Science.gov

Sample records for accessible phase space

  1. Access to space studies

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    The National Aeronautics and Space Administration is currently considering possible directions in Earth-to-orbit vehicle development under a study called 'Access to Space.' This agency-wide study is considering commercial launch vehicles, human transportation, space station logistics, and other space transportation requirements over the next 40 years. Three options are being considered for human transportation: continued use of the Space Shuttle; development of a small personnel carrier (personnel logistics system (PLS)); or development of an advanced vehicle such as a single-stage-to-orbit (SSTO). Several studies related to the overall Access to Space study are reported in this document.

  2. Securing America's access to space

    SciTech Connect

    Rendine, M.; Wood, L.

    1990-05-23

    We review pertinent aspects of the history of the space launch capabilities of the United States and survey its present status and near-term outlook. Steps which must be taken, pitfalls which much be avoided, and a core set of National options for re-acquiring in the near term the capability to access the space environment with large payloads are discussed. We devote considerable attention to the prospect of creating an interim heavy-lift space launch vehicle of at least 100,000 pound payload-orbiting capacity to serve National needs during the next dozen years, suggesting that such a capability can be demonstrated within 5 years for less than $1 B. Such capability will apparently be essential for meeting the first-phase goals of the President's Space Exploration Initiative. Some other high-leverage aspects of securing American access to space are also noted briefly, emphasizing unconventional technological approaches of presently high promise.

  3. Accessing Space Weather Information

    NASA Astrophysics Data System (ADS)

    Morrison, D.; Weiss, M.; Immer, E. A.; Patrone, D.; Potter, M.; Barnes, R. J.; Colclough, C.; Holder, R.

    2009-12-01

    To meet the needs of our technology based society, space weather forecasting needs to be advanced and this will entail collaboration amongst research, military and commercial communities to find new ways to understand, characterize, and forecast. In this presentation VITMO, the Virtual Ionosphere-Thermosphere-Mesosphere Observatory will be used as a prototype for a generalized system as a means to bring together a set of tools to access data, models and online collaboration tools to enable rapid progress. VITMO, available at http://vitmo.jhuapl.edu/, currently provides a data access portal for researchers and scientists to enable finding data products as well as access to tools and models. To further the needs of space weather forecasters, the existing VITMO data holdings need to be expanded to provide additional datasets as well as integrating relevant models and model output. VITMO can easily be adapted for the Space Weather domain in its entirety. In this presentation, we will demonstrate how VITMO and the VITMO architecture can be utilized as a prototype in support of integration of Space Weather forecasting tools, models and data.

  4. Access to space study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes the results of a comprehensive NASA in-house study to identify and assess alternate approaches to access to space through the year 2030, and to select and recommend a preferred cause of action. The goals of the study were to identify the best vehicles and transportation architectures to make major reductions in the cost of space transportation (at least 50%), while at the same time increasing safety for flight crews by at least an order of magnitude. In addition, vehicle reliability was to exceed 0.98 percent, and, as important, the robustness, pad time, turnaround time, and other aspects of operability were to be vastly improved. This study examined three major optional architectures: (1) retain and upgrade the Space Shuttle and expendable launch vehicles; (2) develop new expendable vehicles using conventional technologies and transition from current vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition from current vehicles beginning in 2008. The launch-needs, mission model utilized for for the study was based upon today's projection of civil, defense, and commercial mission payload requirements.

  5. Astronauts Access Web from Space

    NASA Video Gallery

    Aboard the International Space Station, Expedition 22 Commander Jeff Williams and Flight Engineers Soichi Noguchi and T.J. Creamer share their thoughts about Internet access from space and post a r...

  6. Gymnastics in Phase Space

    SciTech Connect

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  7. Fast Access to Space Tourism

    NASA Astrophysics Data System (ADS)

    Favata', P.; Martineau, N.

    2002-01-01

    creating a revolutionary space-orbiting habitat dedicated to tourism. Up to now, such proposals have focused on two approaches. The first accounts for financial and technological constraints on space flight and living, and sacrifices creativity for practicality. The second is more utopic in nature and proposes projects, which are imaginative but unfeasible in the near future. This proposal is innovative because it considers the current obstacles to space tourism and utilizes existing technologies and infrastructures, but also includes the forethinking of futuristic commercial projects. Project Objectives: NASA claims that commercialization of space activities is so difficult that it will require decades more funding of so-called space-technology development. The benefits of this project show that this is not true. First, safety has been addressed because this proposal utilizes already space tested and assured technologies. Second, the project demonstrates potential for significant economic profit within the near future. Because we are using the least expensive technology available, we have limited start up costs. We forecast up to forty flights per year, with a potential capacity of eighty tourists. The design objectives focus on the proposal of a new approach to space tourism. These include: the expansion of the living space in the interiors, innovative and creative interior design, increased concern for the physiological and psychological comfort of tourists, and attention to entertainment possibilities. Project Content: The efficiency of the launch and configuration phase is one of the strengths of the proposed project. We propose the use of the Zenith 2 launcher, a large two-stage vehicle developed in the Soviet Union in the early 1980s, for the configuration of the orbiting platform. Following the Russian outfitting philosophy, once in orbit, the platform is already functional. The interior design is based on advanced lightweight inflatable technologies which

  8. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  9. Fast Access to Space Tourism

    NASA Astrophysics Data System (ADS)

    Favata', P.; Martineau, N.

    2002-01-01

    creating a revolutionary space-orbiting habitat dedicated to tourism. Up to now, such proposals have focused on two approaches. The first accounts for financial and technological constraints on space flight and living, and sacrifices creativity for practicality. The second is more utopic in nature and proposes projects, which are imaginative but unfeasible in the near future. This proposal is innovative because it considers the current obstacles to space tourism and utilizes existing technologies and infrastructures, but also includes the forethinking of futuristic commercial projects. Project Objectives: NASA claims that commercialization of space activities is so difficult that it will require decades more funding of so-called space-technology development. The benefits of this project show that this is not true. First, safety has been addressed because this proposal utilizes already space tested and assured technologies. Second, the project demonstrates potential for significant economic profit within the near future. Because we are using the least expensive technology available, we have limited start up costs. We forecast up to forty flights per year, with a potential capacity of eighty tourists. The design objectives focus on the proposal of a new approach to space tourism. These include: the expansion of the living space in the interiors, innovative and creative interior design, increased concern for the physiological and psychological comfort of tourists, and attention to entertainment possibilities. Project Content: The efficiency of the launch and configuration phase is one of the strengths of the proposed project. We propose the use of the Zenith 2 launcher, a large two-stage vehicle developed in the Soviet Union in the early 1980s, for the configuration of the orbiting platform. Following the Russian outfitting philosophy, once in orbit, the platform is already functional. The interior design is based on advanced lightweight inflatable technologies which

  10. Phase space quantum mechanics

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Domański, Ziemowit

    2012-02-01

    This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic

  11. Access to space: The Space Shuttle's evolving rolee

    NASA Astrophysics Data System (ADS)

    Duttry, Steven R.

    1993-04-01

    Access to space is of extreme importance to our nation and the world. Military, civil, and commercial space activities all depend on reliable space transportation systems for access to space at a reasonable cost. The Space Transportation System or Space Shuttle was originally planned to provide transportation to and from a manned Earth-orbiting space station. To justify the development and operations costs, the Space Shuttle took on other space transportation requirements to include DoD, civil, and a growing commercial launch market. This research paper or case study examines the evolving role of the Space Shuttle as our nation's means of accessing space. The case study includes a review of the events leading to the development of the Space Shuttle, identifies some of the key players in the decision-making process, examines alternatives developed to mitigate the risks associated with sole reliance on the Space Shuttle, and highlights the impacts of this national space policy following the Challenger accident.

  12. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  13. Space Station multiple access communications system

    NASA Technical Reports Server (NTRS)

    Olson, Nanci A.

    1986-01-01

    The development of a multiple access communications system (MACS) for the space-to-space communications on the Space Station is discussed. The communications capabilities of the FHMA, CDMA, TDMA, SDMA, and FDMA techniques are evaluated; FDMA was selected for the space-to-space communications on the Space Station because of its lower complexity and growth capability. The proposed space-to-space multiple access system for the Space Station is a digitally modulated Ku-band FDMA system with a distributed architecture; this system would transmit on frequencies between 13.4 and 13.7 GHz and receive on frequencies between 14.6 and 14.89 GHz, and the bandwidth will support seven high-data-rate users and 12 low-data-rate users. The IF components and antennas for the MACS are examined. A multiple access breadboard design is described.

  14. Small Satellite Access of the Space Network

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Minnix, Timothy O.; Vigil, J. S.

    1999-01-01

    Small satellites have been perceived as having limited access to NASA's Space Network (SN). The potential for satellite access of the space network when the design utilizes a fixed antenna configuration and low-power, coded transmission is analyzed. From the analysis, satellites using this configuration in high-inclination orbits are shown to have a daily data throughput in the 100 to 1000 Mbit range using the multiple access communications service.

  15. Enhancing Access to Space Science Literature

    NASA Astrophysics Data System (ADS)

    Bigwood, D. P.

    2006-03-01

    By participating in the Name Authority Program Component and Subject Authority Cooperative Program of the Program for Cooperative Cataloging of the Library of Congress even the smallest libraries can enhance access to the space science literature.

  16. Space division multiplexing in access networks

    NASA Astrophysics Data System (ADS)

    Effenberger, Frank J.

    2015-01-01

    Space division multiplexing (SDM) has received a lot of attention in the past years, as it is seen as the final frontier of fiber optic capacity improvement for long haul transmission. Its use in access networks is even more interesting, due to the different design optimization goals in access versus transport. This paper explores some of the applications of SDM in access that have the potential for early adoption.

  17. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  18. Access to Space Interactive Design Web Site

    NASA Technical Reports Server (NTRS)

    Leon, John; Cutlip, William; Hametz, Mark

    2000-01-01

    The Access To Space (ATS) Group at NASA's Goddard Space Flight Center (GSFC) supports the science and technology community at GSFC by facilitating frequent and affordable opportunities for access to space. Through partnerships established with access mode suppliers, the ATS Group has developed an interactive Mission Design web site. The ATS web site provides both the information and the tools necessary to assist mission planners in selecting and planning their ride to space. This includes the evaluation of single payloads vs. ride-sharing opportunities to reduce the cost of access to space. Features of this site include the following: (1) Mission Database. Our mission database contains a listing of missions ranging from proposed missions to manifested. Missions can be entered by our user community through data input tools. Data is then accessed by users through various search engines: orbit parameters, ride-share opportunities, spacecraft parameters, other mission notes, launch vehicle, and contact information. (2) Launch Vehicle Toolboxes. The launch vehicle toolboxes provide the user a full range of information on vehicle classes and individual configurations. Topics include: general information, environments, performance, payload interface, available volume, and launch sites.

  19. Global Trends in Space Access and Utilization

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.; Keim, Nicholas S.; Zeender, Peter E.

    2010-01-01

    In the not-so-distant past, space access and air/space technology superiority were within the purview of the U.S. and former Soviet Union's respective space agencies, both vying for global leadership in space exploitation. In more recent years, with the emergence of the European Space Agency (ESA) member countries and Asian countries joining the family of space-faring nations, it is truer now more than ever that space access and utilization has become a truly global enterprise. In fact, according to the Space Report 2007, this enterprise is a $251-billion economy. It is possible to gauge the vitality of worldwide efforts from open sources in today's transparent, media-based society. In particular, print and web broadcasters regularly report and catalog global space activities for defense and civil purposes. For the purposes of this paper, a representative catalog of missions is used to illustrate the nature of the emerging "globalization." This paper highlights global trends in terms of not only the providers of space access, but also the end-users for the various recently accomplished missions. With well over 50 launches per year, in recent years, the launch-log reveals a surprising percentage of "cooperative or co-dependent missions" where different agencies, countries, and/or commercial entities are so engaged presumably to the benefit of all who participate. Statistics are cited and used to show that recently over d0% of the 50-plus missions involved multiple nations working collectively to deliver payloads to orbit. Observers, space policy professionals, and space agency leaders have eloquently proposed that it might require the combined resources and talents of multiple nations to advance human exploration goals beyond low earth orbit. This paper does not intend to offer new information with respect to whether international collaboration is necessary but to observe that, in continuing to monitor global trends, the results seem to support the thesis that a

  20. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  1. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and

  2. Mining the Observational Phase Space

    NASA Astrophysics Data System (ADS)

    Norris, Ray

    2012-09-01

    Experience has shown that many great discoveries in astronomy have been made, not by testing a hypothesis, but by observing the sky in an innovative way. The necessary conditions for this to take place are (a) a telescope observing an unexplored part of the observational phase space (frequency, resolution, time-domain, area of sky, etc), (b) an intelligent observer who understands the instrument sufficiently well to distinguish between artefact and discovery, (c) a prepared and enthusiastic mind ready to accommodate and interpret a new discovery. Next generation survey telescopes will easily satisfy (a), if only in terms of the numbers of objects surveyed. However, their petabytes of data, and arms-length access, may prevent an observer from satisfying (b) and (c). We can only hope that someone will eventually stumble across any unexpected phenomena in the data. However the impenetrable size of the database implies dark corners that will never be fully explored. Discoveries may remain undiscovered, forever. What is the alternative? Can we harness data-mining techniques to help the intelligent observer search for the unexpected? I believe we can, and indeed we must if we are to reap the full scientific benefit of next-generation survey telescopes.

  3. The cost of access to space

    NASA Technical Reports Server (NTRS)

    Griffin, Michael D.; Claybaugh, William R., II

    1994-01-01

    Nearly four decades into the space age, our biggest problem is still the high cost of transportation to space. Close behind are the relatively infrequent flight opportunities and high risk of the transportation systems we have. These problems are of course not independent; rather, they are interrelated measures of the difficulty of accelerating a payload through an ideal velocity increment of over 9 km/s and a height of 200 km or more in just a few minutes. These difficulties are not unrecognized, and the demand for newer, cheaper, more reliable, more frequently flying launch systems has been unending. Hundreds, maybe thousands of studies have been done on various approaches offering improved access to space, and each approach has its ardent supporters, convinced that no other approach can work as well. In the government, hardly a year passes without the attempted initiation of a new program to lower the cost and improve the reliability of space transportation. This paper does not attempt to decide the merits and demerits of various transportation concepts but examines the cost of access to space from a slightly different perspective, and attempts to use that perspective to reach some conclusions about characteristics that a next-generation system must have to yield lower cost, regardless of its design.

  4. Cargo Assured Access to International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, David A.

    2004-01-01

    Boeing's Cargo Assured Access logistics delivery system will provide a means to transport cargo to/from the International Space Station, Low Earth Orbit and the moon using Expendable Launch Vehicles. For Space Station, this capability will reduce cargo resupply backlog during nominal operations (e.g., supplement Shuttle, Progress, ATV and HTV) and augment cargo resupply capability during contingency operations (e.g., Shuttle delay and/or unavailability of International Partner launch or transfer vehicles). This capability can also provide an autonomous means to deliver cargo to lunar orbit, a lunar orbit refueling and work platform, and a contingency crew safe haven in support of NASA's new Exploration Initiative.

  5. Phase microscope imaging in phase space

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Mehta, Shalin B.

    2016-03-01

    Imaging in a bright field or phase contrast microscope is partially coherent. We have found that the image can be conveniently considered and modeled in terms of the Wigner distribution function (WDF) of the object transmission. The WDF of the object has a simple physical interpretation for the case of a slowly varying object. Basically, the image intensity is the spatial marginal of the spatial convolution of the object WDF with the phase space imager kernel (PSIkernel), a rotated version of the transmission cross-coefficient. The PSI-kernel can be regarded as a partially-coherent generalization of the point spread function. This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.

  6. Proposed preliminary criteria for space shuttle access equipment at the operational site

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1971-01-01

    A comparison was made between the methods of access utilized, or proposed, by the military, commercial airlines, and the space shuttle Phase B contractors. The methodology was subjected to consideration for space shuttle use and similarity to current space shuttle access concepts. The Phase B contractor concepts were in turn examined for degree of use of the state-of-the-art and progressive extension of new cost-effective ideas. This comparison disclosed a need for better definition of the criteria/requirements for space shuttle access equipment. Preliminary criteria, needed prior to initiation of the detail design (Phase C/D effort) of ground hardware for the operational site, are presented.

  7. Characterizing maximally singular phase-space distributions

    NASA Astrophysics Data System (ADS)

    Sperling, J.

    2016-07-01

    Phase-space distributions are widely applied in quantum optics to access the nonclassical features of radiations fields. In particular, the inability to interpret the Glauber-Sudarshan distribution in terms of a classical probability density is the fundamental benchmark for quantum light. However, this phase-space distribution cannot be directly reconstructed for arbitrary states, because of its singular behavior. In this work, we perform a characterization of the Glauber-Sudarshan representation in terms of distribution theory. We address important features of such distributions: (i) the maximal degree of their singularities is studied, (ii) the ambiguity of representation is shown, and (iii) their dual space for nonclassicality tests is specified. In this view, we reconsider the methods for regularizing the Glauber-Sudarshan distribution for verifying its nonclassicality. This treatment is supported with comprehensive examples and counterexamples.

  8. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  9. A Demand Access Protocol for Space Applications

    NASA Technical Reports Server (NTRS)

    Gao, Jay L.; Leang, Dee

    2007-01-01

    This paper describes a demand access protocol for space communications, which is a messaging procedure that facilitates the exchange of resource requests and grants between users and service providers. A minimal set of operational and environmental needs and constraints are assumed since the intent is to keep the protocol flexible and efficient for a wide-range of envisioned NASA robotic and human exploration missions. The protocol described in this document defines the message format and procedures used to ensure proper and correct functioning of a demand access communications system, which must operate under customized resource management policies applied by the users and service providers. This protocol also assumes a minimal set of capabilities from the underlying communications system so that no unique requirements are imposed on the communications sub-systems.

  10. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  11. Stratospheric Balloon Platforms for Near Space Access

    NASA Astrophysics Data System (ADS)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  12. Longitudinal phase space tomography with space charge

    NASA Astrophysics Data System (ADS)

    Hancock, S.; Lindroos, M.; Koscielniak, S.

    2000-12-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron booster. Comparisons

  13. Evaluating Web accessibility at different processing phases

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Lopes, R.; Carriço, L.

    2012-09-01

    Modern Web sites use several techniques (e.g. DOM manipulation) that allow for the injection of new content into their Web pages (e.g. AJAX), as well as manipulation of the HTML DOM tree. This has the consequence that the Web pages that are presented to users (i.e. after browser processing) are different from the original structure and content that is transmitted through HTTP communication (i.e. after browser processing). This poses a series of challenges for Web accessibility evaluation, especially on automated evaluation software. This article details an experimental study designed to understand the differences posed by accessibility evaluation after Web browser processing. We implemented a Javascript-based evaluator, QualWeb, that can perform WCAG 2.0 based accessibility evaluations in the two phases of browser processing. Our study shows that, in fact, there are considerable differences between the HTML DOM trees in both phases, which have the consequence of having distinct evaluation results. We discuss the impact of these results in the light of the potential problems that these differences can pose to designers and developers that use accessibility evaluators that function before browser processing.

  14. Ares Launch Vehicles Overview: Space Access Society

    NASA Technical Reports Server (NTRS)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  15. Making Space Science and Exploration Accessible

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Guimond, K. A.; Hurd, D.; Heinrich, G.

    There are currently 28 million hard of hearing and deaf Americans, approximately 10 to 11 million blind and visually impaired people in North America, and more than 50 million Americans with disabilities, approximately half of whom are students. The majority of students with disabilities in the US are required to achieve the same academic levels as their non-impaired peers. Unfortunately, there are few specialized materials to help these exceptional students in the formal and informal settings. To assist educators in meeting their goals and engage the students, we are working with NASA product developers, scientists and education and outreach personnel in concert with teachers from exceptional classrooms to identify the types of materials they need and which mediums work best for the different student capabilities. Our goal is to make the wonders of space science and exploration accessible to all. As such, over the last four years we have been hosting interactive workshops, observing classroom settings, talking and working with professional educators, product developers, museum and science center personnel and parents to synthesize the most effective media and method for presenting earth and space science materials to audiences with exceptional needs. We will present a list of suggested best practices and example activities that can help engage and encourage a person with special needs to study the sciences, technology, engineering, and mathematics.

  16. National Report Norway: Arctic Access to Space

    NASA Astrophysics Data System (ADS)

    Brekke, P.

    2015-09-01

    Norway has long traditions as a space nation, much due to our northern latitude. Our space science activities are concentrated into relatively few areas. This concentration is necessary due to limited resources, both in funding and personnel. The main scientific activities are within Solar-terrestrial physics and cosmology. The first field has been a priority since before the space age and is still the major priority. The usage of the ground infrastructure in Northern Norway and on Svalbard is essential in studying the middle and upper atmosphere and the interaction with the Sun. This includes the utilization of sounding rockets, both small and large, and ground based installations like radars, lidars and other optical instrumentation. The planned use of Svalbard as a launch site for large stratospheric balloons may allow the cosmology community access to our northern infrastructure. The solar physics community is also heavily involved in the HINODE and IRIS missions and Norway is supporting downlink of data via the Svalbard Station for these missions. The sounding rocket program is in close collaboration with many countries like Germany, USA, France, Canada and Japan. Two scientific sounding rocket programs are currently being pursued: The ICI series (from Svalbard) and MaxiDusty (from Andoya). A series of scientific publications have recently appeared from the ECOMA campaign a few years ago. A significant improvement of today's polar and ionospheric research infrastructure in Northern Norway and Svalbard has recently been put on the ESFRI roadmap for European research infrastructure through the 5105 and EISCAT 3D initiatives. The Norwegian government has recently decided to upgrade the VLBI facilities at Svalbard.

  17. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe...

  18. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe...

  19. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe...

  20. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe...

  1. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe...

  2. A general formalism for phase space calculations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  3. 46 CFR 111.01-7 - Accessibility and spacing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Accessibility and spacing. 111.01-7 Section 111.01-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-7 Accessibility and spacing. (a) The design and arrangement...

  4. 46 CFR 111.01-7 - Accessibility and spacing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Accessibility and spacing. 111.01-7 Section 111.01-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-7 Accessibility and spacing. (a) The design and arrangement...

  5. Improved small satellite access of the space network

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Osborne, William P.; Minnix, Timothy

    1994-01-01

    This report contains the results of a study performed under the sponsorship of the National Aeronautics and Space Administration (NASA) made as a grant to the Center for Space Telemetering and Telecommunication Systems at New Mexico State University. The purpose of this phase of the grant is to increase user access to the Space Network (SN) run by NASA for supplying space-to-ground communications for satellites and associated control centers. The identified need is to bring more users into the community of those accessing the SN, especially those in the small satellite class of users. The initial phase of the study concerned the potential for modifications to the standard transponder used in the SN. The results of that investigation are summarized in Section 4. As the hardware modifications were being investigated, a second option was developed, namely to consider changes to the operational mode for the small satellites. This operational concept was to use a single, fixed-pointing antenna in a spin-stabilized satellite and let the antenna pattern sweep past the Tracking and Data Relay Satellites (TDRS) in the SN. The question to be answered by this phase of the study was twofold: could enough contact time per day be made available using this simple operating mode and could the data rate be high enough to allow for sufficient data throughput to satisfy the user community using existing components. Section 2 outlines the methodology and simulation results to answer these questions. Section 3 contains a summary of an operational simulation of a simple satellite payload using these contact scenarios. The simulation is not all inclusive but shows how a payload simulation could be configured to utilize variable contact times. The answer to both of the questions desired to be answered is affirmative. By carefully choosing the correct system transmission power and antenna pattern, the system will allow support to the 50th percentile of expected systems. It is recommended

  6. Quantum phase-space representation for curved configuration spaces

    NASA Astrophysics Data System (ADS)

    Gneiting, Clemens; Fischer, Timo; Hornberger, Klaus

    2013-12-01

    We extend the Wigner-Weyl-Moyal phase-space formulation of quantum mechanics to general curved configuration spaces. The underlying phase space is based on the chosen coordinates of the manifold and their canonically conjugate momenta. The resulting Wigner function displays the axioms of a quasiprobability distribution, and any Weyl-ordered operator gets associated with the corresponding phase-space function, even in the absence of continuous symmetries. The corresponding quantum Liouville equation reduces to the classical curved space Liouville equation in the semiclassical limit. We demonstrate the formalism for a point particle moving on two-dimensional manifolds, such as a paraboloid or the surface of a sphere. The latter clarifies the treatment of compact coordinate spaces, as well as the relation of the presented phase-space representation to symmetry groups of the configuration space.

  7. Access to credit: beginning a new phase.

    PubMed

    1995-01-01

    This article briefly describes an INSTRAW study of an income generation program in the Dominican Republic. The women in development program is operated by the Association for the Development of Micro-Enterprises in the Dominican Republic. The evaluation aims to quantify the results for men and women borrowers in terms of income, family health and nutrition, business reinvestment, job creation, and other measures. The aim is to compare findings between female household heads and non-heads. Findings support other empirical results showing increased sales and income after development. Women invested some of their additional income in their families' health, nutrition, and education. Women also hired other women and tended to employ more unpaid family members. 12% of employees were aged 7-14 years. The use of local community members, who were recent college graduates, as field officers was found to be an effective management tool. The young loan officers were successful in identifying potential clients and in creating accessible opportunities for advice and service. Loan officers increased the number of borrowers, and the program had low rates of nonpayment of loans. Comparisons between female heads and non-heads indicated different reasons for involvement in the program. Non-heads with other income providers reported personal reasons such as self realization and more money. Heads desired financial stability for the family and sometimes satisfaction of survival needs. Female heads tended to reinvest and expand their income-generating capacities. Women tended to increase their working space. This usually meant home space, since many women conducted their business at home. One obstacle was identified which limited income enhancement. For 30% of interviewed women a limit was set on available credit. Credit could only yield income equal to the minimum wage. This pilot study was limited to 400 persons from Santo Domingo. A further impact study is planned which would

  8. Quantum Phase Space from Schwinger's Measurement Algebra

    NASA Astrophysics Data System (ADS)

    Watson, P.; Bracken, A. J.

    2014-07-01

    Schwinger's algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking distinct values, where is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.

  9. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  10. Transforming Community Access to Space Science Models

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-01-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  11. Transforming community access to space science models

    NASA Astrophysics Data System (ADS)

    MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-04-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  12. 46 CFR 111.01-7 - Accessibility and spacing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Accessibility and spacing. 111.01-7 Section 111.01-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric apparatus must afford accessibility to each part as needed to facilitate proper...

  13. 46 CFR 111.01-7 - Accessibility and spacing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accessibility and spacing. 111.01-7 Section 111.01-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric apparatus must afford accessibility to each part as needed to facilitate proper...

  14. 46 CFR 111.01-7 - Accessibility and spacing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Accessibility and spacing. 111.01-7 Section 111.01-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric apparatus must afford accessibility to each part as needed to facilitate proper...

  15. System, cost, and risk analysis for access to space

    NASA Technical Reports Server (NTRS)

    Chase, James P.; Carter, Rebecca L.; Smith, Jeffrey L.

    2004-01-01

    This paper proposes the use of a new tool more quickly develop initial cost and risk estimates of alternative flight options for both single missions and the partnering of missions into a single space flight. this work is particularly useful for small missions that require low-cost opportunities for accessing space.

  16. The Way to Phase Space Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Michael, Marthaler; Schön, Gerd

    A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a potential, shows no spatial periodicity, but it is driven by a time-dependent field. Under rotating wave approximation, the system can produce a periodic lattice structure in phase space. The band structure in quasienergy arises as a consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose explicit models to realize such a phase space crystal and analyze its band structure in the frame of a tightbinding approximation. The phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry. The phase space crystal opens new ways to engineer energy band structures, with the added advantage that its properties can be changed in situ by tuning the driving field's parameters. Carl-Zeiss Stiftung.

  17. Access to Space for Technology Validation Missions: A Practical Guide

    NASA Technical Reports Server (NTRS)

    Herrell, Linda M.

    2007-01-01

    Space technology experiments and validation missions share a common dilemma with the aerospace industry in general: the high cost of access to space. Whether the experiment is a so-called university cubesat, a university measurement experiment, or a NASA New Millennium Program (NMP) technology validation mission, the access to space option can be scaled appropriately for the particular constraints. A cubesat might fly as one of a number of cubesats that negotiate a flight on an experimental vehicle. A university experiment might do the same. A NASA flight validation might partner with an Air Force experimental mission.

  18. An overview of the EASE/ACCESS space construction demonstration

    NASA Technical Reports Server (NTRS)

    Levin, George M.; Ross, Jerry L.; Spring, Sherwood C.

    1988-01-01

    Consideration is given to the development of the Experimental Assembly of Structures in EVA/Assembly Concept for Construction of Erectable Space Structures (EASE/ACCESS) space construction demonstration, which was performed during Space Shuttle mission 61-B. The mission equipment is described and illustrated and the EASE/ACCESS mission management structure is outlined. Simulations of the assembly and disassembly in the NASA neutral buoyancy simulators were used to test the mission plans. In addition, EVA training and crew performance for the mission are discussed.

  19. Low-cost access to space

    NASA Astrophysics Data System (ADS)

    Slayton, Donald K.; Daniels, Mark; Grimes, David

    1992-03-01

    The paper discusses the wide range of orbital launch capabilities of the Conestoga series and the suborbital sounding rocket services of the Starfire family. Both launchers are designed with flight-proven components and offer low cost and a high degree of reliability. Current information on the market for small-sized space payloads and the ability of the above launchers to support these requirements are addressed. The Conestoga orbital launch design embodies the concept of achieving payload growth flexibility without the need to change either the basic vehicle design or the operational approach. Low technical, schedule, and cost risk is achieved with the Conestoga design due to the high degree of previously flight-proven hardware utilized. The Conestoga launch vehicle series performance curves are illustrated. The various Starfire configurations and their microgravity performance are shown.

  20. Titan III - Commercial access to space

    NASA Astrophysics Data System (ADS)

    Gizinski, Stephen J., III; Herrington, Douglas B.

    1988-06-01

    The commercial Titan III launch vehicle is discussed, reviewing the history of the Titan program, the technical aspects of the launcher, and the market outlook. The solid rocket motors of the boost vehicle, core, attitude control system, and payload carrier are described. The vehicle can carry one or two payloads taking up a space of up to 3.65 m in diameter and 10.7 m in length. The avionics, communications, and electrical power systems of the vehicle are examined and the range of perigree stages with which the vehicle is compatible is given. An overview of the mission and the launch facilities is presented and future markets for commercial satellites are considered.

