Science.gov

Sample records for accident heat removal

  1. Passive decay heat removal by natural air convection after severe accidents

    SciTech Connect

    Erbacher, F.J.; Neitzel, H.J.; Cheng, X.

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  2. Progress in the studies of passive heat removal in the next European torus under accident conditions

    SciTech Connect

    Soria, A. ); Renda, V.; Papa, L. . Joint Research Centre); Fenoglio, F. )

    1989-12-01

    Within the framework of safety analysis for the next European torus, a decay heat hazards assessment is under way in Ispra. Undercooling accidents (loss-of-coolant and loss-of-flow accidents (LOCAs and LOFAs)) due to pump failure have been investigated assuming an automatic plasma shutdown in both cases. The passive heat removal mechanisms considered include radiation between components and residual cooling by the thermosyphon effect in the main cooling circuits. Conservative thermohydraulic calculations have been made to determine coolant velocity and temperature transients to avoid water boiling int he circuits. Results show that during a LOFA, water boiling can be avoided provided that the water inertia is large enough, and material melting temperatures are not reached during a LOCA.

  3. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  4. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  5. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    SciTech Connect

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  6. Position paper -- Waste storage tank heat removal

    SciTech Connect

    Stine, M.D.

    1995-01-03

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made.

  7. Decay heat removal systems: design criteria and options. [PWR; BWR

    SciTech Connect

    Berry, D.L.

    1980-01-01

    Design criteria and alternate decay heat removal system concepts which have evolved in several different countries throughout the world were compared. The conclusion was reached that the best way to improve the reliability of pressurized water reactor (PWR) decay heat removal is first to focus on improving the reliability of the auxiliary feedwater and high pressure injection systems to cope with certain loss of feedwater transients and small loss of coolant accidents and then to assess how well these systems can handle special emergencies (e.g., sabotage, earthquake, airplane crash). For boiling water reactors (BWRs), it was concluded that emphasis should be placed first on improving the reliability of the residual heat removal and high pressure service water systems to cope with a loss of suppression pool cooling following a loss of feedwater transient and then to assess how well these systems can handle special emergencies. It was found that, for both PWRs and BWRs, a design objective for alternate decay heat removal systems should be at least an order of magnitude reduction in core meltdown probability.

  8. System Study: Residual Heat Removal 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2015-02-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RHR results.

  9. Heat exchanger with a removable tube section

    DOEpatents

    Wolowodiuk, W.; Anelli, J.

    1975-07-29

    A heat exchanger is described in which the tube sheet is secured against primary liquid pressure, but which allows for easy removal of the tube section. The tube section is supported by a flange which is secured by a number of shear blocks, each of which extends into a slot which is immovable with respect to the outer shell of the heat exchanger. (auth)

  10. Transient analysis of containment heat removal at Prairie Island with boiling in the fan coil tubes

    SciTech Connect

    Elicson, T.; Fraser, B.; Anderson, D.; Thomas, S.

    1996-12-31

    An analysis has been performed to determine the equilibrium cooling water flow rates and heat removal rates through the Prairie Island Nuclear Generating Plant containment fan coil units (CFCUs) under postulated accident conditions which leads to boiling in the CFCUs. Key components of the analysis include a detailed fan coil heat exchanger model, mass and energy conservation in the cooling tubes, two-phase flow effects on heat transfer and pressure drop, and pipe network modeling.

  11. Heat treatment of exchangers to remove coke

    SciTech Connect

    Turner, J.D.

    1990-02-20

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

  12. Heat Transfer in Cane Fiberboard Exposed to Hypothetical Accident Conditions

    SciTech Connect

    Gromada, R.J.

    1995-05-25

    Radioactive material packages containing fiberboard insulation have been subjected to Hypothetical Accident Condition (HAC) thermal tests for many years. Historically, the packages` thermal performance has always been difficult to grasp. A package designer needs to understand the effects of temperature and pyrolysis on the rate of heat transfer and performance. This paper describes in detail the one-dimensional HAC thermal tests performed on fiberboard to understand the effects of pyrolysis, its char and its gas products. The tests were conducted by the Packaging and Transportation Group at the Savannah River Site (SRS). Test fixtures were assembled at SRS and thermal testing conducted in the Radiant Heat Facility at the Sandia National Laboratories. Descriptions of the test fixtures are provided, as well as the time dependent temperature profiles. In addition, lessons learned are discussed.

  13. System Study: Residual Heat Removal 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  14. Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.

    2011-01-01

    The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.

  15. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  16. Passive shut-down heat removal system

    DOEpatents

    Hundal, Rolv; Sharbaugh, John E.

    1988-01-01

    An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.

  17. Condensate removal device for heat exchanger

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W. (Inventor)

    1975-01-01

    A set of perforated tubes disposed at the gas output side of a heat exchanger, in a position not to affect the rate of flow of the air or other gas is described. The tubes are connected to a common manifold which is connected to a sucking device. Where it is necessary to conserve and recirculate the air sucked through the tubes, the output of the manifold is run through a separator to remove the condensate from the gas. The perforations in the slurper tubes are small, lying in the range of 0.010 inch to 0.100 inch. The tubes are disposed in contact with the surfaces of the heat exchanger on which the condensate is precipitated, whether fins or plates, so that the water may be directed to the tube openings by means of surface effects, together with the assistance of the air flow. Only about 5 percent of the air output need be thus diverted, and it effectively removes virtually all of the condensate.

  18. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  19. TMI-2 accident: core heat-up analysis

    SciTech Connect

    Ardron, K.H.; Cain, D.G.

    1981-01-01

    This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

  20. Solution of heat removal from nuclear reactors by natural convection

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  1. Removal of criticality accident alarm systems at the Y-12 Plant waste management facilities

    SciTech Connect

    Marble, R.C.; Taylor, R.G.

    1998-09-01

    This paper discusses why criticality accident alarm systems (CAASs) were installed in certain waste management buildings at the Y-12 Plant, why the plant now wants to remove them, and what steps were taken to allow the US Department of Energy (DOE) to authorize the removal of the systems. To begin with, the systems in question were installed in the mid- to late-1980s. Some of the facilities were new, and there was no operating experience with the processes. A CAAS, although expensive, is an absolute necessity where criticality accidents are credible. But, they are a superfluous and unnecessary expense in those facilities where it has been determined that a criticality accident is incredible (defined as having a probability of <1 {times} 10{sup {minus}6}/yr). The PRAs have been performed to evaluate six Y-12 Plant waste management facilities, five storage facilities, and a nondestructive analysis facility, with an additional study now being performed on the West End Treatment Facility. The results to date have shown that the probability of various criticality accident scenarios at these facilities is <1 {times} 10{sup {minus}6}/yr and that the CAASs are not needed in these facilities.

  2. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  3. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  4. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  6. Decision Document for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-07-31

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein.

  7. Heat up and potential failure of BWR upper internals during a severe accident

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.

  8. Heat removal characteristics of a primary containment vessel external spray

    SciTech Connect

    Kataoka, Yoshiyuki; Fujii, Tadashi; Murase, Michio

    1996-10-01

    To evaluate the heat release characteristics of a primary containment vessel (PCV) external spray (one of the PCV cooling systems utilizing the steel PCV wall as the heat transfer medium), the thermal-hydraulic characteristics of the falling liquid film on the PCV surface have been investigated experimentally. Then, the performance of the PCV external spray cooling system was evaluated using the experimental findings. The following results were obtained: (1) Heat transfer coefficients of the falling liquid film under steady-state conditions were increased as the film flow rate per unit length of the liquid film width increased, and they agreed with Wilke`s correlation within about {+-}15%. (2) The PCV surface temperature, when preheated up to 150 C, which is the supposed PCV temperature under a severe accident, decreased below 100 C within a few seconds when the PCV external spray was initiated, and boiling on the PCV surface could not be maintained. (3) Heat transfer coefficients of the falling liquid film under transient conditions were higher initially due to the boiling effect; however, they decreased rapidly and approached those under steady-state conditions. (4) The PCV external spray for the conceptually designed PCV could suppress the PCV pressure below the design goal under a severe accident.

  9. Effects of one-sided heat input and removal on axially grooved heat pipe performance

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.

    1977-01-01

    The performance of an axially grooved heat pipe with one-sided heat input and removal was investigated analytically. Under zero-g condition the maximum heat transport of the pipe may decrease as much as 30% depending on the liquid slug behavior in the condenser section. In one-g environment the performance depends mainly on the fluid charge. The maximum heat transport, if over-charged, is almost equal to the value for uniform heating and cooling due to puddling effect. However, for some heater-cooler combinations the temperature drop across the heat pipe becomes very large. Computed results for tilted heat pipes compare favorably with available experimental data.

  10. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  11. Device for removing heat of decomposition in a steam power plant heated by nuclear energy

    SciTech Connect

    Emsperger, W.; Werker, E.

    1980-12-02

    Device for removing heat of decomposition in a steam power plant heated by nuclear energy and having a steam generator with a water-steam separating tank connected downstream of the steam generator in travel direction of the steam generated thereby includes a start-up circulatory loop for the steam power plant connected to the steam generator and including the water-steam separating tank therein, the start-up circulatory loop being formed of a feed water line and an outlet line from the water-steam separating tank and further including an externally cooled heat exchanger connected therein for removing after-heat.

  12. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y.

    2012-07-01

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  13. Heat Deposition and Heat Removal in the UCLA Continuous Current Tokamak

    NASA Astrophysics Data System (ADS)

    Brown, Michael Lee

    1990-01-01

    Energy transfer processes in a steady-state tokamak are examined both theoretically and experimentally in order to determine the patterns of plasma heat deposition to material surfaces and the methods of heat removal. Heat transfer experiments involving actively cooled limiters and heat flux probes were performed in the UCLA Continuous Current Tokamak (CCT). The simple exponential model of plasma power deposition was extended to describe the global heat deposition to the first wall of a steady-state tokamak. The heat flux distribution in CCT was determined from measurements of heat flow to 32 large-area water-cooled Faraday shield panels. Significant toroidal and poloidal asymmetries were observed, with the maximum heat fluxes tending to fall on the lower outside panels. Heat deposition to the water-cooled guard limiters of an ion Bernstein wave antenna in CCT was measured during steady-state operation. Very strong asymmetries were observed. The heat distribution varied greatly with magnetic field. Copper heat flux sensors incorporating internal thermocouples were developed to measure plasma power deposition to exterior probe surfaces and heat removal from water -cooled interior surfaces. The resulting inverse heat conduction problem was solved using the function specification method. Cooling by an impinging liquid jet was investigated. One end of a cylindrical copper heat flux sensor was heated by a DC electrical arc and the other end was cooled by a low velocity water jet at 1 atm. Critical heat flux (CHF) values for the 55-80 ^circC sub-cooled free jets were typically 2.5 times published values for saturated free jets. For constrained jets, CHF values were about 20% lower. Heat deposition and heat removal in thick (3/4 inch diameter) cylindrical metal probes (SS304 or copper) inserted into a steady-state tokamak plasma were measured for a broad range of heat loads. The probes were cooled internally by a constrained jet of either air or water. Steady -state heat

  14. Modeling of Material Removal by Solid State Heat Capacity Lasers

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2002-04-17

    Pulsed lasers offer the capability of rapid material removal. Here we present simulations of steel coupon tests by two solid state heat capacity lasers built at LLNL. Operating at 1.05 pm, these deliver pulse energies of about 80 J at 10 Hz, and about 500 J at 20 Hz. Each is flashlamp-pumped. The first laser was tested at LLNL, while the second laser has been delivered to HELSTF, White Sands Missile Range. Liquid ejection appears to be an important removal mechanism. We have modeled these experiments via a time-dependent code called THALES, which describes heat transport, melting, vaporization, and the hydrodynamics of liquid, vapor, and air. It was previously used, in a less advanced form, to model drilling by copper vapor lasers [1] . It was also used to model vaporization in beam dumps for a high-power laser [2]. The basic model is in 1D, while the liquid hydrodynamics is handled in 2D.

  15. PKL experiments on loss of residual heat removal under shutdown conditions in PWRS

    SciTech Connect

    Umminger, Klaus; Schoen, Bernhard; Mull, Thomas

    2006-07-01

    When a pressurized water reactor (PWR) is shutdown for refueling, the main coolant inventory is reduced so that the level is at mid-loop elevation. Removal of the decay heat from the core is maintained by the residual heat removal system (RHRS), which under these conditions represents the only heat sink. Loss of RHRS under shutdown conditions has occurred several times worldwide and still plays an important role in risk studies for PWRs. The experimental investigation on loss of RHRS is one mayor topic in the current PKL test program which is included in an international project set up by the OECD. PKL is an integral test facility simulating a typical western-type 1300 MW PWR and is used to investigate the thermal-hydraulic system behavior of PWRs under accident situations. The PKL test facility is operated in the Technical Center of Framatome ANP in Erlangen, Germany. The tests on loss of RHRS have been performed with borated water and special measurement techniques for the determination of the boron concentration (online measurements). The PKL tests demonstrate that, as long as the primary circuit is closed, a failure of the residual heat removal system can be compensated by one or more steam generators, which remain filled with water on the secondary side and stay ready for use during refueling and other outages. However, the tests showed also that accumulations of large condensate inventories (with low boron concentration) can occur in the cold leg piping during mid-loop operation after loss of the RHRS. This paper summarizes the most important results of a PKL experiment dealing with loss of RHRS during mid-loop operation with closed primary circuit. Issues still open and needs for further investigations are also discussed. (authors)

  16. Multiple pollutant removal using the condensing heat exchanger

    SciTech Connect

    Jankura, B. J.; Kudlac, G. A.; Bailey, R. T.

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the Teflon

  17. Coolability of stratified UO/sub 2/ debris in sodium with downward heat removal: The D13 experiment

    SciTech Connect

    Ottinger, C.A.; Mitchell, G.W.; Reed, A.W.; Meister, H.

    1987-03-01

    The LMFBR Debris Coolability Program at Sandia National Laboratories investigates the coolability of particle beds that may form following a severe accident involving core disassembly in a nuclear reactor. The D series experiments utilize fission heating of fully enriched UO/sub 2/ particles submerged in sodium to realistically simulate decay heating. The D13 experiment is the first in the series to study the effects of bottom cooling of stratified debris, which could be provided in an actual accident condition by structural materials onto which the debris might settle. Additionally, the D13 experiment was designed to achieve maximum temperatures in the debris approaching the melting point of UO/sub 2/. The experiment was operated for over 40 hours and investigated downward heat removal at specific powers of 0.22 to 2.58 W/g. Channeled dryout in the debris was achieved at powers from 0.94 to 2.58 W/g. Maximum temperatures approaching 2700/sup 0/C were attained. Bottom heat removal was up to 750 kW/m/sup 2/ as compared to 450 kW/m/sup 2/ in the D10 experiment.

  18. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    SciTech Connect

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A. )

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of {approximately}922 K (1200{degree}F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs.

  19. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGES

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  20. Condensate removal mechanisms in a constrained vapor bubble heat exchanger.

    PubMed

    Zheng, Ling; Wang, Yingxin; Wayner, Peter C; Plawsky, Joel L

    2002-10-01

    Microgravity experiments on the constrained vapor bubble heat exchanger (CVB) are being developed for the space station. Herein, ground-based experimental studies on condensate removal in the condenser region of the vertical CVB were conducted and the mechanism of condensate removal in microgravity was found to be the capillary force. The effects of curvature and contact angle on the driving forces for condensate removal is studied. The Nusselt correlations are derived for the film condensation and the flow from the drop to the meniscus at the moment of merging. These new correlations scale as forced convection with h proportional to L(1/2) or h proportional to L(1/2)(cd). For the partially wetting ethanol system studied, the heat transfer coefficient for film condensation was found to be 4.25 x 10(4) W/m(2)K; for dropwise condensation at moment of merging it was found to be 9.64 x 10(4) W/m(2)K; and for single drops it was found to be 1.33 x 10(5) W/m(2)K.

  1. The kinetics of aerosol particle formation and removal in NPP severe accidents

    NASA Astrophysics Data System (ADS)

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  2. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  3. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  4. Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

    SciTech Connect

    Bopche, Santosh B.; Sridharan, Arunkumar

    2010-11-15

    During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

  5. Tritium Removal by Laser Heating and Its Application to Tokamaks

    SciTech Connect

    C.H. Skinner; C.A. Gentile; G. Guttadora; A. Carpe; S. Langish; K.M. Young; M. Nishi; W. Shu

    2001-11-16

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm{sup 2}, and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed.

