three sources of ethical acceptability--procedural fairness, value pluralism, and substantive fairness--and examine these…

  3. State Policy Recommendations for Providing Educators Access to College- and Career-Ready Open Educational Resources

    ERIC Educational Resources Information Center

    Voss, Hans

    2015-01-01

    As states and districts transition to college- and career-ready standards and aligned assessments, the need for high-quality instructional materials is clear. Open Educational Resources (OER) offer a low-cost solution with high potential to assist teachers nationwide in helping students meet the demands of higher standards. More and more…

  4. Access or Inclusion? Conceptualisation and Operationalisation of Gender Equality in Zimbabwean State Universities

    ERIC Educational Resources Information Center

    Chauraya, Efiritha

    2014-01-01

    This article explores concerns about gender inequality in Zimbabwean state universities. The researcher's interest arose from the realisation of persistent gender inequalities despite initiatives to close gender gaps. Of particular concern is the conceptualization and operationalisation of gender equality in institutions. Focusing only on the…

  5. Access to Supplemental Educational Services in the Central Region States. Issues & Answers. REL 2007-No. 007

    ERIC Educational Resources Information Center

    Barley, Zoe; Wegner, Sandra K.

    2007-01-01

    The Central Region states (Colorado, Kansas, Missouri, Nebraska, North Dakota, South Dakota, and Wyoming) lag behind the nation in the rate of participation in supplemental educational services that schools failing to make adequate progress for three consecutive years must offer to eligible students under the No Child Left Behind Act. This study…

  6. The 2% Transition: Supporting Access to State Assessments for Students with Disabilities

    ERIC Educational Resources Information Center

    Jamgochian, Elisa M.; Ketterlin-Geller, Leanne R.

    2015-01-01

    Most students with disabilities participate in state assessments with or without accommodations [based on each student's Individualized Education Program (IEP)]. A small number of students with the most severe or profound intellectual disabilities participate in an alternate assessment based on alternate achievement standards (AA-AAS). Until…

  7. Comparative susceptibility of kudzu accessions from Southeastern United States to infection by Phakopsora pachyrhizi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean rust, caused by Phakopsora pachyrhizi, was first discovered in the United States (U.S.), in the fall of 2004. The potential for economic loss in the U.S. hinges largely on whether or not the pathogen can readily survive winters in the absence of soybean. Kudzu (Pueraria montana var. lobata...

  8. Moving Forward: Southern States Take Action To Improve Access to Quality, Affordable Child Care.

    ERIC Educational Resources Information Center

    Southern Inst. on Children and Families, Columbia, SC.

    The Southern Regional Initiative on Child Care (established by the Southern Institute on Children and Families) is guided by the Southern Regional Task Force on Child Care including representatives from 16 southern states and the District of Columbia. The initial charge from the Task Force was to develop a southern regional action plan to improve…

  9. Does Access to High Quality Early Education Vary by State Policy Context?

    ERIC Educational Resources Information Center

    Connors, Maia C.; Morris, Pamela A.; Friedman-Krauss, Allison H.

    2015-01-01

    Research suggests that attending high quality, formal early childhood education (ECE) is associated with stronger cognitive and social-emotional skills, especially for low-income children. Yet at current funding levels, federally-funded programs like Head Start cannot serve all eligible children. Thus, state-level policies governing the…

  10. Metal ion oxidation state assignment based on coordinating ligand hyperfine interaction.

    PubMed

    Oyala, Paul H; Stich, Troy A; Britt, R David

    2015-04-01

    In exchange-coupled mixed-valence spin systems, the magnitude and sign of the effective ligand hyperfine interaction (HFI) can be useful in determining the formal oxidation state of the coordinating metal ion, as well as provide information about the coordination geometry. This is due to the fact that the observed ligand HFI is a function of the projection factor (Clebsch-Gordon coefficient) that maps the site spin value S i of the local paramagnetic center onto the total spin of the exchange-coupled system, S T. Recently, this relationship has been successfully exploited in identifying the oxidation state of the Mn ion coordinated by the sole nitrogenous ligand to the oxygen-evolving complex in certain states of photosystem II. The origin and evolution of these efforts is described.

  11. Theory of the electronic and structural properties of solid state oxides. Annual technical report 1993

    SciTech Connect

    Chelikowsky, J.R.

    1993-06-01

    Emphasis has been on the electronic materials: silica, titania, and ruthenia. Fundamental interest centered on nature of microstructure of these solids in the amorphous state, or mixed oxide state. New theoretical techniques have been implemented to examine such issues, based on ab initio pseudopotential methods and interatomic potentials. Some areas examined under this project are: (1) Nature of the amorphization transformation of quartz under pressure. Specific focus is on the microscopic nature of the amorphous material and the driving forces for amorphization. (2) Equation of states of crystalline silica polymorphs. (3) Elastic anomalies in silica. In particular, the existence of a ``negative`` Poisson ratio in high temperature, low density forms of crystalline silica. (4) Optical and structural properties of titania and mixed oxides such as Ru{sub x}Ti{sub 1-x}O{sub 2}.

  12. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    PubMed

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  13. Plutonium distribution and oxidation states in a reactor leaching ponds system

    SciTech Connect

    Ibrahim, S.; Culp, T. )

    1989-10-01

    Concentrations of 239,240Pu and 238Pu in water, net plankton (algal material), suspended particulates and sediment, as well as Pu oxidation states in filtered water, were determined in a test reactor leaching ponds system in southeastern Idaho. The highest Pu concentration in the ponds system was found in net plankton, and concentrations varied significantly between sampling dates. Plutonium Concentration Ratios (CR) for plankton ranged from 3 X 10(4) to 4 X 10(5). The lowest Pu concentration was found in filtered water, primarily because of the absence of complexing agents. The majority of Pu in filtered water was in true solution (60-87%) or present in colloidal particles smaller than 0.22 micron. Plutonium association with sediment was inversely related to particle size. The environmental distribution coefficients (Kd) for Pu ranged from 1.6 X 10(4) to 1.2 X 10(5) reflecting the importance of sediments as the main reservoir for Pu in the ponds system. No significant differences were noted between CR or Kd values for 239,240Pu and 238Pu. The reduced Pu oxidation states (III and IV) fractions ranged from 57% to 71% of the total dissolved Pu in water. This is in contrast with oxidation states distribution from other large aquatic systems (Great Lakes and the Irish Sea) where Pu is predominately in oxidized (V and VI) forms.

  14. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their

  15. The Miniaturized Mössbauer Spectrometer MIMOS II for the Asteroid Redirect Mission (ARM): Quantitative Iron Mineralogy and Oxidation States

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Klingelhöfer, G.; Morris, R. V.; Yen, A. S.; Renz, F.; Graff, T. G.

    2016-10-01

    We propose a fully-qualified flight-spare Mössbauer spectrometer for the asteroid redirect mission to identify Fe-bearing mineral phases and Fe oxidation states, and for quantitative distribution of Fe between mineral phases and oxidation states.

  16. Accessing Many-Body Localized States through the Generalized Gibbs Ensemble.

    PubMed

    Inglis, Stephen; Pollet, Lode

    2016-09-16

    We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. We devise a heuristic way of constructing local integrals of motion of high quality, which are added to the Hamiltonian in conjunction with Lagrange multipliers. The ground state simulation of the shifted Hamiltonian corresponds to a high-energy state of the original Hamiltonian in the case of exactly known local integrals of motion. The inevitable mixing between eigenstates as a consequence of nonperfect integrals of motion is weak enough such that the characteristics of many-body localized systems are not averaged out, unlike the standard ensembles of statistical mechanics. Our method paves the way to study higher dimensions and indicates that a fully many-body localized phase in 2D, where (nearly) all eigenstates are localized, is likely to exist.

  17. Accessing Many-Body Localized States through the Generalized Gibbs Ensemble

    NASA Astrophysics Data System (ADS)

    Inglis, Stephen; Pollet, Lode

    2016-09-01

    We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. We devise a heuristic way of constructing local integrals of motion of high quality, which are added to the Hamiltonian in conjunction with Lagrange multipliers. The ground state simulation of the shifted Hamiltonian corresponds to a high-energy state of the original Hamiltonian in the case of exactly known local integrals of motion. The inevitable mixing between eigenstates as a consequence of nonperfect integrals of motion is weak enough such that the characteristics of many-body localized systems are not averaged out, unlike the standard ensembles of statistical mechanics. Our method paves the way to study higher dimensions and indicates that a fully many-body localized phase in 2D, where (nearly) all eigenstates are localized, is likely to exist.

  18. Accessing High Pressure States Relevant to Core Conditions in the Giant Planets

    SciTech Connect

    Remington, B A; Cavallo, R M; Edwards, M J; Ho, D D; Lorenz, K T; Lorenzana, H E; Lasinski, B F; McNaney, J M; Pollaine, S M; Smith, R F

    2004-04-15

    We have designed an experimental technique to use on the National Ignition Facility (NIF) laser to achieve very high pressure (P{sub max} > 10 Mbar = 1000 GPa), dense states of matter at moderate temperatures (kT < 0.5 eV = 6000 K), relevant to the core conditions of the giant planets. A discussion of the conditions in the interiors of the giant planets is given, and an experimental design that can approach those conditions is described.

  19. Accessing High Pressure States Relevant to Core Conditions in the Giant Planets

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Cavallo, R. M.; Edwards, M. J.; Ho, D. D.-M.; Lasinski, B. F.; Lorenz, K. T.; Lorenzana, H. E.; McNaney, J. M.; Pollaine, S. M.; Smith, R. F.

    2005-07-01

    We have designed an experimental technique to use on the National Ignition Facility (NIF) laser to achieve very high pressure (P max > 10 Mbar = 1000 GPa), dense states of matter at moderate temperatures (T < 0.5 eV = 6000 K), relevant to the core conditions of the giant planets. A discussion of the conditions in the interiors of the giant planets is given, and an experimental design that can approach those conditions is described.

  20. Accessing High Pressure States Relevant to Core Conditions in the Giant Planets

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Cavallo, R. M.; Edwards, M. J.; Ho, D. D.-M.; Lasinski, B. F.; Lorenz, K. T.; Lorenzana, H. E.; McNaney, J. M.; Pollaine, S. M.; Smith, R. F.

    We have designed an experimental technique to use on the National Ignition Facility (NIF) laser to achieve very high pressure (Pmax > 10 Mbar = 1000 GPa), dense states of matter at moderate temperatures (T < 0.5 eV = 6000 K), relevant to the core conditions of the giant planets. A discussion of the conditions in the interiors of the giant planets is given, and an experimental design that can approach those conditions is described.

  1. Extracellular redox state: refining the definition of oxidative stress in aging.

    PubMed

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  2. Intermolecular interaction studies of winter flounder antifreeze protein reveal the existence of thermally accessible binding state.

    PubMed

    Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H

    2004-10-05

    The physical nature underlying intermolecular interactions between two rod-like winter flounder antifreeze protein (AFP) molecules and their implication for the mechanism of antifreeze function are examined in this work using molecular dynamics simulations, augmented with free energy calculations employing a continuum solvation model. The energetics for different modes of interactions of two AFP molecules is examined in both vacuum and aqueous phases along with the water distribution in the region encapsulated by two antiparallel AFP backbones. The results show that in a vacuum two AFP molecules intrinsically attract each other in the antiparallel fashion, where their complementary charge side chains face each other directly. In the aqueous environment, this attraction is counteracted by both screening and entropic effects. Therefore, two nearly energetically degenerate states, an aggregated state and a dissociated state, result as a new aspect of intermolecular interaction in the paradigm for the mechanism of action of AFP. The relevance of these findings to the mechanism of function of freezing inhibition in the context of our work on Antarctic cod antifreeze glycoprotein (Nguyen et al., Biophysical Journal, 2002, Vol. 82, pp. 2892-2905) is discussed.

  3. Synthesis, structure, and reactivity of high oxidation state silver fluorides and related compounds

    SciTech Connect

    Lucier, G.M.

    1995-05-01

    This thesis has been largely concerned with defining the oxidizing power of Ag(III) and Ag(II) in anhydrous hydrogen fluoride (aHF) solution. Emphasis was on cationic species, since in a cation the electronegativity of a given oxidation state is greatest. Cationic Ag(III) solv has a short half life at ordinary temperatures, oxidizing the solvent to elemental fluorine with formation of Ag(II). Salts of such a cation have not yet been preparable, but solutions which must contain such a species have proved to be effective and powerful oxidizers. In presence of PtF{sub 6}{sup {minus}}, RuF{sub 6}{sup {minus}}, or RhF{sub 6}{sup {minus}}, Ag(III) solv effectively oxidizes the anions to release the neutral hexafluorides. Such reactivity ranks cationic Ag(III) as the most powerfully oxidizing chemical agent known as far. Unlike its trivalent relative Ag (II) solv is thermodynamically stable in acid aHF. Nevertheless, it oxidizes IrF{sub 6}{sup {minus}} to IrF{sub 6} at room temperature, placing its oxidizing potential not more than 2 eV below that of cationic Ag(III). Range of Ag{sup 2+} (MF{sub 6}{sup {minus}}){sub 2} salts attainable in aHF has been explored. An anion must be stable with respect to electron loss to Ag{sup 2+}. The anion must also be a poor F{sup {minus}} donor; otherwise, either AgF{sup +} salts or AgF{sub 2} are generated.

  4. Chiral magnesium BINOL phosphate-catalyzed phosphination of imines: access to enantioenriched α-amino phosphine oxides.

    PubMed

    Ingle, Gajendrasingh K; Liang, Yuxue; Mormino, Michael G; Li, Guilong; Fronczek, Frank R; Antilla, Jon C

    2011-04-15

    A new method to synthesize chiral α-amino phosphine oxides is reported. The reaction combines N-substituted imines and diphenylphosphine oxide and is catalyzed by a chiral magnesium phosphate salt. A wide variety of aliphatic and aromatic aldimines substituted by electron-neutral benzhydryl or dibenzocycloheptene groups were excellent substrates for the addition reaction. The dibenzocycloheptene protected imines afforded improved enantioselectivity in the resulting products. Substituted diphenylphosphine oxide nucleophiles also showed good reactivity.

  5. Simple relationship between oxidation state and electron affinity in gas-phase metal-oxo complexes.

    PubMed

    Waller, Sarah E; Ray, Manisha; Yoder, Bruce L; Jarrold, Caroline Chick

    2013-12-19

    The photoelectron spectra of WO3H(-) and WO2F(-) are presented and analyzed in the context of a series of previous similar measurements on MO(y)(-) (M = Mo, W; y = 0-3), MO4H(-) and AlMOy(-) (y ≤ 4) complexes. The electronic structures of the WO3H and WO2F anion and neutral complexes were investigated using the B3LYP hybrid density functional method. The spectra of WO3H(-), WO2F(-), and previously measured AlWO3(-) photoelectron spectra show that the corresponding neutrals, in which the transition metal centers are all in a +5 oxidation state, have comparable electron affinities. In addition, the electron affinities fit the general trend of monotonically increasing electron affinity with oxidation state, in spite of the WO3H(-), WO2F(-), and AlWO3(-) having closed shell ground states, suggesting that the oxidation state of the metal atom has more influence than shell closing on the electron affinity of these transition metal-oxo complexes. Results of DFT calculations suggest that the neutrals are pyramidal and the anions are planar. However, the barriers for inversion on the neutral surface are low, and attempts to generate simple Franck-Condon simulations based on simple normal coordinate displacement, ignoring the effects of inversion, are inadequate.

