Science.gov

Sample records for accessible temperature range

  1. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period. PMID:12167846

  2. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  3. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  4. Climatology: Contrails reduce daily temperature range

    NASA Astrophysics Data System (ADS)

    Travis, David J.; Carleton, Andrew M.; Lauritsen, Ryan G.

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  5. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  6. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  7. TEMPERATURE AND RANGE EXTENSION BY PERKINSUS MARINUS

    EPA Science Inventory

    Between 1990 and 1992, Dermo disease of oysters, caused by Perkinsus marinus, experienced a 500-km northward range extension and is now established as far north as Massachusetts. Climate warming during the 1980s and early 1990s, combined with historical introductions of infected ...

  8. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  9. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  10. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  11. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  12. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature range. 159.119 Section 159.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with...

  13. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  14. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  15. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  16. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  17. 33 CFR 159.115 - Temperature range test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The...

  18. Minimum Temperatures, Diurnal Temperature Ranges and Temperature Inversions in Limestone Sinkholes of Different Sizes and Shapes

    SciTech Connect

    Whiteman, Charles D.; Haiden, Thomas S.; Pospichal, Bernhard; Eisenbach, Stefan; Steinacker, Reinhold

    2004-08-01

    Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the 1300 m MSL Duerrenstein Plateau near Lunz, Austria have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as -28.5°C. Surprisingly, temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controlling cooling for basins in this size range and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.

  19. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  20. Temperature inversion in long-range interacting systems

    NASA Astrophysics Data System (ADS)

    Teles, Tarcísio N.; Gupta, Shamik; Di Cintio, Pierfrancesco; Casetti, Lapo

    2015-08-01

    Temperature inversions occur in nature, e.g., in the solar corona and in interstellar molecular clouds: Somewhat counterintuitively, denser parts of the system are colder than dilute ones. We propose a simple and appealing way to spontaneously generate temperature inversions in systems with long-range interactions, by preparing them in inhomogeneous thermal equilibrium states and then applying an impulsive perturbation. In similar situations, short-range systems would typically relax to another thermal equilibrium, with a uniform temperature profile. By contrast, in long-range systems, the interplay between wave-particle interaction and spatial inhomogeneity drives the system to nonequilibrium stationary states that generically exhibit temperature inversion. We demonstrate this mechanism in a simple mean-field model and in a two-dimensional self-gravitating system. Our work underlines the crucial role the range of interparticle interaction plays in determining the nature of steady states out of thermal equilibrium.

  1. Diel Surface Temperature Range Scales with Lake Size.

    PubMed

    Woolway, R Iestyn; Jones, Ian D; Maberly, Stephen C; French, Jon R; Livingstone, David M; Monteith, Donald T; Simpson, Gavin L; Thackeray, Stephen J; Andersen, Mikkel R; Battarbee, Richard W; DeGasperi, Curtis L; Evans, Christopher D; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C; Rusak, James A; Ryves, David B; Scott, Daniel R; Shilland, Ewan M; Smyth, Robyn L; Staehr, Peter A; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  2. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  3. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    ERIC Educational Resources Information Center

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  4. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

    1991-01-01

    Semiconductor power devices are typically rated for operation below 150 C. Little data is known for power semiconductors over 150 C. In most cases, the device is derated to zero operating power at 175 C. At the high temperature end of the temperature range, the intrinsic carrier concentration increases to equal the doping concentration level and the silicon behaves as an intrinsic semiconductor. The increase in intrinsic carrier concentration results in a shift of the Fermi level toward mid-bandgap at elevated temperatures. This produces a shift in devices characteristics as a function of temperature. By increasing the doping concentration higher operating temperatures can be achieved. This technique was used to fabricate low power analog and digital devices in silicon with junction operating temperatures in excess of 300 C. Additional temperature effects include increased p-n junction leakage with increasing temperature, resulting in increased resistivity. The temperature dependency of physical properties results in variations in device characteristics. These must be quantified and understood in order to develop extended temperature range operation.

  5. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  6. Nylon coil actuator operating temperature range and stiffness

    NASA Astrophysics Data System (ADS)

    Kianzad, Soheil; Pandit, Milind; Bahi, Addie; Rafie Ravandi, Ali; Ko, Frank; Spinks, Geoffrey M.; Madden, John D. W.

    2015-04-01

    Components in automotive and aerospace applications require a wide temperature range of operation. Newly discovered thermally active Baughman muscle potentially provides affordable and viable solutions for driving mechanical devices by heating them from room temperature, but little is known about their operation below room temperature. We study the mechanical behavior of nylon coil actuators by testing elastic modulus and by investigating tensile stroke as a function of temperature. Loads that range from 35 MPa to 155 MPa were applied. For the nylon used and the coiling conditions, active thermal contraction totals 19.5 % when the temperature is raised from -40 °C to 160 °C. The thermal contraction observed from -40 °C to 20°C is only ~2 %, whereas between 100 and 160 °C the contraction is 10 %. A marked increase in thermal contraction is occurs in the vicinity of the glass transition temperature (~ 45°C). The elastic modulus drops as temperature increases, from ~155 MPa at - 40 °C to 35 MPa at 200 °C. Interestingly the drop in active contraction with increasing load is small and much less than might be expected given the temperature dependence of modulus.

  7. Superconducting conductivity modulator for wide helium-temperature range

    SciTech Connect

    Tszyan, Y.N.

    1985-01-01

    This paper presents a thermomagnetic method of periodic switching of wire superconductors to the resistive state. A modulator operating on this principle over a wide range of helium temperatures with an internal-noise level of about10 TV is described.

  8. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray

    1994-01-01

    Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.

  9. Alleviating a form of electric vehicle range anxiety through on-demand vehicle access

    NASA Astrophysics Data System (ADS)

    King, Christopher; Griggs, Wynita; Wirth, Fabian; Quinn, Karl; Shorten, Robert

    2015-04-01

    On-demand vehicle access is a method that can be used to reduce types of range anxiety problems related to planned travel for electric vehicle owners. Using ideas from elementary queueing theory, basic quality of service (QoS) metrics are defined to dimension a shared fleet to ensure high levels of vehicle access. Using mobility data from Ireland, it is argued that the potential cost of such a system is very low.

  10. Transition temperature range of thermally activated nickel-titanium archwires

    PubMed Central

    SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim

    2014-01-01

    Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581

  11. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  12. Increased risk of muscle tears below physiological temperature ranges

    PubMed Central

    Scott, E. E. F.; Hamilton, D. F.; Wallace, R. J.; Muir, A. Y.

    2016-01-01

    Objectives Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. DOI: 10

  13. Comment on "Temperature inversion in long-range interacting systems".

    PubMed

    Dumin, Yurii V

    2016-06-01

    In the recent paper by Teles et al. [Phys. Rev. E 92, 020101 (2015)]PRESCM1539-375510.1103/PhysRevE.92.020101, it was suggested that the inversed temperature profiles in various astrophysical objects-ranging from the solar corona to the interstellar molecular clouds-can be explained by the specific features of relaxation in the long-range interacting systems. Here, we show that this mechanism can really work in the self-gravitating interstellar gaseous clouds; but it is irrelevant in the solar (and stellar) coronas where stratification of density is produced by the external gravitational field. PMID:27415395

  14. Comment on "Temperature inversion in long-range interacting systems"

    NASA Astrophysics Data System (ADS)

    Dumin, Yurii V.

    2016-06-01

    In the recent paper by Teles et al. [Phys. Rev. E 92, 020101 (2015)], 10.1103/PhysRevE.92.020101, it was suggested that the inversed temperature profiles in various astrophysical objects—ranging from the solar corona to the interstellar molecular clouds—can be explained by the specific features of relaxation in the long-range interacting systems. Here, we show that this mechanism can really work in the self-gravitating interstellar gaseous clouds; but it is irrelevant in the solar (and stellar) coronas where stratification of density is produced by the external gravitational field.

  15. Infrared optical element mounting techniques for wide temperature ranges

    SciTech Connect

    Saggin, Bortolino; Tarabini, Marco; Scaccabarozzi, Diego

    2010-01-20

    We describe the optimization of a mounting system for the infrared (IR) optics of a spaceborne interferometer working in the temperature range between -120 deg. C and +150 deg. C. The concept is based on an aluminum alloy frame with designed mechanical compliance, which allows for compensation of the different coefficient of thermal expansion between the optics and the holder; at the same time, the system provides for the high stiffness required to reach natural frequencies above 200 Hz, which are mandatory in most space missions. Thermal adapters with properly chosen thermomechanical characteristics are interposed between the metallic structure and the lens, so as to reduce the interface stresses on the mechanically weak IR material, due to both the thermoelastic and acceleration loads. With the proposed mount, the competitive requirements of stiffness and stress-free mounting can be matched in wide temperature ranges. The case study of the interferometer of a miniaturized Fourier transform IR spectrometer is presented.

  16. Wide temperature range electronic device with lead attachment

    NASA Technical Reports Server (NTRS)

    Farrell, R. (Inventor)

    1973-01-01

    A electronic device including lead attachment structure which permits operation of the devices over a wide temperature range is reported. The device comprises a core conductor having a thin coating of metal thereon whereby only a limited amount of coating material is available to form an alloy which bonds the core conductor to the device electrode, the electrode composition thus being affected only in the region adjacent to the lead.

  17. Modelling of monovacancy diffusion in W over wide temperature range

    SciTech Connect

    Bukonte, L. Ahlgren, T.; Heinola, K.

    2014-03-28

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10{sup 15} Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T{sub m}, resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures.

  18. Temperature range of the liquid-glass transition

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.

    2016-02-01

    It has been shown that the currently used method for calculating the temperature range of δ T g in the glass transition equation qτ g = δ T g as the difference δ T g = ( T 12- T 13) results in overestimated values, which is explained by the assumption of a constant activation energy of glass transition in deriving the calculation equation ( T 12 and T 13 are the temperatures corresponding to the logarithmic viscosity values of logη = 12 and logη = 13). The methods for the evaluation of δ T g using the Williams-Landel-Ferry equation and the model of delocalized atoms are considered, the results of which are in satisfactory agreement with the product qτ g ( q is the cooling rate of the melt and τ g is the structural relaxation time at the glass transition temperature). The calculation of τ g for inorganic glasses and amorphous organic polymers is proposed.

  19. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  20. Large diurnal temperature range increases bird sensitivity to climate change

    PubMed Central

    Briga, Michael; Verhulst, Simon

    2015-01-01

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory ‘easy’ foraging environment and a ‘hard’ semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an ‘easy’ laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species. PMID:26563993

  1. Examining the spring discontinuity in daily temperature ranges

    SciTech Connect

    Schwartz, M.D.

    1996-04-01

    The atmosphere and biosphere both change rapidly throughout midlatitude spring. Many weather variables are modified during this season, including the diurnal temperature range (DTR). The mean DTR trend displays a discontinuity at the onset of spring characterized by a rapid increase for several weeks, followed by an abrupt leveling off. The trend then remains essentially flat throughout the remainder of the warm season. These DTR changes reflect the interactive role many weather variables play with surface-layer processes. Thus, diagnosing the causes of these variations may provide background information for numerous global change analyses, as daily temperature data become increasingly available worldwide. The results of this study suggest that several factors (snow cover loss, more frequent southerly winds, and increased ceiling heights) are responsible for the initial rapid increase in the DTR. The second half of the discontinuity (subsequent leveling off) is connected with increased atmospheric moisture and coincides with the onset of plant transpiration. 14 refs., 5 figs, 2 tabs.

  2. The association between diurnal temperature range and childhood bacillary dysentery.

    PubMed

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8% (95% CI = 2.9-13.4%) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts. PMID:26045331

  3. The association between diurnal temperature range and childhood bacillary dysentery

    NASA Astrophysics Data System (ADS)

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8 % (95 % CI = 2.9-13.4 %) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  4. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shen, S.; Leptoukh, G. G.; Romanov, P.

    2011-12-01

    Land surface temperature (LST) is an important element to measure the state of the terrestrial ecosystems and to study the surface energy budgets. In support of the land cover/land use change related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected the global monthly LST measured by MODIS since the beginning of the missions. The MODIS LST time series have ~11 years of data from Terra since 2000 and ~9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend and variability. In this study, monthly climatology from two satellite platforms are calculated and compared. The spatial patterns of LST trends are accessed, focusing on the Asian Monsoon region. Furthermore, the MODIS LST trends are compared with the skin temperature trend from the NASA's atmospheric assimilation model, MERRA (MODERN ERA RETROSPECTIVE-ANALYSIS FOR RESEARCH AND APPLICATIONS), which has longer data record since 1979. The calculated climatology and anomaly of MODIS LST will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy access and use by scientists and general public.

  5. Changes in diurnal temperature range and national cereal yields

    SciTech Connect

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  6. Iterative matrix inversion technique for simultaneous strain and temperature sensing in an extended temperature range

    NASA Astrophysics Data System (ADS)

    Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2016-05-01

    The linear matrix approach is the common method for multi-parameter FBG-based strain and temperature sensing. As it does not include non-linear temperature responses and hence lacks accuracy, the application of an iterative matrix inversion technique can be used to remedy this deficiency. Employing this method in a set-up using a multi-parameter sensor system that consists of two FBGs in fibers, which differ in cladding diameters, significantly reduced temperature uncertainties of +/- 1°C could be achieved within a temperature range between -20°C and 150°C.

  7. Long-Range Correlations of Global Sea Surface Temperature.

    PubMed

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870-2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  8. Infinite-range Heisenberg model and high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  9. Long-Range Correlations of Global Sea Surface Temperature

    PubMed Central

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870–2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  10. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  11. The infinite range Heisenberg model and high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  12. Diurnal temperature range over Europe between 1950 and 2005

    NASA Astrophysics Data System (ADS)

    Makowski, K.; Wild, M.; Ohmura, A.

    2008-04-01

    It has been widely accepted that diurnal temperature range (DTR) decreased on a global scale during the second half of the twentieth century. Here we show however, that the long-term trend of annual DTR has reversed from a decrease to an increase during the 1970s in Western Europe and during the 1980s in Eastern Europe. The analysis is based on the high-quality dataset of the European Climate Assessment and Dataset Project, from which we selected approximately 200 stations, covering the area from Iceland to Algeria and from Turkey to Russia for 1950 to 2005. We investigate national and regional annual means as well as the pan-European mean with respect to trends and reversal periods. 17 of the 24 investigated regions including the pan-European mean show a statistical significant increase since 1990 at the latest. Of the remaining 7 regions, 2 show a non-significant increase, 3 a significant decrease and the remaining 2 no significant trend. The long-term change in DTR is governed by both surface shortwave and longwave radiation, the former of which has undergone a change from dimming to brightening. Consequently, we discuss the connections between DTR, shortwave radiation and sulfur emissions which are thought to be amongst the most important factors influencing the incoming solar radiation through the primary and secondary aerosol effect. We find reasonable agreement between trends in SO2 emissions, radiation and DTR in areas affected by high pollution. Consequently, we conclude that the long-term trends in DTR are mostly determined by changes in emissions and the associated changes in incoming solar radiation.

  13. Diurnal temperature range over Europe between 1950 and 2005

    NASA Astrophysics Data System (ADS)

    Makowski, K.; Wild, M.; Ohmura, A.

    2008-11-01

    It has been widely accepted that diurnal temperature range (DTR) decreased on a global scale during the second half of the twentieth century. Here we show however, that the long-term trend of annual DTR has reversed from a decrease to an increase during the 1970s in Western Europe and during the 1980s in Eastern Europe. The analysis is based on the high-quality dataset of the European Climate Assessment and Dataset Project, from which we selected approximately 200 stations covering the area bordered by Iceland, Algeria, Turkey and Russia for the period 1950 to 2005. We investigate national and regional annual means as well as the pan-European mean with respect to trends and reversal periods. 17 of the 24 investigated regions including the pan-European mean show a statistical significant increase of DTR since 1990 at the latest. Of the remaining 7 regions, two show a non-significant increase, three a significant decrease and two no significant trend. Changes in DTR are affected by both surface shortwave and longwave radiation, the former of which has undergone a change from dimming to brightening in the period considered. Consequently, we discuss the connections between DTR, shortwave radiation and sulfur emissions which are thought to be amongst the most important factors influencing the incoming solar radiation through the primary and secondary aerosol effect. We find reasonable agreement between trends in SO2 emissions, radiation and DTR in areas affected by high pollution. Consequently, we conclude that the trends in DTR could be mostly determined by changes in emissions and the associated changes in incoming solar radiation.

  14. Diurnal temperature range over Europe between 1950 and 2005

    NASA Astrophysics Data System (ADS)

    Makowski, K.; Wild, M.; Ohmura, A.

    2007-12-01

    It has been widely accepted that diurnal temperature range (DTR) decreased on a global scale for the second half of the twentieth century. In contrast, we show that the long-term trend has reversed from decrease to increase during the 1970s in Western Europe and during the 1980s in Eastern Europe. The analysis is based on the high- quality dataset of the European Climate Assessment and Dataset Project, from which we selected about 200 stations, covering the area from Iceland to Algeria and from Turkey to the European part of Russia for 1950 to 2005. We investigate national and regional means as well as the pan-European mean with respect to trends and reversal periods. 17 of the 24 investigated regions including the pan-European mean show a significant increase since 1990 at the latest. Of the remaining 7 regions, 2 show a non-significant increase, 3 a significant decrease and the remaining 2 no significant trend. The long-term change in DTR is considered to depend on both, incoming shortwave radiation and outgoing long-wave radiation, the former of which has undergone a change from dimming to brightening. Consequently we discuss the connections between DTR, shortwave radiation and sulfur emissions which are thought to be amongst the most important factors influencing the incoming solar radiation through the primary and secondary aerosol effect. We find reasonable agreement between trends in SO2 emissions, radiation and DTR in areas affected by high pollution. Consequently we conclude that the long- term trends in DTR are mostly determined by emissions and the incoming solar radiation.

  15. Impact of Reduced Diurnal Temperature Range (DTR) on Grassland Mesocosms

    NASA Astrophysics Data System (ADS)

    Gregg, J. W.; Phillips, C.; Wilson, J.

    2010-12-01

    There has been considerable variation in the magnitude of change in diel temperature range due to on-going global warming and ecological responses are poorly understood. We compared the effects of +3.5C higher temperatures distributed either symmetrically (SYM, continuously +3.5C) or asymmetrically (ASYM, +5C dawn Tmin ramped to +2C midday Tmax and back) on planted native perennial grassland communities in climate-controlled chambers (14 spp. including grasses/forbs, annuals/perennials, N-fixers/not). Here, we present an overview of NPP, phenology, community composition, and whole ecosystem gas exchange results. Biomass was greater for both SYM and ASYM treatments during the fall and winter in all three years (+28-70%). However, spring growth was truncated for the warmer treatments due to reduced soil moisture which provided several extra weeks growth for AMB treatments to ‘catch-up’ to that of SYM and ASYM. Peak spring production and flowering were shifted 1-3 weeks earlier for SYM and ASYM treatments, resulting in a concomitant decrease in water use efficiency concomitant with increased soil moisture as measured via δ13C and whole ecosystem gas exchange (CER)/ evapotranspiration. CER measurements also showed the shift in timing of production and no difference in annual C assimilation between AMB, SYM and ASYM treatments. However, annual net ecosystem production (NEP) was negative for SYM and ASYM treatments which pointed towards the likely importance of changes in stored SOM. Mortality was 70% greater for SYM and ASYM treatments in the first year and remained greater through the three years of treatment application resulting in a decline in species diversity. Differential mortality was most apparent in the forb functional group with 50% of species affected. Survival of graminoid species was generally higher with no significant differences between treatments, resulting in a shift in functional group density and LAI to favor grass species in both warming

  16. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Romanov, Peter

    2011-01-01

    Land surface temperature (Ts) is an important element to measure the state of terrestrial ecosystems and to study surface energy budgets. In support of the land cover/land use change-related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected global monthly Ts measured by MODIS since the beginning of the missions. The MODIS Ts time series have approximately 11 years of data from Terra since 2000 and approximately 9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend. In this study, monthly climatology from two platforms are calculated and compared with that from AIRS. The spatial patterns of Ts trends are accessed, focusing on the Eurasia region. Furthermore, MODIS Ts trends are compared with those from AIRS and NASA's atmospheric assimilation model, MERRA (Modern Era Retrospective-analysis for Research and Applications). The preliminary results indicate that the recent 8-year Ts trend shows an oscillation-type spatial variation over Eurasia. The pattern is consistent for data from MODIS, AIRS, and MERRA, with the positive center over Eastern Europe, and the negative center over Central Siberia. The calculated climatology and anomaly of MODIS Ts will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy use by scientists and general public.

  17. Ultrasonic Multiple-Access Ranging System Using Spread Spectrum and MEMS Technology for Indoor Localization

    PubMed Central

    Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah

    2014-01-01

    Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084

  18. Optical fiber voltage sensors for broad temperature ranges

    NASA Technical Reports Server (NTRS)

    Rose, A. H.; Day, G. W.

    1992-01-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  19. Optical fiber voltage sensors for broad temperature ranges

    NASA Astrophysics Data System (ADS)

    Rose, A. H.; Day, G. W.

    1992-12-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  20. An Ultrasonic Multiple-Access Ranging Core Based on Frequency Shift Keying Towards Indoor Localization

    PubMed Central

    Segers, Laurent; Van Bavegem, David; De Winne, Sam; Braeken, An; Touhafi, Abdellah; Steenhaut, Kris

    2015-01-01

    This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy. PMID:26263986

  1. An Ultrasonic Multiple-Access Ranging Core Based on Frequency Shift Keying Towards Indoor Localization.

    PubMed

    Segers, Laurent; Van Bavegem, David; De Winne, Sam; Braeken, An; Touhafi, Abdellah; Steenhaut, Kris

    2015-01-01

    This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy. PMID:26263986

  2. Extended temperature range studies for dry heat microbial reduction

    NASA Technical Reports Server (NTRS)

    Kempf, Michael; Kirschner, Larry; Beaudet, Robert A.

    2005-01-01

    This paper will present the lethality data that has been collected at this time and the planned future studies. The results show that rapid ramp-up heating times are critical to obtaining valid lethality data at high temperatures because an extensive number of spores are killed before reaching the target temperature. Exploratory experiments have also been performed using a laser to rapidly heat coupons.

  3. Recent variations in mean temperature and the diurnal temperature range in the Antarctic

    SciTech Connect

    Jones, P.D.

    1995-06-01

    Monthly mean surface temperature data are available from nearly twenty stations for the period since the International Geophysical Year 1957. All but three stations show an increase in mean temperatures over this time, amounting in the average to 0.57{degrees}C over 1957 to 1994. All of this warming occurred before the early 1970s. Since then, there has been no change. The warming has been greatest in the Antarctic Peninsula. Analyses of the less-widely available diurnal temperature range (DTR) (maximum-minimum) data show regions of increase and decrease over Antarctica. An average continental DTR series shows no trend over 1957 to 1992. Analyses for six mid-to-high latitude Southern Ocean islands show increase in mean temperature over 1961-90. Given the low year-to-year variability in these data, these trends are more significant than for any of the stations on the Antarctic continent. The marked decrease in mean temperatures over Antarctica during 1993 and 1994 seems unrelated to sea-ice variations which show little change since the early 1980s. 17 refs., 4 figs., 1 tab.

  4. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  5. Water temperature impacts water consumption by range cattle in winter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  6. Relationships between range access as monitored by radio frequency identification technology, fearfulness, and plumage damage in free-range laying hens.

    PubMed

    Hartcher, K M; Hickey, K A; Hemsworth, P H; Cronin, G M; Wilkinson, S J; Singh, M

    2016-05-01

    Severe feather-pecking (SFP), a particularly injurious behaviour in laying hens (Gallus gallus domesticus), is thought to be negatively correlated with range use in free-range systems. In turn, range use is thought to be inversely associated with fearfulness, where fearful birds may be less likely to venture outside. However, very few experiments have investigated the proposed association between range use and fearfulness. This experiment investigated associations between range use (time spent outside), fearfulness, plumage damage, and BW. Two pens of 50 ISA Brown laying hens (n=100) were fitted with radio frequency identification (RFID) transponders (contained within silicone leg rings) at 26 weeks of age. Data were then collected over 13 days. A total of 95% of birds accessed the outdoor run more than once per day. Birds spent an average duration of 6.1 h outside each day over 11 visits per bird per day (51.5 min per visit). The top 15 and bottom 15 range users (n=30), as determined by the total time spent on the range over 13 days, were selected for study. These birds were tonic immobility (TI) tested at the end of the trial and were feather-scored and weighed after TI testing. Birds with longer TI durations spent less time outside (P=0.01). Plumage damage was not associated with range use (P=0.68). The small group sizes used in this experiment may have been conducive to the high numbers of birds utilising the outdoor range area. The RFID technology collected a large amount of data on range access in the tagged birds, and provides a potential means for quantitatively assessing range access in laying hens. The present findings indicate a negative association between fearfulness and range use. However, the proposed negative association between plumage damage and range use was not supported. The relationships between range use, fearfulness, and SFP warrant further research. PMID:26593871

  7. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Cosby, Melvin; Johnson, R. Wayne; Nelms, R. Mark; Askew, Ray

    1992-01-01

    Characterization results of a MOS controlled thyristor (MCTA60P60) are presented. This device is rated for 60A and for an anode to cathode voltage of -600 V. As discussed in the last report, the MCT failed during 500 V leakage tests at 200 C. In contrast to the BJT (bipolar junction transistor), MOSFET, and IGBT (insulated gate bipolar transistor) devices tested, the breakdown voltage of the MCT decreases significantly with increasing temperature.

  8. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

    1992-01-01

    Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.

  9. Satellite range delay simulator for a matrix-switched time division multiple-access network simulator

    NASA Technical Reports Server (NTRS)

    Nagy, Lawrence A.

    1989-01-01

    The Systems Integration, Test, and Evaluation (SITE) facility at NASA Lewis Research Center is presently configured as a satellite-switched time division multiple access (SS-TDMA) network simulator. The purpose of SITE is to demonstrate and evaluate advanced communication satellite technologies, presently embodied by POC components developed under NASA contracts in addition to other hardware, such as ground terminals, designed and built in-house at NASA Lewis. Each ground terminal in a satellite communications system will experience a different aspect of the satellite's motion due mainly to daily tidal effects and station keeping, hence a different duration and rate of variation in the range delay. As a result of this and other effects such as local oscillator instability, each ground terminal must constantly adjust its transmit burst timing so that data bursts from separate ground terminals arrive at the satellite in their assigned time slots, preventing overlap and keeping the system in synchronism. On the receiving end, ground terminals must synchronize their local clocks using reference transmissions received through the satellite link. A feature of the SITE facility is its capability to simulate the varying propagation delays and associated Doppler frequency shifts that the ground terminals in the network have to cope with. Delay is achieved by means of two NASA Lewis designed and built range delay simulator (RDS) systems, each independently controlled locally with front panel switches or remotely by an experiment control and monitor (EC/M) computer.

  10. Zero-Temperature Fluctuations in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.; Wehr, J.

    2016-06-01

    We consider the energy difference restricted to a finite volume for certain pairs of incongruent ground states (if they exist) in the d-dimensional Edwards-Anderson Ising spin glass at zero temperature. We prove that the variance of this quantity with respect to the couplings grows proportionally to the volume in any d ≥ 2. An essential aspect of our result is the use of the excitation metastate. As an illustration of potential applications, we use this result to restrict the possible structure of spin glass ground states in two dimensions.

  11. Accessibility

    MedlinePlus

    ... www.nlm.nih.gov/medlineplus/accessibility.html MedlinePlus Accessibility To use the sharing features on this page, ... Subscribe to RSS Follow us Disclaimers Copyright Privacy Accessibility Quality Guidelines Viewers & Players MedlinePlus Connect for EHRs ...

  12. Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy

    PubMed Central

    2015-01-01

    Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron–electron resonance (DEER), is carried out at cryogenic temperatures (50–80 K) to increase the short spin–spin relaxation time (T2) upon which the technique relies. A challenge is to measure long-range distances (20–60 Å) in proteins near physiological temperatures. Toward this goal we are investigating an alternative approach based on the distance-dependent enhancement of spin–lattice relaxation rate (T1–1) of a nitroxide spin label by a paramagnetic metal. With a commonly used nitroxide side chain (R1) and Cu2+, it has been found that interspin distances ≤25 Å can be determined in this way (Jun et al. Biochemistry2006, 45, 11666). Here, the upper limit of the accessible distance is extended to ≈40 Å using spin labels with long T1, a high-affinity 5-residue Cu2+ binding loop inserted into the protein sequence, and pulsed saturation recovery to measure relaxation enhancement. Time-domain Cu2+ electron paramagnetic resonance, quantum mechanical calculations, and molecular dynamics simulations provide information on the structure and geometry of the Cu2+ loop and indicate that the metal ion is well-localized in the protein. An important aspect of these studies is that both Cu2+/nitroxide DEER at cryogenic temperatures and T1 relaxation measurements at room temperature can be carried out on the same sample, allowing both validation of the relaxation method and assessment of the effect of freezing on protein structure. PMID:25290172

  13. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  14. SUMMER STREAM TEMPERATURES, JUVENILE COHO CONDITION FACTORS AND BLACK SPOT INFECTION IN THE OREGON COAST RANGE

    EPA Science Inventory

    We monitored stream temperatures at 35 locations throughout the West Fork Smith River watershed in the Oregon Coast Range during the summer of 2002. Between July 24 and August 24, maximum seven-day moving average high daily temperatures ranged from 21.8 C near the catchment's mo...

  15. Au-Ge film thermometers for temperature range 30 mK-300 K

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Brusetti, R.; Lasjaunias, J. C.; Sahling, S.

    After optmization of the Au concentration and the annealing temperature, highly sensitive Au-Ge film thermometers for the temperature range 30 mK-300 K were obtained. The thermometers show good reproducibility, a very short relaxation time constant at low temperatures and are quite insensitive to magnetic field.

  16. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses

    PubMed Central

    Raffa, Kenneth F.; Powell, Erinn N.; Townsend, Philip A.

    2013-01-01

    Warming climate has increased access of native bark beetles to high-elevation pines that historically received only intermittent exposure to these tree-killing herbivores. Here we show that a dominant, relatively naïve, high-elevation species, whitebark pine, has inferior defenses against mountain pine beetle compared with its historical lower-elevation host, lodgepole pine. Lodgepole pines respond by exuding more resin and accumulating higher concentrations of toxic monoterpenes than whitebark pine, where they co-occur. Furthermore, the chemical composition of whitebark pine appears less able to inhibit the pheromonal communication beetles use to jointly overcome tree defenses. Despite whitebark pine’s inferior defenses, beetles were more likely to attack their historical host in mixed stands. This finding suggests there has been insufficient sustained contact for beetles to alter their complex behavioral mechanisms driving host preference. In no-choice assays, however, beetles readily entered and tunneled in both hosts equally, and in stands containing less lodgepole pine, attacks on whitebark pines increased. High-elevation trees in pure stands may thus be particularly vulnerable to temperature-driven range expansions. Predators and competitors were more attracted to volatiles from herbivores attacking their historical host, further increasing risk in less coevolved systems. Our results suggest cold temperatures provided a sufficient barrier against herbivores for high-elevation trees to allocate resources to other physiological processes besides defense. Changing climate may reduce the viability of that evolutionary strategy, and the life histories of high-elevation trees seem unlikely to foster rapid counter adaptation. Consequences extend from reduced food supplies for endangered grizzly bears to altered landscape and hydrological processes. PMID:23277541

  17. Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Jing; Yuan, Jie; Li, Yong; Hou, Zhi-Ling; Jin, Hai-Bo; Fang, Xiao-Yong; Cao, Mao-Sheng

    2013-06-01

    The dielectric properties of SiC powders are investigated in the temperature range of 373-773 K at gigahertz range (8.2-12.4 GHz). The complex permittivity ɛ and the loss tgδ exhibit frequency-dependent characteristics with the frequency, and they also show temperature-dependent characteristic with the temperature. From the Cole-Cole plots, the relaxation and electrical conductance both affect the dielectric properties at high temperature. First principle calculations are employed to analyze the electronic structure of SiC, which infer the influence of relaxation and conductance on dielectric behaviors. The reflection loss RL peak is below -10 dB in temperatures of 373-773 K with the sample in thickness 2.1 mm. More importantly, the microwave absorption coupled with widening effective absorption bandwidth demonstrates positive temperature effects on the absorption with the increasing temperature, indicating promising potential applications in high-temperature microwave absorption fields.

  18. Natural variation in tocochromanols content in Arabidopsis thaliana accessions - the effect of temperature and light intensity.

    PubMed

    Gabruk, Michał; Habina, Iwona; Kruk, Jerzy; Dłużewska, Jolanta; Szymańska, Renata

    2016-06-01

    In this study, 25 accessions of Arabidopsis thaliana originating from a variety of climate conditions were grown under controlled circumstances of different light intensity and temperature. The accessions were analyzed for prenyllipids content and composition, as well as expression of the genes involved in tocochromanol biosynthesis (vte1-5). It was found that the applied conditions did not strongly affect total tocochromanols content and there was no apparent correlation of the tocochromanol content with the origin of the accessions. However, the presented results indicate that the temperature, more than the light intensity, affects the expression of the vte1-5 genes and the content of some prenyllipids. An interesting observation was that under low growth temperature, the hydroxy-plastochromanol (PC-OH) to plastochromanol (PC) ratio was considerably increased regardless of the light intensity in most of the accessions. PC-OH is known to be formed as a result of singlet oxygen stress, therefore this observation indicates that the singlet oxygen production is enhanced under low temperature. Unexpectedly, the highest increase in the PC-OH/PC ratio was found for accessions originating from cold climate (Shigu, Krazo-1 and Lov-5), even though such plants could be expected to be more resistant to low temperature stress. PMID:27174597

  19. Alternate method for achieving temperature control in the -160 to +90 Celcius range

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth R. (Inventor)

    1995-01-01

    A single-pass method for accurate and precise temperature control in the -160 to +90 C range is discussed. The method exhibited minimal set-point overshoot during temperature transitions. Control to +/-2 C with transitions between set-points of 7 C per minute were achieved. The method uses commercially available temperature controllers and a gaseous nitrogen/liquid nitrogen mixer to dampen the amplitude of cold temperature spikes caused by liquid nitrogen pulsing.

  20. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  1. 'Optimal thermal range' in ectotherms: Defining criteria for tests of the temperature-size-rule.

    PubMed

    Walczyńska, Aleksandra; Kiełbasa, Anna; Sobczyk, Mateusz

    2016-08-01

    Thermal performance curves for population growth rate r (a measure of fitness) were estimated over a wide range of temperature for three species: Coleps hirtus (Protista), Lecane inermis (Rotifera) and Aeolosoma hemprichi (Oligochaeta). We measured individual body size and examined if predictions for the temperature-size rule (TSR) were valid for different temperatures. All three organisms investigated follow the TSR, but only over a specific range between minimal and optimal temperatures, while maintenance at temperatures beyond this range showed the opposite pattern in these taxa. We consider minimal and optimal temperatures to be species-specific, and moreover delineate a physiological range outside of which an ectotherm is constrained against displaying size plasticity in response to temperature. This thermal range concept has important implications for general size-temperature studies. Furthermore, the concept of 'operating thermal conditions' may provide a new approach to (i) defining criteria required for investigating and interpreting temperature effects, and (ii) providing a novel interpretation for many cases in which species do not conform to the TSR. PMID:27503715

  2. Fluorescent polymer coatings with tuneable sensitive range for remote temperature sensing.

    PubMed

    Barja, Beatriz C; Chesta, Carlos A; Atvars, Teresa D Z; Aramendía, Pedro F

    2013-12-01

    Polymer films of poly(vinyl alcohol) containing the fluorescent dyes 4-aminophthalimide (AP) or 6-propionyl-2-dimethylamino-naphthalene (Prodan) are used as temperature-sensitive fluorescent coatings for remote temperature sensing. Temperature can be obtained by a two-wavelength ratiometric-based emission intensity measurement. The coatings are sensitive in a 100K temperature range that can be tuned by polymer-solute interactions. The usable range is 200-300 K for AP and 280-380 K for Prodan. PMID:23896292

  3. The solubility of hydrogen in plutonium in the temperature range 475 to 825 degrees centigrade

    SciTech Connect

    Allen, T.H.

    1991-01-01

    The solubility of hydrogen (H) in plutonium metal (Pu) was measured in the temperature range of 475 to 825{degree}C for unalloyed Pu (UA) and in the temperature range of 475 to 625{degree}C for Pu containing two-weight-percent gallium (TWP). For TWP metal, in the temperature range 475 to 600{degree}C, the saturated solution has a maximum hydrogen to plutonium ration (H/Pu) of 0.00998 and the standard enthalpy of formation ({Delta}H{degree}{sub f(s)}) is (-0.128 {plus minus} 0.0123) kcal/mol. The phase boundary of the solid solution in equilibrium with plutonium dihydride (PuH{sub 2}) is temperature independent. In the temperature range 475 to 625{degree}C, UA metal has a maximum solubility at H/Pu = 0.011. The phase boundary between the solid solution region and the metal+PuH{sub 2} two-phase region is temperature dependent. The solubility of hydrogen in UA metal was also measured in the temperature range 650 to 825{degree}C with {Delta}H{degree}{sub f(s)} = (-0.104 {plus minus} 0.0143) kcal/mol and {Delta}S{degree}{sub f(s)} = 0. The phase boundary is temperature dependent and the maximum hydrogen solubility has H/Pu = 0.0674 at 825{degree}C. 52 refs., 28 figs., 9 tabs.

  4. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions.

    PubMed

    Kissen, Ralph; Eberl, Franziska; Winge, Per; Uleberg, Eivind; Martinussen, Inger; Bones, Atle M

    2016-10-01

    Glucosinolates are plant secondary metabolites with important roles in plant defence against pathogens and pests and are also known for their health benefits. Understanding how environmental factors affect the level and composition of glucosinolates is therefore of importance in the perspective of climate change. In this study we analysed glucosinolates in Arabidopsis thaliana accessions when grown at constant standard (21 °C), moderate (15 °C) and low (9 °C) temperatures during three generations. In most of the tested accessions moderate and pronounced chilling temperatures led to higher levels of glucosinolates, especially aliphatic glucosinolates. Which temperature yielded the highest glucosinolate levels was accession-dependent. Transcriptional profiling revealed also accession-specific gene responses, but only a limited correlation between changes in glucosinolate-related gene expression and glucosinolate levels. Different growth temperatures in one generation did not consistently affect glucosinolate composition in subsequent generations, hence a clear transgenerational effect of temperature on glucosinolates was not observed. PMID:27319377

  5. Temperature Dependence of Thin Film Spiral Inductors on Alumina Over a Temperature Range of 25 to 475 C

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian C.

    2010-01-01

    In this paper, we present an analysis of inductors on an Alumina substrate over the temperature range of 25 to 475 C. Five sets of inductors, each set consisting of a 1.5, 2.5, 3.5, and a 4.5 turn inductor with different line width and spacing, were measured on a high temperature probe station from 10 MHz to 30 GHz. From these measured characteristics, it is shown that the inductance is nearly independent of temperature for low frequencies compared to the self resonant frequency, the parasitic capacitances are independent of temperature, and the resistance varies nearly linearly with temperature. These characteristics result in the self resonant frequency decreasing by only a few percent as the temperature is increased from 25 to 475 C, but the maximum quality factor decreases by a factor of 2 to 3. These observations based on measured data are confirmed through 2D simulations using Sonnet software.

  6. Diurnal temperature range compression hastens berry development and modifies flavonoid partitioning in grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperatures during the day and night are known to influence grape berry metabolism and resulting composition. In this study, the flavonoid composition of field-grown Vitis vinifera L. cv. Merlot berries was investigated as a function of diurnal temperature range (DTR). The DTR was compressed by c...

  7. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Gabruk, Michał; Glińska, Sława; Michlewska, Sylwia; Dłużewska, Jolanta; Sawicka, Anna; Kruk, Jerzy; Laitinen, Roosa

    2015-06-01

    During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions. PMID:25214438

  8. Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors

    PubMed Central

    Wang, Yucai; Chodavarapu, Vamsy P.

    2015-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312

  9. Infrared thermal imaging as a physiological access pathway: a study of the baseline characteristics of facial skin temperatures.

    PubMed

    Nhan, B R; Chau, T

    2009-04-01

    In this study we examine the baseline characteristics of facial skin temperature, as measured by dynamic infrared thermal imaging, to gauge its potential as a physiological access pathway for non-verbal individuals with severe motor impairments. Frontal facial recordings were obtained from 12 asymptomatic adults in a resting state with a high-end infrared thermal imaging system. From the infrared thermal recordings, mean skin temperature time series were generated for regions of interest encompassing the nasal, periorbital and supraorbital areas. A 90% bandwidth for all regions of interest was found to be in the 1 Hz range. Over 70% of the time series were identified as nonstationary (p<0.05), with the nonstationary mean as the greatest contributing source. Correlation coefficients between regions were significant (p<0.05) and ranged from values of 0.30 (between periorbital and supraorbital regions) to 0.75 (between contralateral supraorbital regions). Using information measures, we concluded that the greatest degree of information existed in the nasal and periorbital regions. Mutual information existed across all regions but was especially prominent between the nasal and periorbital regions. Results from this study provide insight into appropriate analysis methods and potential discriminating features for the application of facial skin temperature as a physiological access pathway. PMID:19332894

  10. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOEpatents

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  11. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  12. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.

    PubMed

    Baleizão, Carlos; Nagl, Stefan; Schäferling, Michael; Berberan-Santos, Mário N; Wolfbeis, Otto S

    2008-08-15

    An optical dual sensor for oxygen and temperature is presented that is highly oxygen sensitive and covers a broad temperature range. Dual sensing is based on luminescence lifetime measurements. The novel sensor contains two luminescent compounds incorporated into polymer films. The temperature-sensitive dye (ruthenium tris-1,10-phenanthroline) has a highly temperature-dependent luminescence and is incorporated in poly(acrylonitrile) to avoid cross-sensitivity to oxygen. Fullerene C70 was used as the oxygen-sensitive probe owing to its strong thermally activated delayed fluorescence at elevated temperatures that is extremely oxygen sensitive. The cross-sensitivity of C70 to temperature is accounted for by means of the temperature sensor. C70 is incorporated into a highly oxygen-permeable polymer, either ethyl cellulose or organosilica. The two luminescent probes have different emission spectra and decay times, and their emissions can be discriminated using both parameters. Spatially resolved sensing is achieved by means of fluorescence lifetime imaging. The response times of the sensor to oxygen are short. The dual sensor exhibits a temperature operation range between at least 0 and 120 degrees C, and detection limits for oxygen in the ppbv range, operating for oxygen concentrations up to at least 50 ppmv. These ranges outperform all dual oxygen and temperature sensors reported so far. The dual sensor presented in this study is especially appropriate for measurements under extreme conditions such as high temperatures and ultralow oxygen levels. This dual sensor is a key step forward in a number of scientifically or commercially important applications including food packaging, for monitoring of hyperthermophilic microorganisms, in space technology, and safety and security applications in terms of detection of oxygen leaks. PMID:18651755

  13. Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing.

    PubMed

    Stavreva, Diana A; Coulon, Antoine; Baek, Songjoon; Sung, Myong-Hee; John, Sam; Stixova, Lenka; Tesikova, Martina; Hakim, Ofir; Miranda, Tina; Hawkins, Mary; Stamatoyannopoulos, John A; Chow, Carson C; Hager, Gordon L

    2015-06-01

    Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ± 50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings. PMID:25677181

  14. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    SciTech Connect

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N.

    1993-12-01

    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  15. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it

  16. [IR spectral-analysis-based range estimation for an object with small temperature difference from background].

    PubMed

    Fu, Xiao-Ning; Wang, Jie; Yang, Lin

    2013-01-01

    It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K. PMID:23586223

  17. Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    LaQuay, Ryan Matthew

    2011-01-01

    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30

  18. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  19. Broadening of mesophase temperature range induced by doping calamitic mesogen with banana-shaped mesogen

    NASA Astrophysics Data System (ADS)

    Cvetinov, Miroslav; Stojanović, Maja; Obadović, Dušanka; Vajda, Aniko; Fodor-Csorba, Katalin; Eber, Nandor

    2016-03-01

    We have investigated three binary mixtures composed of selected banana-shaped dopant in low concentrations and calamitic mesogen in high. Banana-shaped dopant forms a B7 phase, while the calamitic mesogen exhibit nematic and smectic SmA and SmC phases. The occurring mesophases have been identified by their optical textures. At dopant concentrations of 2.2 and 3.1 mol%, there is evident broadening of nematic and smectic SmA temperature ranges in respect to the pure calamitic compound. Yet, the mixture with dopant concentration of 7 mol% exhibits narrower temperature ranges of mesophases. Increasing dopant concentration caused lowering of all phase transitions temperatures (TI-N, TN-SmA, TSmA-SmC) in all investigated mixtures. Therefore, mixing classic calamitic compounds with novel banana-shaped compound in low concentrations is viable way to attain useful mesophase range for application in industry.

  20. Development of ice slurry for cold storage of foods in wide temperature range

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Kaneko, Atsushi; Teraoka, Yoshikazu; Igarashi, Yoshito

    In order to popularize use of ice slurry, authors have been proposed application of ice slurry to cold storage of foods in place of an air conditioning. For use of the ice slurry in the wide temperature range a new harmless ice slurry to human being was developed by cooling a W/O emulsion made from tap water-edible oil mixture with small amounts of edible emulsifier and food additive. The edible emulsifier is essential to form W/O emulsion, and the food additive is used to dissolve in tap water. In this paper the optimal concentrations of emulsifiers were determined, and the fundamental characteristics such as viscosity, effective latent heat of fusion and usable temperature of ice slurry were clarified. Finally, it was concluded that new ice slurry could be fully applied to cold storage of foods in the wide temperature range because its lower limit usable temperature was about -18°C.

  1. Determination of Warm Working Temperature Range for In Situ Alm-TiB2p Composite

    NASA Astrophysics Data System (ADS)

    Mishra, R.; Alexander, A.; Srinivasan, K.

    2015-04-01

    Composites with hard undeformable particles are better suited for creep resistant applications. Alm-TiB2 particulate composite is one such composite. Its flow properties and formability are investigated and presented in the paper. A suitable temperature range for working this particulate composite is ascertained by using uniaxial axysymmetric compression tests and ring compression tests. Warm working is found to be suitable for this composite in the temperature window of 473-523 K.

  2. Stages of austenitization of cold-worked low-carbon steel in intercritical temperature range

    NASA Astrophysics Data System (ADS)

    Panov, D. O.; Simonov, Y. N.; Spivak, L. V.; Smirnov, A. I.

    2015-08-01

    Austenization processes in 10Kh3G3MF low-carbon steel in the initially cold-worked state are investigated during its continuous heating in an intercritical temperature range. The austenization of this steel has three stages, which is shown by dilatometry, differential scanning calorimetry, and transmission electron microscopy. The thermokinetic diagram of the austenite formation in 10Kh3G3MF steel is constructed. Critical points A c1 and A c2 and temperature ranges of austenite formation at every stage of the α → γ transformation at heating rates of 0.6-400 K/s are determined.