  6. Removal of Radiocesium from Food by Processing: Data Collected after the Fukushima Daiichi Nuclear Power Plant Accident - 13167

    SciTech Connect

    Uchida, Shigeo; Tagami, Keiko

    2013-07-01

    Removal of radiocesium from food by processing is of great concern following the accident of TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Foods in markets are monitored and recent monitoring results have shown that almost all food materials were under the standard limit concentration levels for radiocesium (Cs-134+137), that is, 100 Bq kg{sup -1} in raw foods, 50 Bq kg{sup -1} in baby foods, and 10 Bq kg{sup -1} in drinking water; those food materials above the limit cannot be sold. However, one of the most frequently asked questions from the public is how much radiocesium in food would be removed by processing. Hence, information about radioactivity removal by processing of food crops native to Japan is actively sought by consumers. In this study, the food processing retention factor, F{sub r}, which is expressed as total activity in processed food divided by total activity in raw food, is reported for various types of corps. For white rice at a typical polishing yield of 90-92% from brown rice, the F{sub r} value range was 0.42-0.47. For leafy vegetable (indirect contamination), the average F{sub r} values were 0.92 (range: 0.27-1.2) after washing and 0.55 (range: 0.22-0.93) after washing and boiling. The data for some fruits are also reported. (authors)

  7. D10 experiment: coolability of UO/sub 2/ debris in sodium with downward heat removal. [LMFBR

    SciTech Connect

    Mitchell, G.W.; Ottinger, C.A.; Meister, H.

    1984-12-01

    The LMFBR Debris Coolability Program at Sandia National Laboratories investigates the coolability of particle beds which may form following a severe accident involving core disassembly in a nuclear reactor. The D series experiments utilize fission heating of fully enriched UO/sub 2/ particles submerged in sodium to realistically simulate decay heating. The D10 experiment is the first in the series to study the effects of bottom cooling of the debris that could be provided in an actual accident condition by structural materials onto which the debris might settle. Additionally, the D10 experiment was designed to achieve maximum temperatures in the debris approaching the melting point of UO/sub 2/. The experiment was successfully operated for over 50 hours and investigated downward heat removal in a packed bed at specific powers of 0.16 to 0.58 W/g. Dryout in the debris was achieved at powers from 0.42 to 0.58 W/g. Channels were induced in the bed and channeled bed dryout was achieved at powers of 1.06 to 1.77 W/g. Maximum temperatures in excess of 2500/sup 0/C were attained.

  8. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    PubMed Central

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  9. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  10. Grouping of light water reactors for evaluation of decay heat removal capability

    SciTech Connect

    Karol, R.; Fresco, A.; Perkins, K.R.

    1984-06-01

    This grouping report provides a compilation of decay heat removal systems (DHRS) data for operating commercial light water reactors. The reactors have been divided into 12 groups based on similarity of the DHRS and related systems as part of the NRC Task Action Plan on Shutdown Decay Heat Removal Requirements.

  11. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  12. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect

    Crea, B.A.

    1994-12-22

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  13. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    NASA Astrophysics Data System (ADS)

    Smitka, Martin; Kolková, Z.; Nemec, Patrik; Malcho, M.

    2014-03-01

    One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP) is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980's. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT).

  14. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  15. COMBINED ACTIVE/PASSIVE DECAY HEAT REMOVAL APPROACH FOR THE 24 MWt GAS-COOLED FAST REACTOR

    SciTech Connect

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    Decay heat removal at depressurized shutdown conditions has been regarded as one of the key areas where significant improvement in passive response was targeted for the GEN IV GFR over the GCFR designs of thirty years ago. It has been recognized that the poor heat transfer characteristics of gas coolant at lower pressures needed to be accommodated in the GEN IV design. The design envelope has therefore been extended to include a station blackout sequence simultaneous with a small break/leak. After an exploratory phase of scoping analysis in this project, together with CEA of France, it was decided that natural convection would be selected as the passive decay heat removal approach of preference. Furthermore, a double vessel/containment option, similar to the double vessel/guard vessel approach of the SFR, was selected as the means of design implementation to reduce the PRA risks of the depressurization accident. However additional calculations in conjunction with CEA showed that there was an economic penalty in terms of decay heat removal system heat exchanger size, elevation heights for thermal centers, and most of all in guard containment back pressure for complete reliance on natural convection only. The back pressure ranges complicated the design requirements for the guard containment. Recognizing that the definition of a loss-of-coolant-accident in the GFR is a misnomer, since gas coolant will always be present, and the availability of some driven blower would reduce fuel temperature transients significantly; it was decided instead to aim for a hybrid active/passive combination approach to the selected BDBA. Complete natural convection only would still be relied on for decay heat removal but only after the first twenty four hours after the initiation of the accident. During the first twenty four hour period an actively powered blower would be relied on to provide the emergency decay power removal. However the power requirements of the active blower

  16. Experimental Breeder Reactor II inherent shutdown and heat removal tests - test results and analysis

    SciTech Connect

    Planchon, H.P.; Singer, R.M.; Mohr, D.; Feldman, E.E.; Chang, L.K.; Betten, P.R.

    1985-01-01

    A test program is being conducted to demonstrate that a power producing Liquid Metal Reactor (LMR) can passively remove shutdown heat by natural convection; passively reduce power in response to a loss of reactor flow and passively reduce power in response to a loss of the balance of plant heat sink. Measurements and pretest predictions confirm that natural convection is a reliable, predictable method of shutdown heat removal and suggest that safety-related pumps or pony motors are not necessary for safe, shutdown heat removal in a LMR. Measurements from tests in which reactor flow and heat rejection to the balance of plant were perturbed show that reactivity feedbacks can passively control power and temperature. This data is a basis for additional tests including a complete loss-of-flow without scram and a complete loss of heat sink without scram.

  17. Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling.

    PubMed

    Pikkula, Brian M; Tunnell, James W; Anvari, Bahman

    2003-05-01

    Cryogen spray cooling (CSC) reduces epidermal damage during laser treatment of various dermatoses. The goal of this study was to determine the heat removal mechanism in skin and quantify the amount in response to CSC. Thermocouples were imbedded in four model substrates with a range of thermal diffusivities, greater than three orders of magnitude in difference, to measure the temperature profiles in response to CSC and sapphire contact cooling, which removes heat completely by conduction. An algorithm solving an inverse heat conduction problem was subsequently used to quantify the amount of heat removal from the substrates using the measured temperatures. The interface thermal conductance and internal temperatures within the substrates were computed by a finite difference algorithm that solved the heat conduction equation. Results verify a marked increase in heat removal and interface thermal conductance with increasing thermal diffusivity. By estimation from the model substrate results, heat removal and interface thermal conductance values for skin were obtained. Data demonstrate that during CSC, evaporation is the dominant heat transfer mechanism in materials with higher thermal diffusivities; however, conductive cooling dominates in substrates with lower thermal diffusivities such as skin. PMID:12757194

  18. Method of high heat flux removal by usage of liquid spray cooling

    NASA Astrophysics Data System (ADS)

    Smakulski, Przemysław

    2013-09-01

    High heat flux removal are important issue in many perspective applications such as computer chips, laser diode arrays, or boilers working on supercritical parameters. Electronic microchips constructed nowadays are model example of high heat flux removal, where the cooling system have to maintain the temperature below 358 K and take heat flux up to 300 W/cm2. One of the most efficient methods of microchips cooling turns out to be the spray cooling method. Review of installations has been accomplished for removal at high heat flux with liquid sprays. In the article are shown high flux removal characteristic and dependences, boiling critical parameters, as also the numerical method of spray cooling analysis.

  19. Cryogenic Heat-Exchanger Design for Freeze-out Removal of Carbon Dioxide from Landfill Gas

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Chung, Myung Jin; Park, Seong Bum

    A cryogenic heat exchanger to remove carbon dioxide from landfill gas (LFG) is proposed and designed for applications to LNG production in distributed-scale. Since the major components of LFG are methane and carbon dioxide, CO2 removal is a significant pre-process in the liquefaction systems. A new and simple approach is proposed to directly remove carbon dioxide as frost on the surface wall along the cooling passage in a liquefying heat exchanger and to install two identical heat exchangers in parallel for alternative switching. As a first step of feasibility study, combined heat and mass transfer analysis is performed on the freeze-out process of CO2 in a counterflow heat exchanger, where CH4-CO2 mixture is cooled below its frost temperature in thermal contact with cold refrigerant. Engineering correlations for the analogy of heat and mass transfer are incorporated into numerical heat exchanger analysis with detailed fluid properties. The developed analytical model is used to estimate the distribution of CO2 accumulation and the required heat exchanger size with latent thermal load for the cryogenic CO2 removal in various operating conditions.

  20. Device for the removal of heat from waste water

    SciTech Connect

    Kalberer, F.

    1983-12-27

    Waste water is led into a container (1) through a inlet (4) at the top. A connection (20) between the inlet (4) and an outlet (21) having a check valve (22) comprises adjacent to the inlet (4) two inverted frusto-conical hollow bodies (24, 25) which are directly connected to each other. The connecting surface between the two hollow bodies (24, 25) is formed as a coarse screen (26). A round fine screen (30), which diverges downwardly, surrounds the hollow bodies (24,25). Heat exchangers (31) are located in the space between the fine screen (30) and the wall (2) of the container (1). An outlet (5) terminates at the bottom of the container and connects with a riser (6) and via a bend (7) with the sewerage conduit (8). Through the coarse screen (26) the waste water reaches the container, and the heat can reach the heat exchangers (31) through the fine screen (30), so that practically uncontaminated water is present at the heat exchangers, and the need for cleansing is substantially diminished.

  1. Nuclear energy plant with improved device for removing after-heat and emergency heat

    SciTech Connect

    Buscher, E.; Vinzens, K.

    1980-01-29

    The nuclear energy installation includes a nuclear reactor core, a primary circulatory loop connected to the reactor core and a circulating liquid metal medium therein heated by the reactor core. A first heat exchanger has a primary side connected in the primary circulatory loop, and a secondary side, a secondary circulatory loop connected to the secondary side of the first heat exchanger and a circulating liquid metal medium therein heated by heat transfer in the first heat exchanger from the liquid metal medium of the primary circulatory loop. A second heat exchanger has a primary side connected in the secondary circulatory loop, and a secondary side, a tertiary circulatory loop connected to the secondary side of the second heat exchanger and a circulating water/steam medium therein heated by heat transfer in the second heat exchanger from the liquid metal medium of the secondary circulatory loop. A condenser has a vapor/condensate side thereof connected in the tertiary circulatory loop, and a coolant side thereof connectible to a heat sink outside the installation. A third heat exchanger has a primary side connected to the primary side of the first heat exchanger, and a secondary side, a quaternary coolant loop connected to the secondary side of the third heat exchanger and connectible through the condenser to the heat sink.

  2. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  3. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  4. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  5. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  6. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  7. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    SciTech Connect

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-07-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  8. Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling.

    PubMed

    Pikkula, Brian M; Tunnell, James W; Chang, David W; Anvari, Bahman

    2004-08-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate epidermal damage during laser treatment of various dermatoses. This study sought to determine the effects of specific cryogen properties on heat removal. Heat removal was quantified using an algorithm that solved an inverse heat conduction problem from internal temperature measurements made within a skin phantom. A nondimensional parameter, the Weber number, characterized the combined effects of droplet velocity, diameter, and surface tension. CSC experiments with laser irradiation were conducted on ex vivo human skin samples to assess the effect of Weber number on epidermal protection. An empirical relationship between heat removal and the difference in droplet temperature and the substrate, droplet velocity, and diameter was obtained. Histological sections of irradiated ex vivo human skin demonstrated that sprays with higher Weber numbers increased epidermal protection. Results indicate that the cryogen film acts as an impediment to heat transfer between the impinging droplets and the substrate. This study offers the importance of Weber number in heat removal and epidermal protection. PMID:15446509

  9. Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1996-01-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

  10. Analysis of heat generation using ultrasonic vibration for post removal.

    PubMed

    Dominici, John T; Clark, Stephen; Scheetz, James; Eleazer, Paul D

    2005-04-01

    This study measured the temperature of the root surface and post during the application of ultrasonic vibration to cemented posts to simulate post removal procedure. Root canal therapy was performed on ten extracted maxillary incisors. A stainless steel Parapost was cemented into each prepared post space. Ultrasonic vibration was applied to the post and temperatures were recorded at the coronal post and the cervical root surface. Data were analyzed with ANOVA using the independent variables of (a) time of ultrasonic application (15, 30, 45 and 60 s) and 2) location (post and root surface). Greater temperature increase was observed at the post (52.6 degrees C, SD 11.1; 82.6 degrees C, SD 20.1; 111.0 degrees C, SD 29.1; 125.3 degrees C, SD 33.2) compared to the root surface (9.5 degrees C, SD 4.6; 17.5 degrees C, SD 4.8; 25.4 degrees C, SD 7.3; 32.2 degrees C, SD 8.1) for each time period, P < 0.001. Ultrasonic application to the post for longer than 15 s generates high temperature on the root surface.

  11. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  12. Heat transfer processes during intermediate and large break loss-of-coolant accidents (LOCAs)

    SciTech Connect

    Vojtek, I

    1986-09-01

    The general purpose of this project was the investigation of the heat transfer regimes during the high pressure portion of blowdown. The main attention has been focussed on the evaluation of those phenomena which are most important in reactor safety, such as maximum and minimum critical heat flux and forced convection film boiling heat transfer. The experimental results of the 25-rod bundle blowdown heat transfer tests, which were performed at the KWU heat transfer test facility in Karlstein, were used as a database for the verification of different correlations which are used or were developed for the analysis of reactor safety problems. The computer code BRUDI-VA was used for the calculation of local values of important thermohydraulic parameters in the bundle.

  13. Method and apparatus for removing heat from electronic devices using synthetic jets

    SciTech Connect

    Sharma, Rajdeep; Weaver, Jr., Stanton Earl; Seeley, Charles Erklin; Arik, Mehmet; Icoz, Tunc; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas

    2014-04-15

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  14. Method and apparatus for removing heat from electronic devices using synthetic jets

    SciTech Connect

    Sharma, Rajdeep; Weaver, Stanton Earl; Seeley, Charles Erklin; Arik, Mehmet; Icoz, Tunc; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas

    2015-11-24

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  15. Core structure heat-up and material relocation in a BWR short-term station blackout accident

    SciTech Connect

    Schmidt, R.C.; Dosanjh, S.S.

    1990-01-01

    This paper presents an analytical and numerical analysis which evaluates the core-structure heat-up and subsequent relocation of molten core materials during a NWR short-term station blackout accident with ADS. A simplified one-dimensional approach coupled with bounding arguments is first presented to establish an estimate of the temperature differences within a BWR assembly at the point when structural material first begins to melt. This analysis leads to the conclusions that the control blade will be the first structure to melt and that at this point in time, overall temperature differences across the canister-blade region will not be more than 200 K. Next, a three-dimensional heat-transfer model of the canister-blade region within the core is presented that uses a diffusion approximation for the radiation heat transfer. This is compared to the one-dimensional analysis to establish its compatibility. Finally, the extension of the three-dimensional model to include melt relocation using a porous media type approximation is described. The results of this analysis suggest that under these conditions significant amounts of material will relocate to the core plate region and refreeze, potentially forming a significant blockage. The results also indicate that a large amount of lateral spreading of the melted blade and canister material into the fuel rod regions will occur during the melt progression process. 22 refs., 18 figs., 1 tab.

  16. Multiple pollutant removal using the condensing heat exchanger. Task 3, Long term testing at the ECTC

    SciTech Connect

    Schulze, K.H.

    1996-01-01

    The objective of this task is to demonstrate long term operation of a condensing heat exchanger for coal-fired conditions. A small condensing heat exchanger will be installed at the Environmental Control Technology Center in Barker, New York. It will be installed downstream of the flue gas particulate removal system. The test will determine the amount of wear, if any, on the Teflon{trademark} covered internals of the heat exchanger. Visual inspection and measurements will be obtained for the Teflon{trademark} covered tubes during the test. The material wear study will conducted over a one year calendar period, and the CHX equipment will be operated to the fullest extent allowable.

  17. Modeling of heat transfer in a rotary kiln thermal desorder for removal of petroleum from soils

    SciTech Connect

    Chern, Hsien-Tsung; Krasnoperov, L.V.; Bozzelli, J.W.

    1996-10-01

    A continuous feed rotary kiln thermal desorber was designed and constructed to study the heat transfer in removal of petroleum hydrocarbons from contaminated soils. A mathematical model of heat transfer that correlates temperatures of gas, soil, and kiln wall will purge gas flow, soil feed rate, kiln rotation speed and soil residence time in the kiln desorber is developed. A fourth order Runge-Kutta method was used to numerically integrate the heat transfer process along the kiln length and to calculate the temperature profiles. Comparison of predicted and measured gas and soil temperature profile is presented.