  1. Accessing hidden isosymmetric phase transitions in perovskite thin films

    NASA Astrophysics Data System (ADS)

    Rondinelli, James; Coh, Sinisa

    2011-03-01

    Isosymmetric phase transitions (IPT), which show no change in occupied Wyckoff positions or crystallographic space group, are exceedingly rare in crystalline matter because most condensed systems respond to external stimuli by undergoing ``conventional'' symmetry-lowering displacive, martensitic or reconstructive transitions. In this work, we use first-principles density functional calculations to identify an elusive IPT in orthorhombic AB O3 perovskite oxides with tendency towards rhombohedral symmetry. Using perovskite LaGa O3 as our prototypical system, we show that the latent isosymmetric phase transition, which manifests as an abrupt change in the octahedral rotation axis, is accessible only with an external elastic constraint---bi-axial strain. We show the transition originates from a soft phonon that describes the geometric connectivity and relative phase of the Ga O6 polyhedra. By connecting the origin of IPT to a chemical and structural incompatibility between the lattice and the elastic constraints, we describe how subtle changes in bulk orthorhombic and monoclinic symmetries are critical to the complete engineering of structure-correlated electronic properties in thin films. Because bi-axial strain is the critical parameter controlling the IPT, we suggest heteroepitaxial synthesis of IPT materials is a plausible route to realize high- κ dielectric actuators with variable band gaps and dielectric anisotropies.

  2. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  3. RADON reconstruction in longitudinal phase space

    SciTech Connect

    Mane, V.; Peggs, S.; Wei, J.

    1997-07-01

    Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC).

  4. Deep space LADAR, phase 1

    NASA Astrophysics Data System (ADS)

    Frey, Randy W.; Rawlins, Greg; Zepkin, Neil; Bohlin, John

    1989-03-01

    A pseudo-ranging laser radar (PRLADAR) concept is proposed to provide extended range capability to tracking LADAR systems meeting the long-range requirements of SDI mission scenarios such as the SIE midcourse program. The project will investigate the payoff of several transmitter modulation techniques and a feasibility demonstration using a breadboard implementation of a new receiver concept called the Phase Multiplexed Correlator (PMC) will be accomplished. The PRLADAR concept has specific application to spaceborne LADAR tracking missions where increased CNR/SNR performance gained by the proposed technique may reduce the laser power and/or optical aperture requirement for a given mission. The reduction in power/aperture has similar cost reduction advantages in commercial ranging applications. A successful Phase 1 program will lay the groundwork for a quick reaction upgrade to the AMOS/LASE system in support of near term SIE measurement objectives.

  5. GOES-R Space Weather Data: Ensuring Access and Usability

    NASA Astrophysics Data System (ADS)

    Tilton, M.; Rowland, W. F.; Wilkinson, D. C.; Denig, W. F.; Darnel, J.; Kress, B. T.; Loto'aniu, P. T. M.; Machol, J. L.; Redmon, R. J.; Rodriguez, J. V.

    2015-12-01

    The upcoming Geostationary Operational Environmental Satellite series, GOES-R, will provide critical space weather data. These data are used to prevent communication outages, mitigate the damage solar weather causes to satellites and power grids, and reduce astronaut radiation exposure. The space weather instruments aboard GOES-R will deliver an operational dataset of unprecedented breadth. However, NOAA's National Centers for Environmental Information (NCEI)—the organization that provides access to archived GOES-R data—has faced several challenges in delivering this information to customers in usable form. For instance, the GOES-R ground system was contracted to develop higher-level products for terrestrial data but not space weather data. Variations in GOES-R data file formats and archive locations have also threatened to create an inconsistent user experience. This presentation will examine the ways in which NCEI is making GOES-R space weather data more accessible and actionable for customers. These efforts include NCEI's development of high-level data products to meet the requirements of NOAA's Space Weather Prediction Center—a role NCEI has not previously played. In addition, NCEI is creating a demonstration system to show how these products can be produced in real-time. The organization is also examining customer usage of the GOES-NOP data access system and using these access patterns to drive decisions about the GOES-R user interface.

  6. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  7. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  8. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  9. Beam Tomography in Longitudinal Phase Space

    NASA Astrophysics Data System (ADS)

    Mane, V.; Wei, J.; Peggs, S.

    1997-05-01

    Longitudinal particle motion in circular accelerators is typically monitored by one dimensional (1-D) profiles. Adiabatic particle motion in 2-D phase space can be reconstructed with tomographic techniques, using 1-D profiles. In this paper, we discuss a filtered backprojection algorithm, with a high pass ramp or Hann filter, for phase space reconstruction. The algorithm uses several projections of the beam at equally spaced angles over half a synchrotron period. A computer program RADON has been developed to process digitized mountain range data and do the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC). Analysis has been performed to determine the sensitivity to machine parameters and data acquisition errors. During the Sextant test of RHIC in early 1997, this program has been successfully employed to reconstruct the motion of Au^77+ beam in the AGS.

  10. Ka-band geostationary satellite spacing requirements and access schemes

    NASA Technical Reports Server (NTRS)

    Caron, Mario; Hindson, Daniel J.

    1995-01-01

    Geostationary satellite systems for wideband personal communications applications have been proposed. This paper looks at the geostationary satellite spacing requirement to meet the ITU-R sharing criterion for FDMA and CDMA access schemes. CDMA capacity equation is first developed. Then the basis for the interference analysis between two systems with an overlapping coverage area is developed for the cases of identical and different access schemes and for bandwidth and power limited systems. An example of an interference analysis between two systems is fully carried out. The paper also points out the inherent problems when comparing systems with different access schemes. It is found that under certain scenarios, CDMA can allow a closer spacing between satellites.

  11. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  12. Space Phase III - The commercial era dawns

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1983-01-01

    After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.

  13. Integrated Ground Operations Demonstration for Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Johnson, Robert G.; Notardonato, William U.

    2014-01-01

    The NASA Advanced Exploration Systems (AES) program has a three year project to develop and demonstrate technologies to fundamentally change the way ground servicing activities support future access to space architectures. The AES Integrated Ground Operation Demonstration Units (IGODU) project has created two test beds for investigating and maturing two key elements of spaceport processing activities. The first is the GODU Integrated Refrigeration and Storage test bed that is demonstrating zero-loss storage of liquid hydrogen propellants and studying the storage and transfer of densified propellants. The second activity is the GODU Autonomous Control test bed that is implementing health management technologies and autonomous control capability of the propellant loading process to reduce the standing army of experts historically needed to ensure safe propellant loading operations. This presentation will give an overview of the activities at the Kennedy Space Center on these two test beds and its potential impact on future access to space programs.

  14. Neutral line chaos and phase space structure

    NASA Technical Reports Server (NTRS)

    Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.

    1991-01-01

    Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.

  15. Noether symmetries in the phase space

    NASA Astrophysics Data System (ADS)

    Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes

    2014-09-01

    The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.

  16. Space Fence PDR Concept Development Phase

    NASA Astrophysics Data System (ADS)

    Haines, L.; Phu, P.

    2011-09-01

    The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate

  17. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  18. Phase-space contraction and quantum operations

    SciTech Connect

    Garcia-Mata, Ignacio; Spina, Maria Elena; Saraceno, Marcos; Carlo, Gabriel

    2005-12-15

    We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as 'quantum phase space contraction rate' and which is related to a fundamental property of quantum channels: nonunitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attractor-like structures is displayed.

  19. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  20. Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS)

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Wefel, John P.

    1999-01-01

    In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.

  1. Particle emission from covariant phase space

    SciTech Connect

    Bambah, B.A. )

    1992-12-01

    Using Lorentz-covariant sources, we calculate the multiplicity distribution of {ital n} pair correlated particles emerging from a Lorentz-covariant phase-space volume. We use the Kim-Wigner formalism and identify these sources as the squeezed states of a relativistic harmonic oscillator. The applications of this to multiplicity distributions in particle physics is discussed.

  2. Segmented proportional spacing medium access control protocol for APONs

    NASA Astrophysics Data System (ADS)

    Wang, Hongbin; Yu, Yiqing; Zhou, Dongru; Meng, Bo

    2004-04-01

    Combining asynchronous transfer mode (ATM) over a passive optical network (APON) can provide broadband services as defined by the international telecommunications union (ITU). The medium access control (MAC) layer is of primary importance to the access scheme as in controls the flow of traffic in the access network. This paper presents a novel MAC protocol-segmented proportional spacing MAC protocol, which complies with ITU-T recommendations, is firstly designed for APON system based on the analysis of different type of bandwidth allocation algorithms. The main idea of protocol is: frame structure adopts the structure regulated by ITU; fine time division for the optical network unit (ONU) to apply bandwidth; the bandwidth"s application is not based on the T-interface but ONU, the bandwidth allocation algorithm uses segmented proportional spacing algorithm. At last, we compare our protocol to other MAC protocols, the results show that proportional spacing and segmented bandwidth allocation control the cell jitter with satisfactory and improve the system bandwidth efficiency at same time, the correlative conclusions are given finally.

  3. A space-fed phased array for surveillance from space

    NASA Astrophysics Data System (ADS)

    Hightower, Charles H.; Wong, Sam H.; Perkons, Alfred R.; Igwe, Christian I.

    1991-05-01

    A space-fed radar antenna called a venetian blind is proposed for all-weather wide-area surveillance from space. Radar requirements for tasked and untasked operation are discussed, and the process of selecting the venetian blind concept, which can support both, is described. In its untasked form (essentially a space-fed passive lens), it achieves off-axis squint angles of many beamwidths with negligible performance degradation. It is inherently insensitive to mechanical distortion and is a first step in the evolution to the more complex tasked system antenna. The antenna lens consists of easily manufactured slats with microstrip dipole radiating elements and matching networks on a dielectric substrate. Phase control is achieved with low-loss delay lines in the passive lens or active transmit/receive modules if electronic scan is desired.

  4. Space market model development project, phase 3

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Hamel, Gary P.

    1989-01-01

    The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

  5. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  6. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  7. Thermophotovoltaic space power system, phase 3

    NASA Technical Reports Server (NTRS)

    Horne, W. E.; Lancaster, C.

    1987-01-01

    Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.

  8. Noncanonical phase-space noncommutative black holes

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, Joa~o. Nuno

    2012-07-01

    In this contribution we present a noncanonical phase-space noncommutative (NC) extension of a Kantowski Sachs (KS) cosmological model to describe the interior of a Schwarzschild black hole (BH). We evaluate the thermodynamical quantities inside this NC Schwarzschild BH and compare with the well known quantities. We find that for a NCBH the temperature and entropy have the same mass dependence as the Hawking quantities for a Schwarzschild BH.

  9. Analytical satellite theory in extended phase space

    NASA Technical Reports Server (NTRS)

    Bond, V.; Broucke, R.

    1980-01-01

    It is noted that a satellite theory, based on extended phase space and on the true anomaly, was introduced by Scheifele (1970). In the present paper a simple canonical transformation is shown that makes the transition from the classical Delaunay elements to the Scheifele variables. It is stressed that neither spherical coordinates nor Hamilton-Jacobi theory is used. Finally, attention is given to the meaning of the new variables, especially the use of the true anomaly as one of the variables.

  10. Chirp-driven giant phase space vortices

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2016-06-01

    In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.

  11. Aviation or space policy: New challenges for the insurance sector to private human access to space

    NASA Astrophysics Data System (ADS)

    van Oijhuizen Galhego Rosa, Ana Cristina

    2013-12-01

    The phenomenon of private human access to space has introduced a new set of problems in the insurance sector. Orbital and suborbital space transportation will surely be unique commercial services for this new market. Discussions are under way regarding space insurance, in order to establish whether this new market ought to be regulated by aviation or space law. Alongside new definitions, infrastructures, legal frameworks and liability insurances, the insurance sector has also been introducing a new approach. In this paper, I aim to analyse some of the possibilities of new premiums, capacities, and policies (under aviation or space insurance rules), as well as the new insurance products related to vehicles, passengers and third party liability. This paper claims that a change toward new insurance regimes is crucial, due to the current stage in development of space tourism and the urgency to adapt insurance rules to support future development in this area.

  12. Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld

    NASA Technical Reports Server (NTRS)

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  13. Innovative Airbreathing Propulsion Concepts for Access to Space

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.

    2001-01-01

    This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.

  14. Sharing Ideas: Making Earth and Space Science Accessible

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Guimond, K.; Atkinson, C.

    2005-12-01

    There are nearly six million K-12 students with some form of disability in the U.S. and the majority of them are required to achieve the same academic levels as their non-impaired peers. Historically, students with disabilities have experienced difficulties in fully accessing and participating in middle school and high school science programs. With the passage of the No Child Left Behind (NCLB) Act and increasing focus on reading and math performance, many students with exceptional needs are now being taught science by mainstream science teachers, who have little to no training on how to work with students with exceptional needs. For the past 5 years, SERCH has engaged in organizing and hosting a series of Exceptional Space Science Materials for Exceptional Students Workshops (ENWS) focused on educating students with special needs about the space sciences. Each workshop has focused on a different aspect of formal and informal education and working with the various special needs. In all of these workshops, participants experience what a person or student with special needs might encounter when working through educational activities or exhibits by experiencing it first-hand. In addition to making many of NASA's education materials accessible for all learners, a top-ten list of "best practices" has been compiled by the professional educators as a result of our working together for five years and their formal and informal educational experiences.

  15. ACCESS - A Science and Engineering Assessment of Space Coronagraph Concepts for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    NASA Technical Reports Server (NTRS)

    Trauger, John

    2008-01-01

    Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.

  16. Why Atens Enjoy Enhanced Accessibility For Human Space Flight

    NASA Technical Reports Server (NTRS)

    Barbee, Brent; Adamo, Daniel

    2011-01-01

    In the context of human space flight (HSF), the concept of near-Earth object (NEO) accessibility is highly subjective. Whether or not a particular NEO is accessible critically depends on mass, performance, and reliability of interplanetary HSF systems yet to be designed. Such systems would certainly include propulsion and crew life support with adequate shielding from both solar flares and galactic cosmic radiation. Equally critical architecture options are relevant to NEO accessibility. These options are also far from being determined and include the number of launches supporting an HSF mission, together with whether or not consumables are to be pre-emplaced at the destination. Until the unknowns of HSF to NEOs come into clearer focus, the notion of relative accessibility is of great utility. Imagine a group of NEOs, each with nearly equal HSF merit determined from their individual characteristics relating to crew safety, scientific return, resource utilization, and planetary defense. The more accessible members of this group are more likely to be explored first. A highly accessible NEO could conceivably be deferred in favor of a less accessible HSF destination because the latter is more accessible during a programmatically desirable launch compliant mission trajectory solutions detected in association with a specific NEO. The known NEO population is then surveyed to illustrate in which regions of heliocentric semi-major axis, eccentricity, and inclination (a, e, i) space NEOs with large n values are mapped. The (a, e, i) mapping is also formatted such that membership in each of four NEO orbit classifications, as defined below, is evident. Amors have orbits everywhere superior to (outside of) Earth's. An Amor is therefore defined to have perihelion between 1.017 astronomical units (AU) and the maximum NEO value of 1.3 AU. As of 0 hrs Universal Time on 1 January 2011 (UT epoch 2011.0), Amors numbered 2855 in the Jet Propulsion Laboratory (JPL) Small-Body Database

  17. Formation of phase space holes and clumps.

    PubMed

    Lilley, M K; Nyqvist, R M

    2014-04-18

    It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043

  18. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between

  19. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  20. Weak values and the quantum phase space

    SciTech Connect

    Lobo, A. C.; Ribeiro, C. A.

    2009-07-15

    We address the issue of how to properly treat, and in a more general setting, the concept of a weak value of a weak measurement in quantum mechanics. We show that for this purpose, one must take in account the effects of the measuring process on the entire phase space of the measuring system. By using coherent states, we go a step further than Jozsa in a recent paper and we present an example where the result of the measurement is symmetrical in the position and momentum observables and seems to be much better suited for quantum optical implementation.

  1. Optical image encryption in phase space

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying

    2014-11-01

    In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.

  2. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must.... by 23.6 in.). (b) Each access into and through a void space or other gas-dangerous space in the cargo area, except spaces described in paragraph (e) of the definition for “gas-dangerous space” in §...

  3. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must.... by 23.6 in.). (b) Each access into and through a void space or other gas-dangerous space in the cargo area, except spaces described in paragraph (e) of the definition for “gas-dangerous space” in §...

  4. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must.... by 23.6 in.). (b) Each access into and through a void space or other gas-dangerous space in the cargo area, except spaces described in paragraph (e) of the definition for “gas-dangerous space” in §...

  5. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must.... by 23.6 in.). (b) Each access into and through a void space or other gas-dangerous space in the cargo area, except spaces described in paragraph (e) of the definition for “gas-dangerous space” in §...

  6. Space Transportation Engine Program (STEP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  7. Efficient solid rocket propulsion for access to space

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.

    2010-06-01

    Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.

  8. URSA MAIOR: a One Liter Nanosatellite Bus for Low Cost Access to Space

    NASA Astrophysics Data System (ADS)

    Santoni, F.

    whole satellite has a volume of one liter and a target weight of one kilogram. It can support small scientific missions, such as Earth imaging, and, potentially, small communications payloads. All the on-board components are commercial off the shelf, including solar panels, completely assembled in the University laboratories. Commercial Li-Ion batteries are the energy storage device. Three axis attitude stabilization is provided by a bias momentum wheel, with magnetic coils for active nutation damping and pointing control. Academic personnel and students are involved in the whole process of the nanosatellite design, construction and ground test. All the phases of the projects are open to the participation of the students, contributing ideas and solution to the technical problems, under the supervision of the academic staff. All the subsystems and components are designed to be assembled in a normally equipped electronics laboratory, without any potentially harmful materials or operations. For example the Li-Ion battery pack have been assembled following a procedure, primarily focussed on ease of integration and assembly by not experienced people, such as students, in a normally equipped University electronics laboratory. Packing materials were selected with no special requirements in terms of toxicity control, potential harmful operations, environmental cleanliness, or expensive curing machines. The space education experience made at Università di Roam "La Sapienza", with all the phases of the space program opened to students, realizing small satellites with small economical budgets seems to be a useful tool to give access to space to developing countries. These could have a piece of hardware in space at reachable costs, realizing small earth imaging or communication missions, and at the same time could obtain space education through hands-on experience, filling, at least in part, the technological gap. The paper describes the nanosatellite bus URSA MAIOR in some detail

  9. Phase space representation of quantum dynamics

    SciTech Connect

    Polkovnikov, Anatoli

    2010-08-15

    We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.

  10. Quantum mechanics on phase space and teleportation

    NASA Astrophysics Data System (ADS)

    Messamah, Juba; Schroeck, Franklin E.; Hachemane, Mahmoud; Smida, Abdallah; Hamici, Amel H.

    2015-03-01

    The formalism of quantum mechanics on phase space is used to describe the standard protocol of quantum teleportation with continuous variables in order to partially investigate the interplay between this formalism and quantum information. Instead of the Wigner quasi-probability distributions used in the standard protocol, we use positive definite true probability densities which account for unsharp measurements through a proper wave function representing a non-ideal quantum measuring device. This is based on a result of Schroeck and may be taken on any relativistic or nonrelativistic phase space. The obtained formula is similar to a known formula in quantum optics, but contains the effect of the measuring device. It has been applied in three cases. In the first case, the two measuring devices, corresponding to the two entangled parts shared by Alice and Bob, are not entangled and described by two identical Gaussian wave functions with respect to the Heisenberg group. They lead to a probability density identical to the function which is analyzed and compared with the Wigner formalism. A new expression of the teleportation fidelity for a coherent state in terms of the quadrature variances is obtained. In the second case, these two measuring devices are entangled in a two-mode squeezed vacuum state. In the third case, two Gaussian states are combined in an entangled squeezed state. The overall observation is that the state of the measuring devices shared by Alice and Bob influences the fidelity of teleportation through their unsharpness and entanglement.

  11. TPS Sizing for Access-to-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Henline, William; Olynick, David; Palmer, Grant; Chen, Y.-K.

    1996-01-01

    A study was carried out to identify, develop, and benchmark simulation techniques needed for optimum thermal protection system (TPS) material selection and sizing for reusable launch vehicles. Fully viscous, chemically reacting, Navier-Stokes flow solutions over the Langley wing-body single stage to orbit (SSTO) configuration were generated and coupled with an in-depth conduction code. Results from the study provide detailed TPS heat shield materials selection and thickness sizing for the wing-body SSTO. These results are the first ever achieved through the use of a complete, trajectory based hypersonic, Navier-Stokes solution database. TPS designs were obtained for both laminar and turbulent entry trajectories using the Access-to-Space baseline materials such as tailorable advanced blanket insulation. The TPS design effects (materials selection and thickness) of coupling material characteristics to the aerothermal environment are illustrated. Finally, a sample validation case using the shuttle flight database is included.

  12. Space Access for Small Satellites on the K-1

    NASA Astrophysics Data System (ADS)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans

  13. Uncertainty relations for general phase spaces

    NASA Astrophysics Data System (ADS)

    Werner, Reinhard F.

    2016-04-01

    We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.

  14. Reanalysis of relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Chen, Yue; Kondrashov, Dmitri

    In this study we perform a reanalysis of the sparse relativistic electron data using a relatively simple one-dimensional radial diffusion model and a Kalman filtering approach. The results of the reanalysis clearly show pronounced peaks in the electron phase space density (PSD), which can not be explained by the variations in the outer boundary, and can only be produced by a local acceleration processes. The location of the innovation vector shows that local acceleration is most efficient at L* = 5.5. To verify that our results are not affected by the limitations of the satellite orbit and coverage, we performed an "identical twin" experiments with synthetic data specified only at the locations for which CRRES observations are available. Our results indicate that the model with data assimilation can accurately reproduce the underlying structure of the PSD even when data is sparse.

  15. Space-time geometry of topological phases

    SciTech Connect

    Burnell, F.J.; Simon, Steven H.

    2010-11-15

    The 2 + 1 dimensional lattice models of Levin and Wen (2005) provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.

  16. 41 CFR 105-8.152 - Program accessibility: Assignment of space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Program accessibility: Assignment of space. 105-8.152 Section 105-8.152 Public Contracts and Property Management Federal Property...-8.152 Program accessibility: Assignment of space. (a) When GSA assigns or reassigns space to...

  17. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks. An access opening to an enclosed space or a dedicated ballast tank must meet the requirements for a cargo tank access in § 153.254 (b), (c), and (d) if: (a) The enclosed space or dedicated ballast... within the enclosed space or dedicated ballast tank....

  18. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks. An access opening to an enclosed space or a dedicated ballast tank must meet the requirements for a cargo tank access in § 153.254 (b), (c), and (d) if: (a) The enclosed space or dedicated ballast... within the enclosed space or dedicated ballast tank....

  19. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks. An access opening to an enclosed space or a dedicated ballast tank must meet the requirements for a cargo tank access in § 153.254 (b), (c), and (d) if: (a) The enclosed space or dedicated ballast... within the enclosed space or dedicated ballast tank....

  20. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks. An access opening to an enclosed space or a dedicated ballast tank must meet the requirements for a cargo tank access in § 153.254 (b), (c), and (d) if: (a) The enclosed space or dedicated ballast... within the enclosed space or dedicated ballast tank....

  1. Developing hybrid near-space technologies for affordable access to suborbital space

    NASA Astrophysics Data System (ADS)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  2. Rocket-Based Combined-Cycle Propulsion Technology for Access-to-Space Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. One of the main activities over the past three years has been on advancing the hydrogen fueled rocket-based combined cycle (RBCC) technologies. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet and Boeing-Rocketdyne designed, built and ground tested their RBCC engine concepts. In addition, ASTROX, Georgia Institute of Technology, McKinney Associates, Pennsylvania State University (PSU), and University of Alabama in Huntsville conducted supporting activities. The RBCC activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. Inlet testing was performed at the Lewis Research Center's 1 x 1 wind tunnel. All direct connect and free-jet engine testing were conducted at the GASL facilities on Long Island, New York. Testing spanned the Mach range from sea level static to Mach 8. Testing of the rocket-only mode, simulating the final phase of the ascent mission profile, was also performed. The originally planned work on these contracts was completed in 1999. Follow-on activities have been initiated for both hydrogen and hydrocarbon fueled RBCC concepts. Studies to better understand system level issues with the integration of RBCC propulsion with earth-to-orbit vehicles have also been conducted. This paper describes the status, progress and future plans of the RBCC activities funded by NASA/MSFC with a major focus on the benefits of utilizing air-breathing combined-cycle propulsion in access-to-space applications.

  3. New Specimen Access Device for the Large Space Simulator

    NASA Astrophysics Data System (ADS)

    Lazzarini, P.; Ratti, F.

    2004-08-01

    The Large Space Simulator (LSS) is used to simulate in- orbit environmental conditions for spacecraft (S/C) testing. The LSS is intended to be a flexible facility: it can accommodate test articles that can differ significantly in shape and weight and carry various instruments. To improve the accessibility to the S/C inside the LSS chamber a new Specimen Access Device (SAD) has been procured. The SAD provides immediate and easy access to the S/C, thus reducing the amount of time necessary for the installations of set-ups in the LSS. The SAD has been designed as bridge crane carrying a basket to move the operator into the LSS. Such a crane moves on parallel rails on the top floor of the LSS building. The SAD is composed by three subsystems: the main bridge, the trolley that moves along the main bridge and the telescopic mast. A trade off analysis has been carried out for what concerns the telescopic mast design. The choice between friction pads vs rollers, to couple the different sections of the mast, has been evaluated. The resulting design makes use of a four sections square mast, with rollers driven deployment. This design has been chosen for the higher stiffness of the mast, due to the limited number of sections, and because it reduces radically the risk of contamination related to a solution based on sliding bushings. Analyses have been performed to assess the mechanical behaviour both in static and in dynamic conditions. In particular the telescopic mast has been studied in detail to optimise its stiffness and to check the safety margins in the various operational conditions. To increase the safety of the operations an anticollision system has been implemented by positioning on the basket two kind of sensors, ultrasonic and contact ones. All the translations are regulated by inverters with acceleration and deceleration ramps controlled by a Programmable Logic Controller (PLC). An absolute encoder is installed on each motor to provide the actual position of the

  4. URSA MAIOR: a One Liter Nanosatellite Bus for Low Cost Access to Space

    NASA Astrophysics Data System (ADS)

    Santoni, F.

    whole satellite has a volume of one liter and a target weight of one kilogram. It can support small scientific missions, such as Earth imaging, and, potentially, small communications payloads. All the on-board components are commercial off the shelf, including solar panels, completely assembled in the University laboratories. Commercial Li-Ion batteries are the energy storage device. Three axis attitude stabilization is provided by a bias momentum wheel, with magnetic coils for active nutation damping and pointing control. Academic personnel and students are involved in the whole process of the nanosatellite design, construction and ground test. All the phases of the projects are open to the participation of the students, contributing ideas and solution to the technical problems, under the supervision of the academic staff. All the subsystems and components are designed to be assembled in a normally equipped electronics laboratory, without any potentially harmful materials or operations. For example the Li-Ion battery pack have been assembled following a procedure, primarily focussed on ease of integration and assembly by not experienced people, such as students, in a normally equipped University electronics laboratory. Packing materials were selected with no special requirements in terms of toxicity control, potential harmful operations, environmental cleanliness, or expensive curing machines. The space education experience made at Università di Roam "La Sapienza", with all the phases of the space program opened to students, realizing small satellites with small economical budgets seems to be a useful tool to give access to space to developing countries. These could have a piece of hardware in space at reachable costs, realizing small earth imaging or communication missions, and at the same time could obtain space education through hands-on experience, filling, at least in part, the technological gap. The paper describes the nanosatellite bus URSA MAIOR in some detail

  5. Space market model development project, phase 2

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1988-01-01

    The results of the prototype operations of the Space Business Information Center are presented. A clearinghouse for space business information for members of the U.S. space industry composed of public, private, and academic sectors was conducted. Behavioral and evaluation statistics were recorded from the clearinghouse and the conclusions from these statistics are presented. Business guidebooks on major markets in space business are discussed. Proprietary research and briefings for firms and agencies in the space industry are also discussed.

  6. Stabilizer information inequalities from phase space distributions

    NASA Astrophysics Data System (ADS)

    Gross, David; Walter, Michael

    2013-08-01

    The Shannon entropy of a collection of random variables is subject to a number of constraints, the best-known examples being monotonicity and strong subadditivity. It remains an open question to decide which of these "laws of information theory" are also respected by the von Neumann entropy of many-body quantum states. In this article, we consider a toy version of this difficult problem by analyzing the von Neumann entropy of stabilizer states. We find that the von Neumann entropy of stabilizer states satisfies all balanced information inequalities that hold in the classical case. Our argument is built on the fact that stabilizer states have a classical model, provided by the discrete Wigner function: The phase-space entropy of the Wigner function corresponds directly to the von Neumann entropy of the state, which allows us to reduce to the classical case. Our result has a natural counterpart for multi-mode Gaussian states, which sheds some light on the general properties of the construction. We also discuss the relation of our results to recent work by Linden, Ruskai, and Winter ["The quantum entropy cone of stabiliser states," e-print arXiv:1302.5453].

  7. Constructing Phase Space Distributions within the Heliosheath

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2014-12-01

    The key function in the description of the dynamics of the heliosheath (HS) is the phase space distribution (PSD) of the protons, i.e., how the interaction between the thermal and non-thermal (heated pick-up) proton populations evolves from the termination shock to the heliopause (HP) in this high-beta plasma. Voyager 1 found the heliopause to be essentially a (compound) magnetic separatrix, because the intensity of the non-thermal particle population became undetectably small beyond the HP, whereas the anisotropy characteristics of the galactic cosmic rays were consistent with no re-entry of the magnetic field lines into the HS (at either end). This paper attempts to synthesize in situ observations from Voyagers 1 and 2 (thermal plasma, magnetic field, energetic ions, and cosmic rays) with global ENA images from IBEX and Cassini/INCA into a self-consistent representation of the PSD within the noseward HS from thermal energies to several MeV/nuc. The interpretation of the ENA images requires assumptions on the global behavior of the bulk plasma flow throughout the HS that are self-consistent with all the available data (e.g., the spatial and energy dependence of the IBEX ribbon), because the Compton-Getting effects produced by the flows strongly affect the intensities (and thereby the partial densities and pressures) inferred from the ENA images.

  8. Overview of Phase Space Manipulations of Relativistic Electron Beams

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  9. 41 CFR 105-8.152 - Program accessibility: Assignment of space.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Assignment of space. 105-8.152 Section 105-8.152 Public Contracts and Property Management Federal Property...-8.152 Program accessibility: Assignment of space. (a) When GSA assigns or reassigns space to an.... (b) Prior to the assignment or reassignment of space to an agency, GSA shall inform the agency of...

  10. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  11. Space shuttle phase B study plan

    NASA Technical Reports Server (NTRS)

    Hello, B.

    1971-01-01

    Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.

  12. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  13. Quasi-Hermitian quantum mechanics in phase space

    SciTech Connect

    Curtright, Thomas; Veitia, Andrzej

    2007-10-15

    We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.