  3. Thin liquid crystal films on liquids in the nematic range of temperatures.

    PubMed

    Delabre, Ulysse; Richard, Céline; Sang, Yann Yip Cheung; Cazabat, Anne-Marie

    2010-08-17

    Hybrid nematic films deposited on liquid substrates reveal a complex behavior, which is not fully understood. Here, the behavior of the n-cyanobiphenyl series on water and glycerol has been studied in a wide temperature range, including the vicinity of the nematic-isotropic (NI) transition. Wettability, allowed film thicknesses, and line tension of nematic domains have been investigated. The study provides a coherent picture of hybrid nematic films, allowing us to account for lower thickness threshold, structure of the film edge, and line tension of domains in the whole nematic range of temperatures. PMID:20695580

  4. Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases

    NASA Astrophysics Data System (ADS)

    Karatairi, Eva; Rožič, Brigita; Kutnjak, Zdravko; Tzitzios, Vassilios; Nounesis, George; Cordoyiannis, George; Thoen, Jan; Glorieux, Christ; Kralj, Samo

    2010-04-01

    Liquid-crystalline blue phases exhibit exceptional properties for applications in the display and sensor industry. However, in single component systems, they are stable only for very narrow temperature range between the isotropic and the chiral nematic phase, a feature that severely hinders their applicability. Systematic high-resolution calorimetric studies reveal that blue phase III is effectively stabilized in a wide temperature range by mixing surface-functionalized nanoparticles with chiral liquid crystals. This effect is present for two liquid crystals, yielding a robust method to stabilize blue phases, especially blue phase III. Theoretical arguments show that the aggregation of nanoparticles at disclination lines is responsible for the observed effects.

  5. Increased medium-range order in amorphous silicon with increased substrate temperature

    SciTech Connect

    Voyles, P. M.; Gerbi, J. E.; Treacy, M. M. J.; Gibson, J. M.; Aberlson, J. R.

    2000-08-15

    Using fluctuation electron microscopy, the authors have measured the medium-range order of magnetron sputtered silicon thin films as a function of substrate temperature from the amorphous to polycrystalline regimes. They find a smooth increase in the medium-range order of the samples, which they interpret in the context of the paracrystalline structural model as an increase in the size of and/or volume fraction occupied by the paracrystalline grains. These data are counter to the long-standing belief that there is a sharp transition between amorphous and polycrystalline structures as a function of substrate temperature.

  6. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large African carnivores.

    PubMed

    Clements, Hayley S; Tambling, Craig J; Hayward, Matt W; Kerley, Graham I H

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species. PMID

  7. An Objective Approach to Determining the Weight Ranges of Prey Preferred by and Accessible to the Five Large African Carnivores

    PubMed Central

    Clements, Hayley S.; Tambling, Craig J.; Hayward, Matt W.; Kerley, Graham I. H.

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed “accessible prey”. Accessible prey weight ranges were found to be 14–135 kg for cheetah Acinonyx jubatus, 1–45 kg for leopard Panthera pardus, 32–632 kg for lion Panthera leo, 15–1600 kg for spotted hyaena Crocuta crocuta and 10–289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore

  8. Method for predicting the fracture toughness of pipeline steels within a wide temperature range

    NASA Astrophysics Data System (ADS)

    Baron, A. A.

    2015-03-01

    Eight pipeline steels in the as-is state are studied. A linear relation between yield strength σ0.2 and Brinell hardness HB is found within the temperature range 77 ≤ T ≤ 293 K. A technique is developed to predict the hardness at low temperatures from HB 293 at room temperature. A generalized relationship between K Ic , T / K Ic , 243 and HB T / HB 243 ( K Ic , T and HB T are the fracture toughness and the Brinell hardness at any temperature, respectively, K Ic , 243 and HB 243 are the same at the phase-transition temperature (243 K)) is found. This relationship is used to propose a new fast method for estimating the fracture toughness of pipeline steels from the results of testing standard small samples in liquid nitrogen.

  9. Electronic Transport of an Ni/ n-GaAs Diode Analysed Over a Wide Temperature Range

    NASA Astrophysics Data System (ADS)

    Guzel, A.; Duman, S.; Yildirim, N.; Turut, A.

    2016-06-01

    We have reported a study on current-voltage ( I-V) characteristics and capacitance-voltage ( C-V) of an Ni/ n-GaAs Schottky barrier diode in a wide temperature ( T) range of 100-320 K in steps of 20 K, which is prepared by a magnetron direct current sputtering technique. The ideality factor decreases and barrier height (BH) increases with an increase in the temperature. The variation of the diode parameters with the sample temperature has been attributed to the presence of the lateral inhomogeneities in the BH. It has been seen that the junction current is dominated by thermionic field emission. The carrier concentration, diffusion potential, BH, Fermi energy level and the temperature coefficient of the BH have been calculated from the temperature-dependent C-V-T characteristics.

  10. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. PMID:27109165

  11. Vent and relief valve maintains low leakage rate over broad temperature range

    NASA Technical Reports Server (NTRS)

    Weitenbeck, R. G.

    1968-01-01

    Low leakage rate, large diameter vent and relief valve operates satisfactorily over a large temperature range by a design that accommodates waviness and distortions due to thermal gradients. It is based on a fixed sealing member having an inclined lapped surface to which a flexible flow gate conforms.

  12. Electrical Transport Over Wide Temperature Range In Doped And Undoped Polypyrrole

    SciTech Connect

    Taunk, Manish; Chand, Subhash

    2010-12-01

    Polypyrrole was synthesized by chemical oxidation method by varying oxidant to monomer molar ratio for the optimization of electrical conductivity without using any external dopant. The conductivity in doped polypyrrole reached up to a maximum value of 7.2 S/cm. Neutralization of doped polypyrrole was done with aqueous ammonium hydroxide and three orders of reduced conductivity was obtained in neutral polypyrrole. Doping and neutralization of polypyrrole samples was supported by FTIR spectroscopy. Doped and undoped samples of polypyrrole were then electrically characterized over wide temperature range of 10-300 K. Stronger and weak temperature dependence of conductivity was revealed by undoped and doped polypyrrole samples respectively. An effort has been made to explore the electrical transport in doped and undoped polypyrrole by charge transport models. The experimental data obeys Kivelson's hopping model in temperature range of 60-300 K and fluctuation assisted tunneling was dominant conduction mechanism below 80 K.

  13. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  14. Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype

    PubMed Central

    Kunin, William E.; Vergeer, Philippine; Kenta, Tanaka; Davey, Matthew P.; Burke, Terry; Ian Woodward, F.; Quick, Paul; Mannarelli, Maria-Elena; Watson-Haigh, Nathan S.; Butlin, Roger

    2009-01-01

    Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent. PMID:19324821

  15. Dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities

    SciTech Connect

    Zaghloul, Mofreh R.

    2015-06-15

    We investigate the dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities. The partition functions for molecular and atomic species are evaluated, in a statistical-mechanically consistent way, implementing recent developments in the literature and taking high-density effects into account. A new chemical model (free energy function) is introduced in which the fluid is considered as a mixture of diatomic molecules, atoms, ions, and free electrons. Intensive short range hard core repulsion is taken into account together with partial degeneracy of free electrons and Coulomb interactions among charged particles. Samples of computational results are presented as a set of isotherms for the degree of ionization, dissociated fraction of molecules, pressure, and specific internal energy for a wide range of densities and temperatures. Predictions from the present model calculations show an improved and sensible physical behavior compared to other results in the literature.

  16. Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids

    SciTech Connect

    Hettige, Jeevapani J.; Kashyap, Hemant K.; Margulis, Claudio J.

    2014-03-21

    In a recent article by the Castner and Margulis groups [Faraday Discuss. 154, 133 (2012)], we described in detail the structure of the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid as a function of temperature using X-ray scattering, and theoretical partitions of the computationally derived structure function. Interestingly, and as opposed to the case in most other ionic-liquids, the first sharp diffraction peak or prepeak appears to increase in intensity as temperature is increased. This phenomenon is counter intuitive as one would expect that intermediate range order fades as temperature increases. This Communication shows that a loss of hydrophobic tail organization at higher temperatures is counterbalanced by better organization of polar components giving rise to the increase in intensity of the prepeak.

  17. Temperature-dependent Goos-Hänchen shift in the terahertz range

    NASA Astrophysics Data System (ADS)

    Zang, Mengdi; He, Ting; Zhang, Bo; Zhong, Liang; Shen, Jingling

    2016-07-01

    In this work, an observation of Goos-Hänchen shift in the terahertz range on a metal surface with a change in temperature is reported. A s-polarized terahertz wave incident at 45° onto an aluminum surface produces a positive GH shift that increases with temperature. We used an interference method by observing the change of interference fringes of two THz beams to verify the existence of the GH shift and indirectly measured the quantity of it. Based on experimental data and theoretical analysis, the increase of GH shift on the aluminum surface as a function of temperature between 23 °C and 101 °C has been obtained. Considering the effect of the thermal expansion, the maximum variation of GH shift is 267.2 μm with the temperature changing 78 °C.

  18. Mechanical characteristics of alloy AMg6M in broad temperature and strain-rate ranges

    SciTech Connect

    Krashchenko, V.P.; Dvoeglazov, G.A.; Ermolaev, G.V.; Rudnitskii, N.P.

    1986-02-01

    The authors study the mechanical properties of an aluminum-magnesium alloy in broad ranges of temperature and strain rate, and the change in hardness and dynamic modulus of elasticity in relation to temperature. The material chosen for study was alloy AMg6M. The heat treating process is described. The experimental data obtained on Micro-6, UVT-2, and UP-7 units is shown graphically. It is apparent that an increase in temperature is accompanied by a decrease in hardness, elastic modulus, and strength in general. Models are obtained and additional tests of specimens at the strain rate 3.3 X 10/sup -2/ sec/sup -1/ and different temperatures are conducted. The dependences must be calculated using all possible models, and the lowest resulting value must be chosen.

  19. Temperature and frequency characteristics of low-loss MnZn ferrite in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Lan, Zhongwen; Yu, Zhong; Xu, Zhiyong; Jiang, Xiaona; Wang, Zihui; Liu, Zhi; Luo, Ming

    2011-05-01

    A low-loss Mn0.7Zn0.24Fe2.06O4 ferrite has been prepared by a solid-state reaction method. The MnZn ferrite has a high initial permeability, μi (3097), a high saturation induction, Bs (526 mT), a high Curie temperature, Tc (220 °C), and a low core loss, PL (≤ 415 kW/m3) in a wide temperature (25-120 °C) and frequency (10-100 kHz) range. As the temperature increases, an initial decrease followed by a subsequent increase of hysteresis loss, Ph, and eddy current loss, Pe is observed. Both Ph and Pe increase with increasing frequency. When f ≥ 300 kHz, a residual loss, Pr, appears. Pe increases with increasing temperature and frequency. The temperature and frequency dependence of Ph can be explained by irreversible domain wall movements, Pe by the skin effect, and Pr by domain wall resonance, respectively.

  20. Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.

    2005-06-01

    Aluminium alloys are being used increasingly in cryogenic systems. However, cryogenic thermal conductivity measurements have been made on only a few of the many types in general use. This paper describes a method of predicting the thermal conductivity of any aluminium alloy between the superconducting transition temperature (approximately 1 K) and room temperature, based on a measurement of the thermal conductivity or electrical resistivity at a single temperature. Where predictions are based on low temperature measurements (approximately 4 K and below), the accuracy is generally better than 10%. Useful predictions can also be made from room temperature measurements for most alloys, but with reduced accuracy. This method permits aluminium alloys to be used in situations where the thermal conductivity is important without having to make (or find) direct measurements over the entire temperature range of interest. There is therefore greater scope to choose alloys based on mechanical properties and availability, rather than on whether cryogenic thermal conductivity measurements have been made. Recommended thermal conductivity values are presented for aluminium 6082 (based on a new measurement), and for 1000 series, and types 2014, 2024, 2219, 3003, 5052, 5083, 5086, 5154, 6061, 6063, 6082, 7039 and 7075 (based on low temperature measurements in the literature).

  1. Effect of diurnal temperature range on cardiovascular markers in the elderly in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Hee; Kim, Ho; Kim, Jin Hee; Bae, Sanghyuk; Hong, Yun-Chul

    2013-07-01

    While diurnal temperature range (DTR) has been found to be a risk factor for mortality, evaluation of the underlying mechanisms involved in this association are lacking. To explain the association between DTR and health effects, we investigated how cardiovascular markers responded to DTR. Data was obtained from 560 participants who regularly attended a community elderly welfare center located in Seoul, Korea. Data collection was conducted a total of five times over a 3-year period beginning in August, 2008. We examined systolic and diastolic blood pressure (BP), heart rate (HR), and heart rate variability (HRV). Mixed-effects models and generalized additive mixed models were used to assess the relationship of DTR with BP, HR, and HRV. BP was not associated significantly with rapid temperature changes during the day. While HR was associated linearly with increments of DTR, the relationship between DTR and HRV showed nonlinear associations, or the presence of a cutoff around median DTR. At the cutoff level of DTR determined by an inflection point in the graph, standard deviation of normal-to-normal intervals (SDNN) and root mean square successive difference (RMSSD) were peaked, whereas the low frequency:high frequency (LF:HF) ratio was elevated with decreasing DTR below the cutoff level. The study demonstrated that HR increases with increasing temperature range during the day, and that HRV is reduced at small or large DTR, which suggests minimal cardiovascular stress around the median level of temperature range during the day.

  2. A Liquid Density Standard Over Wide Ranges of Temperature and Pressure Based on Toluene

    PubMed Central

    McLinden, Mark O.; Splett, Jolene D.

    2008-01-01

    The density of liquid toluene has been measured over the temperature range −60 °C to 200 °C with pressures up to 35 MPa. A two-sinker hydrostatic-balance densimeter utilizing a magnetic suspension coupling provided an absolute determination of the density with low uncertainties. These data are the basis of NIST Standard Reference Material® 211d for liquid density over the temperature range −50 °C to 150 °C and pressure range 0.1 MPa to 30 MPa. A thorough uncertainty analysis is presented; this includes effects resulting from the experimental density determination, possible degradation of the sample due to time and exposure to high temperatures, dissolved air, uncertainties in the empirical density model, and the sample-to-sample variations in the SRM vials. Also considered is the effect of uncertainty in the temperature and pressure measurements. This SRM is intended for the calibration of industrial densimeters. PMID:27096111

  3. Radiative scaling of the nocturnal boundary layer and the diurnal temperature range

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.

    2006-04-01

    A radiative scaling for the warm season nocturnal boundary layer (NBL) is proposed, based on the daily mean surface net longwave radiation flux. Using this scaling, a conceptual model is proposed for the NBL, with parameters estimated from multiple linear regression of model data from the European Centre reanalysis, averaged over river basins from the tropics to high latitudes. A radiative temperature scale, computed from surface net longwave radiation flux and the slope of the Stefan-Boltzmann law, primarily determines the strength of the NBL and the amplitude of the diurnal temperature range, although the length of the nighttime period and the surface wind stress play important subsidiary roles. A related radiative velocity scale or radiative conductance, the duration of the nighttime period and the ratio of the scaled surface heat flux (which increases with wind stress) to the NBL strength determine the depth of the NBL. From an observational perspective, this suggests that the diurnal temperature range may give a useful estimate of surface net longwave radiation flux. From a modeling perspective, this provides a framework for relating model physical parameterizations, especially the coupling at night between the surface, the ground and the atmosphere, to observables, the diurnal temperature range and the strength and depth of the NBL. The model is then applied to estimate the nocturnal rise in concentration of gases such as CO2 and radon that are emitted at the surface.

  4. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States.

    PubMed

    Yuksel, Tugce; Michalek, Jeremy J

    2015-03-17

    We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives. PMID:25671586

  5. An improved approach for measuring immersion freezing in large droplets over a wide temperature range.

    PubMed

    Tobo, Yutaka

    2016-01-01

    Immersion freezing (ice nucleation by particles immersed in supercooled water) is a key process for forming ice in mixed-phase clouds. Immersion freezing experiments with particles in microliter-sized (millimeter-sized) water droplets are often applied to detecting very small numbers of ice nucleating particles (INPs). However, the application of such large droplets remains confined to the detection of INPs active at temperatures much higher than the homogeneous freezing limit, because of artifacts related to freezing of water droplets without added INPs at temperatures of -25 °C or higher on a supporting substrate. Here I report a method for measuring immersion freezing in super-microliter-sized droplets over a wide temperature range. To reduce possible artifacts, droplets are pipetted onto a thin layer of Vaseline and cooled in a clean booth. In the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system, freezing of pure (Milli-Q) water droplets are limited at temperatures above -30 °C. An intercomparison of various techniques for immersion freezing experiments with reference particles (Snomax and illite NX) demonstrates that despite the use of relatively large droplets, the CRAFT setup allows for evaluating the immersion freezing activity of the particles over almost the entire temperature range (about -30 °C to 0 °C) relevant for mixed-phase cloud formation. PMID:27596247

  6. An improved approach for measuring immersion freezing in large droplets over a wide temperature range

    PubMed Central

    Tobo, Yutaka

    2016-01-01

    Immersion freezing (ice nucleation by particles immersed in supercooled water) is a key process for forming ice in mixed-phase clouds. Immersion freezing experiments with particles in microliter-sized (millimeter-sized) water droplets are often applied to detecting very small numbers of ice nucleating particles (INPs). However, the application of such large droplets remains confined to the detection of INPs active at temperatures much higher than the homogeneous freezing limit, because of artifacts related to freezing of water droplets without added INPs at temperatures of −25 °C or higher on a supporting substrate. Here I report a method for measuring immersion freezing in super-microliter-sized droplets over a wide temperature range. To reduce possible artifacts, droplets are pipetted onto a thin layer of Vaseline and cooled in a clean booth. In the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system, freezing of pure (Milli-Q) water droplets are limited at temperatures above −30 °C. An intercomparison of various techniques for immersion freezing experiments with reference particles (Snomax and illite NX) demonstrates that despite the use of relatively large droplets, the CRAFT setup allows for evaluating the immersion freezing activity of the particles over almost the entire temperature range (about −30 °C to 0 °C) relevant for mixed-phase cloud formation. PMID:27596247

  7. Experimental Investigation of Soil Thermal Conductivity Over a Wide Temperature Range

    NASA Astrophysics Data System (ADS)

    Nikolaev, Ivan V.; Leong, Wey H.; Rosen, Marc A.

    2013-06-01

    The results are reported of an experimental investigation of the soil thermal conductivity over a wide temperature range, for various water contents and two soil types. The results are particularly important in predictions of underground heat transfer, which require a quantitative understanding of the coupled dependence of the soil thermal conductivity on texture, temperature, and water content. In the research, comprehensive sets of thermal conductivity for Ottawa sand (coarse soil) and Richmond Hill fine sandy loam (medium soil) are experimentally obtained using the guarded hot-plate method, for temperatures ranging from 2° C to 92° C and water contents varying from complete dryness to full saturation. For both soils, the thermal conductivity is observed to vary in three stages with respect to increasing water content: a very minor increase as water content increases to the permanent wilting point, a steep increase as water content further increases to field capacity, and a minor increase (for temperatures less than 72° C) or decrease for (temperatures greater than 72° C) when the field capacity is exceeded. Then, on the basis of gathered datasets, a similar Ke(Sr,T) form of the soil thermal conductivity model by Tarnawski et al. is used to empirically fit the data. The resulted correlations fit the data well with their overall root-relative-mean-square percentage errors of 4.7 % and 6.1 % for Ottawa sand and Richmond Hill fine sandy loam, respectively, and are suitable for most engineering applications.

  8. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  9. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

    NASA Astrophysics Data System (ADS)

    Ackerley, Duncan; Dommenget, Dietmar

    2016-06-01

    General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70 % of the Earth's surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely, and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land surface temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example, the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealized model experiments described in the wider scientific literature. Finally, a list of other potential applications is described at the end of the study to highlight the usefulness of such a model to the scientific community.

  10. Wide-range average temperature measurements of convective fluid flows by using a schlieren system.

    PubMed

    Martínez-González, A; Moreno-Hernández, D; León-Rodríguez, M; Carrillo-Delgado, C

    2016-01-20

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. In the presence of temperature variations in a fluid flow, the refraction index is related to the gas density by the Gladstone-Dale constant, which depends on the nature of the gas and the wavelength of light propagating in the medium. The deflection of light in a schlieren system is represented by intensity variations on the observation plane. Then, for a digital camera, the intensity level registered in each pixel depends mainly on the refractive index variation of the medium and exposure time. Therefore, if we regulate the intensity value of each pixel by controlling the exposure time, it is possible to adjust the temperature value measurements. In this way, a specific exposure time of a digital camera allows us to measure a determined range of temperature values. For that reason, in this study we determine the range of temperatures that can be measured with a digital camera for different exposure times. By doing this, a wide range of average temperature value fields can be obtained by summing up the temperature contribution of each exposure time. The basic idea in our approach to measure temperature by using a schlieren system is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach is applied to the measurement of temperature fields of the air convection caused by a heated rectangular metal plate (7.3  cm×12  cm) and a candle flame. We found that the maximum temperature values obtained for exposure times of 31.3, 15.7, 7.9, 3.9, and 2 ms were 67.3°C, 122.6°C, 217.4°C, 364.3°C, and 524.0°C, respectively. PMID:26835931

  11. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions

    NASA Astrophysics Data System (ADS)

    Fiala, D.; Lomas, K. J.; Stohrer, M.

    A mathematical model for predicting human thermal and regulatory responses in cold, cool, neutral, warm, and hot environments has been developed and validated. The multi-segmental passive system, which models the dynamic heat transport within the body and the heat exchange between body parts and the environment, is discussed elsewhere. This paper is concerned with the development of the active system, which simulates the regulatory responses of shivering, sweating, and peripheral vasomotion of unacclimatised subjects. Following a comprehensive literature review, 26 independent experiments were selected that were designed to provoke each of these responses in different circumstances. Regression analysis revealed that skin and head core temperature affect regulatory responses in a non-linear fashion. A further signal, i.e. the rate of change of the mean skin temperature weighted by the skin temperature error signal, was identified as governing the dynamics of thermoregulatory processes in the cold. Verification and validation work was carried out using experimental data obtained from 90 exposures covering a range of steady and transient ambient temperatures between 5°C and 50°C and exercise intensities between 46 W/m2 and 600 W/m2. Good general agreement with measured data was obtained for regulatory responses, internal temperatures, and the mean and local skin temperatures of unacclimatised humans for the whole spectrum of climatic conditions and for different activity levels.

  12. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions.

    PubMed

    Fiala, D; Lomas, K J; Stohrer, M

    2001-09-01

    A mathematical model for predicting human thermal and regulatory responses in cold, cool, neutral, warm, and hot environments has been developed and validated. The multi-segmental passive system, which models the dynamic heat transport within the body and the heat exchange between body parts and the environment, is discussed elsewhere. This paper is concerned with the development of the active system, which simulates the regulatory responses of shivering, sweating, and peripheral vasomotion of unacclimatised subjects. Following a comprehensive literature review, 26 independent experiments were selected that were designed to provoke each of these responses in different circumstances. Regression analysis revealed that skin and head core temperature affect regulatory responses in a nonlinear fashion. A further signal, i.e. the rate of change of the mean skin temperature weighted by the skin temperature error signal, was identified as governing the dynamics of thermoregulatory processes in the cold. Verification and validation work was carried out using experimental data obtained from 90 exposures covering a range of steady and transient ambient temperatures between 5 degrees C and 50 degrees C and exercise intensities between 46 W/m2 and 600 W/m2. Good general agreement with measured data was obtained for regulatory responses, internal temperatures, and the mean and local skin temperatures of unacclimatised humans for the whole spectrum of climatic conditions and for different activity levels. PMID:11594634

  13. Factors affecting temperature variation and habitat use in free-ranging diamondback terrapins.

    PubMed

    Akins, C D; Ruder, C D; Price, S J; Harden, L A; Gibbons, J W; Dorcas, M E

    2014-08-01

    Measuring the thermal conditions of aquatic reptiles with temperature dataloggers is a cost-effective way to study their behavior and habitat use. Temperature dataloggers are a particularly useful and informative approach to studying organisms such as the estuarine diamondback terrapin (Malaclemys terrapin) that inhabits a dynamic environment often inaccessible to researchers. We used carapace-mounted dataloggers to measure hourly carapace temperature (Tc) of free-ranging terrapins in South Carolina from October 2007 to 2008 to examine the effects of month, sex, creek site, and tide on Tc and to determine the effects of month, sex, and time of day on terrapin basking frequency. Simultaneous measurements of environmental temperatures (Te; shallow mud, deep mud, water) allowed us to make inferences about terrapin microhabitat use. Terrapin Tc differed significantly among months and creek and between sexes. Terrapin microhabitat use also varied monthly, with shallow mud temperature being the best predictor of Tc November-March and water temperature being the best predictor of Tc April-October. Terrapins basked most frequently in spring and fall and males basked more frequently than females. Our study contributes to a fuller understanding of terrapin thermal biology and provides support for using dataloggers to investigate behavior and habitat use of aquatic ectotherms inhabiting dynamic environments. PMID:25086975

  14. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water.

    PubMed

    Schlesinger, Daniel; Wikfeldt, K Thor; Skinner, Lawrie B; Benmore, Chris J; Nilsson, Anders; Pettersson, Lars G M

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K. PMID:27586931

  15. Spatial scale dependence of the long-range memory properties of Earth surface temperature

    NASA Astrophysics Data System (ADS)

    Fredriksen, H.; Rypdal, K.; Rypdal, M.; Løvsletten, O.

    2013-12-01

    We present a study of the long-range memory properties of the Earth surface temperature. Different spatial scales are analyzed, and it is observed that the persistence of the time series increases with increasing spatial scale. It is also observed that sea surface temperatures are more persistent than land temperatures. The analysis is performed by coarse-graining gridded temperature data, starting out with boxes of 5 x 5 degrees, and then averaging them up to global scales. As a measure of the strength of persistence we have the Hurst exponent, which we have estimated using methods like wavelet variance and maximum likelihood. In the search of an explanation for the differences in the degree of persistence we have studied the strength of the cross-covariances between the temperatures at different locations. If this is strong it will have an impact on the autocovariance function for the average temperature within the area studied. In this way we can see that the spatial covariance is closely linked to the temporal covariance.

  16. Stream temperature change detection for state and private forests in the Oregon Coast Range

    NASA Astrophysics Data System (ADS)

    Groom, Jeremiah D.; Dent, Liz; Madsen, Lisa J.

    2011-01-01

    Oregon's forested coastal watersheds support important cold-water fisheries of salmon and steelhead (Oncorhynchus spp.) as well as forestry-dependent local economies. Riparian timber harvest restrictions in Oregon and elsewhere are designed to protect stream habitat characteristics while enabling upland timber harvest. We present an assessment of riparian leave tree rule effectiveness at protecting streams from temperature increases in the Oregon Coast Range. We evaluated temperature responses to timber harvest at 33 privately owned and state forest sites with Oregon's water quality temperature antidegradation standard, the Protecting Cold Water (PCW) criterion. At each site we evaluated stream temperature patterns before and after harvest upstream, within, and downstream of harvest units. We developed a method for detecting stream temperature change between years that adhered as closely as possible to Oregon's water quality rule language. The procedure provided an exceedance history across sites that allowed us to quantify background and treatment (timber harvest) PCW exceedance rates. For streams adjacent to harvested areas on privately owned lands, preharvest to postharvest year comparisons exhibited a 40% probability of exceedance. Sites managed according to the more stringent state forest riparian standards did not exhibit exceedance rates that differed from preharvest, control, or downstream rates (5%). These results will inform policy discussion regarding the sufficiency of Oregon's forest practices regulation at protecting stream temperature. The analysis process itself may assist other states and countries in developing and evaluating their forest management and water quality antidegradation regulations.

  17. Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.

  18. Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.

  19. Estimation and Attribution of the Temperature Variances in Height Range 60~140 km

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The SABER/TIMED temperatures collected during 2002 2006 are used to estimate for height range 60 120 km the variances of temperature (Temp-VARs) that are contributed from nonstationary perturbations. The estimation results disclose that the height range 60 140 km can be separated into two regions that are characterized by significant differences of the attributions of the Temp-VARs. In the region below 100 km height, the Temp-VARs generally increase with height, the corresponding standard deviations of temperature (Temp-SDEVs) ranges from 4 K at 60 km and 18 K at 100 km. The regions exhibiting intense Temp-VARs appear at the equator and the extra-tropics of both hemispheres. Moreover, these non-stationary temperature disturbances can be accounted primarily by the tidal variances that are derived independently by using the same data-set, in particular by the migrating diurnal, semidiurnal, and terdiurnal tide. It is also found that the region above 100 km is characterized by surprisingly large Temp-VARs with the corresponding Temp-SDEVs greater than 30 K. In a height-latitude cross-section, a stagnant maximum of Temp-SDEVs embraced by the 30-K contour remains over the course of a year at the Equator in a narrow height range 110 125 km. At the same height in Southern hemisphere, the same kind maxima appears at latitudes from the extra-tropics to polar region except during the June solstice. In contrast, the maxima appearing in Northern hemisphere high latitudes exhibits intra-seasonal variations, there such maximum are seen during the course of a year. Further investigation results confirm that the large Temp-VARs have no relevance to the tidal variances, implying the control from other processes, e.g., non-stationary planetary waves. The details will be introduced in the presentation.

  20. Two-Phase Working Fluids for the Temperature Range 50 to 350 C

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Owzarski, P. C.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  1. High-performance, wide-magnification-range IR zoom telescope with automatic compensation for temperature effects

    NASA Astrophysics Data System (ADS)

    Shechterman, Mark S.

    1991-04-01

    A high performance IR zoom telescope with a 15:1 magnification ratio arid fully automatic compensation for changes in optical properties caused by changes in temperature has been developed. This novel IR zoom telescope is characterized by using of three moveable optical element groups, instead of two usually used. Magnification change in it is performed by moving these three optical groups in a predetermined manner with respect to two stationary lens elements. The positioning of the three movable lens groups is controlled by means of a computerized program. The required magnification and the measured system temperature comprise the inputs to the program. The main advantages of this new telescope design relative to existing IR zoom telescopes are: better MTF performance, reduced sensitivity of optical performance to temperature changes, small number of lenses, wider magnification range and high optical transmission.

  2. Memory effects, two color percolation, and the temperature dependence of Mott variable-range hopping

    NASA Astrophysics Data System (ADS)

    Agam, Oded; Aleiner, Igor L.

    2014-06-01

    There are three basic processes that determine hopping transport: (a) hopping between normally empty sites (i.e., having exponentially small occupation numbers at equilibrium), (b) hopping between normally occupied sites, and (c) transitions between normally occupied and unoccupied sites. In conventional theories all these processes are considered Markovian and the correlations of occupation numbers of different sites are believed to be small (i.e., not exponential in temperature). We show that, contrary to this belief, memory effects suppress the processes of type (c) and manifest themselves in a subleading exponential temperature dependence of the variable-range hopping conductivity. This temperature dependence originates from the property that sites of type (a) and (b) form two independent resistor networks that are weakly coupled to each other by processes of type (c). This leads to a two-color percolation problem which we solve in the critical region.

  3. Long-range energy transport in single supramolecular nanofibres at room temperature

    NASA Astrophysics Data System (ADS)

    Haedler, Andreas T.; Kreger, Klaus; Issac, Abey; Wittmann, Bernd; Kivala, Milan; Hammer, Natalie; Köhler, Jürgen; Schmidt, Hans-Werner; Hildner, Richard

    2015-07-01

    Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

  4. Shock-wave response of Ti-Ni shape memory alloys in the transformation temperature range

    NASA Astrophysics Data System (ADS)

    Razorenov, Sergey V.; Garkushin, Gennady V.; Kanel, Gennady I.; Popov, Nikolay N.

    2009-06-01

    The behavior of Ti51.1Ni48.9 and Ti49.4Ni50.6 alloys under shock wave loading was investigated to observe their martensitic transformations. Tested samples had the grain sizes ˜30 μm and 0.05 to 0.3 μm. Reduction of the grain size was done by means of severe plastic deformation methods. In the experiments, the VISAR velocity histories were recorded over the test temperatures range from 193 K to 415 K which involves the temperatures of thermoelastic martensitic transformations of the alloys. Waveforms demonstrate temperature dependences of the Hugoniot elastic limits which is controlled by the critical stress for inducing martensitic transformation, phase transformation without expected so called plateau, and in some cases signatures of pseudo-elastic behavior. The reduction of the material grain size has led to rise in both the HEL values and transformation rates and decrease of the spall strength over whole temperature range.

  5. VCSEL based transmitter module for automotive temperature range between -55° C and +125° C

    NASA Astrophysics Data System (ADS)

    Poferl, Stefan G.; Krieg, Marcel; Hocky, Oliver; Zeeb, Eberhard

    2003-04-01

    Robust, high speed optical data bus systems are increasingly required in automobiles, not only for entertainment applications within the passenger compartment but also for engine management systems and safety sensor networks. Optoelectronic components and modules intended to be used in cars have to withstand harsh environmental conditions, e.g. they have to be operational within a wide temperature range of up to - 55 °C to +1 25 °C for several thousand hours and at the same time they have to be of very low-cost. In this paper we describe a 500 MBit/s transmitter module based on a commercial available 850 nm vertical-cavity surface-emitting laser and a bias-T driving circuit. The optical output power of the module varies only by -0.5 dBm +/- 1dB in the required temperature range without active temperature control. In addition we describe a packaging solution for the VCSEL transmitters allowing the operation of the module even in an extreme engine compartment environment, where short term temperature peaks above 125 °C appear.

  6. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  7. Reassessing changes in diurnal temperature range: A new data set and characterization of data biases

    NASA Astrophysics Data System (ADS)

    Thorne, P. W.; Menne, M. J.; Williams, C. N.; Rennie, J. J.; Lawrimore, J. H.; Vose, R. S.; Peterson, T. C.; Durre, I.; Davy, R.; Esau, I.; Klein-Tank, A. M. G.; Merlone, A.

    2016-05-01

    It has been a decade since changes in diurnal temperature range (DTR) globally have been assessed in a stand-alone data analysis. The present study takes advantage of substantively improved basic data holdings arising from the International Surface Temperature Initiative's databank effort and applies the National Centers for Environmental Information's automated pairwise homogeneity assessment algorithm to reassess DTR records. It is found that breakpoints are more prevalent in DTR than other temperature elements and that the resulting adjustments have a broader distribution. This strongly implies that there is an overarching tendency, across the global meteorological networks, for nonclimatic artifacts to impart either random or anticorrelated rather than correlated biases in maximum and minimum temperature series. Future homogenization efforts would likely benefit from simultaneous consideration of DTR and maximum and minimum temperatures, in addition to average temperatures. Estimates of change in DTR are relatively insensitive to whether adjustments are calculated directly or inferred from adjustments returned for the maximum and minimum temperature series. The homogenized series exhibit a reduction in DTR since the midtwentieth century globally (-0.044 K/decade). Adjustments serve to approximately halve the long-term global reduction in DTR in the basic "raw" data. Most of the estimated DTR reduction occurred over 1960-1980. In several regions DTR has apparently increased over 1979-2012, while globally it has exhibited very little change (-0.016 K/decade). Estimated changes in DTR are an order of magnitude smaller than in maximum and minimum temperatures, which have both been increasing rapidly on multidecadal timescales (0.186 K/decade and 0.236 K/decade, respectively, since the midtwentieth century).

  8. Satellite range delay simulator for a matrix-switched time division multiple-access network simulation system

    NASA Technical Reports Server (NTRS)

    Nagy, Lawrence A.

    1990-01-01

    The Systems Integration, Test, and Evaluation (SITE) facility at NASA Lewis Research Center is presently configured as a satellite-switched time division multiple access (SS-TDMA) network simulator. The purpose of SITE is to demonstrate and evaluate advanced communication satellite technologies, presently embodied by POC components developed under NASA contracts in addition to other hardware, such as ground terminals, designed and built in-house at NASA Lewis. Each ground terminal in a satellite communications system will experience a different aspect of the satellite's motion due mainly to daily tidal effects and station keeping, hence a different duration and rate of variation in the range delay. As a result of this and other effects such as local oscillator instability, each ground terminal must constantly adjust its transmit burst timing so that data bursts from separate ground terminals arrive at the satellite in their assigned time slots, preventing overlap and keeping the system in synchronism. On the receiving end, ground terminals must synchronize their local clocks using reference transmissions received through the satellite link. A feature of the SITE facility is its capability to simulate the varying propagation delays and associated Doppler frequency shifts that the ground terminals in the network have to cope with. Delay is ahcieved by means of two NASA Lewis designed and built range delay simulator (RDS) systems, each independently controlled locally with front panel switches or remotely by an experiment control and monitor (EC/M) computer.

  9. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  10. A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, A.; Jamshidi Aval, H.; Serajzadeh, S.

    2016-03-01

    Flow stress behavior of AA5086 was determined using tensile testing at different temperatures from room temperature to 500 °C and strain rates varying between 0.002 and 1 s-1. The strain rate sensitivity parameter and occurrence of dynamic strain aging were then investigated in which an Arrhenius-type model was employed to study the serrated flow. Additionally, hot deformation behavior at temperatures higher than 320 °C was evaluated utilizing hyperbolic-sine constitutive equation. Finally, a feed forward artificial neural network model with back propagation learning algorithm was proposed to predict flow stress for all deformation conditions. The results demonstrated that the strain rate sensitivity at temperature range of 25-270 °C was negative due to occurrence of dynamic strain aging leading to significant reduction in fracture strain. The serrated yielding activation energy was found to be 46.1 kJ/mol. It indicated that the migration of Mg-atoms could be the main reason for this phenomenon. The hot deformation activation energy of AA5086 was also calculated about 202.3 kJ/mol while the dynamic recovery was the main softening process. Moreover, the ANN model having two hidden layers was shown to be an efficient structure for determining flow stress of the examined alloy for all temperatures and strain rates.

  11. TSDC study of XLPE recrystallization effects in the melting range of temperatures

    NASA Astrophysics Data System (ADS)

    Diego, J. A.; Belana, J.; Òrrit, J.; Sellarès, J.; Mudarra, M.; Cañadas, J. C.

    2006-05-01

    The electrical properties of crosslinked polyethylene (XLPE), employed in mid-voltage cable insulation are studied using thermally stimulated depolarization currents (TSDC), differential scanning calorimetry (DSC) and x-ray diffraction. A complex heteropolar peak appears by TSDC between 50 and 110 °C, with a maximum at 105 °C. These measurements reveal that there is an optimal polarization temperature (Tpo) around 90 °C. For this polarization temperature, the measured discharge peak area is maximum. Although the presence of a Tpo is common in the study of relaxations by TSDC, in this case one would expect a monotonic decrease in the TSDC response with increasing polarization temperatures due to the decrease in the total crystalline fraction. In this paper, TSDC curves obtained under several conditions are interpreted in terms of recrystallization processes in XLPE during the polarization stage, if the sample is polarized in the melting temperature range. In this case, the recrystallization of a fraction of the material molten at this temperature promotes the formation of more stable and defect-free crystals. The presence of recrystallization processes is detected by DSC and confirmed by x-ray diffractometry. TSDC measurements have been performed with samples polarized at several temperatures (Tp) cooling from the melt or heating from room temperature. Also, TSDC results are obtained with previous annealing or with several cooling rates. These results allow us to infer that crystalline material grown from recrystallization processes that take place in the polarization stage attains a particularly stable polarization. Possible microscopical causes of this effect are discussed.

  12. Effects of reproductive status and high ambient temperatures on the body temperature of a free-ranging basoendotherm.

    PubMed

    Levesque, Danielle L; Lobban, Kerileigh D; Lovegrove, Barry G

    2014-12-01

    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition. PMID:25155185

  13. Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film

    NASA Astrophysics Data System (ADS)

    Yi, Mingdong; Cao, Yong; Ling, Haifeng; Du, Zhuzhu; Wang, Laiyuan; Yang, Tao; Fan, Quli; Xie, Linghai; Huang, Wei

    2014-05-01

    We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (˜104), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (˜105) and stable retention characteristics (>103 s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film.

  14. Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film.

    PubMed

    Yi, Mingdong; Cao, Yong; Ling, Haifeng; Du, Zhuzhu; Wang, Laiyuan; Yang, Tao; Fan, Quli; Xie, Linghai; Huang, Wei

    2014-05-01

    We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (∼10(4)), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (∼10(5)) and stable retention characteristics (>10(3) s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film. PMID:24739543

  15. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  16. Kinetic measurements on elementary fossil fuel combustion reactions over wide temperatures ranges

    SciTech Connect

    Fontijin, A.

    1992-01-01

    The goals of this work are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made using the pseudo-static HTP (high-temperature photochemistry) technique. This approach allows observations on single reactions in the 300 to 1800 K temperature range to be made. Typical total (bath gas) pressures are in the 100 to 1000 mbar range. Ground-state O and H atoms are produced by flash or excimer laser photolysis of suitable precursors (O{sub 2}, CO{sub 2}, SO{sub 2}, NH{sub 3}). The relative atom concentrations are monitored by resonance fluorescence pumped by a cw microwave discharge flow lamp. The molecular reactant-in-excess is introduced through a cooled inlet. Adequate time for mixing, 0.1 to 10 s, between this inlet and the photolysis/observation zone is achieved by using slow flows (typically less than 20 cm s{sup {minus}1}). Results are reported for: O-Atom Reactions with the Four Isomeric Butenes, H + HCl {yields} H{sub 2} + Cl, and the O-atom 1,3-butadiene reaction.

  17. Spring leaf phenology and the diurnal temperature range in a temperate maple forest

    NASA Astrophysics Data System (ADS)

    Hanes, Jonathan M.

    2014-03-01

    Spring leaf phenology in temperate climates is intricately related to numerous aspects of the lower atmosphere [e.g., surface energy balance, carbon flux, humidity, the diurnal temperature range (DTR)]. To further develop and improve the accuracy of ecosystem and climate models, additional investigations of the specific nature of the relationships between spring leaf phenology and various ecosystem and climate processes are required in different environments. This study used visual observations of maple leaf phenology, below-canopy light intensities, and micrometeorological data collected during the spring seasons of 2008, 2009, and 2010 to examine the potential influence of leaf phenology on a seasonal transition in the trend of the DTR. The timing of a reversal in the DTR trend occurred near the time when the leaves were unfolding and expanding. The results suggest that the spring decline in the DTR can be attributed primarily to the effect of canopy closure on daily maximum temperature. These findings improve our understanding of the relationship between leaf phenology and the diurnal temperature range in temperate maple forests during the spring. They also demonstrate the necessity of incorporating accurate phenological data into ecosystem and climate models and warrant a careful examination of the extent to which canopy phenology is currently incorporated into existing models.

  18. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    SciTech Connect

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10/sup 3/ to 1 x 10/sup 6/ at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350/sup 0/C (660/sup 0/F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9/sup 0/C above ambient (25/sup 0/F) at a flowing temperature of 350/sup 0/C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated.

  19. National Inter-laboratory Comparison of Thermocouples in the Temperature Range from to

    NASA Astrophysics Data System (ADS)

    Arifoviç, N.; Kalemci, M.

    2015-08-01

    One of the main criteria demonstrating the competence of a calibration laboratory is successful participation in inter-laboratory comparisons. Real capability of the laboratory including claimed uncertainties could be demonstrated based on the results of comparisons, evaluated either through -criteria or other acceptable measures. As a number of accredited laboratories with scopes covering calibration services in the field of thermometry have been increasing, the demand for organization of inter-laboratory comparisons with participation of accredited laboratories occurs. Based on this fact, a national inter-laboratory comparison of thermocouple calibrations in the temperature range from to in the field of temperature was launched by TUBITAK UME in 2011. The purpose of the inter-laboratory comparison was to compare the results of the participating laboratories during calibration of the thermocouples in the range from to . Three type S thermocouples were constructed and calibrated by TUBITAK UME which is the pilot laboratory of the comparison. It was recommended that the participants use their standard procedure for the calibration of thermocouples and follow the instructions of comparison protocol during the calibration. The inter-laboratory comparison was carried out among eleven national accredited laboratories. In this paper, the temperature differences obtained by participating laboratories with associated uncertainties of the results and values will be presented. The metrological equivalence of all laboratories was demonstrated, with all values being less than 1.0.

  20. Temperature Dependence of Novel Single-Photon Detectors in the Long-Wavelength Infrared Range

    NASA Astrophysics Data System (ADS)

    Ueda, Takeji; An, Zhenghua; Komiyama, Susumu

    2011-05-01

    Novel single-photon detectors, called Charge-sensitive Infrared Phototransistor (CSIP), have been developed in the long wavelength infrared (LWIR) range. The devices are fabricated in GaAs/AlGaAs double-quantum-well (DQW) structure, and do not require ultralow temperatures ( T < 1 K) for operation. Figures of merit are determined in a T-range of 4.2 K˜30 K by using a homemade all-cryogenic spectrometer. We found that the photo-signal persists up to around 30 K. Excellent specific detectivity D * = 9.6 × 1014 cm Hz1/2/W and noise equivalent power NEP = 8.3 × 10-19 W/Hz1/2 are derived up to T = 23 K. The dynamic range of detection exceeds 106, roughly ranging from attowatt to picowatt levels. These values are by a few orders of magnitude higher than that of the state-of-the-art values of other detectors. Simple planar structure of CSIPs is feasible for array fabrication and will make it possible to monolithically integrate with reading circuit. CSIPs are, therefore, not only extremely sensitive but also suitable for practical use in wide ranging applications.

  1. Trend Detection in Regional-Mean Temperature Series: Maximum, Minimum, Mean, Diurnal Range, and SST.

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaogu; Basher, Reid E.; Thompson, Craig S.