  18. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    SciTech Connect

    Smitka, Martin E-mail: patrik.nemec@fstroj.uniza.sk Nemec, Patrik E-mail: patrik.nemec@fstroj.uniza.sk Malcho, Milan E-mail: patrik.nemec@fstroj.uniza.sk

    2014-08-06

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  19. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    NASA Astrophysics Data System (ADS)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-08-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT).

  20. Heated stainless steel tube for ozone removal in the ambient air measurements of mono- and sesquiterpenes

    NASA Astrophysics Data System (ADS)

    Hellén, H.; Kuronen, P.; Hakola, H.

    2012-09-01

    Heated stainless steel inlets were optimized for the ozone removal and for the measurements of mono- and sesquiterpenes in ambient air. Five different inlets were used with different flows, temperatures and ozone and biogenic volatile organic compound (BVOC) concentrations. Both ozone removal capacities and recoveries of BVOCs were determined. Ozone and BVOCs were flushed through the inlet and recoveries were measured by an ozone monitor and adsorbent tube sampling of BVOCs with subsequent analysis with thermal desorption - gas chromatograph (GC) - mass spectrometer (MS). Recovery tests of BVOCs were conducted both with zero air and with ozone rich air. Inlets were optimized especially for online-GC and adsorbent tube measurements of mono- and sesquiterpenes. The results of this study show that it was possible to remove ozone without removing most VOCs with this set-up. Setting the temperature, stainless steel grade and flow correctly for different inlet lengths was found to have a crucial role. The results show that the ozone removal capacity increases with increasing temperature and inlet length. Stainless steel grade 316 was found to be more efficient than grade 304 with respect to ozone removal. Based only on the ozone removal capacity, the longest possible stainless steel inlet with heating would be the optimum solution. However, the recoveries of studied compounds had to be considered too. Of the tested set-ups, a 3 m inlet (¼ in. grade 304) heated to 120 °C with a flow of 1 or 2 l min-1 was found to give the best results with respect to the ozone removal efficiency and compound recovery. This inlet was removing ozone efficiently for at least 4 months when used for ambient air sampling at a rural forested site with a flow of 1 l min-1 (˜170 m3 of air flushed through the tube). A heated (140 °C) 1 m inlet (¼ in. grade 304 or ⅛ in. grade 316) was able to remove ozone with a constant flow of 0.8-1 l min-1 for about two weeks (˜18 m3 of air) and had

  1. Metabolic Heat Regenerated Temperature Swing Adsorption for CO(sub 2) and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bowers, Chad; Straub-Lopez, Katie; Anderson, Grant; MacCallum, Taber; Paul, Heather

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the vent loop. Once fully loaded, the adsorbent is then warmed externally by the vent loop (approx. 300K), rejecting the captured CO2 to Mars ambient. Two beds are used to effect a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the vent loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available at Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments was conducted which lead to the selection and partial characterization of an appropriate adsorbent. The adsorbent NaX successfully removed CO2 from a simulated vent loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions.

  2. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  3. A&M. Radioactive parts security storage area, heat removal storage casks. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area, heat removal storage casks. Plan, section, and details. Ralph M. Parsons 1480-7 ANP/GE-3-720-S-1. Date: November 1958. Approved by INEEL Classification Office for public release. INEEL index no. 034-0720-60-693-107459 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Modes of mantle convection and the removal of heat from the earth's interior

    NASA Technical Reports Server (NTRS)

    Spohn, T.; Schubert, G.

    1982-01-01

    Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.

  5. GEOMETRY, HEAT REMOVAL AND KINETICS SCOPING MODELS FOR HYDROGEN STORAGE SYSTEMS

    SciTech Connect

    Hardy, B

    2007-11-16

    It is recognized that detailed models of proposed hydrogen storage systems are essential to gain insight into the complex processes occurring during the charging and discharging processes. Such insight is an invaluable asset for both assessing the viability of a particular system and/or for improving its design. The detailed models, however, require time to develop and run. Clearly, it is much more efficient to begin a modeling effort with a good system design and to progress from that point. To facilitate this approach, it is useful to have simplified models that can quickly estimate optimal loading and discharge kinetics, effective hydrogen capacities, system dimensions and heat removal requirements. Parameters obtained from these models can then be input to the detailed models to obtain an accurate assessment of system performance that includes more complete integration of the physical processes. This report describes three scoping models that assess preliminary system design prior to invoking a more detailed finite element analysis. The three models address the kinetics, the scaling and heat removal parameters of the system, respectively. The kinetics model is used to evaluate the effect of temperature and hydrogen pressure on the loading and discharge kinetics. As part of the kinetics calculations, the model also determines the mass of stored hydrogen per mass of hydride (in a particular reference form). As such, the model can determine the optimal loading and discharge rates for a particular hydride and the maximum achievable loading (over an infinite period of time). The kinetics model developed with the Mathcad{reg_sign} solver, runs in a mater of seconds and can quickly be used to identify the optimal temperature and pressure for either the loading or discharge processes. The geometry scoping model is used to calculate the size of the system, the optimal placement of heat transfer elements, and the gravimetric and volumetric capacities for a particular

  6. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997

    SciTech Connect

    Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

  7. Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Walsh, D.; Perry, J.

    2005-01-01

    An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.

  8. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  9. Cyclic process for producing methane from carbon monoxide with heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  10. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  11. Design and Scaling of the Natural Convection Shutdown Heat Removal Test Facility

    SciTech Connect

    Lisowski, Darius D.; Gerardi, Craig D.; Bremer, Nathan C.; Farmer, Mitchell T.

    2014-01-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (ANL) reflects a 1/2 scale model of one conceptual design for passive safety in advanced reactors. The project was initiated in 2010 primarily to conduct ex-vessel, passive decay heat removal experiments in support of the Advanced Reactor Concepts (ARC), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs while also generating data for code validation purposes. The facility successfully demonstrated scoping objectives in late 2013, and is expected to begin testing by early 2014. The following paper summarizes some of the key design and scaling considerations used in construction of the experimental facility, along with an overview of the current instrumentation and data acquisition methods. Details of the distributed fiber optic temperature system will be presented, which introduces a level of data density suitable for CFD validation and is a first-of-its-kind for largescale thermal hydraulics facilities.

  12. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2 and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design

  13. Heat removal (wetting, heat transfer, T/H, secondary circuit, code validation etc.)

    SciTech Connect

    Dury, T.; Siman-Tov, M.

    1996-06-01

    This working group provided a comprehensive list of feasibility and uncertainty issues. Most of the issues seem to fall into the `needed but can be worked out` category. They feel these can be worked out as the project develops. A few issues can be considered critical or feasibility issues (that must be proven to be feasible). Those include: (1) Thermal shock and its mitigation (>1 MW); how to inject the He bubbles (if used) - back pressure into He lines - mercury traces in He lines; how to maintain proper bubble distribution and size (static and dynamic; if used); vibrations and fatigue (dynamic); possibility of cavitation from thermal shock. (2) Wetting and/or non-wetting of mercury on containment walls with or without gases and its effect on heat transfer (and materials). (3) Prediction capabilities in the CFD code; bubbles behavior in mercury (if used) - cross stream turbulence (ESS only) - wetting/non-wetting effects. (4) Cooling of beam `windows`; concentration of local heat deposition at center, especially if beam is of parabolic profile.

  14. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  15. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  16. APT Blanket System Loss-of-Coolant Accident Based on Initial Conceptual Design - Case 5: External RHR Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  17. APT Blanket System Loss-of-Flow Accident (LOFA) Analysis Based on Initial Conceptual Design - Case 1: with Beam Shutdown and Active RHR

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  18. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  19. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--May 1997. Addendum 1: Task 2 topical report -- Pollutant removal tests

    SciTech Connect

    Bailey, R.T.; Jankura, B.J.

    1998-06-01

    Integrated Flue Gas Treatment (IFGT) uses two Condensing Heat Exchangers (CHXs{reg_sign}) in series to recover waste heat from the flue gas and remove a variety of pollutants from the flue gas. The Teflon{reg_sign}-covered internals of the condensing heat exchanger permit heat recovery at temperatures below the acid dew-point of the flue gas. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions in a pilot Integrated Flue Gas Treatment System rated at 1.2 MW{sub t} (4 million Btu/hr) using a wide range of coals. The coals tested included a high-sulfur coal, a medium-sulfur coal and a low-sulfur coal. The flue gas pollutants investigated included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was also investigated. Soda ash, lime and magnesium-lime scrubbing reagents were investigated. The test results show that the IFGT system can remove greater than 95% removal of acid gases with a liquid-to-gas ratio less than 1.34 l/m{sup 3} (10 gal/1,000 ft{sup 3}), and that lime reagents show promise as a substitute for soda ash. Particulate and ammonia gas removal was also very high. Ionic mercury removal averaged 80%, while elemental mercury removal was very low. Trace metals were found to be concentrated in the fine particulate with removal efficiencies in the range of 50% to 80%. The data measured in this task provides the basis for predictions of the performance of an IFGT system for both utility and industrial applications.

  20. A feasible way to remove the heat during adsorptive methane storage.

    PubMed

    Gütlein, Stefan; Burkard, Christoph; Zeilinger, Johannes; Niedermaier, Matthias; Klumpp, Michael; Kolb, Veronika; Jess, Andreas; Etzold, Bastian J M

    2015-01-01

    Methane originating from biogas or natural gas is an attractive and environmentally friendly alternative to gasoline. Adsorption is seen as promising storage technology, but the heat released limits fast filling of these systems. Here a lab scale adsorptive methane storage tank, capable to study the temperature increase during fast filling, was realized. A variation of the filling time from 1 h to 31 s, showed a decrease of the storage capacity of 14% and temperature increase of 39.6 °C. The experimental data could be described in good accordance with a finite element simulation solving the transient mass, energy, and impulse balance. The simulation was further used to extrapolate temperature development in real sized car tanks and for different heat pipe scenarios, resulting in temperature rises of approximately 110 °C. It could be clearly shown, that with heat conductivity as solei mechanism the heat cannot be removed in acceptable time. By adding an outlet to the tank a feed flow cooling with methane as heat carrier was realized. This setup was proofed in simulation and lab scale experiments to be a promising technique for fast adsorbent cooling and can be crucial to leverage the full potential of adsorptive methane gas storage. PMID:25485691

  1. A feasible way to remove the heat during adsorptive methane storage.

    PubMed

    Gütlein, Stefan; Burkard, Christoph; Zeilinger, Johannes; Niedermaier, Matthias; Klumpp, Michael; Kolb, Veronika; Jess, Andreas; Etzold, Bastian J M

    2015-01-01

    Methane originating from biogas or natural gas is an attractive and environmentally friendly alternative to gasoline. Adsorption is seen as promising storage technology, but the heat released limits fast filling of these systems. Here a lab scale adsorptive methane storage tank, capable to study the temperature increase during fast filling, was realized. A variation of the filling time from 1 h to 31 s, showed a decrease of the storage capacity of 14% and temperature increase of 39.6 °C. The experimental data could be described in good accordance with a finite element simulation solving the transient mass, energy, and impulse balance. The simulation was further used to extrapolate temperature development in real sized car tanks and for different heat pipe scenarios, resulting in temperature rises of approximately 110 °C. It could be clearly shown, that with heat conductivity as solei mechanism the heat cannot be removed in acceptable time. By adding an outlet to the tank a feed flow cooling with methane as heat carrier was realized. This setup was proofed in simulation and lab scale experiments to be a promising technique for fast adsorbent cooling and can be crucial to leverage the full potential of adsorptive methane gas storage.

  2. Removal of histological sections from glass for electron microscopy - Use of Quetol 651 resin and heat

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Joyce, K.; Dantoni Damelio, E.

    1983-01-01

    A number of approaches have been used to separate stained conventional histological sections from glass slides in preparation for a study with the electron microscope. However, in each reported case some problems were encountered with respect to the separation process. The present investigation is concerned with the use of the epoxy resin Quetol 651 as an embedding medium for this procedure, taking into account the simple application of heat (62-64 C) for performing the separation step. After the tissue has been removed from the glass by the considered technique, it is thin sectioned, and stained with uranyl acetate-lead citrate.

  3. EFFECT OF SHORT-TERM HEAT ACCLIMATION TRAINING ON KINETICS OF LACTATE REMOVAL FOLLOWING MAXIMAL EXERCISE

    PubMed Central

    DiLeo, T.D.; Powell, J.B.; Kang, H-K.; Roberge, R.J.; Coca, A.; Kim, J-H.

    2016-01-01

    AIM Heat acclimation (HA) evokes numerous physiological adaptations, improves heat tolerance and has also been shown to enhance lactate (LA) responses during exercise, similar to that seen with endurance training. The purpose of this study was to examine whether HA improves the body’s ability to remove LA during recovery following maximal exercise. METHODS Ten healthy men completed two trials of maximal treadmill exercise (PRE- and POST-HA) separated by 5 days of HA. Each day of HA consisted of two 45 minute periods of cycling at ~50% VO2max separated by a 15min rest period in an environmental chamber (Tdb 45°C, RH 20%). In PRE-/POST-HA trials, venous blood was collected during 60 minutes of recovery to determine LA concentrations and removal kinetics (A2: amplitude and y2: velocity constant) using bi-exponential curve fitting. RESULTS Physiological adaptation to heat was significantly developed during HA, as evidenced by end-exercise Tre (DAY 1 vs. 5) (38.89±0.56 vs. 38.66±0.44 °C), Tsk (38.07±.51 vs. 37.66±.48 °C), HR (175.0±9.9 vs. 165.0±18.5 beats·min−1), and sweat rate (1.24 ±.26 vs. 1.47 ±.27 L·min−1) (p<.05). However, there was no significant difference in either LA concentrations (LA0min: 8.78±1.08 vs. 8.69±1.23; LApeak: 10.97±1.77 vs. 10.95±1.46; and La60min; 2.88±.82 vs. 2.96±.93 mmol·L−1) or removal kinetics (A2: −13.05±7.05 vs −15.59±7.90 mmol.L−1 and y2: .02±.01 vs .03±.01 min−1). CONCLUSION The present study concluded that, while effective in inducing thermo-physiological adaptations to heat stress, short-term HA does not improve the body’s ability to remove LA following maximal exercise. Therefore, athletes and workers seeking faster LA recovery from intense physical activity may not benefit from short-term HA. PMID:25286892

  4. Cooling system for removing metabolic heat from an hermetically sealed spacesuit

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Vykukal, H. C.; Williams, B. A. (Inventor)

    1978-01-01

    An improved cooling and ventilating system is described for removing metabolic heat, waste gases and water vapor generated by a wearer of an hermetically sealed spacesuit. The cooling system was characterized by a body suit, having a first circuit for simultaneously establishing a cooling flow of water through the thorax and head sections of the body suit. Circulation patches were included mounted in the thorax section and head section of the body suit. A second circuit for discharing a flow of gas throughout the spacesuit and a disconnect unit for coupling the circuits with a life support system externally related to the spacesuit were provided.

  5. Parametric Study to Characterize Low Activity Waste Tank Heat Removal Alternatives for Phase 1 Specification Development

    SciTech Connect

    GRENARD, C.E.

    2000-09-11

    Alternative for removing heat from Phase 1, low-activity waste feed double-shell tanks using the ventilation systems have been analyzed for Phase 1 waste feed delivery. The analysis was a parametric study using a model that predicted the waste temperatures for a range of primary and annulus ventilation system flow rates. The analysis was performed to determine the ventilation flow required to prevent the waste temperature from exceeding the Limiting Conditions for Operation limits during normal operation and the Safety Limits during off-normal events.

  6. TRANSIENT HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE WASTE REMOVAL PROCESS

    SciTech Connect

    Lee, S.

    2010-07-12

    The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum centerline temperatures achievable by the CST design configurations. The thermal analysis results will be used to evaluate the fluid temperature distributions and the process component temperatures within the ion exchange system. This information will also assist in the system design and maintenance.

  7. BWR passive plant heat removal assessment (joint EPRI/CRIEPI advanced LWR studies)

    SciTech Connect

    Abdollahian, D.; Gillis, J.; Petrokas, R. , Inc., Campbell, CA )

    1991-03-01

    An independent assessment of the simplified boiling water reactor (SBWR) passive heat removal systems was performed. Information concerning required characteristics of the 600 MWe SBWR was gathered to form a basis for this assessment. Computerized models were then formulated to predict the operation of the gravity driven cooling system (GDCS), passive containment cooling system (PCCS), and the isolation condenser system. Investigation of the GDCS resulted in prediction of GDCS performance for a range of LOCAs and single failures. The ability of the GDCS to keep the core covered with a two phase mixture was determined. It was concluded that for all conditions which formed a basis for this study, the GDCS will keep the core covered and cooled. The evaluation of the PCCS showed that the containment will be cooled and that the system can operate in the presence of a significant amount of non-condensible gases. However, the PCCS will not be capable of reducing the containment pressure below approximately 40 psia. This is still significantly below the containment design pressure of 55 psig. Calculations performed to determine isolation condenser performance during reactor isolation events show that the isolation condensers remove enough decay heat to prevent the safety/relief valves from lifting. A study of the test program for the SBWR concluded that additional large scale tests may be needed to verify GDCS and PCCS performance. Finally, an investigation of larger power ratings showed that the passive systems are technically feasible for plant sizes of up to 1,000 MWe. 2 refs.

