Sample records for accessing ns-mus side

  1. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    PubMed

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  2. Nova Mus 2008 = QY Mus

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2008-10-01

    Nova Mus 2008 = QY Mus was discovered by William Liller, Vina del Mar, Chile, on 2008 September 28.998 UT at magnitude 8.6 (Tech Pan film + orange filter). The position is RA = 13h 16m 36.44s , Dec = -67d 36m 47.8s (from P. Nelson). This object was announced as a nova in IAU Circular 8990 (Daniel W.E. Green, editor). The nova classification was determined using low-resolution spectra by W. Liller indicating the presence of broad H-alpha lines at least 2300 angstroms wide. Several observers confirmed the nova and provided photometry. The position above was provided by Peter Nelson (Ellinbank, Vic., Aus.), and is averaged from four separate exposures (rms error approx. 0.4 arcseconds). The GCVS team have formally designated Nova Mus 2008 as QY MUS. Observations should be reported to the AAVSO International Database as QY MUS.

  3. Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein

    PubMed Central

    Benitez, Anaid; Yuan, Fenghua; Nakajima, Satoshi; Wei, Leizhen; Qian, Liangyue; Myers, Richard; Hu, Jennifer J.; Lan, Li; Zhang, Yanbin

    2014-01-01

    MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner. PMID:24170812

  4. Fluorescence Determination of Tryptophan Side-Chain Accessibility and Dynamics in Triple-Helical Collagen-Like Peptides

    PubMed Central

    Simon-Lukasik, Kristine V.; Persikov, Anton V.; Brodsky, Barbara; Ramshaw, John A. M.; Laws, William R.; Alexander Ross, J. B.; Ludescher, Richard D.

    2003-01-01

    We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)n. About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5–9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter (∼3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels. PMID:12524302

  5. Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization.

    PubMed

    Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J

    1983-02-01

    Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.

  6. Client-Side Image Maps: Achieving Accessibility and Section 508 Compliance

    ERIC Educational Resources Information Center

    Beasley, William; Jarvis, Moana

    2004-01-01

    Image maps are a means of making a picture "clickable", so that different portions of the image can be hyperlinked to different URLS. There are two basic types of image maps: server-side and client-side. Besides requiring access to a CGI on the server, server-side image maps are undesirable from the standpoint of accessibility--creating…

  7. One normal void and residual following MUS surgery is all that is necessary in most patients.

    PubMed

    Ballard, Paul; Shawer, Sami; Anderson, Colette; Khunda, Aethele

    2018-04-01

    There is considerable variation worldwide on how the assessment of voiding function is performed following midurethral sling (MUS) surgery. There is potentially a financial cost, and reduction in efficiency when patient discharge is delayed. Using our current practice of two normal void and residual (V&R) readings before discharge, the aim of this retrospective study was to evaluate the likelihood of an abnormal second V&R test if the first V&R test was normal in order to determine if a policy of discharge after only one satisfactory V&R test is reasonable. Data from 400 patients who had had MUS surgery with or without other procedures were collected. Our unit protocol included two consecutive voids of greater than 200 ml with residuals less than 150 ml before discharge. The patients were divided into the following groups: MUS only, MUS plus anterior colporrhaphy (AR) plus any other procedures (MUS/AR), and MUS with any non-AR procedures (MUS+). Complete datasets were available for 335 patients. Once inadequate tests (low volume voids <200 ml) had been excluded (28% overall), the likelihood of an abnormal second V&R test if the first test was normal was 7.1% overall, but 3.6% for MUS, 11.5% for MUS/AR and 8.6% for MUS+. The findings in the MUS-only group indicate that it is probably safe to discharge patients after one satisfactory V&R test, as long as safety measures such as 'open access' are available so that patients have unhindered readmission if problems arise.

  8. A 16K-bit static IIL RAM with 25-ns access time

    NASA Astrophysics Data System (ADS)

    Inabe, Y.; Hayashi, T.; Kawarada, K.; Miwa, H.; Ogiue, K.

    1982-04-01

    A 16,384 x 1-bit RAM with 25-ns access time, 600-mW power dissipation, and 33 sq mm chip size has been developed. Excellent speed-power performance with high packing density has been achieved by an oxide isolation technology in conjunction with novel ECL circuit techniques and IIL flip-flop memory cells, 980 sq microns (35 x 28 microns) in cell size. Development results have shown that IIL flip-flop memory cell is a trump card for assuring achievement of a high-performance large-capacity bipolar RAM, in the above 16K-bit/chip area.

  9. Superovulation and in vitro oocyte maturation in three species of mice (Mus musculus, Mus spretus and Mus spicilegus).

    PubMed

    Martín-Coello, J; González, R; Crespo, C; Gomendio, M; Roldan, E R S

    2008-10-01

    Mouse oocytes can be obtained via superovulation or using in vitro maturation although several factors, including genetic background, may affect response. Our previous studies have identified various mouse species as models to understand the role of sexual selection on the evolution of sperm traits and function. In order to do comparative studies of sperm-oocyte interaction, we sought reliable methods for oocyte superovulation and in vitro maturation in mature females of three mouse species (genus Mus). When 5 IU pregnant mare's serum gonadotrophin (PMSG) and 5 IU human chorionic gonadotrophin (hCG) were injected 48 h apart, and oocytes collected 14 h post-hCG, good responses were obtained in Mus musculus (18+/-1.3 oocytes/female; mean+/-S.E.M.) and Mus spretus (12+/-0.8), but no ovulation was seen in Mus spicilegus. Changes in PMSG or hCG doses, or longer post-hCG intervals, did not improve results. Use of PMSG/luteinizing hormone (LH) resulted in good responses in M. musculus (19+/-1.2) and M. spretus (12+/-1.1) but not in M. spicilegus (5+/-0.9) with ovulation not increasing with higher LH doses. Follicular puncture 48 h after PMSG followed by in vitro maturation led to a high oocyte yield in the three species (M. musculus, 23+/-0.9; M. spretus, 17+/-1.1; M. spicilegus, 10+/-0.9) with a consistently high maturation rates. In vitro fertilization of both superovulated and in vitro matured oocytes resulted in a high proportion of fertilization (range: 83-87%) in the three species. Thus, in vitro maturation led to high yields in all three species. These results will allow future studies on gamete interaction in these closely related species and the role of sexual selection in gamete compatibility.

  10. 8. LOWER STATION, FIRST FLOOR, EAST SIDE ACCESS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LOWER STATION, FIRST FLOOR, EAST SIDE ACCESS TO INCLINE PLANE CARS, LOOKING NORTH NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  11. 9. LOWER STATION, FIRST FLOOR, DOORS FOR EAST SIDE ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. LOWER STATION, FIRST FLOOR, DOORS FOR EAST SIDE ACCESS TO INCLINE PLANE CARS, LOOKING EAST SOUTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  12. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    PubMed Central

    Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul

    2018-01-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166

  13. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    PubMed

    Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul

    2018-04-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  15. MusTRD can regulate postnatal fiber-specific expression.

    PubMed

    Issa, Laura L; Palmer, Stephen J; Guven, Kim L; Santucci, Nicole; Hodgson, Vanessa R M; Popovic, Kata; Joya, Josephine E; Hardeman, Edna C

    2006-05-01

    Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.

  16. Immunologic Control of Mus musculus Papillomavirus Type 1

    PubMed Central

    Peng, Shiwen; Chang, Yung-Nien; Hung, Chien-Fu; Roden, Richard B. S.

    2015-01-01

    Persistent papillomas developed in ~10% of out-bred immune-competent SKH-1 mice following MusPV1 challenge of their tail, and in a similar fraction the papillomas were transient, suggesting potential as a model. However, papillomas only occurred in BALB/c or C57BL/6 mice depleted of T cells with anti-CD3 antibody, and they completely regressed within 8 weeks after depletion was stopped. Neither CD4+ nor CD8+ T cell depletion alone in BALB/c or C57BL/6 mice was sufficient to permit visible papilloma formation. However, low levels of MusPV1 were sporadically detected by either genomic DNA-specific PCR analysis of local skin swabs or in situ hybridization of the challenge site with an E6/E7 probe. After switching to CD3+ T cell depletion, papillomas appeared upon 14/15 of mice that had been CD4+ T cell depleted throughout the challenge phase, 1/15 of CD8+ T cell depleted mice, and none in mice without any prior T cell depletion. Both control animals and those depleted with CD8-specific antibody generated MusPV1 L1 capsid-specific antibodies, but not those depleted with CD4-specific antibody prior to T cell depletion with CD3 antibody. Thus, normal BALB/c or C57BL/6 mice eliminate the challenge dose, whereas infection is suppressed but not completely cleared if their CD4 or CD8 T cells are depleted, and recrudescence of MusPV1 is much greater in the former following treatment with CD3 antibody, possibly reflecting their failure to generate capsid antibody. Systemic vaccination of C57BL/6 mice with DNA vectors expressing MusPV1 E6 or E7 fused to calreticulin elicits potent CD8 T cell responses and these immunodominant CD8 T cell epitopes were mapped. Adoptive transfer of a MusPV1 E6-specific CD8+ T cell line controlled established MusPV1 infection and papilloma in RAG1-knockout mice. These findings suggest the potential of immunotherapy for HPV-related disease and the importance of host immunogenetics in the outcome of infection. PMID:26495972

  17. Crystal structure of the Mus81-Eme1 complex.

    PubMed

    Chang, Jeong Ho; Kim, Jeong Joo; Choi, Jung Min; Lee, Jung Hoon; Cho, Yunje

    2008-04-15

    The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.

  18. MUS81 is associated with cell proliferation and cisplatin sensitivity in serous ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Suhong; Zheng, Hui; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    The dysfunction of DNA damage repair (DDR) pathway contributes to tumorigenesis and drug-resistance in cancer. MUS81 is a member of the conserved xeroderma pigmentosum group F (XPF) family protein of endonucleases, which is important to the DDR pathway. However, the role of MUS81 in the development of ovarian cancer remains uncertain. To explore the expression of MUS81 and its association to serous ovarian cancer (SOC), 43 biopsies of SOC patients were detected by qRT-PCR, and 29 specimens were further performed by immunohistochemistry analysis. Here, we observed that MUS81 was over-expressed in SOC tissues at both transcript and protein levels, andmore » the expression level of MUS81 protein in ovarian cancer cell lines was also higher than that in human normal ovarian surface epithelial cell line (HOSEpiC). We also found that down-regulation of MUS81 expression in ovarian cancer cells inhibited cell proliferation and colony formation ability, and influenced cell cycle progression. Moreover, inhibition of MUS81 expression induced cellular senescence and enhanced the antitumor effect of cisplatin. Down-regulation of MUS81 expression could suppress the growth and development of SOC. These results indicate that MUS81 might play important roles in the progression of SOC and influence the antitumor effect of cisplatin. - Highlights: • MUS81 was overexpression in serous ovarian cancer (SOC). • Meanwhile down-regulation of inhibited cell proliferation and influenced cell cycle progression. • Inhibition of MUS81 induced cell cellular senescence and enhanced the antitumor effect of cisplatin. • Down-regulation of MUS81 expression could suppress the growth and development of SOC.« less

  19. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress.

    PubMed

    Palma, Anita; Pugliese, Giusj Monia; Murfuni, Ivana; Marabitti, Veronica; Malacaria, Eva; Rinalducci, Sara; Minoprio, Anna; Sanchez, Massimo; Mazzei, Filomena; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro

    2018-06-01

    The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.

  20. Mechanism of Acetylcholinesterase Inhibition by Fasciculin: A 5-ns Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Kaihsu; Shen, T Y.; Henchman, Richard H.

    Our previous molecular dynamics simulation (10 ns) of mouse acetylcholinesterase (EC 3.1.1.7) revealed complex fluctuation of the enzyme active site gorge. Now we report a 5-ns simulation of acetylcholinesterase complexed with fasciculin 2. Fasciculin 2 binds to the gorge entrance of acetylcholinesterase with excellent complementarity and many polar and hydrophobic interactions. In this simulation of the protein-protein complex, where fasciculin 2 appears to sterically block access of ligands to the gorge, again we observe a two-peaked probability distribution of the gorge width. When fasciculin is present, the gorge width distribution is altered such that the gorge is more likely tomore » be narrow. Moreover, there are large increases in the opening of alternative passages, namely, the side door (near Thr 75) and the back door (near Tyr 449). Finally, the catalytic triad arrangement in the acetylcholinesterase active site is disrupted with fasciculin bound. These data support that, in addition to the steric obstruction seen in the crystal structure, fasciculin may inhibit acetylcholinesterase by combined allosteric and dynamical means. Additional data from these simulations can be found at http://mccammon.ucsd.edu/.« less

  1. Attending to Issues of Access in Contemporary Times: Centring a Significant Side Issue

    ERIC Educational Resources Information Center

    Cipollone, Kristin; Stich, Amy Elizabeth

    2012-01-01

    Although methodological discussions abound in qualitative research, little time is devoted to access, arguably one of the most important methodological components of social research. Access has often been treated as a side issue by scholarly sources, receiving only cursory attention, generally in a way that reduces it to a mere strategy and severs…

  2. Dilatonic parallelizable NS-NS backgrounds

    NASA Astrophysics Data System (ADS)

    Kawano, Teruhiko; Yamaguchi, Satoshi

    2003-08-01

    We complete the classification of parallelizable NS-NS backgrounds in type II supergravity by adding the dilatonic case to the result of Figueroa-O'Farrill on the non-dilatonic case. We also study the supersymmetry of these parallelizable backgrounds. It is shown that all the dilatonic parallelizable backgrounds have sixteen supersymmetries.

  3. A split face study to document the safety and efficacy of clearance of melasma with a 5 ns q switched Nd YAG laser versus a 50 ns q switched Nd YAG laser.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Mishra, Vineet; Miller, Lee

    2014-12-01

    To determine the safety and efficacy of a 50 ns Q switched Nd YAG laser vs. a 5 ns Q switched Nd YAG laser for clearance of melasma. To compare subject satisfaction, efficacy, and comfort level between the two lasers. This is a prospective, randomized split face clinical study. The study was approved by the Scripps IRB. Ten healthy female subjects with moderate to severe melasma were enrolled. Each subject had three laser treatments one month apart. Patients were followed up approximately 1 month, 3 months, and 6 months after the final laser treatment. A treatment session consisted of a microdermabrasion, 1064 nm QS laser, and topicals. Subjects were asked to rate treatment pain based on a numerical scale range 0-10 (0 = no pain and 10 = worst pain). A melasma area and severity index (MASI) grading system was applied. Also, melanin measurements were acquired by a reflectance spectrophotometer. Side effects were documented during the study including post treatment erythema. Eight patients completed the study. Subjects showed improvement on both sides of the face. From baseline to 1 month post the final laser treatment, the average MASI scores showed a 16% reduction for the 50 ns QS 1064 nm laser vs. a 27% reduction for the 5 ns QS 1064 nm laser (both significant versus baseline pigment, P < 0.05). This difference in MASI scores between the two lasers was not statistically significant (P = 0.87930). Laser treatments displayed mild erythema that resolved after one day. The melanin meter measurements showed a reduction in pigment readings on both sides. Three months after the final treatment there was some relapse in the melasma, as the mean pigment reduction fell to 12% for the 50 ns laser and 11% for the 5 ns laser. By 3 months pigment reduction was not statistically significant for either laser, and no significant differences in pigment reduction were noted between the two pulse durations. There was a statistically significant difference (P < 0.05) in pain scores

  4. Structural Insights into the Regulation of Foreign Genes in Salmonella by the Hha/H-NS Complex*

    PubMed Central

    Ali, Sabrina S.; Whitney, John C.; Stevenson, James; Robinson, Howard; Howell, P. Lynne; Navarre, William Wiley

    2013-01-01

    The bacterial nucleoid-associated proteins Hha and H-NS jointly repress horizontally acquired genes in Salmonella, including essential virulence loci encoded within Salmonella pathogenicity islands. Hha is known to interact with the N-terminal dimerization domain of H-NS; however, the manner in which this interaction enhances transcriptional silencing is not understood. To further understand this process, we solved the x-ray crystal structure of Hha in complex with the N-terminal dimerization domain of H-NS (H-NS(1–46)) to 3.2 Å resolution. Two monomers of Hha bind to symmetrical sites on either side of the H-NS(1–46) dimer. Disruption of the Hha/H-NS interaction by the H-NS site-specific mutation I11A results in increased expression of the Hha/H-NS co-regulated gene hilA without affecting the expression levels of proV, a target gene repressed by H-NS in an Hha-independent fashion. Examination of the structure revealed a cluster of conserved basic amino acids that protrude from the surface of Hha on the opposite side of the Hha/H-NS(1–46) interface. Hha mutants with a diminished positively charged surface maintain the ability to interact with H-NS but can no longer regulate hilA. Increased expression of the hilA locus did not correspond to significant depletion of H-NS at the promoter region in chromatin immunoprecipitation assays. However, in vitro, we find Hha improves H-NS binding to target DNA fragments. Taken together, our results show for the first time how Hha and H-NS interact to direct transcriptional repression and reveal that a positively charged surface of Hha enhances the silencing activity of H-NS nucleoprotein filaments. PMID:23515315

  5. Dengue virus NS2 and NS4: Minor proteins, mammoth roles.

    PubMed

    Gopala Reddy, Sindhoora Bhargavi; Chin, Wei-Xin; Shivananju, Nanjunda Swamy

    2018-04-17

    Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

    PubMed Central

    Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.

    2015-01-01

    The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486

  7. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus.

    PubMed Central

    Pietras, D F; Bennett, K L; Siracusa, L D; Woodworth-Gutai, M; Chapman, V M; Gross, K W; Kane-Haas, C; Hastie, N D

    1983-01-01

    We report the construction of a small library of recombinant plasmids containing Mus musculus repetitive DNA inserts. The repetitive cloned fraction was derived from denatured genomic DNA by reassociation to a Cot value at which repetitive, but not unique, sequences have reannealed followed by exhaustive S1 nuclease treatment to degrade single stranded DNA. Initial characterizations of this library by colony filter hybridizations have led to the identification of a previously undetected M. musculus minor satellite as well as to clones containing M. musculus major satellite sequences. This new satellite is repeated 10-20 times less than the major satellite in the M. musculus genome. It has a repeat length of 130 nucleotides compared with the M. musculus major satellite with a repeat length of 234 nucleotides. Sequence analysis of the minor satellite has shown that it has a 29 base pair region with extensive homology to one of the major satellite repeating subunits. We also show by in situ hybridization that this minor satellite sequence is located at the centromeres and possibly the arms of at least half the M musculus chromosomes. Sequences related to the minor satellite have been found in the DNA of a related Mus species, Mus spretus, and may represent the major satellite of that species. Images PMID:6314268

  8. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    PubMed Central

    Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María

    2010-01-01

    The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147

  9. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease.

    PubMed

    Schüller, Andreas; Yin, Zheng; Brian Chia, C S; Doan, Danny N P; Kim, Hyeong-Kyu; Shang, Luqing; Loh, Teck Peng; Hill, Jeffery; Vasudevan, Subhash G

    2011-10-01

    A series of tripeptide aldehyde inhibitors were synthesized and their inhibitory effect against dengue virus type 2 (DENV2) and West Nile virus (WNV) NS3 protease was evaluated side by side with the aim to discover potent flaviviral protease inhibitors and to examine differences in specificity of the two proteases. The synthesized inhibitors feature a varied N-terminal cap group and side chain modifications of a P2-lysine residue. In general a much stronger inhibitory effect of the tripeptide inhibitors was observed toward WNV protease. The inhibitory concentrations against DENV2 protease were in the micromolar range while they were submicromolar against WNV. The data suggest that a P2-arginine shifts the specificity toward DENV2 protease while WNV protease favors a lysine in the P2 position. Peptides with an extended P2-lysine failed to inhibit DENV2 protease suggesting a size-constrained S2 pocket. Our results generally encourage the investigation of di- and tripeptide aldehydes as inhibitors of DENV and WNV protease. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1.

    PubMed

    Boddy, M N; Lopez-Girona, A; Shanahan, P; Interthal, H; Heyer, W D; Russell, P

    2000-12-01

    Cds1, a serine/threonine kinase, enforces the S-M checkpoint in the fission yeast Schizosaccharomyces pombe. Cds1 is required for survival of replicational stress caused by agents that stall replication forks, but how Cds1 performs these functions is largely unknown. Here we report that the forkhead-associated-1 (FHA1) protein-docking domain of Cds1 interacts with Mus81, an evolutionarily conserved damage tolerance protein. Mus81 has an endonuclease homology domain found in the XPF nucleotide excision repair protein. Inactivation of mus81 reveals a unique spectrum of phenotypes. Mus81 enables survival of deoxynucleotide triphosphate starvation, UV radiation, and DNA polymerase impairment. Mus81 is essential in the absence of Bloom's syndrome Rqh1 helicase and is required for productive meiosis. Genetic epistasis studies suggest that Mus81 works with recombination enzymes to properly replicate damaged DNA. Inactivation of Mus81 triggers a checkpoint-dependent delay of mitosis. We propose that Mus81 is involved in the recruitment of Cds1 to aberrant DNA structures where Cds1 modulates the activity of damage tolerance enzymes.

  11. Semantic access occurs outside of awareness for the ground side of a figure.

    PubMed

    Cacciamani, Laura; Mojica, Andrew J; Sanguinetti, Joseph L; Peterson, Mary A

    2014-11-01

    Traditional theories of vision assume that figures and grounds are assigned early in processing, with semantics being accessed later and only by figures, not by grounds. We tested this assumption by showing observers novel silhouettes with borders that suggested familiar objects on their ground side. The ground appeared shapeless near the figure's borders; the familiar objects suggested there were not consciously perceived. Participants' task was to categorize words shown immediately after the silhouettes as naming natural versus artificial objects. The words named objects from the same or from a different superordinate category as the familiar objects suggested in the silhouette ground. In Experiment 1, participants categorized words faster when they followed silhouettes suggesting upright familiar objects from the same rather than a different category on their ground sides, whereas no category differences were observed for inverted silhouettes. This is the first study to show unequivocally that, contrary to traditional assumptions, semantics are accessed for objects that might be perceived on the side of a border that will ultimately be perceived as a shapeless ground. Moreover, although the competition for figural status results in suppression of the shape of the losing contender, its semantics are not suppressed. In Experiment 2, we used longer silhouette-to-word stimulus onset asynchronies to test whether semantics would be suppressed later in time, as might occur if semantics were accessed later than shape memories. No evidence of semantic suppression was observed; indeed, semantic activation of the objects suggested on the ground side of a border appeared to be short-lived. Implications for feedforward versus dynamical interactive theories of object perception are discussed.

  12. Insertion side, body position and circuit life during continuous renal replacement therapy with femoral vein access.

    PubMed

    Kim, In Byung; Fealy, Nigel; Baldwin, Ian; Bellomo, Rinaldo

    2011-01-01

    Choice of insertion side and patient position during continuous renal replacement therapy (CRRT) with femoral vein vascular access may affect circuit life. We investigated if there is an association between choice of insertion side and body position and its changes and circuit life during CRRT with femoral vein access. We studied 50 patients receiving CRRT via femoral vein access with a sequential retrospective study in a tertiary intensive care unit. We defined two groups: patients with right or left femoral vein access. We then obtained information on age, gender, circuit life, total heparin dose, hemoglobin concentration and coagulation variables (platelet count, international normalized ratio, and activated partial thromboplastin time) and percentage of time each patient spent in the supine, left lying, right lying, and sitting position during treatment. We studied 341 circuits in 50 patients. Mean circuit life was 13.9 h. Of these circuits, 251 (73.6%) were treated with right femoral vein access. Mean circuit life in this group was significantly longer compared with left femoral vein access (15.0 ± 14.3 vs. 10.6 ± 7.4; p = 0.019). Percentage spent in a particular position during CRRT was not significantly different between two groups. On multivariable linear regression analysis, mean circuit life was significantly and positively correlated with right vascular access site (p = 0.03) and lower platelet count (p = 0.03), but not with patient position. Right-sided insertion but not time spent in a particular position significantly affects circuit life during CRRT with femoral vein access. Copyright © 2010 S. Karger AG, Basel.

  13. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B-NS3 protease inhibitors.

    PubMed

    Luo, Pei H; Zhang, Xuan R; Huang, Lan; Yuan, Lun; Zhou, Xang Z; Gao, X; Li, Ling S

    2017-10-01

    NS2B-NS3 protease has been identified to serve as lead drug design target due to its significant role in West Nile viral (WNV) and dengue virus (DENV) reproduction and replication. There are currently no approved chemotherapeutic drugs and effective vaccines to inhibit DENV and WNV infections. In this work, 3D-QSAR pharmacophore model has been developed to discover potential inhibitory candidates. Validation through Fischer's model and decoy test indicate that the developed 3D pharmacophore model is highly predictive for DENV inhibitors, which was then employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 15 hits were subjected to further filter through molecular docking and CoMFA modeling. Finally, top three hits were identified as lead compounds or potential inhibitory candidates with IC 50 values of ∼0.4637 µM and fitness of ∼57.73. It is implied from CoMFA modeling that substituents at the side site of benzotriazole such as a p-nitro group (e.g. biphenyl head) and a carbonyl (e.g. carboxylate function) at the side site of furan or amino group may improve bioactivity of ZINC85645245, respectively. Molecular dynamics simulations (MDS) were performed to discover new interactions and reinforce the binding modes from docking for the hits also. The QSAR and MDS results obtained from this work should be useful in determining structural requirements for inhibitor development as well as in designing more potential inhibitors for NS2B-NS3 protease.

  14. Interference of transcription across H-NS binding sites and repression by H-NS.

    PubMed

    Rangarajan, Aathmaja Anandhi; Schnetz, Karin

    2018-05-01

    Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.

  15. Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach.

    PubMed

    Liu, Dandan; Ji, Juan; Ndongwe, Tanya P; Michailidis, Eleftherios; Rice, Charles M; Ralston, Robert; Sarafianos, Stefan G

    2015-01-01

    While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates

    PubMed Central

    Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje

    2014-01-01

    The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841

  17. Joint Molecule Resolution Requires the Redundant Activities of MUS-81 and XPF-1 during Caenorhabditis elegans Meiosis

    PubMed Central

    O'Neil, Nigel J.; Martin, Julie S.; Youds, Jillian L.; Ward, Jordan D.; Petalcorin, Mark I. R.; Rose, Anne M.; Boulton, Simon J.

    2013-01-01

    The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1

  18. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development

    PubMed Central

    Brodsky, Michael H.; Sekelsky, Jeff J.; Tsang, Garson; Hawley, R. Scott; Rubin, Gerald M.

    2000-01-01

    Checkpoints block cell cycle progression in eukaryotic cells exposed to DNA damaging agents. We show that several Drosophila homologs of checkpoint genes, mei-41, grapes, and 14-3-3ε, regulate a DNA damage checkpoint in the developing eye. We have used this assay to show that the mutagen-sensitive gene mus304 is also required for this checkpoint. mus304 encodes a novel coiled-coil domain protein, which is targeted to the cytoplasm. Similar to mei-41, mus304 is required for chromosome break repair and for genomic stability. mus304 animals also exhibit three developmental defects, abnormal bristle morphology, decreased meiotic recombination, and arrested embryonic development. We suggest that these phenotypes reflect distinct developmental consequences of a single underlying checkpoint defect. Similar mechanisms may account for the puzzling array of symptoms observed in humans with mutations in the ATM tumor suppressor gene. PMID:10733527

  20. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity.

    PubMed

    Carter, P A; Swallow, J G; Davis, S J; Garland, T

    2000-03-01

    Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.

  1. Potential of MuS1 Transgenic Tobacco for Phytoremediation of the Urban Soils Contaminated with Cadmium

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Kim, Y. N.; Kim, S. H.

    2010-05-01

    Urban soils are prone to contamination by trace elements such as Cd, Cu, Pb and Zn. Phytoremediation is one of the attractive remediation methods for soils contaminated with trace elements due to its non-destructive and environmentally-friendly characteristic. Scientists have tried to find hyper-accumulator plants in nature or to develop transgenic plant through genetic engineering. This study was carried out to identify a potential of MuS1 transgenic tobacco for phytoremediation of the urban soils contaminated with Cd. MuS1 is known as a multiple stress related gene with several lines. The previous study using RT-PCR showed that the expression of MuS1 gene in tobacco plant induced tolerance to Cd stress. For this study, MuS1 transgenic tobacco and wild-type tobacco (control) were cultivated in a hydroponic system treated with Cd (0, 50, 100 and 200μM Cd) for 3 weeks. At harvest, both tobacco and nutrient solution were collected and were analyzed for Cd. Effect of Cd treatment on morphological change of the tobacco leaves was also observed by variable-pressure scanning electron microscopy (VP-SEM). The tolerance of MuS1 transgenic tobacco to Cd stress was better than that of wild-type tobacco at all Cd levels. Especially, wild-type tobacco showed chlorosis and withering with 200μM Cd treatment, whereas MuS1 transgenic tobacco gradually recovered from Cd damage. Wild-type tobacco accumulated more Cd (4.65mg per plant) than MuS1 transgenic tobacco (2.37mg per plant) with 200μM Cd treatment. Cd translocation rate from root to leaves was 81.8 % for wild-type tobacco compared to 37.1 % for MuS1 transgenic tobacco. Result of VP-SEM showed that the number of trichome in the leaves for wild-type tobacco increased in comparison with that for untreated samples after 3 weeks, while that for MuS1 transgenic tobacco was not changed by Cd treatment. Results showed that the mechanism of the recovery of the MuS1 tobacco plant was not by high level of Cd uptake and accumulation

  2. Maltose Uptake by the Novel ABC Transport System MusEFGK2I Causes Increased Expression of ptsG in Corynebacterium glutamicum

    PubMed Central

    Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W.; Krämer, Reinhard

    2013-01-01

    The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [14C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum. PMID:23543710

  3. Could GRB170817A be really correlated to an NS-NS merging?

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Khlopov, M. Yu.; Oliva, P.

    The exciting development of gravitational wave (GW) astronomy in the correlation of LIGO and VIRGO detection of GW signals makes possible to expect registration of effects of not only binary black hole (BH) coalescence but also binary neutron star (NS) merging accompanied by electromagnetic (gamma ray burst; GRB) signal. Here we consider the possibility that an NS, merging in an NS-NS or NS-BH system might be (soon) observed in correlation with any LIGO-VIRGO GWs detection. We analyze as an example the recent case of the short GRB170817A observed by Fermi and integral. The associated optical transient (OT) source in NGC4993 implies a rare near source, a consequent averaged large rate of such events (almost) compatible with expected NS-NS merging rate. However the expected beamed GRB (or short GRB) may be mostly aligned to a different direction than ours. Therefore, even soft GRB photons, spread more than hard ones, might be hardly able to shower to us. Nevertheless, a prompt spiraling electron turbine jet in largest magnetic fields, at the base of the NS-NS collapse, might shine by its tangential synchrotron radiation in spread way with its skimming photons shining in large open disk. The consequent solid angle for such soft disk gamma radiation may be large enough to be nevertheless often observed.

  4. X-Ray Detection of the Cluster Containing the Cepheid S Mus

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan

    2014-04-01

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified a population of X-ray sources whose near-IR Two Micron All Sky Survey counterparts lie at locations in the J, (J - K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt law (period-luminosity relation) calibrator.

  5. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

    PubMed

    Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris

    2017-03-01

    DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  6. The Changing Face of Hepatitis C: Recent Advances on HCV Inhibitors Targeting NS5A

    PubMed

    Rai, Diwakar; Wang, Liu; Jiang, Xuemei; Zhan, Peng; Jia, Haiyong; De Clercq, Erik; Liu, Xinyong

    2015-05-05

    Current treatment for HCV infections consists of approved direct acting antivirals (DAAs), viz. the protease inhibitors (boceprevir, telaprevir, and simeprevir), NS5B polymerase inhibitors (sofosbuvir) and NS5A inhibitor (ledipasvir) in combination with pegylated interferon α and ribavirin). These treatments have made a great improvement in the treatment of chronic HCV infections in recent years, but their adverse side effects, emergence of resistant mutants, high cost, and increased pill burden have limited their clinical use. Recently, with the increasing knowledge in understanding the HCV life cycle, more targets have been recognized. NS5A protein plays a critical role in assembly of infectious HCV particles and offering potential for HCV therapies. Therefore, discovery and development of novel DAAs targeting NS5A with novel mechanisms of action, is of great necessity to improve the quality of existing HCV treatments. In the present review, we discuss recent advances with NS5A inhibitors with potent anti-HCV activity, and the potential for the development of HCV NS5A inhibitors to combat HCV infections.

  7. Capacity allocation mechanism based on differentiated QoS in 60 GHz radio-over-fiber local access network

    NASA Astrophysics Data System (ADS)

    Kou, Yanbin; Liu, Siming; Zhang, Weiheng; Shen, Guansheng; Tian, Huiping

    2017-03-01

    We present a dynamic capacity allocation mechanism based on the Quality of Service (QoS) for different mobile users (MU) in 60 GHz radio-over-fiber (RoF) local access networks. The proposed mechanism is capable for collecting the request information of MUs to build a full list of MU capacity demands and service types at the Central Office (CO). A hybrid algorithm is introduced to implement the capacity allocation which can satisfy the requirements of different MUs at different network traffic loads. Compared with the weight dynamic frames assignment (WDFA) scheme, the Hybrid scheme can keep high priority MUs in low delay and maintain the packet loss rate less than 1% simultaneously. At the same time, low priority MUs have a relatively better performance.

  8. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development.

    PubMed

    Luo, Dahai; Vasudevan, Subhash G; Lescar, Julien

    2015-06-01

    The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats.

    PubMed

    Wang, T; Hu, X; Liang, S; Li, W; Wu, X; Wang, L; Jin, F

    2015-01-01

    Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders.

  10. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate

    NASA Astrophysics Data System (ADS)

    Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.

    2015-03-01

    The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.

  11. Identification of rRNA gene loci in the wild mouse (Mus musculus molossinus) captured at Hachioji, Tokyo.

    PubMed

    Ito, Tsuyoshi; Osawa, Susumu; Shibata, Hideshi; Kanda, Naotoshi

    2007-12-01

    Mus musculus (M. m.) molossinus has been considered an independent subspecies of Mus musculus. To elucidate the evolutional origin of this subspecies, we carried out double-color FISH using 18s-28s ribosomal DNA and mouse chromosome paint probes. Among eleven rDNA loci detected, five loci on chromosomes 12, 15, 16, 18 and 19 were common to both Mus musculus (M. m.) musculus and M. m. molossinus and the other six loci, on chromosomes 1, 5, 10, 11, 13 and 17, were characteristic in M. m. molossinus. As M. m. molossinus is thought to originate from a hybrid between ancestral colonies of M. m. musculus and Mus musculus castaneus, we supposed that these six rDNA loci might have evolved after geographical isolation of the ancestral hybrid animals from M. m. musculus and M. m. castaneus.

  12. Progress on New Hepatitis C Virus Targets: NS2 and NS5A

    NASA Astrophysics Data System (ADS)

    Marcotrigiano, Joseph

    Hepatitis C virus (HCV) is a major global health problem, affecting about 170 million people worldwide. Chronic infection can lead to cirrhosis and liver cancer. The replication machine of HCV is a multi-subunit membrane associated complex, consisting of nonstructural proteins (NS2-5B), which replicate the viral RNA genome. The structures of NS5A and NS2 were recently determined. NS5A is an essential replicase component that also modulates numerous cellular processes ranging from innate immunity to cell growth and survival. The structure reveals a novel protein fold, a new zinc coordination motif, a disulfide bond and a dimer interface. Analysis of molecular surfaces suggests the location of the membrane interaction surface of NS5A, as well as hypothetical protein and RNA binding sites. NS2 is one of two virally encoded proteases that are required for processing the viral polyprotein into the mature nonstructural proteins. NS2 is a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer and the nucleophilic cysteine by the other. The C-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. The structure also reveals possible sites of membrane interaction, a rare cis-proline residue, and highly conserved dimer contacts. The novel features of both structures have changed the current view of HCV polyprotein replication and present new opportunities for antiviral drug design.

  13. Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers

    PubMed Central

    Morgan, Andrew P.; Didion, John P.; Doran, Anthony G.; Holt, James M.; McMillan, Leonard; Keane, Thomas M.; de Villena, Fernando Pardo-Manuel

    2016-01-01

    Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction. PMID:27765810

  14. Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence

    NASA Astrophysics Data System (ADS)

    Piccirillo, Erika; Merget, Benjamin; Sotriffer, Christoph A.; do Amaral, Antonia T.

    2016-03-01

    The dengue virus (DENV) has four well-known serotypes, namely DENV1 to DENV4, which together cause 50-100 million infections worldwide each year. DENV NS2B/NS3pro is a protease recognized as a valid target for DENV antiviral drug discovery. However, NS2B/NS3pro conformational flexibility, involving in particular the NS2B region, is not yet completely understood and, hence, a big challenge for any virtual screening (VS) campaign. Molecular dynamics (MD) simulations were performed in this study to explore the DENV3 NS2B/NS3pro binding-site flexibility and obtain guidelines for further VS studies. MD simulations were done with and without the Bz-nKRR-H inhibitor, showing that the NS2B region stays close to the NS3pro core even in the ligand-free structure. Binding-site conformational states obtained from the simulations were clustered and further analysed using GRID/PCA, identifying four conformations of potential importance for VS studies. A virtual screening applied to a set of 31 peptide-based DENV NS2B/NS3pro inhibitors, taken from literature, illustrated that selective alternative pharmacophore models can be constructed based on conformations derived from MD simulations. For the first time, the NS2B/NS3pro binding-site flexibility was evaluated for all DENV serotypes using homology models followed by MD simulations. Interestingly, the number of NS2B/NS3pro conformational states differed depending on the serotype. Binding-site differences could be identified that may be crucial to subsequent VS studies.