  6. Metallic quantum well states in artificial structures of strongly correlated oxide.

    PubMed

    Yoshimatsu, K; Horiba, K; Kumigashira, H; Yoshida, T; Fujimori, A; Oshima, M

    2011-07-15

    The quantum confinement of strongly correlated electrons in artificial structures provides a platform for studying the behavior of correlated Fermi-liquid states in reduced dimensions. We report the creation and control of two-dimensional electron-liquid states in ultrathin films of SrVO(3) grown on Nb:SrTiO(3) substrates, which are artificial oxide structures that can be varied in thickness by single monolayers. Angle-resolved photoemission from the SrVO(3)/Nb:SrTiO(3) samples shows metallic quantum well states that are adequately described by the well-known phase-shift quantization rule. The observed quantum well states in SrVO(3) ultrathin films exhibit distinctive features--such as orbital-selective quantization originating from the anisotropic orbital character of the V 3d states and unusual band renormalization of the subbands near the Fermi level--that reflect complex interactions in the quantum well.

  7. Morphology dependence of interfacial oxidation states of gallium arsenide under near ambient conditions

    SciTech Connect

    Zhang, Xueqiang; Lamere, Edward; Ptasinska, Sylwia; Liu, Xinyu; Furdyna, Jacek K.

    2014-05-05

    The manipulation of semiconductor surfaces by tuning their electronic properties and surface chemistry is an essential ingredient for key applications in areas such as electronics, sensors, and photovoltaic devices. Here, in-situ surface reactions on gallium arsenide (GaAs) are monitored for two morphologies: a simple planar crystalline surface with (100) orientation and an ensemble of GaAs nanowires, both exposed to oxygen environment. A variety of oxide surface species, with a significant enhancement in oxidation states in the case of nanowires, are detected via near ambient pressure X-ray photoelectron spectroscopy. This enhancement in oxidation of GaAs nanowires is due to their higher surface area and the existence of more active sites for O{sub 2} dissociation.

  8. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art.

    PubMed

    Wang, Shaobin; Ang, H M; Tade, Moses O

    2007-07-01

    Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented.

  9. Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state.

    PubMed

    Maharjan, Sunita; Sakai, Yasuyoshi; Hoseki, Jun

    2016-01-01

    Mitochondrial impairment and the resulting generation of reactive oxygen species (ROS) have been associated with aging and its related pathological conditions. Recently, dietary antioxidants have gained significant attention as potential preventive and therapeutic agents against ROS-generated aging and pathological conditions. We previously demonstrated that food-derived antioxidants prevented intracellular oxidative stress under proteasome inhibition conditions, which was attributed to mitochondrial dysfunction and ROS generation, followed by cell death. Here, we further screened dietary antioxidants for their activity as redox modulators by visualization of the redox state using Redoxfluor, a fluorescent protein redox probe. Direct alleviation of ROS by antioxidants, but not induction of antioxidative enzymes, prevented mitochondria-mediated intracellular oxidation. The effective antioxidants scavenged mitochondrial ROS and suppressed cell death. Our study indicates that redox visualization under mitochondria-mediated oxidative stress is useful for screening potential antioxidants to counteract mitochondrial dysfunction, which has been implicated in aging and the pathogenesis of aging-related diseases.

  10. Dialysis vascular access management by interventional nephrology programs at University Medical Centers in the United States.

    PubMed

    Vachharajani, Tushar J; Moossavi, Shahriar; Salman, Loay; Wu, Steven; Dwyer, Amy C; Ross, Jamie; Dukkipati, Ramanath; Maya, Ivan D; Yevzlin, Alexander S; Agarwal, Anil; Abreo, Kenneth D; Work, Jack; Asif, Arif

    2011-01-01

    The development of interventional nephrology has undoubtedly led to an improvement in patient care at many facilities across the United States. However, these services have traditionally been offered by interventional nephrologists in the private practice arena. While interventional nephrology was born in the private practice setting, several academic medical centers across the United States have now developed interventional nephrology programs. University Medical Centers (UMCs) that offer interventional nephrology face challenges, such as smaller dialysis populations, limited financial resources, and real or perceived political "turf" issues." Despite these hurdles, several UMCs have successfully established interventional nephrology as an intricate part of a larger nephrology program. This has largely been accomplished by consolidating available resources and collaborating with other specialties irrespective of the size of the dialysis population. The collaboration with other specialties also offers an opportunity to perform advanced procedures, such as application of excimer laser and endovascular ultrasound. As more UMCs establish interventional nephrology programs, opportunities for developing standardized training centers will improve, resulting in better quality and availability of nephrology-related procedures, and providing an impetus for research activities.

  11. Accessibility to and utilisation of schistosomiasis-related health services in a rural area of state of Minas Gerais, Brazil.

    PubMed

    Reis, Dener Carlos dos; Kloos, Helmut; King, Charles; Quites, Humberto Ferreira Oliveira; Matoso, Leonardo Ferreira; Coelho, Kellen Rosa; Gazzinelli, Andrea

    2010-07-01

    The objective of the present paper was to compare accessibility and utilisation of schistosomiasis diagnostic and treatment services in a small village and the surrounding rural area in northern part of the state of Minas Gerais Brazil. The study included 1,228 individuals: 935 central village residents and 293 rural residents of São Pedro do Jequitinhonha. Schistosoma mansoni infection rates were significantly higher in the central village than in the rural area during a survey in 2007 (44.3% and 23.5%, respectively) and during the 2002 schistosomiasis case-finding campaign (33.1% and 26.5%, respectively) (p < 0.001). However, during the 2002-2006 period, only 23.7% of the villagers and 27% of the rural residents obtained tests on their own from health centres, hospitals and private clinics in various nearby towns. In 2007, 63% of the villagers and 70.5% of the rural residents reported never having received treatment for schistosomiasis. This paper reveals considerable variation in the accessibility and utilisation of schistosomiasis-related health services between the central village and the rural area. A combination of low utilisation rates between 2002-2006 and persistently high S. mansoni infection rates suggest that the schistosomiasis control program must be more rapidly incorporated into the primary health services.

  12. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  13. Exploring the Role of Adsorption and Surface State on the Hydrophobicity of Rare Earth Oxides.

    PubMed

    Lundy, Ross; Byrne, Conor; Bogan, Justin; Nolan, Kevin; Collins, Maurice N; Dalton, Eric; Enright, Ryan

    2017-04-06

    Rare earth oxides (REOs) are attracting attention for use as cost-effective, high-performance dropwise condensers because of their favorable thermal properties and robust nature. However, to engineer a suitable surface for industrial applications, the mechanism governing wetting must be first fully elucidated. Recent studies exploring the water-wetting state of REOs have suggested that these oxides are intrinsically hydrophobic owing to the unique electronic structure of the lanthanide series. These claims have been countered with evidence that they are inherently hydrophilic and that adsorption of contaminants from the environment is responsible for the apparent hydrophobic nature of these surfaces. Here, using X-ray photoelectron spectroscopy and dynamic water contact angle measurements, we provide further evidence to show that REOs are intrinsically hydrophilic, with ceria demonstrating advancing water contact angles of ≈6° in a clean surface state and similar surface energies to two transition metal oxides (≳72 mJ/m(2)). Using two model volatile species, it is shown that an adsorption mechanism is responsible for the apparent hydrophobic property observed in REOs as well as in transition metal oxides and silica. This is correlated with the screening of the polar surface energy contribution of the underlying oxide with apparent surface energies reduced to <40 mJ/m(2) for the case of nonane adsorption. Moreover, we show that the degree of surface hydroxylation plays an important role in the observed contact angle hysteresis with the receding contact angle of ceria increasing from ∼10° to 45° following thermal annealing in an inert atmosphere. Our findings suggest that high atomic number metal oxides capable of strongly adsorbing volatile species may represent a viable paradigm toward realizing robust surface coating for industrial condensers if certain challenges can be overcome.

  14. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  15. Oxide-free InAs(111)A interface in metal-oxide-semiconductor structure with very low density of states prepared by anodic oxidation

    SciTech Connect

    Valisheva, N. A. Aksenov, M. S.; Golyashov, V. A.; Levtsova, T. A.; Kovchavtsev, A. P.; Gutakovskii, A. K.; Tereshchenko, O. E.; Khandarkhaeva, S. E.; Kalinkin, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I.

    2014-10-20

    In this letter, we present structural, compositional, and electrical characteristics of anodic oxide layer-based metal-oxide-semiconductor (MOS) capacitors on n-type InAs(111)A, along with the effect of a thin fluorinated interfacial passivation layer. Electrochemical oxidation in acid electrolyte with addition of fluorine (NH{sub 4}F) led to the formation of oxygen free well-ordered wide gap fluorinated interfacial layer at InAs(111)A with the fixed charge (Q{sub fix}) and density of interface states (D{sub it}) in the range of (4–6) × 10{sup 10 }cm{sup −2} and (2–12) × 10{sup 10 }eV{sup −1 }cm{sup −2}, respectively. We found that MOS capacitors showed excellent capacitance-voltage characteristics with very small frequency dispersion (<1% and <15 mV). Fluorinated interfacial layer consists of crystalline isostructural compound with the InAs substrate, which remains intact with the atomic smoothness and sharpness that explain unpinned behavior of the Fermi level.

  16. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  17. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  18. Statistical analysis of the correlations between cell performance and its initial states in contact resistive random access memory cells

    NASA Astrophysics Data System (ADS)

    Kao, Yun Feng; Hsieh, Wei Ting; Che Chen, Chun; King, Ya-Chin; Lin, Chrong Jung

    2017-04-01

    Variability has been one of the critical challenges in the implementation of large resistive random access memory (RRAM) arrays. Wide variations in set/reset, read and cycling characteristics can significantly reduce the design margin and feasibility of a memory array. Predicting the characteristics of RRAM cells is constructive to provide insights and to adjust the memory operations accordingly. In this study, a strong correlation between the cell performance and its initial state is found in contact RRAM (CRRAM) cells by 28 nm CMOS logic technology. Furthermore, a verify-reset operation is proposed to identify the type of conductive filament (CF) in a cell. Distinctive CRRAM characteristics are found to be linked directly to initial CFs, enabling preliminary screening and adaptive resets to address the large variability problems in sizable CRRAM arrays.

  19. Size- and support-dependent evolution of the oxidation state and structure by oxidation of subnanometer cobalt clusters.

    PubMed

    Yin, Chunrong; Zheng, Fan; Lee, Sungsik; Guo, Jinghua; Wang, Wei-Cheng; Kwon, Gihan; Vajda, Viktor; Wang, Hsien-Hau; Lee, Byeongdu; DeBartolo, Janae; Seifert, Sönke; Winans, Randall E; Vajda, Stefan

    2014-09-18

    Size-selected subnanometer cobalt clusters with 4, 7, and 27 cobalt atoms supported on amorphous alumina and ultrananocrystalline diamond (UNCD) surfaces were oxidized after exposure to ambient air. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) and near-edge X-ray absorption fine structure (NEXAFS) were used to characterize the clusters revealed a strong dependency of the oxidation state and structure of the clusters on the surface. A dominant Co(2+) phase was identified in all samples. However, XANES analysis of cobalt clusters on UNCD showed that ∼10% fraction of a Co(0) phase was identified for all three cluster sizes and about 30 and 12% fraction of a Co(3+) phase in 4, 7, and 27 atom clusters, respectively. In the alumina-supported clusters, the dominating Co(2+) component was attributed to a cobalt aluminate, indicative of a very strong binding to the support. NEXAFS showed that in addition to strong binding of the clusters to alumina, their structure to a great extent follows the tetrahedral morphology of the support. All supported clusters were found to be resistant to agglomeration when exposed to reactive gases at elevated temperatures and atmospheric pressure.

  20. Layers of Influence: Exploring Institutional- and State-Level Effects on College Student Views toward Access to Public Education for Undocumented Immigrants

    ERIC Educational Resources Information Center

    Garibay, Juan C.; Herrera, Felisha A.; Johnston-Guerrero, Marc P.; Garcia, Gina A.

    2016-01-01

    Providing undocumented immigrants access to public education remains a pertinent issue facing both institutions of higher education and state governments. While instate resident tuition (ISRT) has remained a contentious policy, little is known about how such policies, as well as other state contexts, influence college students' attitudes toward…

  1. Technology Access for Arkansans: Project TAARK. Proceedings of the Planning Conference Held at DeGray Lodge (DeGray State Park, Arkansas, March 22-23, 1989).

    ERIC Educational Resources Information Center

    VanBiervliet, Alan; Parette, Howard P., Jr.

    The Technology Access for Arkansans (TAARK) project has focused on identifying the need for and quality of technology provisions for the disabled in the state, disseminating information, and developing a state plan. This paper summarizes meetings held by six study groups formed to facilitate the planning process. Each group was assigned a specific…

  2. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    DOE PAGES

    Bondi, Robert J.; Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory (DFT) calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n=0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5) and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregate at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 are characterized by structural contraction and electron density localization, while VO2+ promote structural expansion andmore » are depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extract electron density from metallic Ta indicating VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.« less

  3. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    SciTech Connect

    Bondi, Robert J. Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (V{sub O}{sup n}; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta{sub 2}O{sub 5}), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. V{sub O}{sup n} of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta{sub 2}O{sub 5}, V{sub O}{sup 0} is characterized by structural contraction and electron density localization, while V{sub O}{sup 2+} promotes structural expansion and is depleted of electron density. In contrast, interfacial V{sub O}{sup 0} and V{sub O}{sup 2+} show nearly indistinguishable ionic and electronic signatures indicative of a reduced V{sub O} center. Interfacial V{sub O}{sup 2+} extracts electron density from metallic Ta, indicating that V{sub O}{sup 2+} is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.

  4. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    SciTech Connect

    Bondi, Robert J.; Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory (DFT) calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n=0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5) and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregate at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 are characterized by structural contraction and electron density localization, while VO2+ promote structural expansion and are depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extract electron density from metallic Ta indicating VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.

  5. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  6. Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Creighton, Steven; Stachel, Thomas; Eichenberg, Dave; Luth, Robert W.

    2010-05-01

    Oxygen fugacity ( fO2) conditions were determined for 29 peridotite xenoliths from the A154-North and A154-South kimberlites of the Diavik diamond mine using the newly developed flank method modified specifically for measuring Fe3+ in mantle-derived pyropic garnets. The results indicate that the garnet-bearing lithospheric mantle beneath the central Slave craton is vertically layered with respect to oxidation state. The shallow (<140 km), “ultra-depleted” layer is the most oxidized section of garnet-bearing subcratonic mantle thus far measured, up to one log unit more oxidizing relative to the FMQ buffer [Δlog fO2 (FMQ) + 1]. The lower, more fertile layer has fO2 conditions that extend down to Δlog fO2 (FMQ) - 3.8, consistent with xenolith suites from other localities worldwide. Based on trace element concentrations in garnets, two distinct metasomatic events affected the mantle lithosphere at Diavik. An oxidized fluid imparted sinusoidal chondrite-normalized REE patterns on garnets throughout the entire depth range sampled. In contrast, a reducing melt metasomatic event affected only the lower portion of the lithospheric mantle. The fO2 state of the Diavik mantle sample suggests that diamond formation occurred by reduction of carbonate by fluids arising from beneath the lithosphere.

  7. No effect of H2O degassing on the oxidation state of magmatic liquids

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Lange, Rebecca A.

    2016-08-01

    The underlying cause for why subduction-zone magmas are systematically more oxidized than those formed at mid-ocean spreading ridges is a topic of vigorous debate. It is either a primary feature inherited from the subduction of oxidized oceanic crust into the mantle or a secondary feature that develops because of H2O degassing and/or magma differentiation. Low total iron contents and high melt H2O contents render rhyolites sensitive to any effect of H2O degassing on ferric-ferrous ratios. Here, pre-eruptive magmatic Fe2+ concentrations, measured using Fe-Ti oxides that co-crystallized with silicate phenocrysts under hydrous conditions, are compared with Fe2+ post-eruptive concentrations in ten crystal-poor, fully-degassed obsidian samples; five are microlite free. No effect of H2O degassing on the ferric-ferrous ratio is found. In addition, Fe-Ti oxide data from this study and the literature show that arc magmas are systematically more oxidized than both basalts and hydrous silicic melts from Iceland and Yellowstone prior to extensive degassing. Nor is there any evidence that differentiation (i.e., crystal fractionation, crustal assimilation) is the cause of the higher redox state of arc magmas relative to those of Iceland/Yellowstone rhyolites. Instead, the evidence points to subduction of oxidized crust and the release of an H2O-rich fluid and/or melt with a high oxygen fugacity (fO2), which plays a role during H2O-flux melting of the mantle in creating basalts that are relatively oxidized.