  8. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. PMID:23590456

  9. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size.

  10. Los Alamos PWR decay-heat-removal studies. Summary results and conclusions

    SciTech Connect

    Boyack, B E; Henninger, R J; Horley, E; Lime, J F; Nassersharif, B; Smith, R

    1986-03-01

    The adequacy of shutdown-decay-heat removal in pressurized water reactors (PWRs) is currently under investigation by the Nuclear Regulatory Commission. One part of this effort is the review of feed-and-bleed procedures that could be used if the normal cooling mode through the steam generators were unavailable. Feed-and-bleed cooling is effected by manually activating the high-pressure injection (HPI) system and opening the power-operated relief valves (PORVs) to release the core decay energy. The feasibility of the feed-and-bleed concept as a diverse mode of heat removal has been evaluated at the Los Alamos National Laboratory. The TRAC-PF1 code has been used to predict the expected performance of the Oconee-1 and Calvert Cliffs-1 reactors of Bobcock and Wilcox and Combustion Engineering, respectively, and the Zion-1 and H.B. Robinson-2 plants of Westinghouse. Feed and bleed was successfully applied in each of the four plants studied, provided it was initiated no later than the time of loss of secondary heat sink. Feed and bleed was successfully applied in two of the plants, Oconee-1 and Zion-1, provided it was initiated no later than the time of primary system saturation. Feed and bleed in Calvert Cliffs-1 when initiated at the time of primary system saturation did result in core dryout; however, the core heatup was eventually terminated by coolant injection. Feed-and-bleed initiation at primary system saturation was not studied for H.B. Robinson-2. Insights developed during the analyses of specific plant transients have been identified and documented. 33 refs., 107 figs., 26 tabs.

  11. Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown

    SciTech Connect

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    2000-10-15

    The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate.

  12. Study on natural convection capability of liquid gallium for passive decay heat removal system (PDHRS)

    SciTech Connect

    Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.

    2012-07-01

    The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)

  13. Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing

    SciTech Connect

    Jankura, B.J.

    1995-11-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

  14. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  15. Thermophysiological responses induced by a body heat removal system with Peltier devices in a hot environment.

    PubMed

    Suzurikawa, Jun; Fujimoto, Sho; Mikami, Kousei; Jonai, Hiroshi; Inoue, Takenobu

    2013-01-01

    Individuals with spinal cord injuries often experience thermoregulation disorders as well as sensory and motor disabilities. In order to prevent such individuals from becoming hyperthermic, we developed a body heat removal system (BHRS) with thermoelectric devices. Our BHRS comprises four Peltier devices mounted on a wheelchair backrest and continuously transfers body heat through the contacting interface to the external environment. Here, we characterized thermophysiological responses induced by this novel contact-type cooling system. A cooling experiment in a hot environment with five able-bodied subjects demonstrated that sweating and systolic blood pressure in the back-cooling (BC) trial were significantly suppressed compared with those in no-cooling (NC) trial, while no difference was found in oral and skin temperatures. A correlation was observed between chest skin temperature and blood flow in the NC trial; this was not observed in the BC trial. These results suggest that BHRS modulates normal thermoregulatory responses, including sweating and vascular dilation and has the capability to partly replace these functions.

  16. Optimization of residual heat removal pump axial thrust and axial bearing

    SciTech Connect

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  17. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I measured after the Fukushima Dai-ichi nuclear accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-11-01

    Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0-13.9 days and for 131I of 17.1-24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0-13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols

  18. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  19. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Prokipius, P. R.

    1977-01-01

    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  20. MELCOR accident analysis for ARIES-ACT

    SciTech Connect

    Paul W. Humrickhouse; Brad J. Merrill

    2012-08-01

    We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

  1. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I during the months after the Fukushima Dai-ichi nuclear power plant accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-05-01

    Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0-13.9 days and for 131I of 17.1-24.2 days during April and May 2011. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0-13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of AM aerosols originating from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3-7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

  2. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    SciTech Connect

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  3. Radiotherapy Accidents

    NASA Astrophysics Data System (ADS)

    Mckenzie, Alan

    A major benefit of a Quality Assurance system in a radiotherapy centre is that it reduces the likelihood of an accident. For over 20 years I have been the interface in the UK between the Institute of Physics and Engineering in Medicine and the media — newspapers, radio and TV — and so I have learned about radiotherapy accidents from personal experience. In some cases, these accidents did not become public and so the hospital cannot be identified. Nevertheless, lessons are still being learned.

  4. Scalability of the natural convection shutdown heat removal test facility (NSTF) data to VHTR/NGNP RCCS designs.

    SciTech Connect

    Vilim, R .B.; Feldman, E. E.; Nuclear Engineering Division

    2007-08-07

    Passive safety in the Very High Temperature Reactor (VHTR) is strongly dependent on the thermal performance of the Reactor Cavity Cooling System (RCCS). Scaled experiments performed in the Natural Shutdown Test Facility (NSTF) are to provide data for assessing and/or improving computer code models for RCCS phenomena. Design studies and safety analyses that are to support licensing of the VHTR will rely on these models to achieve a high degree of certainty in predicted design heat removal rate. To guide in the selection and development of an appropriate set of experiments a scaling analysis has been performed for the air-cooled RCCS option. The goals were to (1) determine the phenomena that dominate the behavior of the RCCS, (2) determine the general conditions that must be met so that these phenomena and their relative importance are preserved in the experiments, (3) identify constraints specific to the NSTF that potentially might prevent exact similitude, and (4) then to indicate how the experiments can be scaled to prevent distortions in the phenomena of interest. The phenomena identified as important to RCCS operation were also the subject of a recent PIRT study. That work and the present work collectively indicate that the main phenomena influencing RCCS heat removal capability are (1) radiation heat transport from the vessel to the air ducts, (2) the integral effects of momentum and heat transfer in the air duct, (3) buoyancy at the wall inside the air duct giving rise to mixed convection, and (4) multidimensional effects inside the air duct caused by non-uniform circumferential heat flux and non-circular geometry.

  5. Overview of BWR Severe Accident Sequence Analyses at Oak Ridge National Laboratory

    SciTech Connect

    Hodge, S.A.

    1983-01-01

    Since its inception in October 1980, the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory (ORNL) has completed four studies including Station Blackout, Scram Discharge Volume Break, Loss of Decay Heat Removal, and Loss of Injection accident sequences for the Browns Ferry Nuclear Plant. The accident analyses incorporated in a SASA study provide much greater detail than that practically achievable in a Probabilistic Risk Assessment (PRA). When applied to the candidate dominant accident sequences identified by a PRA, the detailed SASA results determine if factors neglected by the PRA would have a significant effect on the order of dominant sequences. Ongoing SASA work at ORNL involves the analysis of Anticipated Transients Without Scram (ATWS) sequences for Browns Ferry.

  6. Spine Immobilizer for Accident Victims

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; Lampson, K.

    1983-01-01

    Proposed conformal bladder filled with tiny spheres called "microballoons," enables spine of accident victim to be rapidly immobilized and restrained and permit victim to be safely removed from accident scene in extremely short time after help arrives. Microballoons expand to form rigid mass when pressure within bladder is less than ambient. Bladder strapped to victim is also strapped to rescue chair. Void between bladder and chair is filled with cloth wedges.

  7. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts.

    PubMed

    Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer

    2016-01-01

    Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy. PMID:27584939

  8. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts.

    PubMed

    Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer

    2016-01-01

    Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.

  9. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect

    Parkinson, W. J. ,

    2003-01-01

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  10. Investigations on natural circulation in reactor models and shutdown heat removal systems for LMFBRs (liquid metal fast breeder reactors)

    SciTech Connect

    Hoffmann, H.; Weinberg, D.; Marten, K. ); Ieda, Yoshiaki )

    1989-11-01

    For sodium-cooled pool-type reactors, studies have been undertaken to remove the decay heat by natural convection alone, as in the case of failure of all power supplies. For this purpose, four immersion coolers (ICs), two each installed at a 180-deg circumferential position with respect to the others, are arranged within the reactor tank. They are connected with natural-drift air coolers through independent intermediate circuits. The primary sodium in the tank as well as the secondary sodium in the intermediate loop circulate by natural convection. The general functioning of this passive shutdown decay heat removal (DHR) system is demonstrated in 1:20 and 1:5 scale test models using water as a simulant fluid for sodium. The model design is based on the thermohydraulics similarity criteria. In the RAMONA three-dimensional 1:20 scale model, experiments were carried out to clarify the steady-state in-vessel thermohydraulics for different parameter combinations (core power, radial power distribution across the core, DHR by 2 or 4 ICs in operation, above-core structure geometry and position, different IC designs). For all mentioned parameters, temperatures and their fluctuations were measured and used to indicate isotherms and lines of identical temperature fluctuations. The flow patterns were observed visually. The experiments were recalculated by an updated version of the single-phase three-dimensional thermohydraulics code COMMIX.

  11. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC. PMID:26520818

  12. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect

    Su'ud, Zaki; Anshari, Rio

    2012-06-06

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  13. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  14. Removal of PCDDs/DFs and dl-PCBs in MWI fly ash by heating under vacuum.

    PubMed

    Misaka, Youhei; Yamanaka, Kazushi; Takeuchi, Kazuhiko; Sawabe, Kyoichi; Shobatake, Kosuke

    2006-07-01

    Temperature dependence of PCDD/DF and dioxin-like polychlorinated biphenyl (dl-PCB) concentrations in fly ash from a municipal waste incinerator (MWI) heated under vacuum has been investigated as a function of sample temperature ranging from T(s)=425 to 800 K to find out if PCDDs/DFs in fly ash evaporate and are trapped in a liquid nitrogen-cooled trap. The results show that more than 99.98% of PCDDs/DFs in TEQ is removed from fly ash by vacuum heat treatment at T(s)>650 K for 4 h. Almost no PCDDs/DFs were detected in the liquid nitrogen-cooled trap. Homologue distributions indicate that dechlorination/hydrogenation (DCH) reactions proceed in fly ash at T(s)>450 K. Arrhenius rate parameters for the DCH reactions have been determined for each homologue assuming that only DCH reactions occur. The fly ash heated under vacuum at 650 or 800 K was reheated at 573 K (300 degrees C) in a stream of dry or humid air to see how much PCDDs/DFs and dl-PCBs are regenerated. We have found that (1) PCDDs/DFs are regenerated in both 650 K and 800 K treated fly ash, whereas dl-PCBs are regenerated in 650 K treated fly ash, (2) formation of PCDFs predominates over that of PCDDs or dl-PCBs, and (3) less chlorinated homologues are abundant for PCDDs/DFs and dl-PCBs. PMID:16384596

  15. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    PubMed

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  16. Core cooling under accident conditions at the high flux beam reactor (HFBR)

    SciTech Connect

    Tichler, P.; Cheng, L. ); Fauske, H. )

    1991-01-01

    In certain accident scenarios, e.g. loss of coolant accidents (LOCA) all forced flow cooling is lost. Decay heating causes a temperature increase in the core coolant and the resulting thermal buoyancy causes a reversal of the flow direction to a natural circulation mode. Although there was experimental evidence during the reactor design period (1958--1963) that the heat removal capacity in the fully developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. In a LOCA scenario where even limited fuel damage occurs and natural circulation is established, fission product gases could be carried from the damaged fuel by steam into areas where operator access is required to maintain the core in a coolable configuration. This would force evacuation of the building and lead to extensive core damage. As a result the HFBR was shut down by the Department of Energy (DOE) and an extensive review of the HFBR was initiated. In an effort to address this issue BNL developed a model designed to predict the heat removal limit during flow reversal that was found to be in good agreement with the test results. Currently a thermal-hydraulic test program is being developed to provide a more realistic and defensible estimate of the flow reversal heat removal limit so that the reactor power level can be increased.

  17. Enhancement of heat removal using concave liquid metal targets for high-power accelerators.

    SciTech Connect

    Konkashbaev, I.; Fischer, P.; Hassanein, A.; Mokhov, N. V.; Mathematics and Computer Science; FNAL

    2007-01-01

    The need is increasing for development of high-power targets and beam dump areas for the production of intense beams of secondary particles. The severe constraints arising from a megawatt beam deposited on targets and absorbers call for nontrivial procedures to dilute the beam. This study describes the development of targets and absorbers and the advantages of using flowing liquid metal in concave channels first proposed by IFMIF to raise the liquid metal boiling point by increasing the pressure in liquid supported by a centrifugal force. Such flow with a back-wall is subject to Taylor-Couette instability. The instability can play a positive role of increasing the heat transfer from the hottest region in the target/absorber to the back-wall cooled by water. Results of theoretical analysis and numerical modeling of both targets and dump areas for the IFMIF, ILC, and RIA facilities are presented.

  18. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation. Revision 1

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  19. Chromatographic removal and heat inactivation of hepatitis A virus during manufacture of human albumin.

    PubMed

    Adcock, W L; MacGregor, A; Davies, J R; Hattarki, M; Anderson, D A; Goss, N H

    1998-08-01

    CSL Limited, an Australian biopharmaceutical company, has recently converted its method of manufacture for human albumin from a traditional Cohn-ethanol fractionation method to a method employing chromatographic techniques. Studies were undertaken to determine the efficiency of the chromatographic and pasteurization steps used in the manufacture of Albumex(R) (CSL's trade name for albumin) in removing and inactivating the potential viral contaminant, hepatitis A virus (HAV). The manufacturing process for Albumex(R) includes three chromatographic steps, two of which are ion-exchange steps (DEAE-Sepharose(R) Fast Flow and CM-Sepharose(R) Fast Flow) and the third is a gel-filtration step (Sephacryl(R) S200 HR). The final stage of the Albumex(R) process involves a bulk pasteurization step where product is held at 60 degrees C for 10 h. HAV partitioning experiments on the DEAE-Sepharose(R) FF and CM-Sepharose(R) FF ion-exchange and Sephacryl(R) S200 HR gel-filtration columns were performed with scaled-down models of the production-scale chromatographic Albumex(R) process. Production samples collected before each of the chromatographic steps were spiked with HAV and processed through each of the scaled-down chromatographic columns. Samples collected during processing were assayed and the log10 reduction factors calculated. Inactivation kinetics of HAV were examined during the pasteurization of Albumex(R) 5 and 20 [5% and 20% (w/v) albumin solutions] held at 60 degrees C for 10 h. Log10 reductions for HAV through the DEAE-Sepharose(R) FF, CM-Sepharose(R) FF and Sephacryl(R) S200 HR chromatographic columns were 5.3, 1.5 and 4.2 respectively, whereas a 4.4 and a greater than 3.9 log10 reduction in HAV in Albumex(R) 5 and 20 respectively were achieved during pasteurization.

  20. Markov Model of Severe Accident Progression and Management

    SciTech Connect

    Bari, R.A.; Cheng, L.; Cuadra,A.; Ginsberg,T.; Lehner,J.; Martinez-Guridi,G.; Mubayi,V.; Pratt,W.T.; Yue, M.

    2012-06-25

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  1. A study of the heat-removal process at the semiconductor-ceramics interface in solar cells by the laser thermal-wave method

    NASA Astrophysics Data System (ADS)

    Glazov, A. L.; Kalinovskii, V. S.; Kontrosh, E. V.; Muratikov, K. L.

    2016-06-01

    The influence of the solder layer between a semiconductor solar cell and heat-removing ceramics on the nonstationary heat-transfer processes has been investigated by the laser thermal-wave method. A theoretical model taking into account the presence of additional thermal resistance and thermal capacitance at the soldered junction is proposed. Different soldering modes are considered. It is shown that the laser thermal- wave methods within the developed model allow one to correctly estimate the thermophysical properties of multilayer structures.

  2. Radiation accidents

    SciTech Connect

    Saenger, E.L.

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity.