  15. Host subspecific viral strains in European house mice: Murine cytomegalovirus in the Eastern (Mus musculus musculus) and Western house mouse (Mus musculus domesticus).

    PubMed

    Čížková, Dagmar; Baird, Stuart J E; Těšíková, Jana; Voigt, Sebastian; Ľudovít, Ďureje; Piálek, Jaroslav; Goüy de Bellocq, Joëlle

    2018-06-09

    Murine cytomegalovirus (MCMV) has been reported from house mice (Mus musculus) worldwide, but only recently from Eastern house mice (M. m. musculus), of particular interest because they form a semi-permeable species barrier in Europe with Western house mice, M. m. domesticus. Here we report genome sequences of EastMCMV (from Eastern mice), and set these in the context of MCMV genomes from genus Mus hosts. We show EastMCMV and WestMCMV are genetically distinct. Phylogeny splitting analyses show a genome wide (94%) pattern consistent with no West-East introgression, the major exception (3.8%) being a genome-terminal region of duplicated genes involved in host immune system evasion. As expected from its function, this is a region of maintenance of ancestral polymorphism: The lack of clear splitting signal cannot be interpreted as evidence of introgression. The EastMCMV genome sequences reported here can therefore serve as a well-described resource for exploration of murid MCMV diversity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Identification of Novel Rodent Herpesviruses, Including the First Gammaherpesvirus of Mus musculus▿

    PubMed Central

    Ehlers, Bernhard; Küchler, Judit; Yasmum, Nezlisah; Dural, Güzin; Voigt, Sebastian; Schmidt-Chanasit, Jonas; Jäkel, Thomas; Matuschka, Franz-Rainer; Richter, Dania; Essbauer, Sandra; Hughes, David J.; Summers, Candice; Bennett, Malcolm; Stewart, James P.; Ulrich, Rainer G.

    2007-01-01

    Rodent herpesviruses such as murine cytomegalovirus (host, Mus musculus), rat cytomegalovirus (host, Rattus norvegicus), and murine gammaherpesvirus 68 (hosts, Apodemus species) are important tools for the experimental study of human herpesvirus diseases. However, alphaherpesviruses, roseoloviruses, and lymphocryptoviruses, as well as rhadinoviruses, that naturally infect Mus musculus (house mouse) and other Old World mice are unknown. To identify hitherto-unknown rodent-associated herpesviruses, we captured M. musculus, R. norvegicus, and 14 other rodent species in several locations in Germany, the United Kingdom, and Thailand. Samples of trigeminal ganglia, dorsal root ganglia, brains, spleens, and other organs, as well as blood, were analyzed with a degenerate panherpesvirus PCR targeting the DNA polymerase (DPOL) gene. Herpesvirus-positive samples were subjected to a second degenerate PCR targeting the glycoprotein B (gB) gene. The sequences located between the partial DPOL and gB sequences were amplified by long-distance PCR and sequenced, resulting in a contiguous sequence of approximately 3.5 kbp. By DPOL PCR, we detected 17 novel betaherpesviruses and 21 novel gammaherpesviruses but no alphaherpesvirus. Of these 38 novel herpesviruses, 14 were successfully analyzed by the complete bigenic approach. Most importantly, the first gammaherpesvirus of Mus musculus was discovered (Mus musculus rhadinovirus 1 [MmusRHV1]). This virus is a member of a novel group of rodent gammaherpesviruses, which is clearly distinct from murine herpesvirus 68-like rodent gammaherpesviruses. Multigenic phylogenetic analysis, using an 8-kbp locus, revealed that MmusRHV1 diverged from the other gammaherpesviruses soon after the evolutionary separation of Epstein-Barr virus-like lymphocryptoviruses from human herpesvirus 8-like rhadinoviruses and alcelaphine herpesvirus 1-like macaviruses. PMID:17507487

  17. Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors.

    PubMed

    Takahashi, Hirotaka; Takahashi, Chikako; Moreland, Nicole J; Chang, Young-Tae; Sawasaki, Tatsuya; Ryo, Akihide; Vasudevan, Subhash G; Suzuki, Youichi; Yamamoto, Naoki

    2012-12-01

    Whereas the dengue virus (DENV) non-structural (NS) proteins NS3 and NS5 have been shown to interact in vitro and in vivo, the biological relevance of this interaction in viral replication has not been fully clarified. Here, we first applied a simple and robust in vitro assay based on AlphaScreen technology in combination with the wheat-germ cell-free protein production system to detect the DENV-2 NS3-NS5 interaction in a 384-well plate. The cell-free-synthesized NS3 and NS5 recombinant proteins were soluble and in possession of their respective enzymatic activities in vitro. In addition, AlphaScreen assays using the recombinant proteins detected a specific interaction between NS3 and NS5 with a robust Z' factor of 0.71. By employing the AlphaScreen assay, we found that both the N-terminal protease and C-terminal helicase domains of NS3 are required for its association with NS5. Furthermore, a competition assay revealed that the binding of full-length NS3 to NS5 was significantly inhibited by the addition of an excess of NS3 protease or helicase domains. Our results demonstrate that the AlphaScreen assay can be used to discover novel antiviral agents targeting the interactions between DENV NS proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Evolution of the Iga Heavy Chain Gene in the Genus Mus

    PubMed Central

    Osborne, B. A.; Golde, T. E.; Schwartz, R. L.; Rudikoff, S.

    1988-01-01

    To examine questions of immunoglobulin gene evolution, the IgA α heavy chain gene from Mus pahari, an evolutionarily distant relative to Mus musculus domesticus, was cloned and sequenced. The sequence, when compared to the IgA gene of BALB/c or human, demonstrated that the IgA gene is evolving in a mosaic fashion with the hinge region accumulating mutations most rapidly and the third domain at a considerably lower frequency. In spite of this pronounced accumulation of mutations, the hinge region appears to maintain the conformation of a random coil. A marked propensity to accumulate replacement over silent site changes in the coding regions was noted, as was a definite codon bias. The possibility that these two phenomena are interrelated is discussed. PMID:2842228

  19. Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes.

    PubMed

    Gibbs, Alan C; Steele, Ruth; Liu, Gaohua; Tounge, Brett A; Montelione, Gaetano T

    2018-03-13

    Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19 F and 1 H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.

  20. Nova Mus 2018 (PNV J11261220-6531086) Is Forming Dust

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.

    2018-02-01

    Nova Mus 2018 (PNV J11261220-6531086) was discovered by R Kaufman on 2018 Jan 14.486, and reported by P. Schmeer in vsnet-alert 21772. The first detection was 2018 Jan 3.24 (ASAS-SN, reported in the TOCP).

  1. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors.

    PubMed

    Zhou, Guo-Chun; Weng, Zhibing; Shao, Xiaoxia; Liu, Fang; Nie, Xin; Liu, Jinsong; Wang, Decai; Wang, Chunguang; Guo, Kai

    2013-12-15

    A series of methionine-proline dipeptide derivatives and their analogues were designed, synthesized and assayed against the serotype 2 dengue virus NS2B-NS3 protease, and methionine-proline anilides 1 and 2 were found to be the most active DENV 2 NS2B-NS3 competitive inhibitors with Ki values of 4.9 and 10.5 μM. The structure and activity relationship and the molecular docking revealed that L-proline, L-methionine and p-nitroaniline in 1 and 2 are the important characters in blocking the active site of NS2B-NS3 protease. Our current results suggest that the title dipeptidic scaffold represents a promising structural core to discover a new class of active NS2B-NS3 competitive inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    PubMed Central

    2011-01-01

    Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy. PMID:22014111

  3. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen.

    PubMed

    Le Breton, Marc; Meyniel-Schicklin, Laurène; Deloire, Alexandre; Coutard, Bruno; Canard, Bruno; de Lamballerie, Xavier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent; Davoust, Nathalie

    2011-10-20

    The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  4. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA.

    PubMed

    Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C

    2012-10-01

    The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Characterization and evaluation of apoptotic potential of double gene construct pVIVO.VP3.NS1.

    PubMed

    Saxena, Shikha; Desai, G S; Kumar, G Ravi; Sahoo, A P; Santra, Lakshman; Singh, Lakshya Veer

    2015-05-01

    Viral gene oncotherapy, targeted killing of cancer cells by viral genes, is an emerging non-infectious therapeutic cancer treatment modality. Chemo and radiotherapy in cancer treatment is limited due to their genotoxic side effects on healthy cells and need of functional p53, which is mutated in most of the cancers. VP3 (apoptin) of chicken infectious anaemia (CIA) and NS1 (Non structural protein 1) of Canine Parvovirus-2 (CPV-2) have been proven to have oncolytic potential in our laboratory. To evaluate oncolytic potential of VP3 and NS1 together these genes needed to be cloned in a bicistronic vector. In this study, both these genes were cloned and characterized for expression of their gene products and its apoptotic potential. The expression of VP3 and NS1 was studied by confocal microscopy and flowcytometry. Expression of VP3 and NS1 in pVIVO.VP3.NS1 transfected HeLa cells in comparison to mock transfected cells indicated that the double gene construct expresses both the products. This was further confirmed by flowcytometry where there was increase in cells expressing VP3 and NS1 in pVIVO.VP3.NS1 transfected group in comparison with the mock control group. The apoptotic inducing potential of this characterized pVIVO.VP3.NS1 was evaluated in human cervical cancer cell line (HeLa) by DNA fragmentation assay, TUNEL assay and Hoechst staning. This double construct was observed to induce apoptosis in HeLa cells.

  6. Magnetic properties of mixed sulfides MUS/sub 3/ (M = V, Cr, Nb, Ta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutsubidze, P.V.; Chechernikov, V.I.; Gracheva, N.V.

    1985-08-01

    The authors synthesized US/sub 2/ (Beta-US/sub 2/), VS, CrS, NbS, and TaS by the vacuum-thermal method in quartz ampules heated to 1170 degrees K. They homogenized and sintered these samples and remixed and sintered appropriate amounts to form MUS/sub 2/, which crystallizes in a rhombic structure. They studied the magnetic properties of MUS/sub 2/ on a vibration magnetometer in the range 75500 degrees K. The results of their analysis of the magnetic coefficients proved consistent with thermodynamic theory. They present their data in a series of four charts and two tables.

  7. Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research

    Cancer.gov

    DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly repaired, allowing the cell to avoid activating the S-phase checkpoint and its potentially damaging outcomes of apoptosis or error-prone repair. Mirit Aladjem, Ph.D., of CCR’s Developmental Therapeutics Branch, and her colleagues wondered whether Mus81 also plays a role in regulating the replication rate during growth in the absence of stress.

  8. 1. EAST AND SOUTH SIDES OF BUILDING 1613. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAST AND SOUTH SIDES OF BUILDING 1613. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Storage Building-Explosive Unpacking, 510 feet South of Road EW-3; adjacent to Road NS-4, Commerce City, Adams County, CO

  9. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    PubMed

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  10. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease

    PubMed Central

    Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749

  11. Highly potent non-peptidic inhibitors of the HCV NS3/NS4A serine protease.

    PubMed

    Sperandio, David; Gangloff, Anthony R; Litvak, Joane; Goldsmith, Richard; Hataye, Jason M; Wang, Vivian R; Shelton, Emma J; Elrod, Kyle; Janc, James W; Clark, James M; Rice, Ken; Weinheimer, Steve; Yeung, Kap-Sun; Meanwell, Nicholas A; Hernandez, Dennis; Staab, Andrew J; Venables, Brian L; Spencer, Jeffrey R

    2002-11-04

    Screening of a diverse set of bisbenzimidazoles for inhibition of the hepatitis C virus (HCV) serine protease NS3/NS4A led to the identification of a potent Zn(2+)-dependent inhibitor (1). Optimization of this screening hit afforded a 10-fold more potent inhibitor (46) under Zn(2+) conditions (K(i)=27nM). This compound (46) binds also to NS3/NS4A in a Zn(2+) independent fashion (K(i)=1microM). The SAR of this class of compounds under Zn(2+) conditions is highly divergent compared to the SAR in the absence of Zn(2+), suggesting two distinct binding modes.

  12. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells.more » However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.« less

  13. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle

  15. Access to Routine Immunization: A Comparative Analysis of Supply-Side Disparities between Northern and Southern Nigeria

    PubMed Central

    Eboreime, Ejemai; Abimbola, Seye; Bozzani, Fiammetta

    2015-01-01

    Background The available data on routine immunization in Nigeria show a disparity in coverage between Northern and Southern Nigeria, with the former performing worse. The effect of socio-cultural differences on health-seeking behaviour has been identified in the literature as the main cause of the disparity. Our study analyses the role of supply-side determinants, particularly access to services, in causing these disparities. Methods Using routine government data, we compared supply-side determinants of access in two Northern states with two Southern states. The states were identified using criteria-based purposive selection such that the comparisons were made between a low-coverage state in the South and a low-coverage state in the North as well as between a high-coverage state in the South and a high-coverage state in the North. Results Human resources and commodities at routine immunization service delivery points were generally insufficient for service delivery in both geographical regions. While disparities were evident between individual states irrespective of regional location, compared to the South, residents in Northern Nigeria were more likely to have vaccination service delivery points located within a 5km radius of their settlements. Conclusion Our findings suggest that regional supply-side disparities are not apparent, reinforcing the earlier reported socio-cultural explanations for disparities in routine immunization service uptake between Northern and Southern Nigeria. Nonetheless, improving routine immunisation coverage services require that there are available human resources and that health facilities are equitably distributed. PMID:26692215

  16. Access to Routine Immunization: A Comparative Analysis of Supply-Side Disparities between Northern and Southern Nigeria.

    PubMed

    Eboreime, Ejemai; Abimbola, Seye; Bozzani, Fiammetta

    2015-01-01

    The available data on routine immunization in Nigeria show a disparity in coverage between Northern and Southern Nigeria, with the former performing worse. The effect of socio-cultural differences on health-seeking behaviour has been identified in the literature as the main cause of the disparity. Our study analyses the role of supply-side determinants, particularly access to services, in causing these disparities. Using routine government data, we compared supply-side determinants of access in two Northern states with two Southern states. The states were identified using criteria-based purposive selection such that the comparisons were made between a low-coverage state in the South and a low-coverage state in the North as well as between a high-coverage state in the South and a high-coverage state in the North. Human resources and commodities at routine immunization service delivery points were generally insufficient for service delivery in both geographical regions. While disparities were evident between individual states irrespective of regional location, compared to the South, residents in Northern Nigeria were more likely to have vaccination service delivery points located within a 5 km radius of their settlements. Our findings suggest that regional supply-side disparities are not apparent, reinforcing the earlier reported socio-cultural explanations for disparities in routine immunization service uptake between Northern and Southern Nigeria. Nonetheless, improving routine immunisation coverage services require that there are available human resources and that health facilities are equitably distributed.

  17. Characterization of molecular interactions between Zika virus protease and peptides derived from the C-terminus of NS2B.

    PubMed

    Li, Yan; Loh, Ying Ru; Hung, Alvin W; Kang, CongBao

    2018-06-21

    Zika virus (ZIKV) protease is a two-component complex in which NS3 contains the catalytic triad and NS2B cofactor region is important for protease folding and activity. A protease construct-eZiPro without the transmembrane domains of NS2B was designed. Structural study on eZiPro reveals that the Thr-Gly-Lys-Arg (TGKR) sequence at the C-terminus of NS2B binds to the active site after cleavage. The bZiPro construct only contains NS2B cofactor region and the N-terminus of NS3 without any artificial linker or protease cleavage site, giving rise to an empty pocket accessible to substrate and inhibitor binding. Herein, we demonstrate that the TGKR sequence of NS2B in eZiPro is dynamic. Peptides from NS2B with various lengths exhibit different binding affinities to bZiPro. TGKR binding to the active site in eZiPro does not affect protease binding to small-molecule compounds. Our results suggest that eZiPro will also be useful for evaluating small-molecule protease inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activitymore » (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.« less

  19. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    PubMed Central

    Lithgow, James K; Haider, Fouzia; Roberts, Ian S; Green, Jeffrey

    2007-01-01

    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription. PMID:17892462

  20. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil

    PubMed Central

    Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira

    2013-01-01

    Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302

  1. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  2. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast

    PubMed Central

    Ho, Chu Kwen; Mazón, Gerard; Lam, Alicia F.; Symington, Lorraine S.

    2010-01-01

    Holliday junction (HJ) resolution is required for segregation of chromosomes and for formation of crossovers during homologous recombination. The identity of the resolvase(s) that functions in vivo has yet to be established, although several proteins able to cut HJs in vitro have been identified as candidates in yeasts and mammals. Using an assay to detect unselected products of mitotic recombination we found a significant decrease in crossovers in the Saccharomyces cerevisiae mus81Δ mutant. Yen1 serves a back-up function responsible for resolving intermediates in mus81Δ mutants, or when conversion tracts are short. In the absence of both Mus81 and Yen1 intermediates are not channeled exclusively to non-crossover recombinants, but instead are processed by Pol32-dependent break-induced replication (BIR). The channeling of recombination from reciprocal exchange to BIR results in greatly increased spontaneous loss of heterozygosity (LOH) and chromosome mis-segregation in the mus81Δ yen1Δ mutant, typical of the genomic instability found in tumor cells. PMID:21172663

  3. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  4. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity.

    PubMed

    Allonso, Diego; Andrade, Iamara S; Conde, Jonas N; Coelho, Diego R; Rocha, Daniele C P; da Silva, Manuela L; Ventura, Gustavo T; Silva, Emiliana M; Mohana-Borges, Ronaldo

    2015-12-01

    Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the

  5. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    NASA Astrophysics Data System (ADS)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  6. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to themore » cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.« less

  7. Board of Regents' Montana University System (MUS) Strategic Plan 2016

    ERIC Educational Resources Information Center

    Montana University System, 2016

    2016-01-01

    The Montana University System Strategic Plan is the primary planning document of the Board of Regents. The Plan sets forth an agenda for higher education in Montana by delineating the strategic directions, goals, and objectives that guide the Montana University System (MUS). In July 2006, after several years of study, public dialogue, and internal…

  8. Spin Complicates Eccentric BH-NS Mergers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a neutron star (NS) has a glancing encounter with a black hole (BH), its spin has a significant effect on the outcome, according to new simulations run by William East of Stanford University and his collaborators. Spotting an Eccentric Merger. In a traditional BH-NS merger, the two objects orbit each other quasi-circularly as they spiral in. But there's another kind of merger that's possible in high-density environments like galactic nuclei or globular clusters: a dynamical capture merger, in which a NS and BH pass each other just close enough that the gravity of the black hole "catches" the NS, leading the two objects to merge with very eccentric orbits. During an eccentric merger, the NS can be torn apart -- at which point some fraction of the tidally-disrupted material will escape the system, while some fraction instead accretes back onto the BH. Knowing these fractions is important for being able to model the expected electromagnetic signatures for the merger: the unbound material can power transients like kilonovae, whereas the accreting material may be the cause of short gamma-ray bursts. The amount of material available for events like these would change their observable strengths. Testing the Effects of Spin. To see whether NS spin has an impact on the behavior of the merger, East and collaborators use a general-relativistic hydrodynamic code to simulate the glancing encounter of a BH and a NS with dimensionless spin between a=0 (non-spinning) and a=0.756 (rotation period of 1 ms). They also vary the separation of the first encounter. The group finds that changing the NS's spin can change a number of outcomes of the merger. To start with, it can affect whether the NS is captured by the BH, or if the encounter is glancing and then both objects carry on their merry way. And if the NS is trapped by the BH and torn apart, then the higher the NS's spin, the more matter outside of the BH ends up unbound, instead of getting trapped into an accretion disk

  9. [Left-sided native valve endocarditis by coagulase-negative staphylococci: an emerging disease].

    PubMed

    Haro, Juan Luis; Lomas, José M; Plata, Antonio; Ruiz, Josefa; Gálvez, Juan; de la Torre, Javier; Hidalgo-Tenorio, Carmen; Reguera, José M; Márquez, Manuel; Martínez-Marcos, Francisco; de Alarcón, Arístides

    2008-05-01

    To describe the epidemiological, clinical, and prognostic characteristics of patients with left-sided native valve endocarditis (LNVE) caused by coagulase-negative staphylococci (CoNS). Prospective multicenter study of endocarditis cases reported in the Andalusian Cohort for the Study of Cardiovascular Infections between 1984 and 2005. Among 470 cases of LNVE, 39 (8.3%) were caused by CoNS, a number indicating a 30% increase in the incidence of this infection over the last decade. The mean age of affected patients was 58.32 +/- 15 years and 27 (69.2%) were men. Twenty-one patients (53.8%) had previous known valve disease and half the episodes were considered nosocomial (90% of them from vascular procedures). Median time interval from the onset of symptoms to diagnosis was 14 days (range: 1-120). Renal failure (21 cases, 53.8%), intracardiac damage (11 cases, 28.2%), and central nervous system involvement (10 cases, 25.6%) were the most frequent complications. There were only 3 cases (7.7%) of septic shock. Surgery was performed in 18 patients (46.2%). Nine patients (23.1%) died, overall. Factors associated with higher mortality in the univariate analysis were acute renal failure (P = 0.023), left-sided ventricular failure (P = 0.047), and time prior to diagnosis less than 21 days (P = 0.018). As compared to LNVE due to other microorganisms, the patients were older (P = 0.018), had experienced previous nosocomial manipulation as the source of bacteremia (P < 0.001), and developed acute renal failure more frequently (P = 0.001). Mortality of LNVE due to CoNS was lower than mortality in Staphylococcus aureus infection, but higher than in Streptococcus viridans infection. Left-sided native valve endocarditis due to CoNS is now increasing because of the ageing of the population. This implies more frequent invasive procedures (mainly vascular) as a consequence of the concomitant disease. Nonetheless, the mortality associated with LNVE due to CoNS does not seem to be

  10. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host

  11. Usage of Data-Encoded Web Maps with Client Side Color Rendering for Combined Data Access, Visualization and Modeling Purposes

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narashimha S.

    2013-01-01

    Current approaches to satellite observation data storage and distribution implement separate visualization and data access methodologies which often leads to the need in time consuming data ordering and coding for applications requiring both visual representation as well as data handling and modeling capabilities. We describe an approach we implemented for a data-encoded web map service based on storing numerical data within server map tiles and subsequent client side data manipulation and map color rendering. The approach relies on storing data using the lossless compression Portable Network Graphics (PNG) image data format which is natively supported by web-browsers allowing on-the-fly browser rendering and modification of the map tiles. The method is easy to implement using existing software libraries and has the advantage of easy client side map color modifications, as well as spatial subsetting with physical parameter range filtering. This method is demonstrated for the ASTER-GDEM elevation model and selected MODIS data products and represents an alternative to the currently used storage and data access methods. One additional benefit includes providing multiple levels of averaging due to the need in generating map tiles at varying resolutions for various map magnification levels. We suggest that such merged data and mapping approach may be a viable alternative to existing static storage and data access methods for a wide array of combined simulation, data access and visualization purposes.

  12. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but maymore » also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.« less

  13. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    PubMed

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  14. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.

    PubMed

    Muller, A; Pontonnier, C; Dumont, G

    2018-02-01

    The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.

  15. Molecular models of NS3 protease variants of the Hepatitis C virus.

    PubMed

    da Silveira, Nelson J F; Arcuri, Helen A; Bonalumi, Carlos E; de Souza, Fátima P; Mello, Isabel M V G C; Rahal, Paula; Pinho, João R R; de Azevedo, Walter F

    2005-01-21

    Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants

  16. Rationalizing meat consumption. The 4Ns.

    PubMed

    Piazza, Jared; Ruby, Matthew B; Loughnan, Steve; Luong, Mischel; Kulik, Juliana; Watkins, Hanne M; Seigerman, Mirra

    2015-08-01

    Recent theorizing suggests that the 4Ns - that is, the belief that eating meat is natural, normal, necessary, and nice - are common rationalizations people use to defend their choice of eating meat. However, such theorizing has yet to be subjected to empirical testing. Six studies were conducted on the 4Ns. Studies 1a and 1b demonstrated that the 4N classification captures the vast majority (83%-91%) of justifications people naturally offer in defense of eating meat. In Study 2, individuals who endorsed the 4Ns tended also to objectify (dementalize) animals and included fewer animals in their circle of moral concern, and this was true independent of social dominance orientation. Subsequent studies (Studies 3-5) showed that individuals who endorsed the 4Ns tend not to be motivated by ethical concerns when making food choices, are less involved in animal-welfare advocacy, less driven to restrict animal products from their diet, less proud of their animal-product decisions, tend to endorse Speciesist attitudes, tend to consume meat and animal products more frequently, and are highly committed to eating meat. Furthermore, omnivores who strongly endorsed the 4Ns tended to experience less guilt about their animal-product decisions, highlighting the guilt-alleviating function of the 4Ns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Field trials of the rodenticide gophacide against wild house mice (Mus musculus L.).

    PubMed Central

    Rowe, F. P.; Swinney, T.; Bradfield, A.

    1975-01-01

    The acute rodenticide gophacide was tested against urban infestations of the house mouse (Mus musculus L.) and treatment success was assessed from the results of census baitings conducted before and after each treatment. Seven of eight populations of mice living in premises where alternative food supplies were limited were successfully controlled when medium oatmeal bait containing gophacide at 0.1% was laid directly for 4 days. In further treatments against mice inhabiting more complex environments and having greater access to other foods, the performance of gophacide at 0.1% and at 0.25% in a wholemeal flour/pinhead oatmeal/corn oil bait was compared with that of zinc phosphide at 3.0% in the same bait-base. The poison treatments were conducted for 1 or 4 days and always after 3 days pre-baiting. Treatment success varied considerably irrespective of the type of treatment or of the poison used. In general, however, gophacide proved to be as effective as zinc phosphide for the control of mice. PMID:1054056

  18. GESPA: classifying nsSNPs to predict disease association.

    PubMed

    Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee

    2015-07-25

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.

  19. TFaNS-Tone Fan Noise Design/Prediction System: Users' Manual TFaNS Version 1.5

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Huff, Dennis L. (Technical Monitor)

    2003-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Glenn. The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. The first version of this design system was developed under a previous NASA contract. Several improvements have been made to TFaNS. This users' manual shows how to run this new system. TFaNS consists of the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and writes them to files, CUP3D Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions, and AWAKEN CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so they can be used by the system. This report provides information on code input and file structure essential for potential users of TFaNS.

  20. Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe

    PubMed Central

    Sarbajna, Shriparna; Davies, Derek; West, Stephen C.

    2014-01-01

    The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM–TopoIIIα–RMI1–RMI2 (BTR complex), SLX1–SLX4–MUS81–EME1 (SLX–MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX–MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX–MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1–SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1–SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells. PMID:24831703

  1. Small-molecule inhibitors of hepatitis C virus (HCV) non-structural protein 5A (NS5A): a patent review (2010-2015).

    PubMed

    Ivanenkov, Yan A; Aladinskiy, Vladimir A; Bushkov, Nikolay A; Ayginin, Andrey A; Majouga, Alexander G; Ivachtchenko, Alexandre V

    2017-04-01

    Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor). Areas covered: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors. Expert opinion: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.

  2. Feeding a sub-ns-risetime rectangular pulse onto a rod-shaped resistive high-voltage divider in risetime <2 ns

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengzhong; Ma, Lianying

    2004-01-01

    A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.

  3. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine.

    PubMed

    Ikram, Aqsa; Obaid, Ayesha; Awan, Faryal Mehwish; Hanif, Rumeza; Naz, Anam; Paracha, Rehan Zafar; Ali, Amjad; Janjua, Hussnain Ahmed

    2017-01-01

    Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4 + and CD8 + T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.

    PubMed

    Schöne, Tobias; Grimm, Lena Lisbeth; Sakai, Naoki; Zhang, Linlin; Hilgenfeld, Rolf; Peters, Thomas

    2017-10-01

    West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3 pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3 pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3 pro , we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3 pro . Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC 50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3 pro . To identify the matching protein binding site, chemical shift perturbation studies employing 1 H, 15 N-TROSY-HSQC experiments with uniformly 2 H, 15 N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3 pro inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents.

    PubMed

    Kimura, Yuri; Hawkins, Melissa T R; McDonough, Molly M; Jacobs, Louis L; Flynn, Lawrence J

    2015-09-28

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating.

  6. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents

    PubMed Central

    Kimura, Yuri; Hawkins, Melissa T. R.; McDonough, Molly M.; Jacobs, Louis L.; Flynn, Lawrence J.

    2015-01-01

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391

  7. Detection of Highly-Absorbed X-rays from Nova Mus 2018 with Swift

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas; Kuin, Paul; Mukai, Koji; Page, Kim; Chomiuk, Laura; Kawash, Adam; Sokoloski, J. L.; Linford, Justin; Rupen, Michael P.; Mioduszewski, Amy

    2018-03-01

    We report the detection of X-rays from Nova Mus 2018 with the Swift XRT instrument. We have been carrying out weekly monitoring of the nova with Swift since its discovery on 2018 Jan 15 (see ATel #11220), and observations up to 2018 Feb 24 yielded X-ray non-detections.

  8. Substrate inhibition kinetic model for West Nile virus NS2B-NS3 protease.

    PubMed

    Tomlinson, Suzanne M; Watowich, Stanley J

    2008-11-11

    West Nile virus (WNV) has recently emerged in North America as a significant disease threat to humans and animals. Unfortunately, no approved antiviral drugs exist to combat WNV or other members of the genus Flavivirus in humans. The WNV NS2B-NS3 protease has been one of the primary targets for anti-WNV drug discovery and design since it is required for virus replication. As part of our efforts to develop effective WNV inhibitors, we reexamined the reaction kinetics of the NS2B-NS3 protease and the inhibition mechanisms of newly discovered inhibitors. The WNV protease showed substrate inhibition in assays utilizing fluorophore-linked peptide substrates GRR, GKR, and DFASGKR. Moreover, a substrate inhibition reaction step was required to accurately model kinetic data generated from protease assays with a peptide inhibitor. The substrate inhibition model suggested that peptide substrates could bind to two binding sites on the protease. Reaction product analogues also showed inhibition of the protease, demonstrating product inhibition in addition to and distinct from substrate inhibition. We propose that small peptide substrates and inhibitors may interact with protease residues that form either the P3-P1 binding surface (i.e., the S3-S1 sites) or the P1'-P3' interaction surface (i.e., the S1'-S3' sites). Optimization of substrate analogue inhibitors that target these two independent sites may lead to novel anti-WNV drugs.

  9. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly.

    PubMed

    Senthilvel, Padmanaban; Lavanya, Pandian; Kumar, Kalavathi Murugan; Swetha, Rayapadi; Anitha, Parimelzaghan; Bag, Susmita; Sarveswari, Sundaramoorthy; Vijayakumar, Vijayaparthasarathi; Ramaiah, Sudha; Anbarasu, Anand

    2013-01-01

    Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities. ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - - Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - - Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.

  10. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiahao, E-mail: mashenglin@medmail.com.cn; Li, Xiadong; Deng, Qinghua

    2015-10-01

    The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor controlmore » probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.« less

  11. Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between "simple" Robertsonian heterozygotes and homozygotes.

    PubMed

    Wallace, B M; Searle, J B; Everett, C A

    1992-01-01

    Wild male house mice Mus musculus domesticus were collected from the hybrid zone between the John o'Groats race (2n = 32) and the standard race (2n = 40) in northern Scotland. Meiosis in both homozygotes (2n = 32, 36, and 40) and single Robertsonian heterozygotes (2n = 33, 35, and 37) was found to be orderly. At prophase/metaphase I in heterozygotes, a trivalent was formed from the metacentric and two homologous acrocentrics. At pachytene, this trivalent usually had a single side arm at the position of the centromeres, as a result of nonhomologous pairing of the acrocentrics. This side arm persisted into diplotene. Generally only a single chiasma was formed between each acrocentric and the metacentric. Anaphase I nondisjunction frequencies were estimated as 1.5% for the homozygotes and 2.7% for the heterozygotes. The extent of germ cell death between the pachytene and round spermatid stages was 18% greater in heterozygotes than in homozygotes. Our results concur with previous studies which indicate that single Robertsonian heterozygotes in wild house mice have near-normal fertility.

  12. Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research

    Cancer.gov

    DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly

  13. Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler

    PubMed Central

    Cordeiro, Tiago N.; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-01-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. PMID:22114557

  14. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler.

    PubMed

    Cordeiro, Tiago N; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-11-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.

  15. Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease.

    PubMed

    Rut, Wioletta; Zhang, Linlin; Kasperkiewicz, Paulina; Poreba, Marcin; Hilgenfeld, Rolf; Drąg, Marcin

    2017-03-01

    Zika virus is spread by Aedes mosquitoes and is linked to acute neurological disorders, especially to microcephaly in newborn children and Guillan-Barré Syndrome. The NS2B-NS3 protease of this virus is responsible for polyprotein processing and therefore considered an attractive drug target. In this study, we have used the Hybrid Combinatorial Substrate Library (HyCoSuL) approach to determine the substrate specificity of ZIKV NS2B-NS3 protease in the P4-P1 positions using natural and a large spectrum of unnatural amino acids. Obtained data demonstrate a high level of specificity of the S3-S1 subsites, especially for basic amino acids. However, the S4 site exhibits a very broad preference toward natural and unnatural amino acids with selected D-amino acids being favored over L enantiomers. This information was used for the design of a very potent phosphonate inhibitor/activity-based probe of ZIKV NS2B-NS3 protease. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.

    PubMed

    Rehman, Sidra; Ijaz, Bushra; Fatima, Nighat; Muhammad, Syed Aun; Riazuddin, Sheikh

    2016-10-01

    Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200μg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body

  17. Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease†

    PubMed Central

    Tomlinson, Suzanne M.; Watowich, Stanley J.

    2010-01-01

    Summary Dengue virus (DENV) is a mosquito-borne flavivirus that has strained global healthcare systems throughout tropical and subtropical regions of the world. In addition to plaguing developing nations, it has re-emerged in several developed countries with recent outbreaks in the USA (CDC, 2010), Australia (Hanna et al., 2009), Taiwan (Kuan et al., 2010) and France (La Ruche et al., 2010). DENV infection can cause significant disease, including dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and death. There are no approved vaccines or antiviral therapies to prevent or treat dengue-related illnesses. However, the viral NS2B-NS3 protease complex provides a strategic target for antiviral drug development since NS3 protease activity is required for virus replication. Recently, we reported two compounds with inhibitory activity against the DENV protease in vitro and antiviral activity against dengue 2 (DEN2V) in cell culture (Tomlinson et al., 2009a). Analogs of one of the lead compounds were purchased, tested in protease inhibition assays, and the data evaluated with detailed kinetic analyses. A structure activity relationship (SAR) identified key atomic determinants (i.e. functional groups) important for inhibitory activity. Four “second series” analogs were selected and tested to validate our SAR and structural models. Here, we report improvements to inhibitory activity ranging between ~2- and 60-fold, resulting in selective low micromolar dengue protease inhibitors. PMID:21185332

  18. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.

    PubMed

    Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried

    2009-08-01

    The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.

  19. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins.