  14. Grooming the Shuttle for cost-effective access to space

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1985-01-01

    An assessment is made of the performance of the Space Shuttle-based Space Transportation System (STS) from the initial flights in 1981 to the present, which has involved the launching of 12 satellites and the retrieval of two. It is expected that the STS will soon be able to schedule 24 routine missions/year, upon the achievement of full operational status for the full fleet of four Space Shuttles and the completion of support facilities at both the Kennedy Space Center and Vandenberg Air Force Base. The prospects for space industrialization efforts based on STS are noted.

  15. Space law information system design, phase 2

    NASA Technical Reports Server (NTRS)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1973-01-01

    Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.

  16. ESPAS: the European e-science platform to access near-Earth space data (Invited)

    NASA Astrophysics Data System (ADS)

    Belehaki, A.; Hapgood, M. A.; Ritschel, B.; Manola, N.

    2013-12-01

    The aim of ESPAS platform is to integrate heterogeneous data from the earth's thermosphere, ionosphere, plasmasphere and magnetosphere. ESPAS supports the systematic exploration of multipoint measurements from the near-Earth space through homogenised access to multi-instrument data. It provides access to more than 40 datasets: Cluster, EISCAT, GIRO, DIAS, SWACI, CHAMP, SuperDARN, FPI, magnetometers INGV, SGO, DTU, IMAGE, TGO, IMAGE/RPI, ACE, SOHO, PROBA2, NOAA/POES, etc. The concept of extensibility to new data sets is an important element in the ESPAS architecture. Within the first year of the project, the main components of the system have been developed, namely, the data model, the XML schemas for metadata exchange format, the ontology, the wrapper installed at the data nodes so that the main platform harvest the metadata, the main platform built on the D-NET framework and the GUI with its designed workflows. The first working prototype supports the search for datasets among a selected number of databases (i.e., EDAM, DIAS, Cluster, SWACI data). The next immediate step would be the implementation of search for characteristics within the datasets. For the second release we are planning to deploy tools for conjunctions between ground-space and space-space and for coincidences. For the final phase of the project the ESPAS infrastructure will be extensively tested through the application of several use cases, designed to serve the needs of the wide interdisciplinary users and producers communities, such as the ionospheric, thermospheric, magnetospheric, space weather and space climate communities, the geophysics community, the space communications engineering, HF users, satellite operators, navigation and surveillance systems, and space agencies. The final ESPAS platform is expected to be delivered in 2015. The abstract is submitted on behalf of the ESPAS-FP7EU team (http://www.espas-fp7.eu): Mike Hapgood, Anna Belehaki, Spiros Ventouras, Natalia Manola, Antonis

  17. Phase partitioning in space and on earth

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.

    1987-01-01

    The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.

  18. An analytical phase-space model for tidal caustics

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn E.; Helmi, Amina

    2013-10-01

    The class of tidal features around galaxies known as `shells' or `umbrellas' comprises debris that has arisen from high-mass-ratio mergers with low-impact parameter; the nearly radial orbits of the debris give rise to a unique morphology, a universal density profile and a tight correlation between positions and velocities of the material. As such they are accessible to analytical treatment, and can provide a relatively clean system for probing the gravitational potential of the host galaxy. In this work, we present a simple analytical model that describes the density profile, phase-space distribution, and geometry of a shell and whose parameters are directly related to physical characteristics of the interacting galaxies. The model makes three assumptions: the orbit of the interacting galaxies is radial, the potential of the host galaxy at the shell radius is spherical and the satellite galaxy's initial velocity distribution is Maxwellian. We quantify the error introduced by the first two assumptions and show that selecting shells by their appearance on the sky is a sufficient basis to assume that these simplifications are valid. We further demonstrate that (1) given only an image of a shell, the radial gravitational force at the shell edge and the phase-space density of the satellite are jointly constrained, (2) combining the image with measurements of either point line-of-sight velocities or integrated-light spectra will yield an independent estimate of the gravitational force at a shell and (3) an independent measurement of this force is obtained for each shell observed around a given galaxy, potentially enabling a determination of the galactic mass distribution.

  19. Tracing the dark matter sheet in phase space

    NASA Astrophysics Data System (ADS)

    Abel, Tom; Hahn, Oliver; Kaehler, Ralf

    2012-11-01

    The primordial velocity dispersion of dark matter is small compared to the velocities attained during structure formation. The initial density distribution is close to uniform, and it occupies an initial sheet in phase space that is single valued in velocity space. Because of gravitational forces, this 3D manifold evolves in phase space without ever tearing, conserving phase-space volume and preserving the connectivity of nearby points. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured 3D mesh moving in 6D phase space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, detect caustics and count the number of streams as well as their individual contributions to any point in configuration space. We calculate the bulk velocity, local velocity dispersions and densities from the sheet - all without averaging over control volumes. This gives a wealth of new information about dark matter fluid flow which had previously been thought of as inaccessible to N-body simulations. We outline how this mapping may be used to create new accurate collisionless fluid simulation codes that may be able to overcome the sparse sampling and unphysical two-body effects that plague current N-body techniques.

  20. Real-space Berry phases: Skyrmion soccer (invited)

    SciTech Connect

    Everschor-Sitte, Karin Sitte, Matthias

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  1. Real-space Berry phases: Skyrmion soccer (invited)

    NASA Astrophysics Data System (ADS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  2. AGU to Launch a New Open-Access Journal Spanning the Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Hanson, Brooks

    2014-02-01

    AGU is pleased to announce a new, fully open-access journal, Earth and Space Science (ESS), that will reflect the expansive range of science represented by AGU's members. ESS will publish research papers spanning all of the Earth, planetary, and space sciences, including related fields in environmental science, geoengineering, space engineering, and biogeochemistry.

  3. 4D phase-space multiplexing for fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2016-03-01

    Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.

  4. Selected tether applications in space: Phase 2

    NASA Technical Reports Server (NTRS)

    Thorsen, M. H.; Lippy, L. J.

    1985-01-01

    System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.

  5. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    PubMed

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management. PMID:21728276

  6. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    NASA Astrophysics Data System (ADS)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  7. Leptons, Quarks, and Their Antiparticles: A Phase-Space View

    NASA Astrophysics Data System (ADS)

    Żenczykowski, Piotr

    2010-09-01

    Recently, a correspondence has been shown to exist between the structure of a single Standard Model generation of elementary particles and the properties of the Clifford algebra of nonrelativistic phase space. Here, this correspondence is spelled out in terms of phase-space variables. Thus, a phase-space interpretation of the connections between leptons, quarks and their antiparticles is proposed, in particular providing a timeless alternative to the standard Stückelberg-Feynman interpretation. The issue of the additivity of canonical momenta is raised and argued to be intimately related to the unobservability of free quarks and the emergence of mesons and baryons.

  8. Longitudinal phase space experiments on the ELSA photoinjector

    SciTech Connect

    Dowell, D.H.; Joly, S.; Brion, J.P. de

    1995-12-31

    The excellent beam quality produced by RF photocathode injectors is well established, andhas been verified by numerous measurements of the transverse emittance. However, there are few experimental determinations of the longitudinal phase space. This paper reports on experiments performed at the ELSA FEL facility to emasure the longitudinal phase space distribution at the exit of the 144 MHz photoinjector cavity. Phase spaces were determined by the analysis of beam energy spectra and pulse shapes at 17.5 MeV for micropulse charges between 0.5 and 5 nC.

  9. Phase Space Distribution Near the Self-Excited Oscillation Threshold

    NASA Astrophysics Data System (ADS)

    Dhayalan, Yuvaraj; Baskin, Ilya; Shlomi, Keren; Buks, Eyal

    2014-05-01

    We study the phase space distribution of an optomechanical cavity near the threshold of self-excited oscillation. A fully on-fiber optomechanical cavity is fabricated by patterning a suspended metallic mirror on the tip of the fiber. Optically induced self-excited oscillation of the suspended mirror is observed above a threshold value of the injected laser power. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution near threshold. A tomography technique is employed for extracting phase space distribution from the measured reflected optical power vs time in steady state. Comparison between theory and experimental results allows the extraction of the device parameters.

  10. A Simple, Low Cost Longitudinal Phase Space Diagnostic

    SciTech Connect

    Bertsche, Kirk; Emma, Paul; Shevchenko, Oleg; /Novosibirsk, IYF

    2009-05-15

    For proper operation of the LCLS [1] x-ray free-electron laser (FEL), and other similar machines, measurement and control of the electron bunch longitudinal phase space is critical. The LCLS accelerator includes two bunch compressor chicanes to magnify the peak current. These magnetic chicanes can generate significant coherent synchrotron radiation (CSR), which can distort the phase space distribution. We propose a diagnostic scheme by exciting a weak skew quadrupole at an energy-chirped, high dispersion point in the first LCLS bunch compressor (BC1) to reconstruct longitudinal phase space on an OTR screen after BC1, allowing a time-resolved characterization of CSR effects.

  11. The space transportation main engine phase A' study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Transportation Main Engine Phase A prime study was conducted over a 7 month period as an extension to the Phase A study. The Phase A prime program was designed to expand the study effort completed in Phase A, focusing on the baseline engine configuration selected. Analysis and trade studies were conducted to further optimize some of the major engine subsystems. These changes resulted in improvements to the baseline engine. Several options were evaluated for consideration by vehicle contractors.

  12. Attached shuttle payload carriers: Versatile and affordable access to space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The shuttle has been primarily designed to be a versatile vehicle for placing a variety of scientific and technological equipment in space including very large payloads; however, since many large payloads do not fill the shuttle bay, the space and weight margins remaining after the major payloads are accommodated often can be made available to small payloads. The Goddard Space Flight Center (GSFC) has designed standardized mounting structures and other support systems, collectively called attached shuttle payload (ASP) carriers, to make this additional space available to researchers at a relatively modest cost. Other carrier systems for ASP's are operated by other NASA centers. A major feature of the ASP carriers is their ease of use in the world of the Space Shuttle. ASP carriers attempt to minimized the payload interaction with Space Transportation System (STS) operations whenever possible. Where this is not possible, the STS services used are not extensive. As a result, the interfaces between the carriers and the STS are simplified. With this near autonomy, the requirements for supporting documentation are considerably lessened and payload costs correspondingly reduced. The ASP carrier systems and their capabilities are discussed in detail. The range of available capabilities assures that an experimenter can select the simplest, most cost-effective carrier that is compatible with his or her experimental objectives. Examples of payloads which use ASP basic hardware in nonstandard ways are also described.

  13. Phase space optics: an engineering tool for illumination design

    NASA Astrophysics Data System (ADS)

    Herkommer, Alois M.; Rausch, Denise

    2012-06-01

    For imaging design aberration theory provides solid ground for the layout and development of optical systems. Together with general design rules it will guide the optical engineer towards a valid starting point for his system. Illumination design is quite different: Often first system layouts are based on experience, rather than on a systematic approach. In addition radiometric nomenclature and definitions can be quite confusing, due to the variety of radiant performance definitions. Also at a later stage in the design, the performance evaluation usually requires extensive statistical raytracing, in order to confirm the specified energetic quantities. In general it would therefore be helpful for illumination designers, especially beginners, to have an engineering tool, which allows a fast, systematic and illustrative access to illumination design problems. We show that phase space methods can provide such a tool and moreover allow a consistent approach to radiometry. Simple illustrative methods can be used to layout and understand even complex illumination components like integrator rods and optical arrays.

  14. Secure Payload Access to the International Space Station

    NASA Technical Reports Server (NTRS)

    Pitts, R. Lee; Reid, Chris

    2002-01-01

    The ISS finally reached an operational state and exists for local and remote users. Onboard payload systems are managed by the Huntsville Operations Support Center (HOSC). Users access HOSC systems by internet protocols in support of daily operations, preflight simulation, and test. In support of this diverse user community, a modem security architecture has been implemented. The architecture has evolved over time from an isolated but open system to a system which supports local and remote access to the ISS over broad geographic regions. This has been accomplished through the use of an evolved security strategy, PKI, and custom design. Through this paper, descriptions of the migration process and the lessons learned are presented. This will include product decision criteria, rationale, and the use of commodity products in the end architecture. This paper will also stress the need for interoperability of various products and the effects of seemingly insignificant details.

  15. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  16. Analyzing green/open space accessibility by using GIS: case study of northern Cyprus cities

    NASA Astrophysics Data System (ADS)

    Kara, Can; Akçit, Nuhcan

    2015-06-01

    It is well known that green spaces are vital for increasing the quality of life within the urban environment. World Health Organization states that it should be 9 square meters per person at least. European Environment Agency defines that 5000 square meters of green space should be accessible within 300 meters distance from households. Green structure in Northern Cyprus is not sufficient and effective in this manner. In Northern Cyprus, they have neglected the urban planning process and they have started to lose significance and importance. The present work analyzes the accessibility of green spaces in Northern Cyprus cities. Kioneli, Famagusta, Kyrenia and the northern part of Nicosia are analyzed in this manner. To do that, green space structure is analyzed by using digital data. Additionally, accessibility of the green space is measured by using 300-meter buffers for each city. Euclidean distance is used from each building and accessibility maps are generated. Kyrenia and Famagusta have shortage in green space per capita. The amount of green space in these cities is less than 4 square meters. The factors affecting the accessibility and utilization of public spaces are discussed to present better solutions to urban planning.

  17. Phase I Space Station power system development

    SciTech Connect

    Price, R.O.

    1988-10-01

    The development of the electric power system (EPS) for the Space Station is discussed. The EPS requirements related to station size, operational lifetime, operational autonomy, and technology evolution are considered. It is suggested that environmental control and life support will require 55 kWe of power. The possible use of solar photovoltaic, solar thermal dynamic, or a hybrid combination of the two are examined.

  18. Transformational Technologies to Expedite Space Access and Development

    SciTech Connect

    Rather, John D. G.

    2010-01-28

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  19. Transformational Technologies to Expedite Space Access and Development

    NASA Astrophysics Data System (ADS)

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  20. Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition.

    PubMed

    Mauguière, Frédéric A L; Collins, Peter; Kramer, Zeb C; Carpenter, Barry K; Ezra, Gregory S; Farantos, Stavros C; Wiggins, Stephen

    2015-10-15

    We re-examine the prototypical roaming reaction--hydrogen atom roaming in formaldehyde decomposition--from a phase space perspective. Specifically, we address the question "why do trajectories roam, rather than dissociate through the radical channel?" We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well. PMID:26499774

  1. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life. PMID:22149914

  2. Update on NASA Space Shuttle Earth Observations Photography on the laser videodisc for rapid image access

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    1994-01-01

    There have been many significant improvements in the public access to the Space Shuttle Earth Observations Photography Database. New information is provided for the user community on the recently released videodisc of this database. Topics covered included the following: earlier attempts; our first laser videodisc in 1992; the new laser videodisc in 1994; and electronic database access.

  3. [Analysis on accessibility of urban park green space: the case study of Shenyang Tiexi District].

    PubMed

    Lu, Ning; Li, Jun-Ying; Yan, Hong-Wei; Shi, Tuo; Li, Ying

    2014-10-01

    The accessibility of urban park green space is an important indicator to reflect how much the natural service supplied by parks could be enjoyed by citizens conveniently and fairly. This paper took Shenyang Tiexi District as an example to evaluate the accessibility of urban park green space based on QuickBird imagery and GIS software, with four modes of transportation, walking, non-motor vehicle, motor vehicle and public transport being considered. The research compared and analyzed the distribution of the accessible area and the accessible people of park green space. The result demonstrated that park green space in Shenyang Tiexi District was not enough and the distribution was not even. To be precise, the accessibility in southwest part and central part was relatively good, that in marginal sites was worse, and that in east part and north part was the worst. Furthermore, the accessibility based on different modes of transportation varied a lot. The accessibility of motor vehicle was the best, followed by non-motor vehicle and public transport, and walking was the worst. Most of the regions could be reached within 30 minutes by walking, 15 minutes by non-motor vehicle and public transport, and 10 minutes by motor vehicle. This paper had a realistic significance in terms of further, systematic research on the green space spatial pattern optimization. PMID:25796905

  4. Evaluation Method for Accessibility to Hollow Space of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Yudasaka, Masako; Miyawaki, Jin; Iijima, Sumio

    2004-03-01

    For application of single-wall carbon nanotubes (SWNTs) and nanohorns (SWNHs) to material-storage media, holes are opened usually by oxidation through which materials enter inside the hollow space of tubes. The holes are known to pass only molecules with diameters smaller than those of the holes, thus molecular-size selective storage of gases inside tubes becomes possible [1]. To enhance utilities of inner hollow space of carbon nanoutbes, controlled opening of holes is important. It is especially so for SWNHs, because holes with various diameters are potentially available due to the various types of defects on the tube walls. We studied the methods of hole-opening for SWNHs, and, at the same time, developed simple methods for evaluating the sizes of holes and the volumes of inner hollow-spaces. [1] Murata et al. J. Phys.Chem.

  5. Wigner function and Schroedinger equation in phase-space representation

    SciTech Connect

    Chruscinski, Dariusz; Mlodawski, Krzysztof

    2005-05-15

    We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation.

  6. Kac Moody theories for colored phase space (quantum Hall) droplets

    NASA Astrophysics Data System (ADS)

    Polychronakos, Alexios P.

    2005-04-01

    We derive the canonical structure and Hamiltonian for arbitrary deformations of a higher-dimensional (quantum Hall) droplet of fermions with spin or color on a general phase space manifold. Gauge fields are introduced via a Kaluza-Klein construction on the phase space. The emerging theory is a nonlinear higher-dimensional generalization of the gauged Kac-Moody algebra. To leading order in ℏ this reproduces the edge state chiral Wess-Zumino-Witten action of the droplets.

  7. Group theoretical construction of planar noncommutative phase spaces

    SciTech Connect

    Ngendakumana, Ancille Todjihoundé, Leonard; Nzotungicimpaye, Joachim

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  8. Tracing, Analyzing and Visualizing Dark Matter in Phase Space

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Abel, Tom; Kaehler, Ralf

    2015-01-01

    In a Universe dominated by cold dark matter, structure forms from foldings of a three-dimensional sheet permeating six-dimensional phase space. The dynamics of the sheet is governed by gravity alone, and it never tears or intersects itself in phase space. In position space, these foldings lead to the formation of pancakes, filaments and finally dark matter halos: the cosmic web. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space-structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured three dimensional mesh, moving in six dimensional phase-space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, local velocity dispersion and detect caustics. We also discuss how information about the sheet can be used to create highly accurate volume visualizations and devise new simulation codes to evolve cold collisionless fluids under self-gravity.

  9. Phase space variations of near equatorially mirroring ring current ions

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1981-01-01

    Observations of near equatorially mirroring ring current ions before and after a magnetic storm are presented in the form of phase space densities with respect to the first adiabatic invariant. Particle densities were obtained from the medium energy particles instrument covering the energy range 24-2081 keV on ISEE 1 at L values between 3 and 8 earth radii and ratios of the magnetic field at the satellite position to the magnetic field at the magnetic equator less than 1.2. Analysis of the phase space densities through the magnetosphere reveals a well-defined high magnetic moment peak in the prestorm near-equatorial ring current ion phase space density distribution, with the magnetic storm resulting from an enhancement of phase space densities at magnetic moment values below the peak and phase space densities remaining constant above the peak. Results are found to be in good agreement with those obtained by Explorer 45 six years previously, indicating that the observed phase space density variations are characteristic of energetic ion behavior during magnetic storms.

  10. Symmetry of quantum phase space in a degenerate Hamiltonian system

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Demikhovskii, V. Ya.; Kamenev, D. I.

    2000-09-01

    The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2μ (where μ is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior.

  11. The diffusion of stars through phase space

    NASA Technical Reports Server (NTRS)

    Binney, James; Lacey, Cedric

    1988-01-01

    An orbit-averaged Fokker-Planck equation has been derived to study the secular evolution of stellar systems with regular orbits and the heating of stellar disks. It is shown that a population of stars with an initially Maxwellian peculiar-velocity distribution will remain Maxwellian as it diffuses through orbit space only if: (1) a second-order diffusion tensor is proportional to epicycle energy; and (2) the population's velocity dispersion grows as the square root of time. Scattering by ephemeral spiral waves is able to account for the observed kinematics of the solar neighborhood only if the waves have wavelengths in excess of 9 kpc and constantly drifting pattern speeds.

  12. The New Millennium Program architecture and access to space

    NASA Technical Reports Server (NTRS)

    Herrell, Linda M.

    2005-01-01

    This paper identifies the trade space but focuses on two alternate approaches: using less-expensive spacecraft and partnering with other missions. Less-expensive spacecraft can provide a platform for flying NMP subsystem technologies, and partnering with other missions can be a cost-effective approach for NMP system-level technology validations.

  13. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Kibbey, Timothy P.; Cobb, C. Brent; Harris, Lawanna L.

    2014-01-01

    A launch vehicle at the scale and price point which allows developers to take reasonable risks with high payoff propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial technology "valley of death" that lies between demonstration in laboratory and flight environments. NASA's NanoLaunch effort will provide the framework to mature both earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low earth orbit for cubesat class payloads.

  14. Space power demonstrator engine, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.

  15. SLAC All Access: Fermi Gamma-ray Space Telescope

    ScienceCinema

    Romani, Roger

    2014-06-24

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  16. SLAC All Access: Fermi Gamma-ray Space Telescope

    SciTech Connect

    Romani, Roger

    2013-05-31

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  17. Concept for Multiple-Access Free-Space Laser Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A design concept for a proposed airborne or spaceborne free-space optical-communication terminal provides for simultaneous reception of signals from multiple other opticalcommunication terminals aboard aircraft or spacecraft that carry scientific instruments and fly at lower altitudes. The concept reflects the need for rapid acquisition and tracking of the signals coming from the lower-altitude terminals as they move across the field of view.

  18. Space transfer concepts and analyses for exploration missions, phase 3

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

  19. Orbiter processing facility: Access platforms Kennedy Space Center, Florida, from challenge to achievement

    NASA Technical Reports Server (NTRS)

    Haratunian, M.

    1985-01-01

    A system of access platforms and equipment within the space shuttle orbiter processing facility at Kennedy Space Center is described. The design challenges of the platforms, including clearance envelopes, load criteria, and movement, are discussed. Various applications of moveable platforms are considered.

  20. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zou, W.; Chen, T.; Kim, L.; Khan, A.; Haffty, B.; Yue, N. J.

    2014-01-01

    A common approach to implementing the Monte Carlo method for the calculation of brachytherapy radiation dose deposition is to use a phase space file containing information on particles emitted from a brachytherapy source. However, the loading of the phase space file during the dose calculation consumes a large amount of computer random access memory, imposing a higher requirement for computer hardware. In this study, we propose a method to parameterize the information (e.g., particle location, direction and energy) stored in the phase space file by using several probability distributions. This method was implemented for dose calculations of a commercial Ir-192 high dose rate source. Dose calculation accuracy of the parameterized source was compared to the results observed using the full phase space file in a simple water phantom and in a clinical breast cancer case. The results showed the parameterized source at a size of 200 kB was as accurate as the phase space file represented source of 1.1 GB. By using the parameterized source representation, a compact Monte Carlo job can be designed, which allows an easy setup for parallel computing in brachytherapy planning.

  1. Community Coordinated Modeling Center (CCMC): Providing Access to Space Weather Models and Research Support Tools

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Bakshi, S. S.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Mendoza, A. M.; Mullinix, R.; Patel, K. D.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.

    2011-12-01

    The Community Coordinated Modeling Center at NASA, Goddard Space flight Center, provides access to state-of-the-art space weather models to the research community. The majority of the models residing at the CCMC are comprehensive computationally intensive physics-based models. The CCMC also provides free services and tools to assist the research community in analyzing the results from the space weather model simulations. We present an overview of the available tools and services at the CCMC: the Runs-On-Request system, the online visualization, the Kameleon access and interpolation library and the Metrics Challenge tools suite.

  2. Phase-Space Detection of Cyber Events

    SciTech Connect

    Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J; Hively, Lee M

    2015-01-01

    Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The data analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.

  3. Quantum de Finetti theorem in phase-space representation

    SciTech Connect

    Leverrier, Anthony; Cerf, Nicolas J.

    2009-07-15

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form {sigma}{sup xn}. Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states)

  4. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    NASA Technical Reports Server (NTRS)

    Bonometti, J. A.; Dankanich, J. W.; Frame, K. L.

    2005-01-01

    The primary obstacle to any space-based mission is, and has always been, the cost of access to space. Even with impressive efforts toward reusability, no system has come close to lowering the cost a significant amount. It is postulated here, that architectural innovation is necessary to make reusability feasible, not incremental subsystem changes. This paper shows two architectural approaches of reusability that merit further study investments. Both #inherently# have performance increases and cost advantages to make affordable access to space a near term reality. A rocket launched from a subsonic aircraft (specifically the Crossbow methodology) and a momentum exchange tether, reboosted by electrodynamics, offer possibilities of substantial reductions in the total transportation architecture mass - making access-to-space cost-effective. They also offer intangible benefits that reduce risk or offer large growth potential. The cost analysis indicates that approximately a 50% savings is obtained using today#s aerospace materials and practices.

  5. Space Vision: Making Astronomy Accessible to Visually Impaired Students

    NASA Astrophysics Data System (ADS)

    Ries, J. G.; Baguio, M. R.; Jurgens, T. D.; Pruett, K. M.

    2004-05-01

    Astronomy, with good reason, is thought of as a visual science. Spectacular images of deep space objects or other worlds of our solar system inspire public interest in Astronomy. People encounter news about the universe during their daily life. Developing concepts about celestial objects presents an extra challenge of abstraction for people with visual impairments. The Texas Space Grant Consortium with educators at the Texas School for the Blind and Visually Impaired have developed a 2 day workshop to be held in April 2004 to help students with visual impairments understand these concepts. Hands-on activities and experiments will emphasize non-visual senses. For example, students will learn about: - Constellations as historical ways of finding one's way across the sky. - The size and structure of the Solar System by building a scale model on a running track. They will also: - Plan a planetary exploration mission. - Explore wave phenomenon using heat and sound waves. In preparation for the workshop we worked with teens involved in the countywide 4-H Teens Leading with Character (TLC) program to create the tactile materials necessary for the activities. The teens attended solar system education training so they would have the skills necessary to make the tactile displays to be used during the workshop. The results and evaluation of the workshop will be presented at the meeting. Touch the Universe: A NASA Braille Book of Astronomy inspired this workshop, and it is supported by HST Grant HST-ED-90255.01-A.

  6. SINP space physics data storage and access system

    NASA Astrophysics Data System (ADS)

    Barinova, Vera; Kalegaev, Vladimir; Parunakian, David

    In this paper we present the system for automated data retrieval and processing developed in the the Skobeltsyn Institute of Nuclear Physics. Telemetry data files containing scientific information (e.g. charged particle fluxes) are auto-matically parsed and stored in our Oracle database immediately upon arrival. Parsed telemetry files, metadata, instrument technical information and orbital parameters are also stored. Most of the data can be accessed via our public FTP server. Users can preview the data available for time intervals and channels of interest using the web interface provided. The preview plot building software has also been developed in-house. This system has been successfully used in 2009 with the following spacecraft and instru-ments: Electron-M-Pesca at Coronas-Photon (Electrons 200KeV -4 MeV+; Protons : 4 MeV -80MeV+ ;α : 5 -24 MeV/nucleon; CNO : 6 -15MeV/nucleon), DUFIK at Tatiana-2 (electrons, infrared 600nm ¡ ¡ 700nm and ultraviolet 300nm ¡ ¡ 400nm), MSGI and SKL at Meteor-M (10 spectral channels: 0,5-12,5 µm ). The data collections are available at http://smdc.sinp.msu.ru for visual preview and download.

  7. Accessibility

    MedlinePlus

    ... www.nlm.nih.gov/medlineplus/accessibility.html MedlinePlus Accessibility To use the sharing features on this page, ... Subscribe to RSS Follow us Disclaimers Copyright Privacy Accessibility Quality Guidelines Viewers & Players MedlinePlus Connect for EHRs ...

  8. Considerations on private human access to space from an institutional point of view

    NASA Astrophysics Data System (ADS)

    Hufenbach, Bernhard

    2013-12-01

    Private human access to space as discussed in this article addresses two market segments: suborbital flight and crew flights to Low Earth Orbit. The role of entrepreneurs, the technical complexity, the customers, the market conditions as well as the time to market in these two segments differ significantly. Space agencies take currently a very different approach towards private human access to space in both segments. Analysing the outcome of broader inter-agency deliberations on the future of human spaceflight and exploration, performed e.g. in the framework of the International Space Exploration Coordination Group, enables to derive some common general views on this topic. Various documents developed by inter-agency working groups recognise the general strategic importance for enabling private human access to space for ensuring a sustainable future of human spaceflight, although the specific definition of private human access and approaches vary. ESA has performed some reflections on this subject throughout the last 5 years. While it gained through these reflections a good understanding on the opportunities and implications resulting from the development of capabilities and markets for Private Human Access, limited concrete activities have been initiated in relation to this topic as of today.

  9. Mapping the conformational space accessible to catechol-O-methyltransferase.

    PubMed

    Ehler, Andreas; Benz, Jörg; Schlatter, Daniel; Rudolph, Markus G

    2014-08-01

    Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors. PMID:25084335

  10. Man-made space debris - Does it restrict free access to space

    NASA Technical Reports Server (NTRS)

    Wolfe, M.; Chobotov, V.; Kessler, D.; Reynolds, R.

    1981-01-01

    Consideration is given to the hazards posed by existing and future man-made space debris to spacecraft operations. The components of the hazard are identified as those fragments resulting from spacecraft explosions and spent stages which can be tracked, those fragments which are too small to be tracked at their present distances, and future debris, which, if present trends in spacecraft design and operation continue, may lead to an unacceptably high probability of collision with operational spacecraft within a decade. It is argued that a coordinated effort must be undertaken by all space users to evaluate means of space debris control in order to allow for the future unrestricted use of near-earth space. A plan for immediate action to forestall the space debris problem by activities in the areas of education, debris monitoring and collection technology, space vehicle design, space operational procedures and practices and space policies and treaties is proposed.

  11. Multivariable Hermite polynomials and phase-space dynamics

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.

    1994-01-01

    The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.

  12. Phase-space approach to continuous variable quantum teleportation

    SciTech Connect

    Ban, Masashi

    2004-05-01

    The phase-space method is applied for considering continuous variable quantum teleportation. It is found that the continuous variable quantum teleportation transforms the s-parametrized phase-space function of an input state into the (s+{delta})-parametrized phase-space function, where the parameter {delta} is determined by the shared quantum entanglement. It is shown from this result that the Wigner function of the teleported state is always non-negative for F{sub c}{<=}2/3 and the Glauber-Sudarshan P function non-negative for F{sub c}{<=}1/2, where F{sub c} is the fidelity of the coherent-state teleportation. Furthermore the fidelity between input and output states is calculated when Gaussian states are teleported.