  3. Radiation accidents.

    PubMed

    Saenger, E L

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity. PMID:3526994

  4. Generation of a homozygous fertilization-defective gcs1 mutant by heat-inducible removal of a rescue gene.

    PubMed

    Nagahara, Shiori; Takeuchi, Hidenori; Higashiyama, Tetsuya

    2015-03-01

    Key message: New gametic homozygous mutants. In angiosperms, a haploid male gamete (sperm cell) fuses with a haploid female gamete (egg cell) during fertilization to form a zygote carrying paternally and maternally derived chromosomes. Several fertilization-defective mutants in Arabidopsis thaliana, including a generative cell-specific 1 (gcs1)/hapless 2 mutant, the sperm cells of which are unable to fuse with female gametes, can only be maintained as heterozygous lines due to the infertile male or female gametes. Here, we report successful generation of a gcs1 homozygous mutant by heat-inducible removal of the GCS1 transgene. Using the gcs1 homozygous mutant as male, the defect in gamete fusion was observed with great frequency; in our direct observation by semi-in vivo fertilization assay using ovules, 100 % of discharged sperm cells in culture failed to show gamete fusion. More than 70 % of ovules in the pistil received a second pollen tube as attempted fertilization recovery. Moreover, gcs1 mutant sperm cells could fertilize female gametes at a low frequency in the pistil. This strategy to generate homozygous fertilization-defective mutants will facilitate novel approaches in plant reproduction research.

  5. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    SciTech Connect

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-10-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  6. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  7. Severe accident simulation at Olkiuoto

    SciTech Connect

    Tirkkonen, H.; Saarenpaeae, T.; Cliff Po, L.C.

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  8. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--June 1997. Addendum 2: Task 3 topical report -- Long term wear test

    SciTech Connect

    Kudlac, G.A.

    1998-06-01

    Long-term operation of a condensing heat exchanger under typical coal-fired flue gas conditions was investigated in Phase 1, Task 3 of the Multiple Pollutant Removal Using the Condensing Heat Exchanger test program. The specific goal of this task was to determine the amount of wear, if any, on the Teflon{reg_sign}-covered heat transfer tubes in a condensing heat exchanger. A pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}) was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Operating conditions and particulate loadings for the test unit were monitored, Teflon{reg_sign} film thickness measurements were conducted, and surface replications (which duplicate the surface finish at the microscopic level) were taken at various times during the test. Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings (400 mg/dscm [0.35 lb/10{sup 6} Btu]). Evidence of wear was present only at the microscopic level, and even then was very minor in severity. Operation at high inlet particulate loadings resulted in accumulated ash deposits within the heat exchanger. Installation of a modified (higher flow rate) wash nozzle manifold substantially reduced subsequent deposit formation.

  9. Radiation accident grips Goiania

    SciTech Connect

    Roberts, L.

    1987-11-20

    On 13 September two young scavengers in Goiania, Brazil, removed a stainless steel cylinder from a cancer therapy machine in an abandoned clinic, touching off a radiation accident second only to Chernobyl in its severity. On 18 September they sold the cylinder, the size of a 1-gallon paint can, to a scrap dealer for $25. At the junk yard an employee dismantled the cylinder and pried open the platinum capsule inside to reveal a glowing blue salt-like substance - 1400 curies of cesium-137. Fascinated by the luminescent powder, several people took it home with them. Some children reportedly rubbed in on their bodies like carnival glitter - an eerie image of how wrong things can go when vigilance over radioactive materials lapses. In all, 244 people in Goiania, a city of 1 million in central Brazil, were contaminated. The eventual toll, in terms of cancer or genetic defects, cannot yet be estimated. Parts of the city are cordoned off as radiation teams continue washing down buildings and scooping up radioactive soil. The government is also grappling with the political fallout from the accident.

  10. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect

    Not Available

    1980-09-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  11. Evaluation of catalyzed and electrically heated filters for removal of particulate emissions from diesel-A- and JP-8-fueled engines.

    PubMed

    Kelly, Kerry E; Wagner, David A; Lighty, JoAnn S; Sarofim, Adel F; Bretecher, Brad; Holden, Bruce; Helgeson, Norm; Sahay, Keshav; Nardi, Zack

    2004-01-01

    In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.

  12. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  13. Heat generated by Er:YAG laser in the pulp chamber of teeth submitted to removal of dental tissue and composite resin

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima; Brugnera, Aldo, Jr.; Pecora, Jesus D.; Pinheiro, Antonio; Spano, Julio; Barbin, Eduardo; Marchesan, Melissa A.

    2004-05-01

    The knowledge about and control of thermal energy produced by Er:YAG laser after irradiating hard dental tissues and compound resin is important because the pulp, like all vital biological tissue, has a certain capacity for supporting stimulus. The objective of this study was to analyze the thermal variation generated by Er:YAG laser (λ=2.94μm) during the preparation of a Class I cavity in the dental structure and in the removal of microhybrid Z100 (3M) compound resin. An evaluation was made of 30 maxillary human pre-molar teeth from the bank of the Endodontic Laboratory Center of Ribeirao Preto Dental School, Brasil. The sample was divided into 6 groups of 5 teeth each: Group 1, preparation of Class I cavity with Er:YAG laser (350mJ, 3Hz, 343 impulses, 120J, 113 seconds); Group 2, preparation of Class I cavity with Er:YAG laser (350mJ, 4Hz, 343 impulses, 120J, 81 seconds); Group 3, preparation of Class I cavity with Er:YAG laser (350mJ, 6Hz, 343 impulses, 120J, 58 seconds); Group 4, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 3Hz, 258 impulses, 90J, 85 seconds); Group 5, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 4Hz, 258 impulses, 90J, 67 seconds); Group 6, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 6Hz, 258 impulses, 42 seconds). The laser used was KaVo Key 2 (Biberach, Germany), λ=2,94μm, P=3 Watts, pulse duration of 250μs, with air-water cooling. The increase in temperature during dental preparation and the removal of the compound resin was evaluated by means of a Tektronix DMM916 Thermocouple (Consitec, Brasil). The results showed that the application of laser for the removal of the hard dental tissues and for the removal of compound resins with the pulse frequencies 3, 4 and 6 Hz did not generate heating greater than 3.1°C and remained within the histopathological limits permitted for pulp tissue (5.5°C) and there was a significant statistical

  14. Follow - on activities to the Swedish severe accident mitigation program

    SciTech Connect

    Lowenhielm, G.; Espefalt, R. ); Soderman, E. )

    1992-01-01

    Due to the government requirements severe accident mitigating measures were implemented at Barseback nuclear power plant in 1985 and at the other Swedish nuclear power plants in 1988. For the latter plants these measures included protection against early containment impairment, highly redundant containment spray and filtered venting of the containment. Accident management strategies and corresponding documents were developed to counteract a severe accident situation. This document describes accident management strategies at Swedish nuclear power plants and our ongoing program for further development of the accident management program. Also ongoing research concerning phenomenological issues, such as direct containment heating, hydrogen deflagration and corium coolability is presented.

  15. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  16. Designing an Experimental "Accident"

    ERIC Educational Resources Information Center

    Picker, Lester

    1974-01-01

    Describes an experimental "accident" that resulted in much student learning, seeks help in the identification of nematodes, and suggests biology teachers introduce similar accidents into their teaching to stimulate student interest. (PEB)

  17. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  18. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production.

  19. Heating with waste heat

    SciTech Connect

    Beabout, R.W.

    1986-09-02

    Most of the power consumed in the gaseous diffusion process is converted into heat of compression, which is removed from the process gas and rejected into the atmosphere by recirculating cooling water over cooling towers. The water being handled through the X-333 and X-330 Process Buildings can be heated to 140 to 150/sup 0/F for heating use. The Gas Centrifuge Enrichment Plant is provided with a recirculating heating water (RHW) system which uses X-330 water and wasted heat. The RHW flow is diagrammed. (DLC)

  20. Generation IV reactors and the ASTRID prototype: Lessons from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Gauché, François

    2012-05-01

    In France, the ASTRID prototype is a sodium-cooled fast neutron industrial demonstrator, fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for 3rd generation reactors, and take into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, take advantage of the large thermal inertia of SFRs for decay heat removal, and provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place.

  1. Core cooling under accident conditions at the high-flux beam reactor

    SciTech Connect

    Tichler, P.; Cheng, L. ); Fauske, H. )

    1991-01-01

    The High-Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is cooled and moderated by heavy water and contains {sup 235}U in the form of narrow-channel, parallel-plate-type fuel elements. During normal operation, the flow direction is downward through the core. This flow direction is maintained at a reduced flow rate during routine shutdown and on loss of commercial power by means of redundant pumps and power supplies. However, in certain accident scenarios, e.g. loss-of-coolant accidents (LOCAs), all forced-flow cooling is lost. Although there was experimental evidence during the reactor design period (1958-1963) that the heat removal capacity in the fully developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. Accordingly, a test program was initiated using an electrically heated section to simulate the fuel channel and a cooling loop to simulate the balance of the primary cooling system.

  2. Bayes classifiers for imbalanced traffic accidents datasets.

    PubMed

    Mujalli, Randa Oqab; López, Griselda; Garach, Laura

    2016-03-01

    Traffic accidents data sets are usually imbalanced, where the number of instances classified under the killed or severe injuries class (minority) is much lower than those classified under the slight injuries class (majority). This, however, supposes a challenging problem for classification algorithms and may cause obtaining a model that well cover the slight injuries instances whereas the killed or severe injuries instances are misclassified frequently. Based on traffic accidents data collected on urban and suburban roads in Jordan for three years (2009-2011); three different data balancing techniques were used: under-sampling which removes some instances of the majority class, oversampling which creates new instances of the minority class and a mix technique that combines both. In addition, different Bayes classifiers were compared for the different imbalanced and balanced data sets: Averaged One-Dependence Estimators, Weightily Average One-Dependence Estimators, and Bayesian networks in order to identify factors that affect the severity of an accident. The results indicated that using the balanced data sets, especially those created using oversampling techniques, with Bayesian networks improved classifying a traffic accident according to its severity and reduced the misclassification of killed and severe injuries instances. On the other hand, the following variables were found to contribute to the occurrence of a killed causality or a severe injury in a traffic accident: number of vehicles involved, accident pattern, number of directions, accident type, lighting, surface condition, and speed limit. This work, to the knowledge of the authors, is the first that aims at analyzing historical data records for traffic accidents occurring in Jordan and the first to apply balancing techniques to analyze injury severity of traffic accidents.

  3. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  4. HTR-100 industrial nuclear power plant for generation of heat and electricity

    SciTech Connect

    Brandes, S.; Kohl, W.

    1987-11-01

    Based on their proven high-temperature reactor (HTR) with pebble-bed core, Brown, Boveri and Cie/Hochtemperatur-Reaktorbau have developed an HTR-100 plant that combines favorable capital costs and high availability. Due to the high HTR-specific standards and passive safety features, this plant is especially well suited for siting near the end user. The safety concept permits further operation of the plant or decay heat removal via the operational heat sinks in the event of maloperation and design basis accidents having a higher probability of occurrence. In the event of hypothetical accidents, the decay heat is removed from the reactor pressure vessel by radiation, conduction, and convection to a concrete cooling system operating in natural convection. As an example of the new HTR-100 plant concept, a twin-block plant design for extraction of industrial steam is presented.

  5. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon.

    PubMed

    Bashkova, Svetlana; Bandosz, Teresa J

    2009-05-01

    The removal of NO(2) on urea-modified and heat-treated wood-based activated carbons was studied. From the obtained results it was found that these modifications, especially when done at 950 degrees C, have a positive effect on NO(2) adsorption and on the retention of NO (the product of NO(2) reduction by carbon). The presence of moisture in the system enhances the removal of NO(2) but negatively affects the retention of NO. It is possible that the formation of active centers on the carbon surface and some increase in the volume of supermicropores during the high temperature treatment play a significant role in these removal processes. The surface of the carbons was analyzed in terms of the pK(a) distributions. The qualitative and quantitative analyses of the NO(2) adsorption products were carried out by means of FTIR and TA techniques, respectively. The main products found on the carbon surface were the NO(3) and NO(2) species.

  6. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  7. Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors

    SciTech Connect

    Roald A. Wigeland; James E. Cahalan

    2011-04-01

    Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.

  8. Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets.

    PubMed

    Tan, Cher Lin Clara; Sapiha, Kostantyn; Leong, Yoke Fun Hannah; Choi, Siwon; Anariba, Franklin; Thio, Beng Joo Reginald

    2015-07-21

    A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable. PMID:26053932

  9. Civil aircraft accident investigation.

    PubMed

    Haines, Daniel

    2013-01-01

    This talk reviews some historic aircraft accidents and some more recent. It reflects on the division of accident causes, considering mechanical failures and aircrew failures, and on aircrew training. Investigation results may lead to improved aircraft design, and to appropriate crew training. PMID:24057309

  10. Anatomy of an Accident.

    ERIC Educational Resources Information Center

    Mobley, Michael

    1984-01-01

    The findings of industrial safety engineers in the areas of accident causation and prevention are wholly applicable to adventure programs. Adventure education instructors can use safety engineering concepts to assess the risk in a particular activity, understand factors that cause accidents, and intervene to minimize injuries and damages if…

  11. Farm accidents in children.

    PubMed Central

    Cameron, D.; Bishop, C.; Sibert, J. R.

    1992-01-01

    OBJECTIVE--To examine the problem of accidental injury to children on farms. DESIGN--Prospective county based study of children presenting to accident and emergency departments over 12 months with injuries sustained in a farm setting and nationwide review of fatal childhood farm accidents over the four years April 1986 to March 1990. SETTING--Accident and emergency departments in Aberystwyth, Carmarthen, Haverfordwest, and Llanelli and fatal accidents in England, Scotland, and Wales notified to the Health and Safety Executive register. SUBJECTS--Children aged under 16. MAIN OUTCOME MEASURE--Death or injury after farm related accidents. RESULTS--65 accidents were recorded, including 18 fractures. Nine accidents necessitated admission to hospital for a mean of two (range one to four) days. 13 incidents were related to tractors and other machinery; 24 were due to falls. None of these incidents were reported under the statutory notification scheme. 33 deaths were notified, eight related to tractors and allied machinery and 10 related to falling objects. CONCLUSIONS--Although safety is improving, the farm remains a dangerous environment for children. Enforcement of existing safety legislation with significant penalties and targeting of safety education will help reduce accident rates further. PMID:1638192

  12. Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS.

    SciTech Connect

    Tzanos, C. P.

    2007-05-16

    The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS. At this time no reference design is available for the NGNP. The General Atomics (GA) gas turbine - modular helium reactor (GT-MHR) has been used in many analyses as a starting reference design. In the GT-MHR the reactor outlet temperature is 850 C, while the target outlet reactor temperature in VHTR is 1000 C. VHTR scoping studies with a reactor outlet temperature of 1000 C have been performed at GA and INEL. Although the reactor outlet temperature in the VHTR is significantly higher than in the GT-MHR, the peak temperature in the reactor vessel (which is the heat source for the RCCS) is not drastically different. In this work, analyses have been performed using reactor vessel

  13. Markov Model of Accident Progression at Fukushima Daiichi

    SciTech Connect

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  14. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results

    SciTech Connect

    Morris, D.G.; Wendel, M.W.; Chen, N.C.J.; Ruggles, A.E.; Cook, D.H.

    1989-01-01

    A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 h is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.

  15. Measurement of convectional heat transfer coefficients in a primary containment vessel with outer pool

    SciTech Connect

    Fukui, Toru; Kataoka, Yoshiyuki; Hatamiya, Shigeo

    1990-01-01

    New concepts with passive safety systems that use no active compounds, such as pumps, have been recently developed for next-generation nuclear power plants. In these concepts, several ideas and their combination of passive components were adopted for emergency core cooling and residual heat removal systems. For the residual heat removal system, utilization of natural circulation heat transfer in water pools was proposed as a passive containment cooling system (PCCS), which removes decay heat from the primary containment vessel (PCV) during loss-of-coolant accidents (LOCAs). This system consists of a suppression pool (S/P) and an outer pool (O/P), which are set adjacently inside and outside of the steel PCV wall. The core decay heat during LOCA is released through a break as steam and is led into the S/P. The injected steam condenses there, resulting a pool temperature rise. The adsorbed heat in the S/P is transferred to the O/P by convection in both pools and thermal conduction through the steel PCV wall. The heat transferred to the O/P is finally released to the atmosphere by vaporization of the O/P water. Estimation of the convectional heat transfer coefficients in both pools is necessary to predict the heat removal capability in this system precisely. The heat transfer coefficients measured in this study are useful for the design of the next-generation nuclear reactor as the fundamental thermal-hydraulic data in the primary containment vessel with the outer pool.