    PubMed

    Li, Lili; Zhao, Hui; Liu, Ping; Li, Chunfeng; Quanquin, Natalie; Ji, Xue; Sun, Nina; Du, Peishuang; Qin, Cheng-Feng; Lu, Ning; Cheng, Genhong

    2018-06-19

    Zika virus infection stimulates a type I interferon (IFN) response in host cells, which suppresses viral replication. Type I IFNs exert antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). To screen for antiviral ISGs that restricted Zika virus replication, we individually knocked out 21 ISGs in A549 lung cancer cells and identified PARP12 as a strong inhibitor of Zika virus replication. Our findings suggest that PARP12 mediated the ADP-ribosylation of NS1 and NS3, nonstructural viral proteins that are involved in viral replication and modulating host defense responses. This modification of NS1 and NS3 triggered their proteasome-mediated degradation. These data increase our understanding of the antiviral activity of PARP12 and suggest a molecular basis for the potential development of therapeutics against Zika virus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. The Myriapoda and Onychophora collection (MY) of the Muséum national d’Histoire naturelle (MNHN, Paris)

    PubMed Central

    Bras, Gwenaël Le; Geoffroy, Jean-Jacques; Albenga, Laurent; Mauriès, Jean-Paul

    2015-01-01

    Abstract The Myriapoda and Onychophora collection dataset inventories the occurrence records of the collection of myriapods and onychophorans in the Muséum national d’Histoire naturelle, Paris. The dataset currently consists of 202 lots of onychophorans, representing all of those present, and almost ten thousand (9 795) lots of myriapods, representing 33 to 40% of the MNHN Myriapoda collection. This collection, which is of key historic importance, represents the results of two centuries of myriapod and onychophoran studies. The sources of the collection are worldwide, with a high representation for metropolitan France for the myriapods. None of the occurrences are yet georeferenced. Access to the dataset via the data portals of the MNHN and the GBIF has been made possible through the e-ReColNat project (ANR-11-INBS-0004). The Myriapoda and Onychophora collection of MNHN is actively expanding, hence both the collection and dataset are in continuous growth. The dataset can be accessed through the portals of GBIF at http://www.gbif.org/dataset/3287044c-8c48-4ad6-81d4-4908071bc8db and the MNHN at http://science.mnhn.fr/institution/mnhn/collection/my/item/search/form. PMID:26448704

  1. Exploring the Lead Compounds for Zika Virus NS2B-NS3 Protein: an e-Pharmacophore-Based Approach.

    PubMed

    Rohini, K; Agarwal, Pratika; Preethi, B; Shanthi, V; Ramanathan, K

    2018-06-18

    The rapid spread of the Zika virus and its association with the abnormal brain development constitute a global health emergency. With a continuing spread of the mosquito vector, the exposure is expected to accelerate in the coming years. Despite number of efforts, there is still no proper vaccine or medicine to combat this virus. Of note, the NS2B-NS3 protein is proven to be the potential target for the Zika virus therapeutics. Hence, e-pharmacophore-based drug design strategy was employed to identify potent inhibitors of NS2B-NS3 protein from ASINEX database consisting of 467,802 molecules. A 3D e-pharmacophore model was generated using PHASE module of Schrödinger Suite. The generated model consists of one hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings (R), ADDRR. The model was further evaluated for its ability to screen actives using enrichment analysis. Subsequently, high-throughput virtual screening protocol was employed, and the resultant hit molecules were also examined for its binding free energies and ADME properties using Prime MM-GBSA and Qikprop module of Schrodinger packages, respectively. Finally, the screened hit molecule was subjected to molecular dynamics simulation to examine its stability. Overall, the results from our analysis suggest that compound BAS 19192837 could be a potent inhibitor for the NS2B-NS3 protein of the Zika virus. It is also noteworthy to mention that our results are in good agreement with literature evidences. We hope that this result is of immense importance in designing potential drug molecules to combat the spread of Zika virus in the near future.

  2. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfectedmore » with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.« less

  3. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    PubMed

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  4. Delayed and highly specific antibody response to nonstructural protein 1 (NS1) revealed during natural human ZIKV infection by NS1-based capture ELISA.

    PubMed

    Gao, Xiujie; Wen, Yingfen; Wang, Jian; Hong, Wenxin; Li, Chunlin; Zhao, Lingzhai; Yin, Chibiao; Jin, Xia; Zhang, Fuchun; Yu, Lei

    2018-06-14

    Zika virus (ZIKV) had spread rapidly in the past few years in southern hemisphere where dengue virus (DENV) had caused epidemic problems for over half a century. The high degree of cross-reactivity of Envelope (E) protein specific antibody responses between ZIKV and DENV made it challenging to perform differential diagnosis between the two infections using standard ELISA method for E protein. Using an IgG capture ELISA, we investigated the kinetics of nonstructural protein 1 (NS1) antibody response during natural ZIKV infection and the cross-reactivity to NS1 proteins using convalescent sera obtained from patients infected by either DENV or ZIKV. The analyses of the sequential serum samples from ZIKV infected individuals showed NS1 specific Abs appeared 2 weeks later than E specific Abs. Notably, human sera from ZIKV infected individuals did not contain cross-reactivity to NS1 proteins of any of the four DENV serotypes. Furthermore, four out of five NS1-specific monoclonal antibodies (mAbs) isolated from ZIKV infected individuals did not bind to DENV NS1 proteins. Only limited amount of cross-reactivity to ZIKV NS1 was displayed in 108 DENV1 immune sera at 1:100 dilution. The high degree of NS1-specific Abs in both ZIKV and DENV infection revealed here suggest that NS1-based diagnostics would significantly improve the differential diagnosis between DENV and ZIKV infections.

  5. Nonstructural proteins nsP3 and nsP4 of Ross River and O'Nyong-nyong viruses: sequence and comparison with those of other alphaviruses.

    PubMed

    Strauss, E G; Levinson, R; Rice, C M; Dalrymple, J; Strauss, J H

    1988-05-01

    We have sequenced the nsP3 and nsP4 region of two alphaviruses, Ross River virus and O'Nyong-nyong virus, in order to examine these viruses for the presence or absence of an opal termination codon present between nsP3 and nsP4 in many alphaviruses. We found that Ross River virus possesses an in-phase opal termination codon between nsP3 and nsP4, whereas in O'Nyong-nyong virus this termination codon is replaced by an arginine codon. Previous studies have shown that two other alphaviruses, Sindbis virus and Middelburg virus, possess an opal termination codon separating nsP3 and nsP4 [E.G. Strauss, C.M. Rice, and J.H. Strauss (1983), Proc. Natl. Acad. Sci. USA 80, 5271-5275], whereas Semliki Forest virus possesses an arginine codon in lieu of the opal codon [K. Takkinen (1986), Nucleic Acids Res. 14, 5667-5682]. Thus, of the five alphaviruses examined to date, three possess the opal codon and two do not. Production of nsP4 requires readthrough of the opal codon in those alphaviruses that possess this termination codon and the function of the termination codon may be to regulate the amount of nsP4 produced. It is an open question then as to whether alphaviruses with no termination codon use other mechanisms to regulate the activity of this gene. The nsP4s of these five alphaviruses are highly conserved, sharing 71-76% amino acid sequence similarity, and all five contain the Gly-Asp-Asp motif found in many RNA virus replicases. The nsP3s are somewhat less conserved, sharing 52-73% amino acid sequence similarity throughout most of the protein, but each possesses a nonconserved C-terminal domain of 134 to 246 amino acids of unknown function.

  6. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    NASA Astrophysics Data System (ADS)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  7. The French Muséum national d'histoire naturelle vascular plant herbarium collection dataset

    NASA Astrophysics Data System (ADS)

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-02-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments.

  8. The French Muséum national d'histoire naturelle vascular plant herbarium collection dataset.

    PubMed

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-02-14

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments.

  9. The French Muséum national d’histoire naturelle vascular plant herbarium collection dataset

    PubMed Central

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-01-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d’histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments. PMID:28195585

  10. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus

    PubMed Central

    Harr, Bettina; Karakoc, Emre; Neme, Rafik; Teschke, Meike; Pfeifle, Christine; Pezer, Željka; Babiker, Hiba; Linnenbrink, Miriam; Montero, Inka; Scavetta, Rick; Abai, Mohammad Reza; Molins, Marta Puente; Schlegel, Mathias; Ulrich, Rainer G.; Altmüller, Janine; Franitza, Marek; Büntge, Anna; Künzel, Sven; Tautz, Diethard

    2016-01-01

    Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory. PMID:27622383

  11. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5.

    PubMed

    Awasthi, Shraddha; Srivastava, Neha; Singh, Tripti; Tiwary, D; Mishra, Pradeep Kumar

    2017-05-01

    Polythene is considered as one of the important object used in daily life. Being versatile in nature and resistant to microbial attack, they effectively cause environmental pollution. In the present study, biodegradation of low-density polyethylene (LDPE) have been performed using fungal lab isolate Rhizopus oryzae NS5. Lab isolate fungal strain capable of adhering to LDPE surface was used for the biodegradation of LDPE. This strain was identified as Rhizopus oryzae NS5 (Accession No. KT160362). Fungal growth was observed on the surface of the polyethylene when cultured in potato dextrose broth at 30 °C and 120 rpm, for 1 month. LDPE film was characterized before and after incubation by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and universal tensile machine. About 8.4 ± 3% decrease (gravimetrically) in weight and 60% reduction in tensile strength of polyethylene was observed. Scanning electron microscope analysis showed hyphal penetration and degradation on the surface of polyethylene. Atomic force microscope analysis showed increased surface roughness after treatment with fungal isolate. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the polyethylene pieces. Present study shows the potential of Rhizopus oryzae NS5 in polyethylene degradation in eco friendly and sustainable manner.

  12. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses.

    PubMed Central

    Ahlquist, P; Strauss, E G; Rice, C M; Strauss, J H; Haseloff, J; Zimmern, D

    1985-01-01

    Although the genetic organization of tobacco mosaic virus (TMV) differs considerably from that of the tripartite viruses (alfalfa mosaic virus [AlMV] and brome mosaic virus [BMV]), all of these RNA plant viruses share three domains of homology among their nonstructural proteins. One such domain, common to the AlMV and BMV 2a proteins and the readthrough portion of TMV p183, is also homologous to the readthrough protein nsP4 of Sindbis virus (Haseloff et al., Proc. Natl. Acad. Sci. U.S.A. 81:4358-4362, 1984). Two more domains are conserved among the AlMV and BMV 1a proteins and TMV p126. We show here that these domains have homology with portions of the Sindbis proteins nsP1 and nsP2, respectively. These results strengthen the view that the four viruses share mechanistic similarities in their replication strategies and may be evolutionarily related. These results also suggest that either the AlMV 1a, BMV 1a, and TMV p126 proteins are multifunctional or Sindbis proteins nsP1 and nsP2 function together as subunits in a single complex. PMID:3968720

  13. Characterization of Mus musculus Papillomavirus 1 Infection In Situ Reveals an Unusual Pattern of Late Gene Expression and Capsid Protein Localization

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Buck, Christopher B.; Pang, Yuk-Ying S.; Lowy, Douglas R.

    2013-01-01

    Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism. PMID:24067981

  14. Combined 3D-QSAR, molecular docking, molecular dynamics simulation, and binding free energy calculation studies on the 5-hydroxy-2H-pyridazin-3-one derivatives as HCV NS5B polymerase inhibitors.

    PubMed

    Yu, Haijing; Fang, Yu; Lu, Xia; Liu, Yongjuan; Zhang, Huabei

    2014-01-01

    The NS5B RNA-dependent RNA polymerase (RdRP) is a promising therapeutic target for developing novel anti-hepatitis C virus (HCV) drugs. In this work, a combined molecular modeling study was performed on a series of 193 5-hydroxy-2H-pyridazin-3-one derivatives as inhibitors of HCV NS5B Polymerase. The best 3D-QSAR models, including CoMFA and CoMSIA, are based on receptor (or docking). Furthermore, a 40-ns molecular dynamics (MD) simulation and binding free energy calculations using docked structures of NS5B with ten compounds, which have diverse structures and pIC50 values, were employed to determine the detailed binding process and to compare the binding modes of the inhibitors with different activities. On one side, the stability and rationality of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM-PBSA method gave a good correlation with the experimental biological activity. On the other side, by analyzing some differences between the molecular docking and the MD simulation results, we can find that the MD simulation could also remedy the defects of molecular docking. The analyses of the combined molecular modeling results have identified that Tyr448, Ser556, and Asp318 are the key amino acid residues in the NS5B binding pocket. The results from this study can provide some insights into the development of novel potent NS5B inhibitors. © 2013 John Wiley & Sons A/S.

  15. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Disruption of SLX4-MUS81 Function Increases the Relative Biological Effectiveness of Proton Radiation.

    PubMed

    Liu, Qi; Underwood, Tracy S A; Kung, Jong; Wang, Meng; Lu, Hsiao-Ming; Paganetti, Harald; Held, Kathryn D; Hong, Theodore S; Efstathiou, Jason A; Willers, Henning

    2016-05-01

    Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm) or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G2 phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed to confirm these findings in human cancers. Copyright © 2016 Elsevier

  17. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors.

    PubMed

    Li, Kuohan; Phoo, Wint Wint; Luo, Dahai

    2014-04-01

    Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.

  18. 160mJ and 9ns electro-optics Q-switched conductively cooled 1047nm Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei

    2015-02-01

    A compact diode side-pumped conductively cooled 1047 nm Nd:YLF slab laser with high energy and short pulse width is developed. Through ray tracing method, we design a home-made pump module to homogenize the pump intensity. Based on the Possion equation, a thermal conduct model of side-pump laser is established. The temperature distribution in laser crystal is obtained, and the thermal lens is caculated. With the absorbed pump energy of 818 mJ, the maximum output energy of 228 mJ is achieved in free-running mode. At a repetition rate of 50 Hz, 160 mJ, 9 ns 1047 nm infrared light is obtained under the maximum absorbed pump energy, and the slope efficiency is 27.8%.

  19. Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses.

    PubMed

    Shiryaev, Sergey A; Kozlov, Igor A; Ratnikov, Boris I; Smith, Jeffrey W; Lebl, Michal; Strongin, Alex Y

    2007-02-01

    Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.

  20. High power high repetition rate diode side-pumped Q-switched Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Lebiush, E.; Lavi, R.; Tzuk, Y.; Jackel, S.; Lallouz, R.; Tsadka, S.

    1998-01-01

    A Q-switched diode side-pumped Nd:YAG rod laser is presented. The design is based on close coupled diodes which are mounted side by side to a laser rod cut at Brewster angle. No intra-cavity optics are needed to compensate for the induced thermal lensing of the rod. This laser produces 10 W average power with 30 ns pulse width and beam quality of 1.3 times diffraction limited at 10 kHz repetition rate. The light to light conversion efficiency is 12%. The same average power and beam quality is kept while operating the laser at repetition rates up to 50 kHz.

  1. Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease.

    PubMed

    Gao, Yaojun; Cui, Taian; Lam, Yulin

    2010-02-01

    Kalata B1 is a plant protein with remarkable thermal, chemical and enzymatic stability. Its potential applications could be centered on the possibility of using its cyclic structure and cystine knot motif as a scaffold for the design of stable pharmaceuticals. To discover potent dengue NS2B-NS3 protease inhibitors, we have prepared various kalata B1 analogues by varying the amino acid sequence. Mass spectrometric and biochemical investigations of these analogues revealed a cyclopeptide whose two fully oxidized forms are substrate-competitive inhibitors of the dengue viral NS2B-NS3 protease. Both oxidized forms showed potent inhibition with K(i) of 1.39+/-0.35 and 3.03+/-0.75 microM, respectively. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Unified double- and single-sided homogeneous Green's function representations

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  3. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  4. Disruption of SLX4-MUS81 Function Increases the Relative Biological Effectiveness of Proton Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi; Underwood, Tracy S.A.; Kung, Jong

    2016-05-01

    Purpose: Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. Methods and Materials: Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm)more » or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. Results: Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G{sub 2} phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. Conclusions: A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed

  5. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease

    PubMed Central

    Liu, Binbin; Zhang, Jing; Koetzner, Cheri A.; Jones, Susan A.; Lin, Qishan

    2017-01-01

    The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis

  6. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  8. [Bioinformatics analysis of mosquito densovirus nostructure protein NS1].

    PubMed

    Dong, Yun-qiao; Ma, Wen-li; Gu, Jin-bao; Zheng, Wen-ling

    2009-12-01

    To analyze and predict the structure and function of mosquito densovirus (MDV) nostructual protein1 (NS1). Using different bioinformatics software, the EXPASY pmtparam tool, ClustalX1.83, Bioedit, MEGA3.1, ScanProsite, and Motifscan, respectively to comparatively analyze and predict the physic-chemical parameters, homology, evolutionary relation, secondary structure and main functional motifs of NS1. MDV NS1 protein was a unstable hydrophilic protein and the amino acid sequence was highly conserved which had a relatively closer evolutionary distance with infectious hypodermal and hematopoietic necrosis virus (IHHNV). MDV NS1 has a specific domain of superfamily 3 helicase of small DNA viruses. This domain contains the NTP-binding region with a metal ion-dependent ATPase activity. A virus replication roller rolling-circle replication(RCR) initiation domain was found near the N terminal of this protein. This protien has the biological function of single stranded incision enzyme. The bioinformatics prediction results suggest that MDV NS1 protein plays a key role in viral replication, packaging, and the other stages of viral life.

  9. Novel laboratory mouse papillomavirus (MusPV) infection.

    PubMed

    Ingle, A; Ghim, S; Joh, J; Chepkoech, I; Bennett Jenson, A; Sundberg, J P

    2011-03-01

    Most papillomaviruses (PVs) are oncogenic. There are at least 100 different human PVs and 65 nonhuman vertebrate hosts, including wild rodents, which have species-specific PV infections. Florid papillomatosis arose in a colony of NMRI-Foxn1(nu)/Foxn1(nu) (nude) mice at the Advanced Centre for Treatment Research and Education in Cancer in India. Lesions appeared at the mucocutaneous junctions of the nose and mouth. Histologically, lesions were classical papillomas with epidermal hyperplasia on thin fibrovascular stalks in a verrucous pattern. Koilocytotic cells were observed in the stratum granulosum of the papillomatous lesions. Immunohistochemically, these abnormal cells were positive for PV group-specific antigens. With transmission electron microscopy, virus particles were observed in crystalline intranuclear inclusions within keratinocytes. The presence of a mouse PV, designated MusPV, was confirmed by amplification of PV DNA with degenerative primers specific for PVs. This report is the first of a PV and its related disease in laboratory mice.

  10. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells.

    PubMed

    Dong, Wang; Lv, Huifang; Wang, Yifan; Li, Xiaomeng; Li, Cheng; Wang, Lu; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-06-01

    Infection with classical swine fever virus (CSFV) results in highly significant economic losses; this infection is characterized by being highly contagious and accompanied by hyperthermia and systemic bleeding. Oxidative stress (OS) plays a critical role in the pathological process of viral infection. The function of the nonstructural protein 5A (NS5A) in the pathogenesis of CSFV has not been completely understood. Here, OS and the inflammatory response were studied with NS5A and substitution mutants in swine testicular (ST) cells. ST cell lines stably expressing CSFV NS5A or substitution mutants were established. Reactive oxygen species (ROS) production, antioxidant protein expression and inflammatory response were analyzed by quantitative real-time PCR (qRT-PCR), ELISA and flow cytometry analysis. The results showed that CSFV NS5A did not increase ROS production or the antioxidant protein (Trx, HO-1 and PRDX-6) expression in ST cells. However, NS5A inhibited cyclooxygenase-2 (COX-2) expression, a pro-inflammatory protein related to OS. Further studies have shown that NS5A mutants S15A and S92A increased ROS production and inhibited antioxidant protein expression. S15A, S81A and T274A affected the inflammatory response. This study suggested that CSFV NS5A did not induce OS, and amino acids Ser15 and Ser92 of CSFV NS5A were essential for inhibiting OS. Additionally, Ser15, Ser81 and Thr274 played important roles in the inflammatory response in ST cells. These observations provided insight into the function of CSFV NS5A and the mechanism of CSFV persistent infection in ST cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    PubMed Central

    Firth, Andrew E; Atkins, John F

    2009-01-01

    Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU), thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon), conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'. PMID:19196463

  12. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    PubMed

    Dussart, Philippe; Petit, Laure; Labeau, Bhety; Bremand, Laetitia; Leduc, Alexandre; Moua, David; Matheus, Séverine; Baril, Laurence

    2008-08-20

    We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV) infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France), and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA), pan-E Dengue Early ELISA (Panbio - Brisbane, Australia)-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad). We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222) was 87.4% (95% confidence interval: 82.3% to 91.5%); that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4%) after 15 minutes and 82.4% (95% CI: 76.8% to 87.2%) after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%). The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8%) and a specificity of 97.9% (95% CI: 88.9% to 99.9%). Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  13. Side-chain mobility in the folded state of Myoglobin

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Onuchic, Jose

    We study the accessibility of alternative side-chain rotamer configurations in the native state of Myoglobin, using an all-atom structure-based model. From long, unbiased simulation trajectories we determine occupancies of rotameric states and also estimate configurational and vibrational entropies. Direct sampling of the full native-state dynamics, enabled by the simple model, reveals facilitation of side-chain motions by backbone dynamics. Correlations between different dihedral angles are quantified and prove to be weak. We confirm global trends in the mobilities of side-chains, following burial and also the chemical character of residues. Surface residues loose little configurational entropy upon folding; side-chains contribute significantly to the entropy of the folded state. Mobilities of buried side-chains vary strongly with temperature. At ambient temperature, individual side-chains in the core of the protein gain substantial access to alternative rotamers, with occupancies that are likely observable experimentally. Finally, the dynamics of buried side-chains may be linked to the internal pockets, available to ligand gas molecules in Myoglobin.

  14. Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus)

    PubMed Central

    Reitschmidt, Doris; Noll, Anton; Balazs, Peter; Penn, Dustin J.

    2017-01-01

    House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers. PMID:29236704

  15. Characterization of NS5A and NS5B Resistance-Associated Substitutions from Genotype 1 Hepatitis C Virus Infected Patients in a Portuguese Cohort.

    PubMed

    Brandão, Ruben; Marcelino, Rute; Gonçalves, Fátima; Diogo, Isabel; Carvalho, Ana; Cabanas, Joaquim; Costa, Inês; Brogueira, Pedro; Ventura, Fernando; Miranda, Ana; Mansinho, Kamal; Gomes, Perpétua

    2018-04-26

    This study is focused on the prevalent NS5 coding region resistance-associated substitutions (RASs) in DAA-naive genotype (GT)1 HCV-infected patients and their potential impact on success rates. Plasma RNA from 81 GT1 HCV-infected patients was extracted prior to an in-house nested RT-PCR of the NS5 coding region, which is followed by Sanger population sequencing. NS5A RASs were present in 28.4% (23/81) of all GT1-infected patients with 9.9% (8/81) having the Y93C/H mutation. NS5B RASs showed a prevalence of 14.8% (12/81) and were only detected in GT1b. Overall 38.3% (31/81) of all GT1 HCV-infected patients presented baseline RASs. The obtained data supports the usefulness of resistance testing prior to treatment since a statistically significant association was found between treatment failure and the baseline presence of specific NS5 RASs known as Y93C/H ( p = 0.04).

  16. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus

    PubMed Central

    Zhu, Shaomei; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre

    2016-01-01

    ABSTRACT A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. IMPORTANCE HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model

  17. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    PubMed

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  18. The possible existence of Pop III NS-BH binary and its detectability

    NASA Astrophysics Data System (ADS)

    Kinugawa, Tomoya; Nakamura, Takashi; Nakano, Hiroyuki

    2017-02-01

    In the population synthesis simulations of Pop III stars, many BH (black hole)-BH binaries with merger time less than the age of the Universe (τH) are formed, while NS (neutron star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semimajor axis becomes too large for Pop III NS-BH binaries to merge within τH . However it is almost established that the kick velocity of the order of 200 ‑500  km s‑1 exists for NS from the observation of the proper motion of the pulsar. Therefore, the semimajor axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is 1  Gpc‑3 yr‑1 . This suggests that there is a good chance of detecting Pop III NS-BH mergers in O2 (Observation run 2) of Advanced LIGO and Advanced Virgo from this autumn.

  19. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pheromonal regulation of male mouse ultrasonic courtship (Mus musculus).

    PubMed

    Nyby, J; Wysocki, C J; Whitney, G; Dizinno, G

    1977-05-01

    Biochemicals from several sites on the body of female house mice (Mus musculus) were found to elicit 70-kHz ultrasonic calls from male mice. Experiment 1 demonstrated that an anaesthetized female wrapped in an odour-impermeable plastic bag elicited ultrasounds from males when either the front or rear of their body was left exposed. In experiment 2 cotton swabs rubbed on the face and cheeks of females but not from males elicited ultrasonic calls from males. The results of experiment 3 suggested that female vaginal odours also elicit calls. Experiments 4 and 5 demonstrated that males will also emit ultrasounds in response to female but not male urine. The source and chemical nature of this 'ultrasound-releasing pheromone' remain to be discovered.

  1. Residue solvent accessibilities in the unfolded polypeptide chain.

    PubMed Central

    Zielenkiewicz, P; Saenger, W

    1992-01-01

    The difference of solvent accessibilities in the native and unfolded states of the protein is used as a measure of the hydrophobic contribution to the free energy of folding. We present a new approximation of amino acids solvent accessibilities in the unfolded state based on the 1-ns molecular dynamics simulation of Ala-X-Ala tripeptides at a temperature of 368 K. The standard accessibility values averaged from the molecular dynamics study are significantly lower from those previously obtained by considering only selected conformations of Ala-X-Ala tripeptides. PMID:1489908

  2. Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation.

    PubMed

    Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching

    2018-04-06

    Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.

  3. Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation.

    PubMed

    Pan, Dabo; Sun, Huijun; Shen, Yulin; Liu, Huanxiang; Yao, Xiaojun

    2011-12-01

    The frequent outbreak of influenza pandemic and the limited available anti-influenza drugs highlight the urgent need for the development of new antiviral drugs. The dsRNA-binding surface of nonstructural protein 1 of influenza A virus (NS1A) is a promising target. The detailed understanding of NS1A-dsRNA interaction will be valuable for structure-based anti-influenza drug discovery. To characterize and explore the key interaction features between dsRNA and NS1A, molecular dynamics simulation combined with MM-GBSA calculations were performed. Based on the MM-GBSA calculations, we find that the intermolecular van der Waals interaction and the nonpolar solvation term provide the main driving force for the binding process. Meanwhile, 17 key residues from NS1A were identified to be responsible for the dsRNA binding. Compared with the wild type NS1A, all the studied mutants S42A, T49A, R38A, R35AR46A have obvious reduced binding free energies with dsRNA reflecting in the reduction of the polar and/or nonpolar interactions. In addition, the structural and energy analysis indicate the mutations have a small effect to the backbone structures but the loss of side chain interactions is responsible for the decrease of the binding affinity. The uncovering of NS1A-dsRNA recognition mechanism will provide some useful insights and new chances for the development of anti-influenza drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Unified double- and single-sided homogeneous Green’s function representations

    PubMed Central

    van der Neut, Joost; Slob, Evert

    2016-01-01

    In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983

  5. Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities.

    PubMed

    Chen, Ming Wei; Tan, Yaw Bia; Zheng, Jie; Zhao, Yongqian; Lim, Bee Ting; Cornvik, Tobias; Lescar, Julien; Ng, Lisa Fong Poh; Luo, Dahai

    2017-07-01

    Chikungunya virus (CHIKV) is an important arboviral infectious agent in tropical and subtropical regions, often causing persistent and debilitating disease. The viral enzyme non-structural protein 4 (nsP4), as RNA-dependent RNA polymerase (RdRP), catalyzes the formation of negative-sense, genomic and subgenomic viral RNAs. Here we report a truncated nsP4 construct that is soluble, stable and purified recombinantly from Escherichia coli. Sequence analyses and homology modelling indicate that all necessary RdRP elements are included. Hydrogen/deuterium exchange with mass spectrometry was used to analyze solvent accessibility and flexibility of subdomains. Fluorophore-conjugated RNA ligands were designed and screened by using fluorescence anisotropy to select a suitable substrate for RdRP assays. Assay trials revealed that nsP4 core domain is conditionally active upon choice of detergent species, and carries out both primed extension and terminal adenylyltransferase activities. The polymerization assay can be further developed to screen for antiviral compounds in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. B-side charge separation in bacterial photosynthetic reaction centers: nanosecond time scale electron transfer from HB- to QB.

    PubMed

    Kirmaier, Christine; Laible, Philip D; Hanson, Deborah K; Holten, Dewey

    2003-02-25

    We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.

  7. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  8. Advanced access appointments

    PubMed Central

    Hudec, John C.; MacDougall, Steven; Rankin, Elaine

    2010-01-01

    ABSTRACT OBJECTIVE To examine the effects of advanced access (same-day physician appointments) on patient and provider satisfaction and to determine its association with other variables such as physician income and patient emergency department use. DESIGN Patient satisfaction survey and semistructured interviews with physicians and support staff; analysis of physician medical insurance billings and patient emergency department visits. SETTING Cape Breton, NS. PARTICIPANTS Patients, physicians, and support staff of 3 comparable family physician practices that had not implemented advanced access and an established advanced access practice. MAIN OUTCOME MEASURES Self-reported provider and patient satisfaction, physician office income, and patients’ emergency department use. RESULTS The key benefits of implementation of advanced access were an increase in provider and patient satisfaction levels, same or greater physician office income, and fewer less urgent (triage level 4) and nonurgent (triage level 5) emergency department visits by patients. CONCLUSION Currently within the Central Cape Breton Region, 33% of patients wait 4 or more days for urgent appointments. Findings from this study can be used to enhance primary care physician practice redesign. This research supports many benefits of transitioning to an advanced access model of patient booking. PMID:20944024

  9. AGILE Observations of the Gravitational-wave Source GW170817: Constraining Gamma-Ray Emission from an NS-NS Coalescence

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Tavani, M.; Donnarumma, I.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Ursi, A.; Piano, G.; Pilia, M.; Cardillo, M.; Parmiggiani, N.; Giuliani, A.; Pittori, C.; Longo, F.; Lucarelli, F.; Minervini, G.; Feroci, M.; Argan, A.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Fioretti, V.; Trois, A.; Del Monte, E.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Colafrancesco, S.; Costa, E.; D'Amico, F.; Ferrari, A.; Giommi, P.; Morselli, A.; Paoletti, F.; Pellizzoni, A.; Picozza, P.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; Baroncelli, L.; Zollino, G.

    2017-12-01

    The LIGO-Virgo Collaboration (LVC) detected, on 2017 August 17, an exceptional gravitational-wave (GW) event temporally consistent within ˜ 1.7 {{s}} with the GRB 1708117A observed by Fermi-GBM and INTEGRAL. The event turns out to be compatible with a neutron star-neutron star (NS-NS) coalescence that subsequently produced a radio/optical/X-ray transient detected at later times. We report the main results of the observations by the AGILE satellite of the GW170817 localization region (LR) and its electromagnetic (EM) counterpart. At the LVC detection time T 0, the GW170817 LR was occulted by the Earth. The AGILE instrument collected useful data before and after the GW/GRB event because in its spinning observation mode it can scan a given source many times per hour. The earliest exposure of the GW170817 LR by the gamma-ray imaging detector started about 935 s after T 0. No significant X-ray or gamma-ray emission was detected from the LR that was repeatedly exposed over timescales of minutes, hours, and days before and after GW170817, also considering Mini-calorimeter and Super-AGILE data. Our measurements are among the earliest ones obtained by space satellites on GW170817 and provide useful constraints on the precursor and delayed emission properties of the NS-NS coalescence event. We can exclude with high confidence the existence of an X-ray/gamma-ray emitting magnetar-like object with a large magnetic field of {10}15 {{G}}. Our data are particularly significant during the early stage of evolution of the EM remnant.

  10. Incremental cost of increasing access to maternal health care services: perspectives from a demand and supply side intervention in Eastern Uganda.

    PubMed

    Mayora, Chrispus; Ekirapa-Kiracho, Elizabeth; Bishai, David; Peters, David H; Okui, Olico; Baine, Sebastian Olikira

    2014-01-01

    High maternal and infant mortality continue to be major challenges to the attainment of the Millennium Development Goals for many low and middle-income countries. There is now evidence that voucher initiatives can increase access to maternal health services. However, a dearth of knowledge exists on the cost implications of voucher schemes. This paper estimates the incremental costs of a demand and supply side intervention aimed at increasing access to maternal health care services. This costing study was part of a quasi-experimental voucher study conducted in two districts in Eastern Uganda to explore the impact of demand and supply - side incentives on increasing access to maternal health services. The provider's perspective was used and the ingredients approach to costing was employed. Costs were based on market prices as recorded in program records. Total, unit, and incremental costs were calculated. The estimated total financial cost of the intervention for the one year of implementation was US$525,472 (US$1 = 2200UgShs). The major cost drivers included costs for transport vouchers (35.3%), health system strengthening (29.2%) and vouchers for maternal health services (18.2%). The average cost of transport per woman to and from the health facility was US$4.6. The total incremental costs incurred on deliveries (excluding caesarean section) was US$317,157 and US$107,890 for post natal care (PNC). The incremental costs per additional delivery and PNC attendance were US$23.9 and US$7.6 respectively. Subsidizing maternal health care costs through demand and supply - side initiatives may not require significant amounts of resources contrary to what would be expected. With Uganda's Gross Domestic Product (GDP) per capita of US$55` (2012), the incremental cost per additional delivery (US$23.9) represents about 5% of GDP per capita to save a mother and probably her new born. For many low income countries, this may not be affordable, yet reliance on donor funding is often

  11. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins.

    PubMed

    Turkington, Hannah L; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin; Hale, Benjamin G

    2018-03-01

    Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The

  12. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins

    PubMed Central

    Turkington, Hannah L.; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin

    2017-01-01

    ABSTRACT Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or

  13. Emergency Contraception Pill Awareness and Knowledge in Uninsured Adolescents: High Rates of Misconceptions Concerning Indications for Use, Side Effects, and Access.

    PubMed

    Yen, Sophia; Parmar, Deepika D; Lin, Emily L; Ammerman, Seth

    2015-10-01

    To determine the awareness of, access to, and knowledge of the proper use of emergency contraception pills (ECPs) among uninsured adolescents. Anonymous surveys were used to assess awareness of, knowledge of, and access to ECPs. From 2010 to 2012 at mobile primary care clinic in the San Francisco Bay Area. Patients were uninsured adolescents aged 13 to 25; 40% of the participants were currently or had been homeless in the past year. Ethnicity was 50% Asian, 22% Hispanic, 17% Pacific Islanders, 5.5% white, and 5.5% other/mixed ethnicity. Post survey completion, patients received one-on-one 15-minute dedicated ECP education. Awareness of, knowledge of, and access to ECPs. Of the study population of 439, 30% of the participants were 13-16 years old and 70% were 17-25 years old (mean age 17.8 years); 66% were women. Young women (86%) reported higher rates of "hearing about emergency contraception" than did young men (70%) (P < .0001). Many incorrectly identified or were uncertain if ECPs were an abortion pill (40%) or could be used as regular birth control (40%) or to prevent sexually transmitted infections (19%). Only 40% of women and 43% of men aged 17 and older correctly answered that they could obtain EC over the counter; 72% did not know that males could receive EC for use by their partner; 12% incorrectly selected that infertility was a side effect; 44% were under the false impression that EC had to be taken within 1 day of unprotected sex. Uninsured adolescents have high rates of ECP awareness but low ECP knowledge. These adolescents need more ECP education to alleviate misconceptions and increase practical knowledge, specifically, education about male access, side effects, over-the-counter availability for young men and women, and the 120-hour window of use. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  14. [Clinical significance of NS1-BP expression in esophageal squamous cell carcinoma].

    PubMed

    Ren, K; Qian, D; Wang, Y W; Pang, Q S; Zhang, W C; Yuan, Z Y; Wang, P

    2018-01-23

    Objective: To investigate the clinical significance of NS1-BP expression in patients with esophageal squamous cell carcinoma (ESCC), and to study the roles of NS1-BP in proliferation and apoptosis of ESCC cells. Methods: A total of 98 tumor tissues and 30 adjacent normal tissues from 98 ESCC patients were used as study group and control group, and these samples were collected in Sun Yat-Sen University Cancer Center between 2002 and 2008. In addition, 46 ESCC tissues which were collected in Cancer Institute and Hospital of Tianjin Medical University were used as validation group. Expression of mucosal NS1-BP was detected by immunohistochemistry. Kaplan-Meier curve and log-rank test were used to analyze the survival rate. Multivariate Cox proportional hazard model was used to analyze the prognostic factors. Furthermore, NS1-BP was over expressed or knocked down in ESCC cells by transient transfection. Protein levels of c-Myc were detected by western blot. Cell viability and apoptosis was analyzed by MTT assay and flow cytometry. Results: Among all of tested samples, NS1-BP were down-regulated in 9 out of 30 non-tumorous normal esophageal tissues (30.0%) and 85 out of 144 ESCC tissues (59.0%), respectively, showing a statistically significant difference ( P =0.012). In the study group, three-year disease-free survival rate of NS1-BP high expression group (53.2%) was significantly higher than that of NS1-BP low expression group (27.6%; P =0.009). In the validation group, the three-year disease-free survival rates were 57.8% and 25.5% in NS1-BP high and low levels groups, respectively, showing a similar results ( P =0.016). Importantly, multivariate analyses showed that low expression of NS1-BP was an independent predictor for chemoradiotherapy sensitivity and shorter disease-free survival time in ESCC patients( P <0.05 for all). Furthermore, overexpressed NS1-BP in TE-1 cells repressed c-Myc expression, inhibited cell proliferation and promoted apoptosis. In contrast

  15. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds.

    PubMed

    Leonel, Camyla Alves; Lima, William Gustavo; Dos Santos, Michelli; Ferraz, Ariane Coelho; Taranto, Alex Gutterres; de Magalhães, José Carlos; Dos Santos, Luciana Lara; Ferreira, Jaqueline Maria Siqueira

    2018-03-01

    Dengue virus (DENV) infection can lead to a wide range of clinical manifestations, including fatal hemorrhagic complications. There is a need to find effective pharmacotherapies to treat this disease due to the lack of specific immunotherapies and antiviral drugs. That said, the DENV NS2B/NS3pro protease complex is essential in both the viral multiplication cycle and in disease pathogenesis, and is considered a promising target for new antiviral therapies. Here, we performed a systematic review to evaluate the pharmacophoric characteristics of promising compounds against NS2B/NS3pro reported in the past 10 years. Online searches in the PUBMED/MEDLINE and SCOPUS databases resulted in 165 articles. Eight studies, which evaluated 3,384,268 molecules exhibiting protease inhibition activity, were included in this review. These studies evaluated anti-dengue activity in vitro and the IC 50 and EC 50 values were provided. Most compounds exhibited non-competitive inhibition. Cytotoxicity was evaluated in BHK-21, Vero, and LLC-MK2 cells, and the CC 50 values obtained ranged from < 1.0 to 780.5 µM. Several groups were associated with biological activity against dengue, including nitro, catechol, halogen and ammonium quaternaries. Thus, these groups seem to be potential pharmacophores that can be further investigated to treat dengue infections.