  13. The space of access to primary mental health care: a qualitative case study.

    PubMed

    Kovandžić, Marija; Funnell, Emma; Hammond, Jonathan; Ahmed, Abdi; Edwards, Suzanne; Clarke, Pam; Hibbert, Derek; Bristow, Katie; Dowrick, Christopher

    2012-05-01

    Guided by theoretical perspectives of relational social science, this paper draws on reanalyses of multiple qualitative datasets related to a multi-ethnic, economically disadvantaged area in Liverpool, UK, with the aim to advance general understanding of access to primary mental health care while using local Somali minority as an instrumental focus. The findings generate a novel concept: the space of access. The shape and dynamics of the space of access are determined by at least four fields of tensions: understandings of area and community; cognitive mapping of mental well-being, illness and care; positioning of primary care services; and dynamics of resources beyond the 'medical zone' of care. The conclusions indicate a need for de-centring and re-connecting the role of medical professionals within primary care which itself needs to be transformed by endorsement of multiple avenues of access to diverse support and intrepid communication among all involved actors. PMID:22386985

  14. Access to space weather model data provided by the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; MacNeice, P. J.; Maddox, M.; Rastaetter, L.; Taktakishvili, A.

    2009-12-01

    The Community Coordinated Modeling Center (CCMC), located at NASA Goddard Space Flight Center, provides access to state-of-the-art space weather models to the research community. The majority of the models residing at the CCMC are comprehensive, computationally intensive physics-based models. The CCMC provides access to output of performed model runs through a searchable and sortable online database and offers services and tools to assist the research community in analyzing results from space weather model simulations. Virtual Observatories can provide access to model output for corresponding events using the CCMC run database and interface. CCMC is planning to expand its database of run information to improve the service to users as well as its connection with VOs.

  15. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  16. κ-Deformed Phase Space, Hopf Algebroid and Twisting

    NASA Astrophysics Data System (ADS)

    Jurić; , Tajron; Kovačević, Domagoj; Meljanac, Stjepan

    2014-11-01

    Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details.

  17. MUB Entanglement Patterns by Transformations in Phase Space

    NASA Astrophysics Data System (ADS)

    Lawrence, Jay

    2011-03-01

    All possible MUB entanglement patterns for systems of N prime-state particles are obtained from standard ones by unitary transformations in the Hilbert space, thus preserving the relationships between the generalized Pauli operators, the phase point operators, and the MUB projectors. The transformations are described geometrically in discrete phase space. Illustrative examples show the invariance of the total entanglement content and the connection of entanglement with Galois fields. Different field representations for the same dimension may produce inequivalent MUB sets. This work provides alternative constructions and generalizes previous work on qubit systems [1,2].

  18. The solidification of monotectic alloys - Microstructures and phase spacings

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Hellawell, A.; Lograsso, T. A.

    1984-01-01

    The microstructures of directionally grown monotectic alloys in metallic and organic systems fall into two categories those which can form aligned fibrous composite structures with even phase spacings and fiber sections, and those in which the phase distribution is coarser and less regular. This division appears to relate to the form of the phase diagram and has been rationalized by Cahn (1977, 1979) in terms of the relative surface energies between solid and two liquids to give steady state or nonsteady state profiles. The transition in growth behavior occurs when the ratio of the monotectic temperature to that of the upper consolute temperature is approximately 0.9. Differences in phase spacings between a range of monotectic and eutectic systems are discussed in terms of the expected growth interface shapes and the factors which will influence them.

  19. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  20. Phase-change Random Access Memory: A Scalable Technology

    SciTech Connect

    Raoux, S.; Burr, G; Breitwisch, M; Rettner, C; Chen, Y; Shelby, R; Salinga, M; Krebs, D; Chen, S; Lung, H

    2008-01-01

    Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm x 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.

  1. Phase-field study of spacing evolution during transient growth

    NASA Astrophysics Data System (ADS)

    Gurevich, Sebastian; Amoorezaei, Morteza; Provatas, Nikolas

    2010-11-01

    The primary spacing of a dendritic array grown under transient growth conditions displays a distribution of wavelengths. The average primary spacing is shown, both experimentally and numerically, to evolve between characteristic incubation periods during which the distribution of wavelengths remains essentially stable. Our primary spacing results display a gradual transition period from one spacing range to another, consistent with the fact that the abrupt doubling of spacing predicted by Warren and Langer for an idealized periodic array affects different wavelengths of the distribution at different times. This transition is shown to depend on the rate of change in growth speed using phase-field simulations of directional solidification where the pulling speed is ramped at different rates. In particular, for high rates of change of the pulling speed we observe temporary marginally stable array configurations separated by relatively short lived transitions, while for lower rates of change of the pulling speed the distinction between incubation and transition periods disappears.

  2. Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model

    NASA Astrophysics Data System (ADS)

    Rashid, Harun A.; Hirst, Anthony C.

    2016-02-01

    The mechanisms of coupled model bias in seasonal ENSO phase locking are investigated using versions 1.0 and 1.3 of the CSIRO-BOM ACCESS coupled model (hereafter, ACCESS1.0 and ACCESS1.3, respectively). The two ACCESS coupled models are mostly similar in construction except for some differences, the most notable of which are in the cloud and land surface schemes used in the models. ACCESS1.0 simulates a realistic seasonal phase locking, with the ENSO variability peaking in December as in observations. On the other hand, the simulated ENSO variability in ACCESS1.3 peaks in March, a bias shown to be shared by many other CMIP5 models. To explore the mechanisms of this model bias, we contrast the atmosphere-ocean feedbacks associated with ENSO in both ACCESS model simulations and also compare the key feedbacks with those in other CMIP5 models. We find evidence that the ENSO phase locking bias in ACCESS1.3 is primarily caused by incorrect simulations of the shortwave feedback and the thermocline feedback in this model. The bias in the shortwave feedback is brought about by unrealistic SST-cloud interactions leading to a positive cloud feedback bias that is largest around March, in contrast to the strongest negative cloud feedback found in ACCESS1.0 simulations and observations at that time. The positive cloud feedback bias in ACCESS1.3 is the result of a dominant role played by the low-level clouds in its modeled SST-cloud interactions in the tropical eastern Pacific. Two factors appear to contribute to the dominance of low-level clouds in ACCESS1.3: the occurrence of a stronger mean descending motion bias and, to a lesser extent, a larger mean SST cold bias during March-April in ACCESS1.3 than in ACCESS1.0. A similar association is found between the positive cloud feedback bias and the biases in spring-time mean descending motion and SST for a group of CMIP5 models that show a seasonal phase locking bias similar to ACCESS1.3. Significant differences are also found

  3. Naval Space Surveillance Center uses of time, frequency, and phase

    NASA Technical Reports Server (NTRS)

    Hayden, Carroll C.; Knowles, Stephen H.

    1992-01-01

    The Naval Space Surveillance Center (NAVSPASUR) is an operational naval command that has the mission of determining the location of all manmade objects in space and transmitting information on objects of interest to the fleet. NAVSPASUR operates a 217 MHz radar fence that has 9 transmitting and receiving stations deployed in a line across southern Continental United States (CONUS). This surveillance fence provides unalerted detection of satellites overflying CONUS. NAVSPASUR also maintains a space catalog of all orbiting space objects. NAVSPASUR plays an important role as operational alternate to the primary national Space Surveillance Center (SSC) and Space Defence Operations Center (SPADOC). In executing these responsibilities, NAVSPASUR needs precise and/or standardized time and frequency in a number of applications. These include maintenance of the radar fence references to specification, and coordination with other commands and agencies for data receipt and dissemination. Precise time and frequency must be maintained within each site to enable proper operation of the interferometry phasing technique used. Precise time-of-day clocking must exist between sites for proper intersite coordination. Phase may be considered a derivative of time and frequency. Its control within each transmitter or receiver site is of great importance to NAVSPASUR because of the operation of the sensor as an interferometer system, with source direction angles as the primary observable. Determination of the angular position of a satellite is directly dependent on the accuracy with which the differential phase between spaced subarrays can be measured at each receiver site. Various aspects of the NAVSPASUR are discussed with respect to time, frequency, and phase.

  4. Free-space optical mesh-connected bus networks using wavelength-division multiple access.

    PubMed

    Li, Y; Lohmann, A W; Rao, S B

    1993-11-10

    A novel optical free-space mesh-connected bus interconnect network architecture is proposed. A mesh-connected bus [IEEE Trans. Comput. C-30, 264-273 (1981)] is known to have the capability of interconnecting, with a three-stage switching, N nodes with a power distribution loss proportional to √N and is therefore advantageous for networking a large number, say over 1000, of communicating ports. Based on conventional space-invariant optical components in a compact and efficient geometry, the proposed optical mesh-connected bus system concept can be used to build either free-space optical interconnect links for parallel processing applications or central switching systems for local or global lightwave communication networks. The proposed architecture lends itself to networking under both the wavelength-division multiple access and other multiple-access environments. In this paper, based on the wavelength-division multiple-access environment, various optical system implementation and performance issues are discused and parameters are analyzed. It was found that by use of a reasonably compact three-dimensional free-space volume, more than 100,000 dispersion-limited communication nodes at a uniform channel spacing of 0.75 nm can be linked with a moderate power distribution loss of 28 dB. Some preliminary optical wavelength-division multiple-access mesh-connected bus experiments based on a 27 × 27 panchromatic optical source array were performed to confirm the operational principle of the proposed concept. PMID:20856480

  5. Two Phase Flow and Space-Based Applications

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  6. A suite of methods for representing activity space in a healthcare accessibility study

    PubMed Central

    Sherman, Jill E; Spencer, John; Preisser, John S; Gesler, Wilbert M; Arcury, Thomas A

    2005-01-01

    Background "Activity space" has been used to examine how people's habitual movements interact with their environment, and can be used to examine accessibility to healthcare opportunities. Traditionally, the standard deviational ellipse (SDE), a Euclidean measure, has been used to represent activity space. We describe the construction and application of the SDE at one and two standard deviations, and three additional network-based measures of activity space using common tools in GIS: the road network buffer (RNB), the 30-minute standard travel time polygon (STT), and the relative travel time polygon (RTT). We compare the theoretical and methodological assumptions of each measure, and evaluate the measures by examining access to primary care services, using data from western North Carolina. Results Individual accessibility is defined as the availability of healthcare opportunities within that individual's activity space. Access is influenced by the shape and area of an individual's activity space, the spatial distribution of opportunities, and by the spatial structures that constrain and direct movement through space; the shape and area of the activity space is partly a product of how it is conceptualized and measured. Network-derived measures improve upon the SDE by incorporating the spatial structures (roads) that channel movement. The area of the STT is primarily influenced by the location of a respondent's residence within the road network hierarchy, with residents living near primary roads having the largest activity spaces. The RNB was most descriptive of actual opportunities and can be used to examine bypassing. The area of the RTT had the strongest correlation with a healthcare destination being located inside the activity space. Conclusion The availability of geospatial technologies and data create multiple options for representing and operationalizing the construct of activity space. Each approach has its strengths and limitations, and presents a different

  7. Quantum particles from coarse grained classical probabilities in phase space

    SciTech Connect

    Wetterich, C.

    2010-07-15

    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.

  8. Strong Field Double Ionization: The Phase Space Perspective

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2009-05-01

    We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the 'knee', a hallmark of the nonsequential process.

  9. Phase space flow of particles in squeezed states

    NASA Technical Reports Server (NTRS)

    Ceperley, Peter H.

    1994-01-01

    The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.

  10. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  11. Dimension of quantum phase space measured by photon correlations

    NASA Astrophysics Data System (ADS)

    Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.

    2015-06-01

    We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!

  12. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  13. Phase-locked injection laser arrays with variable stripe spacing

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E.; Butler, Jerome K.; Ettenberg, Michael

    1986-01-01

    A phase-locked injection laser array is described which utilizes variations in spacing of identical lasing elements to vary the coupling between them. A coupled-mode analysis indicates that excellent matching of fundamental array mode to a uniform gain distribution can be obtained. Observation of the array emission patterns confirms the results of the coupled-mode analysis.

  14. Twisted geometries: A geometric parametrization of SU(2) phase space

    SciTech Connect

    Freidel, Laurent; Speziale, Simone

    2010-10-15

    A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each face of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an Abelianization of the SU(2) connection. The results are relevant for the construction of coherent states and, as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.

  15. Painting the Phase Space Portrait of an Integrable Dynamical System

    NASA Astrophysics Data System (ADS)

    Coffey, Shannon; Deprit, Andre; Deprit, Etienne; Healy, Liam

    1990-02-01

    For an integrable dynamical system with one degree of freedom, "painting" the integral over the phase space proves to be very effective for uncovering the global flow down to minute details. Applied to the main problem in artificial satellite theory, for instance, the technique reveals an intricate configuration of equilibria and bifurcations when the polar component of the angular momentum approaches zero.

  16. Phase-space reconstruction of focused x-ray fields

    SciTech Connect

    Tran, Chanh Q.; Mancuso, Adrian P.; Dhal, Bipin B.; Nugent, Keith A.; Peele, Andrew G.; Cai, Zhonghou; Paterson, David

    2006-01-01

    The phase-space tomography is used to reconstruct x-ray beams focused using a compound refractive lens, showing that it is possible to decouple the effect of aberrations in the optical system from the field and therefore measure both them and the original field. The complex coherence function is recovered and found to be consistent with expectations.

  17. Vital phase of space science. [solar terrestrial interactions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1994-01-01

    Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.

  18. Phase-space exploration in nuclear giant resonance decay

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1995-02-13

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  19. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  20. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  1. Extended phase space description of human-controlled systems dynamics

    NASA Astrophysics Data System (ADS)

    Zgonnikov, Arkady; Lubashevsky, Ihor

    2014-03-01

    Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviates slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow such behavior to be modeled. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the motivated actions of the operator. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators' fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.

  2. 41 CFR 105-8.152 - Program accessibility: Assignment of space.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Program accessibility: Assignment of space. 105-8.152 Section 105-8.152 Public Contracts and Property Management Federal Property Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION 8-ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP...

  3. Nanotube structures, methods of making nanotube structures, and methods of accessing intracellular space

    DOEpatents

    VanDersarl, Jules J.; Xu, Alexander M.; Melosh, Nicholas A.; Tayebi, Noureddine

    2016-02-23

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.

  4. Spaces for Change: Gender and Technology Access in Collaborative Software Design.

    ERIC Educational Resources Information Center

    Ching, Cynthia Carter; Kafai, Yasmin B.; Marshall, Sue K.

    2000-01-01

    Examines a three-month software design activity in which mixed teams of girls and boys designed and implemented multimedia astronomy resources for younger students. Finds that the configuration of social, physical, and cognitive spaces in the project environment contributed to a positive change in girls' level of access. Discusses implications for…

  5. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Access to tanks and spaces in the cargo area. 154.340 Section 154.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Arrangements §...

  6. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Access to enclosed spaces and dedicated ballast tanks. 153.217 Section 153.217 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel...

  7. Phase-space Dynamics of Runaway Electrons In Tokamaks

    SciTech Connect

    Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch

    2010-08-31

    The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.

  8. High data rate modem simulation for the space station multiple-access communications system

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    1987-01-01

    The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.

  9. Making Astronomy and Space Science Accessible to the Blind and Visually Impaired

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, B.; Hoette, V.; Grice, N.

    2003-12-01

    One of the biggest obstacles blind and visually impaired people face in science is the ubiquity of important graphical information, which is generally not made available in alternate formats accessible to them. Funded by NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS), we have recently formed a team of scientists and educators from universities, the SOFIA NASA mission, a science museum, an observatory, and schools for the blind. Our goal is to develop and test Braille/tactile space science activities that actively engage students from elementary grades through introductory college-level in space science. We will discuss effective strategies and low-cost technologies that can be used to make graphical information accessible. We will also demonstrate examples, such a thermal expansion graphics created from telescope images of the Moon and other celestial objects, a tactile planisphere, three-dimensional models of near-Earth asteroids and tactile diagrams of their orbits, and an infrared detector activity.

  10. Kinetic solvers with adaptive mesh in phase space.

    PubMed

    Arslanbekov, Robert R; Kolobov, Vladimir I; Frolova, Anna A

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a "tree of trees" (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems. PMID:24483578

  11. Probabilistic Q-function distributions in fermionic phase-space

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, Laura E. C.; Drummond, P. D.

    2015-03-01

    We obtain a positive probability distribution or Q-function for an arbitrary fermionic many-body system. This is different to previous Q-function proposals, which were either restricted to a subspace of the overall Hilbert space, or used Grassmann methods that do not give probabilities. The fermionic Q-function obtained here is constructed using normally ordered Gaussian operators, which include both non-interacting thermal density matrices and BCS states. We prove that the Q-function exists for any density matrix, is real and positive, and has moments that correspond to Fermi operator moments. It is defined on a finite symmetric phase-space equivalent to the space of real, antisymmetric matrices. This has the natural SO(2M) symmetry expected for Majorana fermion operators. We show that there is a physical interpretation of the Q-function: it is the relative probability for observing a given Gaussian density matrix. The distribution has a uniform probability across the space at infinite temperature, while for pure states it has a maximum value on the phase-space boundary. The advantage of probabilistic representations is that they can be used for computational sampling without a sign problem.

  12. Kinetic solvers with adaptive mesh in phase space

    NASA Astrophysics Data System (ADS)

    Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.

  13. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  14. Asteroid orbital inversion using uniform phase-space sampling

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.

    2014-07-01

    We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in

  15. Phase 1 Space Fission Propulsion System Design Considerations

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.

  16. On the Landau system in noncommutative phase-space

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Saha, Anirban; Halder, Aslam

    2015-12-01

    We consider the Landau system in a canonically noncommutative phase-space. A set of generalized transformations containing scaling parameters is derived which maps the NC problem to an equivalent commutative problem. The energy spectrum admits NC corrections which are computed using the explicit NC variables as well as the commutative-equivalent variables. Their exact matching solidifies the evidence of the equivalence of the two approaches. We also obtain the magnetic length and level degeneracy, which admit NC corrections. We further study the Aharonov-Bohm effect where the phase-shift is found to alter due to noncommutativity and also depends on the scaling parameters.

  17. Nonclassicality phase-space functions: more insight with fewer detectors.

    PubMed

    Luis, Alfredo; Sperling, Jan; Vogel, Werner

    2015-03-13

    Systems of on-off detectors are well established for measuring radiation fields in the regime of small photon numbers. We propose to combine these detector systems with unbalanced homodyning with a weak local oscillator. This approach yields phase-space functions, which represent the click counterpart of the s parametrized quasiprobabilities of standard photoelectric detection theory. This introduced class of distributions can be directly sampled from the measured click-counting statistics. Therefore, our technique visualizes nonclassical effects without further data processing. Surprisingly, a small number of on-off diodes can yield more insight than perfect photon number resolution. Quantum signatures in the particle and wave domain of the quantized radiation field, as shown by photon number and squeezed states, respectively, will be uncovered in terms of negativities of the sampled phase-space functions. Application in the vast fields of quantum optics and quantum technology will benefit from our efficient nonclassicality characterization approach. PMID:25815932

  18. On a quantum algebraic approach to a generalized phase space

    NASA Astrophysics Data System (ADS)

    Bohm, D.; Hiley, B. J.

    1981-04-01

    We approach the relationship between classical and quantum theories in a new way, which allows both to be expressed in the same mathematical language, in terms of a matrix algebra in a phase space. This makes clear not only the similarities of the two theories, but also certain essential differences, and lays a foundation for understanding their relationship. We use the Wigner-Moyal transformation as a change of representation in phase space, and we avoid the problem of “negative probabilities” by regarding the solutions of our equations as constants of the motion, rather than as statistical weight factors. We show a close relationship of our work to that of Prigogine and his group. We bring in a new nonnegative probability function, and we propose extensions of the theory to cover thermodynamic processes involving entropy changes, as well as the usual reversible processes.

  19. Large space telescope, phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.

  20. Order parameter aided phase space exploration under extreme conditions

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Hamel, Sebastian; Schwegler, Eric

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational as well as algorithmic perspectives. In this talk I will illustrate how we can extend the recently proposed order-parameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. I will illustrate how this sampling scheme can be used to explore the relevant parts of configuration space in prototypical materials, like SiO2 and identify the different metastable structures, transition pathways and phase boundaries. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Communication: Phase space wavelets for solving Coulomb problems.

    PubMed

    Shimshovitz, Asaf; Tannor, David J

    2012-09-14

    Recently we introduced a phase space approach for solving the time-independent Schrödinger equation using a periodic von Neumann basis with bi-orthogonal exchange (pvb) [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. Here we extend the approach to allow a wavelet scaling of the phase space Gaussians. The new basis set, which we call the wavelet pvb basis, is simple to implement and provides an appealing alternative to other wavelet approaches. For the 1D Coulomb problems tested in this paper, the method reduces the size of the basis relative to the Fourier grid method by a factor of 13-60. The savings in basis set size is predicted to grow steeply as the dimensionality increases. PMID:22979843

  2. Space shuttle phase B wind tunnel test database

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data were acquired by competing contractors and NASA centers for an extensive variety of configurations with an array of wing and body planforms. This wind tunnel test data has been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings.

  3. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  4. Visualizing the quantum interaction picture in phase space

    NASA Astrophysics Data System (ADS)

    Mehmani, Bahar; Aiello, Andrea

    2012-09-01

    We present a graphical example of the interaction picture-time evolution. Our aim is to help students understand in a didactic manner the simplicity that this picture provides. Visualizing the interaction picture unveils its advantages, which are hidden behind the involved mathematics. Specifically, we show that the time evolution of a driven harmonic oscillator in the interaction picture corresponds to a local transformation of a phase space-reference frame into the one that is co-rotating with the Wigner function.

  5. Phase space representation of spatially partially coherent imaging.

    PubMed

    Castaneda, Roman

    2008-08-01

    The phase space representation of imaging with optical fields in any state of spatial coherence is developed by using spatial coherence wavelets. It leads to new functions for describing the optical transfer and response of imaging systems when the field is represented by Wigner distribution functions. Specific imaging cases are analyzed in this context, and special attention is devoted to the imaging of two point sources. PMID:18670542

  6. The ESA Virtual Space Weather Modelling Centre - Phase 1

    NASA Astrophysics Data System (ADS)

    Poedts, Stefaan

    The ESA ITT project (AO/1-6738/11/NL/AT) to develop Phase 1 of a Virtual Space Weather Modelling Centre has the following objectives and scope: 1. The construction of a long term (~10 yrs) plan for the future development of a European virtual space weather modelling centre consisting of a new ‘open’ and distributed framework for the coupling of physics based models for space weather phenomena; 2. The assessment of model capabilities and the amount of work required to make them operational by integrating them in this framework and the identification of computing and networking requirements to do so. 3. The design of a system to enable models and other components to be installed locally or geographically distributed and the creation of a validation plan including a system of metrics for testing results. The consortium that took up this challenge involves: 1)the Katholieke Universiteit Leuven (Prime Contractor, coordinator: Prof. S. Poedts); 2) the Belgian Institute for Space Aeronomy (BIRA-IASB); 3) the Royal Observatory of Belgium (ROB); 4) the Von Karman Institute (VKI); 5) DH Consultancy (DHC); 6) Space Applications Services (SAS). The project started on May 14 2012, and will finish in May 2014. Thus, by the time of the meeting, both Phase 1A and Phase 1B (the development of the prototype) will be finished. The final report will be presented incl. the architecture decisions made, the framework, the current models integrated already as well as the model couplers installed. The prototype VSWMC will be demonstrated.

  7. Medical care capabilities for Space Station Freedom: A phase approach

    NASA Technical Reports Server (NTRS)

    Doarn, C. R.; Lloyd, C. W.

    1992-01-01

    As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.

  8. Relativistic algebraic spinors and quantum motions in phase space

    SciTech Connect

    Holland, P.R.

    1986-08-01

    Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C/sub 4/, a Jordan-Wigner algebra G/sub 4/, and Wigner transformations. To do this we solve the problem of the conditions under which elements in C/sub 4/ generate minimal ideals, and extend this to G/sub 4/. This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations.

  9. Calculation of a fluctuating entropic force by phase space sampling.

    PubMed

    Waters, James T; Kim, Harold D

    2015-07-01

    A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chains. Our work provides insights into the mechanistic origin of entropic forces, and an efficient computational tool for unbiased sampling of the phase space of a constrained system. PMID:26274308

  10. Quantum-mechanical cumulant expansions and their application to phase-space and to phase distributions

    NASA Astrophysics Data System (ADS)

    Wünsche, A.

    2015-06-01

    Starting from the characteristic function of an operator, we investigate cumulant expansions in quantum optics and apply them to two-dimensional distributions for the canonical variables of the phase space in the case of one degree of freedom (Wigner quasiprobability and its Fourier transform, uncertainty matrix) and to one-dimensional distributions (phase operator, time evolution operator to Hamiltonian). In the relations between cumulants and moments, we make emphasis on the central moments of an operator. It is shown that the determinant of the uncertainty matrix (modified uncertainty product) is invariant with respect to rotation and squeezing of the state in the phase space, whereas the uncertainty sum is only invariant with respect to rotations. We examine some problems for exponentials of the phase operator and show how mean values and variances are connected with the cumulants. The Hilbert-Schmidt distance of a state during time evolution to an initial state is discussed by cumulants.

  11. Deep Space Habitat Team: HEFT Phase 2 Effects

    NASA Technical Reports Server (NTRS)

    Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary

    2011-01-01

    HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.

  12. ESPAS, the near-Earth space data infrastructure for e-Science: design and development phase

    NASA Astrophysics Data System (ADS)

    Hapgood, M.; Belehaki, A.; Zolesi, B.

    2012-04-01

    Space physics models with good predictive capabilities may be used to forecast accurately the state of the near-Earth space environment and to enable end user communities to mitigate the effects of adverse space weather on humans and technological systems. The results obtained from model runs, and also the validation of their performance accuracy, depend to a large extent on the availability of data from as many as possible regions of the near-Earth geospace. Despite the abundance and variety of related observational data, their exploitation is still challenging as they come from different sensors, in different formats and time resolution, and are provided from various organizations worldwide with different distribution procedures and policies. The primary objective of ESPAS is to provide the e-Infrastructure necessary to support the access to observations, extending from the Earth's atmosphere up to the outer radiation belts, including ionosondes, incoherent scatter radars, magnetometers, GNSS receivers and a large number of space sensors and radars. The development of the ESPAS common interface will allow users to uniformly find, access, and use resources of near-Earth space environment observations from ground-based and space-borne instruments and data from distributed data repositories, based on semantically web services (www.espas-fp7.eu). The first phase that will lead to the release of a first prototype includes the design and development of the data model that will support location of all available data from ground based experiments and satellite missions, available at certain spatial coordinates and time interval. For the first release only the basic data sources will be registered (i.e. Cluster, IMAGE/RPI, DEMETER, DIAS, EISCAT ISRs and SWACI). In a second phase, when all databases and enhanced databases will be registered, the ESPAS infrastructure must be extensively tested through the application of several use cases, designed to serve the needs of the

  13. Random Access Frames (RAF): Alternative to Rack and Standoff for Deep Space Habitat Outfitting

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Polit-Casillas, Raul

    2014-01-01

    A modular Random Access Frame (RAF) system is proposed as an alternative to the International Standard Payload Rack (ISPR) for internal module layout and outfitting in a Deep Space Habitat (DSH). The ISPR approach was designed to allow for efficient interchangeability of payload and experiments for the International Space Station (ISS) when frequent resupply missions were available (particularly the now-retired Space Shuttle). Though the standard interface approach to the ISPR system allowed integration of subsystems and hardware from a variety of sources and manufacturers, the heavy rack and standoff approach may not be appropriate when resupply or swap-out capabilities are not available, such as on deep space, long-duration missions. The lightweight RAF concept can allow a more dense packing of stowage and equipment, and may be easily broken down for repurposing or reuse. Several example layouts and workstations are presented.

  14. Grassmann phase space methods for fermions. I. Mode theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2016-07-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic

  15. ACCESS (Assembly Concept for Construction of Erectable Space Structure) - A Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.

    1985-01-01

    ACCESS is a planned Shuttle flight experiment to assess the potential of an on-orbit construction concept designed for efficient manual assembly of a space truss. The experiment, which is scheduled for launch November 27, 1985, on the Space Transportation System (STS) flight 61-B, uses two astronauts secured in fixed foot restraints located in the Shuttle cargo bay to assemble a 45-foot long aluminum truss beam from 93 tubular struts and 33 nodal joints. Neutral buoyancy simulations of the flight experiment indicate the truss can be assembled in less than thirty minutes. Structural assembly, structural repair, flexible cable attachment and manual manipulation of the truss is also planned for the experiment using an astronaut secured in the Manipulator Foot Restraint attached to the Remote Manipulator System arm. Flight assembly data will be generated for correlation of the neutral buoyancy ground test data. This paper describes the ACCESS flight experiment and presents results of the neutral buoyancy development and training tests.

  16. Phase space analysis of bulk viscous matter dominated universe

    NASA Astrophysics Data System (ADS)

    Sasidharan, Athira; Mathew, Titus K.

    2016-06-01

    We consider a Friedmann model of the universe with bulk viscous matter and radiation as the cosmic components. We study the asymptotic properties in the equivalent phase space by considering the three cases for the bulk viscous coefficient as (i) ζ = ζ 0, a constant (ii) ζ ={ζ}_0+{ζ}_1overset{\\cdot /a}{a} , depending on velocity of the expansion of the universe and (iii) ζ ={ζ}_0+{ζ}_1overset{\\cdot /a}{a}+{ζ}_2overset{\\cdot \\cdot /a}{overset{\\cdot }{a}} , depending both on velocity and acceleration of the expansion of the universe. It is found that all the three cases predicts the late acceleration of the universe. However, a conventional realistic behaviour of the universe, i.e., a universe having an initial radiation dominated phase, followed by decelerated matter dominated phase and then finally evolving to accelerated epoch, is shown only when ζ = ζ 0, a constant. For the other two cases, it does not show either a prior conventional radiation dominated phase or a matter dominated phase of the universe.

  17. Linearization of the longitudinal phase space without higher harmonic field

    NASA Astrophysics Data System (ADS)

    Zeitler, Benno; Floettmann, Klaus; Grüner, Florian

    2015-12-01

    Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.

  18. Phase 1 Space Fission Propulsion Energy Source Design

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.

  19. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  20. Advanced cosmic-ray composition experiment for the space station (ACCESS)

    SciTech Connect

    Israel, Martin H.; Streitmatter, Robert E.; Swordy, Simon P.

    1999-01-22

    ACCESS is a large electronic cosmic-ray detector, designed for one of the zenith-pointing external attach points on the International Space Station. ACCESS addresses the fundamental astrophysical question: How do cosmic rays gain their enormous energies? It does this by combining two kinds of measurements. By determining the energy spectra of individual elements with atomic number (Z) in the interval 1{<=}Z{<=}28 up to an energy of 10{sup 15} eV, ACCESS will probe a region of the spectra where theories of supernova acceleration predict changes in the cosmic-ray element composition. By measuring individual element abundances at more moderate energies of every element in the entire periodic table, ACCESS will distinguish between competing theories of how the cosmic-ray nuclei are initially injected into the accelerator that gives them their high energies. ACCESS will identify the atomic number of incident cosmic-ray nuclei using silicon solid-state detectors Cherenkov detectors, and scintillators. It will measure the energy of heavy nuclei (Z{>=}4) with transition radiation detectors, and the energy of light nuclei (Z{<=}8) with an ionization calorimeter.