    1997-02-01

    Regional climate trends are of interest both for understanding natural climate processes and as tests of anthropogenic climate change signatures. Relative to global trends, however, their detection is hampered by smaller datasets and the influence of regional climate processes such as the Southern Oscillation. Regional trends are often presented by authors without demonstration of statistical significance. In this paper, regional-average annual series of air temperature and sea surface temperature for the New Zealand region are analyzed using a systematic statistical approach that selects the optimum statistical model (with respect to serial correlation, linearity, etc.), explicitly models the interannual variability associated with observable regional climate processes, and tests significance. It is found that the residuals are stationary and are a red noise process [ARMA(1,0)] for all the series examined. The SOI and a meridional circulation anomaly index (both high-pass filtered) are `explanatory variables' for interannual variability. For national-average air temperature (AT), linear and exponential trend models are equally valid but for simplicity the linear model is preferred. Failure to model the serial correlation in AT would result in an estimated confidence interval for trend that is too small by 36%. The use of the explanatory variables tightens the confidence interval by 15%.Significant trends were detected. The trend in AT for 1896-1994 is 0.11 ± 0.035°C decade1 (95% confidence interval). This is about double the trend reported for global data, which may be due to the relative absence of sulfate aerosols in the South Pacific region. The trends in maximum and minimum temperature over this period are not statistically different. However, for the later period of 1951-90, the trend in maximum temperature reduces to an insignificant value, while the trend in minimum temperature remains high, resulting in a significant downward trend in diurnal range of 0

  2. Long-range persistence of temperature records induced by long-term climatic phenomena.

    PubMed

    Capparelli, V; Vecchio, A; Carbone, V

    2011-10-01

    The occurrence of persistence in climatic systems has been investigated by analyzing 1167 surface temperature records, covering 110 years, in the whole United States. Due to the nonlinear and nonstationary character of temperature time series, the seasonal cycle suffers from both phase and amplitude modulations, which are not properly removed by the classical definition of the temperature anomaly. In order to properly filter out the seasonal component and the monotonic trends, we define the temperature anomaly in a different way by using the empirical mode decomposition (EMD). The essence of this method is to empirically identify the intrinsic oscillatory modes from the temperature records according to their characteristic time scale. The original signal is thus decomposed into a collection of a finite small number of intrinsic mode functions (IMFs), having its own time scale and representing oscillations experiencing amplitude and phase modulations, and a residue, describing the mean trend. The sum of all the IMF components as well as the residue reconstructs the original signal. Partial reconstruction can be achieved by selectively choosing IMFs in order to remove trivial trends and noise. The EMD description in terms of time-dependent amplitude and phase functions overcomes one of the major limitation of the Fourier analysis, namely, a correct description of nonlinearities and nonstationarities. By using the EMD definition of temperature anomalies we found persistence of fluctuations with a different degree according to the geographical location, on time scales in the range 3-15 years. The spatial distribution of the detrended fluctuation analysis exponent, used to quantify the degree of memory, indicates that the long-term persistence could be related to to the presence of climatic regions, which are more sensitive to climatic phenomena such as the El Niño southern oscillation. PMID:22181223

  3. Diurnal temperature range and emergency room admissions for chronic obstructive pulmonary disease in Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Miin; Liu, Wen-Pin; Kuo, Hsien-Wen

    2009-01-01

    The objective of this study was to assess the relationship between diurnal temperature range (DTR) and emergency room (ER) admissions for chronic obstructive pulmonary disease (COPD) in an ER in Taichung City, Taiwan. The design was a longitudinal study in which DTR was related to COPD admissions to the ER of the city’s largest hospital. Daily ER admissions for COPD and ambient temperature were collected from 1 January 2001 to 31 December 2002. There was a significant negative association between the average daily temperature and ER admissions for COPD ( r = -0.95). However, a significant positive association between DTR and COPD admissions was found ( r = 0.90). Using the Poisson regression model after adjusting for the effects of air pollutants and the day of the week, COPD admissions to the ER increased by 14% when DTR was over 9.6°C. COPD patients must be made aware of the increased risk posed by large DTR. Hospitals and ERs should take into account the increased demand of specific facilities during periods of large temperature variations.

  4. Light-induced long-range hydrogen motion in a-Si:H at room temperature

    NASA Astrophysics Data System (ADS)

    Cheong, Hyeonsik M.; Lee, S.-H.; Nelson, B. P.; Mascarenhas, A.; Deb, S. K.

    2001-03-01

    We demonstrate that one can detect minuscule amounts of hydrogen diffusion out of a-Si:H under illumination at room temperature, by monitoring the changes in the Raman spectrum of a-WO3 as a function of illumination. The Staebler-Wronski effect, the light-induce creation of metastable defects in hydrogenated amorphous silicon (a-Si:H), has been one of the major problems that has limited the performance of solar cells based on this material. The recently suggested ¡®hydrogen collision model¡¯ can explain many aspects of the Staebler-Wronski effect, but assumes that the photogenerated mobile hydrogen atoms can move a long distance at room temperature. However, light-induced hydrogen motion in a-Si:H has not been experimentally observed at room temperature. We utilized the high sensitivity of the Raman spectrum of electrochromic a-WO3 to hydrogen insertion to probe the long-range motion of hydrogen at room temperature. We deposited a thin (200 nm) layer of a-WO3 on top of a-Si:H, and under illumination, a change in the Raman spectrum was detected. By comparing the Raman signal changes with those for control experiments where hydrogen is electrochemically inserted into a-WO_3, we can estimate semiquantitatively the amount of hydrogen that diffuses out of the a-Si:H layer.

  5. Modifiers of diurnal temperature range and mortality association in six Korean cities

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Hee; Park, Ae Kyung; Kim, Ho

    2012-01-01

    Rapid temperature changes within a single day may be critical for populations vulnerable to thermal stress who have difficulty adjusting themselves behaviorally and physiologically. We hypothesized that diurnal temperature range (DTR) is associated with mortality, and that this association is modified by season and socioeconomic status (SES). We evaluated meteorological and mortality data from six metropolitan areas in Korea from 1992 to 2007. We applied generalized linear models (GLM) for quantifying the estimated effects of DTR on mortality after adjusting for mean temperature, dew point temperature, day of the week, and seasonal and long-term trends. Most areas showed a linear DTR-mortality relationship, with evidence of increasing mortality with increasing DTR. Deaths among the elderly (75 years or older), females, the less educated, and the non-hospital population were associated more strongly with DTR than with the corresponding categories. DTR was the greatest threat to vulnerable study populations, with greater influence in the fall season. DTR was found to be a predictor of mortality, and this relationship was modified by season and SES.

  6. Dielectric properties of the collagen-glycosaminoglycans scaffolds in the temperature range of thermal decomposition.

    PubMed

    Pietrucha, K; Marzec, E

    2005-10-22

    Dielectric spectroscopy has been applied to study the decomposition process of unmodified collagen and chondroitin sulfate (CS)- and hyaluronic acid (HA)-modified collagen. Measurements were performed over the frequency range from 10 Hz to 100 kHz and at temperatures from 22 to 260 degrees C. According to the Kramers-Kronig relationship a dispersion is apparent in both epsilon' and epsilon'' for the three materials below 140 degrees C and at higher temperatures as a broad peak around 220-230 degrees C, respectively. The values of epsilon' and epsilon'' at the same temperature for constant frequency are higher in HA-modified collagen than in the unmodified collagen. However, small differences are shown in these parameters between CS-modified collagen and unmodified collagen. The observed dispersion around 220-230 degrees C corresponds to the decomposition of unmodified and CS- and HA-modified collagen. Power-low responses are observed for the frequency dependence of ac conductivity for unmodified and modified collagen. The behaviour observed for temperature dependencies of the exponent n for the three materials is considered to be related to the proton polarization and conduction processes. PMID:16099587

  7. Intrinsic inhomogeneities of low-doped lanthanum manganites in the paramagnetic temperature range

    SciTech Connect

    Solin, N. I.

    2012-01-15

    The nature of the electrical resistivity for low-doped lanthanum manganites is elucidated. The electrical resistivity is described by the Efros-Shklovskii law (ln{rho} {radical} (T{sub 0}/T){sup -1/2}, where T{sub 0} {radical} 1/R{sub ls}) in the temperature range from T* Almost-Equal-To 300 K Almost-Equal-To T{sub C} (T{sub C} is the Curie temperature for conducting manganites) to their T{sub C} and is explained by the tunneling of carriers between localized states. The magnetoresistance is explained by a change in the size of localized states R{sub ls} in a magnetic field. The patterns of change in R{sub ls} with temperature and magnetic field strength determined from magnetotransport properties are satisfactorily described in the model of phase separation into small-radius metallic droplets in a paramagnetic matrix. The sizes R{sub ls} and their temperature dependence have been estimated through magnetic measurements. The results confirm the existence of a Griffith phase. The intrinsic inhomogeneities produced by thermodynamic phase separation determine the electrical resistivity and magnetoresistance of lanthanum manganites.

  8. Multiple fiber Bragg grating sensor network with a rapid response and wide spectral dynamic range using code division multiple access

    NASA Astrophysics Data System (ADS)

    Kim, Youngbok; Jeon, Sie-Wook; Park, Chang-Soo

    2011-05-01

    Fiber Bragg grating (FBG) sensor networks have been intensively researched in optical sensor area and it developed in wavelength division multiplexing (WDM) and time division multiplexing (TDM) technologies which was adopted for its interrogating many optical sensors. In particular, WDM technology can be easily employed to interrogate FBG sensor however, the number of FBG sensors is limited. On the other hand, the TDM technique can extremely expand the number of sensor because the FBG sensors have same center wavelength. However, it suffers from a reduced sensor output power due to low reflectivity of FBG sensor. In this paper, we proposed and demonstrated the FBG sensor network based on code division multiple access (CDMA) with a rapid response and wide spectral dynamic range. The reflected semiconductor optical amplifier (RSOA) as a light source was directly modulated by the generated pseudorandom binary sequence (PRBS) code and the modulated signal is amplified and goes through FBG sensors via circulator. When the modulated optical signal experienced FBG sensor array, the optical signal which was consistent with center wavelength of FBGs is reflected and added from each sensors. The added signal goes into dispersion compensating fiber (DCF) as a dispersion medium. After through the DCF, the optical signal is converted into electrical signal by using photodetector (PD). For separate individual reflected sensor signal, the sliding correlation method was used. The proposed method improves the code interference and it also has advantages such as a large number of sensors, continuously measuring individual sensors, and decreasing the complexity of the sensor network.

  9. Evolution of the energetic characteristics of {silicalite-1 + water} repulsive clathrates in a wide temperature range.

    PubMed

    Ievtushenko, Oleksii V; Eroshenko, Valentin A; Grosu, Yaroslav G; Nedelec, Jean-Marie; Grolier, Jean-Pierre E

    2013-03-28

    Recently {lyophobic porous powders + liquid} systems were proposed to be used for nontraditional energy storage and conversion purposes. This article reports the experimental study of the mechanical behavior, within the pressure-volume (PV) diagram, of the {hydrophobic silicalite-1 + water} system in the temperature range 10-80 °C. Repeated recordings of PV-isotherms and thermal effects of the repulsive clathrate during successive compression-decompression runs were performed using scanning transitiometry. An unexpected steady decline in the intrusion-extrusion pressure and volume of embedded water was found during the forced (repeated) intrusion of water into the pores of silicalite-1 and its spontaneous extrusion at constant temperature. A discussion of possible reasons of unconventional behavior of these heterogeneous systems as well as a thermodynamic analysis is presented. PMID:23407667

  10. Investigation of nitric oxide decomposition in the temperature range 2500-4100 K

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    The decomposition of nitric oxide has been studied in the temperature range 2500-4100 K using a shock-tube technique. The principle result of the study was the determination of the rate constant (k) for the reaction O + NO yields N + O2. Mixtures of NO and N2O diluted in argon or krypton were heated by incident shock waves and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The experimental values of k are fit closely by the expression k = (2.36 times 10 to the 9th power) x T x exp(-38,640/RT) cm cu/mole-sec, which also provides a good fit to previous data at higher and lower temperatures.

  11. Long-range Memory in Earth's Global Temperature and its Implications for Future Global Warming

    NASA Astrophysics Data System (ADS)

    Rypdal, K.; Oestvand, L.

    2012-12-01

    The Earth's climate is a driven complex system which responds to a variable radiative forcing on a vast range of time scales. The contribution explores the hypothesis that the temporal global temperature response can be modeled as a long-range memory (LRM) stochastic process characterized by a Hurst exponent 0.5temperature records we verify LRM scaling on time scales from months to several decades. We find that the LRM increases when one goes from regional (H= 0.7) to global (H=1.0) records and that LRM is highest in records strongly influenced by the ocean. The increasing trend through the last century cannot be explained as an unforced LRM fluctuation, but the observed 60-yr oscillation can. Analysis of a northern-hemisphere reconstruction for the last two millennia confirms LRM scaling up to at least 250 yr. If this record reconstructs the milennium-scale temperatures correctly there is a significant temperature difference between the Medieval Warm Period and the Little Ice Age which cannot be explained as an inherent LRM fluctuation. We systematically investigate biases and uncertainties of a number of analysis methods, and conclude that for these record lengths it has no meaning to give Hurst exponents with more than one decimal. We also address the serious implications of such memory effects on future global warming due to the stronger disturbance of the Earth's energy balance under sustained forcing.

  12. A new method for achieving enhanced dielectric response over a wide temperature range

    PubMed Central

    Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank

    2015-01-01

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors. PMID:26477391

  13. Measurements of the complex permittivity of loss ceramics at microwave frequencies and over large temperature ranges

    SciTech Connect

    Meng, B.; Booske, J.; Cooper, R.; Klein, B.

    1995-12-31

    A system has been developed for measuring the complex permittivities of low loss ceramic materials at frequencies from 2 GHz to 20 GHz and over a temperature range 20-1000{degrees}C. The measurement technique involves a, modified version of tile conventional cavity perturbation method. This extended cavity perturbation technique is presented. Details of the design and fabrication of the circular cylindrical cavity and the input and output coupling transmission lines are discussed. Data are presented for an illustrative measurement of the complex microwave dielectric properties of NaCl single crystals between 20-400{degrees}C. The experimental results are in excellent agreement with theoretical models.

  14. Rate of the reaction of atomic hydrogen with propyne over an extended pressure and temperature range

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Payne, W. A.; Stief, L. J.

    1976-01-01

    The technique of flash photolysis coupled with time resolved detection of H via resonance fluorescence has been used to obtain rate constants for the reaction of atomic hydrogen with propyne at temperatures from 215 to 460 K and at pressures in the range 5-600 torr. The rate constants are strongly pressure dependent and the high pressure limiting values give rise to the Arrhenius expression K = approximately 6 x 10 to the minus 11th exp(-2450T) cu cm per molecule per sec. The results are discussed and compared with those of previous studies

  15. A new method for achieving enhanced dielectric response over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank

    2015-10-01

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  16. A new method for achieving enhanced dielectric response over a wide temperature range

    DOE PAGESBeta

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; Priya, Shashank

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  17. Low temperature pyrotechnic smokes: A potential low cost alternative to nonpyrotechnic smoke for access delay applications

    SciTech Connect

    Greenholt, C.J.

    1995-07-01

    Smokes are frequently used as visual obscurants in access delay applications. A new generation of low temperature pyrotechnic smokes is being developed. Terephthalic Acid (TPA) smoke was developed by the U.S. Army and Sebacic Acid (SA) smoke is being developed by Thiokol Corp. The advantages these smokes offer over traditional pyrotechnic smokes include; low generation temperature (approximately 450{degree}C), lower toxicity, and lower corrosivity. The low generation temperature reduces smoke layering effects and allows the addition of sensory irritants, such as o-Chlorobenzylidene Malononitrile (CS), to the formulation. Some advantages low temperature pyrotechnic smokes offer over nonpyrotechnic smokes include; low cost, simplicity, compactness, light weight, long storage life, and orientation insensitive operation. Low cost permits distribution of multiple units for reduced vulnerability and refill flexibility. Some disadvantages may include the combustibility of the smoke particulate; however, the published lower explosive limit of the mentioned materials is approximately ten times greater than the concentration required for effective obscuration. The TPA smoke cloud contains small quantities of benzene, formaldehyde, and carbon monoxide; no benzene or formaldehyde was identified during preliminary SA smoke analyses performed by Thiokol Corp. Sandia performed tests and analyses on TPA smoke to determine the smoke cloud composition, the quantity of particulate produced per canister, and the relationship between airborne particulate concentration and measured optical density values. Current activities include characterization of SA smoke.

  18. Testing a full-range soil-water retention function in modeling water potential and temperature

    USGS Publications Warehouse

    Andraski, B.J.; Jacobson, E.A.

    2000-01-01

    Recent work has emphasized development of full-range water-retention functions that are applicable under both wet and dry soil conditions, but evaluation of such functions in numerical modeling has been limited. Here we show that simulations using the Rossi-Nimmo (RN) full-range function compared favorably with those using the common Brooks-Corey function and that the RN function can improve prediction of water potentials in near-surface soil, particularly under dry conditions. Simulations using the RN function also improved prediction of temperatures throughout the soil profile. Such improvements could be important for calculations of liquid and vapor flow in near-surface soils and in deep unsaturated zones of arid and semiarid regions.

  19. Evaluation of Heat Pipe Working Fluids In The Temperature Range 450 to 700 K

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Rosenfeld, John H.; Angirasa, Devarakonda; Mi, Ye

    2004-02-01

    In the temperature range of 450-700 K, there are currently no working fluids that have been validated for heat pipes and loop heat pipes, with the exception of water in the lower portion of the range. This paper reviews a number of potential working fluid including several organic fluids, mercury, sulfur/iodine, and halides. Physical property data are used where available, and estimated where unavailable using standard methods. The halide salts appear to possess attractive properties, with good liquid transport factors, and suitable vapor pressures. Where nuclear radiation is not a consideration, other potential working fluids are aniline, naphthalene, toluene, and phenol. The limited available life test data available suggests that toluene, naphthalene, and some of the halides are compatible with stainless steel, while the other fluids have not been tested.

  20. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    NASA Astrophysics Data System (ADS)

    Nie, Qin; Xu, Jianhua; Man, Wang

    2016-03-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem. It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods. This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis, utilizing data from downtown Shanghai, China. UIS estimates were obtained from linear spectral mixture analysis, and LST was retrieved through application of the mono-window algorithm, using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010. These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai. LST has a long memory for a certain spatial range of UIS values, such that a large increment in UIS is likely to be followed by a large increment in LST. While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010), these observed correlations show a weakening during the study period as urbanization increased.

  1. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures.

    PubMed

    Doll, Andrin; Bordignon, Enrica; Joseph, Benesh; Tschaggelar, René; Jeschke, Gunnar

    2012-09-01

    We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 T for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 μM range. The DNP effects at such low concentrations are weak and the experimentally achievable dynamic nuclear polarizations can be below the equilibrium polarization. This sensitivity problem is solved with an optimized home-built DNP probe head consisting of a dielectric microwave resonator and a saddle coil as close as possible to the sample. The performance of the probe head is demonstrated with both a modified pulsed EPR spectrometer and a dedicated CW EPR spectrometer equipped with a commercial NMR console. In comparison to a commercial pulsed ENDOR resonator, the home-built resonator has an FID detection sensitivity improvement of 2.15 and an electron spin excitation field improvement of 1.2. The reproducibility of the DNP results is tested on the water soluble maltose binding protein MalE of the ABC maltose importer, where we determine a net standard deviation of 9% in the primary DNP data in the concentration range between 10 and 100 μM. DNP parameters are measured in a spin-labeled membrane protein, namely the vitamin B(12) importer BtuCD in both detergent-solubilized and reconstituted states. The data obtained in different nucleotide states in the presence and absence of binding protein BtuF reveal the applicability of this technique to qualitatively extract water accessibility changes between different conformations by the ratio of primary DNP parameters ϵ. The ϵ-ratio unveils the physiologically relevant transmembrane communication in the transporter in terms of changes in water accessibility at the cytoplasmic gate of the protein induced by both BtuF binding at the periplasmic region of the transporter and ATP binding at the cytoplasmic nucleotide binding domains. PMID:22820007

  2. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Bordignon, Enrica; Joseph, Benesh; Tschaggelar, René; Jeschke, Gunnar

    2012-09-01

    We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 T for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 μM range. The DNP effects at such low concentrations are weak and the experimentally achievable dynamic nuclear polarizations can be below the equilibrium polarization. This sensitivity problem is solved with an optimized home-built DNP probe head consisting of a dielectric microwave resonator and a saddle coil as close as possible to the sample. The performance of the probe head is demonstrated with both a modified pulsed EPR spectrometer and a dedicated CW EPR spectrometer equipped with a commercial NMR console. In comparison to a commercial pulsed ENDOR resonator, the home-built resonator has an FID detection sensitivity improvement of 2.15 and an electron spin excitation field improvement of 1.2. The reproducibility of the DNP results is tested on the water soluble maltose binding protein MalE of the ABC maltose importer, where we determine a net standard deviation of 9% in the primary DNP data in the concentration range between 10 and 100 μM. DNP parameters are measured in a spin-labeled membrane protein, namely the vitamin B12 importer BtuCD in both detergent-solubilized and reconstituted states. The data obtained in different nucleotide states in the presence and absence of binding protein BtuF reveal the applicability of this technique to qualitatively extract water accessibility changes between different conformations by the ratio of primary DNP parameters ɛ. The ɛ-ratio unveils the physiologically relevant transmembrane communication in the transporter in terms of changes in water accessibility at the cytoplasmic gate of the protein induced by both BtuF binding at the periplasmic region of the transporter and ATP binding at the cytoplasmic nucleotide binding domains.

  3. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    PubMed Central

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  4. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  5. Gas-Phase Reaction of Hydroxyl Radical with p-Cymene over an Extended Temperature Range.

    PubMed

    Bedjanian, Yuri; Morin, Julien; Romanias, Manolis N

    2015-11-12

    The kinetics of the reaction of OH radicals with p-cymene has been studied in the temperature range of 243-898 K using a flow reactor combined with a quadrupole mass spectrometer: OH + p-cymene → products. The reaction rate constant was determined as a result of absolute measurements, from OH decay kinetics in excess of p-cymene and employing the relative rate method with OH reactions with n-pentane, n-heptane,1,3-dioxane, HBr, and Br2 as the reference ones. For the rate coefficient of the H atom abstraction channel, the expression k1b = (3.70 ± 0.42) × 10(-11) exp[-(772 ± 72)/T] was obtained over the temperature range of 381-898 K. The total rate constant (addition + abstraction) determined at T = 243-320 K was k1 = (1.82 ± 0.48) × 10(-12) exp[(607 ± 70)/T] or, in a biexponential form, k1 = k1a + k1b = 3.7 × 10(-11) exp(-772/T) + 6.3 × 10(-13) exp(856/T), independent of the pressure between 1 and 5 Torr of helium. In addition, our results indicate that the reaction pathway involving alkyl radical elimination upon initial addition of OH to p-cymene is most probably unimportant. PMID:26473634

  6. Effects of diurnal temperature range and drought on wheat yield in Spain

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2016-04-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  7. The creation of high-temperature superconducting cables of megawatt range in Russia

    SciTech Connect

    Sytnikov, V. E. Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  8. The creation of high-temperature superconducting cables of megawatt range in Russia

    NASA Astrophysics Data System (ADS)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  9. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    DOEpatents

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  10. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  11. Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC

    NASA Astrophysics Data System (ADS)

    Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi

    Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.

  12. Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates

    NASA Astrophysics Data System (ADS)

    Thorne, P. W.; Donat, M. G.; Dunn, R. J. H.; Williams, C. N.; Alexander, L. V.; Caesar, J.; Durre, I.; Harris, I.; Hausfather, Z.; Jones, P. D.; Menne, M. J.; Rohde, R.; Vose, R. S.; Davy, R.; Klein-Tank, A. M. G.; Lawrimore, J. H.; Peterson, T. C.; Rennie, J. J.

    2016-05-01

    Changes in diurnal temperature range (DTR) over global land areas are compared from a broad range of independent data sets. All data sets agree that global-mean DTR has decreased significantly since 1950, with most of that decrease occurring over 1960-1980. The since-1979 trends are not significant, with inter-data set disagreement even over the sign of global changes. Inter-data set spread becomes greater regionally and in particular at the grid box level. Despite this, there is general agreement that DTR decreased in North America, Europe, and Australia since 1951, with this decrease being partially reversed over Australia and Europe since the early 1980s. There is substantive disagreement between data sets prior to the middle of the twentieth century, particularly over Europe, which precludes making any meaningful conclusions about DTR changes prior to 1950, either globally or regionally. Several variants that undertake a broad range of approaches to postprocessing steps of gridding and interpolation were analyzed for two of the data sets. These choices have a substantial influence in data sparse regions or periods. The potential of further insights is therefore inextricably linked with the efficacy of data rescue and digitization for maximum and minimum temperature series prior to 1950 everywhere and in data sparse regions throughout the period of record. Over North America, station selection and homogeneity assessment is the primary determinant. Over Europe, where the basic station data are similar, the postprocessing choices are dominant. We assess that globally averaged DTR has decreased since the middle twentieth century but that this decrease has not been linear.

  13. Long-range persistence in the global mean surface temperature and the global warming "time bomb"

    NASA Astrophysics Data System (ADS)

    Rypdal, M.; Rypdal, K.

    2012-04-01

    Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.

  14. A Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild Irish Accessions of Arabidopsis thaliana

    PubMed Central

    Tabib, Amanda; Vishwanathan, Sailaja; Seleznev, Andrei; McKeown, Peter C.; Downing, Tim; Dent, Craig; Sanchez-Bermejo, Eduardo; Colling, Luana; Spillane, Charles; Balasubramanian, Sureshkumar

    2016-01-01

    Triplet repeat expansions underlie several human genetic diseases such as Huntington's disease and Friedreich's ataxia. Although such mutations are primarily known from humans, a triplet expansion associated genetic defect has also been reported at the IIL1 locus in the Bur-0 accession of the model plant Arabidopsis thaliana. The IIL1 triplet expansion is an example of cryptic genetic variation as its phenotypic effects are seen only under genetic or environmental perturbation, with high temperatures resulting in a growth defect. Here we demonstrate that the IIL1 triplet expansion associated growth defect is not a general stress response and is specific to particular environmental perturbations. We also confirm and map genetic modifiers that suppress the effect of IIL1 triplet repeat expansion. By collecting and analyzing accessions from the island of Ireland, we recover the repeat expansion in wild populations suggesting that the repeat expansion has persisted at least 60 years in Ireland. Through genome-wide genotyping, we show that the repeat expansion is present in diverse Irish populations. Our findings indicate that even deleterious alleles can persist in populations if their effect is conditional. Our study demonstrates that analysis of groups of wild populations is a powerful tool for understanding the dynamics of cryptic genetic variation.

  15. Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe.

    PubMed

    Sheikh, Mumtaz; Riza, Nabeel A

    2009-05-01

    We propose and demonstrate a temperature sensing method using an all-silicon carbide probe that combines wavelength-tuned signal processing for coarse measurements and classical Fabry-Perot etalon peak shift for fine measurements. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. Specifically, temperature measurements from room temperature to 1000 degrees C are experimentally demonstrated with an estimated resolution varying from 0.66 degrees C at room temperature to 0.12 degrees C at 1000 degrees C. The proposed sensor has applications in next-generation greener gas turbines for power production. PMID:19412286

  16. Oxidation of Fe-C alloys in the temperature range 600-852/sup 0/C

    SciTech Connect

    Malik, A.U.; Whittle, D.P.

    1981-12-01

    The oxidation behavior of Fe-C alloys in the temperature range 600-850/sup 0/C has been studied. CO/sub 2/ evolved during oxidation was measured using an infrared gas analyzer. The presence of C lowers the oxidation rate relative to that of pure Fe and this has been related to the rejection of carbon at the alloy-scale interface causing poor contact between scale and alloy. As a result, the scale contains a higher proportion of magnetite, which reduces its overall growth rate. Very little carbon is lost to the atmosphere. The ease with which the rejected carbon is incorporated into the alloy depends on the alloy structure.

  17. Radiative Vaporization of Graphite in the Temperature Range of 4000 to 4500 deg K

    NASA Technical Reports Server (NTRS)

    Lundell, John H.; Dickey, Robert R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. Under these conditions, the vaporization process is coupled to the plume gasdynamics. Experimental results are presented for surface temperatures of 3985 to 4555 K and mass-loss rates from 0.52 to 27.0 g/sq cm sec. The data are used to determine the vapor pressure of graphite in a range of 2 to 11 atm, and the results are shown to be in good agreement with the JANAF vapor pressure curve, if the vaporization coefficients are unity. The assumption of unity vaporization coefficients is shown to be reasonable by a comparison of the present results with other recent vapor pressure results for graphite.

  18. Vaporization of graphite in the temperature range of 4000 to 4500 K

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. It is shown that under these conditions the vaporization process is coupled to the plume gasdynamics and the mass-loss rate for graphite is 62% of the free vaporization rate. Experimental results are presented for surface temperatures from 3985 to 4555 K and mass-loss rates from 0.56 to 27.0 g per sq cm sec. The results are used to determine the vapor pressure of graphite in a pressure range of 2 to 11 atm, and the values are shown to be in agreement with the JANAF vapor pressure curve.

  19. The influence of diurnal temperature range on the incidence of respiratory syncytial virus in Japan.

    PubMed

    Onozuka, D

    2015-03-01

    The incidence of respiratory syncytial virus (RSV) has been reported to exhibit seasonal variation. However, the impact of diurnal temperature range (DTR) on RSV has not been investigated. After acquiring data related to cases of RSV and weather parameters of DTR in Fukuoka, Japan, between 2006 and 2012, we used negative binomial generalized linear models and distributed lag nonlinear models to assess the possible relationship between DTR and RSV cases, adjusting for confounding factors. Our analysis revealed that the weekly number of RSV cases increased with a relative risk of 3·30 (95% confidence interval 1·65-6·60) for every 1°C increase in DTR. Our study provides quantitative evidence that the number of RSV cases increased significantly with increasing DTR. We suggest that preventive measures for limiting the spread of RSV should be considered during extended periods of high DTR. PMID:25092407

  20. Effect of glass composition on activation energy of viscosity in glass-melting-temperature range

    SciTech Connect

    Hrma, Pavel R.; Han, Sang Soo

    2012-08-01

    In the high-temperature range, where the viscosity (Eta) of molten glass is <10{sup 3} Pa s, the activation energy (B) is virtually ln(Eta) = A + B/T, is nearly independent of melt composition. Hence, the viscosity-composition relationship for Eta < 10{sup 3} Pa s is defined by B as a function of composition. Using a database encompassing over 1300 compositions of high-level waste glasses with nearly 7000 viscosity data, we developed mathematical models for B(x), where x is the composition vector in terms of mass fractions of components. In this paper, we present 13 versions of B(x) as first- and second-order polynomials with coefficients for 15 to 39 components, including Others, a component that sums constituents having little effect on viscosity.

  1. Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951-2010

    NASA Astrophysics Data System (ADS)

    Jaagus, Jaak; Briede, Agrita; Rimkus, Egidijus; Remm, Kalle

    2014-10-01

    Spatial distribution and trends in mean and absolute maximum and minimum temperatures and in the diurnal temperature range were analysed at 47 stations in the eastern Baltic region (Lithuania, Latvia and Estonia) during 1951-2010. Dependence of the studied variables on geographical factors (latitude, the Baltic Sea, land elevation) is discussed. Statistically significant increasing trends in maximum and minimum temperatures were detected for March, April, July, August and annual values. At the majority of stations, the increase was detected also in February and May in case of maximum temperature and in January and May in case of minimum temperature. Warming was slightly higher in the northern part of the study area, i.e. in Estonia. Trends in the diurnal temperature range differ seasonally. The highest increasing trend revealed in April and, at some stations, also in May, July and August. Negative and mostly insignificant changes have occurred in January, February, March and June. The annual temperature range has not changed.

  2. Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea.

    PubMed

    Lim, Youn-Hee; Hong, Yun-Chul; Kim, Ho

    2012-02-15

    The effects of heat and cold waves have been studied as risk factors for cardiovascular and respiratory diseases. However, few studies have examined the effect of diurnal temperature changes on health. We hypothesized that the diurnal temperature range (DTR) may affect the rate of hospital admissions for cardiovascular- and respiratory-related diseases, and therefore investigated the risk of hospital admissions of cardiovascular (stroke, myocardial infarction, ischemic heart disease, cardiac failure, cardiac disease, and arrhythmia) and respiratory (asthma, chronic obstructive pulmonary disease, and pneumonia) diseases attributable to DTR in four metropolitan areas in Korea during 2003-2006. The area-combined effects of DTR on some cardiovascular and respiratory diseases were significantly increased by an increment of DTR. In particular, the effects on cardiac failure and asthma were significant with the percentage change of hospital admissions per 1 °C increment of DTR at 3.0% (95% CI, 1.4-4.6) and 1.1% (95% CI, 0.1-2.0), respectively, among 9 diseases. For those 75 years and older, the DTR effect on asthma admissions was greater than in those aged under 75 years. These results support the hypothesis of a positive association between DTR and cardiovascular and respiratory hospital admission. PMID:22281041

  3. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  4. Assessment of Operation of EMK21 MEMS Silicon Oscillator Over Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2009-01-01

    Electronic control systems, data-acquisition instrumentation, and microprocessors require accurate timing signals for proper operation. Traditionally, ceramic resonators and crystal oscillators provided this clock function for the majority of these systems. Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to surface as commercial-off-the-shelf (COTS) parts by a few companies. These quartz-free, miniature silicon devices could easily replace the traditional crystal oscillators in providing the timing/clock function for many digital and analog circuits. They are reported to provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [ 1-2]. In addition, they are encapsulated in compact lead-free packages and cover a wide frequency range (1 MHz to 125 MHz). The small size of the MEMS oscillators along with their thermal stability make them ideal candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an Ecliptek Corporation MEMS silicon oscillator chip under extreme temperatures.

  5. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2016-06-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates ( 10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass ( α ) transition and the secondary ( β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  6. Impact of diurnal temperature range on human health: a systematic review

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Xu, Zhiwei; Zhu, Rui; Wang, Xu; Jin, Liu; Song, Jian; Su, Hong

    2014-02-01

    Increasing epidemiological studies have shown that a rapid temperature change within 1 day is an independent risk factor for human health. This paper aimed to systematically review the epidemiological evidence on the relationship between diurnal temperature range (DTR) and human health and to propose future research directions. A literature search was conducted in October 2013 using the databases including PubMed, ScienceDirect, and EBSCO. Empirical studies regarding the relationship between DTR and mortality and morbidity were included. Twenty-five relevant studies were identified, among which, 11 investigated the relationship between DTR and mortality and 14 examined the impact of DTR on morbidity. The majority of existing studies reported that DTR was significantly associated with mortality and morbidity, particularly for cardiovascular and respiratory diseases. Notably, compared with adults, the elderly and children were more vulnerable to DTR effects. However, there were some inconsistencies regarding the susceptible groups, lag time, and threshold of DTR. The impact of DTR on human health may be confounded or modified by season, socioeconomic, and educational status. Further research is needed to further confirm the adverse effects of DTR in different geographical locations; examine the effects of DTR on the health of children aged one or under; explore extreme DTR effects on human health; analyze the difference of DTR effects on human health in different locations and the modified effects of potential confounding factors; and develop detailed preventive measures against large DTR, particularly for susceptible groups.

  7. Impact of diurnal temperature range on human health: a systematic review.

    PubMed

    Cheng, Jian; Xu, Zhiwei; Zhu, Rui; Wang, Xu; Jin, Liu; Song, Jian; Su, Hong

    2014-11-01

    Increasing epidemiological studies have shown that a rapid temperature change within 1 day is an independent risk factor for human health. This paper aimed to systematically review the epidemiological evidence on the relationship between diurnal temperature range (DTR) and human health and to propose future research directions. A literature search was conducted in October 2013 using the databases including PubMed, ScienceDirect, and EBSCO. Empirical studies regarding the relationship between DTR and mortality and morbidity were included. Twenty-five relevant studies were identified, among which, 11 investigated the relationship between DTR and mortality and 14 examined the impact of DTR on morbidity. The majority of existing studies reported that DTR was significantly associated with mortality and morbidity, particularly for cardiovascular and respiratory diseases. Notably, compared with adults, the elderly and children were more vulnerable to DTR effects. However, there were some inconsistencies regarding the susceptible groups, lag time, and threshold of DTR. The impact of DTR on human health may be confounded or modified by season, socioeconomic, and educational status. Further research is needed to further confirm the adverse effects of DTR in different geographical locations; examine the effects of DTR on the health of children aged one or under; explore extreme DTR effects on human health; analyze the difference of DTR effects on human health in different locations and the modified effects of potential confounding factors; and develop detailed preventive measures against large DTR, particularly for susceptible groups. PMID:24535132

  8. Diurnal temperature range and short-term mortality in large US communities

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Hee; Reid, Colleen E.; Mann, Jennifer K.; Jerrett, Michael; Kim, Ho

    2015-09-01

    Research has shown that diurnal temperature range (DTR) is significantly associated with mortality and morbidity in regions of Asia; however, few studies have been conducted in other regions such as North America. Thus, we examined DTR effects on mortality in the USA. We used mortality and environmental data from the National Morbidity Mortality Air Pollution Study (NMMAPS). The data are daily mortality, air pollution, and temperature statistics from 95 large US communities collected between 1987 and 2000. To assess community-specific DTR effects on mortality, we used Poisson generalized linear models allowing for over-dispersion. After assessing community-specific DTR effects on mortality, we estimated region- and age-specific effects of DTR using two-level normal independent sampling estimation. We found a significant increase of 0.27 % [95 % confidence intervals (CI), 0.24-0.30 %] in nonaccidental mortality across 95 communities in the USA associated with a 1 °C increase in DTR, controlling for apparent temperature, day of the week, and time trend. This overall effect was driven mainly by effects of DTR on cardiovascular and respiratory mortality in the elderly: Mortality in the above 65 age group increased by 0.39 % (95 % CI, 0.33-0.44 %) and 0.33 % (95 % CI, 0.22-0.44 %), respectively. We found some evidence of regional differences in the effects of DTR on nonaccidental mortality with the highest effects in Southern California [0.31 % (95 % CI, 0.21-0.42 %)] and smallest effects in the Northwest and Upper Midwest regions [0.22 % (95 % CI, 0.11-0.33 %) and 0.22 % (95 % CI, 0.07-0.37 %), respectively]. These results indicate a statistically significant association between DTR and mortality on average for 95 large US communities. The findings indicate that DTR impacts on nonaccidental and cardiovascular-related mortality in most US regions and the elderly population was most vulnerable to the effects of DTR.

  9. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Amine, K.

    2012-01-01

    A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li(1.2)Ni(0.15)Co(0.10)Mn(0.55)O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato)borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi(0.80)Co(0.15)Al(0.05)O2-based systems, rather than being influenced strongly by the electrolyte type.

  10. Medium-Range Predictability of Contrail-Cirrus Demonstrated during Experiments Ml-Cirrus and Access-Ii

    NASA Astrophysics Data System (ADS)

    Schumann, U.

    2015-12-01

    The Contrail Cirrus Prediction model CoCiP (doi:10.5194/gmd-5-543-2012) has been applied quasi operationally to predict contrails for flight planning of ML-CIRRUS (C. Voigt, DLR, et al.) in Europe and for ACCESS II in California (B. Anderson, NASA, et al.) in March-May 2014. The model uses NWP data from ECMWF and past airtraffic data (actual traffic data are used for analysis). The forecasts provided a sequence of hourly forecast maps of contrail cirrus optical depth for 3.5 days, every 12 h. CoCiP has been compared to observations before, e.g. within a global climate-aerosol-contrail model (Schumann, Penner et al., ACPD, 2015, doi:10.5194/acpd-15-19553-2015). Good predictions would allow for climate optimal routing (see, e.g., US patent by Mannstein and Schumann, US 2012/0173147 A1). The predictions are tested by: 1) Local eyewitness reports and photos, 2) satellite observed cloudiness, 3) autocorrelation analysis of predictions for various forecast periods, 4) comparisons of computed with observed optical depth from COCS (doi:10.5194/amt-7-3233-2014, 2014) by IR METEOSAT-SEVIRI observations over Europe. The results demonstrate medium-range predictability of contrail cirrus to a useful degree for given traffic, soot emissions, and high-quality NWP data. A growing set of satellite, Lidar, and in-situ data from ML-CIRRUS and ACCENT are becoming available and will be used to further test the forecast quality. The autocorrelation of optical depth predictions is near 70% for 3-d forecasts for Europe (outside times with high Sahara dust loads), and only slightly smaller for continental USA. Contrail cirrus is abundant over Europe and USA. More than 1/3 of all cirrus measured with the research aircraft HALO during ML-CIRRUS was impacted by contrails. The radiative forcing (RF) is strongly daytime and ambience dependent. The net annual mean RF, based on our global studies, may reach up to 0.08 W/m2 globally, and may well exceed 1 W/m2 regionally, with maximum over Europe

  11. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    NASA Technical Reports Server (NTRS)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  12. Does tectonics drive topography ? Insights from low - temperature thermochronology and numerical modeling along the Himalayan range

    NASA Astrophysics Data System (ADS)

    Robert, X.; van der Beek, P.; Braun, J.; Perry, C.; Mugnier, J. L.

    2009-12-01

    Although the Himalayan range is commonly presented as cylindrical along-strike, geological structures, topography, precipitation rate, convergence rates and low - temperature thermochronological ages all vary significantly from west to east. Here, we focus on the interpretation of thermochronological datasets in term of cylindricity in geometry and kinematics of the MHT along the Himalayan range. We propose a structural and kinematic model of the major crustal Himalayan thrust, the MHT, based on apatite fission-track (AFT) ages collected along north - south transects in western and eastern - central Nepal (Kali Gandaki and Trisuli Rivers). AFT ages are consistently young (≤3 My) along both N-S transects in the MCT zone and increase (4 to 6 My) toward the south in the Lesser Himalaya. We constrain the geometry of the MHT ramp with 2 age-elevation transects, one in the MCT zone and one in the outer Lesser Himalaya, interpreted in terms of exhumation rate. The data can be fit without invoking out-of-sequence thrusting in the Main Central Thrust zone by varying the geometry of the MHT along strike, in accord with independent geodetic and geophysical data. We compare our data to published low-temperature thermochronological datasets for western - central Nepal, eastern - central Nepal, western India and the Bhutan Himalaya. We use these data to constrain numerical thermal-kinematic models using a modified version of the PECUBE code, in order to quantify potential along-strike variations in the kinematics of the Himalayan range. Our results show that lateral variations in geometry of the MHT (in particular the presence or absence of a major ramp) strongly control the kinematics, the exhumation history and the topography of the orogen. Where a major crustal ramp is present, the topography shows a steep gradient that focuses exhumation and orographic precipitation whereas the topography is more gentle and exhumation less focused in the absence of a ramp. Our results

  13. Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields†

    PubMed Central

    Edwards, Devin T.; Ma, Zhidong; Meade, Thomas J.; Goldfarb, Daniella; Han, Songi

    2014-01-01

    Interspin distances between 0.8 nm and 2.0 nm can be measured through the dipolar broadening of the continuous wave (cw) EPR spectrum of nitroxide spin labels at X-band (9.4 GHz, 0.35 T). We introduce Gd3+ as a promising alternative spin label for distance measurements by cw EPR above 7 Tesla, where the |−1/2〉 to |1/2〉 transition narrows below 1 mT and becomes extremely sensitive to dipolar broadening. To estimate the distance limits of cw EPR with Gd3+, we have measured spectra of frozen solutions of GdCl3 at 8.6 T (240 GHz) and 10 K at concentrations ranging from 50 mM to 0.1 mM, covering a range of average interspin distances. These experiments show substantial dipolar broadening at distances where line broadening cannot be observed with nitroxides at X-band. This data, and its agreement with calculated dipolar-broadened lineshapes, show Gd3+ to be sensitive to distances as long as ~3.8 nm. Further, the linewidth of a bis-Gd3+ complex with a flexible ~1.6 nm bridge is strongly broadened as compared to the mono-Gd3+ complex, demonstrating the potential for application to pairwise distances. Gd-DOTA-based chelates that can be functionalized to protein surfaces display linewidths narrower than aqueous GdCl3, implying they should be even more sensitive to dipolar broadening. Therefore, we suggest that the combination of tailored Gd3+ labels and high magnetic fields can extend the longest interspin distances measurable by cw EPR from 2.0 nm to 3.8 nm. cw EPR data at 260 K demonstrate that the line broadening remains clear out to similar average interspin distances, offering Gd3+ probes as promising distance rulers at temperatures higher than possible with conventional pulsed EPR distance measurements. PMID:23732863

  14. Statistical Significance of Long-Range `Optimal Climate Normal' Temperature and Precipitation Forecasts.

    NASA Astrophysics Data System (ADS)

    Wilks, Daniel S.

    1996-04-01

    A simple approach to long-range forecasting of monthly or seasonal quantities is as the average of observations over some number of the most recent years. Finding this `optimal climate normal' (OCN) involves examining the relationships between the observed variable and averages of its values over the previous one to 30 years and selecting the averaging period yielding the best results. This procedure involves a multiplicity of comparisons, which will lead to misleadingly positive results for developments data. The statistical significance of these OCNs are assessed here using a resampling procedure, in which time series of U.S. Climate Division data are repeatedly shuffled to produce statistical distributions of forecast performance measures, under the null hypothesis that the OCNs exhibit no predictive skill. Substantial areas in the United States are found for which forecast performance appears to be significantly better than would occur by chance.Another complication in the assessment of the statistical significance of the OCNs derives from the spatial correlation exhibited by the data. Because of this correlation, instances of Type I errors (false rejections of local null hypotheses) will tend to occur with spatial coherency and accordingly have the potential to be confused with regions for which there may be real predictability. The `field significance' of the collections of local tests is also assessed here by simultaneously and coherently shuffling the time series for the Climate Divisions. Areas exhibiting significant local tests are large enough to conclude that seasonal OCN temperature forecasts exhibit significant skill over parts of the United States for all seasons except SON, OND, and NDJ, and that seasonal OCN precipitation forecasts are significantly skillful only in the fall. Statistical significance is weaker for monthly than for seasonal OCN temperature forecasts, and the monthly OCN precipitation forecasts do not exhibit significant predictive

  15. Assessing the Influence of Precipitation on Diurnal Temperature Range Changes: Implications for Climate Change Projection

    NASA Astrophysics Data System (ADS)

    Van den Hoof, C.; Garreaud, R.

    2014-12-01

    . Braganza, D.J. Karoly, and J.M. Arblaster. Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters, 31:1-4, 2004. [2] A. Dai, A.D. Del Genio, and I.Y. Fung. Clouds, precipitation and temperature range. Nature, 386:665-666, 1997.

  16. Comprehensive approach to understand the association between diurnal temperature range and mortality in East Asia.

    PubMed

    Kim, Jayeun; Shin, Jihye; Lim, Youn-Hee; Honda, Yasushi; Hashizume, Masahiro; Guo, Yue Leon; Kan, Haidong; Yi, Seungmuk; Kim, Ho

    2016-01-01

    An adverse association between diurnal temperature range (DTR) and mortality has been suggested, but with variable relationships in different cities. Comprehensive approaches to understanding the health effects of DTR using multinational data are required. We investigated the association between DTR and cause-specific mortality in an age-specific population and assessed the dependency of the health effects of DTR on geographic and climatic factors. Poisson generalized linear regression analyses with allowances for over-dispersion were applied to daily DTR and cause-specific mortality data from 30 cities in China, Japan, Korea, and Taiwan between 1979 and 2010, adjusted for various climatic and environmental factors. City-specific effects of DTR were estimated and summarized for the overall effects using geographic and climatic determinants in a meta-analysis. For all-cause, circulatory, and respiratory mortality, the greatest city-specific effects per 1°C DTR were found in Tianjin, China (1.80%; 95% confidence interval [CI]: 0.48, 3.14); Tangshan, China (2.25%; 95% CI: 0.65, 3.87); and Incheon, Korea (2.84%; 95% CI: 0.04, 5.73), respectively, and overall effects across 30 cities were 0.58% (95% CI: 0.44, 0.72), 0.81% (95% CI: 0.60, 1.03), and 0.90% (95% CI: 0.63, 1.18), respectively. Using quartile cutoff values for climatic (DTR, and mean temperature) and geographic (latitude, and longitude) characteristics, we divided the 30 cities into 4 different groups and conducted a meta-analysis within the groups using either a random or fixed effects model. Adverse effects of DTR were more pronounced for those aged ≥65years and varied according to geographic, longitudinal (0.07%; 95% CI: 0.05, 0.10), and climatic characteristics and the scale of DTR (0.33%; 95% CI: 0.12, 0.55) for overall all-cause mortality. The DTR is a risk factor affecting human health, depending on geographic location and the temperature variation, with particular vulnerability in aged populations

  17. Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli-Rhodnius prolixus interactions.