  16. Agricultural implications of the Fukushima nuclear accident.

    PubMed

    Nakanishi, Tomoko M

    2016-08-01

    More than 4 years has passed since the accident at the Fukushima Nuclear Power Plant. Immediately after the accident, 40 to 50 academic staff of the Graduate School of Agricultural and Life Sciences at the University of Tokyo created an independent team to monitor the behavior of the radioactive materials in the field and their effects on agricultural farm lands, forests, rivers, animals, etc. When the radioactive nuclides from the nuclear power plant fell, they were instantly adsorbed at the site where they first touched; consequently, the fallout was found as scattered spots on the surface of anything that was exposed to the air at the time of the accident. The adsorption has become stronger over time, so the radioactive nuclides are now difficult to remove. The findings of our study regarding the wide range of effects on agricultural fields are summarized in this report. PMID:27538845

  17. Agricultural implications of the Fukushima nuclear accident

    PubMed Central

    Nakanishi, Tomoko M.

    2016-01-01

    More than 4 years has passed since the accident at the Fukushima Nuclear Power Plant. Immediately after the accident, 40 to 50 academic staff of the Graduate School of Agricultural and Life Sciences at the University of Tokyo created an independent team to monitor the behavior of the radioactive materials in the field and their effects on agricultural farm lands, forests, rivers, animals, etc. When the radioactive nuclides from the nuclear power plant fell, they were instantly adsorbed at the site where they first touched; consequently, the fallout was found as scattered spots on the surface of anything that was exposed to the air at the time of the accident. The adsorption has become stronger over time, so the radioactive nuclides are now difficult to remove. The findings of our study regarding the wide range of effects on agricultural fields are summarized in this report. PMID:27538845

  18. Experimental investigation of egg ovalbumin scaling on heated stainless steel surface and scale-removal compared with that of whey protein.

    PubMed

    Li, Lin; Lv, Hui Ting; Deng, Ren Pan; Liao, Zhen Kai; Wu, Xue E; Chen, Xiao Dong

    2013-07-01

    Fouling and cleaning on a heat exchanger surface during milk processing have been studied extensively in the past due to their great importance in energy, product quality, and safety. However, little information is available for egg ovalbumin (OVA) fouling and cleaning behavior. In the present work, fouling and cleaning behaviors of OVA were investigated using a real-time monitoring system for heat transfer coefficient. A comparison was made between the behavior of whey protein concentrate (WPC) and that of OVA. WPC has been well studied which can be used as a benchmark. Ultrasonic cleaning was also applied to investigate the cleaning behavior of OVA fouling. Results have shown that OVA created more thermal resistance than WPC in the 2 h fouling process. It was also much more difficult to remove the OVA deposit than the WPC fouling. Different from what were observed from WPC deposit, there was no optimal cleaning rate for OVA deposit in the NaOH concentration range tested (0-2.0 wt%), while WPC fouling is known to have the highest cleaning rate around 0.5 wt% NaOH concentration at moderate temperatures.

  19. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    SciTech Connect

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  20. Persistence of airline accidents.

    PubMed

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation.

  1. Assessment of CRBR core disruptive accident energetics

    SciTech Connect

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

  2. Numerical predictions of natural convection in a uniformly heated pool

    SciTech Connect

    Tzanos, C.P. Cho, D.H.

    1993-05-01

    In the event of a core meltdown accident, one of the accident progression paths is fuel relocation to the lower reactor plenum. In the heavy water new production reactor (NPR-HWR) design the reactor cavity is flooded with water. In such a design, decay heat removal to the water in the reactor cavity and thence to the containment may be adequate to keep the reactor vessel temperature below failure limits. If this is the case, the accident progression can be arrested by retaining a coolable corium configuration in the lower reactor plenum. The strategy of reactor cavity flooding to prevent reactor vessel failure from molten corium relocation to the reactor vessel lower head has also been considered for commercial pressurized water reactors. Previously, the computer code COMMIX-LAR/P was used to determine if the heat removal rate from the molten cerium in the lower plenum to the water in the cavity was adequate to keep the reactor vessel temperature in the NPR-HWR design below failure limits. It was found that natural convection in the molten pool resulted in heat removal rates that kept the peak reactor vessel temperature about 400{degrees}C below the steel melting point. The objective of the work presented in this paper was to determine whether COMMIX adequately predicts natural convection in a pool heated by a uniform heat source. For this purpose, the experiments of free convection in a semicircular cavity of Jahn and Reeneke were analyzed with COMMIX and code predictions were compared with experimental measurements. COMMIX is a general purpose thermalhydraulics code based on finite differencing by the first order upwind scheme.

  3. Numerical predictions of natural convection in a uniformly heated pool

    SciTech Connect

    Tzanos, C.P. Cho, D.H.

    1993-01-01

    In the event of a core meltdown accident, one of the accident progression paths is fuel relocation to the lower reactor plenum. In the heavy water new production reactor (NPR-HWR) design the reactor cavity is flooded with water. In such a design, decay heat removal to the water in the reactor cavity and thence to the containment may be adequate to keep the reactor vessel temperature below failure limits. If this is the case, the accident progression can be arrested by retaining a coolable corium configuration in the lower reactor plenum. The strategy of reactor cavity flooding to prevent reactor vessel failure from molten corium relocation to the reactor vessel lower head has also been considered for commercial pressurized water reactors. Previously, the computer code COMMIX-LAR/P was used to determine if the heat removal rate from the molten cerium in the lower plenum to the water in the cavity was adequate to keep the reactor vessel temperature in the NPR-HWR design below failure limits. It was found that natural convection in the molten pool resulted in heat removal rates that kept the peak reactor vessel temperature about 400[degrees]C below the steel melting point. The objective of the work presented in this paper was to determine whether COMMIX adequately predicts natural convection in a pool heated by a uniform heat source. For this purpose, the experiments of free convection in a semicircular cavity of Jahn and Reeneke were analyzed with COMMIX and code predictions were compared with experimental measurements. COMMIX is a general purpose thermalhydraulics code based on finite differencing by the first order upwind scheme.

  4. Accident resistant transport container

    DOEpatents

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  5. Accident resistant transport container

    DOEpatents

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  6. Safety Is No Accident.

    ERIC Educational Resources Information Center

    Christiansen, Monty L.

    1985-01-01

    Liability suits involving accidents in park and recreation areas are expensive and intangible costs are incalculable. Risk management practices related to park planning, personnel, and administrative practices are discussed. (MT)

  7. Accident management information needs

    SciTech Connect

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R. )

    1990-04-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs.

  8. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  9. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    SciTech Connect

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31

    -normal operating conditions. The standpipes are headered (in groups of four in the prototype) to water supply (header) tanks that are situated well above the reactor vessel to facilitate natural convection cooling during a loss of forced flow event. During normal operations, the water is pumped from a heat sink located outside the containment to the headered inlets to the standpipes. The water is then delivered to each standpipe through a centrally located downcomer that passes the coolant to the bottom of each pipe. The water then turns 180{sup o} and rises up through the annular gap while extracting heat from the reactor cavity due to a combination of natural convection and radiation across the gap between the reactor vessel and standpipes. The water exits the standpipes at the top where it is headered (again in groups of four) into a return line that passes the coolant to the top of the header tank. Coolant is drawn from each tank through a fitting located near the top of the tank where it flows to the heat rejection system located outside the containment. This completes the flow circuit for normal operations. During off-normal conditions, forced convection water cooling in the RCCS is presumed to be lost, as well as the ultimate heat sink outside the containment. In this case, water is passively drawn from an open line located at the bottom of the header tank. This line is orificed so that flow bypass during normal operations is small, yet the line is large enough to provide adequate flow during passive operations to remove decay heat while maintaining acceptable fuel temperatures. In the passive operating mode, water flows by natural convection from the bottom of the supply tank to the standpipes, and returns through the normal pathway to the top of the tanks. After the water reaches saturation and boiling commences, steam will pass through the top of the tanks and be vented to atmosphere. In the experiment system shown in Fig. 4, a steam condensation and collection system is

  10. GPHS-RTG launch accident analysis for Galileo and Ulysses

    SciTech Connect

    Bradshaw, C.T. )

    1991-01-01

    This paper presents the safety program conducted to determine the response of the General Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) to potential launch accidents of the Space Shuttle for the Galileo and Ulysses missions. The National Aeronautics and Space Administration (NASA) provided definition of the Shuttle potential accidents and characterized the environments. The Launch Accident Scenario Evaluation Program (LASEP) was developed by GE to analyze the RTG response to these accidents. RTG detailed response to Solid Rocket Booster (SRB) fragment impacts, as well as to other types of impact, was obtained from an extensive series of hydrocode analyses. A comprehensive test program was conducted also to determine RTG response to the accident environments. The hydrocode response analyses coupled with the test data base provided the broad range response capability which was implemented in LASEP.

  11. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  12. Validation of the integration of CFD and SAS4A/SASSYS-1: Analysis of EBR-II shutdown heat removal test 17

    SciTech Connect

    Thomas, J. W.; Fanning, T. H.; Vilim, R.; Briggs, L. L.

    2012-07-01

    Recent analyses have demonstrated the need to model multidimensional phenomena, particularly thermal stratification in outlet plena, during safety analyses of loss-of-flow transients of certain liquid-metal cooled reactor designs. Therefore, Argonne's reactor systems safety code SAS4A/SASSYS-1 is being enhanced by integrating 3D computational fluid dynamics models of the plena. A validation exercise of the new tool is being performed by analyzing the protected loss-of-flow event demonstrated by the EBR-II Shutdown Heat Removal Test 17. In this analysis, the behavior of the coolant in the cold pool is modeled using the CFD code STAR-CCM+, while the remainder of the cooling system and the reactor core are modeled with SAS4A/SASSYS-1. This paper summarizes the code integration strategy and provides the predicted 3D temperature and velocity distributions inside the cold pool during SHRT-17. The results of the coupled analysis should be considered preliminary at this stage, as the exercise pointed to the need to improve the CFD model of the cold pool tank. (authors)

  13. Skin lesion removal

    MedlinePlus

    ... focused on a very small area. The laser heats the cells in the area being treated until they "burst." There are several types of lasers. Each laser has specific uses. Laser excision can remove: Benign or pre- ...

  14. Injuries are not accidents

    PubMed Central

    Gutiérrez, María Isabel

    2014-01-01

    Injuries are the result of an acute exposure to exhort of energy or a consequence of a deficiency in a vital element that exceeds physiological thresholds resulting threatens life. They are classified as intentional or unintentional. Injuries are considered a global health issue because they cause more than 5 million deaths per year worldwide and they are an important contributor to the burden of disease, especially affecting people of low socioeconomic status in low- and middle-income countries. A common misconception exists where injuries are thought to be the same as accidents; however, accidents are largely used as chance events, without taken in consideration that all these are preventable. This review discusses injuries and accidents in the context of road traffic and emphasizes injuries as preventable events. An understanding of the essence of injuries enables the standardization of terminology in public use and facilitates the development of a culture of prevention among all of us. PMID:25386040

  15. Accident prevention manual

    SciTech Connect

    Not Available

    1998-05-01

    Among the many common needs and goals are the safety and well-being of families, ourselves, fellow employees, and the continuing success of this organization. To these ends--minimizing human suffering and economic waste--the Bonneville Power Administration (BPA) Accident Prevention Program and this Accident Prevention Manual (APM) are dedicated. The BPA Accident Prevention Program is revised as necessary to ensure compliance with relevant Federal safety and health standards. The mandatory rules herein express minimum requirements for dealing with the principal hazards inherent in daily work activities. These and other written requirements, which neither can nor should provide complete coverage of all work situations, must be continually reinforced through the sound and mature safety judgments of all workers on each assigned task. In the event of conflicting judgments, the more conservative interpretation shall prevail pending review and resolution by management.

  16. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident. PMID:22951483

  17. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident.

  18. Risk assessment and national measure plan for oil and HNS spill accidents near Korea.

    PubMed

    Lee, Moonjin; Jung, Jung-Yeul

    2013-08-15

    Many oil and HNS spill accidents occur in the waters surrounding the Korean Peninsula because Korea is one of the biggest trading partners in the world. In this study, we analyzed the oil and HNS spill accidents that occurred between 1994 and 2005 and created risk matrices to assess these accidents. The worst scenarios of future oil and HNS spill accidents were established, and the maximum spill amounts were estimated using historic accident data and a correlation from IPIECA. The maximum spill amounts are estimated to be between 77,000 and 10,000 tons of oil and HNS, respectively. One third of the spill materials should be removed using recovery equipment within three days of the spill event, according to the national measure plan. The capability of recovery equipment to remove spill materials can be estimated, and the equipment should then be prepared to mitigate the harmful effects of future oil and HNS accidents on humans and marine ecosystems.

  19. Severe Accident Test Station Activity Report

    SciTech Connect

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  20. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  1. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    SciTech Connect

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  2. Thulium-170 heat source

    SciTech Connect

    Walter, C.E.; Van Konynenburg, R.; Van Sant, J.H.

    1992-01-21

    This patent describes an isotopic heat source. It comprises; at least one isotopic fuel stack, comprising alternating layers of: thulium oxide; and a low atomic weight diluent for thulium oxide; a heat block defining holes into which the fuel stacks can be placed; at least one heat pipe for heat removal, with the heat pipe being positioned in the heat block in thermal connection with the fuel stack; and a structural container surrounding the heat block.

  3. Applying STAMP in Accident Analysis

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Daouk, Mirna; Dulac, Nicolas; Marais, Karen

    2003-01-01

    Accident models play a critical role in accident investigation and analysis. Most traditional models are based on an underlying chain of events. These models, however, have serious limitations when used for complex, socio-technical systems. Previously, Leveson proposed a new accident model (STAMP) based on system theory. In STAMP, the basic concept is not an event but a constraint. This paper shows how STAMP can be applied to accident analysis using three different views or models of the accident process and proposes a notation for describing this process.

  4. Tractor accidents in Swedish traffic.

    PubMed

    Pinzke, Stefan; Nilsson, Kerstin; Lundqvist, Peter

    2012-01-01

    The objective of this study is to reach a better understanding of accidents on Swedish roads involving tractors and to suggest ways of preventing them. In an earlier study we analyzed police-reported fatal accidents and accidents that led to physical injuries from 1992 to 2005. During each year of this period, tractors were involved in 128 traffic accidents on average, an average of 7 people were killed, 44 sustained serious injuries, and 143 sustained slight injuries. The number of fatalities in these tractor accidents was about 1.3% of all deaths in traffic accidents in Sweden. Cars were most often involved in the tractor accidents (58%) and 15% were single vehicle accidents. The mean age of the tractor driver involved was 39.8 years and young drivers (15-24 years) were overrepresented (30%). We are now increasing the data collected with the years 2006-2010 in order to study the changes in the number of accidents. Special attention will be given to the younger drivers and to single vehicle accidents. Based on the results we aim to develop suggestions for reducing road accidents, e.g. including measures for making farm vehicles more visible and improvement of the training provided at driving schools. PMID:22317543

  5. Piercing tool, Transportation Accident Resistant Container (TARC)

    SciTech Connect

    Lari, P.

    1994-08-01

    Transportation Accident Resistant Containers (TARC)s are used for enhanced safety during movement of nuclear weapons. Its design features a tough stainless steel outer skin, redwood for impact mitigation and fire protection and a rugged aluminum inner container. Redwood absorbs impact energy by crushing, similar to the way foam crushes in other containers. Redwood also functions to insulate the weapon from heat and fire. When a TARC is involved in a fire, the redwood will slowly burn forming a good insulating char. The redwood can continue to smolder once the fire is out. To ensure the smolder is extinguished, water can be directed into any accident caused hole in the skin. If no hole exists, it may be necessary to create one. This document discusses tool selection, testing, and a simple but effective method of creating an access hole in the outer skin large enough to apply fire fighting techniques.

  6. [Skateboard and rollerskate accidents].

    PubMed

    Lohmann, M; Petersen, A O; Pedersen, O D

    1990-05-28

    The increasing popularity of skateboards and rollerskates has resulted in an increased number of contacts with the casualty department in Denmark after accidents. As part of the Danish share in the EHLASS project (European Home and Leisure Surveillance System), 120,000 consecutive contacts with the casualty departments were reviewed. Out of these 516 were due to accidents with skateboards and rollerskates (181/335). A total of 194 of these injuries (38%) were fractures and 80% of these were in the upper limbs. Twenty fractures required reposition under general anaesthesia and two required osteosynthesis. Nine patients were admitted for observation for concussion. One patient had sustained rupture of the spleen and splenectomy was necessary. A total of 44 patients were admitted. None of the 516 patients had employed protective equipment on the injured region. Considerable reduction in the number of injuries could probably be produced by employment of suitable protective equipment.

  7. [Drowning accidents in childhood].

    PubMed

    Krandick, G; Mantel, K

    1990-09-30

    This is a report on five boys aged between 1 and 5 years who, after prolonged submersion in cold water, were treated at our department. On being taken out of the water, all the patients were clinically dead. After 1- to 3-hour successful cardiopulmonary resuscitation, with a rectal temperature of about 27 degrees C, they were rewarmed at a rate of 1 degree/hour. Two patients died within a few hours after the accident. One patient survived with an apallic syndrome, 2 children survived with no sequelae. In the event of a water-related accident associated with hypothermia, we consider suitable resuscitation to have preference over rewarming measures. The most important treatment guidelines and prognostic factors are discussed.