  8. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  9. Visible light photoreactivity from hybridization states between carbon nitride bandgap states and valence states in Nb and Ti oxides

    NASA Astrophysics Data System (ADS)

    Lee, Hosik; Ohno, Takahisa

    2013-03-01

    For better efficiency as photocatalysts, N-doping for visible light reactivity has been intensively studied in Lamellar niobic and titanic solid acids (HNb3O8, H2Ti4O9), and its microscopic structures have been debated in this decade. We calculate the layered solid acids' structures and bandgaps. Bandgap reduction by carbon nitride adsorption in interlayer space is observed computationally. It originates from localized nitrogen states which form delocalized top-valence states by hybridizing with the host oxygen states and can contribute to photo-current.

  10. Ge Interface Engineering with Ozone-oxidation for Low Interface State Density

    SciTech Connect

    Kuzum, Duygu; Krishnamohan, T.; Pethe, Abhijit J.; Okyay, Ali, K.; Oshima, Yasuhiro; Sun, Yun; McVittie, Jim P.; Pianetta, Piero A.; McIntyre, Paul C.; Saraswat, Krishna C.; /Stanford U., CIS

    2008-06-02

    Passivation of Ge has been a critical issue for Ge MOS applications in future technology nodes. In this letter, we introduce ozone-oxidation to engineer Ge/insulator interface. Interface states (D{sub it}) values across the bandgap and close to conduction bandedge were extracted using conductance technique at low temperatures. D{sub it} dependency on growth conditions was studied. Minimum D{sub it} of 3 x 10{sup 11} cm{sup -2} V{sup -1} was demonstrated. Physical quality of the interface was investigated through Ge 3d spectra measurements. We found that the interface and D{sub it} is strongly affected by the distribution of oxidation states and quality of the suboxide.

  11. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  12. Constraints on the Detection of the Solar Nebula's Oxidation State Through Asteroid Observations

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Gaffey, M. J.; Hardersen, P. S.

    2005-01-01

    Introduction: Asteroids represent the only in situ surviving population of planetesimals from the formation of the inner solar system and therefore include materials from the very earliest stages of solar system formation. Hence, these bodies can provide constraints on the processes and conditions that were present during this epoch and can be used to test current models and theories describing the late solar nebula, the early solar system and subsequent planetary accretion. From detailed knowledge of asteroid mineralogic compositions the probable starting materials, thermal histories, and oxidation states of asteroid parent bodies can be inferred. If such data can be obtained from specific mainbelt source regions, then this information can be used to map out the formation conditions of the late solar nebula within the inner solar system and possibly distinguish any trends in oxidation state that may be present.

  13. Theoretical insights into [NiFe]-hydrogenases oxidation resulting in a slowly reactivating inactive state.

    PubMed

    Breglia, Raffaella; Ruiz-Rodriguez, Manuel Antonio; Vitriolo, Alessandro; Gonzàlez-Laredo, Rubén Francisco; De Gioia, Luca; Greco, Claudio; Bruschi, Maurizio

    2017-01-01

    [NiFe]-hydrogenases catalyse the relevant H2 → 2H(+) + 2e(-) reaction. Aerobic oxidation or anaerobic oxidation of this enzyme yields two inactive states called Ni-A and Ni-B. These states differ for the reactivation kinetics which are slower for Ni-A than Ni-B. While there is a general consensus on the structure of Ni-B, the nature of Ni-A is still controversial. Indeed, several crystallographic structures assigned to the Ni-A state have been proposed, which, however, differ for the nature of the bridging ligand and for the presence of modified cysteine residues. The spectroscopic characterization of Ni-A has been of little help due to small differences of calculated spectroscopic parameters, which does not allow to discriminate among the various forms proposed for Ni-A. Here, we report a DFT investigation on the nature of the Ni-A state, based on systematic explorations of conformational and configurational space relying on accurate energy calculations, and on comparisons of theoretical geometries with the X-ray structures currently available. The results presented in this work show that, among all plausible isomers featuring various protonation patterns and oxygenic ligands, the one corresponding to the crystallographic structure recently reported by Volbeda et al. (J Biol Inorg Chem 20:11-22, 19)-featuring a bridging hydroxide ligand and the sulphur atom of Cys64 oxidized to bridging sulfenate-is the most stable. However, isomers with cysteine residues oxidized to terminal sulfenate are very close in energy, and modifications in the network of H-bond with neighbouring residues may alter the stability order of such species.

  14. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    SciTech Connect

    Troia, Matthew J.; McManamay, Ryan A.

    2016-06-12

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records from the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling

  15. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE PAGES

    Troia, Matthew J.; McManamay, Ryan A.

    2016-06-12

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional

  16. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.

    2015-09-01

    Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation state

  17. Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes

    PubMed Central

    Borgs, Christian; Chayes, Jennifer T.; Ingrosso, Alessandro; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-01-01

    In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost function. It is not well understood how learning occurs in these systems, in particular how they avoid getting trapped in configurations with poor computational performance. Here, we study the difficult case of networks with discrete weights, where the optimization landscape is very rough even for simple architectures, and provide theoretical and numerical evidence of the existence of rare—but extremely dense and accessible—regions of configurations in the network weight space. We define a measure, the robust ensemble (RE), which suppresses trapping by isolated configurations and amplifies the role of these dense regions. We analytically compute the RE in some exactly solvable models and also provide a general algorithmic scheme that is straightforward to implement: define a cost function given by a sum of a finite number of replicas of the original cost function, with a constraint centering the replicas around a driving assignment. To illustrate this, we derive several powerful algorithms, ranging from Markov Chains to message passing to gradient descent processes, where the algorithms target the robust dense states, resulting in substantial improvements in performance. The weak dependence on the number of precision bits of the weights leads us to conjecture that very similar reasoning applies to more conventional neural networks. Analogous algorithmic schemes can also be applied to other optimization problems. PMID:27856745

  18. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  19. On the origin of interface states at oxide/III-nitride heterojunction interfaces

    NASA Astrophysics Data System (ADS)

    Matys, M.; Adamowicz, B.; Domanowska, A.; Michalewicz, A.; Stoklas, R.; Akazawa, M.; Yatabe, Z.; Hashizume, T.

    2016-12-01

    The energy spectrum of interface state density, Dit(E), was determined at oxide/III-N heterojunction interfaces in the entire band gap, using two complementary photo-electric methods: (i) photo-assisted capacitance-voltage technique for the states distributed near the midgap and the conduction band (CB) and (ii) light intensity dependent photo-capacitance method for the states close to the valence band (VB). In addition, the Auger electron spectroscopy profiling was applied for the characterization of chemical composition of the interface region with the emphasis on carbon impurities, which can be responsible for the interface state creation. The studies were performed for the AlGaN/GaN metal-insulator-semiconductor heterostructures (MISH) with Al2O3 and SiO2 dielectric films and AlxGa1-x layers with x varying from 0.15 to 0.4 as well as for an Al2O3/InAlN/GaN MISH structure. For all structures, it was found that: (i) Dit(E) is an U-shaped continuum increasing from the midgap towards the CB and VB edges and (ii) interface states near the VB exhibit donor-like character. Furthermore, Dit(E) for SiO2/AlxGa1-x/GaN structures increased with rising x. It was also revealed that carbon impurities are not present in the oxide/III-N interface region, which indicates that probably the interface states are not related to carbon, as previously reported. Finally, it was proven that the obtained Dit(E) spectrum can be well fitted using a formula predicted by the disorder induced gap state model. This is an indication that the interface states at oxide/III-N interfaces can originate from the structural disorder of the interfacial region. Furthermore, at the oxide/barrier interface we revealed the presence of the positive fixed charge (QF) which is not related to Dit(E) and which almost compensates the negative polarization charge ( Qp o l - ).

  20. Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature

    PubMed Central

    Chen, Wan Ping; He, Ke Feng; Wang, Yu; Chan, Helen Lai Wah; Yan, Zijie

    2013-01-01

    Hydrogen in metal oxides usually strongly associates with a neighboring oxygen ion through an O-H bond and thus displays a high stability. Here we report a novel state of hydrogen with unusually high mobility and reactivity in metal oxides at room temperature. We show that freshly doped hydrogen in Nb2O5 and WO3 polycrystals via electrochemical hydrogenation can reduce Cu2+ ions into Cu0 if the polycrystals are immersed in a CuSO4 solution, while this would not happen if the hydrogenated polycrystals have been placed in air for several hours before the immersion. Time-dependent studies of electrochemically hydrogenated rutile single crystals reveal two distinct states of hydrogen: one as protons covalently bonded to oxygen ions, while the other one is highly unstable with a lifetime of just a few hours. Observation of this mobile and reactive state of hydrogen will provide new insight into numerous moderate and low temperature interactions between metal oxides and hydrogen. PMID:24193143

  1. Switching of the Fe Oxida-tion State in Ferro-cene-Capped Alkanethiols

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Luk, Yan-Yeung; Abbott, Nicholas L.; Himpsel, F. J.

    2005-03-01

    Molecular electronics has been a rapidly-growing area, due to the simplicity of building molecular devices by self-assembly and the promise of extremely low power consumption as a result of pushing the size down to a few molecules per device. A self-assembled monolayer (SAM) of ferrocene-capped alkanethiols is produced in two stable oxidation states of Fe (Fe^2+ and Fe^3+). The oxidation states of Fe are probed with sub-monolayer sensitivity by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the iron L2, 3 edges ^[1]. NEXAFS provides a direct method to distinguish between the oxidation states of submonolayer by comparing with the bulk sample spectrum. The native Fe^2+ layer is converted chemically to Fe^3+, and the Fe^3+ layer can be switched back to Fe^2+ or possibly Fe^0 by irradiation with soft x-rays. The results have implications on switching mechanisms in molecular electronics. [1] Fan Zheng, V. P'erez-Dieste, J. L. McChesney, Yan-Yeung Luk, Nicholas L. Abbott, and F. J. Himpsel, Appl. Phys. Lett, to be submitted.

  2. Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase.

    PubMed

    Burner, U; Obinger, C

    1997-07-14

    In the course of oxidation of thiols by peroxidases thiyl radicals are formed which are known to undergo several free-radical conjugative reactions, among others leading to hydrogen peroxide formation. The present paper for the first time presents a comparative transient-state and steady-state investigation of the reaction of 15 aliphatic and aromatic mono- and dithiols with horseradish peroxidase (HRP). Both sequential-stopped-flow spectrophotometric investigations of the reaction of HRP intermediates Compound I (k2) and Compound II (k3) with thiols and measurements of the overall thiol oxidation and the simultaneous oxygen consumption in the presence and absence of exogenously added hydrogen peroxide (10 microM) have been performed. With HRP as thiyl radical generator it was shown that three groups of thiols have to be distinguished: (i) Aromatic thiols (e.g. thiophenol, 2-mercaptopurine) were excellent electron donors of both Compounds (k2: 10(4)-10(7) M(-1) s(-1) and k3: 10(3)-10(6) M(-1) s(-1)); however, the overall reaction was shown to depend on addition of hydrogen peroxide, indicating insufficient peroxide regeneration by arylthiyl radicals. (ii) Aliphatic thiols which were extremely bad substrates (k3 < 10 M(-1) s(-1)) for HRP (e.g. homocysteine, glutathione) and/or have a pK(a,SH) > 9.5 (e.g. N-acetylcysteine, alpha-lipoic acid) were also shown to depend on exogenously added H2O2 to maintain the peroxidasic reaction, whereas (iii) with those thiols with rates of k3 between 11 and 1600 M(-1) s(-1) (e.g. cysteine, cysteamine, cysteine methyl ester, cysteine ethyl ester) and/or with a pK(a,SH) < 8 (penicillamine) thiol oxidation was independent of exogenously added hydrogen peroxide, indicating sufficient hydrogen peroxide regeneration.

  3. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    NASA Astrophysics Data System (ADS)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ∆NNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels

  4. Reducing operation voltages by introducing a low-k switching layer in indium-tin-oxide-based resistance random access memory

    NASA Astrophysics Data System (ADS)

    Jin, Fu-Yuan; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Lin, Chih-Yang; Chen, Po-Hsun; Chen, Min-Chen; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2016-06-01

    In this letter, we inserted a low dielectric constant (low-k) or high dielectric constant (high-k) material as a switching layer in indium-tin-oxide-based resistive random-access memory. After measuring the two samples, we found that the low-k material device has very low operating voltages (-80 and 110 mV for SET and RESET operations, respectively). Current fitting results were then used with the COMSOL software package to simulate electric field distribution in the layers. After combining the electrical measurement results with simulations, a conduction model was proposed to explain resistance switching behaviors in the two structures.

  5. Oxidation and magnetic states of chalcopyrite CuFeS2: A first principles calculation

    NASA Astrophysics Data System (ADS)

    Klekovkina, V. V.; Gainov, R. R.; Vagizov, F. G.; Dooglav, A. V.; Golovanevskiy, V. A.; Pen'kov, I. N.

    2014-06-01

    The ground state band structure, magnetic moments, charges and population numbers of electronic shells of Cu and Fe atoms have been calculated for chalcopyrite CuFeS2 using density functional theory. The comparison between our calculation results and experimental data (X-ray photoemission, X-ray absorption and neutron diffraction spectroscopy) has been made. Our calculations predict a formal oxidation state for chalcopyrite as Cu1+Fe3+S{2/2-}. However, the assignment of formal valence state to transition metal atoms appears to be oversimplified. It is anticipated that the valence state can be confirmed experimentally by nuclear magnetic and nuclear quadrupole resonance and Mössbauer spectroscopy methods.

  6. Access, quality, and costs of care at physician owned hospitals in the United States: observational study

    PubMed Central

    Orav, E John; Jena, Anupam B; Dudzinski, David M; Le, Sidney T; Jha, Ashish K

    2015-01-01

    Objective To compare physician owned hospitals (POHs) with non-POHs on metrics around patient populations, quality of care, costs, and payments. Design Observational study. Setting Acute care hospitals in 95 hospital referral regions in the United States, 2010. Participants 2186 US acute care hospitals (219 POHs and 1967 non-POHs). Main outcome measures Proportions of patients using Medicaid and those from ethnic and racial minority groups; hospital performance on patient experience metrics, care processes, risk adjusted 30 day mortality, and readmission rates; costs of care; care payments; and Medicare market share. Results The 219 POHs were more often small (<100 beds), for profit, and in urban areas. 120 of these POHs were general (non-specialty) hospitals. Compared with patients from non-POHs, those from POHs were younger (77.4 v 78.4 years, P<0.001), less likely to be admitted through an emergency department (23.2% v. 29.0%, P<0.001), equally likely to be black (5.1% v 5.5%, P=0.85) or to use Medicaid (14.9% v 15.4%, P=0.75), and had similar numbers of chronic diseases and predicted mortality scores. POHs and non-POHs performed similarly on patient experience scores, processes of care, risk adjusted 30 day mortality, 30 day readmission rates, costs, and payments for acute myocardial infarction, congestive heart failure, and pneumonia. Conclusion Although POHs may treat slightly healthier patients, they do not seem to systematically select more profitable or less disadvantaged patients or to provide lower value care. PMID:26333819

  7. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  8. Low-oxidation state indium-catalyzed C-C bond formation.