    PubMed

    Rodrigues, Juliana DE O; Lorenzo, Marcelo G; Martins-Filho, Olindo A; Elliot, Simon L; Guarneri, Alessandra A

    2016-09-01

    Trypanosoma rangeli is a protozoan parasite, which does not cause disease in humans, although it can produce different levels of pathogenicity to triatomines, their invertebrate hosts. We tested whether infection imposed a temperature-dependent cost on triatomine fitness using T. rangeli with different life histories. Parasites cultured only in liver infusion tryptose medium (cultured) and parasites exposed to cyclical passages through mice and triatomines (passaged) were used. We held infected insects at four temperatures between 21 and 30 °C and measured T. rangeli growth in vitro at the same temperatures in parallel. Overall, T. rangeli infection induced negative effects on insect fitness. In the case of cultured infection, parasite effects were temperature-dependent. Intermoult period, mortality rates and ecdysis success were affected in those insects exposed to lower temperatures (21 and 24 °C). For passaged-infected insects, the effects were independent of temperature, intermoult period being prolonged in all infected groups. Trypanosoma rangeli seem to be less tolerant to higher temperatures since cultured-infected insects showed a reduction in the infection rates and passaged-infected insects decreased the salivary gland infection rates in those insects submitted to 30 °C. In vitro growth of T. rangeli was consistent with these results. PMID:27460893

  18. Diurnal temperature range trend over North Carolina and the associated mechanisms

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad; Mekonnen, Ademe; Jha, Manoj K.

    2015-06-01

    This study seeks to investigate the variability and presence of trend in the diurnal surface air temperature range (DTR) over North Carolina (NC) for the period 1950-2009. The significance trend test and the magnitude of trends were determined using the non-parametric Mann-Kendall test and the Theil-Sen approach, respectively. Statewide significant trends (p < 0.05) of decreasing DTR were found in all seasons and annually during the analysis period. Highest (lowest) temporal DTR trends of magnitude - 0.19 (- 0.031) °C/decade were found in summer (winter). Potential mechanisms for the presence/absence of trend in DTR have been highlighted. Historical data sets of the three main moisture components (precipitation, total cloud cover (TCC), and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlation analysis. The DTRs were found to be negatively correlated with the precipitation, TCC and soil moisture across the state for all the seasons and annual basis. It appears that the moisture components related better to the DTR than to the atmospheric circulation modes.

  19. Thermal energy harvesting near-infrared radiation and accessing low temperatures with plasmonic sensors.

    PubMed

    Karker, Nicholas A; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2015-11-14

    Near-infrared (NIR) thermal energy harvesting has been demonstrated for gold nanorods (AuNRs), allowing concentration dependent, ppm-level, gas detection of H2, CO, and NO2 at 500 °C without using a white light source. Part-per-million detection capabilities of the gold nanorods are demonstrated with a factor of 11 reduction in collection times in the NIR as compared to measurements made in the visible light region. Decreased collection times are enabled by an increase in S : N ratio, which allowed a demonstration of selectivity through the use of both full spectral and a reduced spectral-based principal component analysis. Furthermore, low temperature thermal imaging spectra have been obtained at sample temperatures ranging from 275-500 °C, showing the possibility of energy harvested gas sensing at lower temperatures. These findings are promising in the area of miniaturizing plasmonic gas sensing technology and integration in areas such as gas turbines. PMID:26456790

  20. Effect of holding time in the ({alpha} + {gamma}) temperature range on toughness of specially austempered ductile iron

    SciTech Connect

    Kobayashi, T.; Yamada, S.

    1996-07-01

    Austempered ductile iron (ADI) finds wide application in the industry because of its high strength and toughness. The QB{prime} process has been developed to produce a fine microstructure with high fracture toughness in ADI. This process involves reaustenitizing a prequenched ductile iron in the ({alpha} + {gamma}) temperature range followed by an isothermal treatment in the bainitic transformation temperature range. In the present work, the effect of holding time in the ({alpha} + {gamma}) temperature range on the structure and un-notched toughness of ADI has been studied. Prior to the austempering treatment, the as-cast ductile iron was heat treated to obtain martensitic, ferritic, and pearlitic matrix structures. In the case of prequenched material (martensitic matrix), the un-notched impact toughness increased as a function of holding time in the ({alpha} + {gamma}) temperature range. The reaustenitization heat treatment also resulted in the precipitation of fine carbide particles, identified as (Fe,Cr,Mn){sub 3}C. It was shown that the increase in holding time in the ({alpha} + {gamma}) temperature range leads to a reduction in the number of carbide particles. In the case of a ferritic prior structure, a long duration hold in the ({alpha} + {gamma}) temperature range resulted in the coarsening of the structure with a marginal increase in the toughness. In the case of a pearlitic prior structure, the toughness increased with holding time. This was attributed to the decomposition of the relatively stable carbide around the eutectic cell boundary with longer holding times.

  1. Thermal conductivity of highly porous Si in the temperature range 4.2 to 20 K

    PubMed Central

    2014-01-01

    We report on experimental results of the thermal conductivity k of highly porous Si in the temperature range 4.2 to 20 K, obtained using the direct current (dc) method combined with thermal finite element simulations. The reported results are the first in the literature for this temperature range. It was found that porous Si thermal conductivity at these temperatures shows a plateau-like temperature dependence similar to that obtained in glasses, with a constant k value as low as 0.04 W/m.K. This behavior is attributed to the presence of a majority of non-propagating vibrational modes, resulting from the nanoscale fractal structure of the material. By examining the fractal geometry of porous Si and its fractal dimensionality, which was smaller than two for the specific porous Si material used, we propose that a band of fractons (the localized vibrational excitations of a fractal lattice) is responsible for the observed plateau. The above results complement previous results by the authors in the temperature range 20 to 350 K. In this temperature range, a monotonic increase of k with temperature is observed, fitted with simplified classical models. The extremely low thermal conductivity of porous Si, especially at cryogenic temperatures, makes this material an excellent substrate for Si-integrated microcooling devices (micro-coldplate). PACS 61.43.-j; 63.22.-m; 65.8.-g PMID:25114631

  2. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    PubMed

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6-1.8 g cm(-3) ) and bulk soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for

  3. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H; Lima, Isabel M; Klasson, K Thomas

    2012-05-23

    Phosphorus-rich manure biochar has a potential for stabilizing Pb and other heavy metal contaminants, as well as serving as a sterile fertilizer. In this study, broiler litter biochars produced at 350 and 650 °C were employed to understand how biochar's elemental composition (P, K, Ca, Mg, Na, Cu, Pb, Sb, and Zn) affects the extent of heavy metal stabilization. Soil incubation experiments were conducted using a sandy, slightly acidic (pH 6.11) Pb-contaminated (19906 mg kg(-1) total Pb primarily as PbCO(3)) small arms range (SAR) soil fraction (<250 μm) amended with 2-20 wt % biochar. The Pb stabilization in pH 4.9 acetate buffer reached maximum at lower (2-10 wt %) biochar amendment rate, and 350 °C biochar containing more soluble P was better able to stabilize Pb than the 650 °C biochar. The 350 °C biochar consistently released greater amounts of P, K, Mg, Na, and Ca than 650 °C biochar in both unbuffered (pH 4.5 sulfuric acid) and buffered (pH 4.9 acetate) systems, despite 1.9-4.5-fold greater total content of the 650 °C biochar. Biochars, however, did not influence the total extractable Pb over three consecutive equilibration periods consisting of (1) 1 week in pH 4.5 sulfuric acid (simulated leaching by rainfall), (2) 1 week in pH 4.9 acetate buffer (standard solution for toxicity characteristic leaching procedure), and (3) 1 h in pH 1.5 glycine at 37 °C (in vitro bioaccessibility procedure). Overall, lower pyrolysis temperature was favorable for stabilizing Pb (major risk driver of SAR soils) and releasing P, K, Ca, and other plant nutrients in a sandy acidic soil. PMID:22548418

  4. Kinetics of the reaction of Cl atoms with CHCl 3 over the temperature range 253-313 K

    NASA Astrophysics Data System (ADS)

    Nilsson, Elna J. K.; Hoff, Janus; Nielsen, Ole John; Johnson, Matthew S.

    2010-07-01

    The reaction CHCl 3 + Cl → CCl 3 + HCl was studied in the atmospherically relevant temperature range from 253 to 313 K and in 930 mbar of N 2 diluent using the relative rate method. A temperature dependent reaction rate constant, valid in the temperature range 220-330 K, was determined by a fit to the result of the present study and that of Orlando (1999); k = (3.77 ± 0.32) × 10 -12 exp((-1011 ± 24)/T) cm 3 molecule -1 s -1.

  5. Efficient cryopreservation protocol enables accessibility of a broad range of ammonia-oxidizing bacteria for the scientific community.

    PubMed

    Hoefman, Sven; Pommerening-Röser, Andreas; Samyn, Emly; De Vos, Paul; Heylen, Kim

    2013-05-01

    Long-term storage of the fastidious ammonia-oxidizing bacteria has proven difficult, which limits their public availability and results in a loss of cultured biodiversity. To enable their accessibility to the scientific community, an effective protocol for cryopreservation of ammonia-oxidizing cultures at -80 °C and in liquid nitrogen was developed. Long-term storage could be achieved using 5% DMSO as cryoprotectant, preferably in a cryoprotective preservation medium containing tenfold-diluted trypticase soy broth and 1% trehalose. As such, successful activity and growth recovery was observed for a diverse set of ammonia-oxidizing cultures. PMID:23376087

  6. Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Smohammad; Solaymani, Shahram; Ghaderi, Atefeh; Elahi, Hossein

    2016-05-01

    In this work, the electrical properties of carbon-nickel films annealed at different temperatures (573, 773, 1073 and 1273 K) in the temperature range 15-300 K were investigated. The films were grown by radio frequency magnetron co-sputtering on quartz substrates at room temperature. The multiphonon hopping conduction mechanism is found to dominate the electrical transport in the temperature range 150-300 K. It can be seen that the room-temperature hopping rate (ΓRT) at 773 K has maximum value of 56.8 × 105 s-1. Our results of conductivity measurements at high temperature are in good agreement with strong carrier-lattice coupling model; on the other hand, the conductivity in the range 15-50 K is well described in terms of variable-range hopping (VRH) conduction mechanism. The localized state density around Fermi level N( E F) and the average hopping energy W hop at low temperature for the films annealed at 773 K have maximum value of 2.23 × 1023 (cm-3 eV-1) and minimum value of 9.74 × 10-4 eV, respectively.

  7. Kinetic Testing of Nitrate-Based Sodalite Formation Over the Temperature Range of 40 to 100 Degrees Centigrade (Final Report)

    SciTech Connect

    Mattus, A.J.

    2001-09-07

    The focus of this study was the desilication kinetics of a Savannah River Site (SRS) tank farm 2H simulant over the temperature range of 40 to 100 C. Results showed that the formation of nitrate-nitrite-based sodalite over aluminum-to-silicon (Al:Si) molar ratios ranging from 1:1 to 20:1 exhibited overall-second order kinetics. The Arrhenius apparent activation energy associated with the crystal growth process of the sodalite was determined to be 35 kJ/mol over the temperature range investigated. Second-order rate constants were extrapolated to the 2H evaporator working temperature of {approx} 130 C and were found to be 0.012 L mol{sup -1} s{sup -1}. At this operating temperature, the half-life of a limiting reactant with a 0.1 M feed would be 14 min.

  8. Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop

    PubMed Central

    Zaka, Serge; Frak, Ela; Julier, Bernadette; Gastal, François; Louarn, Gaëtan

    2016-01-01

    Interest in the thermal acclimation of photosynthesis has been stimulated by the increasing relevance of climate change. However, little is known about intra-specific variations in thermal acclimation and its potential for breeding. In this article, we examined the difference in thermal acclimation between alfalfa (Medicago sativa) cultivars originating from contrasting origins, and sought to analyze the mechanisms in play. A series of experiments was carried out at seven growth temperatures between 5 and 35 °C using four cultivars from temperate and Mediterranean origin. Leaf traits, the photosynthetic rate at 25 °C (A40025), the photosynthetic rate at optimal temperature (A400opt), the thermal optimum of photosynthesis (Topt), and the photosynthetic parameters from the Farqhuar model were determined. Irrespective of cultivar origin, a clear shift in the temperature responses of photosynthesis was observed as a function of growth temperature, affecting thermal optimum of photosynthesis, photosynthetic rate at optimal temperature and photosynthetic rate at 25 °C. For both cultivars, Topt values increased linearly in leaves grown between 5 and 35 °C. Relative homeostasis of A40025 and A400opt was found between 10 °C and 30 °C growth temperatures, but sharp declines were recorded at 5 and 35 °C. This homeostasis was achieved in part through modifications to leaf nitrogen content, which increased at extreme temperatures. Significant changes were also recorded regarding nitrogen partitioning in the photosynthetic apparatus and in the temperature dependence of photosynthetic parameters. The cultivars differed only in terms of the temperature response of photosynthetic parameters, with Mediterranean genotypes displaying a greater sensitivity of the maximum rate of Rubisco carboxylation to elevated temperatures. It was concluded that intra-specific variations in the temperature acclimation of photosynthesis exist among alfalfa cultivars, but that

  9. Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop.

    PubMed

    Zaka, Serge; Frak, Ela; Julier, Bernadette; Gastal, François; Louarn, Gaëtan

    2016-01-01

    Interest in the thermal acclimation of photosynthesis has been stimulated by the increasing relevance of climate change. However, little is known about intra-specific variations in thermal acclimation and its potential for breeding. In this article, we examined the difference in thermal acclimation between alfalfa (Medicago sativa) cultivars originating from contrasting origins, and sought to analyze the mechanisms in play. A series of experiments was carried out at seven growth temperatures between 5 and 35 °C using four cultivars from temperate and Mediterranean origin. Leaf traits, the photosynthetic rate at 25 °C (A400 (25)), the photosynthetic rate at optimal temperature (A400 (opt)), the thermal optimum of photosynthesis (Topt), and the photosynthetic parameters from the Farqhuar model were determined. Irrespective of cultivar origin, a clear shift in the temperature responses of photosynthesis was observed as a function of growth temperature, affecting thermal optimum of photosynthesis, photosynthetic rate at optimal temperature and photosynthetic rate at 25 °C. For both cultivars, Topt values increased linearly in leaves grown between 5 and 35 °C. Relative homeostasis of A400 (25) and A400 (opt) was found between 10 °C and 30 °C growth temperatures, but sharp declines were recorded at 5 and 35 °C. This homeostasis was achieved in part through modifications to leaf nitrogen content, which increased at extreme temperatures. Significant changes were also recorded regarding nitrogen partitioning in the photosynthetic apparatus and in the temperature dependence of photosynthetic parameters. The cultivars differed only in terms of the temperature response of photosynthetic parameters, with Mediterranean genotypes displaying a greater sensitivity of the maximum rate of Rubisco carboxylation to elevated temperatures. It was concluded that intra-specific variations in the temperature acclimation of photosynthesis exist among alfalfa cultivars

  10. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    NASA Astrophysics Data System (ADS)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  11. Sensitivity-Improved Strain Sensor over a Large Range of Temperatures Using an Etched and Regenerated Fiber Bragg Grating

    PubMed Central

    Wang, Yupeng; Qiao, Xueguang; Yang, Hangzhou; Su, Dan; Li, Ling; Guo, Tuan

    2014-01-01

    A sensitivity-improved fiber-optic strain sensor using an etched and regenerated fiber Bragg grating (ER-FBG) suitable for a large range of temperature measurements has been proposed and experimentally demonstrated. The process of chemical etching (from 125 μm to 60 μm) provides regenerated gratings (at a temperature of 680 °C) with a stronger reflective intensity (from 43.7% to 69.8%), together with an improved and linear strain sensitivity (from 0.9 pm/με to 4.5 pm/με) over a large temperature range (from room temperature to 800 °C), making it a useful strain sensor for high temperature environments. PMID:25299954

  12. Innovative use of Distributed Temperature Sensing and Meteorological Data to Understand Thermoregulation of Free-Ranging Howling Monkeys

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Vinyard, C. J.; Williams, S. H.; Hausner, M. B.; Tyler, S. W.; Glander, K.

    2011-12-01

    Temperature fluctuations are a major driver of change in natural habitats and influence the lifestyle of all organisms because temperature impacts molecular, physiological, and behavioral processes. However, there is a lack of understanding on how temperature affects metabolism, behavior, and ecology at the organismal level. Even though physiological responses to temperature fluctuations have been well documented in laboratory conditions, it has been challenging to collect the required environmental data to study thermoregulation of free-ranging mammals such as mantled howling monkeys (Alouatta palliata). Fortunately, recent advances in fiber-optic distributed temperature sensing (DTS) now permit the observation of temperature fields in the environment at scales ranging from millimeters to kilometers. This has opened an exciting opportunity for temperature monitoring at scales that were previously not feasible. This study addresses the main limitations of previous studies of primate behavior by integrating real-time environmental data with the behavior and physiological response of free-ranging primates. In this work, we present preliminary DTS data collected in a natural habitat of howling monkeys. Fiber-optic cables were hung between the ground and an elevation of approximately 15 m within the forest canopy, providing continuous profiles of temperature without any disturbance due to the animals and habitat. These measurements were integrated with conventional meteorological data and with the ambient temperature at the location of the animal, as well as with measurements of primate's subcutaneous and core body temperatures. These data will be utilized to determine how environmental conditions relate to primate behavioral and physiological responses in time and space. The methodologies used in this study provide tools to test theories of physiological thermoregulation of other free-ranging animals.

  13. Stomach temperature telemetry reveals temporal patterns of foraging success in a free-ranging marine mammal.

    PubMed

    Austin, Deborah; Bowen, W D; McMillan, J I; Boness, D J

    2006-03-01

    1. We studied feeding frequency in free-ranging grey seals using stomach temperature telemetry to test if previously reported sex differences in the diving, movement and diet were reflected in the temporal pattern of foraging success. 2. Data were retrieved from 21 of 32 grey seals from 1999 to 2001, totalling 343 days and 555 feeding events, with individual record length varying from 2 to 40 days (mean: 16.33 +/- 2.67 days/seal). 3. Seals fed on 57.8 +/- 6.46% of days sampled and had an average of 1.7 +/- 0.26 meals per day, but individual variability was apparent in the temporal distribution of feeding as evidenced by high coefficients of variation (coefficient of variation = 69.0%). 4. Bout analysis of non-feeding intervals of six grey seals suggests that feeding intervals of individuals were varied and probably reflect differences in prey availability. Grey seals tended to have many single feeding events with long periods separating each event, as would be expected for a large carnivore with a batch-reactor digestive system. 5. We found significant sex differences in the temporal distribution of feeding. The number of feeding events per day was greater in males (2.2 +/- 0.4 vs. 1.0 +/- 0.2), as was time associated with feeding per day (56.6 +/- 5.8 min vs. 43.9 +/- 9.4 min). 6. The number of feeding events varied with time of day with the least number occurring during dawn. Feeding event size differed significantly by time of day, with greater meal sizes during the dawn and the smallest meals during the night. 7. The length of time between meals increased with the size of the previous meal, and was significantly less in males (541.4 +/- 63.5 min) than in females (1092.6 +/- 169.9 min). 8. These results provide new insight into the basis of sex differences in diving and diet in this large size-dimorphic marine predator. PMID:16637994

  14. In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing.

    PubMed

    Ernst, Claus-Peter; Canbek, Kerem; Euler, Thomas; Willershausen, Brita

    2004-09-01

    In dental research, restorative materials have been regularly subjected to alternating in vitro thermal stress in investigations since the 1950s, in order to simulate in vivo alternating temperature stress and to artificially stress them in vitro. The provocation temperature is mostly 5 degrees C for cold provocation, and 55 degrees C for hot provocation. These temperatures are determined quite arbitrarily based on very few examinations in vivo. Extensive temperature data for the approximal space of teeth, which is decisive for the success of fillings adhesively attached to dentin, has so far not been addressed. The objective of this study was to examine the interproximal temperature characteristics created in the space of all teeth in vivo with thermal alternating stress, and therefore to validate the in vitro standardized thermal alternating stress of 5-55 degrees C. Fifteen study participants with healthy teeth were used to determine the temperature in each inter-dental space, resulting from hot/cold provocation in the upper and lower jaw, from the central incisor to the second molars. This was performed by a thermal element (cable sensor GTF 300, Greisinger Electronic GmbH, Regenstauf, Germany). The temperature sensor was attached with dental floss into the interproximal space and the temperature was recorded by the computer. The participants in the pilot test had to state when they were able to sip an 85 degrees C hot drink. That particular temperature value was taken for hot provocation as maximum temperature reference. Cold ice water (0 degrees C) was used for cold provocation as minimum temperature reference. The respective recordings with a total of 14 measurements for each individual were performed simultaneously in the upper and lower jaw. The study participants were to start with hot provocation, followed by cold provocation. This cycle was repeated at least once with an individual dwell time. The highest recorded approximal space temperature was 52

  15. Temperature dependence of the ozone obsorption spectrum over the wavelength range 410 to 760 nm

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.

    1994-01-01

    The ozone, O3, absorption cross sections between 410 and 760 nm, the Chappuis band, were measured at 220, 240, 260, and 280 K relative to that at room temperature using a diode array spectrometer. The measured cross sections varied very slightly, less than 1%, with decreasing temperature between 550 and 660 nm, near the peak of the Chappuis band. At wavelengths away from the peak, the absorption cross sections decreased with decreasing temperature; e.g., about 40% at 420 nm between 298 and 220 K. These results are compared with previous measurements and the impact on atmospheric measurements are discussed.

  16. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  17. High performance shape memory effect in nitinol wire for actuators with increased operating temperature range

    NASA Astrophysics Data System (ADS)

    Casati, Riccardo; Biffi, Carlo Alberto; Vedani, Maurizio; Tuissi, Ausonio

    2014-07-01

    In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.

  18. Temperature dependent hopping conduction in lithium-doped zinc oxide in the range 10-300 K

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Banerji, P.

    2010-08-01

    A temperature-dependent hopping conduction was studied in lithium (Li)-doped zinc oxide (ZnO) in the temperature range 10-300 K. Monodoping of Li in ZnO was made as suggested by the theory based on the first principle calculations. Li-doped ZnO films were deposited both on glass and quartz substrates by pulsed laser deposition (PLD) in presence and absence of oxygen ambience. The films were found to be p-type. It was found that whereas in the temperature range 10-40 K, variable range hopping resulted in Mott's conductivity, above 40 K, the conductivity was governed by the thermal assisted hopping.

  19. Modeling of SiC Lateral Resonant Devices Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.; Roy, Shuvo; Zorman, Christian A.; Mehregany, Mehran

    1999-01-01

    Finite-element analysis (FEA) modal results of 3C-SiC lateral resonant devices anchored to a Si substrate are presented as resonant frequency versus temperature. The suspended elements are etched from a 2 micron, 3C-SiC film grown at 1600 K on a 500 micron-thick, Si substrate. The analysis includes, temperature-dependent properties, shape change due to volume expansion with temperature, and thermal stress caused by differential thermal expansion of different materials. Two designs are considered: type I has anchor locations close to the geometric centroid and a small shuttle; type 11 has a large shuttle with anchors far from the centroid, The resonant frequency decreases approximately 3.5% over a 1000 K temperature increase for the type-I device, and behaves according to theory. The resonant frequency of the type-11 device decreases by 2% over the first 400 K, then rises slightly over the remaining 600 K. This device deviates from theory because of the high thermal stress induced in the beams. The thermal stress is caused by the differential thermal expansion of the suspended element relative to the substrate. The results show that the device geometry must be properly chosen if the resonant frequency of that device will be used to calculate the temperature coefficient of Young's modulus. These results apply only to resonators of one material on a substrate of a different material.

  20. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins.

    PubMed

    Eisen, Lars; Monaghan, Andrew J; Lozano-Fuentes, Saul; Steinhoff, Daniel F; Hayden, Mary H; Bieringer, Paul E

    2014-05-01

    The mosquito Aedes (Stegomyia) aegypti (L.), which occurs widely in the subtropics and tropics, is the primary urban vector of dengue and yellow fever viruses, and an important vector of chikungunya virus. There is substantial interest in how climate change may impact the bionomics and pathogen transmission potential of this mosquito. This Forum article focuses specifically on the effects of temperature on the bionomics of Ae. aegypti, with special emphasis on the cool geographic range margins where future rising temperatures could facilitate population growth. Key aims are to: 1) broadly define intra-annual (seasonal) patterns of occurrence and abundance of Ae. aegypti, and their relation to climate conditions; 2) synthesize the existing quantitative knowledge of how temperature impacts the bionomics of different life stages of Ae. aegypti; 3) better define the temperature ranges for which existing population dynamics models for Ae. aegypti are likely to produce robust predictions; 4) explore potential impacts of climate warming on human risk for exposure to Ae. aegypti at its cool range margins; and 5) identify knowledge or data gaps that hinder our ability to predict risk of human exposure to Ae. aegypti at the cool margins of its geographic range now and in the future. We first outline basic scenarios for intra-annual occurrence and abundance patterns for Ae. aegypti, and then show that these scenarios segregate with regard to climate conditions in selected cities where they occur. We then review how near-constant and intentionally fluctuating temperatures impact development times and survival of eggs and immatures. A subset of data, generated in controlled experimental studies, from the published literature is used to plot development rates and survival of eggs, larvae, and pupae in relation to water temperature. The general shape of the relationship between water temperature and development rate is similar for eggs, larvae, and pupae. Once the lower

  1. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians.

    PubMed

    Morris, J P; Thatje, S; Cottin, D; Oliphant, A; Brown, A; Shillito, B; Ravaux, J; Hauton, C

    2015-11-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts. PMID:26716003

  2. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    PubMed Central

    Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.

    2015-01-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003

  3. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    NASA Astrophysics Data System (ADS)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  4. Modified shape memory cyanate polymers with a wide range of high glass transition temperatures

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Huang, Longnan; Liu, Yanju; Leng, Jinsong

    2012-04-01

    Shape memory cyanate polymers (SMCPs) are a new kind of smart materials, which have huge development potential and a promising future. A series of shape memory cyanate polymers were prepared by cyanate ester and varying content of a linear modifier. The thermal properties of the SMCPs were investigated by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). The SMCPs we prepared have high glass transition temperature and show good heat resistance. The glass transition temperature Tg can be adjusted from 156.9°C to 259.6°C with the modifier. The initial temperature of thermal decomposition comes up to 300°C, which is enough high for the application in aerospace fields. The shape memory polymer we prepared shows a good shape memory effect, as the shape recovery time is less than 65s and the shape recovery rate reaches 95%.

  5. Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature.

    PubMed

    Willis, C K R; Brigham, R M

    2003-07-01

    A variety of definitions involving body temperature (Tb), metabolic rate and behavior have been used to define torpor in mammals and birds. This problem is confounded in some studies of free-ranging animals that employ only skin temperature (Tsk), a measure that approximates but may not precisely reflect Tb. We assess the accuracy of Tsk in the context of a recent definition for torpor called active temperature. We compared the active temperatures of individual big brown bats (Eptesicus fuscus), which aggregate in cavities, with solitary, foliage-roosting hoary bats (Lasiurus cinereus). In captive big brown bats, we compared Tsk and core Tb at a range of ambient temperatures for clustered and solitary roosting animals, compared Tsk and Tb during arousal from torpor, and quantified the effect of flight on warming from torpor. Hoary bats had significantly lower active temperatures than big brown bats despite having the same normothermic Tsk. Tsk was significantly lower than Tb during normothermia but often greater than Tb during torpor. Flight increased the rate of warming from torpor. This effect was more pronounced for Tsk than Tb. This suggests that bats could rely on heat generated by flight muscles to complete the final stages of arousal. Using active temperature to define torpor may underestimate torpor due to ambient cooling of external transmitters or animals leaving roosts while still torpid. Conversely, active temperature may also overestimate shallow torpor use if it is recorded during active arousal when shivering and non-shivering thermogenesis warm external transmitters. Our findings illuminate the need for laboratory studies that quantify the relationship between metabolic rate and Tsk over a range of ambient temperatures. PMID:12764630

  6. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    DOE PAGESBeta

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We reportmore » on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.« less

  7. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    SciTech Connect

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.

  8. Electrocaloric properties of ferroelectric-paraelectric superlattices controlled by the thickness of paraelectric layer in a wide temperature range

    SciTech Connect

    Ma, D. C.; Lin, S. P.; Chen, W. J.; Zheng, Yue Xiong, W. M.; Wang, Biao

    2014-10-15

    As functions of the paraelectric layer thickness, misfit strain and temperature, the electrocaloric properties of ferroelectric-paraelectric superlattices are investigated using a time-dependent Ginzburg-Landau thermodynamic model. Ferroelectric phase transition driven by the relative thickness of the superlattice is found to dramatically impact the electrocaloric response. Near the phase transition temperature, the magnitude of the electrocaloric effect is maximized and shifted to lower temperatures by increasing the relative thickness of paraelectric layer. Theoretical calculations also imply that the electrocaloric effect of the superlattices depends not only on the relative thickness of paraelectric layer but also on misfit strain. Furthermore, control of the relative thickness of paraelectric layer and the misfit strain can change availably both the magnitude and the temperature sensitivity of the electrocaloric effect, which suggests that ferroelectric-paraelectric superlattices may be promising candidates for use in cooling devices in a wide temperature range.

  9. Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K.

    PubMed

    Underwood, R; de Podesta, M; Sutton, G; Stanger, L; Rusby, R; Harris, P; Morantz, P; Machin, G

    2016-03-28

    Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported. PMID:26903104

  10. Wheat responses to a wide range of temperatures: The hot serial cereal experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concomitant with the increase in Earth’s atmospheric CO2 concentration, temperatures are warming on a global scale. Crop growth models are useful tools to predict the likely effects of these global changes on agricultural productivity and to develop strategies to maximize the benefits and minimize t...

  11. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    NASA Astrophysics Data System (ADS)

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g-1 at 10 mA g-1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  12. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.

    PubMed

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  13. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    PubMed Central

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g−1 at 10 mA g−1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  14. Long range forecasts of the Northern Hemisphere anomalies with antecedent sea surface temperature patterns

    NASA Technical Reports Server (NTRS)

    Kung, Ernest C.

    1994-01-01

    The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.

  15. Comparison of calculated and experimental thermal attachment rate constants for SF6 in the temperature range 200-600 K

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.

    1986-01-01

    Electron-attachment cross sections are calcualted for the process e(-) + SF6 yields SF6(-) in the energy range 1-200 meV. An electron scattering approximation is used in which diatomiclike potential energy curves near the equilibrium SF6 ground state are constructed from recent spectroscopic data. Excellent agreement is found over the entire energy range with experimental attachment cross sections at a temperature of 300 K for s-wave (l = 0) scattering. The same calculation, with appropriate adjustment of the thermal populations, is used to calculate attachment rate constants in the range 50-600 K for both s- and p-wave scattering.

  16. Divinyl-end-functionalized polyethylenes: ready access to a range of telechelic polyethylenes through thiol-ene reactions.

    PubMed

    Norsic, Sebastien; Thomas, Coralie; D'Agosto, Franck; Boisson, Christophe

    2015-04-01

    Telechelic α,ω-iodo-vinyl-polyethylenes (Vin-PE-I) were obtained by catalytic ethylene polymerization in the presence of [(C5 Me5 )2 NdCl2 Li(OEt2 )2 ] in combination with a functionalized chain-transfer agent, namely, di(10-undecenyl)magnesium, followed by treatment of the resulting di(vinylpolyethylenyl)magnesium compounds ((vinyl-PE)2 Mg) with I2 . The iodo-functionalized vinylpolyethylenes (Vin-PE-I) were transformed into unique divinyl-functionalized polyethylenes (Vin-PE-Vin) by simple treatment with tBuOK in toluene at 95 °C. Thiol-ene reactions were then successfully performed on Vin-PE-Vin with functionalized thiols in the presence of AIBN. A range of homobifunctional telechelic polyethylenes were obtained on which a hydroxy, diol, carboxylic acid, amine, ammonium chloride, trimethoxysilyl, chloro, or fluoroalkyl group was installed quantitatively at each chain end. PMID:25688747

  17. Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range.

    PubMed

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-01

    An important result of research on mixed-lanthanide metal-organic frameworks (M'LnMOFs) is the realization of highly sensitive ratiometric luminescent thermometers. Here, we report the design and synthesis of the new M'LnMOF Tb0.80Eu0.20BPDA with high relative sensitivity in the physiological temperature regime (298-318 K). The emission intensity and luminescence lifetime were investigated and compared to those of existing materials. It was found that the temperature-dependent luminescence properties of Tb0.80Eu0.20BPDA are strongly associated with the distribution of the energy levels of the ligand. Such a property can be useful in the design of highly sensitive M'LnMOF thermometers. PMID:26575207

  18. Thermolysis of hydrogen sulfide in the temperature range 1350--1600 K

    SciTech Connect

    Harvey, W.S.; Davidson, J.H.; Fletcher, E.A.

    1998-06-01

    The thermal dissociation of hydrogen sulfide gives promise of becoming an economic method to convert a hazardous waste into valuable products, conserve fossil fuels, and increase usable reserves of fossil fuels. The dissociation rates at temperatures which are attractive for an industrial process are not well-characterized. The authors studied the dissociation of hydrogen sulfide into hydrogen and sulfur at temperatures from 1,350 to 1,600 K and pressures from 15 to 30 kPa in an alumina reactor. The rate depends on the surface-to-volume ratio of the reactor. The surface reaction is the dominant contributor; the activation energy for the forward surface reaction is 194 kJ/mol. The authors present a global rate expression that includes surface and gas-phase contributions.

  19. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    SciTech Connect

    Dvoretskii, D A; Bufetov, Igor' A; Vel'miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  20. Measurement of ion motional heating rates over a range of trap frequencies and temperatures

    NASA Astrophysics Data System (ADS)

    Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2015-04-01

    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between ˜0.6 and 1.5 MHz and ˜4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below ˜105 ∘C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  1. Simulation of non-ionic surfactant micelle formation across a range of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Custer, Gregory; Das, Payel; Matysiak, Silvina

    Non-ionic surfactants can, at certain concentrations and thermodynamic conditions, aggregate into micelles due to their amphiphilic nature. Our work looks at the formation and behavior of micelles at extremes of temperature and pressure. Due to the large system size and simulation time required to study micelle formation, we have developed a coarse-grained (CG) model of our system. This CG model represents each heavy atom with a single CG bead. We use the multibody Stillinger-Weber potential, which adds a three-body angular penalty to a two-body potential, to emulate hydrogen bonds in the system. We simulate the linear surfactant C12E5 , which has a nonpolar domain of 12 carbons and a polar domain of 5 ethers. Our CG model has been parameterized to match structural properties from all-atom simulations of single and dimer surfactant systems. Simulations were performed using a concentration above the experimental critical micelle concentration at 300K and 1atm. We observe an expected region of stable micelle formation at intermediate temperature, with a breakdown at high and low temperature, as well as at high pressure. The driving forces behind the destabilization of micelles and the mechanism of micelle formation at different thermodynamic conditions will be discussed.

  2. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. PMID:24623577

  3. Diverse soybean accessions identified with temperature-sensitive resistance to Tobacco streak virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tobacco streak virus (TSV) is a pathogen that has been reported in soybean in Brazil and the United States, for which resistance has only been reported in the “hay-type” soybean cultivar Tanner. To find additional resistant soybean genotypes, over 1000 soybean accessions from the USDA Soybean Germpl...

  4. Photochemistry of benzophenone in aliphatic amines studied by laser photolysis in the temperature range 300-77 K

    SciTech Connect

    Hoshino, M.; Shizuka, H.

    1987-01-29

    Laser photolysis studies of benzophenone in both sec-butylamine and triethylamines were carried out in the temperature range 300-77 K. For the sec-butylamine solution of benzophenone, the transients observed after laser pulsing are found to be the ketyl and anion radicals of benzophenone. The ratio of the yield for the formation of ketyl radical to that of the anion radical is markedly dependent on temperature: the ketyl radical is the major product at high temperatures while the anion radical becomes predominant at low temperatures. On the other hand, the triethylamine solution of benzophenone gives solely the ketyl radical as a photoproduct in the temperature range studied. The photochemical reaction of benzophenone in both sec-butylamine and triethylamine is markedly suppressed on going from high to low temperatures. These results are discussed in detail on the basis of the photochemical reaction mechanism involving the formation of the triplet charge-transfer complex (i.e., triplet exciplex) between triplet benzophenone and an amine molecule. The solvent effects on the photoreaction are also discussed.

  5. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  6. Complexities in Pressure Dependent Kinetics Across a Wide-Range of Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Klippenstein, Stephen

    Sample ab initio transition state theory based master equation calculations will be used to illustrate interesting features of the kinetics for a variety of reactions of importance in astrochemistry, atmospheric, and combustion chemistry. The calculations will explore the role of long-range interactions, angular momentum conservation, tunneling, radiative emission, roaming processes, torsional motions, and prompt dissociation of incipient molecules. Comparisons with experiment will be presented to illustrate the current accuracy of such calculations.

  7. Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael

    2013-01-01

    At extreme temperatures, cryogenic and over 300 C, few electronic components are available to support intelligent data transfer over a common, linear combining medium. This innovation allows many sensors to operate on the same wire bus (or on the same airwaves or optical channel: any linearly combining medium), transmitting simultaneously, but individually recoverable at a node in a cooler part of the test area. This innovation has been demonstrated using room-temperature silicon microcircuits as proxy. The microcircuits have analog functionality comparable to componentry designed using silicon carbide. Given a common, linearly combining medium, multiple sending units may transmit information simultaneously. A listening node, using various techniques, can pick out the signal from a single sender, if it has unique qualities, e.g. a voice. The problem being solved is commonly referred to as the cocktail party problem. The human brain uses the cocktail party effect when it is able to recognize and follow a single conversation in a party full of talkers and other noise sources. High-temperature sensors have been used in silicon carbide electronic oscillator circuits. The frequency of the oscillator changes as a function of the changes in the sensed parameter, such as pressure. This change is analogous to changes in the pitch of a person s voice. The output of this oscillator and many others may be superimposed onto a single medium. This medium may be the power lines supplying current to the sensors, a third wire dedicated to data transmission, the airwaves through radio transmission, an optical medium, etc. However, with nothing to distinguish the identities of each source that is, the source separation this system is useless. Using digital electronic functions, unique codes or patterns are created and used to modulate the output of the sensor.

  8. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    SciTech Connect

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  9. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function.

    PubMed

    Kim, Jaai; Lee, Changsoo

    2016-02-01

    Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up

  10. Reply to "Comment on 'Temperature inversion in long-range interacting systems' ".

    PubMed

    Teles, Tarcísio N; Gupta, Shamik; Di Cintio, Pierfrancesco; Casetti, Lapo

    2016-06-01

    We present evidence that the mechanism proposed in Teles et al. [Phys. Rev. E 92, 020101 (2015)PRESCM1539-375510.1103/PhysRevE.92.020101], referred to as the TGDC mechanism, does apply to a model with repulsive mean-field interactions where it produces temperature inversion in a state whose inhomogeneity is due to an external field. Such evidence contradicts the core statement of the Comment. We also discuss a related issue, concerning the possible application of the TGDC mechanism to the solar corona. PMID:27415396

  11. Reply to "Comment on `Temperature inversion in long-range interacting systems' "

    NASA Astrophysics Data System (ADS)

    Teles, Tarcísio N.; Gupta, Shamik; Di Cintio, Pierfrancesco; Casetti, Lapo

    2016-06-01

    We present evidence that the mechanism proposed in Teles et al. [Phys. Rev. E 92, 020101 (2015), 10.1103/PhysRevE.92.020101], referred to as the TGDC mechanism, does apply to a model with repulsive mean-field interactions where it produces temperature inversion in a state whose inhomogeneity is due to an external field. Such evidence contradicts the core statement of the Comment. We also discuss a related issue, concerning the possible application of the TGDC mechanism to the solar corona.

  12. Dielectric characterization of collagen, elastin, and aortic valves in the low temperature range.

    PubMed

    Samouillan, V; Lamure, A; Maurel, E; Dandurand, J; Lacabanne, C; Spina, M

    2000-01-01

    The low temperature dielectric relaxation of porcine aortic valves and its main macromolecular proteins. i.e. elastin and collagen, have been investigated in the dry state and at low levels of hydration by thermally stimulated currents spectrometry, with an equivalent frequency of 10(-3) Hz. Two secondary relaxation modes, labeled gamma and beta with increasing temperature, are found for the three materials. Since the gamma-mode is independent upon hydration while the beta-mode is strongly plasticized by water, these relaxation modes have been attributed to localized motions of the polypeptidic chains containing apolar and polar residues, respectively. The deconvolution of the beta-mode by fractional polarization gives the experimental distribution of the dielectric relaxation times of the three materials, and allows us to deduce the activation parameters of each elementary process. These analyses shows the existence of compensation phenomena between the activation parameters, implying cooperative mechanisms. The occurrence of these phenomena with their characteristic parameters are used to specify the origin of the localized relaxation modes in collagen and elastin, and to assign the specific role of each protein in the aortic valves. PMID:10981675

  13. Web-based interactive access, analysis and comparison of remotely sensed and in situ measured temperature data

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Urban, Marcel; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Numerous datasets providing temperature information from meteorological stations or remote sensing satellites are available. However, the challenging issue is to search in the archives and process the time series information for further analysis. These steps can be automated for each individual product, if the pre-conditions are complied, e.g. data access through web services (HTTP, FTP) or legal rights to redistribute the datasets. Therefore a python-based package was developed to provide data access and data processing tools for MODIS Land Surface Temperature (LST) data, which is provided by NASA Land Processed Distributed Active Archive Center (LPDAAC), as well as the Global Surface Summary of the Day (GSOD) and the Global Historical Climatology Network (GHCN) daily datasets provided by NOAA National Climatic Data Center (NCDC). The package to access and process the information is available as web services used by an interactive web portal for simple data access and analysis. Tools for time series analysis were linked to the system, e.g. time series plotting, decomposition, aggregation (monthly, seasonal, etc.), trend analyses, and breakpoint detection. Especially for temperature data a plot was integrated for the comparison of two temperature datasets based on the work by Urban et al. (2013). As a first result, a kernel density plot compares daily MODIS LST from satellites Aqua and Terra with daily means from GSOD and GHCN datasets. Without any data download and data processing, the users can analyze different time series datasets in an easy-to-use web portal. As a first use case, we built up this complimentary system with remotely sensed MODIS data and in situ measurements from meteorological stations for Siberia within the Siberian Earth System Science Cluster (www.sibessc.uni-jena.de). References: Urban, Marcel; Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane; Herold, Martin. 2013. "Comparison of Satellite-Derived Land Surface Temperature and Air

  14. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  15. Characterization of polymers in the glass transition range: Time-temperature and time-aging time superposition in polycarbonate

    SciTech Connect

    Pesce, J.J.; Niemiec, J.M.; Chiang, M.Y.

    1995-12-31

    Here we present time-temperature and time-aging time superposition data for a commercial grade polycarbonate. The data reduction is performed for dynamic-mechanical data obtained in torsion over a range of temperatures from 103.6 to 144.5{degrees}C and aging times to 16 h. For time-temperature superposition the results show the deviation of the sub-T{sub g} response from the WTF equation. Two response regimes are observed: at temperatures far below T{sub g} the log(a{sub T}) is linear in T, followed by a transition towards the WLF behavior as T{sub g} is approached. The temperature at which the behavior changes from a linear dependence of log(aT) on T to the transition-type behavior is found to depend on the aging time. This temperature decreases as aging time increases. The time-aging time response is found to behave in a normal way. At temperatures far below T{sub g} the log(a{sub te}) vs log(t{sub e}) is constant and has a slope somewhat less than unity. However, nearer to T{sub g} the slope decreases and there is a second regime in which the aging virtually ceases. In this polycarbonate, above 136.9{degrees}C, no aging is observed.

  16. Opacity Studies of Iron in the 15-30eV Temperature Range

    NASA Astrophysics Data System (ADS)

    Chenais-Popovics, Claude; Merdji, Hamed; Missalla, Thomas; Gilleron, Franck; Gauthier, Jean-Claude; Blenski, Thomas; Perrot, François; Klapisch, Marcel; Bauche-Arnoult, Claire; Bauche, Jacques; Bachelier, Annik; Eidmann, Klaus

    2000-04-01

    Absorption of the 2p-3d transitions of iron has been measured using point projection spectroscopy. Thin C tamped Fe foils were heated around 20 eV by X-rays generated in gold spherical hohlraums irradiated by the high-power laser ASTERIX IV. Absorption of Fe V to Fe X has been observed in the spectral vicinity of 730 eV (17 Å). The Ag backlighter source and absorbed spectra were recorded on the same shot by a TlAP crystal spectrograph. The experimental spectra have been reproduced by the two superconfiguration local thermodynamic equilibrium codes SCO and STA. Detailed statistical calculations of the different ionic structures have also been performed with the Spin Orbit Split Arrays method, allowing the determination of ion populations. The electron temperature and average ionization obtained by fitting the experiment with the different calculations were compared with radiative hydrodynamic simulations.

  17. Communication: Accurate hydration free energies at a wide range of temperatures from 3D-RISM.

    PubMed

    Misin, Maksim; Fedorov, Maxim V; Palmer, David S

    2015-03-01

    We present a new model for computing hydration free energies by 3D reference interaction site model (3D-RISM) that uses an appropriate initial state of the system (as suggested by Sergiievskyi et al.). The new adjustment to 3D-RISM theory significantly improves hydration free energy predictions for various classes of organic molecules at both ambient and non-ambient temperatures. An extensive benchmarking against experimental data shows that the accuracy of the model is comparable to (much more computationally expensive) molecular dynamics simulations. The calculations can be readily performed with a standard 3D-RISM algorithm. In our work, we used an open source package AmberTools; a script to automate the whole procedure is available on the web (https://github.com/MTS-Strathclyde/ISc). PMID:25747054

  18. One year in the life of Bufo punctatus: annual patterns of body temperature in a free-ranging desert anuran.

    PubMed

    Rausch, Candice M; Starkweather, Peter L; van Breukelen, Frank

    2008-06-01

    The Mojave Desert is characterized by hot dry summers and cold winters. The red-spotted toad (Bufo (Anaxyrus) punctatus) is the predominant anuran species; yet little is known of their thermal histories and strategies to avoid temperature extremes. We measured body temperature (T(b)) in free-ranging adult toads across all four seasons of a year using implanted data loggers. There is marked individual variation in the temperatures experienced by these toads. As expected, toads generally escape extreme seasonal and diel temperature fluctuations. However, our data demonstrate a much wider estimated T(b) range than was previously assumed. Though often for short periods, red-spotted toads do experience T(b) as low as 3.1 degrees C and as high as 39.1 degrees C. All animals showed periods of prolonged thermal stability in cooler months and wider diel oscillations in warmer months. Red-spotted toad thermal history is likely a function of site choice; the exploitation of different refuges results in diverse thermal experiences. These data represent the most complete record of thermal experiences for a desert anuran and reveal greater extremes in body temperature than previously suggested. PMID:18357398

  19. One year in the life of Bufo punctatus: annual patterns of body temperature in a free-ranging desert anuran

    NASA Astrophysics Data System (ADS)

    Rausch, Candice M.; Starkweather, Peter L.; van Breukelen, Frank

    2008-06-01

    The Mojave Desert is characterized by hot dry summers and cold winters. The red-spotted toad ( Bufo ( Anaxyrus) punctatus) is the predominant anuran species; yet little is known of their thermal histories and strategies to avoid temperature extremes. We measured body temperature ( T b) in free-ranging adult toads across all four seasons of a year using implanted data loggers. There is marked individual variation in the temperatures experienced by these toads. As expected, toads generally escape extreme seasonal and diel temperature fluctuations. However, our data demonstrate a much wider estimated T b range than was previously assumed. Though often for short periods, red-spotted toads do experience T b as low as 3.1°C and as high as 39.1°C. All animals showed periods of prolonged thermal stability in cooler months and wider diel oscillations in warmer months. Red-spotted toad thermal history is likely a function of site choice; the exploitation of different refuges results in diverse thermal experiences. These data represent the most complete record of thermal experiences for a desert anuran and reveal greater extremes in body temperature than previously suggested.