  16. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo.

    PubMed

    Yuan, Shuofeng; Chan, Jasper Fuk-Woo; den-Haan, Helena; Chik, Kenn Ka-Heng; Zhang, Anna Jinxia; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Yip, Cyril Chik-Yan; Mak, Winger Wing-Nga; Zhu, Zheng; Zou, Zijiao; Tee, Kah-Meng; Cai, Jian-Piao; Chan, Kwok-Hung; de la Peña, Jorge; Pérez-Sánchez, Horacio; Cerón-Carrasco, José Pedro; Yuen, Kwok-Yung

    2017-09-01

    Zika virus (ZIKV) infection may be associated with severe complications in fetuses and adults, but treatment options are limited. We performed an in silico structure-based screening of a large chemical library to identify potential ZIKV NS2B-NS3 protease inhibitors. Clinically approved drugs belonging to different drug classes were selected among the 100 primary hit compounds with the highest predicted binding affinities to ZIKV NS2B-NS3-protease for validation studies. ZIKV NS2B-NS3 protease inhibitory activity was validated in most of the selected drugs and in vitro anti-ZIKV activity was identified in two of them (novobiocin and lopinavir-ritonavir). Molecular docking and molecular dynamics simulations predicted that novobiocin bound to ZIKV NS2B-NS3-protease with high stability. Dexamethasone-immunosuppressed mice with disseminated ZIKV infection and novobiocin treatment had significantly (P < 0.05) higher survival rate (100% vs 0%), lower mean blood and tissue viral loads, and less severe histopathological changes than untreated controls. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of ZIKV. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Construction of plasmid, bacterial expression, purification, and assay of dengue virus type 2 NS5 methyltransferase.

    PubMed

    Boonyasuppayakorn, Siwaporn; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).

  18. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    PubMed

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC 50 ) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC 50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC 50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC 50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir

  19. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP2 12 12 and containing two protein molecules in the asymmetricmore » unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.« less

  20. One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry

    NASA Technical Reports Server (NTRS)

    Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph

    1992-01-01

    Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.

  1. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    PubMed Central

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  2. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  3. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3

    PubMed Central

    Zheng, Fengwei; Lu, Guoliang; Li, Ling

    2017-01-01

    ABSTRACT The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a “closed” global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo. Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through

  4. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions.

    PubMed

    Yates, Christopher M; Sternberg, Michael J E

    2013-11-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.

  5. SCit: web tools for protein side chain conformation analysis.

    PubMed

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  6. SCit: web tools for protein side chain conformation analysis

    PubMed Central

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  7. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda.

    PubMed

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus ( OV ). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus . Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis , some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with ( OV infection (using positive skin snips), we observe that ( OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda.

  8. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda

    PubMed Central

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus (OV). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus. Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis, some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with (OV infection (using positive skin snips), we observe that (OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda. PMID:29138647

  9. Comparing Ns-DBD vs Ac-DBD plasma actuation mechanisms on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Durasiewicz, Claudia; Little, Jesse

    2017-11-01

    A NACA 0012 airfoil is used to study ns-DBD and ac-DBD plasma actuators at a Reynolds number of 740,000 (U∞=40 m/s). Ns-DBD plasma actuators are hypothesized to work on the principle of joule heating whereas ac-DBD actuators add momentum to the flow. Short duration forcing at a time scale much smaller than the convective time based on model chord is employed to study the control mechanism and flow field response. 2-D PIV carried out over a convective time range of 0-10 is used to study the flow structure. The results show the breakup of shear layer vorticity at the point of actuation followed by reattachment to the suction side of the airfoil and finally stall again. These events are very similar between the two actuators and indicate a similar flow response to different perturbation types. The pulse energies are varied and the response shows little change. The results are compared to other transitory separation control studies using more conventional actuators. The detailed study of these two control mechanisms with the separated flow over an airfoil helps to shed light on the evolution of the flow control process. Additional results on a simplified model problem (low speed mixing layer) are included to provide context. Supported by U.S. Army Research Office (W911NF-14-1-0662).

  10. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  11. Access Control in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Ardagna, Claudio A.; Cremonini, Marco; de Capitani di Vimercati, Sabrina; Samarati, Pierangela

    Recent enhancements in location technologies reliability and precision are fostering the development of a new wave of applications that make use of the location information of users. Such applications introduces new aspects of access control which should be addressed. On the one side, precise location information may play an important role and can be used to develop Location-based Access Control (LBAC) systems that integrate traditional access control mechanisms with conditions based on the physical position of users. On the other side, location information of users can be considered sensitive and access control solutions should be developed to protect it against unauthorized accesses and disclosures. In this chapter, we address these two aspects related to the use and protection of location information, discussing existing solutions, open issues, and some research directions.

  12. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    PubMed

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  14. A single residue mutation in Hha preserving structure and binding to H-NS results in loss of H-NS mediated gene repression properties.

    PubMed

    Cordeiro, Tiago N; Garcia, Jesús; Pons, José-Ignacio; Aznar, Sonia; Juárez, Antonio; Pons, Miquel

    2008-09-03

    In this study, we report that a single mutation of cysteine 18 to isoleucine (C18I) in Escherichia coli Hha abolishes the repression of the hemolysin operon observed in the wild-type protein. The phenotype also includes a significant decrease in the growth rate of E. coli cells at low ionic strength. Other substitutions at this position (C18A, C18S) have no observable effects in E. coli growth or hemolysin repression. All mutants are stable and well folded and bind H-NS in vitro with similar affinities suggesting that Cys 18 is not directly involved in H-NS binding but this position is essential for the activity of the H-NS/Hha heterocomplexes in the regulation of gene expression.

  15. 6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. PROTRUSION ON UPPER RIGHT HAND SIDE OF LUT IS SWING ARM NINE WHICH PROVIDED ACCESS TO CAPSULE OF LAUNCH VEHICLE WHILE ON LAUNCHER. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  16. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach.

    PubMed

    Qamar, Muhammad Tahirul; Ashfaq, Usman Ali; Tusleem, Kishver; Mumtaz, Arooj; Tariq, Quratulain; Goheer, Alina; Ahmed, Bilal

    2017-11-01

    Dengue infection is prevailing among the people not only from the developing countries but also from the developed countries due to its high morbidity rate around the globe. Hence, due to the unavailability of any suitable vaccine for rigorous dengue virus (DENV), the only mode of its treatment is prevention. The circumstances require an urgent development of efficient and practical treatment to deal with these serotypes. The severe effects and cost of synthetic vaccines simulated researchers to find anti-viral agents from medicinal plants. Flavonoids present in medicinal plants, holds anti-viral activity and can be used as vaccine against viruses. Therefore, present study was planned to find anti-viral potential of 2500 flavonoids inhibitors against the DENVNS2B/NS3 protease through computational screening which can hinder the viral replication within the host cell. By using molecular docking, it was revealed that flavonoids showed strong and stable bonding in the binding pocket of DENV NS2B/NS3 protease and had strong interactions with catalytic triad. Drug capability and anti-dengue potential of the flavonoids was also evaluated by using different bioinformatics tools. Some flavonoids effectively blocked the catalytic triad of DENV NS2B/NS3 protease and also passed through drug ability evaluation. It can be concluded from this study that these flavonoids could act as potential inhibitors to stop the replication of DENV and there is a need to study the action of these molecules in-vitro to confirm their action and other properties.

  17. Responses to the Tiles and Sides Problem.

    ERIC Educational Resources Information Center

    Olson, Melfried; Olson, Judith

    2001-01-01

    Discusses the Tiles and Sides problem from the December 2000 issue. Indicates that this problem is accessible to students at different grade levels. Presents samples of student responses and their teachers' analysis. (KHR)

  18. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene

    PubMed Central

    George, Marina A.; El-Shorbagy, Haidan M.; Bassiony, Heba; Farroh, Khaled Y.; Youssef, Tareq; Salaheldin, Taher A.

    2017-01-01

    Background Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. Aim of work The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Methods and results Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Conclusion Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV. PMID:28746382

  19. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components

    PubMed Central

    Beatty, P. Robert

    2017-01-01

    Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. PMID:29121099

  20. Conclusions and future directions for the REiNS International Collaboration

    PubMed Central

    Blakeley, Jaishri O.; Dombi, Eva; Fisher, Michael J.; Hanemann, Clemens O.; Walsh, Karin S.; Wolters, Pamela L.; Plotkin, Scott R.

    2013-01-01

    The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration was established with the goal to develop consensus recommendations for the use of endpoints in neurofibromatosis (NF) clinical trials. This supplement includes the first series of REiNS recommendations for the use of patient-reported, functional, and visual outcomes, and for the evaluation of imaging response in NF clinical trials. Recommendations for neurocognitive outcome measures, the use of whole-body MRI in NF, the evaluation of potential biomarkers of disease, and the comprehensive evaluation of functional and patient-reported outcomes in NF are in development. The REiNS recommendations are made based on current knowledge. Experience with the use of the recommended endpoints in clinical trials, development of new tools and technologies, new knowledge of the natural history of NF, and advances in the methods used to analyze endpoints will likely lead to modifications of the currently proposed guidelines, which will be shared with the NF research community through the REiNS Web site www.reinscollaboration.org. Due to the clinical complexity of NF, there is a need to seek expertise from multiple medical disciplines, regulatory agencies, and industry to develop trial endpoints and designs, which will lead to the identification and approval of effective treatments for NF tumor and nontumor manifestations. The REiNS Collaboration welcomes anyone interested in providing his or her expertise toward this effort. PMID:24249805

  1. The structure of Zika virus NS5 reveals a conserved domain conformation

    DOE PAGES

    Wang, Boxiao; Tan, Xiao -Feng; Thurmond, Stephanie; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has imposed a serious threat to public health. Here we report the crystal structure of the ZIKV NS5 protein in complex with S-adenosyl-L-homocysteine, in which the tandem methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains stack into one of the two alternative conformations of flavivirus NS5 proteins. In conclusion, the activity of this NS5 protein is verified through a de novo RdRp assay on a subgenomic ZIKV RNA template. Importantly, our structural analysis leads to the identification of a potential drug-binding site of ZIKV NS5, which might facilitate the development of novel antiviralsmore » for ZIKV.« less

  2. Identification of potential hit compounds for Dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations.

    PubMed

    Wichapong, K; Nueangaudom, A; Pianwanit, S; Sippl, W; Kokpol, S

    2013-09-01

    Dengue virus (DV) infections are a serious public health problem and there is currently no vaccine or drug treatment. NS2B/NS3 protease, an essential enzyme for viral replication, is one of the promising targets in the search for drugs against DV. In this research work, virtual screening (VS) was carried out on four multi-conformational databases using several criteria. Firstly, molecular dynamics simulations of the NS2B/NS3 protease and four known inhibitors, which reveal an importance of both electrostatic and van der Waals interactions in stabilizing the ligand-enzyme interaction, were used to generate three different pharmacophore models (a structure-based, a static and a dynamic). Subsequently, these three models were employed for pharmacophore search in the VS. Secondly, compounds passing the first criterion were further reduced using the Lipinski's rule of five to keep only compounds with drug-like properties. Thirdly, molecular docking calculations were performed to remove compounds with unsuitable ligand-enzyme interactions. Finally, binding free energy of each compound was calculated. Compounds having better energy than the known inhibitors were selected and thus 20 potential hits were obtained.

  3. The Spectral Signatures Of BH Versus NS Sources

    NASA Astrophysics Data System (ADS)

    Seifina, E.; Titarchuk, L.

    2011-09-01

    We present a comparative analysis of spectral properties of Black Hole (BH) and Neutron Star (NS) X-ray binaries during transition events observed with BeppoSAX and RXTE satellites. In particular, we investigated the behavior of Comptonized component of X-ray spectra when object evolves from the low to high spectral states. The basic models to fit X-ray spectra of these objects are upscattering models (so called BMC and COMPTB models) which are the first principal models. These models taking into account both dynamical and thermal Comptonization and allow to study separate contributions of thermal component and Comptonization component (bulk and thermal effect of Comptonization processes). Specifically, we tested quite a few observations of BHs (GRS 1915+105 and SS 433) and NSs (4U 1728-34 and GX 3+1) applying BMC and COMPTB models. In this way it was found a crucial difference in behavior of photon index vs mass accretion rate (mdot) for BHs and NSs. Namely, we revealed the stability of the photon index around typical value of Gamma=2 versus mdot (or electron temperature) during spectral evolution of NS sources. This stability effect was previously suggested for a number of other neutron binaries (see Farinelli and Titarchuk, 2011). This intrinsic property of NS is fundamentally different from that in BH binary sources for which the index demonstrates monotonic growth with mass accretion rate followed by its saturation at high values of mdot. These index-mass accretion rate behavior during X-ray spectral transition events can be considered as signatures, which allow to differ NS from BH.

  4. Mate Choice in Mus musculus Is Relative and Dependent on the Estrous State

    PubMed Central

    Zinck, Léa; Lima, Susana Q.

    2013-01-01

    Mate choice is a critical behavioral decision process with profound impact on evolution. However, the mechanistic basis of mate choice is poorly understood. In this study we focused on assortative mate choice, which is known to contribute to the reproductive isolation of the two European subspecies of house mouse, Mus musculus musculus and Mus musculus domesticus. To understand the decision process, we developed both full mating and limited-contact paradigms and tested musculus females' preference for musculus versus domesticus males, mimicking the natural musculus/domesticus contact zone. As hypothesized, when allowed to mate we found that sexually receptive musculus females exhibited a robust preference to mate with musculus males. In contrast, when non-receptive, females did not exhibit a preference and rather alternated between males in response to male mount attempts. Moreover in a no-choice condition, females mated readily with males from both subspecies. Finally, when no physical contact was allowed, and therefore male's behavior could not influence female's behavior, female's preference for its own subspecies was maintained independently of the estrous state. Together, our results suggest that the assortative preference is relative and based on a comparison of the options available rather than on an absolute preference. The results of the limited-contact experiments highlight the interplay between female's internal state and the nature of the interaction with prospective mates in the full mating conditions. With these experiments we believe we established an assortative mate preference assay that is appropriate for the investigation of its underlying substrates. PMID:23762466

  5. Utility of dengue NS1 antigen rapid diagnostic test for use in difficult to reach areas and its comparison with dengue NS1 ELISA and qRT-PCR.

    PubMed

    Shukla, Mohan K; Singh, Neeru; Sharma, Ravendra K; Barde, Pradip V

    2017-07-01

    The objective of this study was to demonstrate the utility of dengue virus (DENV) non structural protein 1 (NS1) based rapid diagnostic test (RDT) for use in tribal and difficult to reach areas for early dengue (DEN) diagnosis in acute phase patients and evaluate its sensitivity and specificity against DENV NS1 enzyme linked immune sorbent assay (ELISA) and real time reverse transcriptase polymerase chain reaction (qRT-PCR). The DENV NS1 RDT was used for preliminary diagnosis during outbreaks in difficult to reach rural and tribal areas. The diagnosis was confirmed by DENV NS1 ELISA in the laboratory. The samples were also tested and serotyped by qRT-PCR. The results were evaluated using statistical tests. The DENV NS1 RDT showed 99.2% sensitivity and 96.0% specificity when analyzed using DENV NS1 ELISA as standard. The specificity and sensitivity of the RDT when compared with qRT-PCR was 93.6% and 91.1%, respectively. The serotype specific evaluation showed more than 90% sensitivity and specificity for DENV-1, 2, and 3. The RDT proved a good diagnostic tool in difficult to reach rural and tribal areas. Further evaluation studies with different commercially available RDTs in different field conditions are essential, that will help clinicians and patients for treatment and programme managers for timely intervention. © 2017 Wiley Periodicals, Inc.

  6. 5. Oblique view, west end and south side, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Oblique view, west end and south side, view to northeast. Shed-roofed entries on south side of lean-to will be replaced in this project to provide handicap access. - Interurban Electric Railway Bridge Yard Shop, Interstate 80 at Alameda County Postmile 2.0, Oakland, Alameda County, CA

  7. Preliminary Characterization of Mus musculus–Derived Pathogenic Strains of Leptospira borgpetersenii Serogroup Ballum in a Hamster Model

    PubMed Central

    da Silva, Éverton F.; Félix, Samuel R.; Cerqueira, Gustavo M.; Fagundes, Michel Q.; Neto, Amilton C. P. S.; Grassmann, André A.; Amaral, Marta G.; Gallina, Tiago; Dellagostin, Odir A.

    2010-01-01

    Human and animal leptospirosis caused by Leptospira spp. belonging to serogroup Ballum has increased worldwide in the past decade. We report the isolation and serologic and molecular characterization of four L. borgpetersenii serogroup Ballum isolates obtained from Mus musculus, and preliminary virulence studies. These isolates are useful for diagnosis of leptospirosis and for epidemiologic studies of its virulence and pathogenic mechanisms. PMID:20682877

  8. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes

    PubMed Central

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284

  9. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes.

    PubMed

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.

  10. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling, E-mail: hlyeh@vghtc.gov.tw

    2015-10-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results inmore » dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.« less

  11. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition.

    PubMed

    Koliopoulos, Marios G; Lethier, Mathilde; van der Veen, Annemarthe G; Haubrich, Kevin; Hennig, Janosch; Kowalinski, Eva; Stevens, Rebecca V; Martin, Stephen R; Reis E Sousa, Caetano; Cusack, Stephen; Rittinger, Katrin

    2018-05-08

    RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1.

  12. REVIEW - Thermal Physiology of Laboratory Mice: Defining Thermoneutrality

    EPA Science Inventory

    In terms of total number of publications, the laboratory mouse (Mus musculus) has emerged as the most popular test subject in biomedical research. Mice are used as models to study obesity, diabetes, eNS diseases and variety of other pathologies. Mice are classified as homeotherms...

  13. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice.

    PubMed

    Morales-Prieto, Noelia; Ruiz-Laguna, Julia; Sheehan, David; Abril, Nieves

    2018-07-01

    The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. BOREAS Level-2 NS001 TMS Imagery: Reflectance and Temperature in BSQ Format

    NASA Technical Reports Server (NTRS)

    Lobitz, Brad; Spanner, Michael; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Strub, Richard

    2000-01-01

    For BOREAS, the NS001 TMS images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fPAR and LAI. Collection of the NS001 images occurred over the study areas during the 1994 field campaigns. The level-2 NS001 data are atmospherically corrected versions of some of the best original NS001 imagery and cover the dates of 19-Apr-1994, 07-Jun-1994, 21-Jul-1994, 08-Aug-1994, and 16-Sep-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 INS data in an NS001 scan model. The data are provided in binary image format files.

  15. Comparative Analysis of Disruption Tolerant Network Routing Simulations in the One and NS-3

    DTIC Science & Technology

    2017-12-01

    real systems with less work compared to ns-2. In order to meet the design goals of ns-3, the entire code structure changed to a modular design . As a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3...Thesis 03-23-2016 to 12-15-2017 4. TITLE AND SUBTITLE COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3 5

  16. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes.

    PubMed

    D'Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B-NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  17. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  18. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  19. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  20. Discovery of Dengue Virus NS4B Inhibitors

    PubMed Central

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  1. Secure Web-Site Access with Tickets and Message-Dependent Digests

    USGS Publications Warehouse

    Donato, David I.

    2008-01-01

    Although there are various methods for restricting access to documents stored on a World Wide Web (WWW) site (a Web site), none of the widely used methods is completely suitable for restricting access to Web applications hosted on an otherwise publicly accessible Web site. A new technique, however, provides a mix of features well suited for restricting Web-site or Web-application access to authorized users, including the following: secure user authentication, tamper-resistant sessions, simple access to user state variables by server-side applications, and clean session terminations. This technique, called message-dependent digests with tickets, or MDDT, maintains secure user sessions by passing single-use nonces (tickets) and message-dependent digests of user credentials back and forth between client and server. Appendix 2 provides a working implementation of MDDT with PHP server-side code and JavaScript client-side code.

  2. Molecular Mechanism by Which a Potent Hepatitis C Virus NS3-NS4A Protease Inhibitor Overcomes Emergence of Resistance

    PubMed Central

    O'Meara, Jeff A.; Lemke, Christopher T.; Godbout, Cédrickx; Kukolj, George; Lagacé, Lisette; Moreau, Benoît; Thibeault, Diane; White, Peter W.; Llinàs-Brunet, Montse

    2013-01-01

    Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms. PMID:23271737

  3. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    PubMed

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  4. Strain-Specific Properties and T Cells Regulate the Susceptibility to Papilloma Induction by Mus musculus Papillomavirus 1

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Bonelli, Michael; Lowy, Douglas R.; Schiller, John T.

    2014-01-01

    The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated “MmuPV1”), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific

  5. Rough Interface Effects on N-S Proximity-Contact Systems

    NASA Astrophysics Data System (ADS)

    Nagato, Yasushi; Nagai, Katsuhiko

    2003-03-01

    We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic dx2-y2 superconductor and calculate the self-consistent pair potential and the density of states at the interface.

  6. Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).

    PubMed

    He, Ling; Xiao, Deyou; Feng, Jianguo; Yao, Chenguo; Tang, Liling

    2017-02-01

    The application of nanosecond pulsed electric fields (nsPEFs) is a novel method to induce the death of cancer cells. NsPEFs could directly function on the cell membrane and activate the apoptosis pathways, then induce apoptosis in various cell lines. However, the nsPEFs-inducing-apoptosis action sites and the exact pathways are not clear now. In this study, nsPEFs were applied to the human liver cancer cells HepG2 with different parameters. By apoptosis assay, morphological observation, detecting the mitochondrial membrane potential (ΔΨ m ), intracellular calcium ion concentration ([Ca 2+ ]i) and the expressions of key apoptosis factors, we demonstrated that nsPEFs could induce the morphology of cell apoptosis, the change in ΔΨ m , [Ca 2+ ]i and the upregulation of some key apoptosis factors, which revealed the responses of liver cancer cells and indicated that cells may undergo apoptosis through the mitochondria-dependent pathway after nsPEFs were applied.

  7. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    PubMed

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. Yellow fever is an acute viral hemorrhagic disease which threatens approximately one billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than seven decades, the low vaccination rate fails to prevent outbreaks in at

  8. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein

    PubMed Central

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M.; Du, Yanming; Guo, Ju-Tao

    2016-01-01

    ABSTRACT Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 μM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination

  9. Structure and sequence based functional annotation of Zika virus NS2b protein: Computational insights.

    PubMed

    Aguilera-Pesantes, Daniel; Méndez, Miguel A

    2017-10-28

    While Zika virus (ZIKV) outbreaks are a growing concern for global health, a deep understanding about the virus is lacking. Here we report a contribution to the basic science on the virus- a detailed computational analysis of the non structural protein NS2b. This protein acts as a cofactor for the NS3 protease (NS3Pro) domain that is important on the viral life cycle, and is an interesting target for drug development. We found that ZIKV NS2b cofactor is highly similar to other virus within the Flavivirus genus, especially to West Nile Virus, suggesting that it is completely necessary for the protease complex activity. Furthermore, the ZIKV NS2b has an important role to the function and stability of the ZIKV NS3 protease domain even when presents a low conservation score. In addition, ZIKV NS2b is mostly rigid, which could imply a non dynamic nature in substrate recognition. Finally, by performing a computational alanine scanning mutagenesis, we found that residues Gly 52 and Asp 83 in the NS2b could be important in substrate recognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C.

    PubMed

    Costantino, Angela; Spada, Enea; Equestre, Michele; Bruni, Roberto; Tritarelli, Elena; Coppola, Nicola; Sagnelli, Caterina; Sagnelli, Evangelista; Ciccaglione, Anna Rita

    2015-11-14

    The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.

  11. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli

    PubMed Central

    Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.

    2010-01-01

    Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333

  12. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  13. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  14. Discovery of the Ubiquitous Cation NS+ in Space Confirmed by Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Lefloch, B.; Agúndez, M.; Bailleux, S.; Margulès, L.; Roueff, E.; Bachiller, R.; Marcelino, N.; Tercero, B.; Vastel, C.; Caux, E.

    2018-02-01

    We report the detection in space of a new molecular species that has been characterized spectroscopically and fully identified from astrophysical data. The observations were carried out with the IRAM 30 m telescope. The molecule is ubiquitous as its J=2\\to 1 transition has been found in cold molecular clouds, prestellar cores, and shocks. However, it is not found in the hot cores of Orion-KL and in the carbon-rich evolved star IRC+10216. Three rotational transitions in perfect harmonic relation J\\prime =2/3/5 have been identified in the prestellar core B1b. The molecule has a 1Σ electronic ground state and its J=2\\to 1 transition presents the hyperfine structure characteristic of a molecule containing a nucleus with spin 1. A careful analysis of possible carriers shows that the best candidate is NS+. The derived rotational constant agrees within 0.3%–0.7% with ab initio calculations. NS+ was also produced in the laboratory to unambiguously validate the astrophysical assignment. The observed rotational frequencies and determined molecular constants confirm the discovery of the nitrogen sulfide cation in space. The chemistry of NS+ and related nitrogen-bearing species has been analyzed by means of a time-dependent gas-phase model. The model reproduces well the observed NS/NS+ abundance ratio, in the range 30–50, and indicates that NS+ is formed by reactions of the neutral atoms N and S with the cations SH+ and NH+, respectively.

  15. Of Mice and ‘Convicts’: Origin of the Australian House Mouse, Mus musculus

    PubMed Central

    Gabriel, Sofia I.; Stevens, Mark I.; Mathias, Maria da Luz; Searle, Jeremy B.

    2011-01-01

    The house mouse, Mus musculus, is one of the most ubiquitous invasive species worldwide and in Australia is particularly common and widespread, but where it originally came from is still unknown. Here we investigated this origin through a phylogeographic analysis of mitochondrial DNA sequences (D-loop) comparing mouse populations from Australia with those from the likely regional source area in Western Europe. Our results agree with human historical associations, showing a strong link between Australia and the British Isles. This outcome is of intrinsic and applied interest and helps to validate the colonization history of mice as a proxy for human settlement history. PMID:22174847

  16. Access to health care and employment status of people with disabilities in South India, the SIDE (South India Disability Evidence) study.

    PubMed

    Gudlavalleti, Murthy Venkata S; John, Neena; Allagh, Komal; Sagar, Jayanthi; Kamalakannan, Sureshkumar; Ramachandra, Srikrishna S

    2014-11-01

    Data shows that people with disability are more disadvantaged in accessing health, education and employment opportunities compared to people without a disability. There is a lack of credible documented evidence on health care access and barriers to access from India. The South India Disability Evidence (SIDE) Study was undertaken to understand the health needs of people with disabilities, and barriers to accessing health services. The study was conducted in one district each in two States (Andhra Pradesh and Karnataka) in 2012. Appropriate age and sex-matched people without a disability were recruited to compare with people with disability who were identified through a population-based survey and available government disability records by trained key informants. These people were then examined by a medical team to confirm the diagnosis. Investigators administered questionnaire schedules to people with and without a disability to harness information on employment and health service access, utilization and barriers. A total of 839 people with disabilities and 1153 age and sex matched people without a disability, aged 18 years or more were included. People with disability had significantly lower employment rates. On univariate analysis, people with disability (18.4%) needed to visit a hospital significantly more often in the preceding year compared to people without a disability (8.8%) (X2- 40.0562; P < =0.001). However adjusted odds ratios did not show a statistically significant difference. Significant differences were also observed with respect to past hospitalization. People with disabilities had 4.6 times higher risk of suffering from diabetes and 5.8 times higher risk of suffering from depression compared to people without a disability and the risk was significantly higher in males compared to females with disability. People with disability faced significantly more barriers to accessing health services compared to people without a disability. Barriers

  17. Toward the laboratory identification of the not-so-simple NS2 neutral and anion isomers

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Thackston, Russell; Francisco, Joseph S.; Lee, Timothy J.

    2017-08-01

    The NS2 radical is a simple arrangement of atoms with a complex electronic structure. This molecule was first reported by Hassanzadeh and Andrew's group [J. Am. Chem. Soc. 114, 83 (1992)] through Ar matrix isolation experiments. In the quarter century since this seminal work was published, almost nothing has been reported about nitrogen disulfide even though NS2 is isovalent with the common NO2. The present study aims to shed new insight into possible challenges with the characterization of this radical. No less than three potential energy surfaces all intersect in the C2v region of the SNS radical isomer. A type-C Renner-Teller molecule is present for the linear 2Πu state where the potential energy surface is fully contained within the 2.05 kcal/mol lower energy X ˜ 2A1 state. A C2v, 1 2B1 state is present in this same region, but a double excitation is required to access this state from the X ˜ 2A1 state of SNS. Additionally, a 1 2A' NSS isomer is also present but with notable differences in the geometry from the global minimum. Consequently, the rovibronic spectrum of these NS2 isomers is quite complicated. While the present theory and previous Ar matrix experiments agree well on isotopic shifts, they differ notably for the absolute fundamental vibrational frequency transitions. These differences are likely a combination of matrix shifts and issues associated with the neglect of non-adiabatic coupling in the computations. In either case, it is clear that high-resolution gas phase experimental observations will be complicated to sort. The present computations should aid in their analysis.

  18. Hepatitis C virus NS3 helicase forms oligomeric structures that exhibit optimal DNA unwinding activity in vitro.

    PubMed

    Sikora, Bartek; Chen, Yingfeng; Lichti, Cheryl F; Harrison, Melody K; Jennings, Thomas A; Tang, Yong; Tackett, Alan J; Jordan, John B; Sakon, Joshua; Cameron, Craig E; Raney, Kevin D

    2008-04-25

    HCV NS3 helicase exhibits activity toward DNA and RNA substrates. The DNA helicase activity of NS3 has been proposed to be optimal when multiple NS3 molecules are bound to the same substrate molecule. NS3 catalyzes little or no measurable DNA unwinding under single cycle conditions in which the concentration of substrate exceeds the concentration of enzyme by 5-fold. However, when NS3 (100 nm) is equimolar with the substrate, a small burst amplitude of approximately 8 nm is observed. The burst amplitude increases as the enzyme concentration increases, consistent with the idea that multiple molecules are needed for optimal unwinding. Protein-protein interactions may facilitate optimal activity, so the oligomeric properties of the enzyme were investigated. Chemical cross-linking indicates that full-length NS3 forms higher order oligomers much more readily than the NS3 helicase domain. Dynamic light scattering indicates that full-length NS3 exists as an oligomer, whereas NS3 helicase domain exists in a monomeric form in solution. Size exclusion chromatography also indicates that full-length NS3 behaves as an oligomer in solution, whereas the NS3 helicase domain behaves as a monomer. When NS3 was passed through a small pore filter capable of removing protein aggregates, greater than 95% of the protein and the DNA unwinding activity was removed from solution. In contrast, only approximately 10% of NS3 helicase domain and approximately 20% of the associated DNA unwinding activity was removed from solution after passage through the small pore filter. The results indicate that the optimally active form of full-length NS3 is part of an oligomeric species in vitro.

  19. Structure-based design of NS2 mutants for attenuated influenza A virus vaccines.

    PubMed

    Akarsu, Hatice; Iwatsuki-Horimoto, Kiyoko; Noda, Takeshi; Kawakami, Eiryo; Katsura, Hiroaki; Baudin, Florence; Horimoto, Taisuke; Kawaoka, Yoshihiro

    2011-01-01

    We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Wind asymmetry imprint in the UV light curves of the symbiotic binary SY Mus

    NASA Astrophysics Data System (ADS)

    Shagatova, N.; Skopal, A.

    2017-06-01

    Context. Light curves (LCs) of some symbiotic stars show a different slope of the ascending and descending branch of their minimum profile. The origin of this asymmetry is not well understood. Aims: We explain this effect in the ultraviolet LCs of the symbiotic binary SY Mus. Methods: We model the continuum fluxes in the spectra obtained by the International Ultraviolet Explorer at ten wavelengths, from 1280 to 3080 Å. We consider that the white dwarf radiation is attenuated by H0 atoms, H- ions, and free electrons in the red giant wind. Variation in the nebular component is approximated by a sine wave along the orbit as suggested by spectral energy distribution models. The model includes asymmetric wind velocity distribution and the corresponding ionization structure of the binary. Results: We determined distribution of the H0 and H+, as well as upper limits of H- and H0 column densities in the neutral and ionized region at the selected wavelengths as functions of the orbital phase. Corresponding models of the LCs match well the observed continuum fluxes. In this way, we suggested the main UV continuum absorbing (scattering) processes in the circumbinary environment of S-type symbiotic stars. Conclusions: The asymmetric profile of the ultraviolet LCs of SY Mus is caused by the asymmetric distribution of the circumstellar matter at the near-orbital-plane area. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A71

  1. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last

    PubMed Central

    Götte, Benjamin; Liu, Lifeng

    2018-01-01

    Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions. PMID:29495654

  2. Foraging activity of commensal Mus musculus in semi-captivity conditions. Effect of predator odours, previous experience and moonlight.

    PubMed

    Busch, María; Burroni, Nora E

    2015-12-01

    Mus musculus is a pest in urban and rural habitats where it consumes and contaminates food and may transmit diseases to human and domestic animals. Its control by anticoagulants is partially effective because of aversive behaviours and resistance. In this context, we wanted to assess the potential of the use of predator odours as repellents in experimental feeding trials using urine and faeces of domestic cats and faeces of geoffroyi cat, a wild small felid that is one of the main rodent predators in the study area. We also assessed the effect of previous experience and moonlight on foraging activity. We did not find an aversive response to cat odours in Mus musculus individuals. There was a trend to consume food in the same feeding stations over time, and the visit rate was lower in periods with high moonlight than in periods with low moonlight. Predator odours did not seem to be useful as rodent repellents, but maintaining illumination may lower rodent foraging activity. As rodents maintain their feeding sites over time, toxic baits may be more efficiently placed at sites previously known to be used by rodents. © 2014 Society of Chemical Industry.

  3. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new

  4. Test of Fruit Extract Pare (Momordica charantia L.) to Quality of Ejaculated Spermatozoa Mice (Mus musculus L.)

    NASA Astrophysics Data System (ADS)

    Fifendy, M.; Indriati, G.

    2018-04-01

    Pare (Momordica charantia L.) can be used in the treatment of various diseases, such as influenza, cancer, anti-inflammatory, anti-HIV, antimitotic and antifertilitas. This study aimed to determine the effect of the herbal bitter (Momordica charantia L.) to ejaculated sperm quality mice (Mus musculus L.). This research was conducted using Completely Randomized Design (CRD) with 4 treatments and 6 replications, water and fed adlibitum. First treatment is given solvent extract. Second treatments extract were given 0.2 gram, third treatment were given 0.4 gram of extracts and fourth treatment were treated exstrac 0.6 gram were orally for 30 days. After the mice decapitated, dissected and take sperm from vas deferens. Then, the sperm preparation determined using the improved Neubauer. Data were analyzed by ANOVA (Analysis of Varians). The results shoured at doses of 0,2 gram, the average sperm count was 19.89. decrease significant when compared with the control in which the average number of sperm 29.13. So with this research the effective doses to decrease sperm count and can be used as a contraception medication dosage was 0,2 gram. It can be conclude that the extract of bitter (Momordica charantia L.) can decrease the quality of the ejaculated sperm of mice (Mus musculus L.)

  5. A single-chip 32-channel analog beamformer with 4-ns delay resolution and 768-ns maximum delay range for ultrasound medical imaging with a linear array transducer.

    PubMed

    Um, Ji-Yong; Kim, Yoon-Jee; Cho, Seong-Eun; Chae, Min-Kyun; Kim, Byungsub; Sim, Jae-Yoon; Park, Hong-June

    2015-02-01

    A single-chip 32-channel analog beamformer is proposed. It achieves a delay resolution of 4 ns and a maximum delay range of 768 ns. It has a focal-point based architecture, which consists of 7 sub-analog beamformers (sub-ABF). Each sub-ABF performs a RX focusing operation for a single focal point. Seven sub-ABFs perform a time-interleaving operation to achieve the maximum delay range of 768 ns. Phase interpolators are used in sub-ABFs to generate sampling clocks with the delay resolution of 4 ns from a low frequency system clock of 5 MHz. Each sub-ABF samples 32 echo signals at different times into sampling capacitors, which work as analog memory cells. The sampled 32 echo signals of each sub-ABF are originated from one target focal point at one instance. They are summed at one instance in a sub-ABF to perform the RX focusing for the target focal point. The proposed ABF chip has been fabricated in a 0.13- μ m CMOS process with an active area of 16 mm (2). The total power consumption is 287 mW. In measurement, the digital echo signals from a commercial ultrasound medical imaging machine were applied to the fabricated chip through commercial DAC chips. Due to the speed limitation of the DAC chips, the delay resolution was relaxed to 10 ns for the real-time measurement. A linear array transducer with no steering operation is used in this work.