    PubMed

    Schneider, Uwe; Kobayashi, Shu

    2012-08-21

    The development of innovative metal catalysis for selective bond formation is an important task in organic chemistry. The group 13 metal indium is appealing for catalysis because indium-based reagents are minimally toxic, selective, and tolerant toward various functional groups. Among elements in this group, the most stable oxidation state is typically +3, but in molecules with larger group 13 atoms, the chemistry of the +1 oxidation state is also important. The use of indium(III) compounds in organic synthesis has been well-established as Lewis acid catalysts including asymmetric versions thereof. In contrast, only sporadic examples of the use of indium(I) as a stoichiometric reagent have been reported: to the best of our knowledge, our investigations represent the first synthetic method that uses a catalytic amount of indium(I). Depending on the nature of the ligand or the counteranion to which it is coordinated, indium(I) can act as both a Lewis acid and a Lewis base because it has both vacant p orbitals and a lone pair of electrons. This potential ambiphilicity may offer unique reactivity and unusual selectivity in synthesis and may have significant implications for catalysis, particularly for dual catalytic processes. We envisioned that indium(I) could be employed as a metallic Lewis base catalyst to activate Lewis acidic boron-based pronucleophiles for selective bond formation with suitable electrophiles. Alternatively, indium(I) could serve as an ambiphilic catalyst that activates both reagents at a single center. In this Account, we describe the development of low-oxidation state indium catalysts for carbon-carbon bond formation between boron-based pronucleophiles and various electrophiles. We discovered that indium(I) iodide was an excellent catalyst for α-selective allylations of C(sp(2)) electrophiles such as ketones and hydrazones. Using a combination of this low-oxidation state indium compound and a chiral semicorrin ligand, we developed catalytic

  9. Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University

    NASA Astrophysics Data System (ADS)

    Wilson, Zakiya S.; Iyengar, Sitharama S.; Pang, Su-Seng; Warner, Isiah M.; Luces, Candace A.

    2012-10-01

    Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the "Computer Science, Engineering, and Mathematics Scholarships" (CSEMS) program; this initiative was designed to provide greater access and support to academically talented students from economically disadvantaged backgrounds. Originally intended to provide financial support to lower income students, this NSF program also advocated that additional professional development and advising would be strategies to increase undergraduate persistence to graduation. This innovative program for economically disadvantaged students was extended in 2004 to include students from other disciplines including the physical and life sciences as well as the technology fields, and the new name of the program was Scholarships for Science, Technology, Engineering and Mathematics (S-STEM). The implementation of these two programs in Louisiana State University (LSU) has shown significant and measurable success since 2000, making LSU a Model University in providing support to economically disadvantaged students within the STEM disciplines. The achievement of these programs is evidenced by the graduation rates of its participants. This report provides details on the educational model employed through the CSEMS/S-STEM projects at LSU and provides a path to success for increasing student retention rates in STEM disciplines. While the LSU's experience is presented as a case study, the potential relevance of this innovative mentoring program in conjunction with the financial support system is discussed in detail.

  10. Reactive nitrogen oxides in the southeast United States national parks: source identification, origin, and process budget

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.

    2005-01-01

    We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.

  11. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils.

    PubMed

    Rock, M L; James, B R; Helz, G R

    2001-10-15

    High concentrations of H2O2 are being tested for in situ oxidation and remediation of buried organic contaminants in soils and groundwater. Peroxide is being considered as a direct chemical oxidant in Fenton-type reactions or as a source of oxidizing equivalents in bioremediation schemes. How H2O2 affects the oxidation state and solubility of Cr(III) and Cr(VI), common co-contaminants with organic chemicals, is explored here in four chemically diverse soils containing elevated levels of Cr. Soil contaminated with soluble Cr(VI) from chromite ore processing residue and soil containing high levels of recently reduced Cr (III) from electroplating waste both released dissolved Cr(VI) after single applications of up to 24 mM H2O2. In no case was there evidence that H202 reduced preexisting Cr(VI) to Cr(III), even though this would be allowed thermodynamically. Chromate in the leachates exceeded the U.S. EPA drinking water standard for total dissolved Cr (2 microM) by a factor of 10-1000. Anaerobic conditions in an organic-rich, tannery waste-contaminated soil protected Cr(III) from oxidation and mobilization. Mineral forms of Cr in serpentinitic soil near a former chromite mine also resisted oxidation on the time scale of days. Mobilization of Cr(VI) could be a hazardous consequence of using H2O2 for in situ remediation of chemically complex wastes, but H2O2 could prove attractive for ex situ treatment (i.e., soil washing). This paper demonstrates marked differences among Cr-contaminated soils in their capacity to release Cr(VI) upon chemical treatment with H2O2.

  12. Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds.

    PubMed

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2015-06-01

    Eukaryotic cells produce chemical energy in the form of ATP by oxidative phosphorylation of metabolic fuels via a series of enzyme mediated biochemical reactions. We propose that the rates of these reactions are altered, as per energy needs of the seasonal metabolic states in avian migrants. To investigate this, blackheaded buntings were photoperiodically induced with non-migratory, premigratory, migratory and post-migratory phenotypes. High plasma levels of free fatty acids, citrate (an intermediate that begins the TCA cycle) and malate dehydrogenase (mdh, an enzyme involved at the end of the TCA cycle) confirmed increased availability of metabolic reserves and substrates to the TCA cycle during the premigratory and migratory states, respectively. Further, daily expression pattern of genes coding for enzymes involved in the oxidative decarboxylation of pyruvate to acetyl-CoA (pdc and pdk) and oxidative phosphorylation in the TCA cycle (cs, odgh, sdhd and mdh) was monitored in the hypothalamus and liver. Reciprocal relationship between pdc and pdk expressions conformed with the altered requirements of acetyl-CoA for the TCA cycle in different metabolic states. Except for pdk, all genes had a daily expression pattern, with high mRNA expression during the day in the premigratory/migratory phenotypes, and at night (cs, odhg, sdhd and mdh) in the nonmigratory phenotype. Differences in mRNA expression patterns of pdc, sdhd and mdh, but not of pdk, cs and odgh, between the hypothalamus and liver indicated a tissue dependent metabolism in buntings. These results suggest the adaptation of oxidative phosphorylation pathway(s) at gene levels to the seasonal alternations in metabolism in migratory songbirds.

  13. Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.

    PubMed

    Kurlak, Lesia O; Green, Amanda; Loughna, Pamela; Broughton Pipkin, Fiona

    2014-01-01

    Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE) and non-proteinuric new hypertension (gestational hypertension; GH) are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks postpartum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS) and antioxidants (ferric ion reducing ability of plasma; FRAP). Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential) hypertension (EH) without PE. Limited data were available from normotensive pregnancies (n = 7) and non-pregnant controls (n = 14). There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P = 0.001) and FRAP (P = 0.009) were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P = 0.013). In PE and GH, TBARS correlated with low density lipoprotein (LDL)-cholesterol (P = 0.036); this association strengthened with inclusion of EH (P = 0.011). The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P = 0.003). Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre

  14. The Oxidation State of Terrestrial Basalts and its Link with the Mantle

    NASA Astrophysics Data System (ADS)

    Mallmann, G.; O'Neill, H. S.; Berry, A. J.; Norman, M. D.; Eggins, S. M.; Kamenetsky, V.; Turner, S.; Smith, I. E.; Ballhaus, C.

    2011-12-01

    The prevailing paradigm is that the Earth's mantle is both laterally and vertically heterogeneous in regards to its oxidation state. This view has been motivated by the observation that, on average, primitive island arc basalts (IAB) preserve Fe3+/Fe2+ higher than ocean island (OIB) and, particularly, mid-ocean ridge basalts (MORB), and reinforced by the higher oxygen fugacities (fO2) determined in lithospheric (mantle wedge) arc peridotites. fO2 measurements in peridotites equilibrated over a range of pressures have also led to the notion that the mantle becomes more reduced with depth. V and Sc behave very similarly during partial melting of the mantle, but while V is redox-sensitive Sc is not. Their ratio in basalts has therefore a memory of the redox conditions during partial melting. Within the many assumptions involved in forward trace-element modeling, the bulk-rock V/Sc of MORBs, OIBs and IABs indicate that the partial melting events responsible for their genesis occurred at a relatively narrow range of fO2s between QFM and QFM-1. V olivine-liquid partition coefficients are also sensitive to oxidation state (normalization to Sc is useful to minimize the effect of variables other than fO2), and the values determined between olivine phenocrysts (Fo76-90) and quenched basaltic melts suggest that, at the time of olivine crystallization, terrestrial basalts have already oxidized about 1 log fO2 unit (IABs even more so, approximately 2 log fO2 units). The results reveal no statistically significant distinction between the oxidation states of MORBs and OIBs. This has been confirmed by Fe3+/Fe2+ determined by XANES.

  15. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  16. Expanding Access

    ERIC Educational Resources Information Center

    Roach, Ronald

    2007-01-01

    There is no question that the United States lags behind most industrialized nations in consumer access to broadband Internet service. For many policy makers and activists, this shortfall marks the latest phase in the struggle to overcome the digital divide. To remedy this lack of broadband affordability and availability, one start-up firm--with…

  17. 40 CFR 1400.9 - Access to off-site consequence analysis information by State and local government officials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Access to off-site consequence... CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION Access to Off-Site Consequence Analysis Information by Government Officials. § 1400.9 Access to off-site consequence...

  18. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  19. GaAs-oxide interface states - Gigantic photoionization via Auger-like process

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Kazior, T. E.; Gatos, H. C.; Walukiewicz, W.; Siejka, J.

    1981-01-01

    Spectral and transient responses of photostimulated current in MOS structures were employed for the study of GaAs-anodic oxide interface states. Discrete deep traps at 0.7 and 0.85 eV below the conduction band were found with concentrations of 5 x 10 to the 12th/sq cm and 7 x 10 to the 11th/sq cm, respectively. These traps coincide with interface states induced on clean GaAs surfaces by oxygen and/or metal adatoms (submonolayer coverage). In contrast to surfaces with low oxygen coverage, the GaAs-thick oxide interfaces exhibited a high density (about 10 to the 14th/sq cm) of shallow donors and acceptors. Photoexcitation of these donor-acceptor pairs led to a gigantic photoionization of deep interface states with rates 1000 times greater than direct transitions into the conduction band. The gigantic photoionization is explained on the basis of energy transfer from excited donor-acceptor pairs to deep states.

  20. Secondary Measures of Access to Abortion Services in the United States, 2011 and 2012: Gestational Age Limits, Cost, and Harassment

    PubMed Central

    Jerman, Jenna; Jones, Rachel K.

    2016-01-01

    Background Aspects of U.S. clinical abortion service provision such as gestational age limits, charges for abortion services, and anti-abortion harassment can impact the accessibility of abortion; this study documents changes in these measures between 2008 and 2012. Methods In 2012 and 2013, we surveyed all known abortion-providing facilities in the United States (n = 1,720). This study summarizes information obtained about gestational age limits, charges, and exposure to anti-abortion harassment among clinics; response rates for relevant items ranged from 54% (gestational limits) to 80% (exposure to harassment). Weights were constructed to compensate for nonresponding facilities. We also examine the distribution of abortions and abortion facilities by region. Findings Almost all abortion facilities (95%) offered abortions at 8 weeks’ gestation; 72% did so at 12 weeks, 34% at 20 weeks, and 16% at 24 weeks in 2012. In 2011 and 2012, the median charge for a surgical abortion at 10 weeks gestation was $495, and $500 for an early medication abortion, compared with $503 and $524 (adjusted for inflation) in 2009. In 2011, 84% of clinics experienced at least one form of harassment, only slightly higher than found in 2009. Hospitals and physicians’ offices accounted for a substantially smaller proportion of facilities in the Midwest and South. Clinics in the Midwest and South were exposed to more harassment than their counterparts in the Northeast and West. Conclusions Although there was a substantial decline in abortion incidence between 2008 and 2011, the secondary measures of abortion access examined in this study changed little during this time period. PMID:24981401

  1. Oxidation-state dependence of rheology in peralkaline glasses of phonolitic composition

    NASA Astrophysics Data System (ADS)

    Scherrer, M. C.; Hess, K.-U.; Fehr, K. T.; Dingwell, D. B.

    2012-04-01

    The precise description of magmatic melts rheology at the glass transition is crucial in understanding dynamic processes in volcanology. The glass transition has been described to scale with the viscosity of the material according to Maxwell's relaxation theory for viscoelastic liquids (Dingwell and Webb, 1989). The temperature dependence of the viscosity of multi-component systems can adequately be calculated using empirical models such as Hess et al. (1996), Giordano et al. (2008) and Hui and Zhang (2008); yet, within these calculations, the influence of oxidation state has been so far considered minor and was consequently neglected. The rheological behavior of some iron-rich silicate melts has shown noteworthy oxidation state-dependent variations (Cukierman and Uhlmann 1974, Dingwell and Virgo 1987). The focus of our study is to improve the viscosity models by investigating the necessity of an additional redox-parameter. Thirteen re-melted glass samples of natural phonolitic composition (peralkaline lavas with 8.5 wt. % FeOtot) were produced under different oxygen fugacity (fO2) conditions in a CO/CO2 gas-mixing furnace. Their oxidation-state (Fe3+/Fetot) ranges from 0.44 to 0.93 (±0.05). The viscosity above the liquidus was recorded via the concentric cylinder technique at a constant temperature of 1186 ° C. Additionally, viscosities were measured in the interval of 107to 1011Pa swith temperatures up to 900 ° C at ambient pressure via a BAEHR micro-penetration viscometer. Glass transition temperatures (Tg) have been determined with a constant heating/cooling rate of 10K/min on a SETARAM Sensys evo DSC using the peak of the specific heat capacity curve. Under a constant temperature in the super-liquidus state, the viscosity increases strongly with increasing fO2. In the sub-liquidus state, the measured calorimetric Tgis shifted to lower temperatures as the ratio of ferrous/total iron decreases from 638 ° C to 610 ° C. However, there is no equivalent

  2. Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Nikel, Pablo I; Oppezzo, Oscar J; López, Nancy I

    2013-02-01

    The role of Anr in oxidative stress resistance was investigated in Pseudomonas extremaustralis, a polyhydroxybutyrate-producing Antarctic bacterium. The absence of Anr caused increased sensitivity to hydrogen peroxide under low oxygen tension. This phenomenon was associated with a decrease in the redox ratio, higher oxygen consumption and higher reactive oxygen species production. Physiological responses of the mutant to the oxidized state included an increase in NADP(H) content, catalase activity and exopolysaccharide production. The wild-type strain showed a sharp decrease in the reduced thiol pool when exposed to hydrogen peroxide, not observed in the mutant strain. In silico analysis of the genome sequence of P. extremaustralis revealed putative Anr binding sites upstream from genes related to oxidative stress. Genes encoding several chaperones and cold shock proteins, a glutathione synthase, a sulfate transporter and a thiol peroxidase were identified as potential targets for Anr regulation. Our results suggest a novel role for Anr in oxidative stress resistance and in redox balance maintenance under conditions of restricted oxygen supply.

  3. Formation and reactivity of surface-bound high oxidation state Ruthenium-oxo complexes.

    SciTech Connect

    Hornstein, B. J.; Dattelbaum, D. M.; Schoonover, J. R.; Meyer, T. J.

    2004-01-01

    Ruthenium polypyridyl oxalate complexes are precursors to high oxidation state species that can catalyze the oxidation of a variety of substrates. Covalent attachment of these reactive species to surfaces such at ZrO{sub 2} or TiO{sub 2} inhibit catalyst deactivation and provide supports from which to build electrocatalytic and photoelectrocatalytic devices. Unfortunately, few details of the effects of surface binding on reactivity are available in the literature. To this end, precursors such as, Ru(H{sub 2}O{sub 3}Ptpy)(C{sub 2}O{sub 4})(H{sub 2}O) and (C{sub 2}O{sub 4})(H{sub 2}O{sub 3}Ptpy)Ru-O-Ru(H{sub 2}O{sub 3}Ptpy)(C{sub 2}O{sub 4}) (tpy is terpyridine) have been synthesized and attached to TiO{sub 2}. Quantitative surface binding studies were carried out and acid catalyzed solvolysis was used to form the aqua species. The complexes were oxidized with Ce(IV) to their high-valent analogs and their reactivity toward selected substrates was tested. These studies not only provide information about the effects of surface binding on the reactivity of metal oxides but also have implications for the development of light-driven catalysts.