  20. Respiratory Response of the Deep-Sea Amphipod Stephonyx biscayensis Indicates Bathymetric Range Limitation by Temperature and Hydrostatic Pressure

    PubMed Central

    Brown, Alastair; Thatje, Sven

    2011-01-01

    Depth zonation of fauna on continental margins is well documented. Whilst increasing hydrostatic pressure with depth has long been considered a factor contributing significantly to this pattern, discussion of the relative significance of decreasing temperature with depth has continued. This study investigates the physiological tolerances of fed and starved specimens of the bathyal lysianassoid amphipod Stephonyx biscayensis at varying temperature to acute pressure exposure by measuring the rate of oxygen consumption. Acclimation to atmospheric pressure is shown to have no significant interaction with temperature and/or pressure effects. Similarly, starvation is shown to have no significant effect on the interaction of temperature and pressure. Subsequently, the effect of pressure on respiration rate is revealed to be dependent on temperature: pressure equivalent to 2000 m depth was tolerated at 1 and 3°C; pressure equivalent to 2500 m depth was tolerated at 5.5°C; at 10°C pressure equivalent to 3000 m depth was tolerated. The variation in tolerance is consistent with the natural distribution range reported for this species. There are clear implications for hypotheses relating to the observed phenomenon of a biodiversity bottleneck between 2000 and 3000 metres, and for the potential for bathymetric range shifts in response to global climate change. PMID:22174838

  1. Kinetic measurements on elementary fossil fuel combustion reactions over wide temperature ranges. Progress report, May 1, 1984--November 30, 1986

    SciTech Connect

    Fontijn, A.; Mahmud, K.; Marshall, P.

    1986-12-01

    The HTP (high-temperature photochemistry technique) has been used to study the reactions of ground state 0 atoms with C{sub 2}H{sub 4}, C{sub 2}H{sub 2}, H{sub 2} and D{sub 2} over the 300 to 1500 K temperature range. The results are described and discussed, as are the plans for study of the 0 + 1,3 butadiene and C{sub 2}H{sub 6} reactions in the remainder of the present grant period.

  2. Operating Range for High Temperature Borosilicate Waste Glasses: (Simulated Hanford Enveloped)

    SciTech Connect

    Mohammad, J.; Ramsey, W. G.; Toghiani, R. K.

    2003-02-24

    The following results are a part of an independent thesis study conducted at Diagnostic Instrumentation and Analysis Laboratory-Mississippi State University. A series of small-scale borosilicate glass melts from high-level waste simulant were produced with waste loadings ranging from 20% to 55% (by mass). Crushed glass was allowed to react in an aqueous environment under static conditions for 7 days. The data obtained from the chemical analysis of the leachate solutions were used to test the durability of the resulting glasses. Studies were performed to determine the qualitative effects of increasing the B2O3 content on the overall waste glass leaching behavior. Structural changes in a glass arising due to B2O3 were detected indirectly by its chemical durability, which is a strong function of composition and structure. Modeling was performed to predict glass durability quantitatively in an aqueous environment as a direct function of oxide composition.

  3. Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech.

    PubMed

    Lenz, Armando; Hoch, Günter; Vitasse, Yann

    2016-04-01

    Low temperature extremes drive species distribution at a global scale. Here, we assessed the acclimation potential of freezing resistance in European beech (Fagus sylvaticaL.) during winter. We specifically asked (i) how do beech populations growing in contrasting climates differ in their maximum freezing resistance, (ii) do differences result from genetic differentiation or phenotypic plasticity to preceding temperatures and (iii) is beech at risk of freezing damage in winter across its distribution range. We investigated the genetic and environmental components of freezing resistance in buds of adult beech trees from three different populations along a natural large temperature gradient in north-western Switzerland, including the site holding the cold temperature record in Switzerland. Freezing resistance of leaf primordia in buds varied significantly among populations, with LT50values (lethal temperature for 50% of samples) ranging from -25 to -40 °C, correlating with midwinter temperatures of the site of origin. Cambial meristems and the pith of shoots showed high freezing resistance in all three populations, with only a trend to lower freezing resistance at the warmer site. After hardening samples at -6 °C for 5 days, freezing resistance of leaf primordia increased in all provenances by up to 4.5 K. After additional hardening at -15 °C for 3 days, all leaf primordia were freezing resistant to -40 °C. We demonstrate that freezing resistance ofF. sylvaticahas a high ability to acclimate to temperature changes in winter, whereas the genetic differentiation of freezing resistance among populations seems negligible over this small geographic scale but large climatic gradient. In contrast to the assumption made in most of the species distribution models, we suggest that absolute minimum temperature in winter is unlikely to shape the cold range limit of beech. We conclude that the rapid acclimation of freezing resistance to winter temperatures allows

  4. High dynamic range temperature-compensated fibre Bragg gratings sensor for structural monitoring of buildings

    NASA Astrophysics Data System (ADS)

    Smeu, E.; Gnewuch, H.; Jackson, D. A.; Podoleanu, A.

    2006-06-01

    The distance changes between structural elements inside a building (e.g. walls, pillars, stairs, etc.) ought to be monitored, especially in seismic-prone areas, in order to assess its stability. Fibre Bragg grating (FBG) sensors are now the most interesting choice for this purpose, since several gratings can be included in the fibre, resulting in a quasi-distributed sensor, which can be illuminated using a single light source and interrogated simply by a single optical spectrum analyzer (OSA), using wavelength multiplexing. The paper deals with such a sensor, which was installed for monitoring the distance changes in a construction joint between two building blocks inside the University "Politehnica" of Bucharest. Since this city is placed in a seismic-prone area, we use a fast scanning OSA, so that the dynamic behavior of the monitored construction joint is expected to be captured during future earthquakes. Slow drifts of the construction joint width will be also monitored. The paper describes the sensor structure and working principle, the experimental tests and main parameters evaluation. The reported sensor is temperature compensated. It has an estimated distance resolution better or equal to 10 μm, and a linearity of +0.2%...-0.35% for displacements up to 0.55 mm. Simulated dynamic tests are also reported.

  5. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales

    PubMed Central

    Pelletier, Jon D.

    2002-01-01

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  6. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    PubMed

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  7. Structural development of high-temperature mylonites in the Archean Wyoming province, northwestern Madison Range, Montana

    USGS Publications Warehouse

    Kellogg, Karl S.; Mogk, David W.

    2009-01-01

    The Crooked Creek mylonite, in the northwestern Madison Range, southwestern Montana, is defined by several curved lenses of high non-coaxial strain exposed over a 7-km-wide, northeast-trending strip. The country rocks, part of the Archean Wyoming province, are dominantly trondhjemitic to granitic orthogneiss with subordinate amphibolite, quartzite, aluminous gneiss, and sills of metabasite (mafic granulite). Data presented here support an interpretation that the mylonite formed during a period of rapid, heterogeneous strain at near-peak metamorphic conditions during an early deformational event (D1) caused by northwest–southeast-directed transpression. The mylonite has a well-developed L-S tectonite fabric and a fine-grained, recrystallized (granoblastic) texture. The strong linear fabric, interpreted as the stretching direction, is defined by elongate compositional “fish,” fold axes, aligned elongate minerals, and mullion axes. The margins of the mylonitic zones are concordant with and grade into regions of unmylonitized gneiss. A second deformational event (D2) has folded the mylonite surface to produce meter- to kilometer-scale, tight-to-isoclinal, gently plunging folds in both the mylonite and country rock, and represents a northwest–southeast shortening event. Planar or linear fabrics associated with D2 are remarkably absent. A third regional deformational event (D3) produced open, kilometer-scale folds generally with gently north-plunging fold axes. Thermobarometric measurements presented here indicate that metamorphic conditions during D1 were the same in both the mylonite and the country gneiss, reaching upper amphibolite- to lower granulite-facies conditions: 700 ± 50° C and 8.5 ± 0.5 kb. Previous geochronological studies of mylonitic and cross-cutting rocks in the Jerome Rock Lake area, east of the Crooked Creek mylonite, bracket the timing of this high-grade metamorphism and mylonitization between 2.78 and 2.56 Ga, nearly a billion years

  8. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature.

    PubMed

    Ye, Yingxiang; Zhang, Liuqin; Peng, Qinfang; Wang, Guan-E; Shen, Yangcan; Li, Ziyin; Wang, Lihua; Ma, Xiuling; Chen, Qian-Huo; Zhang, Zhangjing; Xiang, Shengchang

    2015-01-21

    On-board fuel cell technology requires proton conducting materials with high conductivity not only at intermediate temperatures for work but also at room temperature and even at subzero temperature for startup when exposed to the colder climate. To develop such materials is still challenging because many promising candidates for the proton transport on the basis of extended microstructures of water molecules suffer from significant damage by heat at temperatures above 80 °C or by freeze below -5 °C. Here we show imidazole loaded tetrahedral polyimides with mesopores and good stability (Im@Td-PNDI 1 and Im@Td-PPI 2) exhibiting a high anhydrous proton conductivity over a wide temperature range from -40 to 90 °C. Among all anhydrous proton conductors, the conductivity of 2 is the highest at temperatures below 40 °C and comparable with the best materials, His@[Al(OH)(1,4-ndc)]n and [Zn3(H2PO4)6(H2O)3](Hbim), above 40 °C. PMID:25551516

  9. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  10. Rate constant for the reaction of hydroxyl radical with formaldehyde over the temperature range 228-362 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Nava, D. F.; Payne, W. A.; Michael, J. V.

    1980-01-01

    Absolute rate constants for the reaction OH ? H2CO measured over the temperature range 228-362 K using the flash photolysis-resonance fluorescence technique are given. The results are independent of variations in H2CO concentration, total pressure Ar concentration, and flash intensity (i.e., initial OH concentration). The rate constant is found to be invariant with temperature in this range, the best representation being k sub 1 = (1.05 ? or - 0.11) x 10 to the 11th power cu cm molecule(-1) s(-1) where the error is two standard deviations. This result is compared with previous absolute and relative determinations of k sub 1. The reaction is also discussed from a theoretical point of view.

  11. Rate constant for the reaction of hydroxyl radical with formaldehyde over the temperature range 228-362 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Nava, D. F.; Payne, W. A.; Michael, J. V.

    1980-01-01

    Absolute rate constants for the reaction OH + H2CO have been measured over the temperature range 228-362 K using the flash photolysis-resonance fluorescence technique. The results were independent of variations in forbidden H2CO, total pressure of forbidden Ar and flash intensity (i.e., initial forbidden OH). The rate constant was found to be invariant with temperature in this range, the best representation being k1 = (1.05 + or - 0.11) x 10 to the -11th cu cm/molecule sec where the error is two standard deviations. This result is compared with previous absolute and relative determinations of k1. The reaction is also discussed from a theoretical point of view.

  12. A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic Nanodomains in a Wide Temperature Range of 100-340 K.

    PubMed

    Wang, Wenhong; Zhang, Ying; Xu, Guizhou; Peng, Licong; Ding, Bei; Wang, Yue; Hou, Zhipeng; Zhang, Xiaoming; Li, Xiyang; Liu, Enke; Wang, Shouguo; Cai, Jianwang; Wang, Fangwei; Li, Jianqi; Hu, Fengxia; Wu, Guangheng; Shen, Baogen; Zhang, Xi-Xiang

    2016-08-01

    Superstable biskyrmion magnetic nanodomains are experimentally observed for the first time in a hexagonal MnNiGa, a common and easily produced centrosymmetric material. The biskyrmion states in MnNiGa thin plates, as determined by the combination of in situ Lorentz transmission electron microscopy images, magnetoresistivity, and topological Hall effect measurements, are surprisingly stable over a broad temperature range of 100-340 K. PMID:27192410

  13. Ab initio potentials of F+Li2 accessible at ultracold temperatures

    NASA Astrophysics Data System (ADS)

    Wright, K. W. A.; Lane, Ian C.

    2010-09-01

    Ab initio calculations for the strongly exoergic Li2+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  14. Ab initio potentials of F+Li{sub 2} accessible at ultracold temperatures

    SciTech Connect

    Wright, K. W. A.; Lane, Ian C.

    2010-09-15

    Ab initio calculations for the strongly exoergic Li{sub 2}+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li{sub 2} molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  15. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95 °C temperature range

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Breitenbach, Sebastian F. M.; Capezzuoli, Enrico; Meckler, A. Nele; Ziegler, Martin; Millan, Isabel M.; Kluge, Tobias; Deák, József; Hanselmann, Kurt; John, Cédric M.; Yan, Hao; Liu, Zaihua; Bernasconi, Stefano M.

    2015-11-01

    Conventional carbonate-water oxygen isotope thermometry and the more recently developed clumped isotope thermometer have been widely used for the reconstruction of paleotemperatures from a variety of carbonate materials. In spite of a large number of studies, however, there are still large uncertainties in both δ18O- and Δ47-based temperature calibrations. For this reason there is a need to better understand the controls on isotope fractionation especially on natural carbonates. In this study we analyzed oxygen, carbon and clumped isotopes of a unique set of modern calcitic and aragonitic travertines, tufa and cave deposits from natural springs and wells. Together these samples cover a temperature range from 6 to 95 °C. Travertine samples were collected close to the vents of the springs and from pools, and tufa samples were collected from karstic creeks and a cave. The majority of our vent and pool travertines and tufa samples show a carbonate-water oxygen isotope fractionation comparable to the one of Tremaine et al. (2011) with some samples showing higher fractionations. No significant difference between the calcite-water and aragonite-water oxygen isotope fractionation could be observed. The Δ47 data from the travertines show a strong relationship with temperature and define the regression Δ47 = (0.044 ± 0.005 × 106)/T2 + (0.205 ± 0.047). The pH of the parent solution, mineralogy and precipitation rate do not appear to significantly affect the Δ47-signature of carbonates, compared to the temperature effect and the analytical error. The tufa samples and three biogenic calcites show an excellent fit with the travertine calibration, indicating that this regression can be used for other carbonates as well. This work extends the calibration range of the clumped isotope thermometer to travertine and tufa deposits in the temperature range from 6 °C to 95 °C.

  16. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers. PMID:27140370

  17. Examination of diurnal temperature range at coterminous U.S. stations during Sept. 8-17, 2001

    NASA Astrophysics Data System (ADS)

    van Wijngaarden, W. A.

    2012-07-01

    The tragic events of Sept. 11, 2001 resulted in suspension of commercial flights over North America. It has been suggested that the diurnal temperature range (DTR) increased due to an absence of airplane contrails. This study examined hourly data observed at 288 stations. The average DTR, temperature, maximum/minimum temperature and relative humidity were found for each day in 2001 and compared to the average value occurring during 1975-2005. For the coterminous U.S., the DTR averaged over the period Sept. 11-14, 2001 was about 1°C larger than that found for the 3 days prior and after the flight ban. However, the day-to-day DTR does not correlate well with the flight ban. Plots of the change in DTR throughout North America during Sept. 8-17 show changes consistent with the natural progression of weather systems.

  18. Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Fang, P. H.; Brashears, S. S.

    1982-01-01

    Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.

  19. Wafer-level Au-Au bonding in the 350-450 °C temperature range

    NASA Astrophysics Data System (ADS)

    Tofteberg, Hannah R.; Schjølberg-Henriksen, Kari; Fasting, Eivind J.; Moen, Alexander S.; Taklo, Maaike M. V.; Poppe, Erik U.; Simensen, Christian J.

    2014-08-01

    Metal thermocompression bonding is a hermetic wafer-level packaging technology that facilitates vertical integration and shrinks the area used for device sealing. In this paper, Au-Au bonding at 350, 400 and 450 °C has been investigated, bonding wafers with 1 µm Au on top of 200 nm TiW. Test Si laminates with device sealing frames of 100, 200, and 400 µm in width were realized. Bond strengths measured by pull tests ranged from 8 to 102 MPa and showed that the bond strength increased with higher bonding temperatures and decreased with increasing frame width. Effects of eutectic reactions, grain growth in the Au film and stress relaxation causing buckles in the TiW film were most pronounced at 450 °C and negligible at 350 °C. Bond temperature below the Au-Si eutectic temperature 363 °C is recommended.

  20. Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures.

    PubMed

    Theriot, Casey M; Du, Xuelian; Tove, Sherry R; Grunden, Amy M

    2010-08-01

    Prolidase isolated from the hyperthermophilic archaeon Pyrococcus furiosus has potential for application for decontamination of organophosphorus compounds in certain pesticides and chemical warfare agents under harsh conditions. However, current applications that use an enzyme-based cocktail are limited by poor long-term enzyme stability and low reactivity over a broad range of temperatures. To obtain a better enzyme for OP nerve agent decontamination and to investigate structural factors that influence protein thermostability and thermoactivity, randomly mutated P. furiosus prolidases were prepared by using XL1-red-based mutagenesis and error-prone PCR. An Escherichia coli strain JD1 (lambdaDE3) (auxotrophic for proline [DeltaproA] and having deletions in pepQ and pepP dipeptidases with specificity for proline-containing dipeptides) was constructed for screening mutant P. furiosus prolidase expression plasmids. JD1 (lambdaDE3) cells were transformed with mutated prolidase expression plasmids and plated on minimal media supplemented with 50 muM Leu-Pro as the only source of proline. By using this positive selection, Pyrococcus prolidase mutants with improved activity over a broader range of temperatures were isolated. The activities of the mutants over a broad temperature range were measured for both Xaa-Pro dipeptides and OP nerve agents, and the thermoactivity and thermostability of the mutants were determined. PMID:20422176

  1. Design and fabrication of three-axis accelerometer sensor microsystem for wide temperature range applications using semi-custom process

    NASA Astrophysics Data System (ADS)

    Merdassi, A.; Wang, Y.; Xereas, G.; Chodavarapu, V. P.

    2014-03-01

    This paper describes an integrated CMOS-MEMS inertial sensor microsystem, consisting of a 3-axis accelerometer sensor device and its complementary readout circuit, which is designed to operate over a wide temperature range from - 55°C to 175°C. The accelerometer device is based on capacitive transduction and is fabricated using PolyMUMPS, which is a commercial process available from MEMSCAP. The fabricated accelerometer device is then post-processed by depositing a layer of amorphous silicon carbide to form a composite sensor structure to improve its performance over an extended wide temperature range. We designed and fabricated a CMOS readout circuit in IBM 0.13μm process that interfaces with the accelerometer device to serve as a capacitance to voltage converter. The accelerometer device is designed to operate over a measurement range of +/-20g. The described sensor system allows low power, low cost and mass-producible implementation well suited for a variety of applications with harsh or wide temperature operating conditions.

  2. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  3. Constitutive behaviour of an as-cast AA7050 alloy in the sub-solidus temperature range

    NASA Astrophysics Data System (ADS)

    Subroto, T. A. S.; Miroux, A. G.; Eskin, D. G.; Katgerman, L.

    2012-01-01

    Aluminum alloy 7050 is of interest for aerospace industries due to its superior mechanical properties. However, its inherent solidification behaviour may augment the accumulation of residual stresses due to uneven cooling conditions upon direct-chill (DC) casting. This can increase the propensity of cold cracking (CC), which is a potentially catastrophic phenomenon in casting ingots. To predict the outcome of the aluminum casting process, ALSIM software is utilised. This software has the capability to predict CC susceptibility during the casting process. However, at the moment, ALSIM lacks the information regarding material constitutive behaviour in the sub-solidus temperature range, which is considered important for studying CC phenomenon. At the moment, ALSIM only has a partial constitutive database for AA7050 and misses data, especially in the vicinity of non-equilibrium solidus (NES) point. The present work presents measurements of tensile constitutive parameters in the temperature range between 400 °C and NES, which is for this alloy defined as 465 °C. The mechanical behaviour is tested in a Gleeble 3800 thermo-mechanical simulator. Constitutive parameters such as stress-strain curves, strain-rate sensitivity and ductility of the alloy have been measured at different test temperatures. With these constitutive data, we expect to improve the accuracy of ALSIM simulations in terms of CC prediction, and gain more insight into the evolution of mechanical properties of AA7050 in the temperature nearby the NES.

  4. Design Strategies for Optically-Accessible, High-Temperature, High-Pressure Reactor

    SciTech Connect

    S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

    2000-02-01

    The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

  5. Design strategies for optically-accessible, high-temperature, high-pressure reactor

    SciTech Connect

    S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

    2000-02-01

    The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

  6. Improvement of Surface Temperature Prediction Using SVR with MOGREPS Data for Short and Medium range over South Korea

    NASA Astrophysics Data System (ADS)

    Lim, S. J.; Choi, R. K.; Ahn, K. D.; Ha, J. C.; Cho, C. H.

    2014-12-01

    As the Korea Meteorology Administration (KMA) has operated Met Office Global and Regional Ensemble Prediction System (MOGREPS) with introduction of Unified Model (UM), many attempts have been made to improve predictability in temperature forecast in last years. In this study, post-processing method of MOGREPS for surface temperature prediction is developed with machine learning over 52 locations in South Korea. Past 60-day lag time was used as a training phase of Support Vector Regression (SVR) method for surface temperature forecast model. The selected inputs for SVR are followings: date and surface temperatures from Numerical Weather prediction (NWP), such as GDAPS, individual 24 ensemble members, mean and median of ensemble members for every 3hours for 12 days.To verify the reliability of SVR-based ensemble prediction (SVR-EP), 93 days are used (from March 1 to May 31, 2014). The result yielded improvement of SVR-EP by RMSE value of 16 % throughout entire prediction period against conventional ensemble prediction (EP). In particular, short range predictability of SVR-EP resulted in 18.7% better RMSE for 1~3 day forecast. The mean temperature bias between SVR-EP and EP at all test locations showed around 0.36°C and 1.36°C, respectively. SVR-EP is currently extending for more vigorous sensitivity test, such as increasing training phase and optimizing machine learning model.

  7. Static and Statistical Properties of Hot Rotating Nuclei in a Macroscopic Temperature-Dependent Finite-Range Model

    SciTech Connect

    Ryabov, E.G.; Adeev, G.D.

    2005-09-01

    A macroscopic temperature-dependent model that takes into account nuclear forces of finite range is used to calculate the static and statistical properties of hot rotating compound nuclei. The level-density parameter is approximated by an expression of the leptodermous type. The resulting expansion coefficients are in good agreement with their counterparts proposed previously by A.V. Ignatyuk and his colleagues. The effect of taking simultaneously into account the temperature of a nucleus and its angular momentum on the quantities under study, such as the heights and positions of fission barriers and the effective moments of inertia of nuclei at the barrier, is considered, and the importance of doing this is demonstrated. The fissility parameter (Z{sup 2}/A){sub crit} and the position of the Businaro-Gallone point are studied versus temperature. It is found that, with increasing temperature, both parameters are shifted to the region of lighter nuclei. It is shown that the inclusion of temperature leads to qualitatively the same effects as the inclusion of the angular momentum of a nucleus, but, quantitatively, thermal excitation leads to smaller effects than rotational excitation.

  8. Identification of Soybean Accessions with High Germinability in High-temperature Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] seed produced in high-temperature, high-humidity production environments is prone to have sub-standard germinations. Hardseededness, wrinkled seed coats, and infection by Phomopsis longicolla Hobbs are all known to affect soybean seed germinability. Genotypic vari...

  9. Newly Designed Apparatus for Measuring the Angular Dependent Surface Emittance in a Wide Wavelength Range and at Elevated Temperatures up to 1400°C

    NASA Astrophysics Data System (ADS)

    Rydzek, M.; Stark, T.; Arduini-Schuster, M.; Manara, J.

    2012-11-01

    An optimized apparatus for measuring the angular dependent surface emittance up to elevated temperatures has been designed. This emittance measurement apparatus (EMMA) is coupled to a Bruker Vertex 70v FTIR-spectrometer, so that a wavelength range from about 2 μm up to 25 μm is accessible. The central part of the new apparatus is a double walled, stainless steel vessel which can be evacuated or filled with various gases or with air. Inside the vessel a cylindrical tube furnace is pivot-mounted on a system of discs, for automatically rotating up to an angle of 180°. This allows both, the measurement at different detection angles (0° to 85°) and a consecutive measurement of sample and black-body reference without ventilating and opening the pot. The aim of this work is to present the newly designed emittance measurement apparatus which enables the determination of the angular dependent spectral emittance of opaque samples at temperatures up to 1400 °C. Next to the setup of the apparatus, the measurement results of various materials are presented at different detection angles.

  10. Kinetic measurements on elementary fossil fuel combustion reactions over wide temperatures ranges. Progress report, December 1, 1990--November 30, 1991

    SciTech Connect

    Fontijin, A.

    1992-01-01

    The goals of this work are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made using the pseudo-static HTP (high-temperature photochemistry) technique. This approach allows observations on single reactions in the 300 to 1800 K temperature range to be made. Typical total (bath gas) pressures are in the 100 to 1000 mbar range. Ground-state O and H atoms are produced by flash or excimer laser photolysis of suitable precursors (O{sub 2}, CO{sub 2}, SO{sub 2}, NH{sub 3}). The relative atom concentrations are monitored by resonance fluorescence pumped by a cw microwave discharge flow lamp. The molecular reactant-in-excess is introduced through a cooled inlet. Adequate time for mixing, 0.1 to 10 s, between this inlet and the photolysis/observation zone is achieved by using slow flows (typically less than 20 cm s{sup {minus}1}). Results are reported for: O-Atom Reactions with the Four Isomeric Butenes, H + HCl {yields} H{sub 2} + Cl, and the O-atom 1,3-butadiene reaction.

  11. Dielectric breakdown properties of SF6-N2 mixtures in the temperature range 300-3000 K

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Zhao, Hu; Jia, Shenli

    2012-11-01

    Reduced critical electric field strength (E/N)cr is an important indicator for the evaluation of dielectric breakdown of SF6 and its mixtures. This paper aims to analytically investigate the dielectric breakdown properties of SF6-N2 mixtures. First, (α - η)/N and (E/N)cr of SF6-N2 mixtures at room temperature, and then (E/N)cr of hot SF6 at several pressures are calculated and compared with other studies. The results confirmed the validity of the present calculation method and parameters. In addition, the electron energy distribution function, reduced ionization coefficient α/N and attachment coefficient η/N of SF6-N2 mixtures are obtained at different proportions and under 1 atm in the gas temperature range 300-3000 K. Then (E/N)cr can be determined when the effective ionization coefficient (α - η)/N = 0. The results show that in a certain temperature range, due to the effect of N2 on reduction in the proportion of high-energy electrons, (E/N)cr of SF6-N2 mixtures will be enhanced by increasing N2.

  12. The thermodynamic properties of 2-ethylhexyl acrylate over the temperature range from T → 0 to 350 K

    NASA Astrophysics Data System (ADS)

    Kulagina, T. G.; Samosudova, Ya. S.; Letyanina, I. A.; Sevast'yanov, E. V.; Smirnova, N. N.; Smirnova, L. A.; Mochalova, A. E.

    2012-05-01

    The temperature dependence of the heat capacity C {/p o}= f( T) 2 of 2-ethylhexyl acrylate was studied in an adiabatic vacuum calorimeter over the temperature range 6-350 K. Measurement errors were mainly of 0.2%. Glass formation and vitreous state parameters were determined. An isothermic shell calorimeter with a static bomb was used to measure the energy of combustion of 2-ethylhexyl acrylate. The experimental data were used to calculate the standard thermodynamic functions C {/p o}( T), H o( T)- H o(0), S o( T)- S o(0), and G o( T)- H o(0) of the compound in the vitreous and liquid states over the temperature range from T → 0 to 350 K, the standard enthalpies of combustion Δc H o, and the thermodynamic characteristics of formation Δf H o, Δf S o, and Δf G o at 298.15 K and p = 0.1 MPa.

  13. Thermoregulation during flight: body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis).

    PubMed

    Reichard, Jonathan D; Fellows, Spenser R; Frank, Alexander J; Kunz, Thomas H

    2010-01-01

    Bat wings are important for thermoregulation, but their role in heat balance during flight is largely unknown. More than 80% of the energy consumed during flight generates heat as a by-product, and thus it is expected that bat wings should dissipate large amounts of heat to prevent hyperthermia. We measured rectal (T(r)) and surface (T(s)) temperatures of Brazilian free-tailed bats (Tadarida brasiliensis) as they emerged from and returned to their daytime roosts and calculated sensible heat transfer for different body regions (head, body, wings, and tail membrane). Bats' T(r) decreased from 36.8°C during emergence flights to 34.4°C during returns, and T(s) scaled positively with ambient temperature (T(a)). Total radiative heat loss from bats was significantly greater for a radiative sink to the night sky than for a sink with temperature equal to T(a). We found that free-ranging Brazilian free-tailed bats, on average, do not dissipate heat from their wings by convection but instead dissipate radiative heat (L) to the cloudless night sky during flight ([Formula: see text] W). However, within the range of T(a) measured in this study, T. brasiliensis experienced net heat loss between evening emergence and return flights. Regional hypothermia reduces heat loss from wings that are exposed to potentially high convective fluxes. Additional research is needed to establish the role of wings in evaporative cooling during flight in bats. PMID:21034204

  14. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    PubMed

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1). PMID:22846041

  15. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.

    PubMed

    Kolb, H; Dasgupta, T; Zabrocki, K; Mueller, E; de Boor, J

    2015-07-01

    Thermoelectric materials can directly convert heat into electrical energy. The characterization of different materials is an important part in thermoelectric materials research to improve their properties. Usually, different methods and setups are combined for the temperature dependent determination of all thermoelectric key quantities - Seebeck coefficient, electrical conductivity, and thermal conductivity. Here, we present a measurement system for the simultaneous determination of all of these quantities plus the direct determination of the figure of merit by means of the Harman method (zT)H in a temperature range from room temperature up to 600 K. A simultaneous measurement saves time and reduces the measurement error, and the change of all material properties can be monitored even for unstable materials. Thermal conductivity measurements are inherently affected by undesired thermal losses, in particular, through radiation at higher temperatures. We show a simple experimental approach to measure radiation losses and correct for those. Comparative measurements on traditional systems show good agreement for all measured quantities. PMID:26233393

  16. A PdMn Based High Resolution Thermometer for the Temperature Range of 0.7-1 K

    NASA Technical Reports Server (NTRS)

    Koo, Peter K.

    2005-01-01

    Experiments Along the Coexistence near Tricriticality (EXACT) will test exact predictions made by Renormalization Group theory by mapping the phase diagram of liquid He-3 and He-4 mixtures at the tricritical point, Tcp=0.867 K. A PdMn based High Resolution Thermometer (HRT) will be utilized by EXACT to make accurate measurements with a resolution that has never been attained for the temperature range 0.7-1 K. The basic design of this mini high resolution thermometer comprises a sensing element whose magnetic susceptibility changes with temperature, a thermal connector, magnetic shielding, and some permanent magnets to apply a constant magnetic field. In this study, we will quantitatively determine the resolution of possible sensing element candidates of 0.15%, 0.20%, and 0.25% ppm Mn and compare them with an annealed group of PdMn with the corresponding concentrations to see how this processing technique affects sensitivity.

  17. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C

    NASA Astrophysics Data System (ADS)

    Alfonso, A.; Juul Jensen, D.; Luo, G.-N.; Pantleon, W.

    2014-12-01

    Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process indicate a sufficient thermal stability of the tungsten plate during operation below 1075 °C.

  18. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    PubMed Central

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution

  19. Experimental investigation of the dynamics of a vibrating grid in superfluid 4He over a range of temperatures and pressures.

    PubMed

    Charalambous, D; Skrbek, L; Hendry, P C; McClintock, P V E; Vinen, W F

    2006-09-01

    In an earlier paper [Nichol, Phys. Rev. E, 70, 056307 (2004)] some of the present authors presented the results of an experimental study of the dynamics of a stretched grid driven into vibration at or near its resonant frequency in isotopically pure superfluid 4He over a range of pressures at a very low temperature, where the density of normal fluid is negligible. In this paper we present the results of a similar study, based on a different grid, but now including the temperature range where the normal fluid density is no longer insignificant. The new grid is very similar to the old one except for a small difference in the character of its surface roughness. In many respects the results at low temperature are similar to those for the old grid. At low amplitudes the results are somewhat history dependent, but in essence there is no damping greater than that in vacuo. At a critical amplitude corresponding to a velocity of about 50 mms(-1) there is a sudden and large increase in damping, which can be attributed to the generation of new vortex lines. Strange shifts in the resonant frequency at intermediate amplitudes observed with the old grid are no longer seen, however they must therefore have been associated with the different surface roughness, or perhaps were due simply to some artifact of the old grid, the details of which we are currently unable to determine. With the new grid we have studied both the damping at low amplitudes due to excitations of the normal fluid, and the dependence of the supercritical damping on temperature. We present evidence that in helium at low amplitudes there may be some enhancement in the effective mass of the grid in addition to that associated with potential flow of the helium. In some circumstances small satellite resonances are seen near the main fundamental grid resonance, which are attributed to coupling to some other oscillatory system within the experimental cell. PMID:17025743

  20. The correlation between dengue incidence and diurnal ranges of temperature of Colombo district, Sri Lanka 2005–2014

    PubMed Central

    Ehelepola, N. D. B.; Ariyaratne, Kusalika

    2016-01-01

    Background Meteorological factors affect dengue transmission. Mechanisms of the way in which different diurnal temperatures, ranging around different mean temperatures, influence dengue transmission were published after 2011. Objective We endeavored to determine the correlation between dengue incidence and diurnal temperature ranges (DTRs) in Colombo district, Sri Lanka, and to explore the possibilities of using our findings to improve control of dengue. Design We calculated the weekly dengue incidence in Colombo during 2005–2014, after data on all of the reported dengue patients and estimated mid-year populations were collected. We obtained daily maximum and minimum temperatures from two Colombo weather stations, averaged, and converted them into weekly data. Weekly averages of DTR versus dengue incidence graphs were plotted and correlations observed. The count of days per week with a DTR of >7.5°C and <7.5°C were also calculated. Wavelet time series analysis was performed to determine the correlation between dengue incidence and DTR. Results We obtained a negative correlation between dengue incidence and a DTR>7.5°C with an 8-week lag period, and a positive correlation between dengue incidence and a DTR<7.5°C, also with an 8-week lag. Conclusions Large DTRs were negatively correlated with dengue transmission in Colombo district. We propose to take advantage of that in local dengue control efforts. Our results agree with previous studies on the topic and with a mathematical model of relative vectorial capacity of Aedes aegypti. Global warming and declining DTR are likely to favor a rise of dengue, and we suggest a simple method to mitigate this. PMID:27566717

  1. Raman spectroscopy of SrB4O7 single crystals in the temperature range 300-1273 K

    NASA Astrophysics Data System (ADS)

    Sobol, A. A.; Shukshin, V. E.; Zaitsev, A. I.

    2016-07-01

    The polarized Raman spectra of SrB4O7 (SBO) single crystals are studied in detail in the temperature range of 300-1273 K. The TO, LO, and IO phonon lines of A 1, A 2, B 1, and B 2 symmetries of rhombic SBO at 300 K are identified. The behavior of the Raman spectra of SBO crystals is studied upon heating up to their melting. The relation of Raman spectra with the structure of boron-oxygen fragments, as well as the transformation of spectra in the process of melting of SBO crystals, is discussed.

  2. Calibrating a new proxy for Pleistocene climate change in southern Africa: the Mutual Ostracod Temperature Range method

    NASA Astrophysics Data System (ADS)

    Horne, David; Martens, Koen

    2010-05-01

    The Mutual Ostracod Temperature Range (MOTR) method has so far been applied only in the European Pleistocene, where it is proving effective in producing past air temperature range estimates that compare well with those obtained by other proxy methods (Horne, 2007; Horne & Mezquita, 2008; Holmes et al., in press). As an essential preliminary step towards applying the method in southern Africa, we have calibrated a training set of living ostracod species' distributions against a modern climate dataset and other available environmental data. The modern ostracod dataset is based on material held by the Royal Belgian Institute of Natural Sciences in Brussels, which constitutes the most diverse and comprehensive collection of southern African nonmarine ostracods available anywhere in the world. To date, c. 150 nominal species have been described from southern Africa (Martens, 2001) out of c. 450 species in the total Afrotropical area (Martens et al., 2008). We used an edited dataset comprising a total of 2,118 records of ostracod species from 748 localities in southern Africa, ranging in latitude from approximately 17 degrees S to 35 degrees S. We have explored the potential value and limitations of this training set for the estimation of past climatic parameters including mean July, January and annual air temperatures, precipitation, water conductivity and pH. Holmes, J. A., Atkinson, T., Darbyshire, D. P. F., Horne, D. J., Joordens, J., Roberts, M. B., Sinka, K. J. & Whittaker, J. E. (accepted, in press). Middle Pleistocene climate and hydrological environment at the Boxgrove hominin site (West Sussex, UK) from ostracod records. Quaternary Science Reviews, doi:10.1016/j.quascirev.2009.02.024, 1-13. Horne, D. J. 2007. A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews, 26, 1398-1415. Horne, D. J. & Mezquita, F. 2008. Palaeoclimatic applications of large databases: developing and testing

  3. Austenitic structure formation in an Fe-32% Ni alloy during slow heating in the critical temperature range

    NASA Astrophysics Data System (ADS)

    Zemtsova, N. D.

    2014-08-01

    Electron diffraction is used to show (for the first time) that the reverse α → γ transformation in an Fe-32% Ni during slow heating develops via the formation of an intermediate paramagnetic 9 R phase. Coarse extended lamellae form according to a shear mechanism in the central part of the temperature range of the reverse transformation, which is called the critical range (here, the physical properties of the alloy change anomalously). The extended lamellae consist of 9 R-phase lamellae with γ-phase interlayers. A high density of periodic stacking faults in the structure of the 9 R phase and a high density of chaotic stacking faults in the complex 9 R + γ phase determine the nature of phase transformation-induced hardening.

  4. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range

    NASA Astrophysics Data System (ADS)

    Yuan, Fanglong; Ding, Ling; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Zhou, Shixin; Fang, Decai; Yang, Shihe

    2015-07-01

    Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed

  5. Three Agt1 transporters from brewer's yeasts exhibit different temperature dependencies for maltose transport over the range of brewery temperatures (0–20 °C).

    PubMed

    Vidgren, Virve; Viljanen, Kaarina; Mattinen, Laura; Rautio, Jari; Londesborough, John

    2014-06-01

    Zero-trans rates of maltose transport by brewer's yeasts exert strong control over fermentation rates and are strongly temperature-dependent over the temperature range (20–0 °C) of brewery fermentations. Three α-glucoside transporters, ScAgt1(A60) (a Saccharomyces cerevisiae version of Agt1 from an ale strain), ScAgt1-A548V (a variant of ScAgt1(A60) with a single amino acid change in a transmembrane domain), and SbAgt1 (a Saccharomyces (eu)bayanus version from a lager strain), were compared. When expressed in the same laboratory yeast, grown at 24 °C and assayed at 0, 10, and 20 °C, SbAgt1 had the lowest absolute maltose uptake activity at 20 °C but smallest temperature dependence, ScAgt1-A548V had the highest activity but greatest temperature dependence, and ScAgt1(A60) had intermediate properties. ScAgt1(A60) exhibited higher absolute rates and smaller temperature dependencies when expressed in laboratory rather than brewer's strains. Absolute rates closely reflected the amounts of GFP-tagged ScAgt1(A60) transporter in each host's plasma membrane. Growth at 15 °C instead of 24 °C decreased the absolute activities of strains expressing ScAgt1(A60) by two- to threefold. Evidently, the kinetic characteristics of at least ScAgt1(A60) depended on the nature of the host plasma membrane. However, no consistent correlation was observed between transport activities and fatty acid or ergosterol compositions. PMID:25035870

  6. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    NASA Astrophysics Data System (ADS)

    Shaheed, M. Reaz

    1995-01-01

    to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  7. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    SciTech Connect

    Stevenick, W. Van . Environmental Measurements Lab.)

    1994-08-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to [+-]3 [center dot] 10[sup [minus]16] A over the environmental range of temperature ([minus]40 to +40 C). Using a single 10[sup 11] [Omega] feed-back resistor, the electrometer accurately measures currents over a range from 3 [center dot] 10[sup [minus]15] A to 3 [center dot] 10[sup [minus]11] A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 [mu]R h[sup [minus]1]), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically [approximately]27 pA at 1 mR h[sup [minus]1]. A data recorder and system controller was designed using the Tattletale[trademark] Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards.

  8. Amylose Phase Composition As Analyzed By FTIR In A Temperature Ramp: Influence Of Short Range Order On The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Delmas, Genevieve

    1998-03-01

    Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.

  9. Subzero temperature chromatography for reduced back-exchange and improved dynamic range in amide hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Venable, John D; Okach, Linda; Agarwalla, Sanjay; Brock, Ansgar

    2012-11-01

    Amide hydrogen/deuterium exchange is a commonly used technique for studying the dynamics of proteins and their interactions with other proteins or ligands. When coupled with liquid chromatography and mass spectrometry, hydrogen/deuterium exchange provides several unique advantages over other structural characterization techniques including very high sensitivity, the ability to analyze proteins in complex environments, and a large mass range. A fundamental limitation of the technique arises from the loss of the deuterium label (back-exchange) during the course of the analysis. A method to limit loss of the label during the separation stage of the analysis using subzero temperature reversed-phase chromatography is presented. The approach is facilitated by the use of buffer modifiers that prevent freezing. We evaluated ethylene glycol, dimethyl formamide, formamide, and methanol for their freezing point suppression capabilities, effects on peptide retention, and their compatibilities with electrospray ionization. Ethylene glycol was used extensively because of its good electrospray ionization compatibility; however, formamide has potential to be a superior modifier if detrimental effects on ionization can be overcome. It is demonstrated using suitable buffer modifiers that separations can be performed at temperatures as low as -30 °C with negligible loss of the deuterium label, even during long chromatographic separations. The reduction in back-exchange is shown to increase the dynamic range of hydrogen/deuterium exchange mass spectrometry in terms of mixture complexity and the magnitude with which changes in deuteration level can be quantified. PMID:23025328

  10. Performance Demonstration of Mcmb-LiNiCoO2 Cells Containing Electrolytes Designed for Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.

    2009-01-01

    With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.

  11. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    SciTech Connect

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  12. DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION

    SciTech Connect

    Panagiotis G. Smirniotis

    2005-01-30

    For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

  13. Thermal diffusivity measurements in opaque solids by the mirage technique in the temperature range from 300 to 1000 K

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Salazar, A.

    1994-08-01

    A method to measure the thermal diffusivity of solid samples as a function of temperature is presented. The measurement technique is based on the mirage effect and in its linear zero-crossing for the transverse deflection, whose slope directly gives the diffusivity of the material. A 3D theoretical model has been developed in order to include both the effects of the radiative and convective heat transfers between the sample and its surroundings, and the temperature dependence of the refractive index and thermal diffusivity of the gas. The model also incorporates the effects introduced by the mirage parameters (sizes of the pump and probe beams, and probe beam height). The samples studied are opaque and thermally thick, and the applicability of the method is restricted to materials with diffusivity greater than 1 sq mm/s. Two experimental mirage setups are presented, one with the sample being heated in an open environment, and the other with the sample heated within a furnace. In the first case the range of measurable temperatures goes from ambient to approximately 500 K, whereas in the second the upper limit is approximately 1000 K. A comparison of the experiemental results obtained with this method with those from the literature on calibrated samples of pure nickel, pure cobalt, and an AISI-302 alloy of low thermal diffusivity, confirm the validity of the model and method proposed.

  14. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range.

    PubMed

    Yuan, Fanglong; Ding, Ling; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Zhou, Shixin; Fang, Decai; Yang, Shihe

    2015-07-21

    Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media. PMID:26102292

  15. Reaction OH + OH studied over the 298-834 K temperature and 1-100 bar pressure ranges.

    PubMed

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-06-21

    Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37. PMID:22397582

  16. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  17. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.