  1. Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program. Volume 4; Accessing Space

    NASA Technical Reports Server (NTRS)

    Logsdon, John M. (Editor); Williamson, Ray A. (Editor); Launius, Roger D. (Editor); Acker, Russell J. (Editor); Garber, Stephen J. (Editor); Friedman, Jonathan L. (Editor)

    1999-01-01

    The documents selected for inclusion in this volume are presented in four major chapters, each covering a particular aspect of access to space and the manner in which it has developed over time. These chapters focus on the evolution toward the giant Saturn V rocket, the development of the Space Shuttle, space transportation commercialization, and future space transportation possibilities. Each chapter in this volume is introduced by an overview essay, prepared by individuals who are particularly well qualified to write on the topic. In the main, these essays are intended to introduce and complement the documents in the chapter and to place them, for the most part, in a chronological and substantive context. Each essay contains references to the documents in the chapter it introduces, and many also contain references to documents in other chapters of the collection. These introductory essays are the responsibility of their individual authors, and the views and conclusions contained therein do not necessarily represent the opinions of either George Washington University or NASA.

  2. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-01

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  3. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect

    Not Available

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  4. Phase space analysis of multipactor saturation in rectangular waveguide

    NASA Astrophysics Data System (ADS)

    Lingwood, C. J.; Burt, G.; Dexter, A. C.; Smith, J. D. A.; Goudket, P.; Stoltz, P. H.

    2012-03-01

    In certain high power RF systems multipactor cannot be avoided for all operating points, but its existence places limits on performance, efficiency, lifetime, and reliability. As an example multipactor in the input couplers of superconducting RF cavities can be a major limitation to the maximum RF power. Several studies have concentrated on rectangular waveguide input couplers which are used in many light sources. Most of these studies neglect space charge assuming that the effect of space charge is simply to defocus the electron bunches. Modelling multipactor to saturation is of interest in determining the performance of waveguide under a range of conditions. Particle-in-cell modelling including space charge has been performed for 500 MHz half-height rectangular waveguide. Phase plots of electron trajectories can aid understanding the processes taking place in the multipactor. Results strongly suggest that the multipacting trajectories are strongly perturbed by space charge causing the electrons to transition from two-surface to single-surface trajectories as the multipactor approaches saturation.

  5. A gauge theory of gravity in curved phase-spaces

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2016-06-01

    After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann-Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the 8D cotangent bundle T∗M of spacetime is explicitly constructed and based on the gauge group SO(6, 2) ×sR8 which acts on the tangent space to the cotangent bundle T(x,p)T∗M at each point (x,p). Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.

  6. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    NASA Astrophysics Data System (ADS)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  7. Values of the phase space factors for double beta decay

    SciTech Connect

    Stoica, Sabin Mirea, Mihai

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  8. Testing gravity with the stacked phase space around galaxy clusters.

    PubMed

    Lam, Tsz Yan; Nishimichi, Takahiro; Schmidt, Fabian; Takada, Masahiro

    2012-08-01

    In general relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints on f(R) and Dvali-Gabadadze-Porrati model parameters by several orders of magnitude when applied to upcoming imaging and redshift surveys. PMID:23006162

  9. Space shuttle phase B. Volume 2: Technical summary, addendum A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted to analyze the characteristics and performance data for the booster vehicles to be used with the space shuttle operations. It was determined that the single pressure-fed booster offered the lowest program cost per flight of the pressure-fed booster arrangements studied. The fly back booster required the highest peak annual funding and highest program cost. It was recommended that the pressure-fed booster, series burn with liquid oxygen phase, be continued for further study. The flyback booster study was discontinued. Both solid and liquid propelled booster vehicles with 14 by 45 foot and 15 by 60 foot payload orbiters were considered.

  10. Advanced microelectronics research for space applications, phase 2

    NASA Technical Reports Server (NTRS)

    Gaertner, W. W.

    1971-01-01

    Negative-resistance circuits with possible space flight applications are discussed. The basic design approach is to use impedance rotation, i.e., the conversion from capacitance to negative resistance, and from resistance to inductance by the phase shift of the transistor current gain at high frequencies. The subjects discussed in detail are the following: hybrid fabrication of VHF and UHF negative-resistance stages with lumped passive elements; formulation of measurement techniques to characterize transistors and to extend the frequency of negative-resistance transistor amplifiers to higher microwave frequencies; and derivation of transistor characteristics required to increase the frequency range of negative-resistance transistor stages.

  11. Efficient computations of quantum canonical Gibbs state in phase space

    NASA Astrophysics Data System (ADS)

    Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.

    2016-06-01

    The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.

  12. The Simpsons program 6-D phase space tracking with acceleration

    NASA Astrophysics Data System (ADS)

    Machida, S.

    1993-12-01

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  13. Spatial coherence wavelets and phase-space representation of diffraction.

    PubMed

    Castañeda, Román; Carrasquilla, Juan

    2008-08-01

    The phase-space representation of the Fresnel-Fraunhofer diffraction of optical fields in any state of spatial coherence is based on the marginal power spectrum carried by the spatial coherence wavelets. Its structure is analyzed in terms of the classes of source pairs and the spot of the field, which is treated as the hologram of the map of classes. Negative values of the marginal power spectrum are interpreted as negative energies. The influence of the aperture edge on diffraction is stated in terms of the distortion of the supports of the complex degree of spatial coherence near it. Experimental results are presented. PMID:18670545

  14. Phase space view of quantum mechanical systems and Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2016-06-01

    Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini-Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  15. Phase-space rotations and orbital Stokes parameters.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2009-02-15

    We introduce the orbital Stokes parameters as a linear combination of a beam's second-order moments. Similar to the ones describing the field polarization and associated with beam energy and its spin angular momentum, the orbital Stokes parameters are related to the total beam width and its orbital angular momentum. We derive the transformation laws for these parameters during beam propagation through first-order optical systems associated with phase-space rotations. The values of the orbital Stokes parameters for Gaussian modes and arbitrary fields expressed as their linear superposition are obtained. PMID:19373324

  16. The Helmholtz Hierarchy: phase space statistics of cold dark matter

    SciTech Connect

    Tassev, Svetlin V.

    2011-10-01

    We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the ''Helmholtz Hierarchy'') of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories.

  17. Nonlinear bulk viscosity in FRW cosmology: a phase space analysis.

    NASA Astrophysics Data System (ADS)

    Acquaviva, G.; Beesham, A.

    2015-11-01

    We consider a Friedmann-Robertson-Walker spacetime filled with both viscous radiation and nonviscous dust. The former has a bulk viscosity that is proportional to an arbitrary power of the energy density, i.e. \\zeta \\propto {ρ }{{v}}ν , and viscous pressure satisfying a nonlinear evolution equation. The analysis is carried out in the context of dynamical systems and the properties of solutions corresponding to the fixed points are discussed. For some ranges of the relevant parameter ν we find that the trajectories in the phase space evolve from a FRW singularity towards an asymptotic de Sitter attractor, confirming and extending previous analysis in the literature.

  18. Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space

    NASA Astrophysics Data System (ADS)

    Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao

    2016-04-01

    The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.

  19. Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space

    NASA Astrophysics Data System (ADS)

    Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao

    2016-08-01

    The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.

  20. Solution of phase space diffusion equations using interacting trajectory ensembles

    NASA Astrophysics Data System (ADS)

    Donoso, Arnaldo; Martens, Craig C.

    2002-06-01

    In this paper, we present a new method for simulating the evolution of the phase space distribution function describing a system coupled to a Markovian thermal bath. The approach is based on the propagation of ensembles of trajectories. Instead of incorporating environmental perturbations as stochastic forces, however, the present method includes these effects by additional deterministic interactions between the ensemble members. The general formalism is developed and tested on model systems describing one-dimensional diffusion, relaxation of a coherently excited harmonic oscillator coupled to a thermal bath, and activated barrier crossing in a bistable potential. Excellent agreement with exact results or approximate theories is obtained in all cases. The method provides an entirely deterministic trajectory-based approach to the solution of condensed phase dynamics and chemical reactions.

  1. Accessing space: A catalogue of process, equipment and resources for commercial users

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This catalogue, produced by NASA's Office of Commercial Programs, provides a broad source of information for the commercial developer interested in the areas of microgravity research and remote sensing. Methods for accessing space for research are reviewed including the shuttle, expendable launch vehicles, suborbital sounding rockets, experimental aircraft, and drop towers and other ground-based facilities. Procedures for using these vehicles and facilities are described along with funding options to pay for their use. Experiment apparatus and carriers for microgravity research are also described. A separate directory of resources and services is also included which contains a listing of transportation products and services, a listing of businesses and industries which provide space-related services and products, and a listing of the NASA and CCDS (Center for the Commercial Development of Space) points of contact.

  2. The Ares I Crew Launch Vehicle: Human Space Access for the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle (Figure 1), the United States first new human-rated launch vehicle in over 25 years. Ares I will provide the core space launch capabilities the United States needs to continue providing crew and cargo access to the International Space Station (ISS), maintaining the U.S. pioneering tradition as a spacefaring nation, and enabling cooperative international ventures to the Moon and beyond. This paper will discuss programmatic, design, fabrication, and testing progress toward building this new launch vehicle.

  3. 41 CFR 102-79.65 - May Executive agencies outlease space on major public access levels, courtyards and rooftops of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May Executive agencies outlease space on major public access levels, courtyards and rooftops of public buildings? 102-79.65... Utilization of Space Outleasing § 102-79.65 May Executive agencies outlease space on major public...

  4. Phase space lattices and integrable nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Tracy, Eugene; Zobin, Nahum

    2003-10-01

    Nonlinear wave equations in fluids and plasmas that are integrable by Inverse Scattering Theory (IST), such as the Korteweg-deVries and nonlinear Schrodinger equations, are known to be infinite-dimensional Hamiltonian systems [1]. These are of interest physically because they predict new phenomena not present in linear wave theories, such as solitons and rogue waves. The IST method provides solutions of these equations in terms of a special class of functions called Riemann theta functions. The usual approach to the theory of theta functions tends to obscure the underlying phase space structure. A theory due to Mumford and Igusa [2], however shows that the theta functions arise naturally in the study of phase space lattices. We will describe this theory, as well as potential applications to nonlinear signal processing and the statistical theory of nonlinear waves. 1] , S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of solitons: the inverse scattering method (Consultants Bureau, New York, 1984). 2] D. Mumford, Tata lectures on theta, Vols. I-III (Birkhauser); J. Igusa, Theta functions (Springer-Verlag, New York, 1972).

  5. Fast-phase space computation of multiple arrivals

    PubMed Central

    Fomel, S.; Sethian, J. A.

    2002-01-01

    We present a fast, general computational technique for computing the phase-space solution of static Hamilton–Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive “Escape Equations” which are static, time-independent Eulerian PDEs. They represent all arrivals to the given boundary from all possible starting configurations. The solution is numerically constructed through a “one-pass” formulation, building on ideas from semi-Lagrangian methods, Dijkstra-like methods for the Eikonal equation, and Ordered Upwind Methods. To compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computational order O(N log N), where N is the total number of points in the computational phase-space domain; any particular set of boundary conditions then is extracted through rapid post-processing. Suggestions are made for speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to the Eikonal equation. PMID:12032282

  6. An Absolute Phase Space for the Physicality of Matter

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    2010-12-01

    We define an abstract and absolute phase space ("APS") for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of `unique solvability' and `identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  7. An Absolute Phase Space for the Physicality of Matter

    SciTech Connect

    Valentine, John S.

    2010-12-22

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  8. Coherent quantum squeezing due to the phase space noncommutativity

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Mizrahi, Salomon S.

    2015-06-01

    The effects of general noncommutativity of operators on producing deformed coherent squeezed states is examined in phase space. A two-dimensional noncommutative (NC) quantum system supported by a deformed mathematical structure, similar to that of Hadamard billiard, is obtained and the components behaviour is monitored in time. It is assumed that the independent degrees of freedom are two free 1D harmonic oscillators (HOs), so the system Hamiltonian does not contain interaction terms. Through the NC deformation parameterized by a Seiberg-Witten transform on the original canonical variables, one gets the standard commutation relations for the new ones, such that the obtained, new, Hamiltonian represents two interacting 1D HOs. By admitting that one HO is inverted relatively to the other, we show that their effective interaction induces a squeezing dynamics for initial coherent states imaged in the phase space. A suitable pattern of logarithmic spirals is obtained and some relevant properties are discussed in terms of Wigner functions, which are essential to put in evidence the effects of the noncommutativity.

  9. Fast-phase space computation of multiple arrivals.

    PubMed

    Fomel, S; Sethian, J A

    2002-05-28

    We present a fast, general computational technique for computing the phase-space solution of static Hamilton-Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive "Escape Equations" which are static, time-independent Eulerian PDEs. They represent all arrivals to the given boundary from all possible starting configurations. The solution is numerically constructed through a "one-pass" formulation, building on ideas from semi-Lagrangian methods, Dijkstra-like methods for the Eikonal equation, and Ordered Upwind Methods. To compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computational order O(N log N), where N is the total number of points in the computational phase-space domain; any particular set of boundary conditions then is extracted through rapid post-processing. Suggestions are made for speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to the Eikonal equation. PMID:12032282

  10. Ethernet access network based on free-space optic deployment technology

    NASA Astrophysics Data System (ADS)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  11. Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser Interferometer Space Antenna (LISA) consists of three spacecraft in orbit about the sun. The orbits are chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters, which is about 10(exp -5) waves for a laser wavelength of 1064 nm. To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly spherical then rotations (Jitter) about its geometric center will not produce any effect at the receiving spacecraft. However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the receiving spacecraft. The following sections describe the "brute force" computational approach used to determine the scalar wave front as a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberrations.

  12. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  13. An Indoor Space Partition Method and its Fingerprint Positioning Optimization Considering Pedestrian Accessibility

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Shi, Yong; Zheng, Xingyu; Long, Yi

    2016-06-01

    Fingerprint positioning method is generally the first choice in indoor navigation system due to its high accuracy and low cost. The accuracy depends on partition density to the indoor space. The accuracy will be higher with higher grid resolution. But the high grid resolution leads to significantly increasing work of the fingerprint data collection, processing and maintenance. This also might decrease the performance, portability and robustness of the navigation system. Meanwhile, traditional fingerprint positioning method use equational grid to partition the indoor space. While used for pedestrian navigation, sometimes a person can be located at the area where he or she cannot access. This paper studied these two issues, proposed a new indoor space partition method considering pedestrian accessibility, which can increase the accuracy of pedestrian position, and decrease the volume of the fingerprint data. Based on this proposed partition method, an optimized algorithm for fingerprint position was also designed. A across linker structure was used for fingerprint point index and matching. Experiment based on the proposed method and algorithm showed that the workload of fingerprint collection and maintenance were effectively decreased, and poisoning efficiency and accuracy was effectively increased

  14. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Lockwood, Mary Kae; Cook, Stephen A.

    1998-01-01

    NASA has established a goal of providing low-cost reliable access to space. While this goal has been around for many years, it received a major impetus when the U.S Congress mandated the Access-to-Space study in 1993. This study concluded that a rocket powered single-stage-to-orbit vehicle offered the best opportunity for low-cost reliable space transportation by the first decade of the new millennium. This required a focused technology development program before such a vehicle could be built. NASA recognized that no commercial entity would commit to the development of a single-stage-to-orbit vehicle without the U.S. Government's participation. To this end, NASA entered into a cooperative agreement with industry to mature the required technologies. This effort includes the development of an experimental subscale-vehicle known as the X-33, an extensive ground-based program to provide the required additional technology development, and conceptual through preliminary design of an operational reusable launch vehicle. Following this effort, a decision will be made whether or not to proceed with the detailed design and fabrication of an operational vehicle.

  15. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Lockwood, Mary Kae; Cook, Stephen A.

    1998-01-01

    NASA has established a goal of providing low-cost reliable access to space. While this goal has been around for many years, it received a major impetus when the U.S. Congress mandated the Access-to-Space study in 1993. This study concluded that a rocket powered single-state-to-orbit vehicle offered the best opportunity for low-cost reliable space transportation by the first decade of the new millennium. This required a focused technology development program before such a vehicle could be built. NASA recognized that no commercial entity would commit to the development of a single-stage-to-orbit vehicle without the U.S. Government's participation. To this end, NASA entered into a cooperative agreement with industry to mature the required technologies. This effort includes the development of an experimental subscale-vehicle known as the X-33, an extensive ground-based program to provide the required additional technology development, and conceptual through preliminary design of an operational reusable launch vehicle. Following this effort, a decision will be made whether or not to proceed with the detailed design and fabrication of an operational vehicle.

  16. Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott; Heberle, Jay

    2010-01-01

    This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

  17. Space environment data storage and access: lessons learned and recommendations for the future

    NASA Astrophysics Data System (ADS)

    Evans, Hugh; Heynderickx, Daniel

    2012-07-01

    With the ever increasing volume of space environment data available at present and planned for the near future, the demands on data storage and access methods are increasing as well. In addition, continued access to historical, archived data remains crucial. On the basis of many years of experience, the authors identify the following issues as important for continued and efficient handling of datasets now and in the future: The huge data volumes currently or very soon avaiable from a number of space missions will limi direct Internet download access to even relatively short epoch ranges of data. Therefore, data providers should establish or extend standardised data (post-) processing services so that only data query results should be downloaded. Although a single standardised data format will in all likelihood remain utopia, data providers should at least include extensive metadata with their data products, according to established standards and practices (e.g. ISTP, SPASE). Standardisation of (sets of) metadata greatly facilitates data mining and querying. The use of SQL database storage should be considered instead of, or in parallel with, classic storage of data files. The use of SQL does away with having to handle file parsing and processing, while at the same time standard access protocols can be used to (remotely) connect to such data repositories. Many data holdings are still lacking in extensive descriptions of data provenance (e.g. instrument description), content and format. Unfortunately, detailed data information is usually rejected by scientific and technical journals. Re-processing of historical archived datasets into modern formats, making them easily available and usable, is urgently required, as knowledge is being lost. A global data directory has still not been achieved; policy makers should enforce stricter rules for "broadcasting" dataset information.

  18. Constraining neutron guide optimizations with phase-space considerations

    NASA Astrophysics Data System (ADS)

    Bertelsen, Mads; Lefmann, Kim

    2016-09-01

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  19. DisVis: quantifying and visualizing accessible interaction space of distance-restrained biomolecular complexes

    PubMed Central

    van Zundert, G.C.P.; Bonvin, A.M.J.J.

    2015-01-01

    Summary: We present DisVis, a Python package and command line tool to calculate the reduced accessible interaction space of distance-restrained binary protein complexes, allowing for direct visualization and quantification of the information content of the distance restraints. The approach is general and can also be used as a knowledge-based distance energy term in FFT-based docking directly during the sampling stage. Availability and implementation: The source code with documentation is freely available from https://github.com/haddocking/disvis. Contact: a.m.j.j.bonvin@uu.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26026169

  20. Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics

    NASA Astrophysics Data System (ADS)

    Trahan, Corey J.; Wyatt, Robert E.

    2003-10-01

    Recently, Donoso and Martens described a method for evolving both classical and quantum phase-space distribution functions, W(q,p,t), that involves the propagation of an ensemble of correlated trajectories. The trajectories are linked into a unified whole by spatial and momentum derivatives of density dependent terms in the equations of motion. On each time step, these nonlocal terms were evaluated by fitting the density around each trajectory to an assumed functional form. In the present study, we develop a different trajectory method for propagating phase-space distribution functions. A hierarchy of coupled analytic equations of motion are derived for the q and p derivatives of the density and a truncated set of these are integrated along each trajectory concurrently with the equation of motion for the density. The advantage of this approach is that individual trajectories can be propagated, one at a time, and function fitting is not required to evaluate the nonlocal terms. Regional nonlocality can be incorporated at various levels of approximation to "dress" what would otherwise be "thin" locally propagating trajectories. This derivative propagation method is used to obtain trajectory solutions for the Klein-Kramers equation, the Husimi equation, and for a smoothed version of the Caldeira-Leggett equation derived by the Diosi. Trajectory solutions are obtained for the relaxation of an oscillator in contact with a thermal bath and for the decay of a metastable state.

  1. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  2. Tailoring phase-space in neutron beam extraction

    NASA Astrophysics Data System (ADS)

    Weichselbaumer, S.; Brandl, G.; Georgii, R.; Stahn, J.; Panzner, T.; Böni, P.

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  3. Capture into resonance and phase space dynamics in optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  4. Nonclassicality indicator for the real phase-space distribution functions

    SciTech Connect

    Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah

    2010-07-15

    Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.

  5. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.

    1974-01-01

    A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.

  6. Production of Coherent Phase Space Islands in Trapped Plasma

    NASA Astrophysics Data System (ADS)

    Hunter, Eric; Povilus, Alex; Belmore, Nathan; Lewis, Nicole; Shanman, Sabrina; Fajans, Joel

    2015-11-01

    Particles are coherently extracted from a cold Maxwellian distribution into phase space islands by applying a fixed-frequency RF drive while the plasma bounce frequency is swept downward by lowering the potential confining the plasma. These objects can appear spontaneously in pure electron and mixed ion plasma experiments during particle extraction when the noise power spectrum of the confining potential has peaks in the rf band, as is often the case in a laboratory environment. Interestingly, the particles in these islands have been observed to form tight energy distributions, making the mechanism potentially useful for low energy/monoenergetic plasma injection devices. In particular, these features would be useful for antimatter spectroscopy and mixing for antihydrogen formation. This work is supported by DoE, Grant DE-FG02-06ER54904.

  7. Transverse - longitudinal phase-space manipulations and correlations.

    SciTech Connect

    Kim, K.-J.; Sessler, A.; Accelerator Systems Division; LBNL

    2006-01-01

    Manipulations on transverse and longitudinal phase-space distribution of an electron beam are discussed within the constraints imposed by symplectic conditions. A few examples are presented: transverse-longitudinal emittance exchange to improve performance of a high-gain free-electron laser (FEL) for hard x-rays, and the flat beam technique and its application to compact Terahertz devices and ultrashort-pulse generation. It is shown that emittance transfer to some degree would be advantageous for FELs and that introducing correlations would allow just such transfers. Also, it is shown that transverse-longitudinal correlations would be distinctly advantageous for FELs. Conventional and exotic methods of producing such correlations are described. Practical difficulties associated with each of the conventional methods are described, although the nonconventional methods appear to hold promise.

  8. Transverse-Longitudinal Phase-Space Manipulations and Correlations

    SciTech Connect

    Kim, Kwang-Je; Sessler, Andrew

    2006-03-20

    Manipulations on transverse and longitudinal phase-space distribution of an electron beam are discussed within the constraints imposed by symplectic conditions. A few examples are presented: transverse-longitudinal emittance exchange to improve performance of a high-gain free-electron laser (FEL) for hard x-rays, and the flat beam technique and its application to compact Terahertz devices and ultrashort-pulse generation. It is shown that emittance transfer to some degree would be advantageous for FELs and that introducing correlations would allow just such transfers. Also, it is shown that transverse-longitudinal correlations would be distinctly advantageous for FELs. Conventional and exotic methods of producing such correlations are described. Practical difficulties associated with each of the conventional methods are described, although the nonconventional methods appear to hold promise.

  9. Phase-space noncommutative formulation of Ozawa's uncertainty principle

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Costa Dias, Nuno; Prata, João Nuno

    2014-08-01

    Ozawa's measurement-disturbance relation is generalized to a phase-space noncommutative extension of quantum mechanics. It is shown that the measurement-disturbance relations have additional terms for backaction evading quadrature amplifiers and for noiseless quadrature transducers. Several distinctive features appear as a consequence of the noncommutative extension: measurement interactions which are noiseless, and observables which are undisturbed by a measurement, or of independent intervention in ordinary quantum mechanics, may acquire noise, become disturbed by the measurement, or no longer be an independent intervention in noncommutative quantum mechanics. It is also found that there can be states which violate Ozawa's universal noise-disturbance trade-off relation, but verify its noncommutative deformation.

  10. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection.

    PubMed

    Takasago, K; Takekawa, M; Shirakawa, A; Kannari, F

    2000-05-10

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M-sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M-sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of ~5. PMID:18345134

  11. Wigner phase space distribution via classical adiabatic switching.

    PubMed

    Bose, Amartya; Makri, Nancy

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations. PMID:26395694

  12. Generalizing the Boltzmann equation in complex phase space.

    PubMed

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others. PMID:27627421

  13. Nonlinear instabilities driven by coherent phase-space structures

    NASA Astrophysics Data System (ADS)

    Lesur, Maxime

    2012-10-01

    Coherent phase-space (PS) structures are an important feature of plasma turbulence. They can drive nonlinear instabilities [1], intermittency in drift-wave turbulence [2], and transport [3]. We aim at a comprehensive understanding of turbulence, not just as an ensemble of waves, as quasilinear theory implies, but as a mixture of coupled waves and localized structures. This work, which focuses on isolated PS structures, is a fundamental advance in this direction. We analyze the effects of self-binding negative fluctuations (PS holes) on stability, intermittency and anomalous resistivity, both analytically and numerically. We present a new theory which describes the growth of a hole or clump [4]. We find that PS holes grow nonlinearly, independently of linear stability. Numerical simulations clarify the physics of nonlinear instabilities in both subcritical and supercritical conditions. When many resonances are unstable, several holes can coalesce into one main macro-scale structure, which survives much longer than a quasilinear diffusion time, suggesting that it may be crucial to resolve phase-space turbulence in analytical and numerical studies of transport. These findings are applied to two fundamental paradigms of plasma physics: bump-on-tail instabilities in 1D electronic plasma and current-driven ion-acoustic instabilities electron-ion plasma. Our results expose important limits of routinely-used linear and quasilinear theories.[4pt] [1] T.H. Dupree, Phys. Fluids 15, 334 (1972); R.H. Berman et al., Phys. Rev. Lett. 48, 1249 (1982).[0pt] [2] P.W. Terry, P.H. Diamond, and T.S. Hahm, Phys. Fluids B 2, 2048 (1990).[0pt] [3] H. Biglari et al., Phys. Fluids 31, 2644 (1988); Y. Kosuga et al., Phys. Plasmas 18, 122305 (2011).[0pt] [4] M. Lesur, P.H. Diamond, submitted to Phys. Rev. Lett.

  14. Wigner phase space distribution via classical adiabatic switching

    SciTech Connect

    Bose, Amartya; Makri, Nancy

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  15. Wigner phase space distribution via classical adiabatic switching

    NASA Astrophysics Data System (ADS)

    Bose, Amartya; Makri, Nancy

    2015-09-01

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  16. Dynamics of Structures in Configuration Space and Phase Space: An Introductory Tutorial

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Kosuga, Y.; Lesur, M.

    2015-12-01

    Some basic ideas relevant to the dynamics of phase space and real space structures are presented in a pedagogical fashion. We focus on three paradigmatic examples, namely; G. I. Taylor's structure based re-formulation of Rayleigh's stability criterion and its implications for zonal flow momentum balance relations; Dupree's mechanism for nonlinear current driven ion acoustic instability and its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field theory to calculate evolution in the presence of localized structures for regimes where Kubo number K ≃ 1 rather than K ≪ 1, as is usual for quasilinear theory.

  17. Express Payload Project - A new method for rapid access to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Uhran, Mark L.; Timm, Marc G.

    1993-01-01

    The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.

  18. Multiple-access phased array antenna simulator for a digital beam-forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  19. Multiple-access phased array antenna simulator for a digital beam forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  20. A rapid prototyping/artificial intelligence approach to space station-era information management and access

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.

    1989-01-01

    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.

  1. Numerical Methodology For Full-Body TPS Sizing And Optimization For Access-To-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Henline, William D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    This paper presents details of the methodology and numerical procedures developed at NASA Ames for full-body TEXAS sizing and optimization for Access to Space vehicle concepts. The core of the procedures is a robust implicit solver for one dimensional transient heat conduction in reusable multilayer TEXAS stackups. The solver includes an arbitrary number of material layers, contact resistances between materials, temperature and pressure dependent material and surface properties, numerous boundary-condition options, and self-adaptive time stepping. The solver is coupled with the Access-to-Space material database of 23 candidate TPS and structural materials and a thermal-environment database obtained from trajectory-based fullbody Navier-Stokes computations of the external flowfield. The thermal environment and material response are coupled through the use of T-type heat transfer coefficients. TIPS sizing and weight optimization are performed at every surface point on the vehicle based on sizing constraints which include material temperature limits, maximum backwall temperature, and cumulative interior heat flux. Typical results are presented for a lifting body concept with 10000 surface points, which required 35 minutes to compute on an SGI Indigo 2.

  2. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  3. Analysis of Potential Alternatives to Reduce NASA's Cost of Human Access to Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this report is to analyze NASA's potential options for significantly reducing the cost of human access to space. The opinions expressed in this report are based on Hawthorne, Krauss & Associates' ("HKA") interaction with NASA and several of its key contractors over the past nine months. This report is not intended to be an exhaustive quantitative analysis of the various options available to NASA. Instead, its purpose is to outline key decision-related issues that the agency should consider prior to making a decision as to which option to pursue. This report attempts to bring a private-sector perspective to bear on the issue of reducing the cost of human access to space. HKA believes that the key to the NASA's success in reducing those costs over the long-term is the involvement of the private-sector incentives and disciplines--which is achieved only through the assumption of risk by the private sector, not through a traditional contractor relationship--is essential to achieve significant long-term cost reductions.

  4. A varying polytropic gas universe and phase space analysis

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-05-01

    In this paper, we will consider a phenomenological model of a dark fluid that is able to explain an accelerated expansion of our low redshift universe and the phase transition to this accelerated expanding universe. Recent developments in modern cosmology towards understanding of the accelerated expansion of the large scale universe involve various scenarios and approaches. Among these approaches, one of well-known and accepted practice is modeling of the content of our universe via dark fluid. There are various models of dark energy fluid actively studied in recent literature and polytropic gas is among them. In this work, we will consider a varying polytropic gas which is a phenomenological modification of polytropic gas. Our model of varying polytropic dark fluid has been constructed to analogue to a varying Chaplygin gas actively discussed in the literature. We will consider interacting models, where dark matter is a pressureless fluid, to have a comprehensive picture. Phase space analysis is an elegant mathematical tool to earn general understanding of large scale universe and easily see an existence of a solution to cosmological coincidence problem. Imposing some constraints on parameters of the models, we found late time attractors for each case analytically. Cosmological consequences for the obtained late time attractors are discussed.