  6. Virulence, Speciation and Antibiotic Susceptibility of Ocular Coagualase Negative Staphylococci (CoNS)

    PubMed Central

    Priya, Ravindran; Mythili, Arumugam; Singh, Yendremban Randhir Babu; Sreekumar, Haridas; Manikandan, Palanisamy; Panneerselvam, Kanesan

    2014-01-01

    Background: Coagulase negative Staphylococci (CoNS) are common inhabitants of human skin and mucous membranes. With the emergence of these organisms as prominent pathogens in patients with ocular infections, investigation has intensified in an effort to identify important virulence factors and to inform new approaches to treatment and prevention. Aim: To isolate CoNS from ocular specimens; to study the possible virulence factors; speciation of coagulase negative staphylococci (CoNS) which were isolated from ocular complications; antibiotic susceptibility testing of ocular CoNS. Materials and Methods: The specimens were collected from the target patients who attended the Microbiology Laboratory of a tertiary care eye hospital in Coimbatore, Tamilnadu state, India. The isolates were subjected to tube and slide coagulase tests for the identification of CoNS. All the isolates were subjected to screening for lipase and protease activities. Screening for other virulence factors viz., slime production on Congo red agar medium and haemagglutination assay with use of 96-well microtitre plates. These isolates were identified upto species level by performing biochemical tests such as phosphatase test, arginine test, maltose and trehalose fermentation tests and novobiocin sensitivity test. The isolates were subjected to antibiotic susceptibility studies, based on the revised standards of Clinical and Laboratory Standards Institutes (CLSI). Results: During the one year of study, among the total 260 individuals who were screened, 100 isolates of CoNS were obtained. Lipolytic activity was seen in all the isolates, whereas 38 isolates showed a positive result for protease. A total of 63 isolates showed slime production. Of 100 isolates, 30 isolates were analyzed for haemagglutination, where 4 isolates showed the capacity to agglutinate the erythrocytes. The results of the biochemical analysis revealed that of the 100 isolates of CoNS, 43% were Staphylococcus epidermidis. The other

  7. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  8. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less

  9. Changes of ns-soot mixing states and shapes in an urban area during CalNex

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Buseck, Peter R.

    2013-05-01

    Aerosol particles from megacities influence the regional and global climate as well as the health of their occupants. We used transmission electron microscopes (TEMs) to study aerosol particles collected from the Los Angeles area during the 2010 CalNex campaign. We detected major amounts of ns-soot, defined as consisting of carbon nanospheres, sulfate, sea salt, and organic aerosol (OA) and lesser amounts of brochosome particles from leaf hoppers. Ns-soot-particle shapes, mixing states, and abundances varied significantly with sampling times and days. Within plumes having high CO2 concentrations, much ns-soot was compacted and contained a relatively large number of carbon nanospheres. Ns-soot particles from both CalNex samples and Mexico City, the latter collected in 2006, had a wide range of shapes when mixed with other aerosol particles, but neither sets showed spherical ns-soot nor the core-shell configuration that is commonly used in optical calculations. Our TEM observations and light-absorption calculations of modeled particles indicate that, in contrast to ns-soot particles that are embedded within other materials or have the hypothesized core-shell configurations, those attached to other aerosol particles hardly enhance their light absorption. We conclude that the ways in which ns-soot mixes with other particles explain the observations of smaller light amplification by ns-soot coatings than model calculations during the CalNex campaign and presumably in other areas.

  10. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  11. Protein side chain rotational isomerization: A minimum perturbation mapping study

    NASA Astrophysics Data System (ADS)

    Haydock, Christopher

    1993-05-01

    A theory of the rotational isomerization of the indole side chain of tryptophan-47 of variant-3 scorpion neurotoxin is presented. The isomerization potential energy, entropic part of the isomerization free energy, isomer probabilities, transition state theory reaction rates, and indole order parameters are calculated from a minimum perturbation mapping over tryptophan-47 χ1×χ2 torsion space. A new method for calculating the fluorescence anisotropy from molecular dynamics simulations is proposed. The method is based on an expansion that separates transition dipole orientation from chromophore dynamics. The minimum perturbation potential energy map is inverted and applied as a bias potential for a 100 ns umbrella sampling simulation. The entropic part of the isomerization free energy as calculated by minimum perturbation mapping and umbrella sampling are in fairly close agreement. Throughout, the approximation is made that two glutamine and three tyrosine side chains neighboring tryptophan-47 are truncated at the Cβ atom. Comparison with the previous combination thermodynamic perturbation and umbrella sampling study suggests that this truncated neighbor side chain approximation leads to at least a qualitatively correct theory of tryptophan-47 rotational isomerization in the wild type variant-3 scorpion neurotoxin. Analysis of van der Waals interactions in a transition state region indicates that for the simulation of barrier crossing trajectories a linear combination of three specially defined dihedral angles will be superior to a simple side chain dihedral reaction coordinate.

  12. The crystal structure of Zika virus NS5 reveals conserved drug targets.

    PubMed

    Duan, Wenqian; Song, Hao; Wang, Haiyuan; Chai, Yan; Su, Chao; Qi, Jianxun; Shi, Yi; Gao, George F

    2017-04-03

    Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue ( m7 GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV. © 2017 The Authors.

  13. Structure and function of the Zika virus full-length NS5 protein

    DOE PAGES

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  14. CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli.

    PubMed Central

    Kipling, D; Mitchell, A R; Masumoto, H; Wilson, H E; Nicol, L; Cooke, H J

    1995-01-01

    Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B. PMID:7623797

  15. The effect of cigarette smoking on cancer treatment-related side effects.

    PubMed

    Peppone, Luke J; Mustian, Karen M; Morrow, Gary R; Dozier, Ann M; Ossip, Deborah J; Janelsins, Michelle C; Sprod, Lisa K; McIntosh, Scott

    2011-01-01

    Cigarette smoking has long been implicated in cancer development and survival. However, few studies have investigated the impact of smoking on symptom burden in cancer survivors during treatment and at survivorship stage. This study examines the influence of cigarette smoking on side effects among 947 cancer patients during and 6 months following treatment. Patients diagnosed with cancer and scheduled to receive chemotherapy and/or radiation therapy reported on current smoking status (yes, no) and total symptom burden [the sum of 12 common symptoms (fatigue, hair loss, memory, nausea, depression, sleep, pain, concentration, hot flashes, weight loss, skin problems, and dyspnea) scored on an 11-point scale ranging from 0 = "not present" to 10 = "as bad as you can imagine"] during treatment and at 6-month follow-up. The adjusted mean total symptom burden by smoking status was determined by analysis of covariance controlling for age, gender, race, education, occupation, treatment, cancer site, and Karnofsky performance score. During treatment, smokers (S) had a significantly higher total symptom burden than nonsmokers (NS) (S = 46.3 vs. NS = 41.2; p < 0.05). At 6-month follow-up, smokers continued to report a higher total symptom burden than nonsmokers (S = 27.7 vs. NS = 21.9; p < 0.05). Participants who quit smoking before treatment levels had a total symptom burden similar to nonsmokers. Smoking was associated with an increased symptom burden during and following treatments for cancer. Targeted cessation efforts for smokers to decrease symptom burden may limit the likelihood of treatment interruptions and increase quality of life following treatment.

  16. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  17. Styles of Deformation on Either Side of a Ridge-Transform Intersection, Troodos Ophiolite, Cyprus

    NASA Astrophysics Data System (ADS)

    Titus, S.; Wagner, C.; Alexander, S. O.; Scott, C. P.; Davis, J. R.

    2015-12-01

    The Troodos ophiolite in Cyprus includes two orthogonal structures - the NS-striking Solea graben and the EW-striking Arakapas fault - that form a ridge-transform intersection. Sheeted dikes and gabbros are preserved on both the inside and outside corners providing a view of mid-crustal deformation in the system. We examine and model these patterns of deformation using existing map and paleomagnetic data combined with new rock magnetic data. The inside corner of the system has been well studied. The most notable feature is the changing orientation of sheeted dikes, which shift from NW- to NE- to E-striking with increasing proximity to the Arakapas fault. Paleomagnetic data from many studies, including our own, show declination anomalies that vary with distance from the ridge and the transform. The three principal axes from anisotropy of magnetic susceptibility (AMS) ellipsoids in the gabbros seem to be correlated with local sheeted dike orientations. The outside corner of the system has been less well studied. Sheeted dike orientations change more subtly; many are NS-striking and dip towards the Solea Graben, but near the inferred ridge-transform intersection, they are NNE-striking. Our new paleomagnetic data from 26 sites record declination and inclination anomalies that vary spatially within the outside corner. AMS data from the gabbros and sheeted dikes again seem loosely linked to sheeted dike orientations. To summarize, the structural and rock magnetic results on either side of the Solea Graben are distinct, confirming the idea that these rocks formed on different sides of a ridge-transform system. The paleomagnetic data yield insights about the styles of deformation following crystallization. The AMS data may yield insights about magmatic plumbing systems when combined systematically with paleomagnetic results. Our results from the outside corner show that patterns of deformation can be complex even on the non-plate boundary side of a ridge-transform system.

  18. Nightguard vital bleaching: side effects and patient satisfaction 10 to 17 years post-treatment.

    PubMed

    Boushell, Lee W; Ritter, André V; Garland, Glenn E; Tiwana, Karen K; Smith, Lynn R; Broome, Angela; Leonard, Ralph H

    2012-06-01

      The long-term patient satisfaction and safety of nightguard vital bleaching (NGVB) requires further evaluation.   The purpose of this study was to evaluate patients' satisfaction and identify side effects of NGVB up to 17 years post-treatment.   Thirty-one participants who had completed previous NGVB studies using 10% carbamide peroxide were contacted at least 10 years post-treatment (range 10-17 years, average 12.3 years). Participants reported shade satisfaction (very satisfied [VS], partially satisfied [PS], or not satisfied [NS]) as well as potential complications. Participants had teeth # 6 to 11 examined for tooth vitality, gingival inflammation (Löe's Gingival Index [GI]), and radiographically for external cervical resorption (ECR).   All of the participants had successful lightening of their teeth. Sixty-one percent (19) had not retreated their teeth. Of those who had not retreated their teeth and who responded to the question of whitening satisfaction, 31% (4/13) were VS, 54% (7/13) were PS, and 15% (2/13) were NS with their current shade. Of those who had retreated their teeth, all were VS or PS. Ninety-one percent of the examined teeth had GI = 0 (normal), 7% had GI = 1 (mild inflammation), and 2% had GI = 2 (moderate inflammation). Sixty-nine percent of teeth tested responded to a cold stimulus. Radiographs did not detect ECR or apical lesions. No participant reported having a gingival biopsy post-treatment, and 87% would whiten again.   Patient satisfaction with NGVB may last as long as 12.3 years in average (range 10-17 years) post-treatment. GI and ECR findings were considered within the normal expectations for the sample studied, suggesting minimal clinical post-NGVB side effects up to 17 years. Nightguard vital bleaching provides patient satisfaction with minimal side effects up to 17 years post-treatment. © 2011 Wiley Periodicals, Inc.

  19. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.

    PubMed

    Xie, Xuping; Zou, Jing; Puttikhunt, Chunya; Yuan, Zhiming; Shi, Pei-Yong

    2015-01-15

    Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA

  20. Pomegranate ( Punica granatum L.) expresses several nsLTP isoforms characterized by different immunoglobulin E-binding properties.

    PubMed

    Bolla, Michela; Zenoni, Sara; Scheurer, Stephan; Vieths, Stefan; San Miguel Moncin, Maria Del Mar; Olivieri, Mario; Antico, Andrea; Ferrer, Marta; Berroa, Felicia; Enrique, Ernesto; Avesani, Linda; Marsano, Francesco; Zoccatelli, Gianni

    2014-01-01

    Pomegranate allergy is associated with sensitization to non-specific lipid transfer proteins (nsLTPs). Our aim was to identify and characterize the non-specific nsLTPs expressed in pomegranate at the molecular level and to study their allergenic properties in terms of immunoglobulin E (IgE)-binding and cross-reactivity with peach nsLTP (Pru p 3). A non-equilibrium two-dimensional (2-D) electrophoretic approach based on acid-urea PAGE and sodium dodecyl sulfate PAGE was set up to separate pomegranate nsLTPs. Their immunoreactivity was tested by immunoblotting carried out with anti-Pru p 3 polyclonal antibodies and sera from pomegranate-allergic patients. For final identification, pomegranate nsLTPs were purified by chromatography and subjected to trypsin digestion and mass spectrometry (MS) analysis. For this purpose, the sequences obtained by cDNA cloning of three pomegranate nsLTPs were integrated in the database that was subsequently searched for MS data interpretation. Four nsLTPs were identified by 2-D immunoblotting. The detected proteins showed different IgE-binding capacity and partial cross-reactivity with Pru p 3. cDNA cloning and MS analyses led to the identification of three nsLTP isoforms with 66-68% amino acid sequence identity named Pun g 1.0101, Pun g 1.0201 and Pun g 1.0301. By 2-D electrophoresis, we could separate different nsLTP isoforms possessing different IgE-binding properties, which might reflect peculiar allergenic potencies. The contribution of Pru p 3 to prime sensitization is not central as in other plant nsLTPs. © 2014 S. Karger AG, Basel.

  1. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production.

    PubMed

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy; Kümmerer, Beate Mareike

    2015-05-01

    The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of

  2. A Basic Cluster in the N Terminus of Yellow Fever Virus NS2A Contributes to Infectious Particle Production

    PubMed Central

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy

    2015-01-01

    ABSTRACT The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. IMPORTANCE Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified

  3. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells.

    PubMed

    Ruiz, Zandra; D'Abramo, Anthony; Tattersall, Peter

    2006-06-05

    The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.

  4. Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication.

    PubMed

    Shanmugam, Saravanabalaji; Saravanabalaji, Dhanaranjani; Yi, MinKyung

    2015-04-01

    Previously, we demonstrated that the efficiency of hepatitis C virus (HCV) E2-p7 processing regulates p7-dependent NS2 localization to putative virus assembly sites near lipid droplets (LD). In this study, we have employed subcellular fractionations and membrane flotation assays to demonstrate that NS2 associates with detergent-resistant membranes (DRM) in a p7-dependent manner. However, p7 likely plays an indirect role in this process, since only the background level of p7 was detectable in the DRM fractions. Our data also suggest that the p7-NS2 precursor is not involved in NS2 recruitment to the DRM, despite its apparent targeting to this location. Deletion of NS2 specifically inhibited E2 localization to the DRM, indicating that NS2 regulates this process. Treatment of cells with methyl-β-cyclodextrin (MβCD) significantly reduced the DRM association of Core, NS2, and E2 and reduced infectious HCV production. Since disruption of the DRM localization of NS2 and E2, either due to p7 and NS2 defects, respectively, or by MβCD treatment, inhibited infectious HCV production, these proteins' associations with the DRM likely play an important role during HCV assembly. Interestingly, we detected the HCV replication-dependent accumulation of ApoE in the DRM fractions. Taking into consideration the facts that ApoE was shown to be a major determinant for infectious HCV particle production at the postenvelopment step and that the HCV Core protein strongly associates with the DRM, recruitment of E2 and ApoE to the DRM may allow the efficient coordination of Core particle envelopment and postenvelopment events at the DRM to generate infectious HCV production. The biochemical nature of HCV assembly sites is currently unknown. In this study, we investigated the correlation between NS2 and E2 localization to the detergent-resistant membranes (DRM) and HCV particle assembly. We determined that although NS2's DRM localization is dependent on p7, p7 was not targeted to these

  5. Experimental Investigation of Axial and Beam-Riding Propulsive Physics with TEA CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenoyer, D. A.; Salvador, I.; Myrabo, L. N.

    2010-10-08

    A twin Lumonics K922M pulsed TEA CO{sub 2} laser system (pulse duration of approximately 100 ns FWHM spike, with optional 1 {mu}s tail, depending upon laser gas mix) was employed to experimentally measure both axial thrust and beam-riding behavior of Type no. 200 lightcraft engines, using a ballistic pendulum and Angular Impulse Measurement Device (AIMD, respectively. Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the vehicle axis of symmetry; b) laser pulse energy ({approx}12 to 40 joules); c) pulse duration (100 ns, and 1 {mu}s); and d)more » engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (C{sub M}) of 75 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 {mu}s duration) results reached only 15 N-s/MJ--an improvement of 5x. Maximum axial C{sub M} performance with the K922M reached 225 N-s/MJ, or about {approx}3x larger than the lateral C{sub M} values. These axial C{sub M} results are sharply higher than the 120 N/MW previously reported for long pulse (e.g., 10-18 {mu}s)CO{sub 2} electric discharge lasers.« less

  6. Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, V.; Grant, C. D.; McCarrick, J. F.

    2012-03-01

    A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolvedmore » infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.« less

  7. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID

  8. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  9. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  10. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection

    NASA Astrophysics Data System (ADS)

    Antunes, Paula; Watterson, Daniel; Parmvi, Mattias; Burger, Robert; Boisen, Anja; Young, Paul; Cooper, Matthew A.; Hansen, Mikkel F.; Ranzoni, Andrea; Donolato, Marco

    2015-11-01

    Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free ‘click’ chemistry on an anti-fouling surface molecular architecture. The presence of the target antigen NS1 triggers MNP agglutination and the formation of nanoclusters with rapid kinetics enhanced by external magnetic actuation. The amount and size of the nanoclusters correlate with the target concentration and can be quantified using an optomagnetic readout method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 μL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay is implemented on a low-cost microfluidic disc the platform is suited for further expansion to multiplexed detection of a wide panel of biomarkers.

  11. Optical multiple access techniques for on-board routing

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Park, Eugene; Gagliardi, Robert M.

    1992-01-01

    The purpose of this research contract was to design and analyze an optical multiple access system, based on Code Division Multiple Access (CDMA) techniques, for on board routing applications on a future communication satellite. The optical multiple access system was to effect the functions of a circuit switch under the control of an autonomous network controller and to serve eight (8) concurrent users at a point to point (port to port) data rate of 180 Mb/s. (At the start of this program, the bit error rate requirement (BER) was undefined, so it was treated as a design variable during the contract effort.) CDMA was selected over other multiple access techniques because it lends itself to bursty, asynchronous, concurrent communication and potentially can be implemented with off the shelf, reliable optical transceivers compatible with long term unattended operations. Temporal, temporal/spatial hybrids and single pulse per row (SPR, sometimes termed 'sonar matrices') matrix types of CDMA designs were considered. The design, analysis, and trade offs required by the statement of work selected a temporal/spatial CDMA scheme which has SPR properties as the preferred solution. This selected design can be implemented for feasibility demonstration with off the shelf components (which are identified in the bill of materials of the contract Final Report). The photonic network architecture of the selected design is based on M(8,4,4) matrix codes. The network requires eight multimode laser transmitters with laser pulses of 0.93 ns operating at 180 Mb/s and 9-13 dBm peak power, and 8 PIN diode receivers with sensitivity of -27 dBm for the 0.93 ns pulses. The wavelength is not critical, but 830 nm technology readily meets the requirements. The passive optical components of the photonic network are all multimode and off the shelf. Bit error rate (BER) computations, based on both electronic noise and intercode crosstalk, predict a raw BER of (10 exp -3) when all eight users are

  12. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  13. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-06-20

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.

  14. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes

    PubMed Central

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  15. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis

  16. Identification of high-specificity H-NS binding site in LEE5 promoter of enteropathogenic Esherichia coli (EPEC).

    PubMed

    Bhat, Abhay Prasad; Shin, Minsang; Choy, Hyon E

    2014-07-01

    Histone-like nucleoid structuring protein (H-NS) is a small but abundant protein present in enteric bacteria and is involved in compaction of the DNA and regulation of the transcription. Recent reports have suggested that H-NS binds to a specific AT rich DNA sequence than to intrinsically curved DNA in sequence independent manner. We detected two high-specificity H-NS binding sites in LEE5 promoter of EPEC centered at -110 and -138, which were close to the proposed consensus H-NS binding motif. To identify H-NS binding sequence in LEE5 promoter, we took a random mutagenesis approach and found the mutations at around -138 were specifically defective in the regulation by H-NS. It was concluded that H-NS exerts maximum repression via the specific sequence at around -138 and subsequently contacts a subunit of RNAP through oligomerization.

  17. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments.

    PubMed

    Boudreau, Beth A; Hron, Daniel R; Qin, Liang; van der Valk, Ramon A; Kotlajich, Matthew V; Dame, Remus T; Landick, Robert

    2018-06-20

    In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.

  18. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha.

    PubMed

    García, Jesús; Cordeiro, Tiago N; Nieto, José M; Pons, Ignacio; Juárez, Antonio; Pons, Miquel

    2005-06-15

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 degrees C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS.

  19. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha

    PubMed Central

    2005-01-01

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 °C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS. PMID:15720293

  20. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. GDP Release Preferentially Occurs on the Phosphate Side in Heterotrimeric G-proteins

    PubMed Central

    Louet, Maxime; Martinez, Jean; Floquet, Nicolas

    2012-01-01

    After extra-cellular stimulation of G-Protein Coupled Receptors (GPCRs), GDP/GTP exchange appears as the key, rate limiting step of the intracellular activation cycle of heterotrimeric G-proteins. Despite the availability of a large number of X-ray structures, the mechanism of GDP release out of heterotrimeric G-proteins still remains unknown at the molecular level. Starting from the available X-ray structure, extensive unconstrained/constrained molecular dynamics simulations were performed on the complete membrane-anchored Gi heterotrimer complexed to GDP, for a total simulation time overcoming 500 ns. By combining Targeted Molecular Dynamics (TMD) and free energy profiles reconstruction by umbrella sampling, our data suggest that the release of GDP was much more favored on its phosphate side. Interestingly, upon the forced extraction of GDP on this side, the whole protein encountered large, collective motions in perfect agreement with those we described previously including a domain to domain motion between the two ras-like and helical sub-domains of Gα. PMID:22829757

  2. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  3. Noncytopathogenic Pestivirus Strains Generated by Nonhomologous RNA Recombination: Alterations in the NS4A/NS4B Coding Region

    PubMed Central

    Gallei, Andreas; Orlich, Michaela; Thiel, Heinz-Juergen; Becher, Paul

    2005-01-01

    Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses. PMID:16254361

  4. Extended Surface for Membrane Association in Zika Virus NS1 Structure

    PubMed Central

    Brown, W. Clay; Akey, David L.; Konwerski, Jamie; Tarrasch, Jeffrey T.; Skiniotis, Georgios; Kuhn, Richard J.; Smith, Janet L.

    2018-01-01

    The Zika virus, which is implicated in an increase in neonatal microcephaly and Guillain-Barré syndrome, has spread rapidly through tropical regions of the world. The virulence protein NS1 functions in genome replication and host immune system modulation. Here we report the crystal structure of full-length Zika virus NS1, revealing an elongated hydrophobic surface for membrane association and a polar surface that varies substantially among flaviviruses. PMID:27455458

  5. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  6. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  7. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein.

    PubMed

    Sinawang, Prima Dewi; Rai, Varun; Ionescu, Rodica E; Marks, Robert S

    2016-03-15

    An Electrochemical Lateral Flow Immunosensor (ELFI) is developed combining screen-printed gold electrodes (SPGE) enabling quantification together with the convenience of a lateral flow test strip. A cellulose glassy fiber paper conjugate pad retains the marker immunoelectroactive nanobeads which will bind to the target analyte of interest. The specific immunorecognition event continues to occur along the lateral flow bed until reaching the SPGE-capture antibodies at the end of the cellulosic lateral flow strip. The rationale of the immunoassay consists in the analyte antigen NS1 protein being captured selectively and specifically by the dengue NS1 antibody conjugated onto the immunonanobeads thus forming an immunocomplex. With the aid of a running buffer, the immunocomplexes flow and reach the immuno-conjugated electrode surface and form specific sandwich-type detection due to specific, molecular recognition, while unbound beads move along past the electrodes. The successful sandwich immunocomplex formation is then recorded electrochemically. Specific detection of NS1 is translated into an electrochemical signal contributed by a redox label present on the bead-immobilized detection dengue NS1 antibody while a proportional increase of faradic current is observed with increase in analyte NS1 protein concentration. The first generation ELFI prototype is simply assembled in a cassette and successfully demonstrates wide linear range over a concentration range of 1-25 ng/mL with an ultrasensitive detection limit of 0.5 ng/mL for the qualitative and quantitative detection of analyte dengue NS1 protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Molecular Docking Based Screening of Plant Flavonoids as Dengue NS1 Inhibitors

    PubMed Central

    Qamar, Muhammad Tahir ul; Mumtaz, Arooj; Naseem, Rabbia; Ali, Amna; Fatima, Tabeer; Jabbar, Tehreem; Ahmad, Zubair; Ashfaq, Usman Ali

    2014-01-01

    Dengue infection has turned into a serious health concern globally due to its high morbidity rate and a high possibility of increase in its mortality rate on the account of unavailability of any proper treatment for severe dengue infection. The situation demands an urgent development of efficient and practicable treatment to deal with Dengue virus (DENV). Flavonoids, a class of phytochemicals present in medicinal plants, possess anti-viral activity and can be strong drug candidates against viruses. NS1 glycoprotein of Dengue virus is involved in its RNA replication and can be a strong target for screening of drugs against this virus. Current study focuses on the identification of flavonoids which can block Asn-130 glycosylation site of Dengue virus NS1 to inhibit viral replication as glycosylation of NS1 is required for its biological functioning. Molecular docking approach was used in this study and the results revealed that flavonoids have strong potential interactions with active site of NS1. Six flavonoids (Deoxycalyxin A; 3,5,7,3',4'-pentahydroxyflavonol-3-O-beta-D-galactopyranoside; (3R)-3',8-Dihydroxyvestitol; Sanggenon O; Epigallocatechin gallate; Chamaejasmin) blocked the Asn-130 glycosylation site of NS1 and could be able to inhibit the viral replication. It can be concluded from this study that these flavonoids could serve as antiviral drugs for dengue infections. Further in-vitro analyses are required to confirm their efficacy and to evaluate their drug potency. PMID:25187688

  9. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum.

    PubMed

    Dussart, Philippe; Labeau, Bhety; Lagathu, Gisèle; Louis, Philippe; Nunes, Marcio R T; Rodrigues, Sueli G; Storck-Herrmann, Cécile; Cesaire, Raymond; Morvan, Jacques; Flamand, Marie; Baril, Laurence

    2006-11-01

    We evaluated a one-step sandwich-format microplate enzyme immunoassay for detecting dengue virus NS1 antigen (Ag) in human serum by use of Platelia Dengue NS1 Ag kits (Bio-Rad Laboratories, Marnes La Coquette, France). We collected 299 serum samples from patients with dengue disease and 50 serum samples from patients not infected with dengue virus. For the 239 serum samples from patients with acute infections testing positive by reverse transcription-PCR and/or virus isolation for one of the four dengue virus serotypes, the sensitivity of the Platelia Dengue NS1 Ag kit was 88.7% (95% confidence interval, 84.0% to 92.4%). None of the serum samples from patients not infected with dengue virus tested positive with the Platelia Dengue NS1 Ag kit. A diagnostic strategy combining the Platelia Dengue NS1 Ag test for acute-phase sera and immunoglobulin M capture enzyme-linked immunosorbent assay for early-convalescent-phase sera increased sensitivity only from 88.7% to 91.9%. Thus, NS1 antigen detection with the Platelia Dengue NS1 Ag kit could be used for first-line testing for acute dengue virus infection in clinical diagnostic laboratories.

  10. Laboratory trials of three anticoagulant rodenticides for use against the Indian field mouse, Mus booduga Gray.

    PubMed Central

    Balasubramanyam, M.; Christopher, M. J.; Purushotham, K. R.

    1984-01-01

    The efficacy of three anticoagulant rodenticides for use against the Indian field mouse, Mus booduga, was evaluated in the laboratory. The poisons, namely warfarin, bromadiolone and brodifacoum, were all found to be toxic enough at the concentrations normally used against other commensal and field rodents. With brodifacoum (0.001 25%), bromadiolone (0.005%) and warfarin (0.025%), 83% of the animals died respectively after 1, 1 and 6 days' feeding. It is suggested that brodifacoum and bromadiolone might be more economical than warfarin for use in practical rodent control. PMID:6512257

  11. 19. PRIVATE SIDE ENTRANCE ADDED IN 1921 TO GIVE BARRIERFREE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. PRIVATE SIDE ENTRANCE ADDED IN 1921 TO GIVE BARRIER-FREE ACCESS FROM THE DRIVEWAY TO THE ELEVATOR. Wrought iron railings, extended upper step of stoop (indicated by the darker concrete between the two vertical posts), and wooden ramp added by the National Trust to meet modern barrier-free access codes, circa 1980. - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC

  12. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus.

    PubMed

    Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui

    2018-01-01

    Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.

  13. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  14. Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

    PubMed Central

    Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422

  15. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    PubMed

    Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  16. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  17. Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

    2014-03-01

    Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to

  18. Structure and function of Zika virus NS5 protein: perspectives for drug design.

    PubMed

    Wang, Boxiao; Thurmond, Stephanie; Hai, Rong; Song, Jikui

    2018-05-01

    Zika virus (ZIKV) belongs to the positive-sense single-stranded RNA-containing Flaviviridae family. Its recent outbreak and association with human diseases (e.g. neurological disorders) have raised global health concerns, and an urgency to develop a therapeutic strategy against ZIKV infection. However, there is no currently approved antiviral against ZIKV. Here we present a comprehensive overview on recent progress in structure-function investigation of ZIKV NS5 protein, the largest non-structural protein of ZIKV, which is responsible for replication of the viral genome, RNA capping and suppression of host interferon responses. Structural comparison of the N-terminal methyltransferase domain and C-terminal RNA-dependent RNA polymerase domain of ZIKV NS5 with their counterparts from related viruses provides mechanistic insights into ZIKV NS5-mediated RNA replication, and identifies residues critical for its enzymatic activities. Finally, a collection of recently identified small molecule inhibitors against ZIKV NS5 or its closely related flavivirus homologues are also discussed.

  19. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  20. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication.

    PubMed

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R; Li, Melody M H; Rice, Charles M; MacDonald, Margaret R

    2016-01-06

    DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is

  1. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication

    PubMed Central

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.

    2016-01-01

    ABSTRACT DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single

  2. 18F-labeled norepinephrine transporter tracer [18F]NS12137: radiosynthesis and preclinical evaluation.

    PubMed

    Kirjavainen, Anna K; Forsback, Sarita; López-Picón, Francisco R; Marjamäki, Päivi; Takkinen, Jatta; Haaparanta-Solin, Merja; Peters, Dan; Solin, Olof

    2018-01-01

    Several psychiatric and neurodegenerative diseases are associated with malfunction of brain norepinephrine transporter (NET). However, current clinical evaluations of NET function are limited by the lack of sufficiently sensitive methods of detection. To this end, we have synthesized exo-3-[(6-[ 18 F]fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]-octane ([ 18 F]NS12137) as a radiotracer for positron emission tomography (PET) and have demonstrated that it is highly specific for in vivo detection of NET-rich regions of rat brain tissue. We applied two methods of electrophilic, aromatic radiofluorination of the precursor molecule, exo-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate: (1) direct labeling with [ 18 F]F 2 , and (2) labeling with [ 18 F]Selectfluor, a derivative of [ 18 F]F 2 , using post-target produced [ 18 F]F 2 . The time-dependent distribution of [ 18 F]NS12137 in brain tissue of healthy, adult Sprague-Dawley rats was determined by ex vivo autoradiography. The specificity of [ 18 F]NS12137 binding was demonstrated on the basis of competitive binding by nisoxetine, a known NET antagonist of high specificity. [ 18 F]NS12137 was successfully synthesized with radiochemical yields of 3.9% ± 0.3% when labeled with [ 18 F]F 2 and 10.2% ± 2.7% when labeled with [ 18 F]Selectfluor. The molar activity of radiotracer was 8.8 ± 0.7 GBq/μmol with [ 18 F]F 2 labeling and 6.9 ± 0.4 GBq/μmol with [ 18 F]Selectfluor labeling at the end of synthesis of [ 18 F]NS12137. Uptake of [ 18 F]NS12137 in NET-rich areas in rat brain was demonstrated with the locus coeruleus (LCoe) having the highest regional uptake. Prior treatment of rats with nisoxetine showed no detectable [ 18 F]NS12137 in the LCoe. Analyses of whole brain samples for radiometabolites showed only the parent compound [ 18 F]NS12137. Uptake of 18 F-radioactivity in bone increased with time. The two electrophilic 18 F-labeling methods proved to be suitable for synthesis of [ 18 F]NS

  3. 2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu

    2017-07-01

    We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.

  4. CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2.

    PubMed

    Hu, Yong; Liu, Xiaokun; Zhang, Anding; Zhou, Hongbo; Liu, Ziduo; Chen, Huanchun; Jin, Meilin

    2015-03-01

    NS2 from influenza A virus mediates Crm1-dependent vRNP nuclear export through interaction with Crm1. However, even though the nuclear export signal 1 (NES1) of NS2 does not play a requisite role in NS2-Crm1 interaction, there is no doubt that NES1 is crucial for vRNP nuclear export. While the mechanism of the NES1 is still unclear, it is speculated that certain host partners might mediate the NES1 function through their interaction with NES1. In the present study, chromodomain-helicase-DNA-binding protein 3 (CHD3) was identified as a novel host nuclear protein for locating NS2 and Crm1 on dense chromatin for NS2 and Crm1-dependent vRNP nuclear export. CHD3 was confirmed to interact with NES1 in NS2, and a disruption to this interaction by mutation in NES1 significantly delayed viral vRNPs export and viral propagation. Further, the knockdown of CHD3 would affect the propagation of the wild-type virus but not the mutant with the weakened NS2-CHD3 interaction. Therefore, this study demonstrates that NES1 is required for maximal binding of NS2 to CHD3, and that the NS2-CHD3 interaction on the dense chromatin contributed to the NS2-mediated vRNP nuclear export.

  5. [Musical Inactivity - A Risk Factor? A Short Questionnaire to Assess Musical Activity (MusA)].

    PubMed

    Fernholz, Isabel; Menzel, Juliane; Jabusch, Hans-Christian; Gembris, Heiner; Fischer, Felix; Kendel, Friederike; Kreutz, Gunter; Schmidt, Alexander; Willich, Stefan N; Weikert, Cornelia

    2018-02-27

    There is only a limited number of studies on associations between musical activity and health issues. It seems that musical activity has physiological and psychological benefits, as well as effects on the mental capacity, but this has been studied only in a few clinical and epidemiological studies. One reason might be that no appropriate survey instrument assessing musical activity is available. Here we provide an overview of survey instruments that assess musicality and musical activity. One focus is the presentation of a newly developed German questionnaire (MusA), which assesses musical activity (active music making and music reception) and was specifically developed for the "German National Cohort", a German health study. Through literature research, questionnaires were identified that assess musicality and / or musical activity. A new German questionnaire was developed from a panel of experts and tested in a small study (n=121, women and men age 18-70 years). In the literature research, 3 questionnaires were identified which focus on musicality and musical activity with different aspects (Gold-MSI, MUSE, MEQ). All 3 instruments may be characterized as large psychometric scales, which especially assess aspects of musicality in the English language. The Gold-MSI is additionally available in German. None of the existing questionnaires covers musical activities in detail. A new short German questionnaire consisting of 9 questions with a maximum filling time of 3-5 min has been developed. There are few questionnaires available for assessing musicality and musical activity with different aspects. The newly developed MusA in the German language focuses on the assessment of musical activity and is intended to be used in larger, population-based as well as clinical studies, to examine music activities and listening to music as independent factors in connection with prevention and therapy of chronic diseases. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Mutation of Putative N-Glycosylation Sites on Dengue Virus NS4B Decreases RNA Replication.

    PubMed

    Naik, Nenavath Gopal; Wu, Huey-Nan

    2015-07-01

    Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation

  7. Effects of road traffic noise and the benefit of access to quietness

    NASA Astrophysics Data System (ADS)

    Öhrström, E.; Skånberg, A.; Svensson, H.; Gidlöf-Gunnarsson, A.

    2006-08-01

    Socio-acoustic surveys were carried out as part of the Soundscape Support to Health research programme to assess the health effects of various soundscapes in residential areas. The study was designed to test whether having access to a quiet side of one's dwelling enhances opportunities for relaxation and reduces noise annoyance and other adverse health effects related to noise. The dwellings chosen were exposed to sound levels from road traffic ranging from about L=45-68 dB at the most-exposed side. The study involved 956 individuals aged 18-75 years. The results demonstrate that access to quiet indoor and outdoor sections of one's dwelling supports health; it produces a lower degree and extent of annoyance and disturbed daytime relaxation, improves sleep and contributes to physiological and psychological well-being. Having access to a quiet side of one's dwelling reduces disturbances by an average of 30-50% for the various critical effects, and corresponds to a reduction in sound levels of ( LAeq,24h) 5 dB at the most-exposed side. To protect most people (80%) from annoyance and other adverse effects, sound levels from road traffic should not exceed ( LAeq,24h) 60 dB at the most-exposed side, even if there is access to a quiet side of one's dwelling ( LAeq,24h⩽45 dB).