    PubMed

    Chen, H; Chen, D Z; Fan, S; Hong, L; Wang, D

    2016-10-01

    In this research, urea-spiked hydrazine hydrate solutions are used as reductants for the Selective Non-Catalytic Reduction (SNCR) De-NOx process below 650 °C. The urea concentration in the urea/hydrazine hydrate solutions is chosen through experimental and theoretical studies. To determine the mechanism of the De-NOx process, thermogravimetric analysis (TGA) of the urea/hydrazine hydrate solutions and their thermal decomposition in air and nitrogen atmospheres were studied to understand their decomposition behaviours and redox characteristics. Then a plug flow reactor (PFR) model was adopted to simulate the De-NOx processes in a pilot scale tubular reactor, and the calculated De-NOx efficiency vs. temperature profiles were compared with experimental results to support the mechanism and choose the proper reductant and its reaction temperature. Both the experimental and calculated results show that when the urea is spiked into hydrazine hydrate solution to make the urea-N content approximately 16.7%-25% of the total N content in the solution, better De-NOx efficiencies can be obtained in the temperature range of 550-650 °C, under which NH3 is inactive in reducing NOx. And it is also proved that for these urea-spiked hydrazine hydrate solutions, the hydrazine decomposition through the pathway N2H4 + M = N2H3 + H + M is enhanced to provide radical H, which is active to reduce NO. Finally, the reaction routes for SNCR De-NOx process based on urea-spiked hydrazine hydrate at the proper temperature are proposed. PMID:27427778

  18. The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range.

    PubMed

    Deniz, Ali Rıza; Çaldıran, Zakir; Metin, Önder; Meral, Kadem; Aydoğan, Şakir

    2016-07-01

    Monodisperse 8nm Fe3O4 nanoparticles (NPs) were synthesized by the thermal decomposition of iron(III) acetylacetonate in oleylamine and then were deposited onto n-type silicon wafer having the Al ohmic contact. Next, the morphology of the Fe3O4 NPs were characterized by using TEM and XRD. The optical properties of Fe3O4 NPs film was studied by UV-Vis spectroscopoy and its band gap was calculated to be 2.16eV. Au circle contacts with 7.85×10(-3)cm(2) area were provided on the Fe3O4 film via evaporation at 10(-5)Torr and the Au/Fe3O4 NPs/n-Si/Al heterojunction device were fabricated. The temperature-dependent junction parameters of Au/Fe3O4/n-Si/Al device including ideality factor, barrier height and series resistance were calculated by using the I-V characteristics in a wide temperature range of 40-300K. The results revealed that the ideality factor and series resistance increased by the decreasing temperature while the barrier height decreases. The Richardson constant of Au/Fe3O4/n-Si/Al device was calculated to be 2.17A/K(2)cm(2) from the I-V characteristics. The temperature dependence of Au/Fe3O4/n-Si/Al heterojunction device showed a double Gaussian distribution, which is caused by the inhomogeneities characteristics of Fe3O4/n-Si heterojunction. PMID:27078739

  19. Plasticity and constraints on fatty acid composition in the phospholipids and triacylglycerols of Arabidopsis accessions grown at different temperatures

    PubMed Central

    2013-01-01

    Background Natural selection acts on multiple traits in an organism, and the final outcome of adaptive evolution may be constrained by the interaction of physiological and functional integration of those traits. Fatty acid composition is an important determinant of seed oil quality. In plants the relative proportions of unsaturated fatty acids in phospholipids and seed triacylglycerols often increases adaptively in response to lower growing temperatures to increase fitness. Previous work produced evidence of genetic constraints between phospholipids and triacylglycerols in the widely studied Arabidopsis lines Col and Ler, but because these lines are highly inbred, the correlations might be spurious. In this study, we grew 84 wild Arabidopsis accessions at two temperatures to show that genetic correlation between the fatty acids of the two lipid types is not expected and one should not influence the other and seed oil evolution and also tested for the adaptive response of fatty acids to latitude and temperature. Results As expected no significant correlations between the two lipids classes at either growing temperature were observed. The saturated fatty acids and erucic acid of triacylglycerols followed a significant latitudinal cline, while the fatty acids in phospholipids did not respond to latitude as expected. The expected plastic response to temperature was observed for all the triacylglycerol fatty acids whereas only oleic acid showed the expected pattern in phospholipids. Considerable phenotypic variation of the fatty acids in both the lipid types was seen. Conclusion We report the first evidence supporting adaptive evolution of seed triacylglycerols in Arabidopsis on a latitudinal cline as seen in other species and also their plastic adaptive response to growing temperature. We show that as expected there is no genetic correlations between the fatty acids in triacylglycerols and phospholipids, indicating selection can act on seed triacylglycerols without

  20. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  1. Kinetics of the ClO + HO2 reaction over the temperature range T = 210-298 K.

    PubMed

    Ward, Michael K M; Rowley, David M

    2016-02-17

    The rate coefficient for the atmospherically important radical reaction: which leads to ozone depletion, has been studied over the temperature range T = 210-298 K and at ambient pressure p = 760 ± 20 Torr. The reaction was studied using laser flash photolysis radical generation coupled with broadband charge coupled device absorption spectroscopy employing a two-dimensional charge-coupled-device (CCD) detection system. ClO radicals were generated following the photolysis of Cl2 and Cl2O gas mixtures diluted in nitrogen and oxygen. ClO radicals were monitored using broadband fingerprinting of their characteristic vibronic (A(2)Π ← X(2)Π) spectral structure, representing a definitive monitoring of this radical. Addition of hydroperoxy radical precursors to the gas mixture (methanol and oxygen) subsequently led to a competition for photolytically generated Cl atoms and a simultaneous prompt formation of both ClO and HO2 radicals. Detailed analysis and modelling of the radical production routes provided a degree of constraint into numerical integration simulations which were then used to interrogate and fit to ClO temporal profiles to extract the rate coefficient k1. The ambient temperature (T = 298 K) rate coefficient reported is k1 = (8.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). The rate coefficient, k1, is described by the Arrhenius expression:where errors are 1σ statistical only. This significant rate coefficient is greater than previously reported, with a stronger negative temperature dependence than previously observed. Consequently this suggests that the contribution of to ozone loss, in particular at mid-latitudes might be currently underestimated in models. This work reports atmospheric pressure kinetic parameters for this reaction which are greater than those reported from low pressure studies, perhaps supporting ClO and HO2 association as predicted by previous theoretical studies of this process and highlighting the need for further pressure

  2. Isothermal decomposition of hydroxylamine and hydroxylamine nitrate in aqueous solutions in the temperature range 80-160 degrees C.

    PubMed

    Liu, Lijun; Papadaki, Maria; Pontiki, Eleni; Stathi, Panagiota; Rogers, William J; Mannan, M Sam

    2009-06-15

    Hydroxylamine (HA) and hydroxylamine nitrate (HAN) have been involved independently in several tragic accidents, which incurred numerous fatalities and injuries. Following these incidents, adiabatic calorimetry and computational chemistry research was conducted on those compounds, suggesting potential reaction pathways of their decomposition, but the mechanism of their unstable behavior, still have not been completely understood. In the present work, isothermal decomposition tests were performed accompanied with HPLC, ion chromatography and UV analyses in the temperature range 80-160 degrees C. Condition-dependent autocatalytic decompositions were demonstrated for HA and HAN, and an intermediate formation has been observed that is most likely responsible for their autocatalytic behavior. These findings corroborate previously reported computational chemistry results. PMID:19027229

  3. The gas phase reactions of hydroxyl radicals with a series of nitroalkanes over the temperature range 240-400 K

    NASA Astrophysics Data System (ADS)

    Liu, Renzhang; Huie, Robert E.; Kurylo, Michael J.; Nielsen, Ole J.

    1990-04-01

    Absolute rate constants were determined for the gas phase reactions of OH radicals with a series of nitroalkanes by the flash photolysis-resonance fluorescence technique. Experiments were performed at total pressures from 25 to 50 Torr using Ar as a diluent gas. Experiments with nitromethane and nitromethane- d3 at 296 K yielded rate constants of (1.58±0.09) × 10 -14 and (0.9±0.04) × 10 -14 cm 3 molecule -1 s -1, respectively. Data from experiments over the temperature range 240-400 K for nitroethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, and 1-nitropentane were used to evaluate their Arrhenius parameters. The results are discussed in terms of the reaction mechanism, and are compared to previous literature data.

  4. LETTER TO THE EDITOR: Breakdown of intermediate-range order in liquid GeSe2 at high temperatures

    NASA Astrophysics Data System (ADS)

    Massobrio, C.; van Roon, F. H. M.; Pasquarello, Alfredo; DeLeeuw, S. W.

    2000-11-01

    The structure of liquid GeSe2 at T = 1373 K has been investigated by first-principles molecular dynamics. The calculated total neutron structure factor is in good agreement with recent experimental data. We found that the disappearance with increasing temperature of the first sharp diffraction peak (FSDP) in the total neutron structure factor is due to an increase of short-range chemical disorder. At T = 1373 K various bonding configurations coexist in close amounts, such as the Ge-GeSe3, Ge-GeSe2 and Se-SeGe2 motifs. This contrasts with the behaviour of liquid GeSe2 at T = 1050 K, for which more than half of the Ge atoms are four-fold coordinated to Se atoms in regular GeSe4 tetrahedra. Our result correlates the appearance of the FSPD in disordered AX2 network-forming materials to the predominant presence of AX4 subunits.

  5. Evaluation of a Programmable Voltage-Controlled MEMS Oscillator, Type SiT3701, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Semiconductor chips based on MEMS (Micro-Electro-Mechanical Systems) technology, such as sensors, transducers, and actuators, are becoming widely used in today s electronics due to their high performance, low power consumption, tolerance to shock and vibration, and immunity to electro-static discharge. In addition, the MEMS fabrication process allows for the miniaturization of individual chips as well as the integration of various electronic circuits into one module, such as system-on-a-chip. These measures would simplify overall system design, reduce parts count and interface, improve reliability, and reduce cost; and they would meet requirements of systems destined for use in space exploration missions. In this work, the performance of a recently-developed MEMS voltage-controlled oscillator was evaluated under a wide temperature range. Operation of this new commercial-off-the-shelf (COTS) device was also assessed under thermal cycling to address some operational conditions of the space environment

  6. GlidCop® DSC properties in the temperature range of 20-350°C

    NASA Astrophysics Data System (ADS)

    Solomon, Ronald R.; Troxell, Jack D.; Nadkarni, Anil V.

    1996-10-01

    GlidCop® AL-25 LOX-80 grade plates manufactured by processes relevant to ITER first wall copper alloy requirements were tested in the temperature range of 20-350°C. Plate manufacturing methods included hot isotatic pressing (HIP), extrusion (EXT), and extrusion followed by cross-rolling (EXT + XROLL). Tests that were performed included tensile, fracture toughness, impact toughness, and creep. The EXT + XROLL plate was found to have higher total elongation, reduction of area, and fracture toughness values than the EXT and HIP plates. All three processes had similar ultimate tensile and 0.2% yield strengths. The HIP material exhibited a lower creep rate than EXT + XROLL. The EXT and the EXT + XROLL plates had similar impact toughness values, which were higher than the HIP plate. Overall, the EXT + XROLL plate had the best combination of properties of the three processes examined.

  7. Metallographic anlaysis and strength investigation of different Be-Cu joints in the temperature range RT-3500C

    SciTech Connect

    Gervash, A.A.; Giniatouline, R.N.; Mazul, I.V.

    1995-09-01

    The goal of this work is to estimate the strength and structure of different Be-Cu joining techniques. Brazing, diffusion bonding and joint rolling methods were chosen as ITER Be-Cu joint method candidates. Selected for ITER application Be-Cu joints were produced as technological plates (30-50 mm x 50-100 mm x thickness). AR samples for farther investigations were cutted out from initial technological plates. To compare mechanical strength of selected Be-Cu joints tensile and shearing tests of chosen candidates were carried out in the temperature range RT - 350{degrees}C. The metallographic analysis of Be-Cu crosssection was also done. Preliminary results of these tests as well as metallographic analysis data are presented. The industrial possibilities of producing required for ITER full scale Be-Cu joints are discussed.

  8. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.

    PubMed

    Bazán, I; Vazquez, M; Ramos, A; Vera, A; Leija, L

    2009-03-01

    Optimization of efficiency in hyperthermia requires a precise and non-invasive estimation of internal distribution of temperature. Although there are several research trends for ultrasonic temperature estimation, efficient equipments for its use in the clinical practice are not still available. The main objective of this work was to research about the limitations and potential improvements of previously reported signal processing options in order to identify research efforts to facilitate their future clinical use as a thermal estimator. In this document, we have a critical analysis of potential performance of previous ultrasonic research trends for temperature estimation inside materials, using different processing techniques proposed in frequency, time and phase domains. It was carried out in phantom with scatterers, assessing at their specific applicability, linearity and limitations in hyperthermia range. Three complementary evaluation indexes: technique robustness, Mat-lab processing time and temperature resolution, with specific application protocols, were defined and employed for a comparative quantification of the behavior of the techniques. The average increment per degrees C and mm was identified for each technique (3 KHz/ degrees C in the frequency analysis, 0.02 rad/ degrees C in the phase domain, while increments in the time domain of only 1.6 ns/ degrees C were found). Their linearity with temperature rising was measured using linear and quadratic regressions and they were correlated with the obtained data. New improvements in time and frequency signal processing in order to reveal the potential thermal and spatial resolutions of these techniques are proposed and their subsequent improved estimation results are shown for simulated and measured A-scans registers. As an example of these processing novelties, an excellent potential resolution of 0.12 degrees C into hyperthermia range, with near-to-linear frequency dependence, could be achieved

  9. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  10. Air oxidation of Zircaloy-4 in the 600-1000 °C temperature range: Modeling for ASTEC code application

    NASA Astrophysics Data System (ADS)

    Coindreau, O.; Duriez, C.; Ederli, S.

    2010-10-01

    Progress in the treatment of air oxidation of zirconium in severe accident (SA) codes are required for a reliable analysis of severe accidents involving air ingress. Air oxidation of zirconium can actually lead to accelerated core degradation and increased fission product release, especially for the highly-radiotoxic ruthenium. This paper presents a model to simulate air oxidation kinetics of Zircaloy-4 in the 600-1000 °C temperature range. It is based on available experimental data, including separate-effect experiments performed at IRSN and at Forschungszentrum Karlsruhe. The kinetic transition, named "breakaway", from a diffusion-controlled regime to an accelerated oxidation is taken into account in the modeling via a critical mass gain parameter. The progressive propagation of the locally initiated breakaway is modeled by a linear increase in oxidation rate with time. Finally, when breakaway propagation is completed, the oxidation rate stabilizes and the kinetics is modeled by a linear law. This new modeling is integrated in the severe accident code ASTEC, jointly developed by IRSN and GRS. Model predictions and experimental data from thermogravimetric results show good agreement for different air flow rates and for slow temperature transient conditions.

  11. Thermal Conductivity of Magnesium Alloys in the Temperature Range from -125 °C to 400 °C

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Ham, Hye Jeong; Kwon, Su Yong; Kim, Sok Won; Suh, Chang Min

    2013-12-01

    Magnesium alloys have been widely used in recent years as lightweight structural materials in the manufacturing of automobiles, airplanes, and portable computers. Magnesium alloys have extremely low density (as low as 1738 kg · m-3) and high rigidity, which makes them suitable for such applications. In this study, the thermal conductivity of two different magnesium alloys made by twin-roll casting was investigated using the laser-flash technique and differential scanning calorimetry for thermal diffusivity and specific heat capacity measurements, respectively. The thermal diffusivity of the magnesium alloys, AZ31 and AZ61, was measured over the temperature range from -125 °C to 400 °C. The alloys AZ31 and AZ61 are composed of magnesium, aluminum, and zinc. The thermal conductivity gradually increased with temperature. The densities of AZ31 and AZ61 were 1754 kg · m-3 and 1777 kg · m-3, respectively. The thermal conductivity of AZ31 was about 25 % higher than that of AZ61, and this is attributed to the amount of precipitation.

  12. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  13. Gd(III)-Gd(III) EPR distance measurements--the range of accessible distances and the impact of zero field splitting.

    PubMed

    Dalaloyan, Arina; Qi, Mian; Ruthstein, Sharon; Vega, Shimon; Godt, Adelheid; Feintuch, Akiva; Goldfarb, Daniella

    2015-07-28

    Gd(III) complexes have emerged as spin labels for distance determination in biomolecules through double-electron-electron resonance (DEER) measurements at high fields. For data analysis, the standard approach developed for a pair of weakly coupled spins with S = 1/2 was applied, ignoring the actual properties of Gd(III) ions, i.e. S = 7/2 and ZFS (zero field splitting) ≠ 0. The present study reports on a careful investigation on the consequences of this approach, together with the range of distances accessible by DEER with Gd(III) complexes as spin labels. The experiments were performed on a series of specifically designed and synthesized Gd-rulers (Gd-PyMTA-spacer-Gd-PyMTA) covering Gd-Gd distances of 2-8 nm. These were dissolved in D2O-glycerol-d8 (0.03-0.10 mM solutions) which is the solvent used for the corresponding experiments on biomolecules. Q- and W-band DEER measurements, followed by data analysis using the standard data analysis approach, used for S = 1/2 pairs gave the distance-distribution curves, of which the absolute maxima agreed very well with the expected distances. However, in the case of the short distances of 2.1 and 2.9 nm, the distance distributions revealed additional peaks. These are a consequence of neglecting the pseudo-secular term in the dipolar Hamiltonian during the data analysis, as is outlined in a theoretical treatment. At distances of 3.4 nm and above, disregarding the pseudo-secular term leads to a broadening of a maximum of 0.4 nm of the distance-distribution curves at half height. Overall, the distances of up to 8.3 nm were determined, and the long evolution time of 16 μs at 10 K indicates that a distance of up to 9.4 nm can be accessed. A large distribution of the ZFS parameter, D, as is found for most Gd(III) complexes in a frozen solution, is crucial for the application of Gd(III) complexes as spin labels for distance determination via Gd(III)-Gd(III) DEER, especially for short distances. The larger ZFS of Gd-PyMTA, in

  14. State of water in starch-water systems in the gelatinization temperature range as investigated using dielectric relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Motwani, Tanuj

    Starch-water interactions occurring during gelatinization are critical for developing a mechanistic understanding of the gelatinization process. The overall goal of this project was to investigate the state of water in starch-water systems in the gelatinization temperature range using dielectric relaxation spectroscopy. In the first part of the project, the dielectric response of native wheat starch-water slurries was measured at seven different starch concentrations between 5--60% starch (w/w) in the frequency range of 200 MHz--20 GHz at 25°C. The deconvolution of the dielectric spectra using the Debye model revealed presence of up to three relaxation processes. The relaxation time range of what were considered to be the high, intermediate and low frequency relaxations were 4--9 ps, 20--25 ps and 230--620 ps, respectively. The high frequency relaxation was observed at all starch concentrations, while the intermediate and low frequency relaxation were only observed at starch concentrations of 10% and above, and 30% and above, respectively. The high frequency relaxation was attributed to bulk water, while the intermediate and low frequency relaxations were attributed to rotationally restrained water molecules present in the starch-water system. To investigate the state of water in the gelatinization temperature range, the dielectric response, gelatinization enthalpy and water absorption by 10%, 30% or 50% starch slurries were measured after heating the slurries to different end temperatures between 40--90°C for 30 min. The high frequency relaxation time for 10% starch slurry dropped significantly (P<0.001) upon heating up to 60°C. For 30% and 50% starch slurries, high frequency relaxation times were not significantly influenced (P>0.159) by heating up to 80°C. The intermediate and low frequency relaxation times were not significantly influenced (P>0.712) by heating for all starch concentrations. Also, the amount of water associated with the three relaxations was

  15. Effect of Gd polarization on the large magnetocaloric effect of GdCrO4 in a broad temperature range

    NASA Astrophysics Data System (ADS)

    Palacios, E.; Tomasi, C.; Sáez-Puche, R.; Dos santos-García, A. J.; Fernández-Martínez, F.; Burriel, R.

    2016-02-01

    The ferromagnetic zircon-type phase of GdCrO4 presents high values for the magnetocaloric (MC) parameters. This compound has large isothermal entropy changes Δ ST under the magnetic field action in a wide temperature range, from 5 to 35 K, reaching a maximum |Δ ST|=29.0 ±0.1 J /kg K at 22 K, for a field increment Δ B =9 T. It orders ferromagnetically at TC=21.3 K via the Cr-Cr exchange interaction and shows a second transition at 4.8 K due to the ordering of the Gd sublattice. The large MC effect is enhanced by the polarization of the Gd3 + ions by the Cr5 + ones via a weaker Gd-Cr interaction. This effect is an interesting feature to be considered in the search for new compounds with a high MC effect in the range of liquid hydrogen or natural gas, regarding the liquefaction of gases by magnetization-demagnetization cycles. This paper contains experimental measurements of magnetization, heat capacity, and direct determinations of the MC effect. The magnetic contribution to the heat capacity Cm has been obtained after subtracting the lattice component. Approximate values for the exchange constants J1 (Cr-Cr) and J3 (Gd-Cr) have been deduced from Cm.

  16. Measurement of the temperature-dependent optical constants of water ice in the 15-200 microm range.

    PubMed

    Curtis, Daniel B; Rajaram, Bhavani; Toon, Owen B; Tolbert, Margaret A

    2005-07-01

    The real and imaginary refractive indices of water ice in the far infrared (IR) are used in the satellite interpretation of cloud properties as well as to obtain information on ice throughout the solar system. However, few measurements of these values exist. We have measured the real and imaginary refractive indices of water ice in the far IR every 10 deg over the temperature range of 106-176 K. Ice films ranging from 0 to 140 microm thick were grown by the condensation of water vapor onto a cold silicon substrate, and the film transmission was measured from 650 to 50 cm(-1). The thickness of the ice films was determined using optical interference from a reflected He-Ne laser (lambda = 623.8 nm). The optical constants were then determined by simultaneously fitting the calculated spectra of films of varying thickness to their respective measured transmission spectra with an iterative Kramers-Kronig technique. The results are compared with previously measured data and show large discrepancies at some wavelengths while good agreement exists at others. Possible reasons for the differences are discussed. Our data clearly distinguish crystalline and amorphous ice. In addition, we note a slight shoulder in our spectra, which can be used to distinguish between cubic and hexagonal ice, although this distinction is difficult. PMID:16004058

  17. Pressure-temperature history of the Brooks Range and Seward Peninsula, Alaska HP-LT units and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lemonnier, N.; Labrousse, L.; Agard, P.; Till, A. B.

    2013-12-01

    Metamorphic rocks in the inner zones of mountain belts constitute a marker of vertical movements within orogenic wedges, themselves controled by balance between boundary conditions and volume forces. They provide key evidence for paleogeographic and tectonic reconstruction of convergence zones. In the Arctic, the Amerasian basin opened in cretaceous time and evolved in the upper plate of the Pacific subduction system. The tectonic evolution of the Brooks Range, northern Alaska, is a key issue for understanding possible coupling between these two dynamics. HP-LT metamorphic rocks, now exposed in the Schist belt, Brooks Range, and the Nome Complex, Seward Peninsula, were brought to the surface during Early Cretaceous to Paleocene time. The processes responsible for their exhumation (syn-collisional nappe-stacking or post-collisional extensional detachment) are still a matter of debate, and have direct implications in terms of orogenic boundary conditions and coupling between subduction processes (to the south) and basin response (to the north; the North Slope). Systematic thermometry via Raman Spectrometry (RSCM) on carbonaceous material from regional transects in the Schist Belt and the Seward Peninsula as well as pseudosections calculations allow the determination of units with contrasting pressure-temperature histories and a comparison of thermal evolution of the two areas. Geodynamic implications of their exhumation is then discussed.

  18. Identification of Stable Processing Parameters in Ti-6Al-4V Alloy from a Wide Temperature Range Across β Transus and a Large Strain Rate Range

    NASA Astrophysics Data System (ADS)

    Quan, Guo-Zheng; Wen, Hai-Rong; Pu, Shi-Ao; Zou, Zhen-Yu; Wu, Dong-Sen

    2015-11-01

    The hot workability of Ti-6Al-4V alloy was investigated according to the measured stress-strain data and their derived forms from a series of hot compressions at the temperatures of 1,023-1,323 K and strain rates of 0.01-10 s-1 with a height reduction of 60%. As the true strain was 0.3, 0.5, 0.7 and 0.9, respectively, the response maps of strain rate sensitivity (m-value), power dissipation efficiency (η-value) and instability parameter (ξ-value) to temperature and strain rate were developed on the basis of dynamic material model (DMM). Then the processing map was obtained by superimposition of the power dissipation and the instability maps. According to the processing map, the stable regions (η > 0 and ξ > 0) and unstable regions (η < 0 or ξ < 0) were clarified clearly. Further, the stable regions (temperatures of 1,198-1,248 K and strain rates of 0.01-0.1 s-1) with higher η value (> 0.3) corresponding to the ideal deformation mechanisms involving globularization and superplasticity were identified and recommended. The microstructures of the deformed samples were then observed by microscopy. And homogeneous microstructures with refined grains were found in the recommended parameter domains. The optimal working parameter domains identified by processing map and validated by microstructure observations contribute to the design in reasonable hot forming process of Ti-6Al-4V alloy without resorting to expensive and time-consuming trial-and-error methods.

  19. Big Data, Small Data: Accessing and Manipulating Geoscience Data Ranging From Repositories to Student-Collected Data Sets Using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2015-12-01

    We often demand information and data to be accessible over the web at no cost, and no longer do we expect to spend time labouriously compiling data from myriad sources with frustratingly-different formats. Instead, we increasingly expect convenience and consolidation. Recent advances in web-enabled technologies and cyberinfrastructure are answering those calls by providing data tools and resources that can transform undergraduate education. By freeing up valuable classroom time, students can focus upon gaining deeper insights and understanding from real-world data. GeoMapApp (http://www.geomapapp.org) is a map-based data discovery and visualisation tool developed at Lamont-Doherty Earth Observatory. GeoMapApp promotes U-Learning by working across all major computer platforms and functioning anywhere with internet connectivity, by lowering socio-economic barriers (it is free), by seamlessly integrating thousands of built-in research-grade data sets under intuitive menus, and by being adaptable to a range of learning environments - from lab sessions, group projects, and homework assignments to in-class pop-ups. GeoMapApp caters to casual and specialist users alike. Contours, artificial illumination, 3-D displays, data point manipulations, cross-sectional profiles, and other display techniques help students better grasp the content and geospatial context of data. Layering capabilities allow easy data set comparisons. The core functionality also applies to imported data sets: Student-collected data can thus be imported and analysed using the same techniques. A new Save Session function allows educators to preserve a pre-loaded state of GeoMapApp. When shared with a class, the saved file allows every student to open GeoMapApp at exactly the same starting point from which to begin their data explorations. Examples of built-in data sets include seafloor crustal age, earthquake locations and focal mechanisms, analytical geochemistry, ocean water physical properties, US and

  20. Stress-induced rise in body temperature is repeatable in free-ranging Eastern chipmunks (Tamias striatus).

    PubMed

    Careau, Vincent; Réale, Denis; Garant, Dany; Speakman, John R; Humphries, Murray M

    2012-04-01

    In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T(b)). Although this stress-induced rise in T(b) has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T(b) in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T(b) should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T(a)), body mass (M(b)), and field metabolic rate (FMR). Over two summers, we recorded both T(b) within the first minute of handling time (T(b1)) and after 5 min of handling time (T(b5)) 294 times on 140 individuals. The mean ∆T(b) (T(b5) - T(b1)) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T(b) occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T(b) (i.e. the stress-induced rise in T(b) is significantly repeatable). We also found that the stress-induced rise in T(b) was positively correlated to T(a), M(b), and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T(b) and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology. PMID:22076533

  1. Bilateral Comparison Between NIM and NMC Over the Temperature Range from 83.8058 K to 692.677 K

    NASA Astrophysics Data System (ADS)

    Sun, Jianping; Ye, Shaochun; Kho, Haoyuan; Zhang, Jintao; Wang, Li

    2015-08-01

    A bilateral comparison of local realization of the International Temperature Scale of 1990 between the National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from 83.8058 K to 692.677 K. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin, and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key Comparison 3 (CCT-K3) and facilitate the NMC's calibration and measurement capabilities submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme in 2009, and registered in the Key Comparison Database in 2010 as CCT-K3.2. NMC supplied two fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn, and Zn fixed points, while the other one was used at the Ar and Hg fixed points. NMC measured them before and after NIM measured them. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 average reference value using NIM as a link are reported with expanded uncertainties at each measured fixed point.

  2. The long-term trend in the diurnal temperature range over Asia and its natural and anthropogenic causes

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Li, Zhanqing; Yang, Xin; Gong, Hainan; Li, Chao; Xiong, Anyuan

    2016-04-01

    Understanding the causes of long-term temperature trends is at the core of climate change studies. Any observed trend can result from natural variability or anthropogenic influences or both. In the present study, we evaluated the performance of 18 climate models from the Coupled Model Intercomparison Project Phase 5 on simulating the Asian diurnal temperature range (DTR) and explored the potential causes of the long-term trend in the DTR by examining the response of the DTR to natural forcing (volcanic aerosols and solar variability) and anthropogenic forcing (anthropogenic greenhouse gases (GHG) and aerosols) in the historical period of 1961-2005. For the climatology, the multimodel ensemble mean reproduced the geographical distribution and amplitude of the DTR over eastern China and India but underestimated the magnitudes of the DTR over the Tibetan Plateau and the high-latitude regions of the Asian continent. These negative biases in the DTR over frigid zones existed in most models. Seasonal biases in the DTR pattern from models were similar to the bias in the annual mean DTR pattern. Based on three selected state-of-the-art models, the observed decreasing trend in the DTR over Asia was reasonably reproduced in the all-forcing run. A comparison of separate forcing experiments revealed that anthropogenic forcing plays the dominant role in the declining trend in the DTR. Observations and model simulations showed that GHG forcing is mainly responsible for the negative trends in the DTR over Asia but that anthropogenic aerosol forcing was also behind the decreasing trend in the DTR over China and especially over eastern China.

  3. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2011-12-01

    Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

  4. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  5. Kinetics of the gas-phase reaction between hydroxyl and carbonyl sulfide over the temperature range 300-517 K

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.; Smith, R. H.

    1981-01-01

    By use of a discharge-flow resonance-fluorescence method the rate constant for the title reaction has been measured at five temperatures in the range 300-520 K. The Arrhenius expression is k(OH + OCS) = (1.3 + or - 0.3) x 10 to the -12th exp/-(2300 + or - 100)/T/ cu cm/s. Mass spectrometry has been used to detect the product HS and to collect some information about its reactivity. This study has carefully avoided the pitfalls associated with possible photolysis of reactants and complications due to H2S impurity in carbonyl sulfide that may have marred previous studies. This study has confirmed that the rate constant for this reaction is so much lower than the value originally used in computer modeling of the upper and lower atmosphere that conclusions about the relative importance of photolysis of OCS and of the reaction OH + OCS in the stratosphere must now be reassessed. The reaction OH + OCS has little significance for atmospheric chemistry.

  6. Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs.

    PubMed

    Whiley, Alice; Fallowfield, Howard; Ross, Kirstin; McEvoy, Vanessa; Whiley, Harriet

    2016-07-01

    Foodborne salmonellosis is a major public health concern, with contaminated eggs identified as a significant source of infection. In Australia, the most prevalent cause of salmonellosis from eggs is Salmonella enterica subsp. enterica serovar Typhimurium. This study explored the effect of temperature after 1, 7, 14, 21, and 28 days of storage on commercially available washed free range eggs, artificially contaminated with Salmonella Typhimurium on the external surface. At each time point, the external surface of the egg, the crushed eggshell, and the internal egg yolk and albumen were analyzed for Salmonella. After 28 days of storage, 25% of eggs stored at 4°C, 50% of eggs stored at 14°C, and 100% of eggs stored at 23 and 35°C were internally contaminated with Salmonella. After 1 day of storage, more than 50% of all eggs had Salmonella present in the crushed shell after the external surface had been disinfected with ethanol. This is the first study to demonstrate that refrigeration reduced the potential for Salmonella Typhimurium to penetrate the eggshell membrane and internally contaminate table eggs commercially available in Australia. It also suggests that the processes of cracking eggs may be a source of cross-contamination within the kitchen. PMID:27357046

  7. Large Magnetocaloric Effect Around Room Temperature in Amorphous Fe-Gd-Zr Alloy Ribbon with Short-Range Interactions

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Yen, Nguyen Hai; Duc, Nguyen Huu; Phan, The-Long; Dan, Nguyen Huy; Yu, Seong-Cho

    2016-05-01

    In this work, we present a detailed study on the magnetocaloric effect and the critical behaviors of an amorphous Fe88Gd2Zr10 alloy ribbon prepared by using a rapid quenching method. We point out that the value of maximum magnetic entropy change (|∆ S max|) of amorphous Fe88Gd2Zr10 alloy ribbon appeared at near room temperature and versus Δ H obeys a power law, |∆ S max| = a·Δ H n. In addition, all Δ S m( T, Δ H) data measured at different Δ H values are collapsed onto a universal master curve. Interestingly, M 2 versus H/ M curves prove amorphous Fe88Gd2Zr10 ribbon exhibitied a second-order magnetic phase transition. The critical exponents ( β, γ, and δ) obtained from the modified Arrott plots and the Kouvel-Fisher methods, and critical isotherm analysis are very close to those expected for the 3D-Heisenberg model, proving ferromagnetic short-range interactions exist in amorphous Fe88Gd2Zr10 ribbon.

  8. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration

    NASA Astrophysics Data System (ADS)

    Xia, X.

    2013-05-01

    This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954-2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954-2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30-60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.

  9. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    SciTech Connect

    Panagiotis G. Smirniotis

    2007-06-30

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their pore volume

  10. Use of Salt Baths in the Temperature Range from 175 °C to 540 °C with Uncertainties of Less than 30 m°C

    NASA Astrophysics Data System (ADS)

    Alper, F. Melda Patan; Ince, Ahmet T.; Aiordachioaiei, Maria

    2011-01-01

    Calibration of thermometers in the temperature range from -80 °C to 550 °C requires liquid baths; alcohol, water, silicon oil, salt baths and dry block furnaces. In this study, the use of salt baths outside of their usual range of 250 °C to 540 °C for calibrating thermometers in the range between 175 °C and 250 °C is proposed. The calibration range from 150 °C to 250 °C is usually covered by an oil bath, but utilizing a salt bath saves calibration time and resources, improves stability and homogeneity, allows longer term usage of the liquid, and reduces hazardous chemical vapors evaporated at temperatures above 175 °C. This proposal is based on a study of the uncertainty contributions at varying salt bath temperatures in the range from 175 °C to 540 °C which was carried out in this study. Results achieved and analyzed in this study indicate that the implementation of salt baths in this lower temperature range provides opportunities to calibrate reference and/or working thermometers with an uncertainty below 30 m°C, almost the same as the oil-bath uncertainty in the range of 175 °C to 250 °C. The main components of uncertainty contributed by a salt bath over this temperature range are discussed in this study.

  11. Performance characterization of Lithium-ion cells possessing carbon-carbon composite-based anodes capable of operating over a wide temperature range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hossain, S.; Ratnakumar, B. V.; Loutfy, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.; Narayanan, S. R.

    2004-01-01

    NASA has interest in secondary energy storage batteries that display high specific energy, high energy density, long life characteristics, and perform well over a wide range of temperatures, in order to enable a number of future applications.

  12. INFLUENCE OF SUMMER STREAM TEMPERATURES ON BLACK SPOT INFESTATION OF JUVENILE COHO SALMON IN THE OREGON COAST RANGE

    EPA Science Inventory

    High summer water temperatures can adversely affect stream salmonids in numerous ways. The direct effects of temperature associated with increased metabolic demand can be exacerbated by other factors, including decreased resistance to disease and increased susceptibility to para...

  13. Non-exponential relaxation, fictive temperatures, and dispersive kinetics in the liquid-glass-liquid transition range of acetaminophen, sulfathiazole, and their mixtures.

    PubMed

    Aji, D P B; Khouri, J; Johari, G P

    2014-11-01

    To investigate the effects of added molecular heterogeneity on the hysteretic features of liquid-glass-liquid transition, we studied acetaminophen, sulfathiazole, and three of their mixtures by calorimetry, and determined the T(g) and the fictive temperature, T(f), from changes in the enthalpy and entropy on the cooling and heating paths, as well as the non-exponential parameter, β(cal). We find that, (i) T(f) for cooling is within 1-3 K of T(f) for heating and both are close to T(g), (ii) the closed loop entropy change in the liquid-glass-liquid range is negligibly small, (iii) T(g) and T(f) increase on increasing sulfathiazole in the mixture, (iv) β(cal) first slightly increases when the second component is added and then decreases, and (v) ageing causes deviations from a non-exponential, nonlinear behavior of the glass. In terms of fluctuations in a potential energy landscape, adding a solute heterogeneity would shift the state point to another part of the landscape with a different distribution of barrier heights and a different number of minima accessible to the state point. Part of the change in β(cal) is attributed to hydrogen-bond formation between the two components. Ageing changes the relaxation times distribution, more at short relaxation times than at long relaxation times, and multiplicity of relaxation modes implied by β(cal) < 1 indicates that each mode contributing to the enthalpy has its own T(g) or T(f). β(cal) differs from β(age) determined from isothermal ageing, and the distribution parameter of α-relaxation times would differ from both β(cal) and β(age). PMID:25381531

  14. Determination of the temperature range of recrystallization based on structural studies of an austenitic high-nitrogen Cr-Mn-Mo steel

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Yu. A.; Berezovskaya, V. V.

    2015-03-01

    The effect of thermoplastic treatment, which includes cold plastic deformation by rolling, on the microstructure of a high-nitrogen 07Kh16AG13M3 steel has been studied. The temperature range of recrystallization is determined by three methods. An equation is proposed for calculating the melting temperature of the high-nitrogen austenitic steel

  15. Low friction and wear surface for application over a wide range of temperature. Final report, 27 September 1996-26 May 1997

    SciTech Connect

    Bhattacharya, R.S.

    1997-06-26

    here is a strong demand for solid lubricant coatings that can function over a wide range of temperatures. Since none material can provide adequate lubricating properties over a wide temperature range, an approach of a composite coating was evaluated in Phase I. Composite coatings of ZnO and MoS2 were deposited by sputtering on M5O steel and Si3N4 substrates. Coatings were characterized by Rutherford back scattering (RBS), Auger electron spectroscopy (ABS) and Transmission electron microscopy (TEM), both before and after exposure to high temperatures (up to 700 deg C) in air. Friction measurements were performed at temperatures in the range of room temperature to 700 deg C in air. Results indicate that layered ZnO+MoS2/ZnO coating performed better at high temperature than the mixed composite coatings. Friction coefficients were in the range 0.2 to 0.3 at temperatures below 400 deg C for coated M50 substrate against uncoated M5O ball. At higher temperatures, the friction coefficient increased to greater or equal to 0.4 for coated Si3N4 substrate against uncoated Si3N4 ball.

  16. Increasing the working temperature range of ZrF-BaF-LaF-AlF-NaF glass through microgravity processing

    NASA Astrophysics Data System (ADS)

    Torres, Anthony; Ganley, Jeff; Maji, Arup; Tucker, Dennis; Starodubov, Dmitry

    2014-03-01

    Fluorozirconate glasses, such as ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), have the potential for optical transmission from 0.3 μm in the ultraviolet to 7 μm in the infrared regions. However, crystallites formed during the fiber-drawing process prevent this glass from achieving its desired transmission range. The temperature at which the glass can be drawn into a fiber is known as the working range, defined as (Tx-Tg), bounded by the glass transition temperature (Tg) and the crystallization temperature (Tx). In contrast to silica glasses, the working temperature range for ZBLAN glass is extremely narrow. Multiple ZBLAN samples were subjected to a heating and quenching test apparatus on the parabolic aircraft under a controlled μ-g and hyper-g environments and compared with 1-g ground tests. Optical microscopy examination elucidates that crystal growth in ZBLAN is suppressed and initiates at a later temperature when processed in a microgravity environment. Thus, the crystallization temperature, Tx, at which the crystals form has increased. The glass transition temperature, Tg, remains constant, as crystallization does not occur until approximately 360°C for this composition of ZBLAN. Therefore, the working temperature range for ZBLAN has been broadened.

  17. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  18. Impact of volcanic stratospheric aerosols on diurnal temperature range in Europe over the past 200 years: Observations versus model simulations

    NASA Astrophysics Data System (ADS)

    Auchmann, Renate; Arfeuille, Florian; Wegmann, Martin; Franke, Jörg; Barriendos, Mariano; Prohom, Marc; Sanchez-Lorenzo, Arturo; Bhend, Jonas; Wild, Martin; Folini, Doris; Å těpánek, Petr; Brönnimann, Stefan

    2013-08-01

    analyze the impact of stratospheric volcanic aerosols on the diurnal temperature range (DTR) over Europe using long-term subdaily station records. We compare the results with a 28-member ensemble of European Centre/Hamburg version 5.4 (ECHAM5.4) general circulation model simulations. Eight stratospheric volcanic eruptions during the instrumental period are investigated. Seasonal all- and clear-sky DTR anomalies are compared with contemporary (approximately 20 year) reference periods. Clear sky is used to eliminate cloud effects and better estimate the signal from the direct radiative forcing of the volcanic aerosols. We do not find a consistent effect of stratospheric aerosols on all-sky DTR. For clear skies, we find average DTR anomalies of -0.08°C (-0.13°C) in the observations (in the model), with the largest effect in the second winter after the eruption. Although the clear-sky DTR anomalies from different stations, volcanic eruptions, and seasons show heterogeneous signals in terms of order of magnitude and sign, the significantly negative DTR anomalies (e.g., after the Tambora eruption) are qualitatively consistent with other studies. Referencing with clear-sky DTR anomalies to the radiative forcing from stratospheric volcanic eruptions, we find the resulting sensitivity to be of the same order of magnitude as previously published estimates for tropospheric aerosols during the so-called "global dimming" period (i.e., 1950s to 1980s). Analyzing cloud cover changes after volcanic eruptions reveals an increase in clear-sky days in both data sets. Quantifying the impact of stratospheric volcanic eruptions on clear-sky DTR over Europe provides valuable information for the study of the radiative effect of stratospheric aerosols and for geo-engineering purposes.

  19. δ-Methyl Branching in the Side Chain Makes the Difference: Access to Room-Temperature Discotics.

    PubMed

    Kirres, Jochen; Knecht, Friederike; Seubert, Philipp; Baro, Angelika; Laschat, Sabine

    2016-04-18

    Although discotic liquid crystals are attractive functional materials, their use in electronic devices is often restricted by high melting and clearing points. Among the promising candidates for applications are [15]crown-5 ether-based liquid crystals with peripheral n-alkoxy side chains, which, however, still have melting points above room temperature. To overcome this problem, a series of o-terphenyl and triphenylene [15]crown-5 ether derivatives was prepared in which δ-methyl-branched alkoxy side chains of varying lengths substitute the peripheral linear alkoxy chains. The mesomorphic properties of the novel crown ethers were studied by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. δ-Methyl branching indeed lowers melting points resulting in room-temperature hexagonal columnar mesophases. The mesophase widths, which ranged from 87 to 30 K for o-terphenyls, significantly increased to 106-147 K for the triphenylenes depending on the chain lengths, revealing the beneficial effect of a flat mesogen, due to improved π-π interactions. PMID:26853226

  20. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  1. Shallow subsurface temperature surveys in the basin and range province-II. Ground temperatures in the upsal hogback geothermal area, West-Central Nevada, U.S.A.

    USGS Publications Warehouse

    Olmsted, F.H.; Ingebritsen, S.E.

    1986-01-01

    Numerous temperature surveys at a depth of 1 m were made in 1973-1985 in the Upsal Hogback and Soda Lakes geothermal areas in west-central Nevada. Whereas the surveys effectively delineated temperature at depth and heat flow within the relatively intense Soda Lakes thermal anomaly, they were not effective at the diffuse Upsal Hogback anomaly, where several perturbing factors that affect shallow subsurface temperatures are exceedingly variable. Albedo is the most important factor in the Upsal Hogback area, even at a depth of 30 m. All possible perturbing factors should be considered when designing a shallow temperature-based prospecting scheme. ?? 1986.

  2. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments.

    PubMed

    Williams, Gustavious Paul; Keenan, Thomas L; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration. PMID:21280868

  3. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments

    NASA Astrophysics Data System (ADS)

    Williams, Gustavious Paul; Keenan, Thomas L.; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.

  4. DOES CRITICAL MASS DECREASE AS TEMPERATURE INCREASES: A REVIEW OF FIVE BENCHMARK EXPERIMENTS THAT SPAN A RANGE OF ELEVATED TEMPERATURES AND CRITICAL CONFIGURATIONS

    SciTech Connect

    Yates, K.

    2009-06-10

    Five sets of benchmark experiments are reviewed herein that cover a diverse set of fissile system configurations. The review specifically focused on the change in critical mass of these systems at elevated temperatures and the temperature reactivity coefficient ({alpha}{sub T}) on the system. Because plutonium-based critical benchmark experiments at varying temperatures were not found at the time this review was prepared, only uranium-based systems are included, as follows: (1) HEU-SOL-THERM-010 - UO{sub 2}F{sub 2} solutions with high U{sup 235} enrichment; (2) HEU-COMP-THERM-016 - uranium-graphite blocks with low U concentration; (3) LEU-COMP-THERM-032 - water moderated lattices of UO{sub 2} with stainless steel cladding, and intermediate U{sup 235} enrichment; (4) IEU-COMP-THERM-002 - water moderated lattices of annular UO{sub 2} with/without absorbers, and intermediate U{sup 235} enrichment; and (5) LEU-COMP-THERM-026 - water moderated lattices of UO{sub 2} at different pitches, and low U{sup 235} enrichment. In three of the five benchmarks (1, 3 and 5), modeling of the critical system at room temperature is conservative compared to modeling the system at elevated temperatures, i.e., a greater fissile mass is required at elevated temperature. In one benchmark (4), there was no difference in the fissile mass between the room temperature system and the system at the examined elevated temperature. In benchmark (2), the system clearly had a negative temperature reactivity coefficient. Some of the high temperature benchmark experiments were treated with appropriate (and comprehensive) adjustments to the cross section sets and thermal expansion coefficients, while other experiments were treated with partial adjustments. Regardless of the temperature treatment, modeling the systems at room temperature was found to be conservative for the examined systems, i.e., a smaller critical mass was obtained. While the five benchmarks presented herein demonstrate that, for the

  5. Development and evaluation of magnetic and electrical materials capable of operating in the 800 to 1600 F temperature range

    NASA Technical Reports Server (NTRS)

    Kueser, P. E.; Toth, J. W.

    1973-01-01

    The results are summarized of a research program on electrical materials for advanced space electric power systems. The areas investigated included improved high-temperature magnetic materials, high-temperature capacitor materials, ceramic-to-metal bore-seal technology, and simulated-space environmental testing of electric-power system components

  6. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH

    NASA Astrophysics Data System (ADS)

    Chen, Guohua; Hoffman, Allan S.

    1995-01-01

    THERE are many potential applications of 'intelligent' aqueous polymer systems1-8 in medicine, biotechnology, industry and in environmental problems9-13. Many of these polymer systems undergo reversible phase transitions-for example, abrupt changes in volume-in response to external stimuli such as temperature, pH or the nature of the solvent. Most of the polymers studied previously are responsive to only one kind of stimulus. But for some applications, independent responsiveness to several factors, such as temperature and pH, may be required. Here we describe a polymer that undergoes marked solubility changes in water in response to temperature and/or pH changes. The polymer is prepared by grafting temperature-sensitive side chains onto a pH-sensitive backbone. We also find that block copolymers, in which the temperature- and pH-sensitive units alternate along the chain, show similar behaviour.

  7. Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films

    SciTech Connect

    Zhang Yijun; Cheng, Y.-T.; Grummon, David S.

    2005-08-01

    The microscopic superelastic behavior of thin-film NiTi is investigated by instrumented indentation experiments conducted at different temperatures. The indentation-induced superelastic effect is found to be persistent to about 100 K above the austenite transformation finish temperature (A{sub f}). In contrast, the upper temperature where superelastic effect exists is only around A{sub f} plus 40 K in uniaxial tension and compression tests, beyond which the plasticity of the austenite phase overwhelms the transformation-induced superelasticity. By combining the Clausius-Clapeyron equation and spherical cavity model for indentation, we show that the high hydrostatic pressure under the indenter is capable of elevating the transformation temperatures and increase the upper temperature limit of indentation-induced superelastic behavior.

  8. Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa

    NASA Astrophysics Data System (ADS)

    Romeo, Raffaella; Giuliano Albo, P. Alberto; Lorefice, Salvatore; Lago, Simona

    2016-02-01

    In this work, accurate density measurements of subcooled water (freshly double-distilled water) were performed along eight constant-mass curves in the temperature range of (243 to 283) K and in the pressure range of (140 to 400) MPa, by a pseudo-isochoric method. The experimental apparatus mainly consisted of a high pressure vessel, especially designed for this experiment, of known volume as a function of temperature and pressure, used to perform measurements in the T-p range under study. The density of subcooled water was obtained by measuring the equilibrium pressure at different temperatures, keeping the mass constant. All terms contributing to the uncertainty of subcooled water density measurements were considered; the estimated relative uncertainty, in the investigated temperature and pressure range, is about 0.07%. The experimental results were compared with the literature densities. In particular, the trend of density versus temperature for a constant mass of sample observed experimentally differs from the trend calculated by the equation provided by the International Association for Properties of Water and Steam (IAPWS-95) outside the range of validity, i.e., in the metastable region.