  4. Positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.

    2013-03-01

    The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.

  5. Arsenic (+ 3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    SciTech Connect

    Hughes, Michael F.; Edwards, Brenda C.; Herbin-Davis, Karen M.; Saunders, Jesse; Styblo, Miroslav; Thomas, David J.

    2010-12-15

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in which mice received daily oral doses of 0.5 mg of arsenic as arsenate per kilogram of body weight. Regardless of genotype, arsenic body burdens attained steady state after 10 daily doses. At steady state, arsenic body burdens in As3mt knockout mice were 16 to 20 times greater than in wild-type mice. During the post dosing clearance period, arsenic body burdens declined in As3mt knockout mice to {approx} 35% and in wild-type mice to {approx} 10% of steady-state levels. Urinary concentration of arsenic was significantly lower in As3mt knockout mice than in wild-type mice. At steady state, As3mt knockout mice had significantly higher fractions of the body burden of arsenic in liver, kidney, and urinary bladder than did wild-type mice. These organs and lung had significantly higher arsenic concentrations than did corresponding organs from wild-type mice. Inorganic arsenic was the predominant species in tissues of As3mt knockout mice; tissues from wild-type mice contained mixtures of inorganic arsenic and its methylated metabolites. Diminished capacity for arsenic methylation in As3mt knockout mice prolongs retention of inorganic arsenic in tissues and affects whole body clearance of arsenic. Altered retention and tissue tropism of arsenic in As3mt knockout mice could affect the toxic or carcinogenic effects associated with exposure to this metalloid or its methylated metabolites.

  6. Vibrational autoionization and predissociation in high Rydberg states of nitric oxide

    NASA Astrophysics Data System (ADS)

    Pratt, S. T.

    1998-05-01

    New results on the competition between autoionization and predissociation in the high Rydberg states of nitric oxide are presented. These results provide insight into the earlier work of Park et al. [Phys. Rev. Lett. 76, 1591 (1996)] that shows evidence for substantial mixing between Rydberg series and ionization continua with even and odd orbital angular momenta (l). New data based on fluorescence-dip spectroscopy, detection of neutral predissociation products, and photoelectron spectroscopy suggest that the A' 2Σ+ and I 2Σ+ dissociative valence states play an important role in this l mixing. Zeeman splittings observed in a magnetic bottle electron spectrometer also result in an improvement in the assignment of these high Rydberg states.

  7. Low-temperature, highly selective, gas-phase oxidation of benzyl alcohol over mesoporous K-Cu-TiO2 with stable copper(I) oxidation state.

    PubMed

    Fan, Jie; Dai, Yihu; Li, Yunlong; Zheng, Nanfeng; Guo, Junfang; Yan, Xiaoqing; Stucky, Galen D

    2009-11-04

    A newly developed mesoporous mixed metal oxide (K-Cu-TiO(2)) catalyst is capable of highly selective, gas-phase benzyl alcoholbenzaldehyde transformation at excellent yields (>99%) under surprisingly low temperatures (203 degrees C, bp of benzyl alcohol). The low-temperature reaction conditions and integration of K and Cu(I) components into the TiO(2) matrix are of vital importance for the stabilization of an active Cu(I) oxidation state and resultant stable, excellent catalytic performance.

  8. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  9. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  10. Influence of the Sn oxidation state in ferromagnetic Sn-doped In2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Maloney, Francis Scott; Wang, Wenyong

    2016-12-01

    Sn-doped indium oxide nanowires were grown using a vapor-liquid-solid technique (VLS). The Sn content of the nanowires was tunable based on the source powder ratios used in the VLS process. The oxidation state of the Sn ions was examined using x-ray photoelectron spectroscopy. It was found that Sn2+ was the dominant ionic species in samples over 6% (atomic percentage) Sn. The nanowires were found to be ferromagnetic at room temperature, and their saturation magnetization increased with increasing Sn concentration, which could be associated with the spin-splitting of a defect band that was encouraged by the imbalance of Sn2+ to Sn4+ species at high Sn concentrations.

  11. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated ars...

  12. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  13. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  14. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  15. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Edmonds, Marie; Scaillet, Bruno; Peters, Nial; Gennaro, Emanuela; Sides, Issy; Oppenheimer, Clive

    2016-09-01

    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer - hence preserving mantle conditions - or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai'i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2O and CO2 appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas-melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at Kīlauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath Kīlauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.

  16. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  17. Difficulties in access and estimates of public beds in intensive care units in the state of Rio de Janeiro

    PubMed Central

    Goldwasser, Rosane Sonia; Lobo, Maria Stella de Castro; de Arruda, Edilson Fernandes; Angelo, Simone Aldrey; Silva, José Roberto Lapa e; de Salles, André Assis; David, Cid Marcos

    2016-01-01

    ABSTRACT OBJECTIVE To estimate the required number of public beds for adults in intensive care units in the state of Rio de Janeiro to meet the existing demand and compare results with recommendations by the Brazilian Ministry of Health. METHODS The study uses a hybrid model combining time series and queuing theory to predict the demand and estimate the number of required beds. Four patient flow scenarios were considered according to bed requests, percentage of abandonments and average length of stay in intensive care unit beds. The results were plotted against Ministry of Health parameters. Data were obtained from the State Regulation Center from 2010 to 2011. RESULTS There were 33,101 medical requests for 268 regulated intensive care unit beds in Rio de Janeiro. With an average length of stay in regulated ICUs of 11.3 days, there would be a need for 595 active beds to ensure system stability and 628 beds to ensure a maximum waiting time of six hours. Deducting current abandonment rates due to clinical improvement (25.8%), these figures fall to 441 and 417. With an average length of stay of 6.5 days, the number of required beds would be 342 and 366, respectively; deducting abandonment rates, 254 and 275. The Brazilian Ministry of Health establishes a parameter of 118 to 353 beds. Although the number of regulated beds is within the recommended range, an increase in beds of 122.0% is required to guarantee system stability and of 134.0% for a maximum waiting time of six hours. CONCLUSIONS Adequate bed estimation must consider reasons for limited timely access and patient flow management in a scenario that associates prioritization of requests with the lowest average length of stay. PMID:27191155

  18. Deregulation, Distrust, and Democracy: State and Local Action to Ensure Equitable Access to Healthy, Sustainably Produced Food.

    PubMed

    Wiley, Lindsay F

    2015-01-01

    Environmental, public health, alternative food, and food justice advocates are working together to achieve incremental agricultural subsidy and nutrition assistance reforms that increase access to fresh fruits and vegetables. When it comes to targeting food and beverage products for increased regulation and decreased consumption, however, the priorities of various food reform movements diverge. This article argues that foundational legal issues, including preemption of state and local authority to protect the public's health and welfare, increasing First Amendment protection for commercial speech, and eroding judicial deference to legislative policy judgments, present a more promising avenue for collaboration across movements than discrete food reform priorities around issues like sugary drinks, genetic modification, or organics. Using the Vermont Genetically Modified Organism (GMO) Labeling Act litigation, the Kauai GMO Cultivation Ordinance litigation, the New York City Sugary Drinks Portion Rule litigation, and the Cleveland Trans Fat Ban litigation as case studies, I discuss the foundational legal challenges faced by diverse food reformers, even when their discrete reform priorities diverge. I also 'explore the broader implications of cooperation among groups that respond differently to the "irrationalities" (from the public health perspective) or "values" (from the environmental and alternative food perspective) that permeate public risk perception for democratic governance in the face of scientific uncertainty.

  19. Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature

    NASA Astrophysics Data System (ADS)

    Liu, Weihua; Mei, Yuan; Etschmann, Barbara; Brugger, Joël; Pearce, Mark; Ryan, Chris G.; Borg, Stacey; Wykes, Jeremey; Kappen, Peter; Paterson, David; Boesenberg, Ulrike; Garrevoet, Jan; Moorhead, Gareth; Falkenberg, Gerald

    2017-01-01

    Element substitution that occurs during fluid-rock interaction permits assessment of fluid composition and interaction conditions in ancient geological systems, and provides a way to fix contaminants from aqueous solutions. We conducted a series of hydrothermal mineral replacement experiments to determine whether a relationship can be established between arsenic (As) distribution in apatite and fluid chemistry. Calcite crystals were reacted with phosphate solutions spiked with As(V), As(III), and mixed As(III)/As(V) species at 250 °C and water-saturated pressure. Arsenic-bearing apatite rims formed in several hours, and within 48 h the calcite grains were fully replaced. X-ray Absorption Near-edge Spectroscopy (XANES) data show that As retained the trivalent oxidation state in the fully-reacted apatite grown from solutions containing only As(III). Extended X-ray Fine Spectroscopy (EXAFS) data reveal that these As(III) ions are surrounded by about three oxygen atoms at an Assbnd O bond length close to that of an arsenate group (AsO43-), indicating that they occupy tetrahedral phosphate sites. The three-coordinated As(III)-O3 structure, with three oxygen atoms and one lone electron pair around As(III), was confirmed by geometry optimization using ab initio molecular simulations. The micro-XANES imaging data show that apatite formed from solutions spiked with mixed As(III) and As(V) retained only As(V) after completion of the replacement reaction; in contrast, partially reacted samples revealed a complex distribution of As(V)/As(III) ratios, with As(V) concentrated in the center of the grain and As(III) towards the rim. Most natural apatites from the Ernest Henry iron oxide copper gold deposit, Australia, show predominantly As(V), but two grains retained some As(III) in their core. The As-anomalous amphibolite-facies gneiss from Binntal, Switzerland, only revealed As(V), despite the fact that these apatites in both cases formed under conditions where As(III) is

  20. Purification of Arsenic (+3 Oxidation State) Methyltransferase from Rat Liver Cytosol

    PubMed Central

    Drobna, Zuzana; Styblo, Miroslav; Thomas, David J.

    2015-01-01

    Demonstrating the enzymatic basis of arsenic methylation is critical to further studies of the pathway for the conversion of inorganic arsenic into a variety of methylated metabolites. This protocol describes a procedure for the purification of an arsenic methyltransferase from rat liver cytosol. Purification of this enzyme and subsequent cloning of its gene has permitted studies of enzyme structure and function and has lead to the identification of orthologous genes in genomes of organisms ranging in complexity from sea urchins to humans. These proteins are referred to as arsenic (+3 oxidation state) methyltransferases. PMID:20949431

  1. Synthesis, Characterization, and Electrochemistry of sigma-Bonded Cobalt Corroles in High Oxidation States.

    PubMed

    Will, Stefan; Lex, Johann; Vogel, Emanuel; Adamian, Victor A.; Van Caemelbecke, Eric; Kadish, Karl M.

    1996-09-11

    The synthesis, electrochemistry, spectroscopy, and structural characterization of two high-valent phenyl sigma-bonded cobalt corroles containing a central cobalt ion in formal +IV and +V oxidation states is presented. The characterized compounds are represented as phenyl sigma-bonded cobalt corroles, (OEC)Co(C(6)H(5)) and [(OEC)Co(C(6)H(5))]ClO(4), where OEC is the trianion of 2,3,7,8,12,13,17,18-octaethylcorrole. The electronic distribution in both molecules is discussed in terms of their NMR and EPR spectroscopic data, magnetic susceptibility, and electrochemistry.

  2. The current acceptance, accessibility and recognition of Chinese and Ayurvedic medicine in the United States in the public, governmental, and industrial sectors.

    PubMed

    Park, Jongbae J; Beckman-Harned, Selena; Cho, Gayoung; Kim, Duckhee; Kim, Hangon

    2012-06-01

    To assess the current level of acceptance in the United States of complementary and alternative medicine, recent research into the prevalence, acceptance, accessibility, and recognition of complementary and alternative therapies were reviewed. Several signs point to an increasing acceptance of complementary and alternative medicine in the United States; the use of complementary and alternative medicine is significantly increasing, many aspects of Chinese medicine and Ayurveda are becoming mainstream, practitioners in the United States are beginning to be licensed, and insurance companies are beginning to cover some complementary and alternative therapies. Remaining challenges to true acceptance include the restrictive Western mindset, the absence of published studies, a lack of consistent manufacturing processes and quality standards, and a fear of adulteration. Although the field still faces many challenges, alternative and complementary medicine, including Chinese medicine and Ayurvedic medicine, is becoming more accepted and accessible in the United States.

  3. Examination of Access and Equity by Gender, Race, and Ethnicity in a Non-Traditional Leadership Development Programme in the United States

    ERIC Educational Resources Information Center

    Shields, Thomas; Cassada, Kate

    2016-01-01

    In developing the next generation of school leadership, school districts across the United States and internationally must consider who is being promoted, the training they are able to access beyond traditional university degree work, the schools in which these emerging leaders enter their first principalships, and how prepared these new leaders…

  4. Uncertain Recovery: Access and Funding Issues in Public Higher Education. Findings from the 2010 Survey of the National Council of State Directors of Community Colleges

    ERIC Educational Resources Information Center

    Katsinas, Stephen G.; Friedel, Janice N.

    2010-01-01

    There are growing pressures for community colleges and regional universities to accommodate the rise in student enrollment. The purpose of this study was to evaluate access and funding issues across public higher education institutions in the United States. Responses to a survey, conducted by the Education Policy Center at the University of…

  5. Answering the Call for Equitable Access to Effective Teachers: Lessons Learned from State-Based Teacher Preparation Efforts in Georgia, Indiana, Michigan, New Jersey, and Ohio

    ERIC Educational Resources Information Center

    Woodrow Wilson National Fellowship Foundation, 2015

    2015-01-01

    The nation's teacher education programs are not producing the quantity or quality of teachers needed, particularly in needed subjects. The only way to ensure a strong enough pipeline of effective teachers to ensure equitable access is to dramatically increase how states are preparing prospective educators. The Woodrow Wilson National Fellowship…

  6. Medicaid: State and Federal Actions Have Been Taken to Improve Children's Access to Dental Services, but Gaps Remain. Report to Congressional Requesters. GAO-09-723

    ERIC Educational Resources Information Center

    US Government Accountability Office, 2009

    2009-01-01

    Children's access to Medicaid dental services is a long-standing concern. The tragic case of a 12-year-old boy who died from an untreated infected tooth that led to a fatal brain infection renewed attention to this issue. He was enrolled in Medicaid--a joint federal and state program that provides health care coverage, including dental care, for…

  7. Syringe Disposal among Injection Drug Users in Harlem and the Bronx during the New York State Expanded Syringe Access Demonstration Program

    ERIC Educational Resources Information Center

    Cleland, Charles M.; Deren, Sherry; Fuller, Crystal M.; Blaney, Shannon; McMahon, James M.; Tortu, Stephanie; Des Jarlais, Don C.; Vlahov, David

    2007-01-01

    Effective January 1, 2001, New York State enacted the Expanded Syringe Access Demonstration Program (ESAP), allowing syringes to be sold in pharmacies without a prescription or dispensed through doctors, hospitals, and clinics to adults. A concern in the assessment of ESAP is its effects on syringe disposal practices. Syringe use data regarding…

  8. Fatty acid composition of fourteen seashore mallow (Kosteletzkya pentacarpos) seed oil accessions collected from the Atlantic and Gulf coasts of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow (Kosteletzkya pentacarpos) is a flowering perennial halophytic herb belonging to the family Malvaceae that is found in marshes along the Atlantic and Gulf coasts of the United States. Fourteen accessions were collected from wild populations along the Atlantic (n = 8) and Gulf (n = 6)...

  9. Energy state distributions at oxide-semiconductor interfaces investigated by Laplace DLTS

    NASA Astrophysics Data System (ADS)

    Dobaczewski, L.; Markevich, V. P.; Kruszewski, P.; Hawkins, I. D.; Peaker, A. R.