  8. Farm accidents in children.

    PubMed

    Cogbill, T H; Busch, H M; Stiers, G R

    1985-10-01

    During a 6 1/2 year period, 105 children were admitted to the hospital as the result of trauma that occurred on farms. The mechanism of injury was animal related in 42 (40%), tractor or wagon accident in 28 (26%), farm machinery in 21 (20%), fall from farm building in six (6%), and miscellaneous in eight (8%). Injury Severity Score was calculated for each patient. An Injury Severity Score of greater than or equal to 25 was determined for 11 children (11%). Life-threatening injuries, therefore, are frequently the result of childhood activities that take place in agricultural environments. The most common injuries were orthopedic, neurologic, thoracoabdominal, and maxillofacial. There was one death in the series, and only one survivor sustained major long-term disability. Such injuries are managed with optimal outcome in a regional trauma center. Educational programs with an emphasis on prevention and safety measures may reduce the incidence of farm accidents. PMID:4047799

  9. Accident Flying Squad

    PubMed Central

    Snook, Roger

    1972-01-01

    This paper describes the organization, evaluation, and costing of an independently financed and operated accident flying squad. 132 accidents involving 302 casualties were attended, six deaths were prevented, medical treatment contributed to the survival of a further four, and the condition or comfort of many other casualties was improved. The calls in which survival was influenced were evenly distributed throughout the three-and-a-half-year survey and seven of the 10 so aided were over 16 and under 30 years of age, all 10 being in the working age group. The time taken to provide the service was not excessive and the expense when compared with the overall saving was very small. The scheme was seen to be equally suitable for basing on hospital or general practice or both, and working as an integrated team with the ambulance service. The use of specialized transport was found to be unnecessary. Other benefits of the scheme included use of the experience of attending accidents to ensure relevant and realistic training for emergency service personnel, and an appreciation of the effect of ambulance design on the patient. ImagesFIG. 1FIG. 4 PMID:5069642

  10. Safety analysis results for cryostat ingress accidents in ITER

    SciTech Connect

    Merrill, B.J.; Cadwallader, L.C.; Petti, D.A.

    1996-12-31

    Accidents involving the ingress of air or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits.

  11. System Integral Test by BWR Drywell Cooler Applied as Phase-II Accident Management

    SciTech Connect

    Nagasaka, Hideo; Tobimatsu, Toshimi; Tahara, Mika; Yokobori, Seiichi; Akinaga, Makoto

    2002-07-01

    This paper deals with the system interaction performance using the BWR drywell local cooler (DWC) in combination with containment spray as a Japanese Phase-II accident management (AM). By using almost full height simulation test facility (GIRAFFE-DWC) with scaling ratio of 1/600, the system integral tests simulating BWR low pressure vessel failure sequence were accomplished during about 14 hours. In case of DWC application, the containment pressure increase was found milder due to DWC heat removal performance. Initial spray timing was delayed about 3 hours and each spray period was reduced almost by half. It was concluded that the application of a BWR DWC to Phase-II AM measure is quite promising from the point of delaying or preventing the containment venting. (authors)

  12. TMI-2 reactor vessel head removal

    SciTech Connect

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1985-09-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 (TMI-2) reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training, the head was safely removed and stored; and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities.

  13. TMI-2 reactor vessel head removal

    SciTech Connect

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1984-12-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training the head was safely removed and stored and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities.

  14. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    PubMed

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  15. Blood lead concentration after a shotgun accident.

    PubMed Central

    Gerhardsson, Lars; Dahlin, Lars; Knebel, Richard; Schütz, Andrejs

    2002-01-01

    In an accidental shooting, a man in his late forties was hit in his left shoulder region by about 60 lead pellets from a shotgun. He had injuries to the vessels, the clavicle, muscles, and nerves, with total paralysis of the left arm due to axonal injury. After several surgical revisions and temporary cover with split skin, reconstructive surgery was carried out 54 days after the accident. The brachial plexus was swollen, but the continuity of the nerve trunks was not broken (no neuroma present). We determined the blood lead (BPb) concentration during a follow-up period of 12 months. The BPb concentration increased considerably during the first months. Although 30 lead pellets were removed during the reconstructive surgery, the BPb concentration continued to rise, and reached a peak of 62 microg/dL (3.0 micromol/L) on day 81. Thereafter it started to decline. Twelve months after the accident, BPb had leveled off at about 30 microg/dL. At that time, muscle and sensory functions had partially recovered. The BPb concentration exceeded 30 microg/dL for 9 months, which may have influenced the recovery rate of nerve function. Subjects with a large number of lead pellets or fragments embedded in the body after shooting accidents should be followed for many years by regular determinations of BPb. To obtain a more stable basis for risk assessment, the BPb concentrations should be corrected for variations in the subject's hemoglobin concentration or erythrocyte volume fraction. PMID:11781173

  16. Aircraft accident survivors as witnesses.

    PubMed

    Dodge, R E

    1983-02-01

    This is a study of the reliability of aircrash survivors as witnesses. Some of their statements are compared to known facts at the time of the crash, including the time of the accident and the weather conditions. Other facts are compared between the survivors, such as the mood of the passengers immediately post-crash. The KLM-Pan Am accident in the Canary Islands is used as the study accident. A suggestion for future use of survivors' statements is tendered.

  17. Study of condensation heat transfer following a main steam line break inside containment

    SciTech Connect

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J.

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  18. Rear-end accident victims. Importance of understanding the accident.

    PubMed Central

    Sehmer, J. M.

    1993-01-01

    Family physicians regularly treat victims of rear-end vehicle accidents. This article describes how taking a detailed history of the accident and understanding the significance of the physical events is helpful in understanding and anticipating patients' morbidity and clinical course. Eight questions to ask patients are suggested to help physicians understand the severity of injury. PMID:8495140

  19. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    SciTech Connect

    Robb, Kevin R.

    2015-08-01

    CrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.

  20. 33 CFR 173.33 - Removal of number.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Removal of number. 173.33 Section...) BOATING SAFETY VESSEL NUMBERING AND CASUALTY AND ACCIDENT REPORTING Numbering § 173.33 Removal of number. The person whose name appears on a certificate of number as the owner of a vessel shall remove...

  1. Feedwater transient and small break loss of coolant accident analyses for the Bellefonte Nuclear Plant

    SciTech Connect

    Bayless, P D; Dobbe, C A; Chambers, R

    1987-03-01

    Specific sequences that may lead to core damage were analyzed for the Bellefonte nuclear plant as part of the US Nuclear Regulatory Commission's Severe Accident Sequence Analysis Program. The RELAP5, SCDAP, and SCDAP/RELAP5 computer codes were used in the analyses. The two main initiating events investigated were a loss of all feedwater to the steam generators and a small cold leg break loss of coolant accident. The transients of primary interest within these categories were the TMLB' and S/sub 2/D sequences. Variations on systems availability were also investigated. Possible operator actions that could prevent or delay core damage were identified, and two were investigated for a small break transient. All of the transients were analyzed until either core damage began or long-term decay heat removal was established. The analyses showed that for the sequences considered the injection flow from one high-pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were able to prevent core damage in the S/sub 2/D sequence; no operator actions were available to prevent core damage in the TMLB' sequence.

  2. Revised accident source terms for light-water reactors

    SciTech Connect

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  3. Tellurium behavior in containment under light water reactor accident conditions

    SciTech Connect

    Beahm, E.C.

    1986-02-01

    Interactions of tellurium in containment can result in changes of physical form and therefore in its transport properties. This report discusses the most probable forms of tellurium in a containment environment under LWR accident conditions. The physical and chemical form of inorganic tellurium species will be determined by condensation, oxidation, and dissolution in water. Of the three volatile tellurium chemical forms, Te/sub 2/ (gas), H/sub 2/Te, and organic tellurides, only organic tellurides have the potential to remain in the gas phase in a containment atmosphere. There is a general lack of information on the formation and removal of organic tellurides under LWR accident conditions. 41 refs.

  4. Natural convection in a uniformly heated pool

    SciTech Connect

    Tzanos, C.P.

    1996-05-01

    In the event of a core meltdown accident, to prevent reactor vessel failure from molten corium relocation to the reactor vessel lower head, the establishment of a coolable configuration has been proposed by flooding with water the reactor cavity. In Reference 3, it was shown that for the heavy-water new production reactor (NPW-HWR) design, this strategy, e.g., the rejection of decay heat to a containment decay heat removal system by boiling of water in the reactor cavity, could keep the reactor vessel temperature below failure limits. The analysis of Ref. 3 was performed with the computer code COMMIX-1AR/P, and showed that natural convection in the molten-corium pool was the dominant mechanism of heat transfer from the pool to the wall of the reactor vessel lower head. To determine whether COMMIX adequately predicts natural convection in a pool heated by a uniform heat source, in Ref. 4, the experiments of free convection in a semicircular cavity of Jahn and Reineke were analyzed with COMMIX. It was found that the Nusselt (Nu) number predicted by COMMIX was within the spread of the experimental measurements. In the COMMIX analysis of Ref. 4, the semicircular cavity was treated as symmetric. The objective of the work presented in this paper was to extend the COMMIX validation analysis of Ref. 4 by removing the assumption of symmetry and expanding the analysis up to the highest Rayleigh (Ra) number that leads to a steady state. In conclusion, this work shows that the numerical predictions of natural convection in an internally heated pool bounded by a curved bottom are in reasonably good agreement with experimental measurements.

  5. German aircraft accident statistics, 1930

    NASA Technical Reports Server (NTRS)

    Weitzmann, Ludwig

    1932-01-01

    The investigation of all serious accidents, involving technical defects in the airplane or engine, is undertaken by the D.V.L. in conjunction with the imperial traffic minister and other interested parties. All accidents not clearly explained in the reports are subsequently cleared up.

  6. First Responders and Criticality Accidents

    SciTech Connect

    Valerie L. Putman; Douglas M. Minnema

    2005-11-01

    Nuclear criticality accident descriptions typically include, but do not focus on, information useful to first responders. We studied these accidents, noting characteristics to help (1) first responders prepare for such an event and (2) emergency drill planners develop appropriate simulations for training. We also provide recommendations to help people prepare for such events in the future.

  7. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  8. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  9. In-vessel flow characterization under severe accident conditions

    SciTech Connect

    Nourbakhsh, H.P.; Kim, S.B.; Khatib-Rahbar, M.

    1987-01-01

    The purpose of this study is to provide a parametric framework for characterization of flow and heat transfer regimes and their associated phenomenological uncertainties following severe accidents using a two dimensional, heterogenous, porous media formulation. This approach extends the understanding of buoyancy-induced flow characteristics in the uncovered region of the reactor core and the upper plenum of a PWR vessel. The results of this study can be used to augment the boil-off steam flow in integrated one-dimensional severe accident codes such as the Source Team Code Package (STCP).

  10. Transient analysis for thermal margin with COASISO during a severe accident

    SciTech Connect

    Kim, Chan S.; Chu, Ho S.; Suh, Kune Y.; Park, Goon C.; Lee, Un C.; Yoon, Ho J.

    2002-07-01

    As an IVR-EVC (in-vessel retention through external vessel cooling) design concept, external cooling of the reactor vessel was suggested to protect the lower head from being overheated due to relocated material from the core during a severe accident. The COASISO (Corium Attack Syndrome Immunization Structure Outside the vessel) adopts an external vessel cooling strategy of flooding the reactor vessel inside the thermal insulator. Its advantage is the quick response time so that the initial heat removal mechanism of the EVC is nucleate boiling from the downward-facing lower head. The efficiency of the COASISO may be estimated by the thermal margin defined as the ratio of the actual heat flux from the reactor vessel to the critical heat flux (CHF). In this study the thermal margin for the large power reactor as the APR1400 (Advanced Power Reactor 1400 MWe) was determined by means of transient analysis for the local condition of the coolant and temperature distributions within the reactor vessel. The heat split fraction in the oxide pool and the metal layer focusing effect were considered during calculation of the angular thermal load at the inner wall of the lower head. The temperature distributions in the reactor vessel resulted in the actual heat flux on the outer wall. The local quality was obtained by solving the simplified transient energy equation. The unheated section of the reactor vessel decreases the thermal margin by mean of the two-dimensional conduction heat transfer. The peak temperature of the reactor vessel was estimated in the film boiling region as the thermal margin was equal to unity. Sensitivity analyses were performed for the time of corium relocation after the reactor trip, the coolant flow rate, and the initial subcooled condition of the coolant. There is no vessel failure predicted at the worst EVC condition when the stratification is not taken into account between the metal layer and the oxidic pool. The present predictive tool may be

  11. A review of criticality accidents

    SciTech Connect

    Stratton, W R; Smith, D R

    1989-03-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Forty-one accidental power transients are reviewed. In each case where available, enough detail is given to help visualize the physical situation, the cause or causes of the accident, the history and characteristics of the transient, the energy release, and the consequences, if any, to personnel and property. Excursions associated with large power reactors are not included in this study, except that some information on the major accident at the Chernobyl reactor in April 1986 is provided in the Appendix. 67 refs., 21 figs., 2 tabs.

  12. [Prevention of bicycle accidents].

    PubMed

    Zwipp, H; Barthel, P; Bönninger, J; Bürkle, H; Hagemeister, C; Hannawald, L; Huhn, R; Kühn, M; Liers, H; Maier, R; Otte, D; Prokop, G; Seeck, A; Sturm, J; Unger, T

    2015-04-01

    For a very precise analysis of all injured bicyclists in Germany it would be important to have definitions for "severely injured", "seriously injured" and "critically injured". By this, e.g., two-thirds of surgically treated bicyclists who are not registered by the police could become available for a general analysis. Elderly bicyclists (> 60 years) are a minority (10 %) but represent a majority (50 %) of all fatalities. They profit most by wearing a helmet and would be less injured by using special bicycle bags, switching on their hearing aids and following all traffic rules. E-bikes are used more and more (145 % more in 2012 vs. 2011) with 600,000 at the end of 2011 and are increasingly involved in accidents but still have a lack of legislation. So even for pedelecs 45 with 500 W and a possible speed of 45 km/h there is still no legislative demand for the use of a protecting helmet. 96 % of all injured cyclists in Germany had more than 0.5 ‰ alcohol in their blood, 86 % more than 1.1 ‰ and 59 % more than 1.7 ‰. Fatalities are seen in 24.2 % of cases without any collision partner. Therefore the ADFC calls for a limit of 1.1 ‰. Some virtual studies conclude that integrated sensors in bicycle helmets which would interact with sensors in cars could prevent collisions or reduce the severity of injury by stopping the cars automatically. Integrated sensors in cars with opening angles of 180° enable about 93 % of all bicyclists to be detected leading to a high rate of injury avoidance and/or mitigation. Hanging lamps reduce with 35 % significantly bicycle accidents for children, traffic education for children and special trainings for elderly bicyclists are also recommended as prevention tools. As long as helmet use for bicyclists in Germany rates only 9 % on average and legislative orders for using a helmet will not be in force in the near future, coming up campaigns seem to be necessary to be promoted by the Deutscher

  13. [Prevention of bicycle accidents].

    PubMed

    Zwipp, H; Barthel, P; Bönninger, J; Bürkle, H; Hagemeister, C; Hannawald, L; Huhn, R; Kühn, M; Liers, H; Maier, R; Otte, D; Prokop, G; Seeck, A; Sturm, J; Unger, T

    2015-04-01

    For a very precise analysis of all injured bicyclists in Germany it would be important to have definitions for "severely injured", "seriously injured" and "critically injured". By this, e.g., two-thirds of surgically treated bicyclists who are not registered by the police could become available for a general analysis. Elderly bicyclists (> 60 years) are a minority (10 %) but represent a majority (50 %) of all fatalities. They profit most by wearing a helmet and would be less injured by using special bicycle bags, switching on their hearing aids and following all traffic rules. E-bikes are used more and more (145 % more in 2012 vs. 2011) with 600,000 at the end of 2011 and are increasingly involved in accidents but still have a lack of legislation. So even for pedelecs 45 with 500 W and a possible speed of 45 km/h there is still no legislative demand for the use of a protecting helmet. 96 % of all injured cyclists in Germany had more than 0.5 ‰ alcohol in their blood, 86 % more than 1.1 ‰ and 59 % more than 1.7 ‰. Fatalities are seen in 24.2 % of cases without any collision partner. Therefore the ADFC calls for a limit of 1.1 ‰. Some virtual studies conclude that integrated sensors in bicycle helmets which would interact with sensors in cars could prevent collisions or reduce the severity of injury by stopping the cars automatically. Integrated sensors in cars with opening angles of 180° enable about 93 % of all bicyclists to be detected leading to a high rate of injury avoidance and/or mitigation. Hanging lamps reduce with 35 % significantly bicycle accidents for children, traffic education for children and special trainings for elderly bicyclists are also recommended as prevention tools. As long as helmet use for bicyclists in Germany rates only 9 % on average and legislative orders for using a helmet will not be in force in the near future, coming up campaigns seem to be necessary to be promoted by the Deutscher

  14. Natural convection in a uniformly heated pool

    SciTech Connect

    Tzanos, C.P.