  9. Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa.

    PubMed

    Romeo, Raffaella; Giuliano Albo, P Alberto; Lorefice, Salvatore; Lago, Simona

    2016-02-21

    In this work, accurate density measurements of subcooled water (freshly double-distilled water) were performed along eight constant-mass curves in the temperature range of (243 to 283) K and in the pressure range of (140 to 400) MPa, by a pseudo-isochoric method. The experimental apparatus mainly consisted of a high pressure vessel, especially designed for this experiment, of known volume as a function of temperature and pressure, used to perform measurements in the T-p range under study. The density of subcooled water was obtained by measuring the equilibrium pressure at different temperatures, keeping the mass constant. All terms contributing to the uncertainty of subcooled water density measurements were considered; the estimated relative uncertainty, in the investigated temperature and pressure range, is about 0.07%. The experimental results were compared with the literature densities. In particular, the trend of density versus temperature for a constant mass of sample observed experimentally differs from the trend calculated by the equation provided by the International Association for Properties of Water and Steam (IAPWS-95) outside the range of validity, i.e., in the metastable region. PMID:26896989

  10. The enhanced range of temperature for coefficient of low thermal expansion, electrical and thermal conductivities of Cu substituted Fe-Ni invar alloys

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ziya, A. B.; Ibrahim, A.; Atiq, S.; Ahmad, N.; Bashir, F.

    2016-03-01

    Six alloys of Fe65Ni35-x Cu x (x = 0, 0.2, 0.6, 1, 1.4, 1.8 at.%) have been prepared by conventional arc-melting technique and characterized by utilizing high temperature x-ray diffraction (HTXRD) technique at a range from room temperature to 773 K for determination of phase, lattice parameter (a), coefficient of thermal expansion (α(T)), mean square amplitude of vibration (\\bar{{u}2}), characteristic Debye temperature (ΘD), electrical resistivity (ρ) and thermal conductivity (κ). The studies showed that these alloys form face centered cubic structure (fcc) throughout the investigated temperature range. The values of α(T) were found to be comparable to those for conventional Fe-Ni invar alloys but have increased temperature span to a significant extent. The mean square amplitude of vibration (\\bar{{u}2}) and Debye temperature were found to remain almost unchanged in the invar temperature range, whereas the electrical and thermal conductivity were found to improve.

  11. Charge carrier localization effects on the quantum efficiency and operating temperature range of InAsxP1-x/InP quantum well detectors

    NASA Astrophysics Data System (ADS)

    Vashisht, Geetanjali; Dixit, V. K.; Porwal, S.; Kumar, R.; Sharma, T. K.; Oak, S. M.

    2016-03-01

    The effect of charge carrier localization resulting in "S-shaped" temperature dependence of the photoluminescence peak energy of InAsxP1-x/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energy of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAsxP1-x/InP QW detectors.

  12. Neutron Diffraction Study of LaSr3Fe3O10 in the Temperature Range 25 - 650 deg. C

    SciTech Connect

    Neov, S.; Prokhnenko, O.; Velinov, N.; Kozhukharov, V.; Neov, D.; Dabrowski, L.

    2007-04-23

    The effect of high temperature on the structure of LaSr3Fe3O10 has been studied by neutron diffraction. Neutron data have been correlated with Moessbauer spectroscopy results and electrical conductivity measurements.

  13. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    PubMed

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  14. Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids.

    PubMed

    Sato, Hideo; Bottle, Steven E; Blinco, James P; Micallef, Aaron S; Eaton, Gareth R; Eaton, Sandra S

    2008-03-01

    Electron spin-lattice relaxation rates, 1/T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution (2H and 15N) were used to distinguish the contributions of various processes. Below about 100K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of molecular tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/T1 on tumbling correlation times fits better with the Cole-Davidson spectral density function than with the Bloembergen-Purcell-Pound model. PMID:18166493

  15. Temperature dependent dielectric function in the near-infrared to vacuum-ultraviolet ultraviolet spectral range of alumina and yttria stabilized zirconia thin films

    SciTech Connect

    Schmidt-Grund, R. Lühmann, T.; Böntgen, T.; Franke, H.; Lorenz, M.; Grundmann, M.; Opper, D.

    2013-12-14

    The dielectric function of nano-/polycrystalline alumina and yttria stabilised zirconia thin films has been investigated in a wide spectral range from 1.0 eV to 7.5 eV and temperatures between 10 K and room temperature. In the near band-edge spectral range, we found a broad distribution of optical transitions within the band gap, the so-called Urbach absorption tail which is typical for amorphous or polycrystalline materials due to the lack of long range order in the crystal structure. The coupling properties of the electronic system to the optical phonon bath and thermal lattice vibrations strongly depend on the ratio of the spectral extent of these disorder states to the main phonon energy, which we correlate with the different crystalline structure of our samples. The films have been grown at room temperature and 650 °C by pulsed laser deposition.

  16. Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM10 exposures.

    PubMed

    Carreras, Hebe; Zanobetti, Antonella; Koutrakis, Petros

    2015-11-01

    Epidemiological investigations regarding temperature influence on human health have focused on mortality rather than morbidity. In addition, most information comes from developed countries despite the increasing evidence that climate change will have devastating impacts on disadvantaged populations living in developing countries. In the present study, we assessed the impact of daily temperature range on upper and lower respiratory infections in Cordoba, Argentina, and explored the effect modification of socio-economic factors and influence of airborne particles We found that temperature range is a strong risk factor for admissions due to both upper and lower respiratory infections, particularly in elderly individuals, and that these effects are more pronounced in sub-populations with low education level or in poor living conditions. These results indicate that socio-economic factors are strong modifiers of the association between temperature variability and respiratory morbidity, thus they should be considered in risk assessments. PMID:26164202

  17. Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM10 exposures

    PubMed Central

    Carreras, Hebe; Zanobetti, Antonella; Koutrakis, Petros

    2016-01-01

    Epidemiological investigations regarding temperature influence on human health have focused on mortality rather than morbidity. In addition, most information comes from developed countries despite the increasing evidence that climate change will have devastating impacts on disadvantaged populations living in developing countries. In the present study, we assessed the impact of daily temperature range on upper and lower respiratory infections in Cordoba, Argentina, and explored the effect modification of socio-economic factors and influence of airborne particles We found that temperature range is a strong risk factor for admissions due to both upper and lower respiratory infections, particularly in elderly individuals, and that these effects are more pronounced in sub-populations with low education level or in poor living conditions. These results indicate that socio-economic factors are strong modifiers of the association between temperature variability and respiratory morbidity, thus they should be considered in risk assessments. PMID:26164202

  18. Cardiac activation heat remains inversely dependent on temperature over the range 27-37°C.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Loiselle, Denis S; Nielsen, Poul M F; Taberner, Andrew J

    2016-06-01

    The relation between heat output and stress production (force per cross-sectional area) of isolated cardiac tissue is a key metric that provides insight into muscle energetic performance. The heat intercept of the relation, termed "activation heat," reflects the metabolic cost of restoring transmembrane gradients of Na(+) and K(+) following electrical excitation, and myoplasmic Ca(2+) concentration following its release from the sarcoplasmic reticulum. At subphysiological temperatures, activation heat is inversely dependent on temperature. Thus one may presume that activation heat would decrease even further at body temperature. However, this assumption is prima facie inconsistent with a study, using intact hearts, which revealed no apparent change in the combination of activation and basal metabolism between 27 and 37°C. It is thus desired to directly determine the change in activation heat between 27 and 37°C. In this study, we use our recently constructed high-thermal resolution muscle calorimeter to determine the first heat-stress relation of isolated cardiac muscle at 37°C. We compare the relation at 37°C to that at 27°C to examine whether the inverse temperature dependence of activation heat, observed under hypothermic conditions, prevails at body temperature. Our results show that activation heat was reduced (from 3.5 ± 0.3 to 2.3 ± 0.3 kJ/m(3)) at the higher temperature. This leads us to conclude that activation metabolism continues to decline as temperature is increased from hypothermia to normothermia and allows us to comment on results obtained from the intact heart by previous investigators. PMID:27016583

  19. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250 °C temperature range

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John

    2015-05-01

    Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C). The calibration lines of both experimental approaches overlap and agree in the slopes with theoretical estimates and with other calibration experiments in which carbonates were reacted with phosphoric acid at temperatures above 70 °C. Our study suggests a universal Δ47-T calibration (T in K, Δ47 in ‰):

  20. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  1. Amplitude-frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Carbone, V.

    2010-12-01

    The presence of long-term persistence of climate records on scales from 2 to 15 yr has been reported in the literature, even if the universality of this result is controversial. In the present paper results from monthly temperature records measured for about 250 yr in Prague and Milan are reported. Because of the nonlinear and nonstationary character of temperature time series the seasonal contribution has been identified through the empirical mode decomposition. We find that the seasonal component of the climate records is characterized by some time scales showing both amplitude and phase fluctuations. By using a more suitable definition of temperature anomalies, and thus excluding persistence effects due to seasonal oscillations and trends, the occurrence of long-term persistence has been investigated through the detrended fluctuation analysis. Our results indicate persistence on scales from 3 to 10 yr with similar values for the detrended fluctuation analysis indices.

  2. Complex permittivity of lanthanum aluminate in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Ebihara, B. T.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Dielectric constants of microwave substrates are required in the design of superconducting microwave circuits at various temperatures. In this paper, the results are reported of a study of the complex permittivity of the newly developed lanthanum aluminate (LaAlO3) substrate, in the 20 to 300 K temperature range at frequencies from 26.5 to 40.0 GHz. The value of the complex permittivity was obtained by measuring the sample scattering parameters using a microwave waveguide technique. It is observed that, while the dielectric constant did not change appreciably with frequency, its value decreased by approximately 14 percent from room temperature to 20 K.

  3. Unroofing of fore-arc ranges along the Hikurangi Margin, New Zealand: Constraints from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Jiao, Ruohong; Seward, Diane; Little, Timothy A.; Kohn, Barry P.

    2015-08-01

    The Axial Ranges of North Island, New Zealand, parallel the Hikurangi subduction margin. They consist of uplifted and exhumed Mesozoic meta-sedimentary basement rocks of the overriding Australian Plate, beneath which the Pacific Plate has been subducting since at least the Late Oligocene. We investigate the unroofing histories of these fore-arc mountains during the evolution of the Hikurangi Margin, based on new and previous zircon and apatite fission-track, and apatite (U-Th-Sm)/He data which we interpret based on inverse modelling. The results suggest that the exhumation of rocks in the Axial Ranges initiated in the west and migrated trench-wards towards the east. Onsets of accelerated exhumation in different parts of the ranges indicate significant eastwards thrusting on the margin-parallel Ngamatea Fault before ~ 20-17 Ma and on the Wellington-Mohaka Fault before ~ 10-7 Ma. The exhumation rate has varied significantly along-strike since the Late Miocene, lower in the central part of the Axial Ranges and significantly higher to the south. Since the Late Miocene, the increasing exhumation rate from the central to southern Axial Ranges is consistent with the clockwise vertical-axis rotation of eastern North Island relative to the Australian Plate. In the Hikurangi Margin, although underplating of subducted material at the basal upper plate may have contributed to localised rock uplift (e.g., in the Raukumara Range), we suggest that the shortening of the fore-arc upper plate was the chief driver of unroofing of the (proto-) Axial Ranges.

  4. Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 74-180 °C

    NASA Astrophysics Data System (ADS)

    Came, R. E.; Azmy, K.; Tripati, A. K.

    2015-12-01

    Widespread application of the novel clumped isotope paleothermometer (Δ47) using carbonate samples from shallow crustal settings has been hindered by a lack of knowledge about clumped isotope systematics in carbonate minerals forming at temperatures greater than 50ºC. Furthermore, the utility of the Δ47 proxy in the mineral dolomite is limited because calibration data for dolomites that formed at any temperature are lacking. Consequently, applications involving diagenetic temperatures have required extrapolations beyond the range of most Δ47-temperature calibrations. Here we compare Δ47 values in dolomite cements to temperatures independently determined using fluid-inclusion microthermometry, and compare this rock-based "calibration" to previously published laboratory-derived calibrations for synthetic carbonates. This combination of approaches yields results that are consistent with the shallow calibration slope that has been reported from some laboratory experiments.

  5. Radiance Temperatures (in the Wavelength Range 530 to 1500 nm) of Nickel at Its Melting Point by a Pulse-Heating Technique

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.; McClure, J. L.; Cezairliyan, A.

    1998-11-01

    The radiance temperatures (at seven wavelengths in the range 530 to 1500 nm) of nickel at its melting point were measured by a pulse-heating technique. The method is based on rapid resistive self-heating of the specimen from room temperature to its melting point in less than 1 s and on simultaneously measuring specimen radiance temperatures every 0.5 ms. Melting of the specimen was manifested by a plateau in the radiance temperature-versus-time function for each wavelength. The melting-point radiance temperatures for a given specimen were determined by averaging the measured temperatures along the plateau at each wavelength. The melting-point radiance temperatures for nickel, as determined by averaging the results at each wavelength for 25 specimens, are: 1641 K at 530 nm, 1615 K at 627 nm, 1606 K at 657 nm, 1589 K at 722 nm, 1564 K at 812 nm, 1538 K at 908 nm, and 1381 K at 1500 nm. Based on uncertainties arising from pyrometry and specimen conditions, the combined uncertainty (two standard-deviation level) is about ± 6 K for the reported values in the range 530 to 900 nm and is about ± 8 K for the reported value at 1500 nm.

  6. Differential growth of Legionella pneumophila strains within a range of amoebae at various temperatures associated with in-premise plumbing

    EPA Science Inventory

    The potential effect of in-premise plumbing temperatures (24, 32, 37 and 41 °C) on the growth of five different L. pneumophila strains within free-living amoebae (Acanthamoeba polyphaga, Hartmannella vermiformis and Naegleria fowleri) was examined. Compared to controls only fed E...

  7. Front curvature rate stick measurements and detonation shock dynamics calibration for PBX 9502 over a wide temperature range

    SciTech Connect

    Hill, L.G.; Bdzil, J.B.; Aslam, T.D.

    1998-12-31

    Detonation velocity and wave shape are measured for PBX 9502 (95 wt.% TATB, 5 wt.% Kel-F 800) rate sticks at the temperatures {minus}55, 25, and 75 C. At each temperature three different diameters were fired: 50 mm, 18 mm, and 8, 10, and 12 mm respectively for the hot, ambient, and cold sticks. The measured wave shapes are fit with an analytic form and the fitting parameters are tabulated along with thermal expansion and diameter effect data. The simplest detonation shock dynamics (DSD) model assumes a unique calibration function relating the local normal wave speed D{sub n} to the local total curvature {kappa}. The data confirm this notion for sufficiently small curvature, but at large curvature the curves for different charge diameters diverge. Global optimization is used to determine a best single D{sub n}-{kappa} function at each initial temperature T{sub 0}. From these curves a D{sub n}({kappa},T{sub 0}) calibration surface is generated that allows computation of problems with temperature gradients.

  8. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    PubMed Central

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-01-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921

  9. Lightweight, all-metal hose assembly has high flexibility and strength over wide range of temperature and pressure

    NASA Technical Reports Server (NTRS)

    Bessing, L. L.

    1966-01-01

    Lightweight flexible, metal braid reinforced hose assembly is used in high and low pressure oxygen, helium, and hydrogen systems. These hose assemblies have been successfully used on the Saturn-2 stage to provide joints of sufficient flexibility to absorb movement resulting from temperature variations.

  10. Douglas-fir displays a range of growth responses to temperature, water, and Swiss needle cast in western Oregon, USA

    EPA Science Inventory

    Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) growth in the Pacific Northwest is affected by climatic, edaphic factors and Swiss needle cast (SNC) disease. We examine Douglas-fir growth responses to temperature, dewpoint deficit (DPD), soil moisture, and SNC ...

  11. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications.

    PubMed

    Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-01-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921

  12. Standard thermodynamic properties of H3PO4(aq) over a wide range of temperatures and pressures.

    PubMed

    Ballerat-Busserolles, Karine; Sedlbauer, Josef; Majer, Vladimir

    2007-01-11

    The densities and heat capacities of solutions of phosphoric acid, 0.05 to 1 mol kg-1, were measured using flow vibrating tube densitometry and differential Picker-type calorimetry at temperatures up to 623 K and at pressures up to 28 MPa. The standard molar volumes and heat capacities of molecular H3PO4(aq) were obtained, via the apparent molar properties corrected for partial dissociation, by extrapolation to infinite dilution. The data on standard derivative properties were correlated simultaneously with the dissociation constants of phosphoric acid from the literature using the theoretically founded SOCW model. This made it possible to describe the standard thermodynamic properties, particularly the standard chemical potential, of both molecular and ionized phosphoric acid at temperatures up to at least 623 K and at pressures up to 200 MPa. This representation allows one to easily calculate the first-degree dissociation constant of H3PO4(aq). The performance of the SOCW model was compared with the other approaches for calculating the high-temperature dissociation constant of the phosphoric acid. Using the standard derivative properties, sensitively reflecting the interactions between the solute and the solvent, the high-temperature behavior of H3PO4(aq) is compared with that of other weak acids. PMID:17201442

  13. A room-temperature phase transition in maximum microcline. Absorption in the far infrared (10 200 cm-1) in the temperature range 110 300 K

    NASA Astrophysics Data System (ADS)

    Wyncke, B.; McMillan, P. F.; Brown, W. L.; Openshaw, R. E.; Bréhat, F.

    1981-02-01

    The far infrared powder absorption spectra (10 200 cm-1) for a maximum microcline sample (obtained by ion-exchange from Amelia albite) and for a natural maximum microcline were measured at steps of 10 K on lowering and raising the temperature between 300 and 110 K. Of the absorption bands at 97.5, 113.5, 137.5, 148, and 157 cm-1 occurring at room temperature, those at 157 and eventually 148 cm-1 showed evidence of a phase transition and only that at 157 cm-1 showed hysteresis. The transition occurs at 245±5 K on lowering the temperature and the low-temperature form can be superheated to 300 K in the case of the ion-exchange sample. Oriented thin sections parallel to (001) and (010) were also measured to 110 K as a function of the direction of the electric vector E, but could not be unambiguously interpreted. Though the effect is very slight it is tentatively proposed that the phase transition (already characterized by calorimetry and lattice parameters) involves changes in K-O and T-O-T bonds.

  14. The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications

    PubMed Central

    Ehelepola, N. D. B.; Ariyaratne, Kusalika

    2015-01-01

    Background Temperature, humidity, and other weather variables influence dengue transmission. Published studies show how the diurnal fluctuations of temperature around different mean temperatures influence dengue transmission. There are no published studies about the correlation between diurnal range of humidity and dengue transmission. Objective The goals of this study were to determine the correlation between dengue incidence and diurnal fluctuations of temperature and humidity in the Sri Lankan city of Kandy and to explore the possibilities of using that information for better control of dengue. Design We calculated the weekly dengue incidence in Kandy during the period 2003–2012, after collecting data on all of the reported dengue patients and estimated midyear populations. Data on daily maximum and minimum temperatures and night-time and daytime humidity were obtained from two weather stations, averaged, and converted into weekly data. The number of days per week with a diurnal temperature range (DTR) of >10°C and <10°C and the number of days per week with a diurnal humidity range (DHR) of >20 and <15% were calculated. Wavelet time series analysis was performed to determine the correlation between dengue incidence and diurnal ranges of temperature and humidity. Results There were negative correlations between dengue incidence and a DTR >10°C and a DHR >20% with 3.3-week and 4-week lag periods, respectively. Additionally, positive correlations between dengue incidence and a DTR <10°C and a DHR <15% with 3- and 4-week lag periods, respectively, were discovered. Conclusions These findings are consistent with the results of previous entomological studies and theoretical models of DTR and dengue transmission correlation. It is important to conduct similar studies on diurnal fluctuations of humidity in the future. We suggest ways and means to use this information for local dengue control and to mitigate the potential effects of the ongoing global reduction of

  15. Medium-range objective predictions of thunderstorms on the McIDAS/CSIS interactive computer system. [Computer Interactive Data Access System/Centralized Storm Information System

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1982-01-01

    Until recently, all operational meteorological data has been made available to forecasters in a variety of different forms. Predictions based upon these different data formats have been complicated by the inability of forecasters to easily assimilate, in real-time, all data to provide an optimum decision regarding future weather occurrences. By March 1980, a joint NASA/NOAA effort had been initiated to develop the Centralized Storm Information System (CSIS). The primary objectives of this joint project are related to an improvement of the overall severe storm forecast and warning procedure and to a demonstration of the operational utility of techniques developed within the applied research community. CSIS is to utilize the Man Computer Interactive Data Access System (McIDAS). The present investigation is concerned with one of the first attempts to employ the CSIS system for the evaluation of a new research technique involving the prediction of thunderstorms over a forecast period of 12-48 hours.

  16. Unrestrained swelling of uranium-nitride fuel irradiated at temperatures ranging from 1100 to 1400 K (1980 to 2520 R)

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.

    1973-01-01

    Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.

  17. Lithium niobate Q-switch to prevent pre-lasing of high gain lasers operating over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Jundt, Dieter H.; MacKay, Peter E.

    2015-02-01

    Because of its ease of growth and large electro-optic effect, lithium niobate is the preferred choice for Q-switching mobile lasers. Temperature-induced pyro-electric charges however may lead to premature lasing. We manufactured and characterized temperature-stable LN Q-switch. A thermo-chemical anneal was performed creating a conductive material layer 0.5mm thick with increased conductivity. While this increases optical insertion loss by a few percent, this is tolerable in high gain lasers. We present details of treatment, the surface charge creation and dissipation mechanism and the setup used to assess the cold-performance used to demonstrate improved charge dissipation when compared to untreated crystals.

  18. Pulverized coal firing of aluminum melting furnaces. Final report. [Sulfide capacity of various slags in given temperature range

    SciTech Connect

    Stewart, D.L. Jr.; Dastolfo, L.E. Jr.; DeYoung, D.H.

    1984-04-01

    Significant progress has been achieved in the development of a desulfurizing coal combustion process by the Aluminum Company of America (Alcoa) in a research program funded by the United States Department of Energy. Conceptually, high sulfur coal is burned with additives in a staged cyclone combustor, such that sufficient sulfur to obviate products of combustion (POC) scrubbing is retained in the slag by-product. Bench scale studies conducted during the program have shown that 70% of the sulfur (2.65% sulfur coal) reports to the slag at equilibrium through a 25% addition of iron ore to the coal. Results obtained correlate with published data for similar slag at higher temperatures. In pilot scale combustion tests, equilibrium levels of coal sulfur were retained by the slag (11 to 14%). Equilibrium sulfur capture was limited by low particulate retention and operating temperature higher than optimal. Cost estimates for implementation of the process are included in this report. 28 references, 39 figures, 58 tables.

  19. Ignition Delays of Alkyl Thiophosphites with White and Red Fuming Nitric Acids Within Temperature Range 80 to -105 F

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ladanyi, Dezso J

    1953-01-01

    Ignition delays of alkyl thiophosphites were obtained in a modified open-cup apparatus and a small-scale rocket engine apparatus. At -40 F, mixed alkyl thiophosphites gave short delays with white fuming nitric acid containing 2 percent water and red fuming nitric acids of widely varying compositions. At -40 F and higher, triethyl trithiophosphite blended with as much as 40 percent n-heptane gave satisfactory self-igniting properties at temperatures as low as -76 F.

  20. The Mechanical Properties of Wood of Different Moisture Content Within -200 Degrees to +200 Degrees C Temperature Range

    NASA Technical Reports Server (NTRS)

    Kollmann, Franz

    1941-01-01

    Systematic experiments were undertaken with special reference to the effect of gross specific weight (specific weight inclusive of pores) and the moisture content of wood. It was found that the modules of elasticity of wood at room temperature and frozen at -8 degrees is practically the same. The effect of moisture on the compression strength of frozen wood was explored as well as the flexural and impact strength of frozen wood and frozen laminated wood.

  1. Structural characterization and observation of variable range hopping conduction mechanism at high temperature in CdSe quantum dot solids

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit

    2013-03-01

    We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.

  2. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    SciTech Connect

    Freedman, Richard S.; Lustig-Yaeger, Jacob; Fortney, Jonathan J.; Lupu, Roxana E.; Marley, Mark S.; Lodders, Katharina

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  3. Dielectric relaxation study of amorphous TiTaO thin films in a large operating temperature range

    SciTech Connect

    Rouahi, A.; Kahouli, A.; Challali, F.; Besland, M. P.; Salimy, S.; Goullet, A.; Vallee, C.; Pairis, S.; Yangui, B.; Sylvestre, A.

    2012-11-01

    Two relaxation processes have been identified in amorphous TiTaO thin films deposited by reactive magnetron sputtering. The parallel angle resolved x-ray photoelectron spectroscopy and field emission scanning electron microscopy analyses have shown that this material is composed of an agglomerates mixture of TiO{sub 2}, Ta{sub 2}O{sub 5}, and Ti-Ta bonds. The first relaxation process appears at low temperature with activation energy of about 0.26 eV and is related to the first ionisation of oxygen vacancies and/or the reduction of Ti{sup 4+} to Ti{sup 3+}. The second relaxation process occurs at high temperature with activation energy of 0.95 eV. This last peak is associated to the diffusion of the doubly ionized oxygen vacancies V{sub O}e. The dispersion phenomena observed at high temperature can be attributed to the development of complex defect such as (V{sub O}e - 2Ti{sup 3+}).

  4. WRF-simulated sensitivity to land surface schemes in short and medium ranges for a high-temperature event in East China: A comparative study

    NASA Astrophysics Data System (ADS)

    Zeng, Xin-Min; Wang, Ning; Wang, Yang; Zheng, Yiqun; Zhou, Zugang; Wang, Guiling; Chen, Chaohui; Liu, Huaqiang

    2015-09-01

    We designed simulations for the high-temperature event that occurred on 23 July 2003 in East China using a series of forecast lead times, from short-range to medium-range, and four land surface schemes (LSSs) (i.e., SLAB, NOAH, RUC, and PX) in the Weather Research and Forecasting Model (WRF), Version 3. The sensitivities of short and medium-range simulations to the LSSs systematically varied with the lead times. In general, the model reproduced short-range, high-temperature distributions. The simulated weather was sensitive to the LSSs, and the LSS-induced sensitivity was higher in the medium range than in the short-range. Furthermore, the LSS performances were complex, i.e., the PX errors apparently increased in the medium range (longer than 6 days), RUC produced the maximum errors, and SLAB and NOAH had approximately equivalent errors that slightly increased. Additional sensitivity simulations revealed that the WRF modeling system assigns relatively low initial soil moisture for RUC and that soil moisture initialization plays an important role that is comparable to the LSS choice in the simulations. LSS-induced negative feedback between surface air temperature (SAT) and atmospheric circulation in the lower atmosphere was found in the medium range. These sensitivities were mainly caused by the LSS-induced differences in surface sensible heat flux and by errors associated with the lead times. Using the SAT equation, further diagnostic analyses revealed LSS deficiencies in simulating surface fluxes and physical processes that modify the SAT and indicated the main reasons for these deficiencies. These results have implications for model improvement and application.

  5. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.

    PubMed

    Wertin, Timothy M; McGuire, Mary Anne; Teskey, Robert O

    2011-12-01

    increase in growth temperature, declining by 6% per 1 °C increase in mean growing season temperature. Our observations suggest that increases in air temperature above current ambient conditions will be detrimental to Q. rubra seedlings growing near the southern limit of the species range. PMID:21937670

  6. Pyrolysis of waste materials: Characterization and prediction of sorption potential across a wide range of mineral contents and pyrolysis temperatures.

    PubMed

    Kah, Melanie; Sun, Huichao; Sigmund, Gabriel; Hüffer, Thorsten; Hofmann, Thilo

    2016-08-01

    Sewage sludge (50% mineral), manure (29%) and wood (<1%) were pyrolyzed at 200, 350 and 500°C with the aim to study the characteristics and sorption potential of materials undergoing pyrolysis across a wide range of mineral contents. A commercial plant-derived biochar (41% mineral) was also considered. The materials were extensively characterized and tested for their sorption towards the model sorbates benzene, naphthalene and pyrene. Plant-derived materials, regardless of their mineral content, developed micropores causing size exclusion of pyrene. Changes in properties and sorption behavior upon pyrolysis were generally consistent for the manure and wood series. A single regression equation developed on our data (including the sorbate hydrophobicity and sorbent polarity) provided excellent prediction of previously reported changes in sorption upon pyrolysis across a wide range of mineral content (up to 500°C). The sewage sludge series, however, followed a particular behavior, possibly due to very high mineral content (up to 67%). PMID:27136609

  7. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  8. Preliminary study of creep thresholds and thermomechanical response in Haynes 188 at temperatures in the range 649 to 871 C

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Bartolotta, P. A.; Mladsi, S. W.

    1987-01-01

    The following conclusions were drawn from this study of creep thresholds and thermomechanical response: (1) creep threshold can be determined using the latest electrohydraulic test equipment, providing that test durations are short and relatively large accumulations of creep strain are used in defining the threshold; (2) significant creep strains were measured under monotonic loading as stress levels as low as 4 ksi at temperatures predicted for solar receiver service; and (3) the material exhibited creep ratchetting during simulated service cycles, a result not predicted by analysis using current constitutive models for Haynes 188.

  9. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    NASA Astrophysics Data System (ADS)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l‑1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  10. The temperature dependence of the resistivity of ohmic contacts based on gallium arsenide and indium phosphide in the 4.2-300 K range

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Belyaev, A. E.; Boltovets, N. S.; Konakova, R. V.; Vitusevich, S. A.; Novitskii, S. V.; Sheremet, V. N.; Pilipchuk, A. S.

    2016-06-01

    Resistivity ρc of InP- and GaAs-based ohmic contacts has been measured in a temperature range of 4.2-300 K. Both temperature dependences are nonmonotonic and exhibit minima at T = 50 K for InP and T = 150 K for GaAs. The nonmonotonic ρc( T) curves for GaAs contacts have been observed for the first time. The obtained experimental temperature dependences of ρc can be explained in the framework of the mechanism of current passage via metal shunts incorporated into semiconductor with allowance for electrons freezing out at liquid-helium temperatures. The ohmic character of contacts is ensured due to limitation of the electron current by diffusion supply in the presence of band bending at the semiconductor-metal interface near the shunt edge.

  11. Photoacoustic Spectroscopic Study of Optical Properties of hbox {Cu}2hbox {GeTe}3 in Temperature Range from 80 K to 300 K

    NASA Astrophysics Data System (ADS)

    Deviprasadh, P. S.; Madhuri, W.; Verma, A. S.; Sarkar, B. K.

    2016-05-01

    We used photoacoustic spectroscopy to investigate the optical properties of hbox {Cu}2hbox {GeTe}3. The temperature dependence of the bandgap energy was evaluated from optical absorption spectra obtained in the photon energy range of 0.76 eV to 0.81 eV between 80 K and 300 K. We used the empirical and semi-empirical models of Varshni, Viña, and Pässler to describe the observed bandgap shrinkage in this compound. The Debye temperature and effective phonon temperature of the compound were estimated to be approximately 227.4 K and 151.6 K, respectively. Thus, the temperature dependence of the bandgap is mediated by acoustic phonons.

  12. Characterization of 6H-SiC JFET Integrated Circuits Over A Broad Temperature Range from -150 C to +500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Krasowski, Michael J.; Chen, Liang-Yu; Prokop, Norman F.

    2009-01-01

    The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 C to +500 C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.

  13. Self-compliance Pt/HfO2/Ti/Si one-diode-one-resistor resistive random access memory device and its low temperature characteristics

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Yu, Jue; Chi, Xiao-Wei; Lin, Guang-Yang; Lan, Xiao-Ling; Huang, Wei; Wang, Jian-Yuan; Xu, Jian-Fang; Wang, Chen; Li, Cheng; Chen, Song-Yan; Liu, Chunli; Lai, Hong-Kai

    2016-04-01

    A bipolar one-diode-one-resistor (1D1R) device with a Pt/HfO2/Ti/n-Si(001) structure was demonstrated. The 1D1R resistive random access memory (RRAM) device consists of a Ti/n-Si(001) diode and a Pt/HfO2/Ti resistive switching cell. By using the Ti layer as the shared electrode for both the diode and the resistive switching cell, the 1D1R device exhibits the property of stable self-compliance and the characteristic of robust resistive switching with high uniformity. The high/low resistance ratio reaches 103. The electrical RESET/SET curve does not deteriorate after 68 loops. Low-temperature studies show that the 1D1R RRAM device has a critical working temperature of 250 K, and at temperatures below 250 K, the device fails to switch its resistances.

  14. A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Bridges, Michael D.; López, Carlos J.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Brooks, Evan K.; Tormyshev, Victor; Halpern, Howard J.; Hubbell, Wayne L.

    2016-08-01

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy has become an important tool for measuring distances in proteins on the order of a few nm. For this purpose pairs of spin labels, most commonly nitroxides, are site-selectively introduced into the protein. Recent efforts to develop new spin labels are focused on tailoring the intrinsic properties of the label to either extend the upper limit of measurable distances at physiological temperature, or to provide a unique spectral lineshape so that selective pairwise distances can be measured in a protein or complex containing multiple spin label species. Triarylmethyl (TAM) radicals are the foundation for a new class of spin labels that promise to provide both capabilities. Here we report a new methanethiosulfonate derivative of a TAM radical that reacts rapidly and selectively with an engineered cysteine residue to generate a TAM containing side chain (TAM1) in high yield. With a TAM1 residue and Cu2+ bound to an engineered Cu2+ binding site, enhanced T1 relaxation of TAM should enable measurement of interspin distances up to 50 Å at physiological temperature. To achieve favorable TAM1-labeled protein concentrations without aggregation, proteins are tethered to a solid support either site-selectively using an unnatural amino acid or via native lysine residues. The methodology is general and readily extendable to complex systems, including membrane proteins.

  15. Triphenylene-Based Room-Temperature Discotic Liquid Crystals: A New Class of Blue-Light-Emitting Materials with Long-Range Columnar Self-Assembly.

    PubMed

    Gupta, Monika; Pal, Santanu Kumar

    2016-02-01

    A straightforward synthesis of multialkynylbenzene-bridged triphenylene-based dyad systems (via flexible alkyl spacers) that self-organize into room-temperature columnar structures over a long range is reported. The compounds with spacer lengths (n) of 8 and 10 exhibit a columnar rectangular mesophase whereas a compound with n = 6 shows a columnar rectangular plastic phase. Interestingly, the later compound (n = 6) shows the formation of well-nucleated spherulites of about several hundred micrometers that suggest the existence of a long-range uniform self-assembly of columns. All of these compounds show blue luminescence in solution and in the thin-film state under long-wavelength (365 nm) UV light. These compounds fulfill the described demands such as long-range columnar self-assembly at room temperature, a good yield with high purity, and blue-light emitters under the neat condition for possible potential applications in semiconductor devices. They also match the criteria of facile processing from the isotropic state because of their low isotropization temperature. This new class of materials is promising, considering the emissive nature and stabilization of the columnar mesophase at ambient temperature. PMID:26745267

  16. Measurement of the specific enthalpy of vaporization on 1,1,1,2-tetrafluoroethane in the temperature range 180--240 K

    SciTech Connect

    Blanke, W.; Klingenberg, G.; Weber, F.

    1998-05-01

    An apparatus is described which is capable of measuring the enthalpy of vaporization in the temperature range from 100 to 250 K. The sample (134a; purity, at least 99.999%) is located in the measuring cell at the saturated vapor pressure, p = p{sub s}. A control circuit allows p to be kept constant by opening a motor-operated valve to a weighing cylinder after having switched on the electrical measuring cell heater. During the experiment, the temperature is kept constant within a 10 mK. In the range 180 to 230 K, the data for R134a are compared with calculated values from the fundamental equation given by Tillner-Roth and Baehr, which is recommended by Annex 18 of the International Energy Agency (IEA) as an international standard. Good agreement within a standard uncertainty of 1.6 {times} 10{sup {minus}3} is obtained. At temperatures of only 10 K above the triple-point temperature, the enthalpy of vaporization calculated from the Clausius-Clapeyron equation shows considerable uncertainty due to the determination of the small vapor pressure. It is chiefly in this range that it is advantageous to have the new apparatus.

  17. The thermodynamic properties of 5-vinyltetrazole and poly-5-vinyltetrazole over the temperature range from T → 0 to 350 K

    NASA Astrophysics Data System (ADS)

    Smirnova, N. N.; Kulagina, T. G.; Bykova, T. A.; Kizhnyaev, V. N.; Petrova, T. L.

    2009-01-01

    The temperature dependences of the heat capacities of 5-vinyltetrazole and poly-5-vinyltetrazole were measured by adiabatic vacuum calorimetry over the temperature range 6-(350-370) K with errors of ˜0.2%. The results were used to calculate the thermodynamic functions of the compounds, C {/p ∘}, H ∘( T) - H ∘(0), S ∘( T), and G ∘( T) - H ∘(0), over the temperature range from T → 0 to 350-370 K. The energy of combustion of 5-vinyltetrazole and poly-5-vinyltetrazole was measured in an isothermic-shell static bomb calorimeter. The standard enthalpies of combustion Δ c H ∘ and thermodynamic characteristics of formation Δf H ∘, Δf S ∘, and Δf G ∘ at 298.15 K and p = 0.1 MPa were calculated. The results were used to determine the thermodynamic characteristics of polymerization of 5-vinyltetrazole over the temperature range from T → 0 to 350 K.

  18. Low-temperature growth of InGaN films over the entire composition range by MBE

    NASA Astrophysics Data System (ADS)

    Fabien, Chloe A. M.; Gunning, Brendan P.; Alan Doolittle, W.; Fischer, Alec M.; Wei, Yong O.; Xie, Hongen; Ponce, Fernando A.

    2015-09-01

    The surface morphology, microstructural, and optical properties of indium gallium nitride (InGaN) films grown by plasma-assisted molecular beam epitaxy under low growth temperatures and slightly nitrogen-rich growth conditions are studied. The single-phase InGaN films exhibit improved defect density, an absence of stacking faults, efficient In incorporation, enhanced optical properties, but a grain-like morphology. With increasing In content, we observe an increase in the degree of relaxation and a complete misfit strain relaxation through the formation of a uniform array of misfit dislocations at the InGaN/GaN interface for InGaN films with indium contents higher than 55-60%.

  19. Carbon dioxide solubility in 1-hexyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide in a wide range of temperatures and pressures.

    PubMed

    Safarov, Javid; Hamidova, Rena; Stephan, Martin; Kul, Ismail; Shahverdiyev, Astan; Hassel, Egon

    2014-06-19

    Solubility measurement data of carbon dioxide (CO2) in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [HMIM][NTf2] at T = 273.15-413.15 K and pressures up to p = 4.5 MPa using an isochoric method in decrements of ΔT = 20 K are presented. The temperature dependency of the Henry's law constant was calculated, and the average deviation of the Henry's law constant is always better than ±1%. Thermodynamic properties of solution such as the free energy of solvation, the enthalpy of solvation, the entropy of solvation, and the heat capacity of solvation were calculated to evaluate the solute-solvent molecular interactions. PMID:24848716

  20. Interpolating equation of industrial platinum resistance thermometers in the temperature range between 0 °C and 500 °C

    NASA Astrophysics Data System (ADS)

    Yang, Inseok; Suherlan; Gam, Kee Sool; Kim, Yong-Gyoo

    2015-03-01

    This paper compares four interpolation equations for the calibration of 18 industrial platinum resistance thermometers (IPRTs) in the temperature range between 0 °C and 500 °C. They are the quadratic Callendar-van Dusen (CVD) equation, the deviation function specified in the International Temperature Scale of 1990 (ITS-90), and the third- and fourth-order polynomials of resistance as a function of temperature. It was found that when the upper limit of the calibration range was higher than 240 °C, the third- and fourth-order polynomials resulted in a smaller standard error-of-fit than either the CVD equation or ITS-90 deviation function did, and of the latter two functions, the ITS-90 deviation function worked better. When the upper limit of the temperature range was 500 °C, the fourth-order polynomials showed distinctly better performance than the others. The standard error-of-fit for the fourth-order polynomial in the temperature range between 0 °C and 500 °C was on average ≈1/3 compared to the CVD equation, ≈1/2 compared to the ITS-90 deviation function and ≈70% compared to the third-order polynomial. When the upper limit was 100 °C, the difference among the four equations was insignificant. Consideration is briefly given to using interpolation as specified in the ITS-90 but with additional check points, and also to the use of the CVD equation below 0 °C.

  1. Thermal degradation of concrete in the temperature range from ambient to 315{degree} C (600{degree} F). Revision 10/96

    SciTech Connect

    Kassir, M.K.; Bandyopadhyay, K.K.; Reich, M.

    1996-10-01

    This report is concerned with determining the effect of elevated temperatures on the behavior of concrete. Emphasis is placed on quantifying the degree of potential degradation of the physical properties of concrete in high-level waste storage tanks. The temperature elevation range of interest is from ambient to 315 C (600 F). The literature has been reviewed to examine the applicable experimental data and quantify the degradation in the concrete and reinforcing steel. Since many variables and test conditions control the results in the data base, upper and lower bounds of the degraded properties at temperatures applicable to the environments of the storage tanks are summarized and presented in explicit forms. For properties with large data bases, a normal logarithmic distribution of the data is assumed and a statistical analysis is carried out to find the mean and 84% values of the degraded property in the temperature range of interest. Such results are useful in assessing the effect of elevated temperatures on the structural behavior of the tanks. In addition, the results provide the technical basis for a parametric study that may be necessary to investigate the thermal aspects of the structural integrity of the tanks. 50 refs., 23 figs.

  2. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature. PMID:11538441

  3. Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Gordon, William L.; Heinen, Vernon O.; Ebihara, Ben T.; Bhasin, Kul B.

    1989-01-01

    A knowledge of the dielectric properties of microwave substrates at low temperatures is useful in the design of superconducting microwave circuits. Results are reported for a study of the complex permittivity of sapphire (Al2O3), magnesium oxide (MgO), silicon oxide (SiO2), lanthanum aluminate (LaAlO3), and zirconium oxide (ZrO2), in the 20 to 300 Kelvin temperature range, at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary parts of the complex permittivity were obtained from the scattering parameters, which were measured using a HP-8510 automatic network analyzer. For these measurements, the samples were mounted on the cold head of a helium gas closed cycle refrigerator, in a specially designed vacuum chamber. An arrangement of wave guides, with mica windows, was used to connect the cooling system to the network analyzer. A decrease in the value of the real part of the complex permittivity of these substrates, with decreasing temperature, was observed. For MgO and Al2O3, the decrease from room temperature to 20 K was of 7 and 15 percent, respectively. For LaAlO3, it decreased by 14 percent, for ZrO2 by 15 percent, and for SiO2 by 2 percent, in the above mentioned temperature range.

  4. Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Gordon, William L.; Heinen, Vernon O.; Ebihara, Ben T.; Bhasin, Kul B.

    1990-01-01

    A knowledge of the dielectric properties of microwve substrates at low temperatures is useful in the design of superconducting microwave circuits. Results are reported for a study of the complex permittivity of sapphire (Al2O3), magnesium oxide (MgO), silicon oxide (SiO2), lanthanum aluminate (LaAlO3), and zirconium oxide (ZrO2), in the 20 to 300 Kelvin temperature range, at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary parts of the complex permittivity were obtained from the scattering parameters, which were measured using an HP-8510 automatic network analyzer. For these measurements, the samples were mounted on the cold head of a helium gas closed cycle refrigerator, in a specially designated vacuum chamber. An arrangement of wave guides, with mica windows, was used to connect the cooling system to the network analyzer. A decrease in the value of the real part of the complex permittivity of these substrates, with decreasing temperature, was observed. For MgO and Al2O3, the decrease from room temperature to 20 K was of 7 and 15 percent, respectively. For LaAlO3, it decreased by 14 percent, for ZrO2 by 15 percent, and for SiO2 by 2 percent, in the above mentioned temperature range.

  5. Thermal expansion and phase changes of 16Kh12V2FTaR steel in temperature range from 20 to 1000 °C

    NASA Astrophysics Data System (ADS)

    Kozlovskii, Yu. M.; Stankus, S. V.; Yatsuk, O. S.; Agazhanov, A. Sh.; Komarov, S. G.; Anufriyev, I. S.

    2014-01-01

    The article presents the results of investigation of thermal expansion of 16Kh12V2FTaR steel in the temperature range 20-1000 °C. Measurements were carried out by dilatometric method with the error (1.5-2)×10-7 K-1. The temperature dependences of thermal coefficient of linear expansion of steel have been obtained in ferrite-martensite and ferrite-perlite states, and reference tables have been calculated. Influence of samples cooling rate on martensite phase formation is shown.

  6. An apparatus for simultaneous measurement of electrical conductivity and thermopower of thin films in the temperature range of 300-750 K

    SciTech Connect

    Ravichandran, J.; Kardel, J. T.; Scullin, M. L.; Bahk, J.-H.; Bowers, J. E.; Heijmerikx, H.; Majumdar, A.

    2011-01-15

    An automated apparatus capable of measuring the electrical conductivity and thermopower of thin films over a temperature range of 300-750 K is reported. A standard dc resistance measurement in van der Pauw geometry was used to evaluate the electrical conductivity, and the thermopower was measured using the differential method. The design of the instrument, the methods used for calibration, and the measurement procedure are described in detail. Given the lack of a standard National Institute of Standards and Technology (Gaithersburg, Md.) sample for high temperature thermopower calibration, the disclosed calibration procedure shall be useful for calibration of new instruments.

  7. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  8. Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.

    2008-01-01

    Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.

  9. Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds.

    PubMed

    Illán, Javier Gutiérrez; Thomas, Chris D; Jones, Julia A; Wong, Weng-Keen; Shirley, Susan M; Betts, Matthew G

    2014-11-01

    Predicting biodiversity responses to climate change remains a difficult challenge, especially in climatically complex regions where precipitation is a limiting factor. Though statistical climatic envelope models are frequently used to project future scenarios for species distributions under climate change, these models are rarely tested using empirical data. We used long-term data on bird distributions and abundance covering five states in the western US and in the Canadian province of British Columbia to test the capacity of statistical models to predict temporal changes in bird populations over a 32-year period. Using boosted regression trees, we built presence-absence and abundance models that related the presence and abundance of 132 bird species to spatial variation in climatic conditions. Presence/absence models built using 1970-1974 data forecast the distributions of the majority of species in the later time period, 1998-2002 (mean AUC = 0.79 ± 0.01). Hindcast models performed equivalently (mean AUC = 0.82 ± 0.01). Correlations between observed and predicted abundances were also statistically significant for most species (forecast mean Spearman's ρ = 0.34 ± 0.02, hindcast = 0.39 ± 0.02). The most stringent test is to test predicted changes in geographic patterns through time. Observed changes in abundance patterns were significantly positively correlated with those predicted for 59% of species (mean Spearman's ρ = 0.28 ± 0.02, across all species). Three precipitation variables (for the wettest month, breeding season, and driest month) and minimum temperature of the coldest month were the most important predictors of bird distributions and abundances in this region, and hence of abundance changes through time. Our results suggest that models describing associations between climatic variables and abundance patterns can predict changes through time for some species, and that changes in precipitation and winter temperature appear to

  10. Large dynamic range, picosecond resolution radiation detection based on low-temperature-grown epitaxial GaAs films

    SciTech Connect

    Watkins, D.E.; Wagner, R.S.; Khachaturyan, K.K.; Joseph, J.R.