    2009-12-01

    At disordered Si/SiO2 interfaces the lattice mismatching results in dangling bond Pb centres forming a rather broad distribution of energy states. In this study these energy distributions have been determined using isothermal current Laplace deep level transient spectroscopy (DLTS) for the (1 0 0) and (1 1 1) interface orientations. The (1 1 1) distribution is 0.08 eV broad and centred at 0.38 eV below the silicon conduction band. This is consistent with only Pb0 states being present. While for the (1 0 0) orientation this distribution is broader (0.1 eV) and deeper (0.43 eV) on the energy scale. Detailed studies revealed two types of the interface states in this broad distribution: one similar to the (1 1 1) orientation while the other has a negative-U character in which the emission rate versus surface potential dependence is qualitatively different from that observed for Pb0 and is presumed to be Pb1. Discrepancies between Pb states energy distributions obtained with a use of the isothermal Laplace and conventional DLTS measurements are discussed. The presented experimental procedure can be used for analysis of interface states observed at interfaces of other semiconductor-oxide/dielectric systems.

  10. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  11. Arsenic in ground-water under oxidizing conditions, south-west United States.

    PubMed

    Robertson, F N

    1989-12-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 μg L(-1) and reach values as large as 1,300 μg L(-1). Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4(∼2), under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin

  12. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may

  13. Probing the transition state region in catalytic CO oxidation on Ru

    SciTech Connect

    Ostrom, H.; Oberg, H.; Xin, H.; LaRue, J.; Beye, M.; Dell'Angela, M.; Gladh, J.; Ng, M. L.; Sellberg, J. A.; Kaya, S.; Mercurio, G.; Nordlund, D.; Hantschmann, M.; Hieke, F.; Kuhn, D.; Schlotter, W. F.; Dakovski, G. L.; Turner, J. J.; Minitti, M. P.; Mitra, A.; Moeller, S. P.; Fohlisch, A.; Wolf, M.; Wurth, W.; Persson, M.; Norskov, J. K.; Abild-Pedersen, F.; Ogasawara, H.; Pettersson, L. G. M.; Nilsson, A.

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  14. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Knopf, Daniel A.

    2014-07-01

    Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.

  15. Nitrous Oxide for Labor Analgesia: Expanding Analgesic Options for Women in the United States

    PubMed Central

    Collins, Michelle R; Starr, Sarah A; Bishop, Judith T; Baysinger, Curtis L

    2012-01-01

    Nitrous oxide (N2O) is a commonly used labor analgesic in many Western countries, but is used infrequently in the United States. The University of California at San Francisco has been offering N2O for labor analgesia for more than 30 years. Vanderbilt University Medical Center recently began offering N2O as an option for pain relief in laboring women. Many women report that N2O provides effective pain relief during labor and argue that it should be made more widely available in the United States. This article discusses the use of N2O for pain management during labor, including its history, properties, clinical indications, and use and environmental safety issues. Practical issues regarding implementation of N2O service in a medical center setting are also discussed. PMID:23483795

  16. Patterns in the stability of the lower oxidation states of the actinides and lanthanides

    SciTech Connect

    Mikheev, N.B.; Auerman, L.N.; Ionova, G.V.; Korshunov, B.G.; Spitsyn, V.I.

    1986-09-01

    The authors compare the first half of the lanthanides and the second half of the actinides by considering the specifics of the electronic structure of the valence atoms of the f-, d-, and s-orbitals, consisting of he following: The lanthanides from praseodymium to europium and from dysprosium to ytterbium, as well as the actinides from californium to nobelium, have the same electronic configuration f /SUP n/ s/sub 2/ in the state of free neutral atoms, which corresponds to their divalent state. On the basis of a consideration of the energy characteristics of the valence orbitals of the elements of the lanthanide and actinide famililies and as a result of an experimental determination of the standard oxidation potential of these elements, the authors consider the profound similarity between the elements of the first half of the lanthanide family and the second half of the actinide family to be established.

  17. Surface chemistry. Probing the transition state region in catalytic CO oxidation on Ru.

    PubMed

    Öström, H; Öberg, H; Xin, H; LaRue, J; Beye, M; Dell'Angela, M; Gladh, J; Ng, M L; Sellberg, J A; Kaya, S; Mercurio, G; Nordlund, D; Hantschmann, M; Hieke, F; Kühn, D; Schlotter, W F; Dakovski, G L; Turner, J J; Minitti, M P; Mitra, A; Moeller, S P; Föhlisch, A; Wolf, M; Wurth, W; Persson, M; Nørskov, J K; Abild-Pedersen, F; Ogasawara, H; Pettersson, L G M; Nilsson, A

    2015-02-27

    Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  18. The joint effects of census tract poverty and geographic access on late-stage breast cancer diagnosis in 10 US States.

    PubMed

    Henry, Kevin A; Sherman, Recinda; Farber, Steve; Cockburn, Myles; Goldberg, Daniel W; Stroup, Antoinette M

    2013-05-01

    This study evaluated independent and joint effects of census tract (CT) poverty and geographic access to mammography on stage at diagnosis for breast cancer. The study included 161,619 women 40+ years old diagnosed with breast cancer between 2004 -2006 in ten participating US states. Multilevel logistic regression was used to estimate the odds of late-stage breast cancer diagnosis for the entire study population and by state. Poverty was independently associated with late-stage in the overall population (poverty rates >20% OR=1.30, 95% CI=1.26- 1.35) and for 9 of the 10 states. Geographic access was not associated with late-stage diagnosis after adjusting for CT poverty. State-specific analysis provided little evidence that geographic access was associated with breast cancer stage at diagnosis, and after adjusting for poverty, geographic access mattered in only 1 state. Overall, compared to women with private insurance, the adjusted odds ratios for late stage at diagnosis among women with either no insurance, Medicaid, or Medicare were 1.80 (95% CI = 1.65, 1.96), 1.75 (95% CI = 1.68, 1.84), and 1.05 (95% CI 1.01, 1.08), respectively. Although geographic access to mammography was not a significant predictor of late-stage breast cancer diagnosis, women in high poverty areas or uninsured are at greatest risk of being diagnosed with late-stage breast cancer regardless of geographic location and may benefit from targeted interventions.

  19. Restricting Access to ART on the Basis of Criminal Record : An Ethical Analysis of a State-Enforced "Presumption Against Treatment" With Regard to Assisted Reproductive Technologies.

    PubMed

    Thompson, Kara; McDougall, Rosalind

    2015-09-01

    As assisted reproductive technologies (ART) become increasingly popular, debate has intensified over the ethical justification for restricting access to ART based on various medical and non-medical factors. In 2010, the Australian state of Victoria enacted world-first legislation that denies access to ART for all patients with certain criminal or child protection histories. Patients and their partners are identified via a compulsory police and child protection check prior to commencing ART and, if found to have a previous relevant conviction or child protection order, are given a "presumption against treatment." This article reviews the legislation and identifies arguments that may be used to justify restricting access to ART for various reasons. The arguments reviewed include limitations of reproductive rights, inheriting undesirable genetic traits, distributive justice, and the welfare of the future child. We show that none of these arguments justifies restricting access to ART in the context of past criminal history. We show that a "presumption against treatment" is an unjustified infringement on reproductive freedom and that it creates various inconsistencies in current social, medical, and legal policy. We argue that a state-enforced policy of restricting access to ART based on the non-medical factor of past criminal history is an example of unjust discrimination and cannot be ethically justified, with one important exception: in cases where ART treatment may be considered futile on the basis that the parents are not expected to raise the resulting child.

  20. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    PubMed Central

    Savini, Isabella; Catani, Maria Valeria; Evangelista, Daniela; Gasperi, Valeria; Avigliano, Luciana

    2013-01-01

    Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance. PMID:23698776

  1. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  2. Stress Intensity Effect on Solid State Oxidation of Ni-Cr Alloy with Different Chromium Concentrates

    NASA Astrophysics Data System (ADS)

    Tirtom, Ismail; Das, Nishith Kumar; Shoji, Tetsuo

    Ni-base alloy is widely used in light water reactor component and the recent study has shown stress corrosion cracking (SCC). Over the years various attempts have been made to obtain mechanism of SCC but it still require more fundamental study to understand clearly. This study presents an approach based on the multiscale modeling, to assess the influence of alloy composition and stress intensity on the initial stage of solid state oxidation of the Ni-Cr alloy. The multiscale modeling considers different length scales such as finite element method (FEM) / quasi-continuum (QC) / quantum chemical molecular dynamics (QCMD), for analyzing crack tip molecular domain. The compact tension (CT) specimen of alloy 600 has been loaded for stress intensity, after that the micro region has chosen for the QC model which is a combination of continuum and atomic method. Finally, the deformed atomic position has picked for the QCMD simulation with some water molecules. The simulated results show that the chromium segregates faster than nickel atoms from the surface and make preferential bonding with oxygen. The preferential bonding forms a passive film. Applied stress intensity deformed the structure which may increase the atomic distance. As distance increases the absorption of water molecule or OH or oxygen into lattice increases. The stress intensity raises the crack tip solid state oxidation that may enhance SCC initiation.

  3. Caesium in high oxidation states and as a p-block element.

    PubMed

    Miao, Mao-sheng

    2013-10-01

    The periodicity of the elements and the non-reactivity of the inner-shell electrons are two related principles of chemistry, rooted in the atomic shell structure. Within compounds, Group I elements, for example, invariably assume the +1 oxidation state, and their chemical properties differ completely from those of the p-block elements. These general rules govern our understanding of chemical structures and reactions. Here, first-principles calculations show that, under pressure, caesium atoms can share their 5p electrons to become formally oxidized beyond the +1 state. In the presence of fluorine and under pressure, the formation of CsF(n) (n > 1) compounds containing neutral or ionic molecules is predicted. Their geometry and bonding resemble that of isoelectronic XeF(n) molecules, showing a caesium atom that behaves chemically like a p-block element under these conditions. The calculated stability of the CsF(n) compounds shows that the inner-shell electrons can become the main components of chemical bonds.

  4. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors

    PubMed Central

    Yi, Wei; Savel'ev, Sergey E.; Medeiros-Ribeiro, Gilberto; Miao, Feng; Zhang, M.-X.; Yang, J. Joshua; Bratkovsky, Alexander M.; Williams, R. Stanley

    2016-01-01

    Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f2 (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e2/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics–Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications. PMID:27041485

  5. Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

    NASA Astrophysics Data System (ADS)

    Seo, Jihoon; Moon, Jinok; Kim, Joo Hyun; Lee, Kangchun; Hwang, Junha; Yoon, Heesung; Yi, Dong Kee; Paik, Ungyu

    2016-12-01

    In this study, we have investigated the role of the Ce oxidation state (Ce3+/Ce4+) on the CeO2 surfaces for silicate adsorption. In aqueous medium, the Ce3+ sites lead to the formation of -OH groups at the CeO2 surface through H2O dissociation. Silicate ions can adsorb onto the CeO2 surface through interaction with the -OH groups (-Ce-OH- + -Si-O- ↔ -Ce-O-Si- + OH-). As the Ce3+ concentration increased from 19.3 to 27.6%, the surface density of -OH group increased from 0.34 to 0.72 OH/nm2. To evaluate the adsorption behaviors of silicate ions onto CeO2 NPs, we carried out an adsorption isothermal analysis, and the adsorption isotherm data followed the Freundlich model. The Freundlich constant for the relative adsorption capacity (KF) and adsorption intensity (1/n) indicated that CeO2 NPs with high Ce3+ concentration show higher adsorption affinity with silicate ions. As a result, we have demonstrated that the Ce oxidation state (Ce3+/Ce4+) on the CeO2 surface can have a significant influence on the silicate adsorption.

  6. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    SciTech Connect

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  7. Child- and state-level characteristics associated with preventive dental care access among U.S. children 5-17 years of age.

    PubMed

    Lin, Mei; Sappenfield, William; Hernandez, Leticia; Clark, Cheryl; Liu, Jihong; Collins, Jennifer; Carle, Adam C

    2012-12-01

    The objectives of this study is to identify factors associated with lack of preventive dental care among U.S. children and state-level factors that explain variation in preventive dental care access across states. We performed bivariate analyses and multilevel regression analyses among 68,350 children aged 5-17 years using the 2007 National Survey of Children's Health data and relevant state-level data. Odds ratios (ORs) for child- and state-level variables were calculated to estimate associations with preventive dental care. We calculated interval odds ratios (IOR), median odds ratios (MOR), and intraclass correlation coefficients (ICC) to quantify variation in preventive dental care across states. Lack of preventive dental care was associated with various child-level factors. For state-level factors, a higher odds of lack of preventive dental care was associated with a higher percentage of Medicaid-enrolled children not receiving dental services (OR = 1.30, 95 % confidence interval (CI): 1.15-1.47); higher percentage of children uninsured (OR = 1.48, 95 % CI: 1.29-1.69); lower dentist-to-population ratio (OR = 1.36, 95 % CI: 1.03-1.80); and lower percentage of dentists submitting Medicaid/State Children's Health Insurance Program claims (OR = 1.04, 95 % CI: 1.01-1.06). IORs for the first three state-level factors did not contain one, indicating that these state-level characteristics were important in understanding variation across states. Lack of preventive dental care varied by state (MOR = 1.40). The state-level variation (ICC = 3.66 %) accounted for a small percentage of child- and state-level variation combined. Child- and state-level characteristics were associated with preventive dental care access among U.S. children aged 5-17 years. State-level factors contribute to variation in dental care access across states and need to be considered in state-level planning.

  8. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating.

    PubMed

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S; Takeuchi, Ichiro; Greene, Richard L

    2016-05-25

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

  9. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    NASA Astrophysics Data System (ADS)

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-05-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2‑xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of ‑2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

  10. Normal-state nodal electronic structure in underdoped high-Tc copper oxides.

    PubMed

    Sebastian, Suchitra E; Harrison, N; Balakirev, F F; Altarawneh, M M; Goddard, P A; Liang, Ruixing; Bonn, D A; Hardy, W N; Lonzarich, G G

    2014-07-03

    An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.

  11. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    PubMed Central

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-01-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2−xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of −2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected. PMID:27221198

  12. Do minority and poor neighborhoods have higher access to fast-food restaurants in the United States?

    PubMed Central

    James, Peter; Arcaya, Mariana C.; Parker, Devin M.; Tucker-Seeley, Reginald

    2016-01-01

    Background Disproportionate access to unhealthy foods in poor or minority neighborhoods may be a primary determinant of obesity disparities. We investigated whether fast-food access varies by Census block group (CBG) percent black and poverty. Methods We measured the average driving distance from each CBG population-weighted centroid to the five closest top ten fast-food chains and CBG percent black and percent below poverty Results Among 209,091 CBGs analyzed (95.1% of all US CBGs), CBG percent black was positively associated with fast-food access controlling for population density and percent poverty (average distance to fast food was 3.56 miles closer (95% CI: -3.64, -3.48) in CBGs with the highest versus lowest quartile of percentage of black residents). Poverty was not independently associated with fast-food access. The relationship between fast-food access and race was stronger in CBGs with higher levels of poverty (p for interaction <0.0001). Conclusions Predominantly black neighborhoods had higher access to fast-food while poverty was not an independent predictor of fast-food access. PMID:24945103

  13. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  14. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  15. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    PubMed Central

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-01-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651

  16. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-05-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state.

  17. Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin.

    PubMed

    Jongberg, Sisse; Utrera, Mariana; Morcuende, David; Lund, Marianne N; Skibsted, Leif H; Estévez, Mario

    2015-09-30

    Chemical interactions between proteins and phenols affect the overall oxidative stability of a given biological system. To investigate the effect of protein-phenol adduct formation on the oxidative stability of β-lactoglobulin (β-LG), the protein was left to react with an equimolar concentration of 4-methylcatechol (4MC), catechin (Cat), or their respective quinone forms, 4-methylbenzoquinone (4MBQ) and catechin-quinone (CatQ), and subsequently subjected to metal-catalyzed oxidation by Fe(II)/H2O2 for 20 days at 37 °C. The reaction with 4MBQ resulted in 60% thiol loss and 22% loss of amino groups, whereas the addition of 4MC resulted in 12% thiol loss. The reaction with Cat or CatQ resulted in no apparent modification of β-LG. The oxidative stability of β-LG after reaction with each of 4MC, 4MBQ, Cat, or CatQ was impaired. Especially 4MC and 4MBQ were found to be pro-oxidative toward α-aminoadipic semialdehyde and γ-glutamic semialdehyde formation as well as the generation of fluorescent Schiff base products. The changes observed were ascribed to the redirection of oxidation as a result of the blocking of thiol groups but also to the oxidative deamination pathway, accelerating the production of semialdehydes and subsequently Schiff base structures.