  5. Quantum trajectories in complex phase space: multidimensional barrier transmission.

    PubMed

    Wyatt, Robert E; Rowland, Brad A

    2007-07-28

    The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined. PMID:17672677

  6. Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent; Mink, Ronald; Adamo, Daniel

    2011-01-01

    Near-Earth Asteroids (NEAs) have been identified by the current administration as potential destinations for human explorers during the mid-2020s. While the close proximity of these objects' orbits to Earth's orbit creates a risk of highly damaging or catastrophic impacts, it also makes some of these objects particularly accessible to spacecraft departing Earth, and this presents unique opportunities for solar system science and humanity's first ventures beyond cislunar space. Planning such ambitious missions first requires the selection of potentially accessible targets from the growing population of nearly 7,800 NEAs. To accomplish this, NASA is conducting the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS). Phase I of the NHATS was executed during September of 2010, and Phase II was completed by early March of 2011. The study is ongoing because previously undetected NEAs are being discovered constantly, which has motivated an effort to automate the analysis algorithms in order to provide continuous monitoring of NEA accessibility. The NHATS analysis process consists of a trajectory filter and a minimum maximum estimated size criterion. The trajectory filter employs the method of embedded trajectory grids to compute all possible ballistic round-trip mission trajectories to every NEA in the Jet Propulsion Laboratory (JPL) Small-Body Database (SBDB) and stores all solutions that satisfy the trajectory filter criteria. An NEA must offer at least one qualifying trajectory solution to pass the trajectory filter. The Phase II NHATS filter criteria were purposely chosen to be highly inclusive, requiring Earth departure date between January 1st, 2015 and December 31st, 2040, total round-trip flight time <= 450 days, stay time at the NEA >= 8 days, Earth departure C(sub 3) energy <= 60 km(exp 2)/s(exp 2), total mission delta-v <= 12 km/s (including an Earth departure maneuver from a 400 km altitude circular parking orbit), and a maximum

  7. Phase space analysis for dynamics of three vortices of pure electron plasma trapped with Penning trap

    SciTech Connect

    Sanpei, Akio; Soga, Yukihiro; Ito, Kiyokazu; Himura, Haruhiko

    2015-06-29

    A trilinear phase space analysis is applied for dynamics of three electron clumps confined with a Penning-Malmberg trap. We show that the Aref’s concept of phase space describe the observed features of the dynamics of three point vortices qualitatively. In vacuum, phase point P moves to physical region boundary in phase space, i.e. triangular configuration cannot be kept. With the addition of a low level background vorticity distribution (BGVD), the excursion of the clumps is reduced and the distance between P and stable point does not extend in the phase space.

  8. Entropy Production in Collisionless Systems. II. Arbitrary Phase-space Occupation Numbers

    NASA Astrophysics Data System (ADS)

    Barnes, Eric I.; Williams, Liliya L. R.

    2012-04-01

    We present an analysis of two thermodynamic techniques for determining equilibria of self-gravitating systems. One is the Lynden-Bell (LB) entropy maximization analysis that introduced violent relaxation. Since we do not use the Stirling approximation, which is invalid at small occupation numbers, our systems have finite mass, unlike LB's isothermal spheres. (Instead of Stirling, we utilize a very accurate smooth approximation for ln x!.) The second analysis extends entropy production extremization to self-gravitating systems, also without the use of the Stirling approximation. In addition to the LB statistical family characterized by the exclusion principle in phase space, and designed to treat collisionless systems, we also apply the two approaches to the Maxwell-Boltzmann (MB) families, which have no exclusion principle and hence represent collisional systems. We implicitly assume that all of the phase space is equally accessible. We derive entropy production expressions for both families and give the extremum conditions for entropy production. Surprisingly, our analysis indicates that extremizing entropy production rate results in systems that have maximum entropy, in both LB and MB statistics. In other words, both thermodynamic approaches lead to the same equilibrium structures.

  9. ENTROPY PRODUCTION IN COLLISIONLESS SYSTEMS. II. ARBITRARY PHASE-SPACE OCCUPATION NUMBERS

    SciTech Connect

    Barnes, Eric I.; Williams, Liliya L. R. E-mail: llrw@astro.umn.edu

    2012-04-01

    We present an analysis of two thermodynamic techniques for determining equilibria of self-gravitating systems. One is the Lynden-Bell (LB) entropy maximization analysis that introduced violent relaxation. Since we do not use the Stirling approximation, which is invalid at small occupation numbers, our systems have finite mass, unlike LB's isothermal spheres. (Instead of Stirling, we utilize a very accurate smooth approximation for ln x{exclamation_point}.) The second analysis extends entropy production extremization to self-gravitating systems, also without the use of the Stirling approximation. In addition to the LB statistical family characterized by the exclusion principle in phase space, and designed to treat collisionless systems, we also apply the two approaches to the Maxwell-Boltzmann (MB) families, which have no exclusion principle and hence represent collisional systems. We implicitly assume that all of the phase space is equally accessible. We derive entropy production expressions for both families and give the extremum conditions for entropy production. Surprisingly, our analysis indicates that extremizing entropy production rate results in systems that have maximum entropy, in both LB and MB statistics. In other words, both thermodynamic approaches lead to the same equilibrium structures.

  10. Nonlinear Phase Mixing and Phase-Space Cascade of Entropy in Gyrokinetic Plasma Turbulence

    SciTech Connect

    Tatsuno, T.; Dorland, W.; Plunk, G. G.; Schekochihin, A. A.; Barnes, M.

    2009-07-03

    Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.

  11. Socializing in an Open Drug Scene: The relationship Between Access to Private Space and Drug-Related Street Disorder

    PubMed Central

    DeBeck, Kora; Wood, Evan; Qi, Jiezhi; Fu, Eric; McArthur, Doug; Montaner, Julio; Kerr, Thomas

    2011-01-01

    Background Limited attention has been given to the potential role that the structure of housing available to people who are entrenched in street-based drug scenes may play in influencing the amount of time injection drug users (IDU) spend on public streets. We sought to examine the relationship between time spent socializing in Vancouver's drug scene and access to private space. Methods Using multivariate logistic regression we evaluated factors associated with socializing (three+ hours each day) in Vancouver's open drug scene among a prospective cohort of IDU. We also assessed attitudes towards relocating socializing activities if greater access to private indoor space was provided. Results Among our sample of 1114 IDU, 43% fit our criteria for socializing in the open drug scene. In multivariate analysis, having limited access to private space was independently associated with socializing (adjusted odds ratio: 1.80, 95% confidence interval: 1.28 – 2.55). In further analysis, 65% of ‘socializers’ reported positive attitudes towards relocating socializing if they had greater access to private space. Conclusion These findings suggest that providing IDU with greater access to private indoor space may reduce one component of drug-related street disorder. Low-threshold supportive housing based on the ‘housing first’ model that include safeguards to manage behaviors associated with illicit drug use appear to offer important opportunities to create the types of private spaces that could support a reduction in street disorder. PMID:21764528

  12. Accessing Solar Irradiance Data via LISIRD, the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Wilson, A.; Snow, M. A.; Lindholm, D. M.; Woods, T. N.; Traver, T.; Woodraska, D.

    2015-12-01

    The LASP Interactive Solar Irradiance Datacenter, LISIRD, http://lasp.colorado.edu/lisird, allows the science community and the public to explore and access solar irradiance and related data sets using convenient, interactive or scriptable, standards-based interfaces. LISIRD's interactive plotting allows users to investigate and download irradiance data sets from a variety of sources, including space missions, ground observatories, and modeling efforts. LISIRD's programmatic interfaces allow software-level data retrievals and facilitate automation. This presentation will describe the current state of LISIRD, provide details of the data sets it serves, outline data access methods, identify key technologies in-use, and address other related aspects of serving spectral and other time series data. We continue to improve LISIRD by integrating new data sets, and also by advancing its data management and presentation capabilities to meet evolving best practices and community needs. LISIRD is hosted and operated by the Laboratory for Atmospheric and Space Physics, LASP, which has been a leader in Atmospheric and Heliophysics science for over 60 years. LASP makes a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets consist of fundamental measurements, composite data sets, solar indices, space weather products, and models. Current data sets available through LISIRD originate from the SORCE, SDO (EVE), UARS (SOLSTICE), TIMED (SEE), and SME space missions, as well as several other space and ground-based projects. LISIRD leverages several technologies to provide flexible and standards-based access to the data holdings available through LISIRD. This includes internet-accessible interfaces that permit data access in a variety of formats, data subsetting, as well as program-level access from data analysis

  13. Creating Assemblies in Media Space: Recent Developments in Enhancing Access to Workspaces

    NASA Astrophysics Data System (ADS)

    Luff, Paul; Kuzuoka, Hideaki; Heath, Christian; Yamazaki, Keiichi; Yamashita, Jun

    In this chapter, we discuss a programme of social and technical research that we have undertaken over the last few years concerned with the design, assessment and development of systems to support real-time, distributed work; work that relies upon a participants' ability to access a range of tangible and digital resources. The programme of work has been informed by findings from a range of studies of work and collaboration in environments that include architectural practices, control centres, surgeries, hospitals, news rooms, and the like. These studies have a framework of considerations, criteria, and insights into the organization of everyday work and interaction that have enabled us to identify some of the limitations of con¬ventional media spaces, including systems which we have helped develop, and to pose a set of requirements and challenges, which we believe are fundamental to the creation of a media space that could support the flexible and contingent demands of seemingly simple forms of collaborative work. These studies, coupled with the development and assessment of a series of experimental systems, have enabled us to identify three key issues that we believe have to be addressed and resolved (in one way or another) if media space research is going to achieve its early potential.

  14. Sounding Rockets within Swedish National Balloon and Rocket Programme- Providing Access to Space from Esrange

    NASA Astrophysics Data System (ADS)

    Sjolander, K.; Karlsson, T.; Lockowandt, C.

    2015-09-01

    Initiated in 2012 by the Swedish National Space Board (SNSB), a new programme dedicated for Swedish scientists to gain access to space using balloons and sounding rockets was started. This programme promotes the possibility to ensure continuity in both the science and the technology used. The sounding rocket part of this national programme started with three possible missions. SPIDER (Small Payloads for Investigation of Disturbances in Electrojet by Rockets) from the Space and Plasma physics department of KTH, 0-STATES (Oxygen Species and Thermospheric Airglow in The Earth's Sky) from the Department of Meteorology Stockholm University (MISU) and LEEWAVES (Local Excitation and Effects of Waves on Atmospheric VErtical Structure) that is collaboration between KTH and MISU. These three missions were planned for launches in 2015 and 2016. SSc has been contracted on a launch ticket basis to provide the launch and service to the scientific instrumentation. This paper presents the SPIDER, 0-STATES and LEEWAVES missions focussing on a mission related technical solutions perspective.

  15. Quantum dynamics in phase space: Moyal trajectories 2

    SciTech Connect

    Braunss, G.

    2013-01-15

    Continuing a previous paper [G. Braunss, J. Phys. A: Math. Theor. 43, 025302 (2010)] where we had calculated Planck-Constant-Over-Two-Pi {sup 2}-approximations of quantum phase space viz. Moyal trajectories of examples with one and two degrees of freedom, we present in this paper the calculation of Planck-Constant-Over-Two-Pi {sup 2}-approximations for four examples: a two-dimensional Toda chain, the radially symmetric Schwarzschild field, and two examples with three degrees of freedom, the latter being the nonrelativistic spherically Coulomb potential and the relativistic cylinder symmetrical Coulomb potential with a magnetic field H. We show in particular that an Planck-Constant-Over-Two-Pi {sup 2}-approximation of the nonrelativistic Coulomb field has no singularity at the origin (r= 0) whereas the classical trajectories are singular at r= 0. In the third example, we show in particular that for an arbitrary function {gamma}(H, z) the expression {beta}{identical_to}p{sub z}+{gamma}(H, z) is classically ( Planck-Constant-Over-Two-Pi = 0) a constant of motion, whereas for Planck-Constant-Over-Two-Pi {ne} 0 this holds only if {gamma}(H, z) is an arbitrary polynomial of second order in z. This statement is shown to extend correspondingly to a cylinder symmetrical Schwarzschild field with a magnetic field. We exhibit in detail a number of properties of the radially symmetric Schwarzschild field. We exhibit finally the problems of the nonintegrable Henon-Heiles Hamiltonian and give a short review of the regular Hilbert space representation of Moyal operators.

  16. Based on asynchronous communication protocol of geographic space information service access mechanism research

    NASA Astrophysics Data System (ADS)

    Chen, G.; Zhao, J.; Gu, M.; Li, D.

    2014-04-01

    At present, the traditional way of accessing to classified network in geographic spatial information services is using network gatekeeper and firewall etc. to ensure public and classified network communications links. However, the physical isolation between classified network and public network is crossed, which is bound to cause classified network potential security hazard. In Yunnan province space Land dynamic monitoring integration project, it proposed the point to point text message communication protocol and asynchronous transmission mechanism. Using geo-spatial information encryption processing and data compression processing method, it reduced the risk of data sensitivity and monitored, namely to ensure data security, which realized geographic spatial information services data communication effectively between classified network and public network in the rigid field conditions.

  17. Phase Space Dissimilarity Measures for Structural Health Monitoring

    SciTech Connect

    Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  18. Phase-space estimate of satellite coverage time

    SciTech Connect

    Canavan, G.H.

    1992-05-01

    This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites` motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average , which is essentially the same as T{sub 0}. Overlap over the poles might be wasteful, but overlap in areas of interest by inclined orbits just causes measurements to be more current in areas of interest.

  19. Phase-space estimate of satellite coverage time

    SciTech Connect

    Canavan, G.H.

    1992-05-01

    This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites' motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average , which is essentially the same as T{sub 0}. Overlap over the poles might be wasteful, but overlap in areas of interest by inclined orbits just causes measurements to be more current in areas of interest.

  20. Phase-space dissimilarity measures for industrial and biomedical applications

    NASA Astrophysics Data System (ADS)

    Protopopescu, V. A.; Hively, L. M.

    2005-12-01

    One of the most important problems in time-series analysis is the suitable characterization of the dynamics for timely, accurate, and robust condition assessment of the underlying system. Machine and physiological processes display complex, non-stationary behaviors that are affected by noise and may range from (quasi-)periodic to completely irregular (chaotic) regimes. Nevertheless, extensive experimental evidence indicates that even when the systems behave very irregularly (e.g., severe tool chatter or cardiac fibrillation), one may assume that - for all practical purposes - the dynamics are confined to low dimensional manifolds. As a result, the behavior of these systems can be described via traditional nonlinear measures (TNM), such as Lyapunov exponents, Kolmogorov entropy, and correlation dimension. While these measures are adequate for discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to distinguish between slightly different irregular (chaotic) regimes, especially when data are noisy and/or limited. Both machine and physiological dynamics usually fall into this latter category, creating a massive stumbling block to prognostication of abnormal regimes. We present here a recently developed approach that captures more efficiently changes in the underlying dynamics. We start with process-indicative, time-serial data that are checked for quality and discarded if inadequate. Acceptable data are filtered to remove confounding artifacts (e.g., sinusoidal variation in three-phase electrical signals or eye-blinks and muscular activity in EEG). The artifact-filtered data are then used to recover the essential features of the underlying dynamics via standard time-delay, phase-space reconstruction. One of the main results of this reconstruction is a discrete approximation of the distribution function (DF) on the attractor. Unaltered dynamics yield an unchanging geometry of the attractor and the visitation frequencies of

  1. Computational methods for microfluidic microscopy and phase-space imaging

    NASA Astrophysics Data System (ADS)

    Pegard, Nicolas Christian Richard

    Modern optical devices are made by assembling separate components such as lenses, objectives, and cameras. Traditionally, each part is optimized separately, even though the trade-offs typically limit the performance of the system overall. This component-based approach is particularly unfit to solve the new challenges brought by modern biology: 3D imaging, in vivo environments, and high sample throughput. In the first part of this thesis, we introduce a general method to design integrated optical systems. The laws of wave propagation, the performance of available technology, as well as other design parameters are combined as constraints into a single optimization problem. The solution provides qualitative design rules to improve optical systems as well as quantitative task-specific methods to minimize loss of information. Our results have applications in optical data storage, holography, and microscopy. The second part of this dissertation presents a direct application. We propose a more efficient design for wide-field microscopy with coherent light, based on double transmission through the sample. Historically, speckle noise and aberrations caused by undesired interferences have made coherent illumination unpopular for imaging. We were able to dramatically reduce speckle noise and unwanted interferences using optimized holographic wavefront reconstruction. The resulting microscope not only yields clear coherent images with low aberration---even in thick samples---but also increases contrast and enables optical filtering and in-depth sectioning. In the third part, we develop new imaging techniques that better respond to the needs of modern biology research through implementing optical design optimization. Using a 4D phase-space distribution, we first represent the state and propagation of incoherent light. We then introduce an additional degree of freedom by putting samples in motion in a microfluidic channel, increasing image diversity. From there, we develop a

  2. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGESBeta

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  3. On the Group of Translations and Inversions of Phase Space and the Wigner Functions

    NASA Astrophysics Data System (ADS)

    Dahl, Jens Peder

    1982-04-01

    Grossmann and Royer have recently shown that the Wigner functions are closely related to the set of all translations and inversions of phase space. This allows the phase space representation of quantum mechanics to be constructed directly on the group of phase space translations and inversions. Starting from this observation, we have derived analytical expressions for the matrix elements of the translation and inversion operators, in the harmonic oscillator representation, without introducing coordinate or momentum wavefunctions.

  4. Phase-locked laser array having a non-uniform spacing between lasing regions

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E. (Inventor)

    1986-01-01

    A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.

  5. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    NASA Astrophysics Data System (ADS)

    Møller, Klaus B.; Jørgensen, Thomas G.; Torres-Vega, Gabino

    1997-05-01

    In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when one wants to solve the stationary Schrödinger equation in phase space and we devise two schemes for the removal of these ambiguities. The physical interpretation of the phase-space wave functions is discussed and a procedure for computing expectation values as integrals over phase space is presented. Our formal points are illustrated by two examples.

  6. A Code Phase Division Multiple Access (CPDMA) technique for VSAT satellite communications

    NASA Technical Reports Server (NTRS)

    Bruno, R.; Mcomber, R.; Weinberg, A.

    1991-01-01

    A reference concept and implementation relevant to the application of Code Phase Division Multiple Access (CPDMA) to a high capacity satellite communication system providing 16 Kbps single hop channels between Very Small Aperture Terminals (VSAT's) is described. The description includes a potential implementation of an onboard CPDMA bulk demodulator/converter utilizing programmable charge coupled device (CCD) technology projected to be available in the early 1990's. A high level description of the system architecture and operations, identification of key functional and performance requirements of the system elements, and analysis results of end-to-end system performance relative to key figures of merit such as spectral efficiency are also provided.

  7. Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Bae, Junsoo; Hwang, Kyuman; Park, Kwangho; Jeon, Seongbu; Kang, Dae-hwan; Park, Soonoh; Ahn, Juhyeon; Kim, Seoksik; Jeong, Gitae; Chung, Chilhee

    2011-04-01

    The cell failures after cycling endurance in phase-change random access memory (PRAM) have been classified into three groups, which have been analyzed by transmission electron microscopy (TEM). Both stuck reset of the set state (D0) and stuck set of the reset state (D1) are due to a void created inside GeSbTe (GST) film or thereby lowering density of GST film. The decrease of the both set and reset resistances that leads to the tails from the reset distribution are induced from the Sb increase with cycles.

  8. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  9. Transcriptome Tomography for Brain Analysis in the Web-Accessible Anatomical Space

    PubMed Central

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Takemoto, Satoko; Hirakiyama, Asami; Nakamura, Sakiko; Tsujimura, Yuki; Nishimura, Masaomi; Kasukawa, Takeya; Masumoto, Koh-hei; Nikaido, Itoshi; Shigeyoshi, Yasufumi; Ueda, Hiroki R.; Song, Gang; Gee, James; Himeno, Ryutaro; Yokota, Hideo

    2012-01-01

    Increased information on the encoded mammalian genome is expected to facilitate an integrated understanding of complex anatomical structure and function based on the knowledge of gene products. Determination of gene expression-anatomy associations is crucial for this understanding. To elicit the association in the three-dimensional (3D) space, we introduce a novel technique for comprehensive mapping of endogenous gene expression into a web-accessible standard space: Transcriptome Tomography. The technique is based on conjugation of sequential tissue-block sectioning, all fractions of which are used for molecular measurements of gene expression densities, and the block- face imaging, which are used for 3D reconstruction of the fractions. To generate a 3D map, tissues are serially sectioned in each of three orthogonal planes and the expression density data are mapped using a tomographic technique. This rapid and unbiased mapping technique using a relatively small number of original data points allows researchers to create their own expression maps in the broad anatomical context of the space. In the first instance we generated a dataset of 36,000 maps, reconstructed from data of 61 fractions measured with microarray, covering the whole mouse brain (ViBrism: http://vibrism.riken.jp/3dviewer/ex/index.html) in one month. After computational estimation of the mapping accuracy we validated the dataset against existing data with respect to the expression location and density. To demonstrate the relevance of the framework, we showed disease related expression of Huntington’s disease gene and Bdnf. Our tomographic approach is applicable to analysis of any biological molecules derived from frozen tissues, organs and whole embryos, and the maps are spatially isotropic and well suited to the analysis in the standard space (e.g. Waxholm Space for brain-atlas databases). This will facilitate research creating and using open-standards for a molecular-based understanding of

  10. The University of Arizona Nanosat Program: Making Space accessible to scientific and commercial packages.

    NASA Astrophysics Data System (ADS)

    Fink, U.; Fevig, R. A.

    2003-05-01

    For the last couple of years we have been engaged in building nanosatellites within a student-mentor framework. The satellites are 10x10x10cm cubes, have a maximum mass of 1 kg, and power of a few watts. The standardized "cube-sat" form factor was suggested by Bob Twiggs of Stanford University so that a common launch platform could be utilized and more Universities could participate. We have now built four "cube-sats': a launchable Engineering model, Rincon 1 & 2, (funded by Rincon corporation), and Alcatel funded by Alcatel Espace. The costs for the four satellites are \\250,000. Launch costs using a Russian SS-18 are typically \\10,000 per kg. The payload for Rincon 1 & 2 is a sophisticated telecommunications board using only 10 mw of transmitting power. The Alcatel payload consists of three communications IC's whose radiation exposure and annealing properties will be studied over a period of years. Future nanosatellites will have considerable value in providing low cost access to space for experiments in nanotechnology, space electronics, micropropulsion, radiation experiments, astrobionics and climate change studies. For the latter area we are considering experiments to monitor the solar constant, the solar UV spectrum, the chromospheric activity through the Mg II index, the Earth's Albedo, etc. For this purpose we are developing a slightly larger satellite, 20x20x20cm and 10 kg. We have built a C-MOS camera with a 1 ms exposure time for attitude determination, and we are working with Honeywell Industries to develop micro-reaction wheels for attitude control. We are also working on micro-propulsion units with the Air Force and several aerospace companies. Preliminary calculations show that we can develop delta-V's of 5km/s which will allow us to visit 5% (about 100) of the NEA population or possibly some comets. We firmly believe a vigorous nanosatellite program will allow useful space experiments for costs of millions of Dollars instead of the present tens of

  11. Generalised partition functions: inferences on phase space distributions

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2016-06-01

    It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs-Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1/|q - 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel-Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs-Boltzmann partition function is fundamental not only to Gibbs-Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.

  12. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  13. Accessing nonlinear phase contrast in biological tissue using femtosecond laser pulse shaping

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Samineni, Prathyush; Li, Baolei; Claytor, Kevin; Warren, Warren S.

    2011-07-01

    Nonlinear imaging takes advantage of the localized nature of the interaction to achieve high spatial resolution, optical sectioning, and deeper penetration in tissue. However, nonlinear contrast (other than fluorescence or harmonic generation) is generally difficult to measure because it is overwhelmed by the large background of detected illumination light. Especially challenging to measure is the nonlinear refractive index - accessing this quantity would allow the extension of widely employed phase microscopy methods to the nonlinear regime. We have developed a technique to suppress the background in these types of measurements by using femtosecond pulse shaping to encode nonlinear interactions in background-free regions of the frequency spectrum. Using this individual pulse shaping based technique we have been able to measure self-phase modulation (SPM) in highly scattering environments, such as biological tissue, with very modest power levels. Using our measurement technique we have demonstrated strong intrinsic SPM signatures of glutamate-induced neuronal activity in hippocampal brain slices. We have also extended this measurement method to cross-phase modulation, the two-color analogue to SPM. The two-color approach dramatically improves the measurement sensitivity by reducing undesired background and associated noise. We will describe the nonlinear phase contrast measurement technique and report on its application for imaging neuronal activity.

  14. Selected tether applications in space: Phase 2. Executive summary

    NASA Technical Reports Server (NTRS)

    Thorson, M. H.; Lippy, L. J.

    1985-01-01

    The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.

  15. Group space allowance has little effect on sow health, productivity, or welfare in a free-access stall system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free-access stalls allow sows to choose the protection of a stall or use of a shared group space. This study investigated the effect of group space width: 0.91 (SS), 2.13 (IS), and 3.05 (LS) m on the health, production, behavior, and welfare of gestating sows. At gestational day (GD) 35.4 ± 2.3, 21 ...

  16. A prototype computerized synthesis methodology for generic space access vehicle (SAV) conceptual design

    NASA Astrophysics Data System (ADS)

    Huang, Xiao

    2006-04-01

    Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis. This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth

  17. Weyl Calculus in Phase Space and the Torres-Vega and Frederick Equation

    SciTech Connect

    Gosson, Maurice de

    2006-01-04

    We show that the Schroedinger equation in phase space proposed by Torres-Vega and Frederick is canonical in the sense that it is a natural consequence of Weyl calculus provided that one lets Heisenberg-Weyl operators act on functions (or half-densities) defined on phase space. We interpret our results in terms of deformation quantization.

  18. Deformed phase space Kaluza-Klein cosmology and late time acceleration

    NASA Astrophysics Data System (ADS)

    Sabido, M.; Yee-Romero, C.

    2016-06-01

    The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.

  19. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description

    NASA Astrophysics Data System (ADS)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian

    2016-06-01

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3-D cloud-tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.

  20. Common features in phase-space networks of frustrated spin models and lattice-gas models

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Peng, Yi; Han, Yilong

    2012-02-01

    We mapped the phase spaces of the following four models into networks: (1a) the Ising antiferromagnet on triangular lattice at the ground state and (1b) above the ground state, (2) the six-vertex model (i.e. square ice or spin ice), (3) 1D lattice gas and (4) 2D lattice gas. Their phase-space networks share some common features including the Gaussian degree distribution, the Gaussian spectral density, and the small-world properties. Models 1a, 2 and 3 with long-range correlations in real space exhibit fractal phase spaces, while models 1b and 4 with short-range correlations in real space exhibit non-fractal phase spaces. This result supports one of the untested assumptions in Tsallis's non-extensive statistics.

  1. Climatepipes: User-friendly data access, data manipulation, data analysis and visualization of community climate models Phase II

    SciTech Connect

    Chaudhary, Aashish

    2015-09-02

    In Phase I, we successfully developed a web-based tool that provides workflow and form-based interfaces for accessing, querying, and visualizing interesting datasets from one or more sources. For Phase II of the project, we have implemented mechanisms for supporting more elaborate and relevant queries.

  2. Cosmic evolution from phase transition of three-dimensional flat space.

    PubMed

    Bagchi, Arjun; Detournay, Stephane; Grumiller, Daniel; Simón, Joan

    2013-11-01

    Flat space cosmology spacetimes are exact time-dependent solutions of three-dimensional gravity theories, such as Einstein gravity or topologically massive gravity. We exhibit a novel kind of phase transition between these cosmological spacetimes and the Minkowski vacuum. At sufficiently high temperature, (rotating) hot flat space tunnels into a universe described by flat space cosmology. PMID:24237503

  3. Trajectories and causal phase-space approach to relativistic quantum mechanics

    SciTech Connect

    Holland, P.R.; Kyprianidis, A.; Vigier, J.P.

    1987-05-01

    The authors analyze phase-space approaches to relativistic quantum mechanics from the viewpoint of the causal interpretation. In particular, they discuss the canonical phase space associated with stochastic quantization, its relation to Hilbert space, and the Wigner-Moyal formalism. They then consider the nature of Feynman paths, and the problem of nonlocality, and conclude that a perfectly consistent relativistically covariant interpretation of quantum mechanics which retains the notion of particle trajectory is possible.

  4. 41 CFR 102-79.65 - May Executive agencies outlease space on major public access levels, courtyards and rooftops of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May Executive agencies outlease space on major public access levels, courtyards and rooftops of public buildings? 102-79.65 Section 102-79.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  5. 41 CFR 102-79.65 - May Executive agencies outlease space on major public access levels, courtyards and rooftops of...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false May Executive agencies outlease space on major public access levels, courtyards and rooftops of public buildings? 102-79.65 Section 102-79.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  6. 41 CFR 102-79.65 - May Executive agencies outlease space on major public access levels, courtyards and rooftops of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false May Executive agencies outlease space on major public access levels, courtyards and rooftops of public buildings? 102-79.65 Section 102-79.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  7. 41 CFR 102-79.65 - May Executive agencies outlease space on major public access levels, courtyards and rooftops of...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false May Executive agencies outlease space on major public access levels, courtyards and rooftops of public buildings? 102-79.65 Section 102-79.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  8. Building a Virtual Space Physics Observatory for Easy Access to and Novel Visualization of Distributed Data

    NASA Astrophysics Data System (ADS)

    Rezapkin, V.; Roberts, D. A.; Coleman, J.; Boller, R.

    2003-12-01

    Progress in space physics has become strongly dependent on the simultaneous analysis of data from multiple spacecraft, each with many instruments. Historically, these data have been stored by different investigators in a variety of formats and with widely varying metadata describing the datasets. We are working on many fronts to integrate this ``data universe" such that a researcher will ultimately be able to obtain data using a uniform terminology through a variety of interfaces, obtaining either specifically formatted files or a direct stream into an application. Our main accomplishments to date include a general data dictionary (working with the SPASE group), a well-developed front-end visualization tool, and the beginnings of a simpler interface and ``middleware" to access the data directly from various repositories. We are working with as many other groups as we can to assure that the resulting system is made useful through the incorporation and coordination of many applications and ideas. This talk will give an overview of our status and plans.

  9. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    PubMed

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU). PMID:23038313

  10. Integrated study plan for space bioprocessing (phase 1)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current economic evaluation and analytical techniques are applied to decision problems faced by the space bioprocessing program. NASA decision makers are enabled to choose candidate substances, after ranking them according to their potential economic benefit. The determination of appropriate evaluation techniques necessary to obtain measures of potential economic benefits which result from the pursuit of various space bioprocessing endeavors are focused upon. The treatment of each disease is impacted by a successful outcome of space bioprocessing and specify data and other input needs for each candidate substance.

  11. Space Station Freedom - Approaching the critical design phase

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  12. Geometric phase in a flat space for electromagnetic scalar waves.