    1996-03-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original objective of the project was to develop ultrafast radiation detectors based on GaAs epilayers grown by molecular beam epitaxy at 200--300 C. Low temperature (LT) GaAs is known to have subpicosecond carrier lifetimes; therefore, detectors based on this material should have response times of the order of 1 ps, more than an order of magnitude faster than any existing high energy radiation detectors. During the course of the project it became clear that an adequate material structure could not be attained, and therefore the emphasis of the project changed from LT-GaAs to polycrystalline chemical-vapor-deposited (CVD) diamond. This change resulted in demonstrating the feasibility of diamond microstrip detectors for high luminosity colliders for the first time. At the same time, they have advanced the state-of-the-art in diamond film quality.

  11. Direct Electron Heating Observed by Fast Waves in ICRF Range on a Low-Density Low Temperature Tokamak ADITYA

    SciTech Connect

    Mishra, K.; Kulkarni, S.; Rathi, D.; Varia, A.; Jadav, H.; Parmar, K.; Kadia, B.; Joshi, R.; Srinivas, Y.; Singh, R.; Kumar, S.; Dani, S.; Gayatri, A.; Yogi, R.; Singh, M.; Joisa, Y.; Rao, C.; Kumar, S.; Jha, R.; Manchanda, R.

    2011-12-23

    Fast wave electron heating experiments are carried out on Aditya tokamak [R = 0.75 m, a = 0.25m,Bt = 0.75T,ne{approx}1-3E13/cc,Te{approx}250eV] with the help of indigenously developed 200 kW, 20-40 MHz RF heating system. Significant direct electron heating is observed by fast waves in hydrogen plasma with prompt rise in electron temperature with application of RF power and it increases linearly with RF power. A corresponding increase in plasma beta and hence increase in stored diamagnetic energy is also observed in presence of RF. We observe an improvement of energy confinement time from 2-4msec during ohmic heating phase to 3-6msec in RF heating phase. This improvement is within the ohmic confinement regime for the present experiments. The impurity radiation and electron density do not escalate significantly with RF power. The direct electron heating by fast wave in Aditya is also predicted by ion cyclotron resonance heating code TORIC.

  12. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K

    NASA Astrophysics Data System (ADS)

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-01

    Experiments were performed in the temperature range of 294-1143 K in pure CO2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO2/N2-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO2/N2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

  13. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  14. Kinetics of the ClO + CH3O2 reaction over the temperature range T = 250-298 K.

    PubMed

    Ward, Michael K M; Rowley, David M

    2016-05-11

    The kinetics of the potentially atmospherically important ClO + CH3O2 reaction (1) have been studied over the range T = 250-298 K at p = 760 Torr using laser flash photolysis radical generation, coupled with time resolved ultraviolet absorption spectroscopy, employing broad spectral monitoring using a charge coupled device detector array. ClO radicals were monitored unequivocally using this technique, and introduction of CH3O2 precursors ensured known initial methylperoxy radical concentrations. ClO temporal profiles were thereafter analysed to extract kinetic parameters for reaction (1). A detailed sensitivity analysis was also performed to examine any potential systematic variability in k1 as a function of kinetic or physical uncertainties. The kinetic data recorded in this work show good agreement with the most recent previous study of this reaction, reported by Leather et al. The current work reports an Arrhenius parameterisation for k1, given by: . This work therefore concurs with that of Leather et al. implying that the title reaction is potentially less significant in the atmosphere than inferred from preceding studies. However, reaction (1) is evidently a non-terminating radical reaction, whose effects upon atmospheric composition therefore need to be ascertained through atmospheric model studies. PMID:27137440

  15. Intended long-term permafrost monitoring in Austria: Observations from eight years (2006-2014) of ground temperature monitoring in the Tauern Range, Central Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Lintschnig, Michèle

    2015-04-01

    At present permafrost monitoring in Austria is carried out by several institutions at some 20 sites in the Austrian Alps. However, so far this monitoring is not coordinated and institutionalised in terms of monitoring strategy, organization, data management and funding. Within the currently running permAT project such an institutionalization is in progress. Permafrost in the Austrian mountains is rather warm and hence sensitive to present climate change. Consequently permafrost conditions and changes are of increasing importance also for the public. Therefore, it is evident that a coordinated and institutionalised long-term monitoring of ground temperature in Austria is essential for permafrost understanding and people's safety. In this contribution we present up to eight years of field data from nine different study sites in Austria. All sites are located in the highest mountain range in Austria, the Tauern Range (maximum elevation 3798 m asl) covering some 9000 km² of the national territory. The nine different study sites are located between latitude 46°55' to 47°22' and longitude 12°44' to 14°41'. Altogether 57 ground temperature monitoring sites have been installed in 2006 and 2007 at the nine study sites using one- (at 23 sites) and three-channel (at 34 sites) miniature temperature dataloggers produced by GeoPrecision, Germany. Therefore, more than 120 ground temperature data series are available from between the ground surface to maximum depths of 2.75 m. The 57 monitoring sites range from 1922 to 3002 m asl in elevation and consider flat terrain as well as step rock walls. All slope aspects are adequately considered. Relevant research questions we intend to address in this contribution include (a) general ground thermal conditions in 2006-2014, (b) the influence of different substrates and aspects on ground temperatures, (c) potential permafrost occurrence, (d) changes or stable conditions during the observation period, (e) regional pattern, and (f

  16. Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77-300 K for optical frequency standards

    NASA Astrophysics Data System (ADS)

    Tarabrin, Mikhail K.; Lazarev, Vladimir A.; Karasik, Valeriy E.; Kireev, Alexey N.; Korostelin, Yuri V.; Shelkovnikov, Alexander S.; Tuyrikov, Dmitry A.; Kozlovsky, Vladimir I.; Podmar'kov, Yuri P.; Frolov, Mikhail P.; Gubin, Mikhail A.

    2016-07-01

    New spectroscopic knowledge of the ν1 +ν4 R(2) E line of methane over the temperature range 77-300 K is reported. Theoretical calculations of the absorption coefficient and the amplitudes of saturated dispersion resonances at 4234 cm-1 were derived. The theoretical dependence on the temperature of the amplitudes of the saturated dispersion resonances was obtained. A novel setup based on a Cr2+ : ZnSe laser was used for Doppler-free spectroscopy of methane. The amplitudes of the saturated dispersion resonances of the ν1 +ν4 R(2) E line of methane were measured experimentally at different temperatures. A comparison with theoretical dependence supports the reliability of the experiment. The obtained results are of immediate interest in applications demanding laser frequency stabilization.

  17. On the low-temperature behavior of the critical specific heat capacity of an anharmonic crystal with long-range interaction

    NASA Astrophysics Data System (ADS)

    Pisanova, Ekaterina S.; Krushkov, Angel Y.

    2016-03-01

    An exactly solvable lattice model describing structural phase transitions in an anharmonic crystal with long-range interaction (decreasing at large distances r as r-d-σ, where d is the space dimensionality and 0 < σ ≤ 2) is considered near to its zero-temperature critical point. The low-temperature behavior of the bulk specific heat capacity at the lower classical critical dimension (d = σ) is studied in different regions of the (T, λ)-phase diagram, where T is the temperature and λ is a parameter which switches on quantum fluctuations. From the results obtained one can see that when T → 0+ the specific heat capacity tends to zero in a different way in the regions: (a) renormalized classical region - as T raised to the second power and (b) quantum disordered region - exponentially.

  18. Characterization and potential of three temperature ranges for hydrogen fermentation of cellulose by means of activity test and 16s rRNA sequence analysis.

    PubMed

    Gadow, Samir I; Jiang, Hongyu; Li, Yu-You

    2016-06-01

    A series of standardized activity experiments were performed to characterize three different temperature ranges of hydrogen fermentation from different carbon sources. 16S rRNA sequences analysis showed that the bacteria were close to Enterobacter genus in the mesophilic mixed culture (MMC) and Thermoanaerobacterium genus in the thermophilic and hyper-thermophilic mixed cultures (TMC and HMC). The MMC was able to utilize the glucose and cellulose to produce methane gas within a temperature range between 25 and 45 °C and hydrogen gas from 35 to 60°C. While, the TMC and HMC produced only hydrogen gas at all temperature ranges and the highest activity of 521.4mlH2/gVSSd was obtained by TMC. The thermodynamic analysis showed that more energy is consumed by hydrogen production from cellulose than from glucose. The experimental results could help to improve the economic feasibility of cellulosic biomass energy using three-phase technology to produce hythane. PMID:26954308

  19. Influence of CO molecular impurity on the structural and thermodynamic properties of fullerite C60, in a broad range of sorption temperatures

    NASA Astrophysics Data System (ADS)

    Meleshko, V. V.; Legchenkova, I. V.; Stetsenko, Y. E.; Prokhvatilov, A. I.

    2016-02-01

    An x-ray diffraction study of how sorption of CO gas at a pressure of 30 atm in the temperature range of 150-600 °C influences the structural characteristics of polycrystalline and single crystal fullerite C60. The sorption kinetics are studied by constructing a dependence of the lattice parameter on the time it takes for fullerite to be saturated by CO molecules. At temperatures Tsorb > 300 °C there is an observed dissociation of carbon monoxide, accompanied by the precipitation of carbon powder and the chemical interaction of atomic oxygen with C60 and CO molecules, and possibly with the carbon condensate. These processes have a strong influence on the structural characteristics of fullerite, thus creating, in part, a nonmonotonic dependence of the parameter and lattice matrix volume on the impurity saturation temperature. The concentrations of solid solutions C60(CO)x poly- and single crystal samples are determined in the physisorption range for two modes (150 and 250 °C). It is found that the CO impurity has a linear effect on the lattice parameter and the temperature of the orientational transition of fullerite C60.

  20. The response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress

    NASA Astrophysics Data System (ADS)

    Holmquist, T. J.; Bradley, J.; Dwivedi, A.; Casem, D.

    2016-05-01

    This article presents the response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress. Laboratory data from the literature, and new test data provided here, are used in the evaluation. The new data include uniaxial stress compression tests (at various strain rates and temperatures) and uniaxial stress tension tests (at low strain rates and ambient temperatures). The compression tests include experiments at ˙ɛ = 13,000 s-1, significantly extending the range of known strain rate data. The observed behavior of PMMA includes the following: it is brittle in compression at high rates, and brittle in tension at all rates; strength is dependent on the pressure, strain, strain rate, temperature, and the intermediate principal stress; the shear modulus increases as the pressure increases; and it is highly compressible. Also presented are novel, high velocity impact tests (using high-speed imaging) that provide insight into the initiation and evolution of damage. Lastly, computational constitutive models for pressure, strength, and failure are presented that provide responses that are in good agreement with the laboratory data. The models are used to compute several ballistic impact events for which experimental data are available.

  1. Effect of carbide precipitation on the creep behavior of alloy 800HT in the temperature range 700 C to 900 C

    SciTech Connect

    El-Magd, E.; Nicolini, G.; Farag, M.

    1996-03-01

    The creep behavior of alloy 800HT was studied at 700 C, 800 C, and 900 C under stresses ranging from 30 to 170 MPa. Samples that were tested in the as-quenched condition after solution treatment exhibited longer creep life than those that were over aged before testing. This difference in creep life was found to increase at lower creep stresses at a given temperature. This phenomenon is attributed to the precipitation of M{sub 23}C{sub 6} carbides during the early stages of creep, which strengthen the material by exerting threshold stresses on moving dislocations and thereby reducing the creep rate. A model is developed to describe the influence of carbide precipitation during creep on the behavior of the material under different creep temperatures and stresses. Comparison with the experimental results shows that the model gives accurate predictions of the creep behavior of the material in the range of stresses and temperatures used in the present study. In addition to its predictive value, the model is useful in understanding the factors that affect the creep behavior of materials when precipitation of hard phases is taking place during creep. The strengthening effect of particle precipitation during creep, as represented by the value of the threshold stress, is shown to be a complex function of the supersaturation of the matrix, the applied creep stress, and the test temperature.

  2. Effect of carbide precipitation on the creep behavior of Alloy 800HT in the Temperature Range 700 ° to 900 °

    NASA Astrophysics Data System (ADS)

    El-Magd, E.; Nicolini, G.; Farag, M.

    1996-03-01

    The creep behavior of alloy 800HT was studied at 700 °, 800 °, and 900 ° under stresses ranging from 30 to 170 MPa. Samples that were tested in the as-quenched condition after solution treatment exhibited longer creep life than those that were overaged before testing. This difference in creep life was found to increase at lower creep stresses at a given temperature. This phenomenon is attributed to the precipitation of M23C6carbides during the early stages of creep, which strengthen the material by exerting threshold stresses on moving dislocations and thereby reducing the creep rate. A model is developed to describe the influence of carbide precipitation during creep on the behavior of the material under different creep temperatures and stresses. Comparison with the experimental results shows that the model gives accurate predictions of the creep behavior of the material in the range of stresses and temperatures used in the present study. In addition to its predictive value, the model is useful in understanding the factors that affect the creep behavior of materials when precipitation of hard phases is taking place during creep. The strengthening effect of particle precipitation during creep, as represented by the value of the threshold stress, is shown to be a complex function of the supersaturation of the matrix, the applied creep stress, and the test temperature.

  3. Study of the dielectric properties of weathered granite, basalt and quartzite by means of broadband dielectric spectroscopy over a wide range of frequency and temperature.

    NASA Astrophysics Data System (ADS)

    Araujo, Steven; Delbreilh, Laurent; Antoine, Raphael; Dargent, Eric; Fauchard, Cyrille

    2016-04-01

    Broadband Dielectric Spectroscopy (BDS) allows the measurement of the complex impedance of various materials over a wide range of frequency (0.1 Hz to 2 MHz) and temperature (-150 to 400°C). Other properties can be assessed from this measurement such as permittivity and conductivity. In this study, the BDS is presented to figure out the complex behaviour of several rock parameters as a function of the temperature and frequency. Indeed, multiple processes might occur such as interfacial polarization, AC and DC conductivity. The measurements of a weathered granite, basalt and quartzite were performed. The activation energy associated to each process involved during the measurement can be calculated by following the relaxation time as a function of the temperature, taking into account the Havriliak-Négami model. The principle of the technique and the whole study is presented here and several hypothesis are advanced to explain the dielectric behaviour of rocks. Finally, as the range of frequency and temperature of the BDS method is common to several electromagnetic and electrical techniques applied in subsurface geophysics, some perspectives are proposed to better understand geophysical measurements in hydrothermal systems.

  4. A new method to calculate the threshold temperature of a perfect blackbody to protect cornea and lens in the range of 780-3,000 nm.

    PubMed

    Madjidi, Faramarz; Mohammadi, Jamshid

    2015-01-01

    Exposure to IR-A and IR-B radiation, in the wavelength region of 780 nm to 3,000 nm, may lead to the development of cataractogenesis. Estimation of the exposure levels is the first step in controlling adverse health effects. In the present study, the irradiance of a hot blackbody emitter is replaced by its temperature in the exposure limit values for cornea and lens in the range of 780-3,000 nm. This paper explains the development and implementation of a computer code to predict a temperature, defined as Threshold Temperature, which satisfies the exposure limits already proposed by the ICNIRP. To this end, first an infinite series was created for the calculation of spectral radiance by integration with Planck's law. For calculation of irradiance, the initial terms of this infinite series were selected, and integration was performed in the wavelength region of 780 nm to 3,000 nm. Finally, using a computer code, an unknown source temperature that can emit the same irradiance was found. Exposure duration, source area, and observer distance from the hot source were entered as input data in this proposed code. Consequently, it is possible only by measurement of a Planckian emitter temperature and taking into account the distance from source and exposure time for an observer to decide whether the exposure to IR radiation in the range of 780 to 3,000 nm is permissible or not. It seems that the substitution of irradiance by the source temperature is an easier and more convenient way for hygienists to evaluate IR exposures. PMID:25437515

  5. GREENER AND RAPID ACCESS TO BIO-ACTIVE HETEROCYCLES: ROOM TEMPERATURE SYNTHESIS OF PYRAZOLES AND DIAZEPINES IN AQUEOUS MEDIUM

    EPA Science Inventory

    An expeditious room temperature synthesis of pyrazoles and diazepines by condensation of hydrazines/hydrazides and diamines with various 1,3-diketones is described. This greener protocol was catalyzed by polystyrene supported sulfonic acid (PSSA) and proceeded efficiently in wate...

  6. Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming-correlated genetic admixture and population-specific temperature adaptations.

    PubMed

    Krehenwinkel, Henrik; Tautz, Diethard

    2013-04-01

    Poleward range expansions are observed for an increasing number of species, which may be an effect of global warming during the past decades. However, it is still not clear in how far these expansions reflect simple geographical shifts of species ranges, or whether new genetic adaptations play a role as well. Here, we analyse the expansion of the wasp spider Argiope bruennichi into Northern Europe during the last century. We have used a range-wide sampling of contemporary populations and historical specimens from museums to trace the phylogeography and genetic changes associated with the range shift. Based on the analysis of mitochondrial, microsatellite and SNP markers, we observe a higher level of genetic diversity in the expanding populations, apparently due to admixture of formerly isolated lineages. Using reciprocal transplant experiments for testing overwintering tolerance, as well as temperature preference and tolerance tests in the laboratory, we find that the invading spiders have possibly shifted their temperature niche. This may be a key adaptation for survival in Northern latitudes. The museum samples allow a reconstruction of the invasion's genetic history. A first, small-scale range shift started around 1930, in parallel with the onset of global warming. A more massive invasion of Northern Europe associated with genetic admixture and morphological changes occurred in later decades. We suggest that the latter range expansion into far Northern latitudes may be a consequence of the admixture that provided the genetic material for adaptations to new environmental regimes. Hence, global warming could have facilitated the initial admixture of populations and this resulted in genetic lineages with new habitat preferences. PMID:23496675

  7. Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1–30 GHz

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryota; Laakso, Ilkka; De Santis, Valerio; Hirata, Akimasa

    2016-07-01

    This study investigates the relationship between the peak temperature elevation and the peak specific absorption rate (SAR) averaged over 10 g of tissue in human head models in the frequency range of 1–30 GHz. As a wave source, a half-wave dipole antenna resonant at the respective frequencies is located in the proximity of the pinna. The bioheat equation is used to evaluate the temperature elevation by employing the SAR, which is computed by electromagnetic analysis, as a heat source. The computed SAR is post-processed by calculating the peak spatial-averaged SAR with six averaging algorithms that consider different descriptions provided in international guidelines and standards, e.g. the number of tissues allowed in the averaging volume, different averaging shapes, and the consideration of the pinna. The computational results show that the SAR averaging algorithms excluding the pinna are essential when correlating the peak temperature elevation in the head excluding the pinna. In the averaging scheme considering an arbitrary shape, for better correlation, multiple tissues should be included in the averaging volume rather than a single tissue. For frequencies higher than 3–4 GHz, the correlation for peak temperature elevation in the head excluding the pinna is modest for the different algorithms. The 95th percentile value of the heating factor as well as the mean and median values derived here would be helpful for estimating the possible temperature elevation in the head.

  8. Effects of increase in temperature and open water on transmigration and access to health care by the Nenets reindeer herders in northern Russia

    PubMed Central

    Amstislavski, Philippe; Zubov, Leonid; Chen, Herman; Ceccato, Pietro; Pekel, Jean-Francois; Weedon, Jeremy

    2013-01-01

    Background The indigenous Nenets reindeer herders in northern Russia annually migrate several hundred kilometers between summer and winter pastures. In the warming climate, ice-rich permafrost and glaciers are being significantly reduced and will eventually disappear from parts of the Arctic. The emergent changes in hydrological cycles have already led to substantial increases in open water that stays unfrozen for longer periods of time. This environmental change has been reported to compromise the nomadic Nenets’ traditional way of life because the presence of new water in the tundra reduces the Nenets’ ability to travel by foot, sled, or motor vehicle from the summer transitory tundra campsites in order to access healthcare centers in villages. New water can also impede their access to family and community at other herder camps and in the villages. Although regional and global models predicting hydrologic changes due to climate changes exist, the spatial resolution of these models is too coarse for studying how increases in open water affect health and livelihoods. To anticipate the full health impact of hydrologic changes, the current gap between globally forecasted scenarios and locally forecasted hydrologic scenarios needs to be bridged. Objectives We studied the effects of the autumn temperature anomalies and increases in open water on health care access and transmigration of reindeer herders on the Kanin Peninsula. Design Correlational and time series analyses were completed. Methods The study population consisted of 370 full-time, nomadic reindeer herders. We utilized clinical visit records, studied surface temperature anomalies during autumn migrations, and used remotely sensed imagery to detect water bodies. Spearman correlation was used to measure the relationship between temperature anomalies and the annual arrival of the herders at the Nes clinic for preventive and primary care. Piecewise regression was used to model change in mean autumnal

  9. Factors Affecting Date of Implantation, Parturition, and Den Entry Estimated from Activity and Body Temperature in Free-Ranging Brown Bears

    PubMed Central

    Friebe, Andrea; Evans, Alina L.; Arnemo, Jon M.; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E.; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  10. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears.

    PubMed

    Friebe, Andrea; Evans, Alina L; Arnemo, Jon M; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  11. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    PubMed

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics. PMID:26391383

  12. Characteristics of individual reactions of the cardiovascular system of healthy people to changes in meteorological factors in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Zenchenko, T. A.; Skavulyak, A. N.; Khorseva, N. I.; Breus, T. K.

    2013-12-01

    Based on the results of 4-year observations of daily variations in blood pressure (BP) and heart rate (HR) in seven healthy volunteers, two distinct types of reaction of physiological indicators (PIs) to changes in meteorological parameters (first and foremost, atmospheric temperature T atm) are revealed. The first type is a monotonic (but nonuniform with respect to speed) decrease in systolic BP with increasing temperature, which is most pronounced for T atm < -5°C and T atm > 15°C, with a weaker reaction of diastolic BP and no reaction of HR (in four volunteers). The second type is a two-phase nonmonotonic dependence of BP indicators on T atm, which coincides with the first type in the range T atm < -5°C and is characterized by a positive correlation of BP and HR indicators with T atm for T atm > -5°C (in two volunteers). The physiological mechanisms that can provide the observed compensatory-adaptive reactions of healthy individuals to atmospheric factors in different temperature ranges are analyzed in detail. It has been shown that the revealed regularities can explain the results obtained by the authors in earlier studies.

  13. C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5.

    PubMed

    Irfan, Muhammad; Guler, Halil Ibrahim; Ozer, Aysegul; Sapmaz, Merve Tuncel; Belduz, Ali Osman; Hasan, Fariha; Shah, Aamer Ali

    2016-09-01

    Efficient utilization of hemicellulose entails high catalytic capacity containing xylanases. In this study, proline rich sequence was fused together with a C-terminal of xylanase gene from Geobacillus thermodenitrificans C5 and designated as GthC5ProXyl. Both GthC5Xyl and GthC5ProXyl were expressed in Escherichia coli BL21 host in order to determine effect of this modification. The C-terminal oligopeptide had noteworthy effects and instantaneously extended the optimal temperature and pH ranges and progressed the specific activity of GthC5Xyl. Compared with GthC5Xyl, GthC5ProXyl revealed improved specific activity, a higher temperature (70°C versus 60°C) and pH (8 versus 6) optimum, with broad ranges of temperature and pH (60-80°C and 6.0-9.0 versus 40-60°C and 5.0-8.0, respectively). The modified enzyme retained more than 80% activity after incubating in xylan for 3h at 80°C as compared to wild -type with only 45% residual activity. Our study demonstrated that proper introduction of proline residues on C-terminal surface of xylanase family might be very effective in improvement of enzyme thermostability. Moreover, this study reveals an engineering strategy to improve the catalytic performance of enzymes. PMID:27444327

  14. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.

    PubMed

    Wu, Youshen; Liu, Jiajun; Ma, Jingwen; Liu, Yongchun; Wang, Ya; Wu, Daocheng

    2016-06-15

    A series of fluorescent nanothermometers (FTs) was prepared with Rhodamine dye-incorporated Pluronic F-127-melamine-formaldehyde composite polymer nanoparticles (R-F127-MF NPs). The highly soluble Rhodamine dye molecules were bound with Pluronic F127 micelles and subsequently incorporated in the cross-linked MF resin NPs during high-temperature cross-link treatment. The morphology and chemical structure of R-F127-MF NPs were characterized with dynamic light scattering, electron microscopy, and Fourier-transform infrared (FTIR) spectra. Fluorescence properties and thermoresponsivities were analyzed using fluorescence spectra. R-F127-MF NPs are found to be monodispersed, presenting a size range of 88-105 nm, and have bright fluorescence and high stability in severe treatments such as autoclave sterilization and lyophilization. By simultaneously incorporating Rhodamine B and Rhodamine 110 (as reference) dyes at a doping ratio of 1:400 in the NPs, ratiometric FTs with a high sensibility of 7.6%·°C(-1) and a wide temperature sensing range from -20 to 110 °C were obtained. The FTs exhibit good stability in solutions with varied pH, ionic strengths, and viscosities and have similar working curves in both intracellular and extracellular environments. Cellular temperature variations in Hela cells during microwave exposure were successfully monitored using the FTs, indicating their considerable potential applications in the biomedical field. PMID:27197838

  15. Magnetocaloric effect over a wide temperature range due to multiple magnetic transitions in GdNi0.8Al1.2 alloy

    NASA Astrophysics Data System (ADS)

    Rashid, T. P.; Nallamuthu, S.; Arun, K.; Curlik, Ivan; Ilkovic, Sergej; Dzubinska, Andrea; Reiffers, Marian; Nagalakshmi, R.

    2016-05-01

    The magnetic properties, magnetocaloric effect (MCE) and refrigerant capacity (RC) of the novel polycrystalline GdNi0.8Al1.2 alloy are investigated. The temperature dependence of magnetization exhibits multiple magnetic transitions at T1=17.7 K, T2=46.7 K and T3=256 K thereby displaying a complex magnetic behaviour. The magnetocaloric effect is calculated in terms of the magnetic entropy change ( -Δ SM), from isothermal magnetization data using Maxwell relations. The maximum magnetic entropy change at major transitions T2 is 9.15 J kg-1K-1 (for a field change of 0-9 T) and 4.20 Jkg-1K-1 (0-5 T) and at T3 is 1.10 Jkg-1K-1 (0-9 T) and 0.67 Jkg-1K-1 (0-5 T). The overlap of the two -Δ SM peaks expeditiously expand the working temperature range of this material with substantial MCE which in turn yields moderate RC value of 120 J/kg for a field change of 0-5T. These results suggest that the GdNi0.8Al1.2 alloy may be a meaningful candidate for magnetic refrigeration working in a wide temperature range.

  16. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    SciTech Connect

    Shaldin, Yu. V.; Matyjasik, S.; Novikova, N. E.; Tseitlin, M.; Mozhaev, E.; Roth, M.

    2010-11-15

    The temperature dependences of the pyroelectric coefficients of KTiOAsO{sub 4} and RbTiOAsO{sub 4} single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO{sub 4}. This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  17. Temperature-dependent photoluminescence of InSb/InAs nanostructures with InSb thickness in the above-monolayer range

    NASA Astrophysics Data System (ADS)

    Firsov, D. D.; Komkov, O. S.; Solov’ev, V. A.; Kop’ev, P. S.; Ivanov, S. V.

    2016-07-01

    Photoluminescence (PL) properties of type-II InSb/InAs periodic nanostructures containing above-monolayer (ML)-thick InSb insertions, grown by molecular beam epitaxy, are studied by using an FTIR spectrometer in wide temperature range. The samples exhibit bright PL in the 3.5–5.5 μm range, which is attributed to recombination of holes localized in InSb with electrons accumulated nearby in the InAs matrix. An increase in the InSb nominal thickness from 1 ML to 1.6 ML results in an increase of the PL peak wavelength up to 5.5 μm (300 K), and significantly improves luminescence intensity at 300 K due to a twice larger energy of hole localization. The InSb/InAs nanostructures also demonstrate an anomalous ‘blue’ shift of the PL peak energy as the temperature increases in the 12–80 K range, which is attributed to the thermally induced population of localized states in the InSb insertions, emerging due to composition/thickness fluctuations. Sb segregation in the cap InAs barrier smooths the potential inhomogeneities in the insertions, which reduces the broadening parameter.

  18. Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay

    1995-01-01

    The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).

  19. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    PubMed

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. PMID:25902893

  20. Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range.

    PubMed

    Bernardi, Paolo; Cavagnaro, Marta; Pisa, Stefano; Piuzzi, Emanuele

    2003-03-01

    The exposure of a subject in the far field of radiofrequency sources operating in the 10-900-MHz range has been studied. The electromagnetic field inside an anatomical heterogeneous model of the human body has been computed by using the finite-difference time-domain method; the corresponding temperature increase has been evaluated through an explicit finite-difference formulation of the bio-heat equation. The thermal model used, which takes into account the thermoregulatory system of the human body, has been validated through a comparison with experimental data. The results show that the peak specific absorption rate (SAR) as averaged over 10 g has about a 25-fold increase in the trunk and a 50-fold increase in the limbs with respect to the whole body averaged SAR (SARWB). The peak SAR as averaged over 1 g, instead, has a 30- to 60-fold increase in the trunk, and up to 135-fold increase in the ankles, with respect to SARWB. With reference to temperature increases, at the body resonance frequency of 40 MHz, for the ICNIRP incident power density maximum permissible value, a temperature increase of about 0.7 degrees C is obtained in the ankles muscle. The presence of the thermoregulatory system strongly limits temperature elevations, particularly in the body core. PMID:12669986

  1. Electrical characterization of Random Telegraph Noise in Fully-Depleted Silicon-On-Insulator MOSFETs under extended temperature range and back-bias operation

    NASA Astrophysics Data System (ADS)

    Marquez, Carlos; Rodriguez, Noel; Gamiz, Francisco; Ruiz, Rafael; Ohata, Akiko

    2016-03-01

    Random Telegraph Noise (RTN) has been studied in Ultra-Thin Fully-Depleted Silicon-On-Insulator transistors. A modified Time Lag Plot algorithm has been used to identify devices with a single active trap. The physical characteristics of the trap have been extracted based on Shockley-Read-Hall models, revealing the possible trends of capture and emission times of the trap according to its physical and energetic position. The effect of the temperature on the characteristic times has been studied in the range from 248 to 323 K validating the results obtained at room temperature. Finally, the impact of back-bias on the RTN fluctuation has been modelled through the Lim-Fossum interface coupling relationships, allowing to predict accurately the experimental results.

  2. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    NASA Astrophysics Data System (ADS)

    Bokaei, B.; Niknam, A. R.

    2014-03-01

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  3. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    SciTech Connect

    Bokaei, B.; Niknam, A. R.

    2014-03-15

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  4. Temperature-dependent dynamic correlations in suspensions of magnetic nanoparticles in a broad range of concentrations: a combined experimental and theoretical study.

    PubMed

    Ivanov, Alexey O; Kantorovich, Sofia S; Zverev, Vladimir S; Elfimova, Ekaterina A; Lebedev, Alexander V; Pshenichnikov, Alexander F

    2016-07-21

    The interweave of competing individual relaxations influenced by the presence of temperature and concentration dependent correlations is an intrinsic feature of superparamagnetic nanoparticle suspensions. This unique combination gives rise to multiple applications of such suspensions in medicine, nanotechnology and microfluidics. Here, using theory and experiment, we investigate dynamic magnetic susceptibility in a broad range of temperatures and frequencies. Our approach allows, for the first time to our knowledge, to separate clearly the effects of superparamagnetic particle polydispersity and interparticle magnetic interactions on the dynamic spectra of these systems. In this way, we not only provide a theoretical model that can predict well the dynamic response of magnetic nanoparticles systems, but also deepen the understanding of the dynamic nanoparticle self-assembly, opening new perspectives in tuning and controlling the magnetic behaviour of such systems in AC fields. PMID:27334549

  5. Fracture behavior of a B2 Ni-30Al-20Fe-0.05Zr intermetallic alloy in the temperature range 300 to 1300 K

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1992-01-01

    The fracture behavior of a B2 Ni-30Al-20Fe-0.05Zr (at. pct) alloy was investigated using results of tensile tests conducted in the temperature range 300-1300 K under initial strain rates that varied between 10 exp -6 and 10 exp -3/sec, together with results of deformation measurements reported by Raj et al. (1992). Microstructural observations revealed that the alloy had failed by transgranular cleavage fracture below 873 K and by ductile fracture, power-law cavitation, triple point cracking, and rupture above this temperautre. The fracture map constructed using fracture results is compared with those for other classes of materials, showing that the atomic bonding plays a significant role in the low-temperature ductility of NiAl-based alloys.

  6. Interpolation Correlations for Fluid Properties of Humid Air in the Temperature Range 100 °C to 200 °C

    NASA Astrophysics Data System (ADS)

    Melling, Adrian; Noppenberger, Stefan; Still, Martin; Venzke, Holger

    1997-07-01

    This paper provides simple analytical correlations for selected thermodynamic and fluid transport properties for the mixture dry air and water vapor. These correlations are derived from theory as well as from numerical fitting procedures and give expressions for density ϱ, viscosity μ, thermal conductivity k, specific heat cp, and Prandtl number Pr at a working pressure of p=1 bar and for a temperature range from 100 °C to 200 °C. The main purpose is to present a comparatively simple set of equations, as the correlations do not reflect in every case the underlying physical background. Since experimental data are scarce for the properties under investigation, it was in some cases necessary to extrapolate the available correlations to temperatures or water vapor contents where no experimental data could be found. The derived equations are compared with the pure component values for dry air and water vapor and, as far as possible, also for air-water vapor mixtures.

  7. Investigation of Methanol Formation Mechanisms in H2O+CH4 Ices Subjected to 5 keV Electrons at a 10-100 K Temperature Range

    NASA Astrophysics Data System (ADS)

    Stelmach, K. B.; Cooper, P. D.

    2014-12-01

    Methane (CH4) and water are one of the most common molecules in both planetary bodies and interstellar dust grains. Another common molecule, methanol (CH3OH), is thought to form in CH4+H2O ices. However, the exact formation mechanisms of methanol from cosmic rays are not well known, especially in the temperatures of interest. Experiments were performed using high energy electrons (5 keV) to irradiate mixtures of 1:10, 1:5, and 1:3 CH4+H2O ices under a temperature range of 10-100 Kelvin with Fourier Transform Infrared (FTIR) spectroscopy being used to identify the products. Isotopologues of the two molecules (D2O and CD4) were used to probe for the mechanisms. Other products were formed as well and their potential mechanisms are identified. The implications of the mechanisms for planetary and interstellar chemistry are discussed.

  8. SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Lobanova, Olga; Avendaño, Carlos; Lafitte, Thomas; Müller, Erich A.; Jackson, George

    2015-05-01

    In this work, we develop coarse-grained (CG) force fields for water, where the effective CG intermolecular interactions between particles are estimated from an accurate description of the macroscopic experimental vapour-liquid equilibria data by means of a molecular-based equation of state. The statistical associating fluid theory for Mie (generalised Lennard-Jones) potentials of variable range (SAFT-VR Mie) is used to parameterise spherically symmetrical (isotropic) force fields for water. The resulting SAFT-γ CG models are based on the Mie (8-6) form with size and energy parameters that are temperature dependent; the latter dependence is a consequence of the angle averaging of the directional polar interactions present in water. At the simplest level of CG where a water molecule is represented as a single bead, it is well known that an isotropic potential cannot be used to accurately reproduce all of the thermodynamic properties of water simultaneously. In order to address this deficiency, we propose two CG potential models of water based on a faithful description of different target properties over a wide range of temperatures: our CGW1-vle model is parameterised to match the saturated-liquid density and vapour pressure; our other CGW1-ift model is parameterised to match the saturated-liquid density and vapour-liquid interfacial tension. A higher level of CG corresponding to two water molecules per CG bead is also considered: the corresponding CGW2-bio model is developed to reproduce the saturated-liquid density and vapour-liquid interfacial tension in the physiological temperature range, and is particularly suitable for the large-scale simulation of bio-molecular systems. A critical comparison of the phase equilibrium and transport properties of the proposed force fields is made with the more traditional atomistic models.

  9. Improvements in the realization of the ITS-90 over the temperature range from the melting point of gallium to the freezing point of silver at NIM

    SciTech Connect

    Sun, J.; Zhang, J. T.; Ping, Q.

    2013-09-11

    The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and this will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.

  10. Temperature controls on sediment production in the Oregon Coast Range - abiotic frost-cracking processes vs. biotic-dominated processes over the last 40 ka

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Roering, J. J.; Praskievicz, S. J.; Hales, T. C.; Gavin, D. G.; Bartlein, P. J.

    2012-12-01

    The Oregon Coast Range (OCR) is a mid-latitude soil-mantled landscape wherein measured uplift rates are broadly consistent with long-term measured erosion rates. The OCR was unglaciated during the last glacial period (~ 26 to 13 ka) and therefore is considered an ideal steady-state landscape to study and model geomorphic processes. However, previously published paleoclimate data inferred from a 42 ka paleolake fossil archive in the OCR Little Lake watershed (3 km2) strongly suggest that temperatures in the OCR during the last glacial were well within the frost cracking temperature window of -3 to -8 °C. Therefore, we suggest that while present-day OCR sediment production is dominated by biota, specifically trees, frost-driven abiotic processes may have played a significant role in modulating erosion rates and landscape evolution during the last glacial interval. A new sediment core from the Little Lake basin at the lake's edge, centered proximal to hillslopes, spans ~ 50 ka to 20 ka. We observe a fourfold increase in sediment accumulation rates from the non-glacial interval (~50 ka to ~ 26 ka) to the last glacial interval (~ 26 ka to ~ 20 ka), including > 12 m of sediment from the last glacial maximum, dated at 23,062 - 23,581 cal yr B.P. The decreased inferred temperatures and increased sedimentation rates suggest increased sediment production and transport via frost processes during the last glacial interval, in contrast to sediment production and erosion rates controlled by biotic processes in the non-glacial intervals. We present a climate-time series scenario of likely frost-cracking intensity across the entire Oregon Coast Range from the non-glacial interval (at least 3 °C cooler than present-day temperatures) through the glacial interval (7 to 14 °C cooler) and into the Holocene (January temperatures ~ 5 °C). We use the PRISM dataset, which consists of monthly temperature and precipitation for the contiguous United States, to calculate local monthly

  11. Modeling the temperature dependence of the index of refraction of liquid water in the visible and the near-ultraviolet ranges by a genetic algorithm.

    PubMed

    Djurisić, A B; Stanić, B V

    1999-01-01

    A simple formula describing the dependence of the index of refraction of water on wavelength in the visible and the near-UV ranges and at temperature from 0 degrees C to 100 degrees C is given. Parameters of the formula were determined by minimization of discrepancies between calculated and experimental data by use of an elite genetic algorithm with adaptive mutations. This algorithm was devised with a particular application in mind, the determination of model parameters. Its superiority over the simple genetic algorithm in locating the global minimum was demonstrated on a family of multiminima test functions for as many as 100 variables. PMID:18305581

  12. Deformation behavior of a Ni-30Al-20Fe-0.05Zr intermetallic alloy in the temperature range 300 to 1300 K

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Noebe, R. D.

    1992-01-01

    The deformation properties of an extruded Ni-30Al-20Fe-0.05Zr (at. pct) alloy in the temperature range 300-1300 K were investigated under initial tensile strain rates that varied between 10 exp -6 and 10 exp -3/sec and in constant load compression creep between 1073 and 1300 K. Three deformation regimes were observed: region I, occurring between 400 and 673 K, which consisted of an athermal regime of less than 0.3 percent tensile ductility; region II, between 673 and 1073, where exponential creep was dominant; and region III, between 1073 and 1300 K, where a significant improvement in tensile ductility was observed.

  13. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    NASA Astrophysics Data System (ADS)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 μmol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 μmol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 μmol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect

  14. Easily Accessible Rare-Earth-Containing Phosphonium Room-Temperature Ionic Liquids: EXAFS, Luminescence, and Magnetic Properties.

    PubMed

    Alvarez-Vicente, Jorge; Dandil, Sahra; Banerjee, Dipanjan; Gunaratne, H Q Nimal; Gray, Suzanne; Felton, Solveig; Srinivasan, Geetha; Kaczmarek, Anna M; Van Deun, Rik; Nockemann, Peter

    2016-06-16

    A range of liquid rare earth chlorometallate complexes with the alkyl-phosphonium cation, [P666 14](+), has been synthesized and characterized. EXAFS confirmed the predominant liquid-state speciation of the [LnCl6](3-) ion in the series with Ln = Nd, Eu, Dy. The crystal structure of the shorter-alkyl-chain cation analogue [P4444](+) has been determined and exhibits a very large unit cell. The luminescence properties, with visible-light emissions of the liquid Tb, Eu, Pr, and Sm and the NIR emissions for the Nd and Er compounds, were determined. The effective magnetic moments were measured and fitted for the Nd, Tb, Ho, Dy, Gd, and Er samples. PMID:27203286

  15. The thermopower in the temperature range T{sub c}-1000K and the bank spectrum of Bi-based superconductors

    SciTech Connect

    Gasumyants, V.E.; Vladimirskaya, E.V.; Smirnov, V.I.; Kazanskiy, S.V.

    1995-04-01

    The temperature dependencies of thermopower, S, in the range T = T{sub c}-1000K as well as of resistivity and Hall coefficient in the range T = T{sub c}-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T{sub c} superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T{sub c}-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  16. The thermopower in the temperature range T(sub c)-1000K and the bank spectrum of Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Smirnov, V. I.; Kazanskiy, S. V.

    1995-01-01

    The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  17. The Nature of The Interface of Hcl/ice and Hbr/ice In The Temperature Range 190­205 K

    NASA Astrophysics Data System (ADS)

    Aguzzi, A.; Fluckiger, B.; Rossi, M. J.

    We investigated the structural properties of the near­surface region of various types of HX (X = Cl, Br) doped ice. We monitored the time dependent [HX] in the interface region using the fast reaction titration XONO2 + HX X2 + HNO3. These "dope and probe" experiments reveal that HX located in a well defined region of thickness I is immediately available for titration, whatever the flow of XONO2. In the temperature range 190­200 K, we measured a value of IHCl = 48 +/- 5, 123 +/- 18 and 411 +/- 34 nm for (SC), (C) and (B) ices, respectively. At 190 K the corresponding values for HBr are IHBr = 16 +/- 5, 48 +/- 12, 85 +/- 20 nm. Finally, we have determined the bulk diffusion coefficient for HX, DHX, according to Fick's laws of diffusion. We obtained values of DHCl = 4.5·10-15 -1.0·10-12 cm2/s and DHBr = 2.6·10-16 -9.5·10-15 cm2/s in the temperature range 190­205 K depending on the type of ice. The consequences of these results for heterogeneous on ice particles such as Cirrus clouds contrails and PSC type II will be discussed.

  18. Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Ting; Pan, Hsiao-An; Wu, Nae-Lih; Chen, Geroge Zheng

    2015-01-01

    This is the first investigation on electrically conducting polymers-based supercapacitor electrodes over a wide temperature range, from -18 °C to 60 °C. A high-performance supercapacitor electrode material consisting of TiC nanocube core and conformal crystalline polypyrrole (PPy)/poly-vinyl-alcohol (PVA) lamellar shell has been synthesized by heterogeneous nucleation-induced interfacial crystallization. PPy is induced to crystallize on the negatively charged TiC nanocube surfaces via strong interfacial interactions. In this organic-inorganic hybrid nanocomposite, the long chain PVA enables enhanced cycle life due to improved mechanical properties, and the TiC nanocube not only contributes to electron conduction, but also dictates the PPy morphology/crystallinity for maximizing the charging-discharging performance. The crystalline PPy/PAV layer on the TiC nanocube offers unprecedented high capacity (>350 F g-1-PPy at 300 mV s-1 with ΔV = 1.6 V) and cycling stability in a temperature range from -18 °C to 60 °C. The presented hybrid-filler and interfacial crystallization strategies can be applied to the exploration of new-generation high-power conducting polymer-based supercapacitor materials.

  19. Regional Variations in U.S. Diurnal Temperature Range for the 11 14 September 2001 Aircraft Groundings: Evidence of Jet Contrail Influence on Climate.

    NASA Astrophysics Data System (ADS)

    Travis, David J.; Carleton, Andrew M.; Lauritsen, Ryan G.

    2004-03-01

    The grounding of all commercial aircraft within U.S. airspace for the 3-day period following the 11 September 2001 terrorist attacks provides a unique opportunity to study the potential role of jet aircraft contrails in climate. Contrails are most similar to natural cirrus clouds due to their high altitude and strong ability to efficiently reduce outgoing infrared radiation. However, they typically have a higher albedo than cirrus; thus, they are better at reducing the surface receipt of incoming solar radiation. These contrail characteristics potentially suppress the diurnal temperature range (DTR) when contrail coverage is both widespread and relatively long lasting over a specific region. During the 11 14 September 2001 grounding period natural clouds and contrails were noticeably absent on high-resolution satellite imagery across the regions that typically receive abundant contrail coverage. A previous analysis of temperature data for the grounding period reported an anomalous increase in the U.S.-averaged, 3-day DTR value. Here, the spatial variation of the DTR anomalies as well as the separate contributions from the maximum and minimum temperature departures are analyzed. These analyses are undertaken to better evaluate the role of jet contrail absence and synoptic weather patterns during the grounding period on the DTR anomalies.It is shown that the largest DTR increases occurred in regions where contrail coverage is typically most prevalent during the fall season (from satellite-based contrail observations for the 1977 79 and 2000 01 periods). These DTR increases occurred even in those areas reporting positive departures of tropospheric humidity, which may reduce DTR, during the grounding period. Also, there was an asymmetric departure from the normal maximum and minimum temperatures suggesting that daytime temperatures responded more to contrail absence than did nighttime temperatures, which responded more to synoptic conditions. The application of a

  20. A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V. V.; Soubiran, C.; Belik, S. I.

    2004-12-01

    Highly precise temperatures (σ = 10-15 K) have been determined from line depth ratios for a set of 248 F-K field dwarfs of about solar metallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42 000), high S/N echelle spectra. A new gap has been discovered in the distribution of stars on the Main Sequence in the temperature range 5560 to 5610 K. This gap coincides with a jump in the microturbulent velocity Vt and the well-known Li depression near 5600 K in field dwarfs and open clusters. As the principal cause of the observed discontinuities in stellar properties we propose the penetration of the convective zone into the inner layers of stars slightly less massive than the Sun and related to it, a change in the temperature gradient. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute-Provence (France). Full Table 1 is only available in electronic form at http://www.edpsciences.org