  18. Surface and Lightning Sources of Nitrogen Oxides over the United States: Magnitudes, Chemical Evolution, and Outflow

    NASA Technical Reports Server (NTRS)

    Hudman, Rynda C.; Jacob, Daniel J.; Turquety, Solene; Leinbensperger, E. M.; Murray, L. T.; Wu, Samuel; Gilliland, A. B.; Avery, Melody A.; Bertram, Timothy H.; Brune, W. H.; Cohen, Ronald C.; Dibb, Jack E.; Flocke, F. M.; Fried, Alan; Holloway, J.; Neuman, J. A.; Orville, R.; Perring, Anne; Ren, Xinrong; Ryerson, T. B.; Sachse, Glen W.; Singh, H. B.; Swanson, Aaron; Wooldridge, Paul J.

    2007-01-01

    We use observations from two aircraft during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of the regional sources, chemical evolution, and export of nitrogen oxides. The boundary layer NO(x) data provide top-down verification of a 50% decrease in power plant and industry NO(x) emissions over the eastern United States between 1999 and 2004. Observed 8-12 8 km NO(x) concentrations in ICARTT were 0.55 +/- 36 ppbv, much larger than in previous United States aircraft campaigns (ELCHEM, SUCCESS, SONEX). We show that regional lightning was the dominant source of this NO(x) and increased upper tropospheric ozone by 10 ppbv. Simulating the ICARTT upper tropospheric NO(x) observations with GEOS-Chem require a factor of 4 increase in the model NO(x) yield per flash (to 500 mol/flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, and if correct would imply a broader lightning influence in the upper troposphere than presently thought.An NO(y)-CO correlation analysis of the fraction f of North American NO(x) emissions vented to the free troposphere as NO(y) (sum of NO(x) and its oxidation products PAN and HNO3) s shows observed f=16+/-10 percent and modeled f=14 +/- 8 percent, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NO(y) export efficiency and speciation, supporting previous model estimates of a large U.S. contribution to tropospheric ozone through NO(x) and PAN export.

  19. Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.

    2014-12-01

    Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al

  20. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Righter, K.; Keller, L. P.; Rahman, Z.

    2015-12-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion [1], transitioned from reduced to oxidized [2,3,4], or from oxidized to reduced [1,5]. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P <4 GPa, Fe3+/ΣFe decreased slightly with increasing P, similar to terrestrial basalt [6,7,8]. For oxidizing experiments < 7GPa, Fe3+/ΣFe decreased as well [9], but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+ [1,10]. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 °C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after [11], but both resulted in a finer grained polyphase texture. Experiments are currently underway to test how different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and

  1. 42 CFR 457.495 - State assurance of access to care and procedures to assure quality and appropriateness of care.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adequate number of visits to specialists experienced in treating the specific medical condition and access to out-of-network providers when the network is not adequate for the enrollee's medical condition....

  2. 42 CFR 457.495 - State assurance of access to care and procedures to assure quality and appropriateness of care.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... adequate number of visits to specialists experienced in treating the specific medical condition and access to out-of-network providers when the network is not adequate for the enrollee's medical condition....

  3. 42 CFR 457.495 - State assurance of access to care and procedures to assure quality and appropriateness of care.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... adequate number of visits to specialists experienced in treating the specific medical condition and access to out-of-network providers when the network is not adequate for the enrollee's medical condition....

  4. 42 CFR 457.495 - State assurance of access to care and procedures to assure quality and appropriateness of care.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... monitor and treat enrollees with chronic, complex, or serious medical conditions, including access to an adequate number of visits to specialists experienced in treating the specific medical condition and...

  5. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  6. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2016-12-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  7. Understanding Structural Barriers to Accessing HIV Testing and Prevention Services Among Black Men Who Have Sex with Men (BMSM) in the United States

    PubMed Central

    Wilton, Leo; Phillips, Gregory; Glick, Sara Nelson; Kuo, Irene; Brewer, Russell A.; Elliott, Ayana; Watson, Christopher; Magnus, Manya

    2015-01-01

    Structural-level factors have contributed to the substantial disproportionate rates of HIV among Black men who have sex with men (BMSM) in the United States. Despite insufficient HIV testing patterns, however, there is a void in research investigating the relationship between structural factors and access to HIV testing and prevention services among BMSM. Building on previous scholarly work and incorporating a dynamic social systems conceptual framework, we conducted a comprehensive review of the literature on structural barriers to HIV testing and prevention services among BMSM across four domains: healthcare, stigma and discrimination, incarceration, and poverty. We found that BMSM experience inadequate access to culturally competent services, stigma and discrimination that impede access to services, a deficiency of services in correctional institutions, and limited services in areas where BMSM live. Structural interventions that eliminate barriers to HIV testing and prevention services and provide BMSM with core skills to navigate complex systems are needed. PMID:24531769

  8. Understanding structural barriers to accessing HIV testing and prevention services among black men who have sex with men (BMSM) in the United States.

    PubMed

    Levy, Matthew E; Wilton, Leo; Phillips, Gregory; Glick, Sara Nelson; Kuo, Irene; Brewer, Russell A; Elliott, Ayana; Watson, Christopher; Magnus, Manya

    2014-05-01

    Structural-level factors have contributed to the substantial disproportionate rates of HIV among Black men who have sex with men (BMSM) in the United States. Despite insufficient HIV testing patterns, however, there is a void in research investigating the relationship between structural factors and access to HIV testing and prevention services among BMSM. Building on previous scholarly work and incorporating a dynamic social systems conceptual framework, we conducted a comprehensive review of the literature on structural barriers to HIV testing and prevention services among BMSM across four domains: healthcare, stigma and discrimination, incarceration, and poverty. We found that BMSM experience inadequate access to culturally competent services, stigma and discrimination that impede access to services, a deficiency of services in correctional institutions, and limited services in areas where BMSM live. Structural interventions that eliminate barriers to HIV testing and prevention services and provide BMSM with core skills to navigate complex systems are needed.

  9. Nickel-Catalyzed Aerobic Oxidative Isocyanide Insertion: Access to Benzimidazoquinazoline Derivatives via a Sequential Double Annulation Cascade (SDAC) Strategy.

    PubMed

    Shinde, Anand H; Arepally, Sagar; Baravkar, Mayur D; Sharada, Duddu S

    2017-01-06

    An efficient protocol for the synthesis of quinazoline derivatives through nickel-catalyzed ligand-/base-free oxidative isocyanide insertion under aerobic conditions with intramolecular bis-amine nucleophiles has been developed. A one-pot sequential double annulation cascade (SDAC) strategy involving an opening of isatoic anhydride and annulation to benzimidazole and further nickel-catalyzed intramolecular isocyanide insertion has also been demonstrated. The method is operationally simple to implement with a wide variety of substrates and represents a new approach for multiple C-N bond formations. The methodology has been successfully applied to the syntheses of hitherto unreported imidazo-fused benzimidazoquinazolines via a deprotection-GBB reaction sequence. Further, a florescence study reveals the potential of the present strategy for the discovery of highly fluorescent probes.

  10. Distribution of molybdenum oxidation states in reduced Mo/TiO sub 2 catalysts: Correlation with benzene hydrogenation activity

    SciTech Connect

    Quincy, R.B.; Houalla, M.; Proctor, A.; Hercules, D.M. )

    1990-02-22

    A 5 wt % MoO{sub 3}/TiO{sub 2} catalyst was reduced in hydrogen at various temperatures to produce a surface with average Mo oxidation states between +6 and 0. The changes in molybdenum oxidation states as a function of the extent of reduction were monitored by gravimetric analyses and x-ray photoelectron spectroscopy (XPS, ESCA), and the results were correlated with benzene hydrogenation activity. ESCA Mo 3d{sub 5/2} binding energy values for the various Mo oxidation states on a 5 wt % MoO{sub 3}/TiO{sub 2} catalyst show a shift of 5.1 eV between Mo{sup +6} (232.7 eV) and Mo{sup 0} (227.6 eV). The benzene hydrogenation activity was found to depend strongly on the extent of reduction of the Mo phase. Comparison of benzene hydrogenation activity with the distribution of Mo oxidation states determined by ESCA suggests that molybdenum ions with an oxidation state of +2 are the most active species.

  11. Variation of the oxidation state of verdoheme in the heme oxygenase reaction

    SciTech Connect

    Gohya, Tomohiko; Sato, Michihiko; Zhang Xuhong; Migita, Catharina T.

    2008-11-14

    Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, {alpha}-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.

  12. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries.

    PubMed

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-23

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn(4+) with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g(-1) based on solid-state redox reaction of oxide ions.

  13. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    PubMed Central

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-01-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g−1 based on solid-state redox reaction of oxide ions. PMID:28008955

  14. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  15. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g-1 based on solid-state redox reaction of oxide ions.

  16. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    NASA Astrophysics Data System (ADS)

    Czapla-Masztafiak, J.; Lis, G. J.; Gajda, M.; Jasek, E.; Czubek, U.; Bolechała, F.; Borca, C.; Kwiatek, W. M.

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe3+ is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe3+ form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  17. Terpyridine Molybdenum Dinitrogen Chemistry: Synthesis of Dinitrogen Complexes That Vary by Five Oxidation States.

    PubMed

    Bezdek, Máté J; Guo, Sheng; Chirik, Paul J

    2016-03-21

    A bimetallic molybdenum complex bridged by an activated dinitrogen ligand and supported by phosphine and terpyridine ligands, [{((Ph)Tpy)(PPh2Me)2Mo}2(μ2-N2)][BArF(24)]2 [(Ph)Tpy = 4'-Ph-2,2',6',2″-terpyridine; ArF(24) = (C6H3-3,5-(CF3)2)4], was synthesized and structurally characterized, and its electronic structure was determined using a combination of experimental and density functional theory computational methods. Each molybdenum atom is best described as molybdenum(II) bridged by a modestly activated [N2](2-) ligand. The cyclic voltammogram of [{((Ph)Tpy)(PPh2Me)2Mo}2(μ2-N2)](2+) displays two reversible reductive and two reversible oxidative features, prompting the preparation and characterization of a series of molybdenum dinitrogen compounds spanning five oxidation states ([{((Ph)Tpy)(PPh2Me)2Mo}2(μ2-N2)][BArF(24)]n, where n = 4, 3, 2, 1, 0). Raman and (15)N NMR spectroscopic data establish that the bridging nitrogen ligand remains intact across the redox series. Electron paramagnetic resonance spectroscopy was used to probe the nature of the unpaired electron in the mixed-valent electronic oxidized and reduced products. The singly occupied molecular orbital is principally metal-based in [{((Ph)Tpy)(PPh2Me)2Mo}2(μ2-N2)](3+) and ligand-localized in [{((Ph)Tpy)(PPh2Me)2Mo}2(μ2-N2)](+).

  18. Mantle oxidation state and its relationship to tectonic environment and fluid speciation.

    PubMed

    Wood, B J; Bryndzia, L T; Johnson, K E

    1990-04-20

    The earth's mantle is degassed along mid-ocean ridges, while rehydration and possibly recarbonaton occurs at subduction zones. These processes and the speciation of C-H-O fluids in the mantle are related to the oxidation state of mantle peridotite. Peridotite xenoliths from continental localities exhibit an oxygen fugacity (fo(2)) range from -1.5 to +1.5 log units relative to the FMQ (fayalite-magnetite-quartz) buffer. The lowest values are from zones of continental extension. Highly oxidized xenoliths (fo(2) greater than FMQ) come from regions of recent or acive subduction (for example, Ichinomegata, Japan), are commonly amphibole-bearing, and show trace element and isotopic evidence of fluid-rock interaction. Peridotites from ocean ridges are reduced and have an averae fo(2) of about -0.9 log units relative to FMQ, virtually coincident with values obtained from mid-ocean ridge basalt (MORB) glasses. These data are further evidence of the genetic link between MORB liquids and residual peridotite and indicate that the asthenosphere, although reducing, has CO(2) and H(2)O as its major fluid species. Incorporation of oxidized material from subduction zones into the continental lithosphere produces xenoliths that have both asthenospheric and subduction signatures. Fluids in the lithosphere are also dominated by CO(2) and H(2)O, and native C is generally unstable. Although the occurrence of native C (diamond) in deep-seated garnetiferous xenoliths and kimberlites does not require reducing conditions, calculations indicate that high Fe(3+) contents are stabilized in the garnet structure and that fo(2) deareases with increasing depth.

  19. The x ray microprobe determination of chromium oxidation state in olivine from lunar basalt and kimberlitic diamonds

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    The synchrotron x-ray microprobe is being used to obtain oxidation state information on planetary materials with high spatial resolution. Initial results on chromium in olivine from various sources including laboratory experiments, lunar basalt, and kimberlitic diamonds are reported. The lunar olivine was dominated by Cr(2+) whereas the diamond inclusions had Cr(2+/Cr(3+) ratios up to about 0.3. The simpliest interpretation is that the terrestrial olivine crystallized in a more oxidizing environment than the lunar olivine.

  20. [Access to the diagnosis of tuberculosis in health services in the municipality of Vitoria, state of Espírito Santo, Brazil].

    PubMed

    Loureiro, Rafaela Borges; Villa, Tereza Cristina Scatena; Ruffino-Netto, Antônio; Peres, Renata Lyrio; Braga, Jose Ueleres; Zandonade, Eliana; Maciel, Ethel Leonor Noia

    2014-04-01

    This study sought to assess the accessibility to the diagnosis of tuberculosis in health services in Victoria, state of Espírito Santo. It featured a cross-sectional study conducted in 2009 of patients with tuberculosis using the Primary Care Assessment Tool and statistical analysis with the Chi-square test (p <0,05). In relation to initial access to care, it was seen that the health service of first access most sought was Primary Care (37.6%), with most diagnoses occurring in the Tuberculosis Control Program Reference Units (61.3%). There was evidence of association between first health service accessed and the factors of time delay in: obtaining consultation at the first health service sought (p = 0.0182); diagnosis made by the first health service sought (p = 0.0001); request for sputum exam (p = 0,0003); request for X-ray exams (p = 0.0159); referral for X-rays at another institution (p = 0.0001); diagnosis by the same health service (p = 0.0001); exams conducted by the same health service that initially diagnosed tuberculosis (p = 0.0018); and proximity to the home (p = 0.0001). Therefore, the identification of important gaps in accessibility to diagnosis of tuberculosis seems to be related to the operational difficulties of organization of health care.

  1. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  2. Probing local coordination and oxidation state of uranium in ThO2: U nanostructured

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Pathak, N.; Kadam, R. M.

    2015-12-01

    Uranium doped thorium oxide nanoparticle (UDT) was synthesized using citric acid assisted combustion method. The concentration of uranium was varied from 0.5 to 5.0 mol % to investigate the effect of doping concentration on its optical properties. The synthesised UDT powder were characterized systematically using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) respectively for phase purity, morphology and crystallinity. Pertaining to nuclear industry, UDT is an important material and investigating the local structure of uranium in UDT is interesting as well as challenging because of complexity involved in synthesis of such ceramic powder. We have used time resolved photoluminescence spectroscopy (TRPLS) to probe the local coordination and oxidation state of uranium in UDT. Based on PL emission spectroscopy it was confirmed that uranium stabilizes as UO22+ ion in UDT. Lifetime spectroscopy shows that uranyl ion is not homogenously distributed in UDT lattice; rather it has two different chemical environments. Effect of concentration on PL behaviour shows that, concentration quenching takes place beyond 2.0 mol %; and based on critical distance calculation multipolar interaction was found to be responsible for such non-radiative quenching. As far as application in luminescence industry is concerned PL measurement shows that UDT gives intense green emission under UV excitation.