    PubMed

    Luis, Alfredo

    2006-08-15

    We show the existence of a fundamental geometric phase for classical electromagnetic fields arising after cyclic paths in a plane instead of a sphere. This phase is dispersive, is not related to polarization, distinguishes geometrical from wave optics, and can be easily measured in an interferometric arrangement. PMID:16880859

  13. Research opportunities in space motion sickness, phase 2

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.

    1983-01-01

    Space and motion sickness, the current and projected NASA research program, and the conclusions and suggestions of the ad hoc Working Group are summarized. The frame of reference for the report is ground-based research.

  14. Space station gas compressor technology study program, phase 1

    NASA Technical Reports Server (NTRS)

    Hafele, B. W.; Rapozo, R. R.

    1989-01-01

    The objectives were to identify the space station waste gases and their characteristics, and to investigate compressor and dryer types, as well as transport and storage requirements with tradeoffs leading to a preliminary system definition.

  15. Space shuttle auxiliary power unit study, phase 2

    NASA Technical Reports Server (NTRS)

    Binsley, R. L.; Krause, A. A.; Maddox, R. D.; Marcy, R. D.; Siegler, R. S.

    1972-01-01

    A study was performed to establish the preliminary design of the space shuttle auxiliary power unit. Details of the analysis, optimizations, and design of the components, subsystems and systems are presented.

  16. Photosynthetic flagellates as model systems for accessing the impact of space conditions on plants

    NASA Astrophysics Data System (ADS)

    Lebert, Michael; Richter, Peter; Häder, Donat

    Plants are an integral part of the exploration attempts for the planned missions to Mars and Moon. Photosynthetic, motile flagellates like Euglena gracilis can serve as model systems for the better understanding of the impact of microgravity and cosmic radiation on plants. Recent parabolic flights indicate that photosynthesis is impaired by microgravity. While oxygen production decreased during the short-term microgravity phases, other photosynthetic parameters remained constant or increased (photosynthetic yield and Ft as indicated by Pulse Amplitude Modulated Fluorescence measurements (PAM)). Ground-based long-term measurements in static bioreactors indicate a strong circadian rhythm of the related PAM-accessible parameters including oxygen production. Besides the problem of scientific analysis of these findings, practical implications with respect to life support systems or controlled environmental systems (CES) are significant. In two FOTON missions a CES system (AQUACELLS and its successor OMEGAHAB) was flown. The detailed analysis is still ongoing. In the paper oxygen production rates are compared to reference experiments on ground. In addition, the results of an upcoming parabolic flight campaign centred around fast PAM kinetics for a closer understanding of the impaired photosynthetic parameters will be presented.

  17. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.

    PubMed

    Kim, Junho; Song, Ki-Bong

    2006-11-01

    We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly. PMID:17252792

  18. Multimegawatt space nuclear power supply: Phase 1, Final report

    SciTech Connect

    Not Available

    1989-02-17

    The preliminary safety assessment report analyzes the potential radiological risk of the integrated MSNPS with the launch vehicle including interface with the weapon system. Most emphasis will be placed the prime power concept design. Safety problems can occur any time during the entire life cycle of the system including contingency phases. The preliminary safety assessment report is to be delivered at the end of phase 2. This assessment will be the basis of the safety requirements which will be applied to the design of the MSNPS as it develops in subsequent phases. The assessment also focuses design activities on specific high-risk scenarios and missions that may impact safety.

  19. Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness.

    PubMed

    Hirvonen, Jonni; Palva, Satu

    2016-01-01

    Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept. PMID:26485310

  20. Multimegawatt space nuclear power supply: Phase 1, Final report

    SciTech Connect

    Not Available

    1989-02-17

    The Phase 2 program objectives are to (1) demonstrate concept feasibility, (2) develop a preliminary design, and (3) complete Phase 3 engineering development and ground test plans. The approach to accomplish these objectives is to prove technical feasibility of our baseline design early in the program while maintaining flexibility to easily respond to changing requirements and advances in technology. This approach recognizes that technology is advancing rapidly while the operational phase MSNPS is 15 to 20 years in the future. This plan further recognizes that the weapons platform and Advanced Launch System (ALS) are in very early program definition stages; consequently, their requirements, interfaces, and technological basis will evolve. This document outlines the Phase 2 plan along with task scheduling of the various program aspects.

  1. Space station contamination control study: Internal combustion, phase 1

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert T.

    1987-01-01

    Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.

  2. Discrete phase-space structure of n-qubit mutually unbiased bases

    SciTech Connect

    Klimov, A.B.; Romero, J.L.; Bjoerk, G.; Sanchez-Soto, L.L.

    2009-01-15

    We work out the phase-space structure for a system of n qubits. We replace the field of real numbers that label the axes of the continuous phase space by the finite field GF(2{sup n}) and investigate the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional properties. We provide a simple classification of such curves and study in detail the four- and eight-dimensional cases, analyzing also the effect of local transformations. In this way, we provide a comprehensive phase-space approach to the construction of mutually unbiased bases for n qubits.

  3. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  4. Space radiation hazards to Project Skylab photographic film, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, C. W.; Neville, C. F.

    1971-01-01

    The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.

  5. Large space telescope, phase A. Volume 4: Scientific instrument package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.

  6. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  7. Phase-space representation of a non-Hermitian system with PT symmetry

    NASA Astrophysics Data System (ADS)

    Praxmeyer, Ludmila; Yang, Popo; Lee, Ray-Kuang

    2016-04-01

    We present a phase-space study of a non-Hermitian Hamiltonian with PT symmetry based on the Wigner distribution function. For an arbitrary complex potential, we derive a generalized continuity equation for the Wigner function flow and calculate the related circulation values. Studying the vicinity of an exceptional point, we show that a PT -symmetric phase transition from an unbroken PT -symmetry phase to a broken one is a second-order phase transition.

  8. I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)

    2001-01-01

    The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air

  9. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  10. Equilibrium Phase Behavior of a Continuous-Space Microphase Former

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuan; Zhang, Kai; Charbonneau, Patrick

    2016-03-01

    Periodic microphases universally emerge in systems for which short-range interparticle attraction is frustrated by long-range repulsion. The morphological richness of these phases makes them desirable material targets, but our relatively coarse understanding of even simple models hinders controlling their assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the nontrivial interplay between cluster, gel, and microphase formation.

  11. Pore Accessibility and Connectivity of Mineral and Kerogen Phases for Shales

    NASA Astrophysics Data System (ADS)

    Gao, X.; Hu, Q.; Gao, Z.; Ewing, R. P.

    2013-12-01

    Since 2000, improvements in horizontal drilling and hydraulic fracturing in the US have led to a dramatic increase of production of hydrocarbon (gas and oil) from shale formations, and changed the energy picture of US and across the world. Fluid flow and mass transport in porous media is controlled by pore structure, which has both geometric and topological characteristics; these characteristics therefore affect exploration and production of hydrocarbons. Analysis of 65,000 US shale wells shows that hydrocarbon production typically drops by 60% within the first year and is down to 80-95% after three years. The main barrier to sustainable development of US shale, the pore structure of the nanopores storing and transporting hydrocarbon, has been quietly ignored. Considering the composition of mineral and kerogen phases and their associated nanopores in shales, we have studied tracer distribution and its association with mineral and organic kerogen phases, from three complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction, saturated diffusion with tracer diffusing into initially saturated shale, and imbibition with fluids (water or n-decane) imbibing into dry shale. All three tests use tracer-bearing fluids to examine the association of tracers with mineral and kerogen phases, using a combination of elemental mapping and high-resolution SEM approaches. After these tests, the samples are freeze-dried, and imaged with SEM imaging before destructive 3-D laser ablation-ICP-MS mapping. These innovative approaches help examine the limited accessibility and connectivity of nanopores in shales and resultant hydrocarbon production behavior.

  12. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    SciTech Connect

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.; /Fermilab

    2011-03-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.

  13. Solution phase space and conserved charges: A general formulation for charges associated with exact symmetries

    NASA Astrophysics Data System (ADS)

    Hajian, K.; Sheikh-Jabbari, M. M.

    2016-02-01

    We provide a general formulation for calculating conserved charges for solutions to generally covariant gravitational theories with possibly other internal gauge symmetries, in any dimensions and with generic asymptotic behaviors. These solutions are generically specified by a number of exact (continuous, global) symmetries and some parameters. We define "parametric variations" as field perturbations generated by variations of the solution parameters. Employing the covariant phase space method, we establish that the set of these solutions (up to pure gauge transformations) form a phase space, the solution phase space, and that the tangent space of this phase space includes the parametric variations. We then compute conserved charge variations associated with the exact symmetries of the family of solutions, caused by parametric variations. Integrating the charge variations over a path in the solution phase space, we define the conserved charges. In particular, we revisit "black hole entropy as a conserved charge" and the derivation of the first law of black hole thermodynamics. We show that the solution phase space setting enables us to define black hole entropy by an integration over any compact, codminesion-2, smooth spacelike surface encircling the hole, as well as to a natural generalization of Wald and Iyer-Wald analysis to cases involving gauge fields.

  14. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB. TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly, to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC / solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  15. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.; Martin, David (Technical Monitor)

    2002-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB (Solid Rocket Booster). TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly. to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC/solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  16. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.; McCool, Alex (Technical Monitor)

    2001-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB. TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly, to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC/solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  17. Inflationary perturbation theory is geometrical optics in phase space

    NASA Astrophysics Data System (ADS)

    Seery, David; Mulryne, David J.; Frazer, Jonathan; Ribeiro, Raquel H.

    2012-09-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "δN" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.

  18. Scaling and the start-up phase of space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1979-01-01

    By terrestrial standards very little mass is needed to construct the space portion of a 10,000 megawatt (10 GW) power system. Use of lunar materials makes it reasonable to consider alternatives to silicon solar cells for conversion of sunlight to electricity and thereby avoid present major problems associated with solar cell production. Machinery needed on the moon to excavate lunar materials and deliver them to a transport system, to beneficiate lunar materials, to produce glasses and ceramics from lunar materials and to chemically process lunar materials into their major oxides and elements are minor mass fractions of the total mass of equipment needed in space to produce an SPS. In addition the processing equipment can throughput several hundred times their own mass each year with very little requirement for makeup mass from earth.

  19. Inflationary perturbation theory is geometrical optics in phase space

    SciTech Connect

    Seery, David; Frazer, Jonathan; Mulryne, David J.; Ribeiro, Raquel H. E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Ribeiro@damtp.cam.ac.uk

    2012-09-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ({sup t}ransport equations{sup )}, analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar 'δN' Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of f{sub NL} in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.

  20. Modular space station phase B extension: Mass properties

    NASA Technical Reports Server (NTRS)

    Duffey, L. A.

    1971-01-01

    The MSS system, capable of supporting a six-man crew, is described as consisting of four common station modules, two special modules (core and power), and a cargo module arranged in a cruciform. The station buildup, and space station subsystems including environmental control life support, electrical power, guidance and control are also described. The MSS system weights are presented for design-to-weight, closeout weights, and shuttle payload weights.

  1. Phase-space description of plasma waves. Part 1. Linear theory

    NASA Astrophysics Data System (ADS)

    Biro, T.; Rönnmark, K.

    1992-06-01

    We develop an (r, k) phase-space description of waves in plasmas by introducing Gaussian window functions to separate short-scale oscillations from long-scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation in an inhomogeneous and time-varying background plasma, we first discuss the proper form of the current response function. In analogy with the particle distribution function f(v, r, t), we introduce a wave density N(k, r, t) on phase space. This function is proved to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible.

  2. Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2012-04-27

    Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.

  3. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  4. Experimental method of optical coherence characterization in phase-space measurement

    NASA Astrophysics Data System (ADS)

    Li, Jie-En; Fu, Jhih-Syuan; Hsiao, Ming-Shu; Tien, Chung-Hao

    2015-09-01

    A novel approach of phase-space measurement made its debut with the experimental result. We first designed an experiment based on the Young's interferometer to characterization the optical coherence property of light source. A well-known algorithm called Hough transformation was applied to deal with the misalignment of micro-lens array by post-processing. The phase-space image of plane wave was then reconstructed from the realigned raw image. Finally, the properties of this system were discussed.

  5. Multiple transition states and roaming in ion-molecule reactions: A phase space perspective

    NASA Astrophysics Data System (ADS)

    Mauguière, Frédéric A. L.; Collins, Peter; Ezra, Gregory S.; Farantos, Stavros C.; Wiggins, Stephen

    2014-01-01

    We provide a dynamical interpretation of the recently identified ‘roaming' mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/unstable manifolds that define transition states for ion-molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roaming region of phase space, in which both reactive and non reactive trajectories can be trapped for arbitrarily long times.

  6. Subpicosecond electron bunch train production using a phase-space exchange technique

    SciTech Connect

    Sun, Y.-E.; Piot, P.; Johnson, A.S.; Lumpkin, A.H.; Maxwell, T.J.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab

    2011-03-01

    Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.

  7. Phase-space distributions in quasi-polar coordinates and the fractional Fourier transform.

    PubMed

    Alieva, T; Bastiaans, M J

    2000-12-01

    The ambiguity function and Cohen's class of bilinear phase-space distributions are represented in a quasipolar coordinate system instead of in a Cartesian system. Relationships between these distributions and the fractional Fourier transform are derived; in particular, derivatives of the ambiguity function are related to moments of the fractional power spectra. A simplification is achieved for the description of underspread signals, for optical beam characterization, and for the generation of signal-adaptive phase-space distributions. PMID:11140493

  8. Interplanetary space science data base and access/display tool on the NSSDC heliospheric CD-ROM

    NASA Technical Reports Server (NTRS)

    Papitashvili, N. E.; King, J. H.

    1995-01-01

    The National Space Science Data Center (NSSDC) has accumulated a rich archive of heliospheric, magnetospheric, and ionospheric data, as well as data from most other NASA-involved science disciplines. To facilitate access to and use of these data, NSSDC has begun to put selected data onto CD-ROM's. This paper describes one such CD-ROM, and the access and display software developed at NSSDC to support its use. The data on the CD-ROM consist primarily of hourly solar wind magnetic field and plasma data from many near-Earth spacecraft (OMNI) and deep space spacecraft (Voyagers, Pioneers, Helios, Pioneer Venus Orbiter). In addition, 5-minute resolution IMP-8 and ISEE-3 magnetic field and plasma data are also included. Data are stored in both ASCII and CDF formats.

  9. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  10. Linear processes in high dimensions: Phase space and critical properties.

    PubMed

    Mastromatteo, Iacopo; Bacry, Emmanuel; Muzy, Jean-François

    2015-04-01

    In this work we investigate the generic properties of a stochastic linear model in the regime of high dimensionality. We consider in particular the vector autoregressive (VAR) model and the multivariate Hawkes process. We analyze both deterministic and random versions of these models, showing the existence of a stable phase and an unstable phase. We find that along the transition region separating the two regimes the correlations of the process decay slowly, and we characterize the conditions under which these slow correlations are expected to become power laws. We check our findings with numerical simulations showing remarkable agreement with our predictions. We finally argue that real systems with a strong degree of self-interaction are naturally characterized by this type of slow relaxation of the correlations. PMID:25974473

  11. Linear processes in high dimensions: Phase space and critical properties

    NASA Astrophysics Data System (ADS)

    Mastromatteo, Iacopo; Bacry, Emmanuel; Muzy, Jean-François

    2015-04-01

    In this work we investigate the generic properties of a stochastic linear model in the regime of high dimensionality. We consider in particular the vector autoregressive (VAR) model and the multivariate Hawkes process. We analyze both deterministic and random versions of these models, showing the existence of a stable phase and an unstable phase. We find that along the transition region separating the two regimes the correlations of the process decay slowly, and we characterize the conditions under which these slow correlations are expected to become power laws. We check our findings with numerical simulations showing remarkable agreement with our predictions. We finally argue that real systems with a strong degree of self-interaction are naturally characterized by this type of slow relaxation of the correlations.

  12. Internet access to the web resources of a geographically distributed system of near-and deep-space monitoring

    NASA Astrophysics Data System (ADS)

    Chernenkov, V. N.; Vitkovskij, V. V.; Kalinina, N. A.

    2007-12-01

    The state and speed characteristics of Web access to the first five nodes of the projected geographically distributed system of scientific monitoring of near and deep space are analyzed. The possibility of developing an architecture involving user query redirection to a caching server is studied. This will make it possible to relieve hardware communication links substantially and speed up HTTP connection time, especially for nodes linked via heavily congested Internet links.

  13. Self-similarity of phase-space networks of frustrated spin models and lattice gas models

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Wang, Feng; Han, Yilong

    2013-03-01

    We studied the self-similar properties of the phase-spaces of two frustrated spin models and two lattice gas models. The frustrated spin models included (1) the anti-ferromagnetic Ising model on a two-dimensional triangular lattice (1a) at the ground states and (1b) above the ground states and (2) the six-vertex model. The two lattice gas models were (3) the one-dimensional lattice gas model and (4) the two-dimensional lattice gas model. The phase spaces were mapped to networks so that the fractal analysis of complex networks could be applied, i.e. the box-covering method and the cluster-growth method. These phase spaces, in turn, establish new classes of networks with unique self-similar properties. Models 1a, 2, and 3 with long-range power-law correlations in real space exhibit fractal phase spaces, while models 1b and 4 with short-range exponential correlations in real space exhibit nonfractal phase spaces. This behavior agrees with one of untested assumptions in Tsallis nonextensive statistics. Hong Kong GRC grants 601208 and 601911

  14. Singularity problem and phase-space noncanonical noncommutativity

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2010-08-01

    The Wheeler-DeWitt equation arising from a Kantowski-Sachs model is considered for a Schwarzschild black hole under the assumption that the scale factors and the associated momenta satisfy a noncanonical noncommutative extension of the Heisenberg-Weyl algebra. An integral of motion is used to factorize the wave function into an oscillatory part and a function of a configuration space variable. The latter is shown to be normalizable using asymptotic arguments. It is then shown that on the hypersurfaces of constant value of the argument of the wave function’s oscillatory piece, the probability vanishes in the vicinity of the black hole singularity.

  15. Space shuttle phase B. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was conducted to identify the differences among total system concepts of space shuttle configurations. Emphasis was placed on concepts that lead to selection of a system that performs the missions within budget and schedule constraints. The spectrum of launch vehicle configurations is illustrated. An inboard profile of the spacecraft is presented to show the interior arrangement of the major subsystems. The performance prediction of the spacecraft during specified portions of the mission is analyzed. A cost comparison of the various concepts is included.

  16. Space qualified Nd:YAG laser (phase 1 - design)

    NASA Technical Reports Server (NTRS)

    Foster, J. D.; Kirk, R. F.

    1971-01-01

    Results of a design study and preliminary design of a space qualified Nd:YAG laser are presented. A theoretical model of the laser was developed to allow the evaluation of the effects of various parameters on its performance. Various pump lamps were evaluated and sum pumping was considered. Cooling requirements were examined and cooling methods such as radiation, cryogenic and conductive were analysed. Power outputs and efficiences of various configurations and the pump and laser lifetime are discussed. Also considered were modulation and modulating methods.

  17. Development of CCD imaging sensors for space applications, phase 1

    NASA Technical Reports Server (NTRS)

    Antcliffe, G. A.

    1975-01-01

    The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.

  18. Alternate space shuttle concepts study: Design requirements and phased programs evaluation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study to determine program and technical alternatives to the design of the space shuttle orbiter is described. The alternatives include a phased approach, involving orbiter development and operation with an expendable booster for an interim period, as well as design variations to the basic vehicle. The space shuttle orbiter configurations and predicted performance parameters are presented.

  19. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  20. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  1. Modeling of recombinant yeast cells: reduction of phase space.

    PubMed

    Birol, G; Birol, I; Kirdar, B; Onsan, Z I

    1997-01-01

    The mechanism of starch fermentation by recombinant Saccharomyces cerevisiae in batch reactor is studied. Experiments were carried in the presence and absence of oxygen, with different initial starch concentrations. A variety of data concerning biotic and abiotic phases are collected. Nonlinear data analysis techniques are used to determine the block diagram of the system under study. Data analysis and processing reported here, are believed to form a basis in further work in structured modeling of biological systems, recombinant yeast cultures in particular. PMID:9603032

  2. Perception of available space during chimpanzee introductions: Number of accessible areas is more important than enclosure size.

    PubMed

    Herrelko, Elizabeth S; Buchanan-Smith, Hannah M; Vick, Sarah-Jane

    2015-01-01

    Restricting animals to different areas of their enclosure, for both brief and extended durations, is a key element of animal management practices. With such restrictions, available space decreases and the choices the animals can make are more limited, particularly in relation to social dynamics. When unfamiliar individuals are introduced to each other, group dynamics can be unpredictable and understanding space usage is important to facilitate successful introductions. We studied the behavioral, welfare-related responses of two groups of zoo-housed chimpanzees (n = 22) as they were introduced to each other and experienced a variety of enclosure restrictions and group composition changes. Our analysis of available space while controlling for chimpanzee density, found that arousal-related scratching and yawning decreased as the number of enclosure areas (separate rooms) available increased, whereas only yawning decreased as the amount of available space (m(2)) increased. Allogrooming, rubbing, and regurgitation/reingestion rates remained constant as both the number of enclosure areas and amount of space changed. Enclosure space is important to zoo-housed chimpanzees, but during introductions, a decrease in arousal-related scratching indicates that the number of accessible areas is more important than the total amount of space available, suggesting that it is important to provide modular enclosures that provide choice and flexible usage, to minimize the welfare impact of short- and long-term husbandry needs. PMID:26235989

  3. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.

    PubMed

    Loke, Desmond; Shi, Luping; Wang, Weijie; Zhao, Rong; Yang, Hongxin; Ng, Lung-Tat; Lim, Kian-Guan; Chong, Tow-Chong; Yeo, Yee-Chia

    2011-06-24

    Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices. PMID:21572204

  4. Natural environment design criteria for the space station program definition phase

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1984-01-01

    The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.

  5. PARAS program: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.

  6. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  7. Ge2Sb2Te5 Confined Structures and Integration of 64 Mb Phase-Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yeung, Fai; Ahn, Su-Jin; Hwang, Young-Nam; Jeong, Chang-Wook; Song, Yoon-Jong; Lee, Su-Youn; Lee, Se-Ho; Ryoo, Kyung-Chang; Park, Jae-Hyun; Shin, Jae-Min; Jeong, Won-Cheol; Kim, Young-Tae; Koh, Gwan-Hyeob; Jeong, Gi-Tae; Jeong, Hong-Sik; Kim, Kinam

    2005-04-01

    Phase-change random access memory is considered a potential challenger for conventional memories, such as dynamic random access memory and flash memory due to its numerous advantages. Nevertheless, high reset current is the ultimate problem in developing high-density phase-change random access memory (PRAM). We focus on the adoption of Ge2Sb2Te5 confined structures to achieve lower reset currents. By changing from a normal to a GST confined structure, the reset current drops to as low as 0.8 mA. Eventually, our integrated 64 Mb PRAM based on 0.18 μm CMOS technology offers a large sensing margin: Rreset ˜200 kΩ and Rset ˜2 kΩ, as well as reasonable reliability: an endurance of 1.0× 109 cycles and a retention time of 2 years at 85°C.

  8. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Kocher, C.; Forrest, L. A., Jr.

    1976-01-01

    Methods for carrying out measurements of earth electromagnetic environment using the space shuttle as a measurement system platform are herein reported. The goal is to provide means for mapping intentional and nonintentional emitters on earth in the frequency range 0.4 to 40 GHz. A survey was made of known emitters using available data from national and international regulatory agencies, and from industry sources. The spatial distribution of sources, power levels, frequencies, degree of frequency re-use, etc., found in the survey, are here presented. A concept is developed for scanning the earth using a directive antenna whose beam is made to rotate at a fixed angle relative to the nadir; the illuminated area swept by the beam is of the form of cycloidal annulus over a sphere. During the beam's sojourn over a point, the receiver sweeps in frequency over ranges in the order of octave width using sweeping filter bandwidths sufficient to give stable readings.

  9. Free-space microwave power transmission study, phase 3

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1975-01-01

    The results of an investigation of the technology of free-space power transmission by microwave beam are presented. A description of the steps that were taken to increase the overall dc to dc efficiency of microwave power transmission from 15 percent to over 50 percent is given. Included in this overall efficiency were the efficiencies of the dc to microwave conversion, the microwave transmission itself, and the microwave to dc conversion. Improvements in launching the microwave beam with high efficiency by means of a dual mode horn resulted in 95 percent of the output of the microwave generator reaching the receiving area. Emphasis was placed upon successive improvements in reception and rectification of the microwave power, resulting in the design of a rectenna device for this purpose whose efficiency was 75 percent. The procedures and the hardware developed were the basis for tests certified by the Jet Propulsion Laboratory in which an overall dc to dc efficiency of 54 percent was achieved.

  10. Phase-space representation and polarization domains of random electromagnetic fields.

    PubMed

    Castaneda, Roman; Betancur, Rafael; Herrera, Jorge; Carrasquilla, Juan

    2008-08-01

    The phase-space representation of stationary random electromagnetic fields is developed by using electromagnetic spatial coherence wavelets. The propagation of the field's power and states of spatial coherence and polarization results from correlations between the components of the field vectors at pairs of points in space. Polarization domains are theoretically predicted as the structure of the field polarization at the observation plane. In addition, the phase-space representation provides a generalization of the Poynting theorem. Theoretical predictions are examined by numerically simulating the Young experiment with electromagnetic waves. The experimental implementation of these results is a current subject of research. PMID:18670539

  11. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  12. Space observations of cold-cloud phase change

    PubMed Central

    Choi, Yong-Sang; Lindzen, Richard S.; Ho, Chang-Hoi; Kim, Jinwon

    2010-01-01

    This study examines the vertically resolved cloud measurements from the cloud-aerosol lidar with orthogonal polarization instrument on Aqua satellite from June 2006 through May 2007 to estimate the extent to which the mixed cloud-phase composition can vary according to the ambient temperature, an important concern for the uncertainty in calculating cloud radiative effects. At -20 °C, the global average fraction of supercooled clouds in the total cloud population is found to be about 50% in the data period. Between -10 and -40 °C, the fraction is smaller at lower temperatures. However, there are appreciable regional and temporal deviations from the global mean (>  ± 20%) at the isotherm. In the analysis with coincident dust aerosol data from the same instrument, it appears that the variation in the supercooled cloud fraction is negatively correlated with the frequencies of dust aerosols at the -20 °C isotherm. This result suggests a possibility that dust particles lifted to the cold cloud layer effectively glaciate supercooled clouds. Observations of radiative flux from the clouds and earth’s radiant energy system instrument aboard Terra satellite, as well as radiative transfer model simulations, show that the 20% variation in the supercooled cloud fraction is quantitatively important in cloud radiative effects, especially in shortwave, which are 10 - 20 W m-2 for regions of mixed-phase clouds affected by dust. In particular, our results demonstrate that dust, by glaciating supercooled water, can decrease albedo, thus compensating for the increase in albedo due to the dust aerosols themselves. This has important implications for the determination of climate sensitivity. PMID:20534562

  13. The space time variety of the hyperradiance from phase-locked soliton oscillators

    NASA Astrophysics Data System (ADS)

    Lin, Chang; Lin, Mai-mai

    2008-12-01

    The hyperradiance from phase-locked soliton oscillators is investigated by using the numerical simulation method for the perturbed sine-Gordon equation. Space-time variety for the emitted power from phase-locked soliton oscillators have been diffusely exhibited for the two magnetically coupled long Josephson junctions, operated in singlefluxon modes and involving the family of solutions. We derive some simulation results of space-time character, having the extensive physics meaning, for the theory for superradiance from phase-locked oscillators.

  14. LONGITUDINAL PHASE SPACE CHARACTERIZATION OF ELECTRON BUNCHES AT THE JLAB FEL FACILITY

    SciTech Connect

    Shukui Zhang; Stephen Benson; David Douglas; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    We report longitudinal phase space measurements of short electron bunches at the 10kW Free-Electron Laser Facility at Jefferson Lab using broadband synchrotron radiation and a remotely controlled fast streak camera. Accurate measurements are possible because the optical transport system uses only reflective components that do not introduce dispersion. The evolution of longitudinal phase space of the electron beam can be observed in real time while phases of accelerator RF components are being adjusted. This fast and efficient diagnostic enhances the suite of machine setup tools available to JLab FEL operators and applies to other accelerators. The results for certain beam setups will be presented.

  15. Energy content of stormtime ring current from phase space mapping simulations

    SciTech Connect

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-08-20

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm.

  16. The effective two-dimensional phase space of cosmological scalar fields

    NASA Astrophysics Data System (ADS)

    Edwards, David C.

    2016-08-01

    It has been shown by Remmen and Carroll [1] that, for a model universe which contains only a kinetically canonical scalar field minimally coupled to gravity it is possible to choose `special coordinates' to describe a two-dimensional effective phase space. The special, non-canonical, coordinates are phi,dot phi and the ability to describe an effective phase space with these coordinates empowers the common usage of phi‑dot phi as the space to define inflationary initial conditions. This paper extends the result to the full Horndeski action. The existence of a two-dimensional effective phase space is shown for the general case. Subsets of the Horndeski action, relevant to cosmology are considered as particular examples to highlight important aspects of the procedure.

  17. Phase 1 Space Fission Propulsion System Testing and Development Progress

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)

    2001-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.

  18. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core. Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans. .

  19. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    Dyke, Melissa Van; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core. Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.

  20. Evaluating the robustness of the enantioselective stationary phases on the Rosetta mission against space vacuum vaporization

    NASA Astrophysics Data System (ADS)

    Meierhenrich, Uwe J.; Cason, Julie R. L.; Szopa, Cyril; Sternberg, Robert; Raulin, François; Thiemann, Wolfram H.-P.; Goesmann, Fred

    2013-12-01

    The European Space Agency's Rosetta mission was launched in March 2004 in order to reach comet 67P/Churyumov-Gerasimenko by August 2014. The Cometary Sampling and Composition experiment (COSAC) onboard the Rosetta mission's lander "Philae" has been designed for the cometary in situ detection and quantification of organic molecules using gas chromatography coupled to mass spectrometry (GC-MS). The GC unit of COSAC is equipped with eight capillary columns that will each provide a specific stationary phase for molecular separation. Three of these stationary phases will be used to chromatographically resolve enantiomers, as they are composed of liquid polymers of polydimethylsiloxane (PDMS) to which chiral valine or cyclodextrin units are attached. Throughout the ten years of Rosetta's journey through space to reach comet 67P, these liquid stationary phases have been exposed to space vacuum, as the capillary columns within the COSAC unit were not sealed or filled with carrier gas. Long term exposures to space vacuum can cause damage to such liquid stationary phases as key monomers, volatiles, and chiral selectors can be vaporized and lost in transit. We have therefore exposed identical spare units of COSAC's chiral stationary phases over eight years to vacuum conditions mimicking those experienced in space and we have now investigated their resolution capabilities towards different enantiomers both before and after exposure to space vacuum environments. We have observed that enantiomeric resolution capabilities of these chiral liquid enantioselective stationary phases has not been affected by exposure to space vacuum conditions. Thus we conclude that the three chiral stationary phases of the COSAC experiment onboard the Rosetta mission lander "Philae" can be considered to have maintained their resolution capacities throughout their journey prior to cometary landing in November 2014.