  8. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806.

    PubMed

    Witzel, Katrin; Fischer, Paul; Bähring, Robert

    2012-12-01

    We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. DNase I nick translation in situ on meiotic chromosomes of the mouse, Mus musculus.

    PubMed

    Raman, R; Singh, A P; Nanda, I

    1988-08-01

    DNase-I-sensitive sites have been located on the meiotic chromosomes of the mouse, Mus musculus, by the in situ DNase I nick-translation method. We find that: (1) of all the cell types studied, pachytene nuclei are the most sensitive to DNase I; (2) in diplotene the nicks occur preferentially in the vicinity of chiasmata; (3) the sex chromosomes are also sensitive to the enzyme despite their transcriptional quiescence; and (4) in the sex bivalent the nicks are primarily observed in the putative region of recombination. We conclude that, in addition to discriminating between the transcriptionally active and inactive states of chromatin, DNase I identifies recombination-specific chromatin changes in meiotic prophase.

  10. Suitable technological conditions for enzymatic hydrolysis of waste paper by Novozymes® enzymes NS50013 and NS50010.

    PubMed

    Brummer, Vladimir; Skryja, Pavel; Jurena, Tomas; Hlavacek, Viliam; Stehlik, Petr

    2014-10-01

    Waste paper belongs to a group of quantitatively the most produced waste types. Enzymatic hydrolysis is becoming a suitable way to treat this type of waste and at the same time, to produce a valuable liquid biofuel, because reducing sugars solutions that are formed during the process of saccharification can be a precursor for following or simultaneous fermentation. If it will be possible to make the enzymatic hydrolysis of the waste paper economically viable, it could serve as one of the new ways to lower the dependence of the transport sector on oil in the future. Only several studies comparing the enzymatic hydrolysis of different waste papers were performed in the past; they are summarized in this manuscript. In our experimental trials, suitable technological conditions for waste paper enzymatic hydrolysis using enzymes from Novozymes® biomass kit: enzymes NS50013 and NS50010 were investigated. The following enzymatic hydrolysis parameters in laboratory scale trials were verified on high cellulose content substrates-filter paper and cellulose pulp: type of buffer, pH, temperature, concentration of the substrate, loading of the enzyme and rate of stirring.

  11. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  12. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  13. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less

  14. 2. BUILDING 0521, SOUTH REAR AND EAST SIDE. Looking to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 0521, SOUTH REAR AND EAST SIDE. Looking to northwest from access road. - Edwards Air Force Base, South Base Sled Track, Earth Covered Bunker Types, North of Sled Track, Lancaster, Los Angeles County, CA

  15. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  16. Infrared Spectroscopy of Symbiotic Stars. XI. Orbits for Southern S-type Systems: Hen 3-461, SY Mus, Hen 3-828, AND AR Pav

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Wood, Peter R.

    2017-01-01

    Employing new infrared radial velocities, we have computed spectroscopic orbits of the cool giants in four southern S-type symbiotic systems. The orbits for two of the systems, Hen 3-461 and Hen 3-828, have been determined for the first time, while orbits of the other two, SY Mus and AR Pav, have previously been determined. For the latter two systems, we compare our results with those in the literature. The low mass of the secondary of SY Mus suggests that it has gone through a common envelope phase. Hen 3-461 has an orbital period of 2271 days, one of the longest currently known for S-type symbiotic systems. That period is very different from the orbital period proposed previously from its photometric variations. The other three binaries have periods between 600 and 700 day, values that are typical for S-type symbiotic orbits. Basic properties of the M giant components and the distance to each system are determined.

  17. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    PubMed

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  18. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    PubMed Central

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  19. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1more » to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.« less

  20. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    PubMed Central

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-01-01

    Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented. PMID:26527147

  1. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  2. 31. HALL INTERIOR SHOWING SINGLE FRENCH DOOR TO NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. HALL INTERIOR SHOWING SINGLE FRENCH DOOR TO NORTH SIDE SCREENED PORCH, AND TRAP-DOOR ACCESS TO ATTIC. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  3. Computer network access to scientific information systems for minority universities

    NASA Astrophysics Data System (ADS)

    Thomas, Valerie L.; Wakim, Nagi T.

    1993-08-01

    The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.

  4. PRDM9 Drives Evolutionary Erosion of Hotspots in Mus musculus through Haplotype-Specific Initiation of Meiotic Recombination

    PubMed Central

    Baker, Christopher L.; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L.; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9 Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion. PMID:25568937

  5. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.

    PubMed

    Baker, Christopher L; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion.

  6. Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression.

    PubMed

    Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi

    2017-09-12

    Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.

  7. Anti-cholesterol activity in vivo test of multifunction herbs extract in the water using in vivo method in mice (Mus musculus L.) DDY-strain

    NASA Astrophysics Data System (ADS)

    Tristantini, Dewi; Christina, Diana

    2018-02-01

    Atherosclerosis is the hardening of the arteries due to cholesterol accumulation in the blood vessels. The occurrence of cardiovascular disease can be reduced by lowering cholesterol levels in the blood. Nevertheless, using some pharmaceutical synthetic medicine for lowering the cholesterol has several side effects that dangerous for human body. There are 3 plants, tanjung leaf (Mimusops elengi L.), star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.), which are combined empirically believed would serve as multifunction herbs. Tanjung leaf has been known to have antioxidant, anti-cholesterol, and anti-platelet activity, also star fruit leaf have anti-hyperglycemia activity. Furthermore, curcuma has been known as a hepatoprotection agent. In this study, the combination of all three simplicias were used as anti-cholesterol. Anti-cholesterol activity test by in vivo method using mice (Mus muculus L.) result in decreased cholesterol as much as 47% for 250 mL human dosage in 7 days. This performance equals to 73% of simvastatin activity in decreased cholesterol. In this study, we can conclude the multifunction herbs that were combination of tanjung (M. elengi) leaf, star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.) extract can be used as cholesterol decreasing medicine.

  8. A new spontaneous allele at the pink-eyed dilution (p) locus discovered in Mus musculus castaneus.

    PubMed

    Tsuji, A; Wakayama, T; Ishikawa, A

    1995-10-01

    Mutant mice characterized by a cream coat and pink eyes were spontaneously discovered among the descendants of Indonesian wild mice (Mus musculus castaneus). This mutant phenotype was controlled by a single autosomal recessive gene that was allelic to the pink-eyed dilution (p) gene. The mutant mouse phenotypically resembled the original p mouse which was the first mutant identified at this locus. Nevertheless, these two alleles differed in origin, a previous report suggesting that the original p allele was derived from Japanese wild mice (M. m. molossinus). Thus the symbol pcas (pink-eyed castaneus) was proposed for the present mutation allele.

  9. Radiometric properties of the NS001 Thematic Mapper Simulator aircraft multispectral scanner

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Ahmad, Suraiya P.

    1990-01-01

    Laboratory tests of the NS001 TM are described emphasizing absolute calibration to determine the radiometry of the simulator's reflective channels. In-flight calibration of the data is accomplished with the NS001 internal integrating-sphere source because instabilities in the source can limit the absolute calibration. The data from 1987-89 indicate uncertainties of up to 25 percent with an apparent average uncertainty of about 15 percent. Also identified are dark current drift and sensitivity changes along the scan line, random noise, and nonlinearity which contribute errors of 1-2 percent. Uncertainties similar to hysteresis are also noted especially in the 2.08-2.35-micron range which can reduce sensitivity and cause errors. The NS001 TM Simulator demonstrates a polarization sensitivity that can generate errors of up to about 10 percent depending on the wavelength.

  10. Optical Studies of Nd-doped benzil, a potential luminescent and laser material.

    PubMed

    Noginov, M A; Curley, M; Noginova, N; Wang, W S; Aggarwal, M D

    1998-08-20

    Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd-Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 mus. The experimental Nd lifetime (under Ar+ laser excitation) is equal to 19 mus. The broad emission band centered at approximately 700 nm (tau(decay) approximately 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm(-1) have been observed at excitation of benzil with 532-nm Q-switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.

  11. Information-Flow-Based Access Control for Web Browsers

    NASA Astrophysics Data System (ADS)

    Yoshihama, Sachiko; Tateishi, Takaaki; Tabuchi, Naoshi; Matsumoto, Tsutomu

    The emergence of Web 2.0 technologies such as Ajax and Mashup has revealed the weakness of the same-origin policy[1], the current de facto standard for the Web browser security model. We propose a new browser security model to allow fine-grained access control in the client-side Web applications for secure mashup and user-generated contents. We propose a browser security model that is based on information-flow-based access control (IBAC) to overcome the dynamic nature of the client-side Web applications and to accurately determine the privilege of scripts in the event-driven programming model.

  12. A Review of Staphylococcal Cassette Chromosome mec (SCCmec) Types in Coagulase-Negative Staphylococci (CoNS) Species.

    PubMed

    Saber, Huda; Jasni, Azmiza Syawani; Jamaluddin, Tengku Zetty Maztura Tengku; Ibrahim, Rosni

    2017-10-01

    Coagulase-negative staphylococci (CoNS) are considered low pathogenic organisms. However, they are progressively causing more serious infections with time because they have adapted well to various antibiotics owing to their ability to form biofilms. Few studies have been conducted on CoNS in both, hospital and community-acquired settings, especially in Malaysia. Thus, it is important to study their species and gene distributions. A mobile genetic element, staphylococcal cassette chromosome mec (SCC mec ), plays an important role in staphylococci pathogenesis. Among CoNS, SCC mec has been studied less frequently than Staphylococcus aureus (coagulase-positive staphylococci). A recent study (8) conducted in Malaysia successfully detected SCC mec type I to VIII as well as several new combination patterns in CoNS species, particularly Staphylococcus epidermidis . However, data are still limited, and further research is warranted. This paper provides a review on SCC mec types among CoNS species.

  13. Isolation and Characterization of Wheat Derived Nonspecific Lipid Transfer Protein 2 (nsLTP2).

    PubMed

    Bosi, Sara; Fiori, Jessica; Dinelli, Giovanni; Rigby, Neil; Leoncini, Emanuela; Prata, Cecilia; Bregola, Valeria; Marotti, Ilaria; Gotti, Roberto; Naldi, Marina; Massaccesi, Luca; Malaguti, Marco; Kroon, Paul; Hrelia, Silvana

    2018-05-22

    Numerous studies support the protective role of bioactive peptides against cardiovascular diseases. Cereals represent the primary source of carbohydrates, but they also contain substantial amounts of proteins, therefore representing a potential dietary source of bioactive peptides with nutraceutical activities. The analysis of wheat extracts purified by chromatographic techniques by means of HPLC-UV/nanoLC-nanoESI-QTOF allowed the identification of a signal of about 7 kDa which, following data base searches, was ascribed to a nonspecific lipid-transfer protein (nsLTP) type 2 from Triticum aestivum (sequence coverage of 92%). For the first time nsLTP2 biological activities have been investigated. In particular, in experiments with human umbilical vein endothelial cells (HUVEC), nsLTP2 displayed antioxidant and cytoprotective activities, being able to significantly decrease reactive oxygen species (ROS) levels and to reduce lactate dehydrogenase (LDH) release, generated following oxidative (hydrogen peroxide) and inflammatory (tumor necrosis factor α, interleukin-1β, and lipopolysaccharide) stimulation. The obtained promising results suggest potential protective role of nsLTP2 in vascular diseases prevention. PRACTICAL APPLICATION: nsLTP 2 peptide is resistant to proteases throughout the gastrointestinal tract and exerts antioxidant and cytoprotective activities. These characteristics could be exploited in vascular diseases prevention. © 2018 Institute of Food Technologists®.

  14. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to

  15. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.

    PubMed

    Feibelman, Kristen M; Fuller, Benjamin P; Li, Linfeng; LaBarbera, Daniel V; Geiss, Brian J

    2018-06-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies. Copyright © 2018. Published by Elsevier B.V.

  16. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  17. Combinatorial Regulation of Meiotic Holliday Junction Resolution in C. elegans by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 Nucleases

    PubMed Central

    Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of “univalents” linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO

  18. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

    PubMed

    Agostinho, Ana; Meier, Bettina; Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation

  19. The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain.

    PubMed

    Ali, Sabrina S; Beckett, Emily; Bae, Sandy Jeehoon; Navarre, William Wiley

    2011-09-01

    The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  20. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs.

    PubMed

    Panthu, Baptiste; Terrier, Olivier; Carron, Coralie; Traversier, Aurélien; Corbin, Antoine; Balvay, Laurent; Lina, Bruno; Rosa-Calatrava, Manuel; Ohlmann, Théophile

    2017-10-27

    The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  2. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.

  3. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins

    PubMed Central

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva

    2016-01-01

    ABSTRACT Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal

  4. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins.

    PubMed

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva; Mohana-Borges, Ronaldo

    2016-11-01

    Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly

  5. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  6. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells.

    PubMed

    Gao, Yunfeng; Foo, Yong Hwee; Winardhi, Ricksen S; Tang, Qingnan; Yan, Jie; Kenney, Linda J

    2017-11-21

    Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.

  7. Mitochondrial DNA Variation and the Evolution of Robertsonian Chromosomal Races of House Mice, Mus Domesticus

    PubMed Central

    Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.

    1994-01-01

    The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418

  8. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  9. Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel

    PubMed Central

    Chatel-Chaix, Laurent; Baril, Martin; Lamarre, Daniel

    2010-01-01

    Hepatitis C virus (HCV) infection is a serious and growing threat to human health. The current treatment provides limited efficacy and is poorly tolerated, highlighting the urgent medical need for novel therapeutics. The membrane-targeted NS3 protein in complex with the NS4A comprises a serine protease domain (NS3/4A protease) that is essential for viral polyprotein maturation and contributes to the evasion of the host innate antiviral immunity by HCV. Therefore, the NS3/4A protease represents an attractive target for drug discovery, which is tied in with the challenge to develop selective small-molecule inhibitors. A rational drug design approach, based on the discovery of N-terminus product inhibition, led to the identification of potent and orally bioavailable NS3 inhibitors that target the highly conserved protease active site. This review summarizes the NS3 protease inhibitors currently challenged in clinical trials as one of the most promising antiviral drug class, and possibly among the first anti-HCV agents to be approved for the treatment of HCV infection. PMID:21994705

  10. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication.

    PubMed

    Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J

    2009-12-01

    The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.

  11. Equity of access to primary healthcare for vulnerable populations: the IMPACT international online survey of innovations.

    PubMed

    Richard, Lauralie; Furler, John; Densley, Konstancja; Haggerty, Jeannie; Russell, Grant; Levesque, Jean-Frederic; Gunn, Jane

    2016-04-12

    Improving access to primary healthcare (PHC) for vulnerable populations is important for achieving health equity, yet this remains challenging. Evidence of effective interventions is rather limited and fragmented. We need to identify innovative ways to improve access to PHC for vulnerable populations, and to clarify which elements of health systems, organisations or services (supply-side dimensions of access) and abilities of patients or populations (demand-side dimensions of access) need to be strengthened to achieve transformative change. The work reported here was conducted as part of IMPACT (Innovative Models Promoting Access-to-Care Transformation), a 5-year Canadian-Australian research program aiming to identify, implement and trial best practice interventions to improve access to PHC for vulnerable populations. We undertook an environmental scan as a broad screening approach to identify the breadth of current innovations from the field. We distributed a brief online survey to an international audience of PHC researchers, practitioners, policy makers and stakeholders using a combined email and social media approach. Respondents were invited to describe a program, service, approach or model of care that they considered innovative in helping vulnerable populations to get access to PHC. We used descriptive statistics to characterise the innovations and conducted a qualitative framework analysis to further examine the text describing each innovation. Seven hundred forty-four responses were recorded over a 6-week period. 240 unique examples of innovations originating from 14 countries were described, the majority from Canada and Australia. Most interventions targeted a diversity of population groups, were government funded and delivered in a community health, General Practice or outreach clinic setting. Interventions were mainly focused on the health sector and directed at organisational and/or system level determinants of access (supply-side). Few innovations

  12. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.

    PubMed

    Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S

    2015-03-01

    We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance to Stripe Rust

    PubMed Central

    Kang, Houyang; Wang, Yi; Fedak, George; Cao, Wenguang; Zhang, Haiqin; Fan, Xing; Sha, Lina; Xu, Lili; Zheng, Youliang; Zhou, Yonghong

    2011-01-01

    Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding. PMID:21760909

  14. Identification of an NTPase motif in classical swine fever virus NS4B protein

    USDA-ARS?s Scientific Manuscript database

    Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive sense single-stranded RNA virus in the genus Pestivirus of the Flaviviridae family. Here, we have identified, within CSFV non-structural (NS) protein NS4B, conserved sequence el...

  15. HCV RNA traffic and association with NS5A in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiches, Guillaume N.; Eyre, Nicholas S.; Aloia, Amanda L.

    The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3′-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA.more » Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly. - Highlights: • HCV can tolerate can bacteriophage MS2 stem-loop insertions within the 3′ UTR. • MS2 stem-loop containing HCV genomes allow for real-time imaging of HCV RNA. • HCV RNA is both static and motile and associates with NS5A and lipid droplets.« less

  16. In vivo effects of the IKr agonist NS3623 on cardiac electrophysiology of the guinea pig.

    PubMed

    Hansen, Rie Schultz; Olesen, Søren-Peter; Rønn, Lars Christian B; Grunnet, Morten

    2008-07-01

    The long QT syndrome is characterized by a prolongation of the QT interval measured on the surface electrocardiogram. Prolonging the QT interval increases the risk of dangerous ventricular fibrillations, eventually leading to sudden cardiac death. Pharmacologically induced QT interval prolongations are most often caused by antagonizing effects on the repolarizing cardiac current called IKr. In humans IKr is mediated by the human ether-a-go-go related gene (hERG) potassium channel. We recently presented NS3623, a compound that selectively activates this channel. The present study was dedicated to examining the in vivo effects of NS3623. Injection of 30 mg/kg NS3623 shortened the corrected QT interval by 25 +/- 4% in anaesthetized guinea pigs. Accordingly, 50 mg/kg of NS3623 shortened the QT interval by 30 +/- 6% in conscious guinea pigs. Finally, pharmacologically induced QT prolongation by a hERG channel antagonist (0.15 mg/kg E-4031) could be reverted by injection of NS3623 (50 mg/kg) in conscious guinea pigs. In conclusion, the present in vivo study demonstrates that injection of the hERG channel agonist NS3623 results in shortening of the QTc interval as well as reversal of a pharmacologically induced QT prolongation in both anaesthetized and conscious guinea pigs.

  17. Insights into mammalian biology from the wild house mouse Mus musculus

    PubMed Central

    Phifer-Rixey, Megan; Nachman, Michael W

    2015-01-01

    The house mouse, Mus musculus, was established in the early 1900s as one of the first genetic model organisms owing to its short generation time, comparatively large litters, ease of husbandry, and visible phenotypic variants. For these reasons and because they are mammals, house mice are well suited to serve as models for human phenotypes and disease. House mice in the wild consist of at least three distinct subspecies and harbor extensive genetic and phenotypic variation both within and between these subspecies. Wild mice have been used to study a wide range of biological processes, including immunity, cancer, male sterility, adaptive evolution, and non-Mendelian inheritance. Despite the extensive variation that exists among wild mice, classical laboratory strains are derived from a limited set of founders and thus contain only a small subset of this variation. Continued efforts to study wild house mice and to create new inbred strains from wild populations have the potential to strengthen house mice as a model system. DOI: http://dx.doi.org/10.7554/eLife.05959.001 PMID:25875302

  18. Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E.

    PubMed

    Kumar, Ambuj; Purohit, Rituraj

    2012-01-01

    Aneuploidy and chromosomal instability (CIN) are hallmarks of most solid tumors. Mutations in centroemere proteins have been observed in promoting aneuploidy and tumorigenesis. Recent studies reported that Centromere-associated protein-E (CENP-E) is involved in inducing cancers. In this study we investigated the pathogenic effect of 132 nsSNPs reported in CENP-E using computational platform. Y63H point mutation found to be associated with cancer using SIFT, Polyphen, PhD-SNP, MutPred, CanPredict and Dr. Cancer tools. Further we investigated the binding affinity of ATP molecule to the CENP-E motor domain. Complementarity scores obtained from docking studies showed significant loss in ATP binding affinity of mutant structure. Molecular dynamics simulation was carried to examine the structural consequences of Y63H mutation. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (R(g)), solvent accessibility surface area (SASA), energy value, hydrogen bond (NH Bond), eigenvector projection, trace of covariance matrix and atom density analysis results showed notable loss in stability for mutant structure. Y63H mutation was also shown to disrupt the native conformation of ATP binding region in CENP-E motor domain. Docking studies for remaining 18 mutations at 63rd residue position as well as other two computationally predicted disease associated mutations S22L and P69S were also carried to investigate their affect on ATP binding affinity of CENP-E motor domain. Our study provided a promising computational methodology to study the tumorigenic consequences of nsSNPs that have not been characterized and clear clue to the wet lab scientist. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. XI. ORBITS FOR SOUTHERN S-TYPE SYSTEMS: HEN 3-461, SY MUS, HEN 3-828, AND AR PAV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.

    Employing new infrared radial velocities, we have computed spectroscopic orbits of the cool giants in four southern S-type symbiotic systems. The orbits for two of the systems, Hen 3-461 and Hen 3-828, have been determined for the first time, while orbits of the other two, SY Mus and AR Pav, have previously been determined. For the latter two systems, we compare our results with those in the literature. The low mass of the secondary of SY Mus suggests that it has gone through a common envelope phase. Hen 3-461 has an orbital period of 2271 days, one of the longest currently known for S-type symbiotic systems.more » That period is very different from the orbital period proposed previously from its photometric variations. The other three binaries have periods between 600 and 700 day, values that are typical for S-type symbiotic orbits. Basic properties of the M giant components and the distance to each system are determined.« less

  20. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  1. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  2. SNPdbe: constructing an nsSNP functional impacts database.

    PubMed

    Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana

    2012-02-15

    Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.

  3. Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations.

    PubMed

    Guan, Yan; Sun, Huiyong; Pan, Peichen; Li, Youyong; Li, Dan; Hou, Tingjun

    2015-09-01

    Mutations at a number of key positions (Ala156, Asp168 and Arg155) of the HCV NS3/4A protease can induce medium to high resistance to MK5172. The emergence of the resistant mutations seriously compromises the antiviral therapy efficacy to hepatitis C. In this study, molecular dynamics (MD) simulations, free energy calculations and free energy decomposition were used to explore the interaction profiles of MK5172 with the wild-type (WT) and four mutated (R155K, D168A, D168V and A156T) HCV NS3/4A proteases. The binding free energies predicted by Molecular Mechanics/Generalized Born Solvent Area (MM/GBSA) are consistent with the trend of the experimental drug resistance data. The free energy decomposition analysis shows that the resistant mutants may change the protein-MK5172 interaction profiles, resulting in the unbalanced energetic distribution amongst the catalytic triad, the strand 135-139 and the strand 154-160. Moreover, umbrella sampling (US) simulations were employed to elucidate the unbinding processes of MK5172 from the active pockets of the WT HCV NS3/4A protease and the four mutants. The US simulations demonstrate that the dissociation pathways of MK5172 escaping from the binding pockets of the WT and mutants are quite different, and it is quite possible that MK5172 will be harder to get access to the correct binding sites of the mutated proteases, thereafter leading to drug resistance.

  4. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    PubMed Central

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  5. NS5A Sequence Heterogeneity and Mechanisms of Daclatasvir Resistance in Hepatitis C Virus Genotype 4 Infection.

    PubMed

    Zhou, Nannan; Hernandez, Dennis; Ueland, Joseph; Yang, Xiaoyan; Yu, Fei; Sims, Karen; Yin, Philip D; McPhee, Fiona

    2016-01-15

    Daclatasvir is an NS5A inhibitor approved for treatment of infection due to hepatitis C virus (HCV) genotypes (GTs) 1-4. To support daclatasvir use in HCV genotype 4 infection, we examined a diverse genotype 4-infected population for HCV genotype 4 subtype prevalence, NS5A polymorphisms at residues associated with daclatasvir resistance (positions 28, 30, 31, or 93), and their effects on daclatasvir activity in vitro and clinically. We performed phylogenetic analysis of genotype 4 NS5A sequences from 186 clinical trial patients and 43 sequences from the European HCV database, and susceptibility analyses of NS5A polymorphisms and patient-derived NS5A sequences by using genotype 4 NS5A hybrid genotype 2a replicons. The clinical trial patients represented 14 genotype 4 subtypes; most prevalent were genotype 4a (55%) and genotype 4d (27%). Daclatasvir 50% effective concentrations for 10 patient-derived NS5A sequences representing diverse phylogenetic clusters were ≤0.080 nM. Most baseline sequences had ≥1 NS5A polymorphism at residues associated with daclatasvir resistance; however, only 3 patients (1.6%) had polymorphisms conferring ≥1000-fold daclatasvir resistance in vitro. Among 46 patients enrolled in daclatasvir trials, all 20 with baseline resistance polymorphisms achieved a sustained virologic response. Circulating genotype 4 subtypes are genetically diverse. Polymorphisms conferring high-level daclatasvir resistance in vitro are uncommon before therapy, and clinical data suggest that genotype 4 subtype and baseline polymorphisms have minimal impact on responses to daclatasvir-containing regimens. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  6. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    NASA Astrophysics Data System (ADS)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  7. High-energy 100-ns single-frequency all-fiber laser at 1064 nm

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Tang, Zhao; Shi, Chaodu; Bai, Xiaolei; Sheng, Quan; Chavez-Pirson, Arturo; Peyghambarian, N.; Yao, Jianquan

    2018-02-01

    A high-energy, single-frequency fiber laser with long pulse duration of 100 ns has been experimentally investigated in an all-fiber architecture. Only 34-cm long heavily Yb-doped phosphate fiber was employed in power scaling stage to efficiently suppress the Stimulated Brillouin effect (SBS). In the experiment, 0.47 mJ single pulse energy was achieved in power scaling stage at the pump power of 16 W. The pre-shaped pulse was gradually broadened from 103 to 140 ns during the amplification without shape distortion.

  8. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  9. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    PubMed

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noisakran, Sansanee; Medical Molecular Biology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Adulyadejvikrom Building; Sengsai, Suchada

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometrymore » (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.« less

  11. Three Conformational Snapshots of the Hepatitis Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Rice, C

    2010-01-01

    A virally encoded superfamily-2 (SF2) helicase (NS3h) is essential for the replication of hepatitis C virus, a leading cause of liver disease worldwide. Efforts to elucidate the function of NS3h and to develop inhibitors against it, however, have been hampered by limited understanding of its molecular mechanism. Here we show x-ray crystal structures for a set of NS3h complexes, including ground-state and transition-state ternary complexes captured with ATP mimics (ADP {center_dot} BeF{sub 3} and ADP {center_dot} AlF{sub 4}{sup -}). These structures provide, for the first time, three conformational snapshots demonstrating the molecular basis of action for a SF2 helicase. Uponmore » nucleotide binding, overall domain rotation along with structural transitions in motif V and the bound DNA leads to the release of one base from the substrate base-stacking row and the loss of several interactions between NS3h and the 3{prime} DNA segment. As nucleotide hydrolysis proceeds into the transition state, stretching of a 'spring' helix and another overall conformational change couples rearrangement of the (d)NTPase active site to additional hydrogen-bonding between NS3h and DNA. Together with biochemistry, these results demonstrate a 'ratchet' mechanism involved in the unidirectional translocation and define the step size of NS3h as one base per nucleotide hydrolysis cycle. These findings suggest feasible strategies for developing specific inhibitors to block the action of this attractive, yet largely unexplored drug target.« less

  12. Hha has a defined regulatory role that is not dependent upon H-NS or StpA

    PubMed Central

    Solórzano, Carla; Srikumar, Shabarinath; Canals, Rocío; Juárez, Antonio; Paytubi, Sonia; Madrid, Cristina

    2015-01-01

    The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence. PMID:26284052

  13. West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms.

    PubMed

    Dietrich, Elizabeth A; Langevin, Stanley A; Huang, Claire Y-H; Maharaj, Payal D; Delorey, Mark J; Bowen, Richard A; Kinney, Richard M; Brault, Aaron C

    2016-08-01

    West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells.

  14. Comprehensive Screening for Naturally Occurring Hepatitis C Virus Resistance to Direct-Acting Antivirals in the NS3, NS5A, and NS5B Genes in Worldwide Isolates of Viral Genotypes 1 to 6.

    PubMed

    Patiño-Galindo, Juan Ángel; Salvatierra, Karina; González-Candelas, Fernando; López-Labrador, F Xavier

    2016-04-01

    There is no comprehensive study available on the natural hepatitis C virus (HCV) polymorphism in sites associated with resistance including all viral genotypes which may present variable susceptibilities to particular direct-acting antivirals (DAAs). This study aimed to analyze the frequencies, genetic barriers, and evolutionary histories of naturally occurring resistance-associated variants (RAVs) in the six main HCV genotypes. A comprehensive analysis of up to 103 RAVs was performed in 2,901, 2,216, and 1,344 HCV isolates for the NS3, NS5A, and NS5B genes, respectively. We report significant intergenotypic differences in the frequencies of natural RAVs for these three HCV genes. In addition, we found a low genetic barrier for the generation of new RAVs, irrespective of the viral genotype. Furthermore, in 1,126 HCV genomes, including sequences spanning the three genes, haplotype analysis revealed a remarkably high frequency of viruses carrying more than one natural RAV to DAAs (53% of HCV-1a, 28.5% of HCV-1b, 67.1% of HCV-6, and 100% of genotype 2, 3, 4, and 5 haplotypes). With the exception of HCV-1a, the most prevalent haplotypes showed RAVs in at least two different viral genes. Finally, evolutionary analyses revealed that, while most natural RAVs appeared recently, others have been efficiently transmitted over time and cluster in well-supported clades. In summary, and despite the observed high efficacy of DAA-based regimens, we show that naturally occurring RAVs are common in all HCV genotypes and that there is an overall low genetic barrier for the selection of resistance mutations. There is a need for natural DAA resistance profiling specific for each HCV genotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. NF-κB is required for dengue virus NS5-induced RANTES expression.

    PubMed

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Kooptiwut, Suwattanee; Haegeman, Guy; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai

    2015-02-02

    Dengue virus (DENV) infection associates with renal disorders. Patients with dengue hemorrhagic fever and acute kidney injury have a high mortality rate. Increased levels of cytokines may contribute to the pathogenesis of DENV-induced kidney injury. Currently, molecular mechanisms how DENV induces kidney cell injury has not been thoroughly investigated. Excessive cytokine production may be involved in this process. Using human cytokine RT(2) Profiler PCR array, 14 genes including IP-10, RANTES, IL-8, CXCL-9 and MIP-1β were up-regulated more than 2 folds in DENV-infected HEK 293 cells compared to that of mock-infected HEK 293 cells. In the present study, RANTES was suppressed by the NF-κB inhibitor, compound A (CpdA), in DENV-infected HEK 293 cells implying the role of NF-κB in RANTES expression. Chromatin immunoprecipitation (ChIP) assay showed that NF-κB binds more efficiently to its binding sites on the RANTES promoter in NS5-transfected HEK 293 cells than in HEK 293 cells expressing the vector lacking NS5 gene. To further examine whether the NS5-activated RANTES promoter is mediated through NF-κB, the two NF-κB binding sites on the RANTES promoter were mutated and this promoter was coupled to the luciferase cDNA. The result showed that when both binding sites of NF-κB in the RANTES promoter were mutated, the ability of NS5 to induce the luciferase activity was significantly decreased. Therefore, DENV NS5 activates RANTES production by increasing NF-κB binding to its binding sites on the RANTES promoter. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Development of a quantitative NS1-capture enzyme-linked immunosorbent assay for early detection of yellow fever virus infection.

    PubMed

    Ricciardi-Jorge, Taissa; Bordignon, Juliano; Koishi, Andrea; Zanluca, Camila; Mosimann, Ana Luiza; Duarte Dos Santos, Claudia Nunes

    2017-11-24

    Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.

  17. Differential responses of rabbit ventricular and atrial transient outward current (Ito) to the Ito modulator NS5806.

    PubMed

    Cheng, Hongwei; Cannell, Mark B; Hancox, Jules C

    2017-03-01

    Transient outward potassium current (I to ) in the heart underlies phase 1 repolarization of cardiac action potentials and thereby affects excitation-contraction coupling. Small molecule activators of I to may therefore offer novel treatments for cardiac dysfunction, including heart failure and atrial fibrillation. NS5806 has been identified as a prototypic activator of canine I to This study investigated, for the first time, actions of NS5806 on rabbit atrial and ventricular I to Whole cell patch-clamp recordings of I to and action potentials were made at physiological temperature from rabbit ventricular and atrial myocytes. 10  μ mol/L NS5806 increased ventricular I to with a leftward shift in I to activation and accelerated restitution. At higher concentrations, stimulation of I to was followed by inhibition. The EC 50 for stimulation was 1.6  μ mol/L and inhibition had an IC 50 of 40.7  μ mol/L. NS5806 only inhibited atrial I to (IC 50 of 18  μ mol/L) and produced a modest leftward shifts in I to activation and inactivation, without an effect on restitution. 10  μ mol/L NS5806 shortened ventricular action potential duration (APD) at APD 20 -APD 90 but prolonged atrial APD NS5806 also reduced atrial AP upstroke and amplitude, consistent with an additional atrio-selective effect on Na + channels. In contrast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x channels, produced similar levels of inhibition of ventricular and atrial I to NS5806 discriminates between rabbit ventricular and atrial I to, with mixed activator and inhibitor actions on the former and inhibitor actions against the later. NS5806 may be of significant value for pharmacological interrogation of regional differences in native cardiac I to . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    PubMed

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    PubMed

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  20. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  1. Peptidomimetic Escape Mechanisms Arise via Genetic Diversity in the Ligand-Binding Site of the Hepatitis C Virus NS3/4A Serine Protease

    PubMed Central

    Welsch, Christoph; Shimakami, Tetsuro; Hartmann, Christoph; Yang, Yan; Domingues, Francisco S.; Lengauer, Thomas; Zeuzem, Stefan; Lemon, Stanley M.

    2011-01-01

    Background & Aims It is a challenge to develop direct-acting antiviral agents (DAAs) that target the NS3/4A protease of hepatitis C virus (HCV) because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants. Methods We identified residues near the ketoamide-binding site in X-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype 1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection. Results Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell culture studies were consistent with this observation. Four variants (Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K). Conclusions Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the HCV protease NS3/4A sequences might affect susceptibility to first-generation DAAs. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants. PMID:22155364

  2. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations

    PubMed Central

    Brodsky, Arthur Nathan; Caldwell, Mary; Bae, Sooneon; Harcum, Sarah W.

    2014-01-01

    NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, the of these genes was analysed in response to various culture conditions – elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analysed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium. PMID:25062658

  3. Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: Implications for Evolution of Arenaviruses in Africa

    PubMed Central

    Kouassi, Stéphane K.; Fichet-Calvet, Elisabeth; Becker-Ziaja, Beate; Rieger, Toni; Ölschläger, Stephan; Dosso, Hernri; Denys, Christiane; ter Meulen, Jan; Akoua-Koffi, Chantal; Günther, Stephan

    2011-01-01

    This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys) setulosus, respectively. Arenavirus infection of Mus (Nannomys) setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus–host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events. PMID:21695269

  4. Two cases of false-positive dengue non-structural protein 1 (NS1) antigen in patients with hematological malignancies and a review of the literature on the use of NS1 for the detection of Dengue infection.

    PubMed

    Chung, Shimin J; Krishnan, Prabha U; Leo, Yee Sin

    2015-02-01

    Early diagnosis of dengue has been made easier in recent years owing to the advancement in diagnostic technologies. The rapid non-structural protein 1 (NS1) test strip is widely used in many developed and developing regions at risk of dengue. Despite the relatively high specificity of this test, we recently encountered two cases of false-positive dengue NS1 antigen in patients with underlying hematological malignancies. We reviewed the literature for causes of false-positive dengue NS1. © The American Society of Tropical Medicine and Hygiene.

  5. Nano- and micro-structuring of fused silica using time-delay adjustable double flash ns-laser radiation

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing

    2018-02-01

    Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at

  6. 1. View toward south, facade (north side or "A" wall) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View toward south, facade (north side or "A" wall) of perimeter acquisition radar building. The globe on the upper left is a shelter housing the Hercules tracker antenna. To the right is the utility tunnel leading to the par power plant. The antennae for the par are contained in the large lighter-toned shape covering most of the wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    PubMed Central

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  8. NS1643 Interacts around L529 of hERG to Alter Voltage Sensor Movement on the Path to Activation

    PubMed Central

    Guo, Jiqing; Cheng, Yen May; Lees-Miller, James P.; Perissinotti, Laura L.; Claydon, Tom W.; Hull, Christina M.; Thouta, Samrat; Roach, Daniel E.; Durdagi, Serdar; Noskov, Sergei Y.; Duff, Henry J.

    2015-01-01

    Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (−34 ± 4 mV) is similar to wild-type (WT) (−37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (−131 ± 4 mV for K525C and −120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed. PMID:25809253

  9. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.