  3. Using Metal Complex Reduced States to Monitor the Oxidation of DNA

    PubMed Central

    Olmon, Eric D.; Hill, Michael G.; Barton, Jacqueline K.

    2011-01-01

    Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)2(bpy′)]3+ (phi = 9,10-phenanthrenequinone diimine; bpy′ = 4-methyl-4′-(butyric acid)-2,2′-bipyridine), [Ir(ppy)2(dppz′)]+ (ppy = 2-phenylpyridine; dppz′ = 6-(dipyrido[3,2-a:2′,3′-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)3(dppz)(py′)]+ (dppz = dipyrido[2,3-a:2′,3′-c]phenazine; py′ = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA in order to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yield of the three complexes. PMID:22043853

  4. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  5. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn(3+) and not Mn(2+), as commonly accepted, is the dominant dissolved manganese cation in LiPF6-based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn(3+) fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn(3+) in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn(3+) occurs at a very slow rate.

  6. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  7. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

    NASA Astrophysics Data System (ADS)

    Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis

    2016-09-01

    In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.

  8. Tailoring the oxidation state of cobalt through halide functionality in sol-gel silica.

    PubMed

    Olguin, Gianni; Yacou, Christelle; Smart, Simon; da Costa, João C Diniz

    2013-01-01

    The functionality or oxidation state of cobalt within a silica matrix can be tailored through the use of cationic surfactants and their halide counter ions during the sol-gel synthesis. Simply by adding surfactant we could significantly increase the amount of cobalt existing as Co3O4 within the silica from 44% to 77%, without varying the cobalt precursor concentration. However, once the surfactant to cobalt ratio exceeded 1, further addition resulted in an inhibitory mechanism whereby the altered pyrolysis of the surfactant decreased Co3O4 production. These findings have significant implications for the production of cobalt/silica composites where maximizing the functional Co3O4 phase remains the goal for a broad range of catalytic, sensing and materials applications.

  9. New strain states and radical property tuning of metal oxides using a nanocomposite thin film approach

    NASA Astrophysics Data System (ADS)

    MacManus-Driscoll, Judith; Suwardi, Ady; Kursumovic, Ahmed; Bi, Zhenxing; Tsai, Chen-Fong; Wang, Haiyan; Jia, Quanxi; Lee, Oon Jew

    2015-06-01

    Auxetic-like strain states were generated in self-assembled nanocomposite thin films of (Ba0.6Sr0.4TiO3)1-x - (Sm2O3)x(BSTO - SmO). A switch from auxetic-like to elastic-like strain behavior was observed for x > 0.50, when the SmO switched from being nanopillars in the BSTO matrix to being the matrix with BSTO nanopillars embedded in it. A simple model was adopted to explain how in-plane strain varies with x. At high x (0.75), strongly enhanced ferroelectric properties were obtained compared to pure BSTO films. The nanocomposite method represents a powerful new way to tune the properties of a wide range of strongly correlated metal oxides whose properties are very sensitive to strain.

  10. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

    PubMed Central

    Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis

    2016-01-01

    In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors. PMID:27681181

  11. Influence of Copper Oxidation State on the Bonding and Electronic Structure of Cobalt-Copper Complexes

    SciTech Connect

    Eisenhart, Reed J.; Carlson, Rebecca K.; Clouston, Laura J.; Victor G. Young Jr.; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C.

    2016-03-04

    Heterobimetallic complexes that pair cobalt and copper were synthesized and characterized by a suite of physical methods, including X-ray diffraction, X-ray anomalous scattering, cyclic voltammetry, magnetometry, electronic absorption spectroscopy, electron paramagnetic resonance, and quantum chemical methods. Both Cu(II) and Cu(I) reagents were independently added to a Co(II) metalloligand to provide (py3tren)CoCuCl (1-Cl) and (py3tren)CoCu(CH3CN) (2-CH3CN), respectively, where py3tren is the triply deprotonated form of N,N,N-tris(2-(2-pyridylamino)ethyl)amine. Complex 2-CH3CN can lose the acetonitrile ligand to generate a coordination polymer consistent with the formula “(py3tren)CoCu” (2). One-electron chemical oxidation of 2-CH3CN with AgOTf generated (py3tren)CoCuOTf (1-OTf). The Cu(II)/Cu(I) redox couple for 1-OTf and 2-CH3CN is reversible at -0.56 and -0.33 V vs Fc+/Fc, respectively. The copper oxidation state impacts the electronic structure of the heterobimetallic core, as well as the nature of the Co–Cu interaction. Quantum chemical calculations showed modest electron delocalization in the (CoCu)+4 state via a Co–Cu σ bond that is weakened by partial population of the Co–Cu σ antibonding orbital. By contrast, no covalent Co–Cu bonding is predicted for the (CoCu)+3 analogue, and the d-electrons are fully localized at individual metals.

  12. Effect of MgO/Fe Interface Oxidation State on Electric-Field Modulation of Interfacial Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Wang, S.; Huang, T.; Xue, K. H.; Miao, X. S.

    2016-06-01

    The impact of the MgO/Fe interface oxidation state on the electric-field-modified magnetic anisotropy in MgO/Fe has been revealed by density functional calculations. It is shown that the influence of the interface oxidation is strong enough to dominate the effect of the electric field on the magnetic anisotropy of MgO/Fe-based films. The magnetoelectric coefficients are calculated to be positive for the ideal and overoxidized MgO/Fe interface, but an abnormal negative value emerges in the underoxidized case. By analyzing the interface states based on density of states and band structures, we demonstrate that the considerably different electronic structures of the three oxidized MgO/Fe interfaces lead to the strong discrepancy in the electric-field modulation of the interfacial magnetic anisotropy. These results are of considerable interest in the area of electric-field-controlled magnetic anisotropy and switching.

  13. The Oxidation State of Global Subduction Zone Basalts and its Relationship to Volatiles, Magmatic Processes, and Source Composition

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Cottrell, E.

    2008-12-01

    Oxidation state is a central variable in magmatic systems. In subduction zones, the mantle wedge is exposed to hydrous fluids from an oxidized subducting plate, potentially driving a fundamental shift in the oxidation states of arc and back-arc basin magmas and their sources. Despite its importance, however, magmatic oxidation state and its relationship to conditions in the mantle source can be difficult to constrain. Here, we present new, in-situ μ-XANES analyses of Fe+3/ΣFe ratios, as an indicator of melt oxidation state, in natural, primitive pillow glasses from the Mariana, Lau, and Manus back-arc basins (MgO>6 wt.%; n=31) and a global suite of olivine-hosted arc melt inclusions (MI; MgO>4 wt.%; n=16). These new data show that back-arc basin basalts preserve Fe+3/ΣFe ratios of 0.14-0.21, more oxidized than MORB (Fe+3/ΣFe=0.11-0.17), and arc basalts range to even higher ratios of 0.17-0.36. Analysis of MI equilibrium with host olivine compositions indicates that either post-entrapment crystallization or outward Fe+2 diffusion may have occurred in the MI's studied, but the magnitude of these effects is small (9±5% change in FeO; see also Cottrell & Kelley, this mtg.). Coupled with new and existing major element, volatile (H2O±CO2, S, Cl, F), and trace element data, we also test the variation of melt oxidation state with indicators of extent of crystal fractionation and of mantle source composition. The arc and back-arc glasses capture a full range of natural, undegassed magmatic H2O concentrations (0.1-5.3 wt.%), and show a general, global increase in Fe+3/ΣFe with increasing H2O content, although the Mariana trough defines a trend distinct from the Manus and Lau basins. The Fe+3/ΣFe ratio does not correlate with Mg#, suggesting that the melt oxidation states are not controlled by the extent of crystal fractionation. In the Mariana trough, Fe+3/ΣFe does increase with increasing Ba and Sr concentrations, suggesting a direct link between melt oxidation

  14. The Oxidative and Inflammatory State in Patients with Acute Renal Graft Dysfunction Treated with Tacrolimus

    PubMed Central

    Carrillo-Ibarra, Sandra; Cerrillos-Gutiérrez, José Ignacio; Escalante-Núñez, Ariadna; Rojas-Campos, Enrique; Gómez-Navarro, Benjamín; Sifuentes-Franco, Sonia

    2016-01-01

    Objective. To determine the oxidative stress/inflammation behavior in patients with/without acute graft dysfunction (AGD) with Tacrolimus. Methods. Cross-sectional study, in renal transplant (RT) recipients (1-yr follow-up). Patients with AGD and without AGD were included. Serum IL-6, TNF-α, 8-isoprostanes (8-IP), and Nitric Oxide (NO) were determined by ELISA; C-reactive protein (CRP) was determined by nephelometry; lipid peroxidation products (LPO) and superoxide dismutase (SOD) were determined by colorimetry. Results. The AGD presentation was at 5.09 ± 3.07 versus 8.27 ± 3.78 months (p < 0.001); CRP >3.19 mg/L was found in 21 versus 19 in the N-AGD group (p = 0.83); TNF-α 145.53 ± 18.87 pg/mL versus 125.54 ± 15.92 pg/mL in N-AGD (p = 0.64); IL-6 2110.69 ± 350.97 pg/mL versus 1933.42 ± 235.38 pg/mL in N-AGD (p = 0.13). The LPO were higher in AGD (p = 0.014): 4.10 ± 0.69 µM versus 2.41 ± 0.29 µM; also levels of 8-IP were higher in AGD 27.47 ± 9.28 pg/mL versus 8.64 ± 1.54 pg/mL (p = 0.01). Serum levels of NO in AGD were lower 138.44 ± 19.20 µmol/L versus 190.57 ± 22.04 µmol/L in N-AGD (p = 0.042); antioxidant enzyme SOD activity was significantly diminished in AGD with 9.75 ± 0.52 U/mL versus 11.69 ± 0.55 U/mL in N-AGD (p = 0.012). Discussion. Patients with RT present with a similar state of the proinflammatory cytokines whether or not they have AGD. The patients with AGD showed deregulation of the oxidative state with increased LPO and 8-IP and decreased NO and SOD. PMID:27872679

  15. Effect of dielectric stoichiometry and interface chemical state on band alignment between tantalum oxide and platinum

    SciTech Connect

    Lebedinskii, Yu. Yu.; Chernikova, A. G.; Markeev, A. M.; Kuzmichev, D. S.

    2015-10-05

    The tantalum oxide–platinum interface electronic properties determined by X-ray photoelectron spectroscopy are found to depend on the dielectric stoichiometry and platinum chemical state. We demonstrate the slow charging of the tantalum oxide in cases of Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt interfaces under the X-ray irradiation. This behavior is proposed to be related to the charge accumulation at oxygen vacancies induced traps. Based on the proposed methodology, we define the intrinsic conductive band offset (CBO) ∼1.3 eV (both for Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt) and CBO after the full saturation of the traps charging ∼0.5 eV, while the last one defines the energy position of charged traps below the bottom of conduction band. We demonstrate also the pining at the both Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt interfaces even in the “intrinsic” state, apparently induced by the presence of additional interfacial states. No shifts of Ta4f line and band alignment in over stoichiometric Ta{sub 2}O{sub 5+x}/Pt structure during X-ray irradiation, as well as the absence of pinning, resulting in increase of CBO up to 2.3 eV are found. This behavior is related to the PtO{sub 2} interfacing layer formation at Ta{sub 2}O{sub 5+x}/Pt, blocking the charging of the surface states and associated dipole formation.

  16. Low oxidation state aluminum-containing cluster anions: Cp(∗)AlnH(-), n = 1-3.

    PubMed

    Zhang, Xinxing; Ganteför, Gerd; Eichhorn, Bryan; Mayo, Dennis; Sawyer, William H; Gill, Ann F; Kandalam, Anil K; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-21

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*AlnH(-), n = 1-3, were prepared via reactions between aluminum hydride cluster anions, AlnHm (-), and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  17. The Judicialization of Health and the Quest for State Accountability: Evidence from 1,262 Lawsuits for Access to Medicines in Southern Brazil

    PubMed Central

    Socal, Mariana P.; Amon, Joseph J.

    2016-01-01

    Abstract The impact of increasing numbers of lawsuits for access to medicines in Brazil is hotly debated. Government officials and scholars assert that the “judicialization of health” is driven by urban elites and private interests, and is used primarily to access high-cost drugs. Using a systematic sample of 1,262 lawsuits for access to medicines filed against the southern Brazilian state of Rio Grande do Sul, we assess these claims, offering empirical evidence that counters prevailing myths and affirms the heterogeneity of the judicialization phenomenon. Our findings show that the majority of patient-litigants are in fact poor and older individuals who do not live in major metropolitan areas and who depend on the state to provide their legal representation, and that the majority of medicines requested were already on governmental formularies. Our data challenge arguments that judicialization expands inequities and weakens the universal health care system. Our data also suggest that judicialization may serve as a grassroots instrument for the poor to hold the state accountable. Failing to acknowledge regional differences and attempting to fit all data into one singular narrative may be contributing to a biased interpretation of the nature of judicialization, and limiting the understanding of its drivers, consequences, and implications at local levels. PMID:27781011

  18. Supporting Non-State Providers in Basic Education Service Delivery. Create Pathways to Access. Research Monograph No. 4

    ERIC Educational Resources Information Center

    Rose, Pauline

    2007-01-01

    Basic education is commonly regarded as a state responsibility. However, in reality, non-state providers (NSPs) have always been involved in basic education service delivery, and there is often a blurring of boundaries between state and non-state roles with respect to financing, ownership, management, and regulation. In recent years, the focus on…

  19. Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants.

    PubMed

    Cerrato, José M; Hochella, Michael F; Knocke, William R; Dietrich, Andrea M; Cromer, Thomas F

    2010-08-01

    X-ray photoelectron spectroscopy (XPS) was used to identify Mn(II), Mn(III), and Mn(IV) in the surfaces of pure oxide standards and filtration media samples from drinking water treatment plants through the determination of the magnitude of the Mn 3s multiplet splitting and the position and shape of the Mn 3p photo-line. The Mn 3p region has been widely studied by applied physicists and surface scientists, but its application to identify the oxidation state of Mn in heterogeneous oxide samples has been limited. This study shows that the use of both the Mn 3s multiplet splitting and the position and shape of the Mn 3p photo-line provides a feasible means of determining the oxidation state of manganese in complex heterogeneous, environmentally important samples. Surface analysis of filtration media samples from several drinking water treatment plants was conducted. While Mn(IV) was predominant in most samples, a mixture of Mn(III) and Mn(IV) was also identified in some of the filtration media samples studied. The predominance of Mn(IV) in the media samples was felt to be related to the maintenance of free chlorine (HOCl) at substantial concentrations (2-5 mg*L(-1) as Cl2) across these filters. XPS could be a useful tool to further understand the specific mechanisms affecting soluble Mn removal using MnOx-coated filtration media.

  20. Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis

    PubMed Central

    Hu, Pengfei; Cao, Yali; Jia, Dianzeng; Li, Qiang; Liu, Ruili

    2014-01-01

    It is a long-standing goal to explore convenient synthesis methodology for functional materials. Recently, several multiple-step approaches have been designed for photocatalysts AgnX@Ag (X = Cl−, PO43−, etc.), mainly containing the ion-exchange (metathesis) reaction followed by photoreduction in solution. But they were obsessed by complicated process, the uncontrollability of composition and larger sizes of Ag particles. Here we show a general solid-state route for the synthesis of AgnX@Ag catalysts with hierarchical structures. Due to strong surface plasmon resonance of silver nanoparticles with broad shape and size, the AgnX@Ag showed high photocatalytic activity in visible region. Especially, the composition of AgnX@Ag composites could be accurately controlled by regulating the feed ratio of (NH2OH)2·H2SO4 to anions, by which the performance were easily optimized. Results demonstrate that the metathesis and oxidation-reduction reactions can be performed in solid state at room temperature for nanosynthesis, greatly reducing the time/energy consumption and pollution. PMID:24614918