  1. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  2. Painting phase spaces to put frozen orbits in context

    NASA Astrophysics Data System (ADS)

    Coffey, S.; Deprit, A.; Deprit, E.

    1991-08-01

    Frozen orbits are orbits whose average eccentricities and inclinations are constant. It is shown how bifurcations create frozen orbits near the critical inclination at a given energy; in particular how, due to a symmetry breaking when the odd zonal harmonics are admitted in the model, the evolution along the sequences of frozen orbits differs drastically from the one obtained when only the even zonal harmonics are taken in. A model problem involving the first nine zonal harmonics fits very well, according to the findings, the very long term orbital behavior of satellites in the Molnya class; in that model, quite clearly almost circular frozen orbits are detected at low inclinations, and an inclination slightly above the critical one is identified where there exists a circular frozen orbit. The techniques used in this paper are a mix of symbolic manipulations by computers, global representation of phase flow in color by means of massively parallel processors, and interaction between graphics and numerical analysis at the screen of a workstation.

  3. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  4. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  5. Looking for phase-space structures in star-forming regions: an MST-based methodology

    NASA Astrophysics Data System (ADS)

    Alfaro, Emilio J.; González, Marta

    2016-03-01

    We present a method for analysing the phase space of star-forming regions. In particular we are searching for clumpy structures in the 3D sub-space formed by two position coordinates and radial velocity. The aim of the method is the detection of kinematic segregated radial velocity groups, that is, radial velocity intervals whose associated stars are spatially concentrated. To this end we define a kinematic segregation index, tilde{Λ }(RV), based on the Minimum Spanning Tree graph algorithm, which is estimated for a set of radial velocity intervals in the region. When tilde{Λ }(RV) is significantly greater than 1 we consider that this bin represents a grouping in the phase space. We split a star-forming region into radial velocity bins and calculate the kinematic segregation index for each bin, and then we obtain the spectrum of kinematic groupings, which enables a quick visualization of the kinematic behaviour of the region under study. We carried out numerical models of different configurations in the sub-space of the phase space formed by the coordinates and the that various case studies illustrate. The analysis of the test cases demonstrates the potential of the new methodology for detecting different kind of groupings in phase space.

  6. Temperature and phase-space density of a cold atom cloud in a quadrupole magnetic trap

    NASA Astrophysics Data System (ADS)

    Ram, S. P.; Mishra, S. R.; Tiwari, S. K.; Rawat, H. S.

    2014-08-01

    We present studies on modifications in the temperature, number density and phase-space density when a laser-cooled atom cloud from optical molasses is trapped in a quadrupole magnetic trap. Theoretically, for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap is shown first to increase with increasing magnetic field gradient and then to decrease with it after attaining a maximum value at an optimum value of the magnetic-field gradient. The experimentally-measured variation in the phase-space density in the magnetic trap with changing magnetic field gradient is shown to exhibit a similar trend. However, the experimentally-measured values of the number density and the phase-space density are much lower than the theoretically-predicted values. This is attributed to the experimentally-observed temperature in the magnetic trap being higher than the theoretically-predicted temperature. Nevertheless, these studies can be useful for setting a higher phase-space density in the trap by establishing an optimal value of the field gradient for a quadrupole magnetic trap.

  7. Remote Access to Earth Science Data by Content, Space and Time

    NASA Technical Reports Server (NTRS)

    Dobinson, E.; Raskin, G.

    1998-01-01

    This demo presents the combination on an http-based client/server application that facilitates internet access to Earth science data coupled with a Java applet GUI that allows the user to graphically select data based on spatial and temporal coverage plots and scientific parameters.

  8. The scientific potential of increased access to the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Margot, J. L.

    2014-12-01

    Steven J. Ostro devoted most of his career to asteroid radar astronomyand encouraged young scientists at a variety of institutions toobserve with the Goldstone Solar System Radar. I will review thisimpressive legacy with results from observations of asteroids,terrestrial planets, and Galilean satellites. Ostro's vision providesa glimpse of the potential of making the DSN accessible to a broadercommunity.

  9. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and

  10. Quantum phase-space picture of Bose-Einstein condensates in a double well

    SciTech Connect

    Mahmud, Khan W.; Perry, Heidi; Reinhardt, William P.

    2005-02-01

    We present a quantum phase-space model of the Bose-Einstein condensate (BEC) in a double-well potential. In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information is extracted from the stationary quantum states using the Husimi distribution function. We show that the mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states, and that only 4-8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC, we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space analogy also suggests that a {pi} phase-displaced wave packet put on the unstable fixed point on a separatrix bifurcates to create a superposition of two pendulum rotor states--a macroscopic superposition state of BEC. We show that the choice of initial barrier height and ramping, following a {pi} phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.

  11. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    NASA Technical Reports Server (NTRS)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  12. NASA Hypersonic X-Plane Flight Development of Technologies and Capabilities for the 21st Century Access to Space

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Trippensee, Gary

    1997-01-01

    A new family of NASA experimental aircraft (X-planes) is being developed to uniquely, yet synergistically tackle a wide class of technologies to advance low-cost, efficient access to space for a range of payload classes. This family includes two non-air-breathing rocket-powered concepts, the X-33 and the X-34 aircraft, and two air-breathing vehicle concepts, the scramjet-powered Hyper-X and the rocket-based combined cycle flight vehicle. This report describes the NASA vision for reliable, reusable, fly-to-orbit spacecraft in relation to the current space shuttle capability. These hypersonic X-plane programs, their objectives, and their status are discussed. The respective technology sets and flight program approaches are compared and contrasted. Additionally, the synergy between these programs to advance the entire technology front in a uniform way is discussed. NASA's view of the value of in-flight hypersonic experimentation and technology development to act as the ultimate crucible for proving and accelerating technology readiness is provided. Finally, an opinion on end technology products and space access capabilities for the 21st century is offered.

  13. Putting a Medical Library Online: Phase III--Remote Access to CD-ROMs.

    ERIC Educational Resources Information Center

    Kittle, Paul

    1989-01-01

    Describes the implementation of a project that provides dial-up access to MEDLINE on remote optical data disk (CD-ROM) using software that enables callers to use programs like Wordstar, Lotus, and dBase. Highlights include networking CD-ROM databases, hardware considerations, advantages and disadvantages of remote access, and future plans. A…

  14. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    PubMed

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng

    2015-11-15

    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method. PMID:25977034

  15. Accessing space: A catalogue of process, equipment and resources for commercial users, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A catalogue is presented which is intended for commercial developers who are considering, or who have in progress, a project involving the microgravity environment of space or remote sensing of the Earth. An orientation is given to commercial space activities along with a current inventory of equipment, apparatus, carriers, vehicles, resources, and services available from NASA, other government agencies and U.S. industry. The information describes the array of resources that commercial users should consider when planning ground or space based developments. Many items listed have flown in space or been tested in labs and aboard aircraft and can be reused, revitalized, or adapted to suit specific requirements. New commercial ventures are encouraged to exploit existing inventory and expertise to the greatest extent possible.

  16. Small Satellites for Atmospheric and near earth Space sciences - the Indian perspectives of a low cost access to Space

    NASA Astrophysics Data System (ADS)

    Sridharan, R.

    Small satellites of 100-400 kg class are expected to play bigger roles in the years to come. With the advancement of technology in terms of miniaturization and also reliability, it has become possible to configure small satellites which otherwise would have demanded larger platforms, both in terms of weight and power. The atmospheric and near Earth space processes are truly multi-dimensional and are extremely complex with large temporal and spatial variability and also respond closely to the processes in the Sun. As a consequence, no single satellite mission would be able to provide the complete information thus warranting multiple missions. With the successful demonstration of multiple satellites launching capability, the spare capacity of the launch vehicles could be effectively and judiciously used for launching dedicated small scientific satellites as co passengers with negligible cost factor. This is viewed as an opening up of an otherwise difficult opportunity involving dedicated launches. With the prospect of multiple satellites for science missions becoming a reality the overall mission with an active life of 2-3 years could be realized with judicious choice of components. This is expected to bring in a larger user community in the country. The first step in this direction is the configuration of a modular micro and small satellite bus. The upcoming missions of TWSAT (Third world satellite), Youth Sat (active participation of the student community), SARAL (Satellite for ARGOs and Altimetry), SENSE/E and SENSE/P (Satellite for Earth's Near Space environment), ISTAG (Indian Satellite for Aerosols and Gases), are utilizing the above concepts. ISRO has also come out with AO's for Astronomy and Astrophysics payloads, as most of the stringent requirements of various experiments could be met with the small satellite platforms themselves. A brief outline of the upcoming and proposed activities would be presented and discussed in the talk.

  17. 3D imaging in volumetric scattering media using phase-space measurements.

    PubMed

    Liu, Hsiou-Yuan; Jonas, Eric; Tian, Lei; Zhong, Jingshan; Recht, Benjamin; Waller, Laura

    2015-06-01

    We demonstrate the use of phase-space imaging for 3D localization of multiple point sources inside scattering material. The effect of scattering is to spread angular (spatial frequency) information, which can be measured by phase space imaging. We derive a multi-slice forward model for homogenous volumetric scattering, then develop a reconstruction algorithm that exploits sparsity in order to further constrain the problem. By using 4D measurements for 3D reconstruction, the dimensionality mismatch provides significant robustness to multiple scattering, with either static or dynamic diffusers. Experimentally, our high-resolution 4D phase-space data is collected by a spectrogram setup, with results successfully recovering the 3D positions of multiple LEDs embedded in turbid scattering media. PMID:26072807

  18. High-order continuum kinetic method for modeling plasma dynamics in phase space

    DOE PAGESBeta

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore » algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less

  19. Unified matrix approach to the description of phase-space rotators.

    PubMed

    Gitin, Andrey V

    2016-03-01

    In optics, the rotation of a phase-space can be realized via light propagation through both an inhomogeneous medium with a radial gradient of refractive index and two special kinds of mirror-symmetrical optical systems suggested by Lohmann. Although light propagation through Lohmann's systems is described in terms of matrix optics, light propagation through the gradient-index medium is traditionally described as a solution of the wave equation. The difference in these descriptions hinders the understanding of the phase-space rotators. Fortunately, there is a matrix description of light propagation through a gradient-index medium too. A general description of the phase-space rotators is presented, which can be used to treat light propagation through both Lohmann's systems and the gradient-index medium in a unified matrix manner. PMID:26974609

  20. Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

  1. Amateur Radio on the International Space Station - Phase 2 Hardware System

    NASA Technical Reports Server (NTRS)

    Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.

    2003-01-01

    The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.

  2. A packetised remote visual access data system for space station interactive payload operations.

    PubMed

    Carvell, R P

    1987-09-01

    Potential users of the pressurised Columbus elements, (the Attached Pressurised Module and the Man-Tended Free Flyer), were consulted in order to establish the requirements necessary to achieve effective and efficient remote interactive payload operations. These are briefly described and clearly indicate that the key to such operations is a versatile remote visual access (video) system which is well-tuned to the requirements of the users in both the on-board and ground segments. A packetised remote visual access data system is proposed which accommodates these requirements and offers a very flexible operational environment. It incorporates a scheme for optimising users' remote visual access to their experiments. Methods of implementing the necessary multiplexing and compression aspects of the system are discussed. A scheme for centralized on-board monitoring, which is complicated by the wide range of video sources required by the users, is outlined and aspects of the ground segment, in particular the problem is link delays, are considered. PMID:11542957

  3. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  4. Evolution of electron beam phase space distribution in a high-gain FEL

    SciTech Connect

    Webb,S.D.; Litvinenko, V. N.

    2009-08-23

    FEL-based coherent electron cooling (CEC) offers a new avenue to achieve high luminosities in high energy colliders such as RHIC, LHC, and eRHIC. Traditional treatments consider the FEL as an amplifier of optical waves with specific initial conditions, focusing on the resulting field. CEC requires knowledge of the phase space distribution of the electron beam in the FEL. We present 1D analytical results for the phase space distribution of an electron beam with an arbitrary initial current profile, and discuss approaches of expanding to 3D results.

  5. Nonlinear satellite wakes in planetary rings. I - Phase-space kinematics

    NASA Technical Reports Server (NTRS)

    Stewart, Glen R.

    1991-01-01

    The explicit expression presently derived for the phase-space density of a planetary ring subjected to perturbations by a proximate satellite recovers the usual perturbed-streamline equations by drawing first-order moments of the phase-space density. The surface density obtained is positive-definite in virtue of taking the ring particles' finite-velocity dispersion into account. The satellite-wake local mean velocity components deviate from the streamline equations' sinusoidal form; this deviation grows as the wake moves downstream from the shepherding satellite.

  6. Phase-space dynamics of ionization injection in plasma-based accelerators.

    PubMed

    Xu, X L; Hua, J F; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Joshi, C; Mori, W B

    2014-01-24

    The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mixing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simulations. This theory includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced using ionization injection methods. PMID:24484147

  7. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources

    NASA Astrophysics Data System (ADS)

    Townson, Reid W.; Jia, Xun; Tian, Zhen; Jiang Graves, Yan; Zavgorodni, Sergei; Jiang, Steve B.

    2013-06-01

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  8. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    NASA Technical Reports Server (NTRS)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  9. A Gaussian wave packet phase-space representation of quantum canonical statistics

    SciTech Connect

    Coughtrie, David J.; Tew, David P.

    2015-07-28

    We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.

  10. The application of the phase space time evolution method to electron shielding

    NASA Technical Reports Server (NTRS)

    Cordaro, M. C.; Zucker, M. S.

    1972-01-01

    A computer technique for treating the motion of charged and neutral particles and called the phase space time evolution method was developed. This technique employs the computer's bookkeeping capacity to keep track of the time development of a phase space distribution of particles. This method was applied to a study of the penetration of electrons. A 1 MeV beam of electrons normally incident on a semi-infinite slab of aluminum was used. Results of the calculation were compared with Monte Carlo calculations and experimental results. Time-dependent PSTE electron penetration results for the same problem are presented.

  11. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.

    PubMed

    Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B

    2013-06-21

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  12. Free space optical communication link using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2015-03-01

    Many components for free space optical communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Non-mechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. In this paper a small-scale silicon photonic optical phased array is demonstrated for both the transmitter and receiver functions in a free space optical link. The device using an array of thermo-optically controlled waveguide phase shifters and demonstrates one-dimensional steering with a single control electrode. Transmission of a digitized video data stream over the link is shown.

  13. Phase-space description of plasma waves: Linear and nonlinear theory

    NASA Astrophysics Data System (ADS)

    Biro, Thomas

    1992-11-01

    A (r,k) phase description of waves in plasmas is developed by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, the proper form of the current response function, is discussed. On the analogy of the particle distribution function f(v,r,t), a wave density N(k,r,t) is introduced on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows the damping or growth of wave density along rays to be described. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, a very general formula for the second order nonlinear current is obtained in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. Kinetic equations for weakly inhomogeneous and turbulent plasmas are derived, including the effects of inhomogeneous turbulence, wave convection and refraction.

  14. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology

  15. The place of receptionists in access to primary care: Challenges in the space between community and consultation.

    PubMed

    Neuwelt, Pat M; Kearns, Robin A; Browne, Annette J

    2015-05-01

    At the point of entry to the health care system sit general practice receptionists (GPRs), a seldom studied employment group. The place of the receptionist involves both a location within the internal geography of the clinic and a position within the primary care team. Receptionists literally 'receive' those who phone or enter the clinic, and are a critical influence in their transformation from a 'person' to a 'patient'. This process occurs in a particular space: the 'waiting room'. We explore the waiting room and its dynamics in terms of 'acceptability', an under-examined aspect of access to primary care. We ask 'How do GPRs see their role with regard to patients with complex health and social needs, in light of the spatio-temporal constraints of their working environments?' We engaged receptionists as participants to explore perceptions of their roles and their workspaces, deriving narrative data from three focus groups involving 14 GPRs from 11 practices in the Northland region of New Zealand. The study employed an adapted form of grounded theory. Our findings indicate that GPRs are on the edge of the practice team, yet carry a complex role at the frontline, in the waiting space. They are de facto managers of this space; however, they have limited agency within general practice settings, due to the constraints imposed upon them by physical and organisational structures. The agency of GPRs is most evident in their ability to shape the social dynamics of the waiting space, and to frame the health care experience as positive for people whose usual experience is marginalisation. We conclude that, if well supported, receptionists have the potential to positively influence health care acceptability, and patients' access to care. PMID:25455478

  16. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  17. Phase space gradient of dissipated work and information: A role of relative Fisher information

    SciTech Connect

    Yamano, Takuya

    2013-11-15

    We show that an information theoretic distance measured by the relative Fisher information between canonical equilibrium phase densities corresponding to forward and backward processes is intimately related to the gradient of the dissipated work in phase space. We present a universal constraint on it via the logarithmic Sobolev inequality. Furthermore, we point out that a possible expression of the lower bound indicates a deep connection in terms of the relative entropy and the Fisher information of the canonical distributions.

  18. Chemical potential driven phase transition of black holes in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio

    2015-11-01

    Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.

  19. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  20. Extending the scanning angle of a phased array antenna by using a null-space medium.

    PubMed

    Sun, Fei; He, Sailing

    2014-01-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198

  1. Extending the scanning angle of a phased array antenna by using a null-space medium

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2014-10-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.

  2. Extending the scanning angle of a phased array antenna by using a null-space medium

    PubMed Central

    Sun, Fei; He, Sailing

    2014-01-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198

  3. Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit

    NASA Technical Reports Server (NTRS)

    Elgradechi, Amine M.

    1993-01-01

    Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.

  4. Phase A conceptual design study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.

  5. Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    PubMed Central

    Braendle, Christian; Baer, Charles F.; Félix, Marie-Anne

    2010-01-01

    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that

  6. A Characterization of Endurance in 64 Mbit Ferroelectric Random Access Memory by Analyzing the Space Charge Concentration

    NASA Astrophysics Data System (ADS)

    Lee, Eun Sun; Jung, Dong Jin; Kang, Young Min; Kim, Hyun Ho; Hong, Young Ki; Park, Jung Hoon; Kuk Kang, Seung; Kim, Jae Hyun; San Kim, Hee; Jung, Won Woong; Ahn, Woo Song; Jung, Ju Young; Kang, Jin Young; Choi, Do Yeon; Goh, Han Kyung; Kim, Song Yi; Lee, Sang Young; Jeong, Hong Sik

    2008-04-01

    Space charge concentration due to fatigue cycles was examined with an adequate modeling in order to expect read/write endurance of a 64 Mbit one-transistor and one-capacitor (1T1C) ferroelectric random access memory (FRAM). For monitoring the change in space charge concentration according to fatigue cycles, we assumed that our ferroelectric capacitor is governed by a partially depleted Schottky conduction model. With this, the space charge concentration at the each decade of the fatigue cycles was calculated by measuring the current-voltage characteristics. The space charge concentration at the initial stage was evaluated into 1.95 ×1020 and 2.16 ×1020/cm3 after the 1011 cycles. The concentration of 2.29 ×1020/cm3 was expected at the fatigue cycles of 1016 through a linear regression of the concentration plot against fatigue cycles. Accordingly, it could be said that our ferroelectric capacitor has few problems of endurance up to the 1016 cycles considering the concentration of ˜1020 and the film thickness of 80 nm. Other empirical data obtained in the capacitor level after full integration are supporting this expectation as well.

  7. Group space allowance has little effect on sow health, productivity, or welfare in a free-access stall system.

    PubMed

    Mack, L A; Lay, D C; Eicher, S D; Johnson, A K; Richert, B T; Pajor, E A

    2014-06-01

    Free-access stalls allow sows to choose the protection of a stall or use of a shared group space. This study investigated the effect of group space width, 0.91 (SS), 2.13 (IS), and 3.05 (LS) m, on the health, production, behavior, and welfare of gestating sows. Nine replications of 21 (N = 189) gestating sows were used. At gestational d 35.4 ± 2.3, the pregnant sows were distributed into 3 pens of 7 sows, where they remained until 104.6 ± 3.5 d. Each treatment pen had 7 free-access stalls and a group space that together provided 1.93 (SS), 2.68 (IS), or 3.24 (LS) m(2)/sow. Baseline measurements were obtained before mixing. Back fat depth, BW, BCS, and lameness were measured monthly, and skin lesions were scored weekly. Blood was collected monthly for hematological, immunological, and cortisol analyses. Sow behavior was video recorded continuously during the initial 4 d of treatment and 24 h every other week thereafter. Behavior was analyzed for location, posture, pen investigation, social contact, and aggression. Skin response to the mitogen concanavalin A (Con A) was tested at mean gestational d 106. Litter characteristics including size and weight were collected at birth and weaning. The data were analyzed using a mixed model. Multiple comparisons were adjusted with the Tukey-Kramer and Bejamini-Hochberg methods. Group space allowance had no effect on any measure of sow health, physiology, or production (P ≥ 0.10). Sows in the SS, IS, and LS pens spent 77.88% ± 3.88%, 66.02% ± 3.87%, and 63.64% ± 3.91%, respectively, of their time in the free-access stalls (P = 0.12). However, SS sows used the group space less than IS and LS sows (P = 0.01). Overall, pen investigatory behavior was not affected by group space allowance (P = 0.91). Sows in the LS pens spent more time in a social group than SS sows (P = 0.02), whereas sows in IS pens were intermediate to, but not different from, the other treatments (P ≥ 0.10). The size of the social groups was also

  8. Holographic phase space: c-functions and black holes as renormalization group flows

    NASA Astrophysics Data System (ADS)

    Paulos, Miguel F.

    2011-05-01

    We construct a mathcal{N} -function for Lovelock theories of gravity, which yields a holographic c-function in domain-wall backgrounds, and seemingly generalizes the concept for black hole geometries. A flow equation equates the monotonicity properties of mathcal{N} with the gravitational field, which has opposite signs in the domain-wall and black hole backgrounds, due to the presence of negative/positive energy in the former/latter, and accordingly mathcal{N} monotonically decreases/increases from the UV to the IR. On AdS spaces the mathcal{N} -function is related to the Euler anomaly, and at a black hole horizon it is generically proportional to the entropy. For planar black holes, mathcal{N} diverges at the horizon, which we interpret as an order N 2 increase in the number of effective degrees of freedom. We show how mathcal{N} can be written as the ratio of the Wald entropy to an effective phase space volume, and using the flow equation relate this to Verlinde's notion of gravity as an entropic force. From the effective phase space we can obtain an expression for the dual field theory momentum cut-off, matching a previous proposal in the literature by Polchinski and Heemskerk. Finally, we propose that the area in Planck units counts states, not degrees of freedom, and identify it also as a phase space volume. Written in terms of the proper radial distance β, it takes the suggestive form of a canonical partition function at inverse temperature β, leading to a "mean energy" which is simply the extrinsic curvature of the surface. Using this we relate this definition of holographic phase space with the effective phase space appearing in the mathcal{N} -function.

  9. Pickup Ion Phase Space Distributions at Titan in a Three Dimensional Exosphere

    NASA Technical Reports Server (NTRS)

    Hartle, Richard; Sittler, Edward

    2006-01-01

    The composition and structure of neutral exospheres imbedded in moving plasmas can be determined by measurements of the velocity distributions of their pickup ion progeny. In turn, the velocity distributions are dependent on the spatial structure of the neutral source gases. Since Titan's neutral exosphere extends into the Saturn's magnetosphere (or solar wind) and well above its ionopause, it serves as a good place to analyze such characteristics. They are analyzed using pickup ion measurements made by the Cassini Plasma Spectrometer (CAPS) at Titan [e.g., Hartle et al., 2006] and an ion kinetic model. An early version of the model [Hartle and Sittler, 2007] is an expression describing the phase space density of pickup ions, which is derived from the Vlasov equation with an ion source that explicitly accounts for the velocity and spatial variation of the exosphere source gases. The current version used here includes exosphere source gases in three dimensions. A fundamental parameter of the phase space densities is the ratio of the gyroradius to the neutral scale height alpha, = r(sub g)/H. Titan's exosphere structure yields pickup ions whose phase space distributions are beam-like when alpha >> 1 and fluid-like when alpha << 1. Downstream from the source peak, the light pickup ions, with alpha << 1, are easily observed because their phase space densities are almost uniform over the orbit phases. On the other hand, the phase space distributions of the heavier ions, with alpha >> 1, peak over narrow velocity and spatial ranges. This beam-like nature makes it considerably more difficult to observe heavy ions because their downstream positions and viewing directions are narrowly constrained. Examples of these extremes will be discussed.

  10. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    NASA Technical Reports Server (NTRS)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  11. Phase-space structure of the Buckingham's two-body problem

    NASA Astrophysics Data System (ADS)

    Pricopi, D.; Popescu, E.

    2016-06-01

    In this paper, we study the global flow for the two-body problem associated to the Buckingham potential. For this, using McGehee-type transformations, we write the regularized equations of motion. Then, reducing the 4-dimensional phase space to a 2-dimension one, the global flow in the phase plane is described for all possible values of the parameters of the potential and those of the energy and angular momentum constants. Every phase trajectory is interpreted in terms of physical motion, our problem being depicted both geometrically and physically.

  12. Design of multisample, multistep phase partitioning apparatus for use on Space Shuttle Spacelab, and Spacelab missions

    NASA Technical Reports Server (NTRS)

    Deuser, Mark S.; Vanalstine, James M.; Vellinger, John C.; Wessling, Francis C.; Lundquist, Charles A.

    1992-01-01

    Traditional separation techniques are inadequate for many new bioprocessing challenges. Innovative separation methods such as aqueous two phase partitioning are needed to perpetuate bioprocess commercialization. Aqueous two phase polymer partitioning systems provide a process for separating biological materials when combined with microgravity. An innovative space qualified apparatus developed for carrying out separations by partitioning in immiscible polymer systems under mirogravity conditions is described. The apparatus offers an innovative approach to low gravity bioseparations in general and phase partitioning in particular. These capabilities support NASA's interest in serving the biotechnology research community and providing quantitative data in the gravity dependent components of separation processes.

  13. Molecular phase space transport in water: Non-stationary random walk model

    NASA Astrophysics Data System (ADS)

    Nerukh, Dmitry; Ryabov, Vladimir; Taiji, Makoto

    2009-11-01

    Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).

  14. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  15. Hénon-Heiles interaction for hydrogen atom in phase space

    NASA Astrophysics Data System (ADS)

    da Cruz Filho, J. S.; Amorim, R. G. G.; Ulhoa, S. C.; Khanna, F. C.; Santana, A. E.; Vianna, J. D. M.

    2016-03-01

    Using elements of symmetry, as gauge invariance, several aspects of a Schrödinger equation represented in phase space are introduced and analyzed under physical basis. The hydrogen atom is explored in the same context. Then we add a Hénon-Heiles potential to the hydrogen atom in order to explore chaotic features.

  16. Phase Space Approach for S2 arrow S0 internal conversion in the benzene molecule.

    NASA Astrophysics Data System (ADS)

    Kallush, Shimshon; Segev, Bilha; Sergeev, Alexei; Heller, Eric J.

    2000-06-01

    The theoretical problem of finding propensity rules for the partition of energy between competing vibrations in a radiationless vibronic relaxation transition, is converted by the phase-space method of [1,2] to the simple mathematical problem of finding a maximum for a simple function under a constraint. The function is the Wigner function of the initial state and the constraint is energy conservation, defining an accepting energy surface in phase space. We apply this phase space method for finding propensity rules for vibronic transitions when the Frack-Condon factors are exponentially small to the classical example of the benzene molecule. We extend the method to forbidden transitions and include in the analysis non-harmonic force-field effects. Using the phase space analysis, we explain the non-classical behavior of the S_2arrow S0 relaxation of the benzene. Given the energy gap, reasonable displacements and recently calculated force fields [3] we show that almost all the energy must go to C-H stretching. Non-harmonic effects increase in this case the transition rate but do not change the partition of energy between the accepting vibrational modes. [1] E.J. Heller and D. Beck, Chem. Phys. Lett. 202, 350 (1993). [2] B. Segev and E.J. Heller, Journal of Chemical Physics, 112, 4004-4013 (2000). [3] A. Miani, E. Cane, P. Palmieri, A. Trombetti,N.C. Handy, J. Chem. Phys., 112, 248-259 (2000).

  17. Phase space and jet definitions in soft-collinear effective theory

    SciTech Connect

    Cheung, William Man-Yin; Luke, Michael; Zuberi, Saba

    2009-12-01

    We discuss consistent power counting for integrating soft and collinear degrees of freedom over arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop with several jet algorithms: JADE, Sterman-Weinberg and k{sub perpendicular}. Consistently applying soft-collinear effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents double counting of final states. The resulting phase space integrals over soft and collinear regions are individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether the soft and collinear contributions are individually infrared safe depends on the jet definition. We show that while this is true at one-loop for JADE and Sterman-Weinberg, the k{sub perpendicular} algorithm does not factorize into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are infrared safe.

  18. Technology Integration: Exploring Interactive Whiteboards as Dialogic Spaces in the Foundation Phase Classroom

    ERIC Educational Resources Information Center

    de Silva, Chamelle R.; Chigona, A.; Adendorff, S. A.

    2016-01-01

    Among its many affordances, the interactive whiteboard (IWB) as a digital space for children's dialogic engagement in the Foundation Phase classroom remains largely under-exploited. This paper emanates from a study which was undertaken in an attempt to understand how teachers acquire knowledge of emerging technologies and how this shapes their…

  19. Quantum de Finetti theorems and mean-field theory from quantum phase space representations

    NASA Astrophysics Data System (ADS)

    Trimborn, F.; Werner, R. F.; Witthaut, D.

    2016-04-01

    We introduce the number-conserving quantum phase space description as a versatile tool to address fundamental aspects of quantum many-body systems. Using phase space methods we prove two alternative versions of the quantum de Finetti theorem for finite-dimensional bosonic quantum systems, which states that a reduced density matrix of a many-body quantum state can be approximated by a convex combination of product states where the error is proportional to the inverse particle number. This theorem provides a formal justification for the mean-field description of many-body quantum systems, as it shows that quantum correlations can be neglected for the calculation of few-body observables when the particle number is large. Furthermore we discuss methods to derive the exact evolution equations for quantum phase space distribution functions as well as upper and lower bounds for the ground state energy. As an important example, we consider the Bose-Hubbard model and show that the mean-field dynamics is given by a classical phase space flow equivalent to the discrete Gross-Pitaevskii equation.

  20. On the nonclassical character of the phase-space representations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Guz, W.

    1985-02-01

    The quasiclassical representations of quantum theory, generalizing the concept of a phase-space representation of quantum mechanics, are studied with particular emphasis on some questions connected with the Jordan structure of the classical and quantum algebras of observables. A generalized version of the theorem of Gleason, Kahane, and Zelazko is used to establish some nonclassical features of these representations.