    PubMed

    Laurent-Rolle, Maudry; Morrison, Juliet; Rajsbaum, Ricardo; Macleod, Jesica M Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-09-10

    To successfully establish infection, flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by Type I interferon

    PubMed Central

    Rajsbaum, Ricardo; Macleod, Jesica M. Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-01-01

    Summary To successfully establish infection Flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. PMID:25211074

  11. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    PubMed Central

    Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.

    2016-01-01

    Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944

  12. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    PubMed

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  13. NS001MS - Landsat-D thematic mapper band aircraft scanner

    NASA Technical Reports Server (NTRS)

    Richard, R. R.; Merkel, R. F.; Meeks, G. R.

    1978-01-01

    The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.

  14. Radiation immune RAM semiconductor technology for the 80's. [Random Access Memory

    NASA Technical Reports Server (NTRS)

    Hanna, W. A.; Panagos, P.

    1983-01-01

    This paper presents current and short term future characteristics of RAM semiconductor technologies which were obtained by literature survey and discussions with cognizant Government and industry personnel. In particular, total ionizing dose tolerance and high energy particle susceptibility of the technologies are addressed. Technologies judged compatible with spacecraft applications are ranked to determine the best current and future technology for fast access (less than 60 ns), radiation tolerant RAM.

  15. Structure and function of flavivirus NS5 methyltransferase.

    PubMed

    Zhou, Yangsheng; Ray, Debashish; Zhao, Yiwei; Dong, Hongping; Ren, Suping; Li, Zhong; Guo, Yi; Bernard, Kristen A; Shi, Pei-Yong; Li, Hongmin

    2007-04-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  16. Structure and Function of Flavivirus NS5 Methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou,Y.; Ray, D.; Zhao, Y.

    2007-01-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m{sup 7}GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA {yields} m{sup 7}GpppA {yields} m{sup 7}GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m{sup 7}GpppA-RNA can be readily methylated to m{sup 7}GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 {angstrom} resolution showedmore » a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K{sub 61}-D{sub 146}-K{sub 182}-E{sub 218} motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.« less

  17. SIDECACHE: Information access, management and dissemination framework for web services.

    PubMed

    Doderer, Mark S; Burkhardt, Cory; Robbins, Kay A

    2011-06-14

    Many bioinformatics algorithms and data sets are deployed using web services so that the results can be explored via the Internet and easily integrated into other tools and services. These services often include data from other sites that is accessed either dynamically or through file downloads. Developers of these services face several problems because of the dynamic nature of the information from the upstream services. Many publicly available repositories of bioinformatics data frequently update their information. When such an update occurs, the developers of the downstream service may also need to update. For file downloads, this process is typically performed manually followed by web service restart. Requests for information obtained by dynamic access of upstream sources is sometimes subject to rate restrictions. SideCache provides a framework for deploying web services that integrate information extracted from other databases and from web sources that are periodically updated. This situation occurs frequently in biotechnology where new information is being continuously generated and the latest information is important. SideCache provides several types of services including proxy access and rate control, local caching, and automatic web service updating. We have used the SideCache framework to automate the deployment and updating of a number of bioinformatics web services and tools that extract information from remote primary sources such as NCBI, NCIBI, and Ensembl. The SideCache framework also has been used to share research results through the use of a SideCache derived web service.

  18. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    PubMed Central

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  19. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    PubMed Central

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  20. Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus.

    PubMed

    Nascimento, Eduardo J M; George, James K; Velasco, Melissa; Bonaparte, Matthew I; Zheng, Lingyi; DiazGranados, Carlos A; Marques, Ernesto T A; Huleatt, James W

    2018-07-01

    Dengue virus infection elicits immune responses to multiple viral antigens including antibodies to dengue non-structural protein 1 (NS1) which are rapidly induced and detected within days of infection. The recombinant, live, attenuated, tetravalent dengue vaccine (CYD-TDV; Sanofi Pasteur) uses the yellow fever vaccine virus as a back-bone but expresses dengue virus pre-membrane and envelop proteins. Since CYD-TDV does not express dengue NS1, we evaluated the utility of dengue NS1-specific IgG antibodies as biomarkers of dengue exposure in CYD-TDV recipients and controls. We optimized and evaluated a quantitative anti-dengue NS1 IgG enzyme-linked immunosorbent assay (ELISA). Parameters assessed included: accuracy, dilutability/linearity, precision, limit of quantitation and specificity. The assay specificity was further evaluated using Japanese Encephalitis virus, West Nile virus, Yellow Fever virus or Zika virus positive sera samples collected following confirmed infection or vaccination. Receiver-operating-characteristics (ROC) curves as well as sensitivity and specificity for discriminating previous dengue exposure were assessed using 1250 reference samples. Overall, the anti-dengue NS1 IgG ELISA was able to discriminate previous dengue exposure from non-exposure before vaccination with CYD-TDV (ROC area under the curve > 0.9). Assessment of paired samples from 2511 vaccinated participants showed high overall agreement (93%) between pre-vaccination and post-vaccination dengue serostatus classification based on the anti-dengue NS1 IgG ELISA. However, misclassification of dengue serostatus was observed after vaccination likely due to a combination of asymptomatic dengue infections, assay variability and a modest effect of CYD-TDV on the anti-dengue NS1 IgG ELISA readout. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. [First evidence of lymphocytic choriomeningitis virus (Arenavirus) infection in Mus musculus rodents captured in the urban area of the municipality of Sincelejo, Sucre, Colombia].

    PubMed

    Castellar, Anais; Guevara, Marco; Rodas, Juan D; Londoño, Andrés F; Arroyave, Esteban; Díaz, Francisco J; Levis, Silvana; Blanco, Pedro J

    2017-04-01

    The lymphocytic choriomeningitis virus is an Old World arenavirus that infects Mus musculus, and can cause congenital hydrocephalus, chorioretinitis and multisystemic failure in transplant human recipients. Although the disease has not been clinically diagnosed in Colombia yet, there have been reports of infection with the Pichindé virus in rodents from Cauca and Valle del Cauca departments, and with the Guanarito virus in rodents from Córdoba department. To identify the lymphocytic choriomeningitis virus from Mus musculus captured in the municipality of Sincelejo. We evaluated 80 samples of plasma by ELISA using antigen from lymphocytic choriomeningitis virus. Additionally, a nested RT-PCR was performed to seropositive and seronegative samples for the S-segment. We found a 10% seroprevalence (8/80) and the viral genome was detected in 16 brain samples; the alignment (BLAST) and the phylogenetic analysis (MrBayes, version 3.2.2) confirmed the presence of the lymphocytic choriomeningitis virus. The results indicated that human infection with the lymphocytic choriomeningitis virus in humans could occur in the urban area of Sincelejo, although no cases have been reported so far.

  2. In silico mutation analysis of non-structural protein-5 (NS5) dengue virus

    NASA Astrophysics Data System (ADS)

    Puspitasari, R. D.; Tambunan, U. S. F.

    2017-04-01

    Dengue fever is a world disease. It is endemic in more than 100 countries. Information about the effect of mutations in the virus is important in drug design and development. In this research, we studied the effect of mutation on NS5 dengue virus. NS5 is the large protein containing 67% amino acid similarity in DENV 1-4 and has multifunctional enzymatic activities. Dengue virus is an RNA virus that has very high mutation frequency with an average of 100 times higher than DNA mutations, and the accumulation of mutations will be possible to generate the new serotype. In this study, we report that mutation occurs in NS5 of DENV serotype 3, glutamine mutates into methionine at position 10 and threonine mutates into isoleucine at position 55. These residues are part of the domain named S-Adenosyl-L-Methionine-Dependent Methyltransferase (IPR029063).

  3. Assessing Positivity and Circulating Levels of NS1 in Samples from a 2012 Dengue Outbreak in Rio de Janeiro, Brazil

    PubMed Central

    Allonso, Diego; Meneses, Marcelo D. F.; Fernandes, Carlos A.; Ferreira, Davis F.; Mohana-Borges, Ronaldo

    2014-01-01

    Dengue virus (DENV) represents a major threat to public health worldwide. Early DENV diagnosis should not only detect the infection but also identify patients with a higher likelihood to develop severe cases. Previous studies have suggested the potential for NS1 to serve as a viral marker for dengue severity. However, further studies using different sera panels are required to confirm this hypothesis. In this context, we developed a lab-based ELISA to detect and quantitate NS1 protein from the four DENV serotypes and from primary and secondary cases. This approach was used to calculate the circulating NS1 concentration in positive samples. We also tested the NS1 positivity of DENV-positive samples according to the Platelia Dengue NS1 Ag assay. A total of 128 samples were positive for DENV infection and were classified according to the WHO guidelines. The overall NS1 positivity was 68% according to the Platelia assay, whereas all samples were NS1-positive when analyzed with our lab-based ELISA. Fifty-four samples were positive by PCR, revealing a co-circulation of DENV1 and DENV4, and the NS1 positivity for DENV4 samples was lower than that for DENV1. The circulating NS1 concentration ranged from 7 to 284 ng/mL. Our results support previous data indicating the low efficiency of the Platelia assay to detect DENV4 infection. Moreover, this work is the first to analyze NS1 antigenemia using retrospective samples from a Brazilian outbreak. PMID:25412084

  4. 22. INTERIOR VIEW OF TYPICAL OIL TANK, PORT SIDE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW OF TYPICAL OIL TANK, PORT SIDE, LOOKING FORWARD. NOTE SHIP'S FRAMING MEMBERS AND UNIVERSAL JOINT IN SHAFT FOR PUMPING VALVE AT BOTTOM OF TANK. THE ACCESS LADDER STEPS ARE MARKED WITH LEVEL INDICATIONS. - Ship "Falls of Clyde", Hawaii Maritime Center, Pier 7, Honolulu, Honolulu County, HI

  5. Evaluation of a dengue NS1 antigen detection assay sensitivity and specificity for the diagnosis of acute dengue virus infection.

    PubMed

    Hermann, Laura L; Thaisomboonsuk, Butsaya; Poolpanichupatam, Yongyuth; Jarman, Richard G; Kalayanarooj, Siripen; Nisalak, Ananda; Yoon, In-Kyu; Fernandez, Stefan

    2014-10-01

    Currently, no dengue NS1 detection kit has regulatory approval for the diagnosis of acute dengue fever. Here we report the sensitivity and specificity of the InBios DEN Detect NS1 ELISA using a panel of well characterized human acute fever serum specimens. The InBios DENV Detect NS1 ELISA was tested using a panel composed of 334 serum specimens collected from acute febrile patients seeking care in a Bangkok hospital in 2010 and 2011. Of these patients, 314 were found to have acute dengue by either RT-PCR and/or anti-dengue IgM/IgG ELISA. Alongside the InBios NS1 ELISA kit, we compared the performance characteristics of the BioRad Platelia NS1 antigen kit. The InBios NS1 ELISA Ag kit had a higher overall sensitivity (86% vs 72.8%) but equal specificity (100%) compared to the BioRad Platelia kit. The serological status of the patient significantly influenced the outcome. In primary infections, the InBios NS1 kit demonstrated a higher sensitivity (98.8%) than in secondary infections (83.5%). We found significant variation in the sensitivity of the InBios NS1 ELISA kit depending on the serotype of the dengue virus and also found decreasing sensitivity the longer after the onset of illness, showing 100% sensitivity early during illness, but dropping below 50% by Day 7. The InBios NS1 ELISA kit demonstrated high accuracy when compared to the initial clinical diagnosis with greater than 85% agreement when patients were clinically diagnosed with dengue illness. Results presented here suggest the accurate detection of circulating dengue NS1 by the InBios DENV Detect NS1 ELISA can provide clinicians with a useful tool for diagnosis of early dengue infections.

  6. Nuclear Export Factor CRM1 Interacts with Nonstructural Proteins NS2 from Parvovirus Minute Virus of Mice

    PubMed Central

    Bodendorf, Ursula; Cziepluch, Celina; Jauniaux, Jean-Claude; Rommelaere, Jean; Salomé, Nathalie

    1999-01-01

    The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway. PMID:10438867

  7. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    NASA Astrophysics Data System (ADS)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  8. Structure-Based Mutational Analysis of the Hepatitis C Virus NS3 Helicase

    PubMed Central

    Tai, Chun-Ling; Pan, Wen-Ching; Liaw, Shwu-Huey; Yang, Ueng-Cheng; Hwang, Lih-Hwa; Chen, Ding-Shinn

    2001-01-01

    The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3. PMID:11483774

  9. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo

    2017-09-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV

  10. The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function

    PubMed Central

    Hebner, Christy M.; Han, Bin; Brendza, Katherine M.; Nash, Michelle; Sulfab, Maisoun; Tian, Yang; Hung, Magdeleine; Fung, Wanchi; Vivian, Randall W.; Trenkle, James; Taylor, James; Bjornson, Kyla; Bondy, Steven; Liu, Xiaohong; Link, John; Neyts, Johan; Sakowicz, Roman; Zhong, Weidong; Tang, Hengli; Schmitz, Uli

    2012-01-01

    Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV exerts anti-HCV activity utilizing a unique chemical activation and subsequent direct interaction with the NS5B protein. Treatment of HCV subgenomic replicon cells with TGV results in a modified form of NS5B with a distinctly altered mobility on a SDS-PAGE gel. Further analysis reveals that the aberrantly migrating NS5B species contains the inhibitor molecule. Formation of this complex does not require the presence of any other HCV proteins. The intensity of the aberrantly migrating NS5B species is strongly dependent on cellular glutathione levels as well as CYP 1A activity. Furthermore analysis of NS5B protein purified from a heterologous expression system treated with TGV by mass spectrometry suggests that TGV undergoes a CYP- mediated intracellular activation step and the resulting metabolite, after forming a glutathione conjugate, directly and specifically interacts with NS5B. Taken together, these data demonstrate that upon metabolic activation TGV is a specific, covalent inhibitor of the HCV NS5B polymerase and is mechanistically distinct from other classes of the non-nucleoside inhibitors (NNI) of the viral polymerase. PMID:22720059

  11. 1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA

  12. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  13. The Hepatitis C Virus NS4B Protein Can trans-Complement Viral RNA Replication and Modulates Production of Infectious Virus▿

    PubMed Central

    Jones, Daniel M.; Patel, Arvind H.; Targett-Adams, Paul; McLauchlan, John

    2009-01-01

    Studies of the hepatitis C virus (HCV) life cycle have been aided by development of in vitro systems that enable replication of viral RNA and production of infectious virus. However, the functions of the individual proteins, especially those engaged in RNA replication, remain poorly understood. It is considered that NS4B, one of the replicase components, creates sites for genome synthesis, which appear as punctate foci at the endoplasmic reticulum (ER) membrane. In this study, a panel of mutations in NS4B was generated to gain deeper insight into its functions. Our analysis identified five mutants that were incapable of supporting RNA replication, three of which had defects in production of foci at the ER membrane. These mutants also influenced posttranslational modification and intracellular mobility of another replicase protein, NS5A, suggesting that such characteristics are linked to focus formation by NS4B. From previous studies, NS4B could not be trans-complemented in replication assays. Using the mutants that blocked RNA synthesis, defective NS4B expressed from two mutants could be rescued in trans-complementation replication assays by wild-type protein produced by a functional HCV replicon. Moreover, active replication could be reconstituted by combining replicons that were defective in NS4B and NS5A. The ability to restore replication from inactive replicons has implications for our understanding of the mechanisms that direct viral RNA synthesis. Finally, one of the NS4B mutations increased the yield of infectious virus by five- to sixfold. Hence, NS4B not only functions in RNA replication but also contributes to the processes engaged in virus assembly and release. PMID:19073716

  14. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  15. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications

    NASA Astrophysics Data System (ADS)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad

    2017-05-01

    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  16. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells.

    PubMed

    Cotmore, S F; D'Abramo, A M; Carbonell, L F; Bratton, J; Tattersall, P

    1997-05-12

    Mutants of minute virus of mice (MVM) which express truncated forms of the NS2 polypeptide are known to exhibit a host range defect, replicating productively in transformed human cells but not in cells from their normal murine host. To explore this deficiency we generated viruses with translation termination codons at various positions in the second exon of NS2. In human cells these mutants were viable, but showed a late defect in progeny virion release which put them at a selective disadvantage compared to the wildtype. In murine cells, however, duplex viral DNA amplification was reduced to 5% of wildtype levels and single-strand DNA synthesis was undetectable. These deficiencies could not be attributed to a failure to initiate infection or to a generalized defect in viral gene expression, since the viral replicator protein NS1 was expressed to normal or elevated levels early in infection. In contrast, truncated NS2 gene products failed to accumulate, so that each mutant exhibited a similar NS2-null phenotype. Expression of the capsid polypeptides VP1 and VP2 and their subsequent assembly into intact particles were examined in detail. Synchronized infected cell populations labeled under pulse-chase conditions were analyzed by differential immunoprecipitation of native or denatured extracts using antibodies which discriminated between intact particles and isolated polypeptide chains. These analyses showed that at early times in infection, capsid protein synthesis and stability were normal, but particle assembly was impaired. Unassembled VP proteins were retained in the cell for several hours, but as the unprocessed material accumulated, capsid protein synthesis progressively diminished, so that at later times relatively few VP molecules were synthesized. Thus in NS2-null infections of mouse cells there is a major primary defect in the folding or assembly processes required for effective capsid production.

  17. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication.

    PubMed Central

    Xu, J; Mendez, E; Caron, P R; Lin, C; Murcko, M A; Collett, M S; Rice, C M

    1997-01-01

    Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication. PMID:9188600

  18. The 150 ns detector project: Prototype preamplifier results

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  19. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    PubMed

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  20. Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track.

    PubMed

    Beran, Rudolf K F; Bruno, Michael M; Bowers, Heath A; Jankowsky, Eckhard; Pyle, Anna Marie

    2006-05-12

    The NS3 helicase is essential for replication of the hepatitis C virus. This multifunctional Superfamily 2 helicase protein unwinds nucleic acid duplexes in a stepwise, ATP-dependent manner. Although kinetic features of its mechanism are beginning to emerge, little is known about the physical determinants for NS3 translocation along a strand of nucleic acid. For example, it is not known whether NS3 can traverse covalent or physical discontinuities on the tracking strand. Here we provide evidence that NS3 translocates with a mechanism that is different from its well-studied relative, the Vaccinia helicase NPH-II. Like NPH-II, NS3 translocates along the loading strand (the strand bearing the 3'-overhang) and it fails to unwind substrates that contain nicks, or covalent discontinuities in the loading strand. However, unlike NPH-II, NS3 readily unwinds RNA duplexes that contain long stretches of polyglycol, which are moieties that bear no resemblance to nucleic acid. Whether located on the tracking strand, the top strand, or both, long polyglycol regions fail to disrupt the function of NS3. This suggests that NS3 does not require the continuous formation of specific contacts with the ribose-phosphate backbone as it translocates along an RNA duplex, which is an observation consistent with the large NS3 kinetic step size (18 base-pairs). Rather, once NS3 loads onto a substrate, the helicase can translocate along the loading strand of an RNA duplex like a monorail train following a track. Bumps in the track do not significantly disturb NS3 unwinding, but a break in the track de-rails the helicase.

  1. Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects.

    PubMed

    Corbau, R; Duverger, V; Rommelaere, J; Nüesch, J P

    2000-12-05

    Minute virus of mice NS1, an 83-kDa mainly nuclear phosphoprotein, is the only viral nonstructural protein required in all cell types and it is involved in multiple processes necessary for virus propagation. The diversity of functions assigned to NS1, together with the variation of its complex phosphorylation pattern during infection, suggested that the various activities of NS1 could be regulated by distinct phosphorylation events. So far, it has been demonstrated that NS1 replicative functions, in particular, DNA-unwinding activities, are regulated by protein kinase C (PKC), as exemplified by the modulation of NS1 helicase activity by PKClambda phosphorylation. In order to determine further impact of phosphorylation on NS1 functions, including the induction of cytopathic effects, a mutational approach was pursued in order to produce NS1 variants harboring amino acid substitutions at candidate PKC target residues. Besides the determination of two additional in vivo phosphorylation sites in NS1, this mutagenesis allowed the segregation of distinct NS1 functions from one another, generating NS1 variants with a distinct activity profile. Thus, we obtained NS1 mutants that were fully proficient for trans activation of the viral P38 promoter, while being impaired in their replicative functions. Moreover, the alterations of specific PKC phosphorylation sites gave rise to NS1 polypeptides that exerted reduced cytotoxicity, leading to sustained gene expression, while keeping functions necessary for progeny virus production, i.e., viral DNA replication and activation of the capsid gene promoter. These data suggested that in the course of a viral infection, NS1 may undergo a shift from productive to cytotoxic functions as a result of a phosphorylation-dependent regulation. Copyright 2000 Academic Press.

  2. A Crystal Structure of Classical Swine Fever Virus NS5B Reveals a Novel N-terminal Domain.

    PubMed

    Li, Weiwei; Wu, Baixing; Soca, Wibowo Adian; An, Lei

    2018-05-02

    Classical swine fever virus (CSFV) is the ringleader of Classical swine fever (CSF). The non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) that is a key enzyme initiating viral RNA replication by a de novo mechanism. It is also an attractive target for the development of anti-CSFV drugs. To gain a better understanding on the mechanism of CSFV RNA synthesis, here we solved the first crystal structure of CSFV-NS5B. Our studies show that the CSFV-NS5B RdRp contains characteristic fingers, palm domain and thumb domain as well as a unique N-terminal domain (NTD) that had never been observed. Mutagenesis studies on NS5B validated the importance of NTD in the catalytic activity of this novel RNA-dependent RNA polymerase. Moreover, our results shed light on the understanding of CSFV infection. IMPORTANCE Pigs are important domestic animal. However, a highly contagious viral disease named Classical swine fever (CSF) causes devastating economic losses. Classical swine fever virus (CSFV) is the primary culprit of CSF, which is a positive-sense single-stranded RNA virus belonging to the Pestivirus genus, Flaviviridae family. Genome replication of CSFV depends on RNA-dependent RNA polymerase known as NS5B. However, the structure of CSFV-NS5B has never been reported, and the mechanism of CSFV replication is poorly understood. Here, we solved the first crystal structure of CSFV-NS5B, analyzed the function of characteristic fingers, palm, and thumb domains. Additionally, our structure also revealed the presence of a novel N-terminal domain (NTD). Biochemical studies demonstrated that the NTD of CSFV-NS5B is very important for RNA-dependent RNA polymerase (RdRp) activity. Collectively, our studies provide a structural basis for future rational design of anti-CSFV drugs which is critically important as no effective anti-CSFV drugs have been developed. Copyright © 2018 American Society for Microbiology.

  3. Spatial access to residential care resources in Beijing, China

    PubMed Central

    2012-01-01

    Background As the population is ageing rapidly in Beijing, the residential care sector is in a fast expansion process with the support of the municipal government. Understanding spatial accessibility to residential care resources by older people supports the need for rational allocation of care resources in future planning. Methods Based on population data and data on residential care resources, this study uses two Geographic Information System (GIS) based methods – shortest path analysis and a two-step floating catchment area (2SFCA) method to analyse spatial accessibility to residential care resources. Results Spatial accessibility varies as the methods and considered factors change. When only time distance is considered, residential care resources are more accessible in the central city than in suburban and exurban areas. If care resources are considered in addition to time distance, spatial accessibility is relatively poor in the central city compared to the northeast to southeast side of the suburban and exurban areas. The resources in the northwest to southwest side of the city are the least accessible, even though several hotspots of residential care resources are located in these areas. Conclusions For policy making, it may require combining various methods for a comprehensive analysis. The methods used in this study provide tools for identifying underserved areas in order to improve equity in access to and efficiency in allocation of residential care resources in future planning. PMID:22877360

  4. The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling

    PubMed Central

    2016-01-01

    ABSTRACT The vector-borne flaviviruses cause severe disease in humans on every inhabited continent on earth. Their transmission by arthropods, particularly mosquitoes, facilitates large emergence events such as witnessed with Zika virus (ZIKV) or West Nile virus in the Americas. Every vector-borne flavivirus examined thus far that causes disease in humans, from dengue virus to ZIKV, antagonizes the host type I interferon (IFN-I) response by preventing JAK-STAT signaling, suggesting that suppression of this pathway is an important determinant of infection. The most direct and potent viral inhibitor of this pathway is the nonstructural protein NS5. However, the mechanisms utilized by NS5 from different flaviviruses are often quite different, sometimes despite close evolutionary relationships between viruses. The varied mechanisms of NS5 as an IFN-I antagonist are also surprising given that the evolution of NS5 is restrained by the requirement to maintain function of two enzymatic activities critical for virus replication, the methyltransferase and RNA-dependent RNA polymerase. This review discusses the different strategies used by flavivirus NS5 to evade the antiviral effects of IFN-I and how this information can be used to better model disease and develop antiviral countermeasures. PMID:27881649

  5. 76 FR 65542 - N.S. Savannah; Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-238; NRC-2011-0222] N.S. Savannah; Exemption From Certain Security Requirements 1.0 Background The U.S. Department of Transportation, Maritime [[Page 65543

  6. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Riftmore » Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.« less

  7. United States Federal Health Care Websites: A Multimethod Evaluation of Website Accessibility for Individuals with Disabilities

    ERIC Educational Resources Information Center

    Brobst, John L.

    2012-01-01

    The problem addressed by this study is the observed low levels of compliance with federal policy on website accessibility. The study examines the two key federal policies that promote website accessibility, using a side-by-side policy analysis technique. The analysis examines the Americans with Disabilities Act of 1990 and Section 508 of the…

  8. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    PubMed

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  10. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2015-04-01

    The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. The Social Side Effects of Acetaminophen

    NASA Astrophysics Data System (ADS)

    Mischkowski, Dominik

    About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical

  12. Mobile Web and Accessibility

    NASA Astrophysics Data System (ADS)

    Hori, Masahiro; Kato, Takashi

    While focusing on the human-computer interaction side of the Web content delivery, this article discusses problems and prospects of the mobile Web and Web accessibility in terms of what lessons and experiences we have gained from Web accessibility and what they can say about the mobile Web. One aim is to draw particular attention to the importance of explicitly distinguishing between perceptual and cognitive aspects of the users’ interactions with the Web. Another is to emphasize the increased importance of scenario-based evaluation and remote testing for the mobile Web where the limited screen space and a variety of environmental factors of mobile use are critical design issues. A newly devised inspection type of evaluation method that focuses on the perceptual-cognitive distinction of accessibility and usability issues is presented as a viable means of scenario-based, remote testing for the Web.

  13. Folding Proteins at 500 ns/hour with Work Queue.

    PubMed

    Abdul-Wahid, Badi'; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A

    2012-10-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour.

  14. Folding Proteins at 500 ns/hour with Work Queue

    PubMed Central

    Abdul-Wahid, Badi’; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A.

    2014-01-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour. PMID:25540799

  15. Biochemical Activities of Minute Virus of Mice Nonstructural Protein NS1 Are Modulated In Vitro by the Phosphorylation State of the Polypeptide

    PubMed Central

    Nüesch, Jürg P. F.; Corbau, Romuald; Tattersall, Peter; Rommelaere, Jean

    1998-01-01

    NS1, the 83-kDa major nonstructural protein of minute virus of mice (MVM), is a multifunctional nuclear phosphoprotein which is required in a variety of steps during progeny virus production, early as well as late during infection. NS1 is the initiator protein for viral DNA replication. It binds specifically to target DNA motifs; has site-specific single-strand nickase, intrinsic ATPase, and helicase activities; trans regulates viral and cellular promoters; and exerts cytotoxic stress on the host cell. To investigate whether these multiple activities of NS1 depend on posttranslational modifications, in particular phosphorylation, we expressed His-tagged NS1 in HeLa cells by using recombinant vaccinia viruses, dephosphorylated it at serine and threonine residues with calf intestine alkaline phosphatase, and compared the biochemical activities of the purified un(der)phosphorylated (NS1O) and the native (NS1P) polypeptides. Biochemical analyses of replicative functions of NS1O revealed a severe reduction of intrinsic helicase activity and, to a minor extent, of ATPase and nickase activities, whereas its affinity for the target DNA sequence [ACCA]2–3 was enhanced compared to that of NS1P. In the presence of endogenous protein kinases found in replication extracts, NS1O showed all functions necessary for resolution and replication of the 3′ dimer bridge, indicating reactivation of NS1O by rephosphorylation. Partial reactivation of the helicase activity was found as well when NS1O was incubated with protein kinase C. PMID:9733839

  16. Evaluation of the Tone Fan Noise Design/Prediction System (TFaNS) at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1999-01-01

    Version 1.4 of TFaNS, the Tone Fan Noise Design/Prediction System. has recently been evaluated at the NASA Glenn Research Center. Data from tests of the Allison Ultra High Bypass Fan (UHBF) were used to compare to predicted farfield directivities for the radial stator configuration. There was good agreement between measured and predicted directivities at low fan speeds when rotor effects were neglected in the TFaNS calculations. At higher fan speeds, TFaNS is shown to be useful in predicting overall trends rather than absolute sound pressure levels.

  17. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed Central

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-01-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result. PMID:7853501

  18. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  19. A New Comptonization Model for Weakly Magnetized Accreting NS LMXBs

    NASA Astrophysics Data System (ADS)

    Paizis, A.; Farinelli, R.; Titarchuk, L.; Frontera, F.; Cocchi, M.; Ferrigno, C.

    2009-05-01

    We have developed a new Comptonization model to propose, for the first time, a self consistent physical interpretation of the complex spectral evolution seen in NS LMXBs. The model and its application to LMXBs are presented and compared to the Simbol-X expected capabilities.

  20. OER on the Asian Mega Universities: Developments, Motives, Openness, and Sustainability

    ERIC Educational Resources Information Center

    Farisi, Mohammad Imam

    2013-01-01

    The OER movement originated and integrated into ODE developments. Mega Universities (MUs) are among the most important of ODE providers worldwide should be to be the primary organizations for providing access to OER. So far, however, in-depth studies on OER developments in the Asian MUs were very limited. This study focuses on the developments,…

  1. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation

  2. View of the forward section, port side, of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the forward section, port side, of the Orbiter Discovery at ground level in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the exposed panels for systems access during ground support and vehicle turn-around processes. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. 8. Detail, typical shedroofed entry on south side. The current ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail, typical shed-roofed entry on south side. The current project will replace these with similar structures that will allow handicap access to the lean-to portion of the building containing offices, restrooms, and other employee spaces. - Interurban Electric Railway Bridge Yard Shop, Interstate 80 at Alameda County Postmile 2.0, Oakland, Alameda County, CA

  4. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase.

    PubMed

    Godoy, Andre S; Lima, Gustavo M A; Oliveira, Ketllyn I Z; Torres, Naiara U; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius

    2017-03-27

    The current Zika virus (ZIKV) outbreak became a global health threat of complex epidemiology and devastating neurological impacts, therefore requiring urgent efforts towards the development of novel efficacious and safe antiviral drugs. Due to its central role in RNA viral replication, the non-structural protein 5 (NS5) RNA-dependent RNA-polymerase (RdRp) is a prime target for drug discovery. Here we describe the crystal structure of the recombinant ZIKV NS5 RdRp domain at 1.9 Å resolution as a platform for structure-based drug design strategy. The overall structure is similar to other flaviviral homologues. However, the priming loop target site, which is suitable for non-nucleoside polymerase inhibitor design, shows significant differences in comparison with the dengue virus structures, including a tighter pocket and a modified local charge distribution.

  5. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay.

    PubMed

    Rothan, H A; Zulqarnain, M; Ammar, Y A; Tan, E C; Rahman, N A; Yusof, R

    2014-06-01

    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.

  6. Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1).

    PubMed

    Gelanew, Tesfaye; Hunsperger, Elizabeth

    2018-02-06

    Dengue, caused by one of the four serologically distinct dengue viruses (DENV-1 to - 4), is a mosquito-borne disease of serious global health significance. Reliable and cost-effective diagnostic tests, along with effective vaccines and vector-control strategies, are highly required to reduce dengue morbidity and mortality. Evaluation studies revealed that many commercially available NS1 antigen (Ag) tests have limited sensitivity to DENV-4 serotype compared to the other three serotypes. These studies indicated the need for development of new NS1 Ag detection test with improved sensitivity to DENV-4. An NS1 capture enzyme linked immunoassay (ELISA) specific to DENV-4 may improve the detection of DENV-4 cases worldwide. In addition, a serotype-specific NS1 Ag test identifies both DENV and the infecting serotype. In this study, we used a small-ubiquitin-like modifier (SUMO*) cloning vector to express a SUMO*-DENV-4 rNS1 fusion protein to develop NS1 DENV-4 specific monoclonal antibodies (MAbs). These newly developed MAbs were then optimized for use in an anti-NS1 DENV-4 capture ELISA. The serotype specificity and sensitivity of this ELISA was evaluated using (i) supernatants from DENV (1-4)-infected Vero cell cultures, (ii) rNS1s from all the four DENV (1-4) and, (iii) rNS1s of related flaviviruses (yellow fever virus; YFV and West Nile virus; WNV). From the evaluation studies of the newly developed MAbs, we identified three DENV-4 specific anti-NS1 MAbs: 3H7A9, 8A6F2 and 6D4B10. Two of these MAbs were optimal for use in a DENV-4 serotype-specific NS1 capture ELISA: MAb 8A6F2 as the capture antibody and 6D4B10 as a detection antibody. This ELISA was sensitive and specific to DENV-4 with no cross-reactivity to other three DENV (1-3) serotypes and other heterologous flaviviruses. Taken together these data indicated that our MAbs are useful reagents for the development of DENV-4 immunodiagnostic tests.

  7. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    PubMed

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  8. In Vitro Antiviral Activity and Resistance Profile of the Next-Generation Hepatitis C Virus NS5A Inhibitor Pibrentasvir.

    PubMed

    Ng, Teresa I; Krishnan, Preethi; Pilot-Matias, Tami; Kati, Warren; Schnell, Gretja; Beyer, Jill; Reisch, Thomas; Lu, Liangjun; Dekhtyar, Tatyana; Irvin, Michelle; Tripathi, Rakesh; Maring, Clarence; Randolph, John T; Wagner, Rolf; Collins, Christine

    2017-05-01

    Pibrentasvir (ABT-530) is a novel and pan-genotypic hepatitis C virus (HCV) NS5A inhibitor with 50% effective concentration (EC 50 ) values ranging from 1.4 to 5.0 pM against HCV replicons containing NS5A from genotypes 1 to 6. Pibrentasvir demonstrated similar activity against a panel of chimeric replicons containing HCV NS5A of genotypes 1 to 6 from clinical samples. Resistance selection studies were conducted using HCV replicon cells with NS5A from genotype 1a, 1b, 2a, 2b, 3a, 4a, 5a, or 6a at a concentration of pibrentasvir that was 10- or 100-fold over its EC 50 for the respective replicon. With pibrentasvir at 10-fold over the respective EC 50 , only a small number of colonies (0.00015 to 0.0065% of input cells) with resistance-associated amino acid substitutions were selected in replicons containing genotype 1a, 2a, or 3a NS5A, and no viable colonies were selected in replicons containing NS5A from other genotypes. With pibrentasvir at 100-fold over the respective EC 50 , very few colonies (0.0002% of input cells) were selected by pibrentasvir in genotype 1a replicon cells while no colonies were selected in other replicons. Pibrentasvir is active against common resistance-conferring substitutions in HCV genotypes 1 to 6 that were identified for other NS5A inhibitors, including those at key amino acid positions 28, 30, 31, or 93. The combination of pibrentasvir with HCV inhibitors of other classes produced synergistic inhibition of HCV replication. In summary, pibrentasvir is a next-generation HCV NS5A inhibitor with potent and pan-genotypic activity, and it maintains activity against common amino acid substitutions of HCV genotypes 1 to 6 that are known to confer resistance to currently approved NS5A inhibitors. Copyright © 2017 Ng et al.

  9. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    PubMed

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus.

  10. Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032)

    PubMed Central

    Sheaffer, Amy K.; Friborg, Jacques; Hernandez, Dennis; Falk, Paul; Zhai, Guangzhi; Levine, Steven; Chaniewski, Susan; Yu, Fei; Barry, Diana; Chen, Chaoqun; Lee, Min S.; Mosure, Kathy; Sun, Li-Qiang; Sinz, Michael; Meanwell, Nicholas A.; Colonno, Richard J.; Knipe, Jay; Scola, Paul

    2012-01-01

    Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with Ki values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC50s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC50, 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC50, >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC50s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients. PMID:22869577

  11. Addition of ribavirin to daclatasvir plus asunaprevir for chronic hepatitis C 1b patients with baseline NS5A resistance-associated variants improved response.

    PubMed

    Hong, Chun-Ming; Liu, Chun-Jen; Yeh, Shiou-Hwei; Chen, Pei-Jer

    2017-04-01

    Daclatasvir is a nonstructural protein 5A inhibitor with potent activity against hepatitis C virus genotypes 1-6 in vitro, and asunaprevir is a nonstructural protein 3 protease inhibitor with activity against genotypes 1, 4, 5, and 6. Despite a 90% sustained virologic response (SVR) rate, the SVR rate in patients with baseline NS5A-L31/Y93H polymorphisms decreased to around 40%. Therefore, an alternative regimen under the consideration of cost-effectiveness would be important. Whether the addition of ribavirin could improve the SVR rate among this group of patients remains unknown and hence our case series was reported. For six adult chronic hepatitis C 1b patients with a pre-existing NS5A-Y93H (>20%) polymorphism, we added ribavirin (800 mg/d) to daclatasvir/asunaprevir for 24 weeks and followed through 12-weeks post-treatment. Four of these patients received interferon/ribavirin treatment before but relapsed, while the other two were naïve cases. Two of them had liver cirrhosis and one had hepatocellular carcinoma postcurative therapy. The primary efficacy end-point was undetectable hepatitis C virus RNA (hepatitis C virus RNA level of<25 IU/mL) at 12 weeks after the end of the treatment (SVR12). In total, five cases reached SVR12 eventually (SVR rate: 83%; 95% confidence interval: 18.6-99.1%). However, the viral load of one remaining patient rebounded from the 24 th week of treatment. No patients developed significant adverse effects during and after the treatment. In genotype 1b chronic hepatitis C patients with NS5A-Y93H polymorphism, the addition of ribavirin to daclatasvir/asunaprevir may increase the SVR12 rate with minimal side effects, and thus deserves more comprehensive trials in resource-limited areas. Copyright © 2016. Published by Elsevier B.V.

  12. Computational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein

    PubMed Central

    Xue, Weiwei; Yang, Ying; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state), while the truncated apo protein adopts an open conformation (active state). Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors. PMID:24586263

  13. Disparities in access to medical care for individuals with vision impairment.

    PubMed

    Spencer, Christine; Frick, Kevin; Gower, Emily W; Kempen, John H; Wolff, Jennifer L

    2009-01-01

    We investigated the relationship between blindness and vision impairment and access to medical care. Pooled data from the Medical Expenditure Panel Survey (MEPS) years 2002-2004 were used to identify non-institutionalized individuals over the age of 40 with either self-reported blindness, vision impairment, or no vision impairment (n = 40,643). Differences in access to care measures by vision status were assessed, after adjusting for the complex sampling design of the MEPS, using either two-sided z-tests or two-sided t-tests. Individuals with blindness and vision impairment report having more access problems related to cost of care, availability of insurance coverage, transportation issues, and refusal of services by providers, although they do not report lower rates of having a usual source of care compared to those without vision impairment. The results suggest that access to care for individuals with blindness and vision impairment is problematic, for reasons that are amenable to policy interventions.

  14. Child Health and Access to Medical Care

    PubMed Central

    Leininger, Lindsey; Levy, Helen

    2016-01-01

    It might seem strange to ask whether increasing access to medical care can improve children’s health. Yet Lindsey Leininger and Helen Levy begin by pointing out that access to care plays a smaller role than we might think, and that many other factors, such as those discussed elsewhere in this issue, strongly influence children’s health. Nonetheless, they find that, on the whole, policies to improve access indeed improve children’s health, with the caveat that context plays a big role—medical care “matters more at some times, or for some children, than others.” Focusing on studies that can plausibly show a causal effect between policies to increase access and better health for children, and starting from an economic framework, they consider both the demand for and the supply of health care. On the demand side, they examine what happens when the government expands public insurance programs (such as Medicaid), or when parents are offered financial incentives to take their children to preventive appointments. On the supply side, they look at what happens when public insurance programs increase the payments that they offer to health-care providers, or when health-care providers are placed directly in schools where children spend their days. They also examine how the Affordable Care Act is likely to affect children’s access to medical care. Leininger and Levy reach three main conclusions. First, despite tremendous progress in recent decades, not all children have insurance coverage, and immigrant children are especially vulnerable. Second, insurance coverage alone doesn’t guarantee access to care, and insured children may still face barriers to getting the care they need. Finally, as this issue of Future of Children demonstrates, access to care is only one of the factors that policy makers should consider as they seek to make the nation’s children healthier. PMID:27516723

  15. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    PubMed

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  16. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses.

    PubMed

    Hsiang, Tien-Ying; Zhou, Ligang; Krug, Robert M

    2012-10-01

    We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.

  17. DNA Unwinding Functions of Minute Virus of Mice NS1 Protein Are Modulated Specifically by the Lambda Isoform of Protein Kinase C

    PubMed Central

    Dettwiler, Sabine; Rommelaere, Jean; Nüesch, Jürg P. F.

    1999-01-01

    The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966–9977, 1998). The present study led to the identification of atypical PKCλ/ι as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKCλ phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKCλ phosphorylation at residue S473. PMID:10438831

  18. Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase.

    PubMed

    Shiryaev, Sergey A; Cheltsov, Anton V; Gawlik, Katarzyna; Ratnikov, Boris I; Strongin, Alex Y

    2011-02-01

    Viruses of the genus Flavivirus are responsible for significant human disease and mortality. The N-terminal domain of the flaviviral nonstructural (NS)3 protein codes for the serine, chymotrypsin-fold proteinase (NS3pro). The presence of the nonstructural (NS)2B cofactor, which is encoded by the upstream gene in the flaviviral genome, is necessary for NS3pro to exhibit its proteolytic activity. The two-component NS2B-NS3pro functional activity is essential for the viral polyprotein processing and replication. Both the structure and the function of NS2B-NS3pro are conserved in the Flavivirus family. Because of its essential function in the posttranslational processing of the viral polyprotein precursor, NS2B-NS3pro is a promising target for anti-flavivirus drugs. To identify selective inhibitors with the reduced cross-reactivity and off-target effects, we focused our strategy on the allosteric inhibitors capable of targeting the NS2B-NS3pro interface rather than the NS3pro active site. Using virtual ligand screening of the diverse, ∼275,000-compound library and the catalytic domain of the two-component West Nile virus (WNV) NS2B-NS3pro as a receptor, we identified a limited subset of the novel inhibitory scaffolds. Several of the discovered compounds performed as allosteric inhibitors and exhibited a nanomolar range potency in the in vitro cleavage assays. The inhibitors were also potent in cell-based assays employing the sub-genomic, luciferase-tagged WNV and Dengue viral replicons. The selectivity of the inhibitors was confirmed using the in vitro cleavage assays with furin, a human serine proteinase, the substrate preferences of which are similar to those of WNV NS2B-NS3pro. Conceptually, the similar in silico drug discovery strategy may be readily employed for the identification of inhibitors of other flaviviruses.

  19. Role of Tryptophan Side Chain Dynamics on the Trp-Cage Mini-Protein Folding Studied by Molecular Dynamics Simulations

    PubMed Central

    Kannan, Srinivasaraghavan; Zacharias, Martin

    2014-01-01

    The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures. PMID:24563686

  20. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    NASA Astrophysics Data System (ADS)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan

    2017-11-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.

  1. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication.

    PubMed

    Vidotto, Alessandra; Morais, Ana T S; Ribeiro, Milene R; Pacca, Carolina C; Terzian, Ana C B; Gil, Laura H V G; Mohana-Borges, Ronaldo; Gallay, Philippe; Nogueira, Mauricio L

    2017-04-07

    Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.

  2. Sn ion energy distributions of ns- and ps-laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Bayerle, A.; Deuzeman, M. J.; van der Heijden, S.; Kurilovich, D.; de Faria Pinto, T.; Stodolna, A.; Witte, S.; Eikema, K. S. E.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-04-01

    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm‑2 and 4 kJ cm‑2 and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.

  3. A molecular dynamics simulation study decodes the Zika virus NS5 methyltransferase bound to SAH and RNA analogue.

    PubMed

    Chuang, Chih-Hung; Chiou, Shean-Jaw; Cheng, Tian-Lu; Wang, Yeng-Tseng

    2018-04-20

    Since 2015, widespread Zika virus outbreaks in Central and South America have caused increases in microcephaly cases, and this acute problem requires urgent attention. We employed molecular dynamics and Gaussian accelerated molecular dynamics techniques to investigate the structure of Zika NS5 protein with S-adenosyl-L-homocysteine (SAH) and an RNA analogue, namely 7-methylguanosine 5'-triphosphate (m7GTP). For the binding motif of Zika virus NS5 protein and SAH, we suggest that the four Zika NS5 substructures (residue orders: 101-112, 54-86, 127-136 and 146-161) and the residues (Ser56, Gly81, Arg84, Trp87, Thr104, Gly106, Gly107, His110, Asp146, Ile147, and Gly148) might be responsible for the selectivity of the new Zika virus drugs. For the binding motif of Zika NS5 protein and m7GTP, we suggest that the three Zika NS5 substructures (residue orders: 11-31, 146-161 and 207-218) and the residues (Asn17, Phe24, Lys28, Lys29, Ser150, Arg213, and Ser215) might be responsible for the selectivity of the new Zika virus drugs.

  4. Japanese encephalitis virus NS1' protein depends on pseudoknot secondary structure and is cleaved by caspase during virus infection and cell apoptosis.

    PubMed

    Sun, Jin; Yu, Yongxin; Deubel, Vincent

    2012-09-01

    Japanese encephalitis virus (JEV) is a flavivirus with a complex life cycle involving mosquito vectors that mainly target birds and pigs, and causes severe encephalitis in children in Asia. Neurotropic flaviviruses of the JEV serogroup have a particular characteristic of expressing a unique nonstructural NS1' protein, which is a prolongation of NS1 at the C terminus by 52 amino acids derived from a pseudoknot-driven-1 translation frameshift. Protein NS1' is associated with virus neuro-invasiveness. In this study, the need of the pseudoknot structure for NS1' synthesis was confirmed. By using a specific antibody against the prolonged peptide, NS1' was found to be absent from the JEV SA14-14-2 vaccine strain, resulting from a single nucleotide silent mutation in the pseudoknot. A partial cleavage of NS1' at a specific site of its C-terminal appendix recognized by caspases and inhibited by caspase inhibitors suggests a unique feature of intracellular NS1'. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. The Importance of Non Struck Side Occupants in Side Collisions

    PubMed Central

    Frampton, R. J.; Brown, R.; Thomas, P.; Fay, P.

    1998-01-01

    In a representative sample of tow-away side collisions from the UK Midlands, one third of front seat occupants were alone, on the struck side of the car. The other two thirds were either a non struck side occupant alone or two occupants sitting together. Occupant restraint, especially in perpendicular side impacts, was a notable factor in determining injury outcome for belted non struck side occupants. With both front seats occupied, there was a reduction in AIS 2+ injury to belted non struck side occupants due to a reduction in chest and lower limb injuries. Struck side occupants sustained increased injury rates to the extremities when accompanied by a belted non struck side occupant but no notable increases in moderate to serious injury to the head, chest, abdomen or pelvis.

  6. Radiometric calibration of the reflective bands of NS001-Thematic Mapper Simulator (TMS) and modular multispectral radiometers (MMR)

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Wood, Frank M., Jr.; Ahmad, Suraiya P.

    1988-01-01

    The NS001 Thematic Mapper Simulator scanner (TMS) and several modular multispectral radiometers (MMRs) are among the primary instruments used in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). The NS001 has a continuously variable gain setting. Calibration of the NS001 data is influenced by drift in the dark current level of up to six counts during a mirror scan at typical gain settings. The MMR instruments are being used in their 1 deg FOV configuration on the helicopter and 15 deg FOV on the ground.

  7. Physiological and skill demands of 'on-side' and 'off-side' games.

    PubMed

    Gabbett, Tim J; Jenkins, David G; Abernethy, Bruce

    2010-11-01

    This study investigated the physiological and skill demands of 'on-side' and 'off-side' games in elite rugby league players. Sixteen male rugby league players participated in 'on-side' and 'off-side' games. Both small-sided games were played in a 40- × 40-m playing area. The 'off-side' game permitted players to have 3 'plays' while in possession of the ball. Players were permitted to pass backward or forward (to an 'off-side' player). The 'on-side' game also permitted players to have 3 'plays' while in possession of the ball. However, players were only permitted to pass backward to players in an 'on-side' position. Heart rate and movement patterns (via global positioning system) were recorded continuously throughout both games. Data were collected on the distance covered, number of high-acceleration and velocity efforts, and recovery between efforts. Video footage was also taken to track the performance of the players. Post hoc inspection of the footage was undertaken to count the number of possessions and the number and quality of disposals. In comparison to 'on-side' games, 'off-side' games had a greater number of involvements ("touches"), passes, and effective passes. However, the cognitive demands of 'on-side' games were greater than 'off-side' games. 'Off-side' games resulted in a greater total distance covered, greater distance covered in mild and moderate accelerations, and greater distance covered in low, moderate, and high-velocity efforts. There were also a greater number of short duration recovery periods between efforts in 'off-side' games. The results of this study demonstrate that 'off-side' games provide greater physiological and skill demands than 'on-side' games. 'Off-side' games may provide a practical alternative to 'on-side' games for the development of skill and fitness in elite rugby league players.

  8. Side to Side Supercharging Allograft

    DTIC Science & Technology

    Side-to-side grafting between the PNA and regional in situ nerve trunks may be able to increase the effective critical length of the PNA. Nerve tissue...and provides an effective scaffolding system but depends on in situ Schwann cell migration to support axon regeneration. Though this process appears...loss and retraction can result in segmental gaps requiring some form of grafting. Autologous nerve grafting is associated with potential donor

  9. Baseline NS5A resistance associated substitutions may impair DAA response in real-world hepatitis C patients.

    PubMed

    Carrasco, Itzíar; Arias, Ana; Benítez-Gutiérrez, Laura; Lledó, Gemma; Requena, Silvia; Cuesta, Miriam; Cuervas-Mons, Valentín; de Mendoza, Carmen

    2018-03-01

    Oral DAA have demonstrated high efficacy as treatment of hepatitis C. However, the presence of resistance-associated substitutions (RAS) at baseline has occasionally been associated with impaired treatment response. Herein, we examined the impact of baseline RAS at the HCV NS5A gene region on treatment response in a real-life setting. All hepatitis C patients treated with DAA including NS5A inhibitors at our institution were retrospectively examined. The virus NS5A gene was analyzed using population sequencing at baseline and after 24 weeks of completing therapy in all patients that failed. All changes recorded at positions 28, 29, 30, 31, 32, 58, 62, 92, and 93 were considered. A total of 166 patients were analyzed. HCV genotypes were as follows: G1a (31.9%), G1b (48.2%), G3 (10.2%), and G4 (9.6%). Overall, 69 (41.6%) patients were coinfected with HIV and 46.7% had advanced liver fibrosis (Metavir F3-F4). Sixty (36.1%) patients had at least one RAS at baseline, including M28A/G/T (5), Q30X (12), L31I/F/M/V (6), T58P/S (25), Q/E62D (1), A92 K (7), and Y93C/H (15). Overall, 4.8% had two or more RAS, being more frequent in G4 (12.5%) followed by G1b (6.3%) and G1a (1.9%). Of 10 (6%) patients that failed DAA therapy, five had baseline NS5A RAS. No association was found for specific baseline RAS, although changes at position 30 were more frequent in failures than cures (22.2% vs 6.4%, P = 0.074). Moreover, the presence of two or more RAS at baseline was more frequent in failures (HR: 7.2; P = 0.029). Upon failure, six patients showed emerging RAS, including Q30C/H/R (3), L31M (1), and Y93C/H (2). Baseline NS5A RAS are frequently seen in DAA-naïve HCV patients. Two or more baseline NS5A RAS were found in nearly 5% and were significantly associated to DAA failure. Therefore, baseline NS5A testing should be considered when HCV treatment is planned with NS5A inhibitors. © 2017 Wiley Periodicals, Inc.

  10. In-Depth Analysis of HA and NS1 Genes in A(H1N1)pdm09 Infected Patients.

    PubMed

    Caglioti, Claudia; Selleri, Marina; Rozera, Gabriella; Giombini, Emanuela; Zaccaro, Paola; Valli, Maria Beatrice; Capobianchi, Maria Rosaria

    2016-01-01

    In March/April 2009, a new pandemic influenza A virus (A(H1N1)pdm09) emerged and spread rapidly via human-to-human transmission, giving rise to the first pandemic of the 21th century. Influenza virus may be present in the infected host as a mixture of variants, referred to as quasi-species, on which natural and immune-driven selection operates. Since hemagglutinin (HA) and non-structural 1 (NS1) proteins are relevant in respect of adaptive and innate immune responses, the present study was aimed at establishing the intra-host genetic heterogeneity of HA and NS1 genes, applying ultra-deep pyrosequencing (UDPS) to nasopharyngeal swabs (NPS) from patients with confirmed influenza A(H1N1)pdm09 infection. The intra-patient nucleotide diversity of HA was significantly higher than that of NS1 (median (IQR): 37.9 (32.8-42.3) X 10-4 vs 30.6 (27.4-33.6) X 10-4 substitutions/site, p = 0.024); no significant correlation for nucleotide diversity of NS1 and HA was observed (r = 0.319, p = 0.29). Furthermore, a strong inverse correlation between nucleotide diversity of NS1 and viral load was observed (r = - 0.74, p = 0.004). For both HA and NS1, the variants appeared scattered along the genes, thus indicating no privileged mutation site. Known polymorphisms, S203T (HA) and I123V (NS1), were observed as dominant variants (>98%) in almost all patients; three HA and two NS1 further variants were observed at frequency >40%; a number of additional variants were detected at frequency <6% (minority variants), of which three HA and four NS1 variants were novel. In few patients multiple variants were observed at HA residues 203 and 222. According to the FLUSURVER tool, some of these variants may affect immune recognition and host range; however, these inferences are based on H5N1, and their extension to A(H1N1)pdm09 requires caution. More studies are necessary to address the significance of the composite nature of influenza virus quasi-species within infected patients.

  11. 1. EAST FACING SIDE EAST AND SOUTH SOUTH FACING SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAST FACING SIDE EAST AND SOUTH SOUTH FACING SIDE RESIDENTIAL AREA AROUND BUILDINGS 136, 137, & 138 - Hill Field, Non-Commissioned Officers' Quarters, North side of Fourth street, East side of E Avenue, Layton, Davis County, UT

  12. The uncharacterized gene 1700093K21Rik and flanking regions are correlated with reproductive isolation in the house mouse, Mus musculus.

    PubMed

    Kass, David H; Janoušek, Václav; Wang, Liuyang; Tucker, Priscilla K

    2014-06-01

    Reproductive barriers exist between the house mouse subspecies, Mus musculus musculus and M. m. domesticus, members of the Mus musculus species complex, primarily as a result of hybrid male infertility, and a hybrid zone exists where their ranges intersect in Europe. Using single nucleotide polymorphisms (SNPs) diagnostic for the two taxa, the extent of introgression across the genome was previously compared in these hybrid populations. Sixty-nine of 1316 autosomal SNPs exhibited reduced introgression in two hybrid zone transects suggesting maladaptive interactions among certain loci. One of these markers is within a region on chromosome 11 that, in other studies, has been associated with hybrid male sterility of these subspecies. We assessed sequence variation in a 20 Mb region on chromosome 11 flanking this marker, and observed its inclusion within a roughly 150 kb stretch of DNA showing elevated sequence differentiation between the two subspecies. Four genes are associated with this genomic subregion, with two entirely encompassed. One of the two genes, the uncharacterized 1700093K21Rik gene, displays distinguishing features consistent with a potential role in reproductive isolation between these subspecies. Along with its expression specifically within spermatogenic cells, we present various sequence analyses that demonstrate a high rate of molecular evolution of this gene, as well as identify a subspecies amino acid variant resulting in a structural difference. Taken together, the data suggest a role for this gene in reproductive isolation.

  13. Introduction to Psychomotor Skills (NS 117): Competency-Based Course Syllabus.

    ERIC Educational Resources Information Center

    Brady, Marilyn H.; Wells, Tanya G.

    "Introduction to Psychomotor Skills" (NS 117) is the first of seven core courses in the associate degree nursing program at Chattanooga State Technical Community College. The course was designed to help students develop competencies in psychomotor skills necessary to assume the role of provider of direct patient care. The course syllabus for NS…

  14. Side Effects

    Cancer.gov

    Side effects are problems that occur when cancer treatment affects healthy tissues or organs. Learn about side effects caused by cancer treatment. Know what signs and symptoms to call your doctor about. Learn about treatments for side effects.

  15. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    PubMed

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  16. Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports.

    PubMed

    Shu, Pei-Yun; Yang, Cheng-Fen; Kao, Jeng-Fong; Su, Chien-Ling; Chang, Shu-Fen; Lin, Chien-Chou; Yang, Wen-Chih; Shih, Hsiu; Yang, Shih-Yan; Wu, Ping-Fuai; Wu, Ho-Sheng; Huang, Jyh-Hsiung

    2009-04-01

    We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports.

  17. Application of the Dengue Virus NS1 Antigen Rapid Test for On-Site Detection of Imported Dengue Cases at Airports▿

    PubMed Central

    Shu, Pei-Yun; Yang, Cheng-Fen; Kao, Jeng-Fong; Su, Chien-Ling; Chang, Shu-Fen; Lin, Chien-Chou; Yang, Wen-Chih; Shih, Hsiu; Yang, Shih-Yan; Wu, Ping-Fuai; Wu, Ho-Sheng; Huang, Jyh-Hsiung

    2009-01-01

    We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports. PMID:19193828

  18. Strike-slip brittle shear zone from coastal Deccan in and around Mumbai, India: Evidence for N-S extension

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Gourab; Ayan Misra, Achyuta; Bose, Narayan; Mukherjee, Soumyajit

    2013-04-01

    An E-W extension separated India from the Seychelles micro-continent at ~ 62 Ma. This post-dated the Deccan volcanic eruptions. However, the structures attributed to this extension lack geometrical quantification, especially in the western Indian coast. The Narmada-Tapi region, ~ 400 Km north of Mumbai, experienced a ~ N-S extension prior to and/or concurrent with the volcanism. Normal faults dip towards W. Sub-horizontal lava flows, slickensides, N-S shear zones etc. have been reported from the western part of the Deccan Large Igneous Province (DLIP). This work, for the first time, identifies and investigates a ~ 20°N strike-slip brittle shear zone, traced for ~ 100 Km along the west coast of India from Mumbai to Murud by fieldworks. The W-block moved north through a dextral-slip. Deformation is more enhanced in the south (near Murud). Field observations reveal Y-planes (~ N20°E; abundant), Riedels (~ 0-N30°E; abundant), anti-Riedels (~ N30-50°W; less abundant), asymmetric elevations (~ N15°E; locally abundant), extension and en-echelon fractures (2 sets: ~N-S and ~E-W) with a single miniature pull-apart basin (~ N-S extension). The E-W fractures reactivated locally and around Murud slipped/faulted ~ N-S dykes. Average directions of paleostress tensors were computed for the regime yielding σ1 (trend = 99°; plunge = 0°), σ2 (trend = 196°; plunge = 90°) and σ3 (trend = 10°; plunge = 0°). Associated strain results convincingly display a dominant N-S extension. It was not possible to establish which set of extensions (i.e. between N-S and E-W) occurred earlier. Alongside E-W extension, structurally weak shear zones might have channelized late-stage intrusions of ~ N-S dykes. The DLIP was not subject to any post-rifting deformations regionally, except isostatic adjustments. Hence, based on available data, we postulate that these two extensions were coevally operating in the late phases of the Deccan eruptions. As the Indian plate drifted NE, the strike

  19. The Case for Adopting Server-side Analytics

    NASA Astrophysics Data System (ADS)

    Tino, C.; Holmes, C. P.; Feigelson, E.; Hurlburt, N. E.

    2017-12-01

    The standard method for accessing Earth and space science data relies on a scheme developed decades ago: data residing in one or many data stores must be parsed out and shipped via internet lines or physical transport to the researcher who in turn locally stores the data for analysis. The analyses tasks are varied and include visualization, parameterization, and comparison with or assimilation into physics models. In many cases this process is inefficient and unwieldy as the data sets become larger and demands on the analysis tasks become more sophisticated and complex. For about a decade, several groups have explored a new paradigm to this model. The names applied to the paradigm include "data analytics", "climate analytics", and "server-side analytics". The general concept is that in close network proximity to the data store there will be a tailored processing capability appropriate to the type and use of the data served. The user of the server-side analytics will operate on the data with numerical procedures. The procedures can be accessed via canned code, a scripting processor, or an analysis package such as Matlab, IDL or R. Results of the analytics processes will then be relayed via the internet to the user. In practice, these results will be at a much lower volume, easier to transport to and store locally by the user and easier for the user to interoperate with data sets from other remote data stores. The user can also iterate on the processing call to tailor the results as needed. A major component of server-side analytics could be to provide sets of tailored results to end users in order to eliminate the repetitive preconditioning that is both often required with these data sets and which drives much of the throughput challenges. NASA's Big Data Task Force studied this issue. This paper will present the results of this study including examples of SSAs that are being developed and demonstrated and suggestions for architectures that might be developed for

  20. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au; Centre for Cancer Biology, SA Pathology, Adelaide; Hampton-Smith, Rachel J.

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using amore » customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.« less

  1. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    PubMed

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Prokaryotic Expression of Hepatitis C Virus-NS3 Protein and Preparation of a Monoclonal Antibody.

    PubMed

    Xi, Yun; Zhang, Yuming; Fang, Jianmin; Whittaker, Kelly; Luo, Shuhong; Huang, Ruo-Pan

    2017-12-01

    Hepatitis C virus (HCV) is a significant health threat that has been extensively investigated worldwide. Improving the sensitivity and specificity of laboratory tests for screening and early diagnosis of HCV in a relevant population is an effective measure to control the spread of HCV. To build a more reliable diagnostic method for HCV, we expressed gene fragments of HCV-NS3 linked to a carrier, pET28a, and then transformed this vector into Escherichia. coli. The produced recombinant NS3 protein with a molecular weight of 38 kDa, which was purified through Ni-chelating affinity chromatography, was used to immunize BALB/C mice, which generated a serum antibody titer of 1:160,000 against the immunogen. Three positive monoclonal isolates (2A5, 2A6, and 5B12) were screened and established. Western blot and enzyme-linked immunosorbent assay (ELISA) results of these monoclonal cells show that each could specifically recognize the recombinant protein. Antibodies 2A5 and 2A6 were developed into an ELISA sandwich antibody pair for the recombinant protein. The detection sensitivity of our developed ELISA was 1.6 ng/mL, with a linear range of 2.5-80 ng/mL (R 2  = 0.998). Serum NS3 ELISA results show that the average value in the healthy group, liver disease group, and hepatitis C group was 3.71, 7.28, and 13.11 ng/mL, respectively. The positive rates of HCV-NS3 protein in the liver disease group and hepatitis C group was 17.2% and 41.7%, respectively. Detection of HCV-NS3 antigen can be used as an auxiliary test for anti-HCV antibody detection, thus reducing leakage detection and providing a reliable basis for clinical practice.

  3. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less

  4. The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities.

    PubMed

    Aydin, Cihan; Mukherjee, Sourav; Hanson, Alicia M; Frick, David N; Schiffer, Celia A

    2013-12-01

    Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild-type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an "extended" catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo. © 2013 The Protein Society.

  5. Engineered Toxins “Zymoxins” Are Activated by the HCV NS3 Protease by Removal of an Inhibitory Protein Domain

    PubMed Central

    Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2011-01-01

    The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238

  6. Diagnostic Approach for Differentiating Infected from Vaccinated Poultry on the Basis of Antibodies to NS1, the Nonstructural Protein of Influenza A Virus

    PubMed Central

    Tumpey, Terrence M.; Alvarez, Rene; Swayne, David E.; Suarez, David L.

    2005-01-01

    Vaccination programs for the control of avian influenza (AI) in poultry have limitations due to the problem of differentiating between vaccinated and virus-infected birds. We have used NS1, the conserved nonstructural protein of influenza A virus, as a differential diagnostic marker for influenza virus infection. Experimentally infected poultry were evaluated for the ability to induce antibodies reactive to NS1 recombinant protein produced in Escherichia coli or to chemically synthesized NS1 peptides. Immune sera were obtained from chickens and turkeys inoculated with live AI virus, inactivated purified vaccines, or inactivated commercial vaccines. Seroconversion to positivity for antibodies to the NS1 protein was achieved in birds experimentally infected with multiple subtypes of influenza A virus, as determined by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. In contrast, animals inoculated with inactivated gradient-purified vaccines had no seroconversion to positivity for antibodies to the NS1 protein, and animals vaccinated with commercial vaccines had low, but detectable, levels of NS1 antibodies. The use of a second ELISA with diluted sera identified a diagnostic test that results in seropositivity for antibodies to the NS1 protein only in infected birds. For the field application phase of this study, serum samples were collected from vaccinated and infected poultry, diluted, and screened for anti-NS1 antibodies. Field sera from poultry that received commercial AI vaccines were found to possess antibodies against AI virus, as measured by the standard agar gel precipitin (AGP) test, but they were negative by the NS1 ELISA. Conversely, diluted field sera from AI-infected poultry were positive for both AGP and NS1 antibodies. These results demonstrate the potential benefit of a simple, specific ELISA for anti-NS1 antibodies that may have diagnostic value for the poultry industries. PMID:15695663

  7. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  8. The influence of medium conductivity on cells exposed to nsPEF

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Beier, Hope T.; Armani, Andrea M.

    2017-02-01

    Nanosecond pulsed electric fields (nsPEF) have proven useful for transporting cargo across cell membranes and selectively activating cellular pathways. The chemistry and biophysics governing this cellular response, however, are complex and not well understood. Recent studies have shown that the conductivity of the solution cells are exposed in could play a significant role in plasma membrane permeabilization and, thus, the overall cellular response. Unfortunately, the means of detecting this membrane perturbation has traditionally been limited to analyzing one possible consequence of the exposure - diffusion of molecules across the membrane. This method has led to contradictory results with respect to the relationship between permeabilization and conductivity. Diffusion experiments also suffer from "saturation conditions" making multi-pulse experiments difficult. As a result, this method has been identified as a key stumbling block to understanding the effects of nsPEF exposure. To overcome these limitations, we recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) that allows us to identify nanoporation in live cells during the pulse in a wide array of conditions. As a result, we are able to explore and fully test whether lower conductivity extracellular solutions could induce more efficient nanoporation. This hypothesis is based on membrane charging and the relative difference between the extracellular solution and the cytoplasm. The experiments also allow us to test the noise floor of our methodology against the effects of ion leakage. The results emphasize that the electric field, not ionic phenomenon, are the driving force behind nsPEF-induced membrane nanoporation.

  9. High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao

    2017-03-01

    An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.

  10. Utilization of Skills in the Care of the Parent Child System (NS 139): Competency-Based Course Syllabus.

    ERIC Educational Resources Information Center

    Brady, Marilyn H.; Hutsell, Deborah C.

    "Utilization of Skills in the Care of the Parent Child System" (NS 139) is an associate degree nursing course offered at Chattanooga State Technical Community College to provide essential theory and experience in caring for the parent-child system throughout various stages of development. The course syllabus for NS 139 begins with information on…

  11. Traffic Adaptive Energy Efficient and Low Latency Medium Access Control for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh; Varma, Shirshu; Malaviya, N.

    2008-05-01

    Medium access control for wireless sensor networks has been a very active research area in the recent years. The traditional wireless medium access control protocol such as IEEE 802.11 is not suitable for the sensor network application because these are battery powered. The recharging of these sensor nodes is expensive and also not possible. The most of the literature in the medium access for the sensor network focuses on the energy efficiency. The proposed MAC protocol solves the energy inefficiency caused by idle listening, control packet overhead and overhearing taking nodes latency into consideration based on the network traffic. Simulation experiments have been performed to demonstrate the effectiveness of the proposed approach. The validation of the simulation results of the proposed MAC has been done by comparing it with the analytical model. This protocol has been simulated in Network Simulator ns-2.

  12. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power

    NASA Astrophysics Data System (ADS)

    Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Schwarz, Ulrich T.; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2012-10-01

    A 2 μm electro-optically cavity-dumped semiconductor disk laser (SDL) with a pulse full width at half maximum of 3 ns, a pulse peak power of 30 W, and repetition rates adjustable between 87 kHz and 1 MHz is reported. For ns-pulse cavity dumping the SDL was set up with a 35-cm long cavity into which an intra-cavity Brewster-angled polarizer prism and a Pockels cell for rotation of the linear polarization were inserted. By means of internal total reflection in the birefringent polarizer, pulses are coupled out of the cavity sideways. This variant of ns-pulse 2-μm SDL is well suited for applications such as high-precision light detection and ranging or ns-pulse laser materials processing after further power amplification.

  13. A system to measure isomeric state half-lives in the 10 ns to 10 μs range

    NASA Astrophysics Data System (ADS)

    Toufen, D. L.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Linares, R.; Silveira, M. A. G.; Ribas, R. V.

    2014-07-01

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: 54Fe, 10+ state (E = 6527.1 (11) keV, T1/2 = 364(7) ns) and the 5/2+ state of 19F (E = 197.143 (4) keV, T1/2 = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10+ state was T1/2 = 365(14) ns and for the 5/2+ state, 100(36) ns.

  14. A system to measure isomeric state half-lives in the 10 ns to 10 μs range.

    PubMed

    Toufen, D L; Allegro, P R P; Medina, N H; Oliveira, J R B; Cybulska, E W; Seale, W A; Linares, R; Silveira, M A G; Ribas, R V

    2014-07-01

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: (54)Fe, 10(+) state (E = 6527.1 (11) keV, T(1/2) = 364(7) ns) and the 5/2(+) state of (19)F (E = 197.143 (4) keV, T(1/2) = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10(+) state was T(1/2) = 365(14) ns and for the 5/2(+) state, 100(36) ns.

  15. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  16. The interaction between NOLC1 and IAV NS1 protein promotes host cell apoptosis and reduces virus replication.

    PubMed

    Zhu, Chunyu; Zheng, Fangliang; Zhu, Junfeng; Liu, Meichen; Liu, Na; Li, Xue; Zhang, Li; Deng, Zaidong; Zhao, Qi; Liu, Hongsheng

    2017-11-07

    NS1 of the influenza virus plays an important role in the infection ability of the influenza virus. Our previous research found that NS1 protein interacts with the NOLC1 protein of host cells, however, the function of the interaction is unknown. In the present study, the role of the interaction between the two proteins in infection was further studied. Several analyses, including the use of a pull-down assay, Co-IP, western blot analysis, overexpression, RNAi, flow cytometry, etc., were used to demonstrate that the NS1 protein of H3N2 influenza virus interacts with host protein NOLC1 and reduces the quantity of NOLC1. The interaction also promotes apoptosis in A549 host cells, while the suppression of NOLC1 protein reduces the proliferation of the H3N2 virus. Based on these data, it was concluded that during the process of infection, NS1 protein interacts with NOLC1 protein, reducing the level of NOLC1, and that the interaction between the two proteins promotes apoptosis of host cells, thus reducing the proliferation of the virus. These findings provide new information on the biological function of the interaction between NS1 and NOLC1.

  17. 4. VIEW EAST, SOUTHWEST FRONT, NORTHWEST SIDE Side elevation. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW EAST, SOUTHWEST FRONT, NORTHWEST SIDE Side elevation. Note the ground floor windows which were added. Siding is vinyl, but the burned area exposes asbestos siding added when the rear and upper areas were converted to living spaces. - 510 Central Avenue (Commercial Building), Ridgely, Caroline County, MD

  18. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  19. Absence of protection from West Nile virus disease and adverse effects in red legged partridges after non-structural NS1 protein administration.

    PubMed

    Rebollo, Belén; Llorente, Francisco; Pérez-Ramírez, Elisa; Sarraseca, Javier; Gallardo, Carmina; Risalde, María Ángeles; Höfle, Ursula; Figuerola, Jordi; Soriguer, Ramón C; Venteo, Ángel; Jiménez-Clavero, Miguel Ángel

    2018-02-01

    The red-legged partridge (Alectoris rufa) is a competent host for West Nile virus (WNV) replication and highly susceptible to WNV disease. With the aim to assess in this species whether the inoculation of non-structural protein NS1 from WNV elicits a protective immune response against WNV infection, groups of partridges were inoculated with recombinant NS1 (NS1 group) or an unrelated recombinant protein (mock group), and challenged with infectious WNV. A third group received no inoculation prior to challenge (challenge group). The NS1 group failed to elicit detectable antibodies to NS1 while in the mock group a specific antibody response was observed. Moreover, no protection against WNV disease was observed in the NS1 group, but rather, it showed significantly higher viral RNA load and delayed neutralizing antibody response, and suffered a more severe clinical disease, which resulted in higher mortality. This adverse effect has not been observed before and warrants further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy

    NASA Astrophysics Data System (ADS)

    Aghababaei Nejad, Mahboobeh; Soltanolkotabi, Mahmood; Eslami Majd, Abdollah

    2018-01-01

    Polarization emission from aluminum alloy by ns laser-induced breakdown spectroscopy (LIBS) is carefully investigated in air using a non-gated CCD camera at integration time of 100 ms. First, the analysis reveals that the small polarization degree is the same for both continuum and discrete line emission spectra which also increases slowly with wavelength growth; second, laser fluence in the range of 347.81-550.10 J/cm2 has no significant changes in plasma polarization; and third, larger polarization in comparison with polarization introduced by preferential reflection of emission from the target surface (Fresnel reflectivity) is observed. The residual fluctuations of the anisotropic recombining plasma and the dynamic polarization of an ion's core are suggested as the possible main sources for observed polarized radiation in ns-LIBS.