    1996-12-31

    To prevent reactor vessel failure from molten corium relocation to the reactor vessel lower head in the event of a core meltdown accident, the establishment of a coolable configuration has been proposed by flooding the reactor cavity with water. In Ref. 3, it was shown that for the heavy-water new production reactor (NPW-HWR) design, this strategy (e.g., the rejection of decay heat to a containment decay heat removal system by boiling of water in the reactor cavity) could keep the reactor vessel temperature below failure limits. The analysis of Ref. 3 was performed with the COMMIX-IAR/P computer code and showed that natural convection in the molten-corium pool was the dominant mechanism of heat transfer from the pool to the wall of the reactor vessel lower head. COMMIX is a general-purpose thermal-hydraulics code based on finite differencing by the first-order upwind scheme. To determine whether COMMIX adequately predicts natural convection in a pool heated by a uniform heat source, in Ref. 4, the experiments of free convection in a semicircular cavity of Jahn and Reineke were analyzed with COMMIX in Ref. 5. It was found that the Nusselt number predicted by COMMIX was within the spread of the experimental measurements. In the COMMIX analysis of Ref. 5, the semicircular cavity was treated as symmetric. The objective of this paper was to extend the COMMIX validation analysis of Ref. 5 by removing the assumption of symmetry and expanding the analysis from the highest Rayleigh number of the experiments of Ref. 4 to the highest Rayleigh number that leads to a steady state.

  15. X-ray photoelectron spectroscopic study of the oxide removal mechanism of GaAs /100/ molecular beam epitaxial substrates in in situ heating

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    A standard cleaning procedure for GaAs (100) molecular beam epitaxial (MBE) substrates is a chemical treatment with a solution of H2SO4/H2O2/H2O, followed by in situ heating prior to MBE growth. X-ray photoelectron spectroscopic (XPS) studies of the surface following the chemical treatment show that the oxidized As is primarily As(+ 5). Upon heating to low temperatures (less than (350 C) the As(+ 5) oxidizes the substrate to form Ga2O3 and elemental As, and the As(+ 5) is reduced to As(+ 3) in the process. At higher temperatures (500 C), the As(+ 3) and elemental As desorb, while the Ga(+ 3) begins desorbing at about 600 C.

  16. Short sleep duration and long spells of driving are associated with the occurrence of Japanese drivers' rear-end collisions and single-car accidents.

    PubMed

    Abe, Takashi; Komada, Yoko; Nishida, Yasushi; Hayashida, Kenichi; Inoue, Yuichi

    2010-06-01

    Sleepiness and fatigue are important risk factors for traffic accidents. However, the relation between the accident type and lack of sleep as well as spells of driving has not been examined sufficiently. This study aimed to clarify that short sleep duration and long spells of driving are more associated with rear-end collisions and single-car accidents as compared with accidents of other types in cases of people who cause accidents. After removing drunken driving as a cause of accidents, 1772 parties involved in accidents were questioned. The quantities of rear-end collisions and single-car accidents were, respectively, 240 and 293. Logistic regression analysis showed that short nocturnal sleep (<6 h) and 10-min increments of spells of driving were significantly associated not only with rear-end collisions but also with single-car accidents as compared with accidents of other types. Furthermore, younger age (accidents as compared with accidents of other types. To prevent such accidents, countermeasures must be considered in light of the characteristics of drivers involved in each type of accident described above.

  17. Features of heat stress control

    SciTech Connect

    Bernard, T.E. )

    1989-08-01

    Heat stress is caused by hot environments and physical demands of work. It is further complicated by protective clothing requirements commonly found in the nuclear power industry. The resulting physiological strain is reflected in increased sweating, heart rate and body temperature. Uncontrolled exposures to heat stress will lead to decreased personnel performance and increased risk of accidents and heat disorders. The article describes major heat disorders, a method of heat stress evaluation, and some basic interventions to reduce the stress and strain of working in the heat.

  18. [Orofacial injuries in skateboard accidents].

    PubMed

    Frohberg, U; Bonsmann, M

    1992-04-01

    In a clinical study, 25 accidents involving injuries by a fall with a skateboard were investigated and classified in respect of epidemiology, accident mechanism and injury patterns in the facial region. Accident victims are predominantly boys between 7 and 9 years of age. A multiple trauma involving the teeth and the dental system in general and the soft parts of the face is defined as a characteristic orofacial injury pattern in skateboard accidents. The high proportion of damage to the front teeth poses problems of functional and aesthetic rehabilitation necessitating long-term treatment courses in children and adolescents. Effective prevention of facial injuries may be possible by evolving better facial protection systems and by creating areas of playgrounds where skateboarders can practise safely.

  19. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  20. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    SciTech Connect

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.

  1. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  2. Emergency drinking water treatment during source water pollution accidents in China: origin analysis, framework and technologies.

    PubMed

    Zhang, Xiao-Jian; Chen, Chao; Lin, Peng-Fei; Hou, Ai-Xin; Niu, Zhang-Bin; Wang, Jun

    2011-01-01

    China has suffered frequent source water contamination accidents in the past decade, which has resulted in severe consequences to the water supply of millions of residents. The origins of typical cases of contamination are discussed in this paper as well as the emergency response to these accidents. In general, excessive pursuit of rapid industrialization and the unreasonable location of factories are responsible for the increasing frequency of accidental pollution events. Moreover, insufficient attention to environmental protection and rudimentary emergency response capability has exacerbated the consequences of such accidents. These environmental accidents triggered or accelerated the promulgation of stricter environmental protection policy and the shift from economic development mode to a more sustainable direction, which should be regarded as the turning point of environmental protection in China. To guarantee water security, China is trying to establish a rapid and effective emergency response framework, build up the capability of early accident detection, and develop efficient technologies to remove contaminants from water.

  3. Test Data for USEPR Severe Accident Code Validation

    SciTech Connect

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  4. Accident Tolerant Fuel Analysis

    SciTech Connect

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and

  5. [Accidents of fulguration].

    PubMed

    Virenque, C; Laguerre, J

    1976-01-01

    Fulguration, first electric accident in which the man was a victim, is to day better known. A clap of thunder is decomposed in two elements: lightning, and thunder. Lightning is caused by an electrical discharge, either within a cloud, or between two clouds, or, above all, between a cloud and the surface of the ground. Experimental equipments owned by the French Electricity Company and by the Atomic Energy Commission, have allowed to photograph lightnings and to measure certain physical characteristics (Intensity variable between 25 to 100 kA, voltage variable between 20 to 1 000 kV). The frequency of storms was learned: the isokeraunic level, in France, is about 20, meaning that thunder is heard twenty days during one year. Man may be stricken by thunder by direct hit, by sudden bursting, by earth current, or through various conductors. The electric charge which reached him may go to the earth directly by contact with the ground or may dissipate in the air through a bony promontory (elbow). The total number of victims, "wounded" or deceased, is not now known by statistics. Death comes by insulation breakdown of one of several anatomic cephalic formations: skull, meninx, brain. Many various lesions may happen in survivors: loss of consciousness, more or less long, sensorial or motion deficiencies. All these signs are momentary and generally reversible. Besides one may observe much more intense lesions on the skin: burns and, over all, characteristic aborescence (skin effect by high frequency current). The heart is protected, contrarily to what happens with industrial electrocution. The curative treatment is merely symptomatic : reanimation, surgery for burns or associated traumatic lesions. A prevention is researched to help the lonely man, in the country or in the mountains in the houses (lightning conductor, Faraday cage), in vehicles (aircraft, cars, ships). The mysterious and unforseeable character of lightning still stays, leaving a door opened for numerous

  6. Accident tolerant fuel analysis

    SciTech Connect

    Smith, Curtis; Chichester, Heather; Johns, Jesse; Teague, Melissa; Tonks, Michael Idaho National Laboratory; Youngblood, Robert

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and

  7. A traffic accident caused by fatigue failure of axle.

    PubMed

    Park, Chan-Seong; Lee, Sang-Hoon; Lee, Kyu-Jung

    2007-09-01

    An investigation of a traffic accident involving a tractor-trailer and a passenger car that were traveling at high speed is presented. The cause was the fracture of a trailer axle. The investigation showed that the fracture was because of the fatigue failure. In addition, cracks were found in the remaining three trailer wheels. Hardness measurements showed that, because of inadequate heat treatment of the metal, they were prone to failure.

  8. Identification of severe accident uncertainties

    SciTech Connect

    Rivard, J.B.; Behr, V.L.; Easterling, R.G.; Griesmeyer, J.M.; Haskin, F.E.; Hatch, S.W.; Kolaczkowski, A.M.; Lipinski, R.J.; Sherman, M.P.; Taig, A.R.

    1984-09-01

    Understanding of severe accidents in light-water reactors is currently beset with uncertainty. Because the uncertainties that are present limit the capability to analyze the progression and possible consequences of such accidents, they restrict the technical basis for regulatory actions by the US Nuclear Regulatory Commission (NRC). It is thus necessary to attempt to identify the sources and quantify the influence of these uncertainties. As a part of ongoing NRC severe-accident programs at Sandia National Laboratories, a working group was formed to pool relevant knowledge and experience in assessing the uncertainties attending present (1983) knowledge of severe accidents. This initial report of the Severe Accident Uncertainty Analysis (SAUNA) working group has as its main goal the identification of a consolidated list of uncertainties that affect in-plant processes and systems. Many uncertainties have been identified. A set of key uncertainties summarizes many of the identified uncertainties. Quantification of the influence of these uncertainties, a necessary second step, is not attempted in the present report, although attempts are made qualitatively to demonstrate the relevance of the identified uncertainties.

  9. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    SciTech Connect

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {+-}5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  10. The effect of gamma-ray transport on afterheat calculations for accident analysis

    SciTech Connect

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-05-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed.

  11. Tick removal.

    PubMed

    Roupakias, S; Mitsakou, P; Nimer, A Al

    2011-03-01

    Ticks are blood feeding external parasites which can cause local and systemic complications to human body. A lot of tick-borne human diseases include Lyme disease and virus encephalitis, can be transmitted by a tick bite. Also secondary bacterial skin infection, reactive manifestations against tick allergens, and granuloma's formation can be occurred. Tick paralysis is a relatively rare complication but it can be fatal. Except the general rules for tick bite prevention, any tick found should be immediately and completely removed alive. Furthermore, the tick removal technique should not allow or provoke the escape of infective body fluids through the tick into the wound site, and disclose any local complication. Many methods of tick removal (a lot of them are unsatisfactory and/or dangerous) have been reported in the literature, but there is very limited experimental evidence to support these methods. No technique will remove completely every tick. So, there is not an appropriate and absolutely effective and/or safe tick removal technique. Regardless of the used tick removal technique, clinicians should be aware of the clinical signs of tick-transmitted diseases, the public should be informed about the risks and the prevention of tick borne diseases, and persons who have undergone tick removal should be monitored up to 30 days for signs and symptoms. PMID:21710824

  12. KKG Group Paraffin Removal

    SciTech Connect

    Schulte, Ralph

    2001-12-01

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  13. Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation

    SciTech Connect

    Souza Dos Santos, R.

    2012-07-01

    In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

  14. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells.

    PubMed

    Hamouda, Mohamed-Amine; Belhacene, Nathalie; Puissant, Alexandre; Colosetti, Pascal; Robert, Guillaume; Jacquel, Arnaud; Mari, Bernard; Auberger, Patrick; Luciano, Frederic

    2014-08-15

    Velcade is one of the inescapable drug to treat patient suffering from multiple myeloma (MM) and resistance to this drug represents a major drawback for patients. However, the mechanisms underlying velcade resistance remain incompletely understood. We derived several U266 MM cell clones that resist to velcade. U266-resistant cells were resistant to velcade-induced cell death but exhibited a similar sensitivity to various proapoptotic stimuli. Careful analysis of proteosomal subunits and proteasome enzymatic activities showed that neither the composition nor the activity of the proteasome was affected in velcade-resistant cells. Elimination of velcade-induced poly-ubiquitinated proteins and protein aggregates was drastically stimulated in the resistant cells and correlated with increased cell survival. Inhibition of the lysosomal activity in velcade-resistant cells resulted in an increase of cell aggregates and decrease survival, indicating that aggregates are eliminated through lysosomal degradation. In addition, pangenomic profiling of velcade-sensitive and resistant cells showed that the small heat shock protein HSPB8 was overexpressed in resistant cells. Finally, gain and loss of function experiment demonstrated that HSPB8 is a key factor for velcade resistance. In conclusion, HSPB8 plays an important role for the elimination of aggregates in velcade-resistant cells that contributes to their enhanced survival.

  15. The child accident repeater: a review.

    PubMed

    Jones, J G

    1980-04-01

    The child accident repeater is defined as one who has at least three accidents that come to medical attention within a year. The accident situation has features in common with those of the child who has a single accident through simple "bad luck", but other factors predispose him to repeated injury. In the child who has a susceptible personality, a tendency for accident repetition may be due to a breakdown in adjustment to a stressful environment. Prevention of repeat accidents should involve the usual measures considered appropriate for all children as well as an attempt to provide treatment of significant maladjustment and modification of a stressful environment.

  16. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  17. An experimental study of external reactor vessel cooling strategy on the critical heat flux using the graphene oxide nano-fluid

    SciTech Connect

    Park, S. D.; Lee, S. W.; Kang, S.; Kim, S. M.; Seo, H.; Bang, I. C.

    2012-07-01

    External reactor vessel cooling (ERVC) for in-vessel retention (IVR) of corium as a key severe accident management strategy can be achieved by flooding the reactor cavity during a severe accident. In this accident mitigation strategy, the decay heat removal capability depends on whether the imposed heat flux exceeds critical heat flux (CHF). To provide sufficient cooling for high-power reactors such as APR1400, there have been some R and D efforts to use the reactor vessel with micro-porous coating and nano-fluids boiling-induced coating. The dispersion stability of graphene-oxide nano-fluid in the chemical conditions of flooding water that includes boric acid, lithium hydroxide (LiOH) and tri-sodium phosphate (TSP) was checked in terms of surface charge or zeta potential before the CHF experiments. Results showed that graphene-oxide nano-fluids were very stable under ERVC environment. The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slide test section. The radius of the curvature is 0.1 m. The dimension of each part in the facility simulated the APR-1400. The heater was designed to produce the different heat flux. The magnitude of heat flux follows the one of the APR-1400 when the severe accident occurred. All tests were conducted under inlet subcooling 10 K. Graphene-oxide nano-fluids (concentration: 10 -4 V%) enhanced CHF limits up to about 20% at mass flux 50 kg/m{sup 2}s and 100 kg/m{sup 2}s in comparison with the results of the distilled water at same test condition. (authors)

  18. Investigation of the Challenger Accident

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The work of the Presidential Commission on the Space Shuttle Challenger Accident (hereafter referred to as the Rogers Commission) and the work of the National Aeronautics and Space Administration in investigating the causes of the accident were reviewed. In addition to reviewing the five volumes of the Rogers Commission, the entire direct on-line Rogers Commission data base, which included full-text and document retrieval capability was also reviewed. The findings and recommendations contained also include materials submitted for the record, staff investigations, interviews, and trips.

  19. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  20. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  1. [Diving accidents. Emergency treatment of serious diving accidents].

    PubMed

    Schröder, S; Lier, H; Wiese, S

    2004-11-01

    Decompression injuries are potentially life-threatening incidents mainly due to a rapid decline in ambient pressure. Decompression illness (DCI) results from the presence of gas bubbles in the blood and tissue. DCI may be classified as decompression sickness (DCS) generated from the liberation of gas bubbles following an oversaturation of tissues with inert gas and arterial gas embolism (AGE) mainly due to pulmonary barotrauma. People working under hyperbaric pressure, e.g. in a caisson for general construction under water, and scuba divers are exposed to certain risks. Diving accidents can be fatal and are often characterized by organ dysfunction, especially neurological deficits. They have become comparatively rare among professional divers and workers. However, since recreational scuba diving is gaining more and more popularity there is an increasing likelihood of severe diving accidents. Thus, emergency staff working close to areas with a high scuba diving activity, e.g. lakes or rivers, may be called more frequently to a scuba diving accident. The correct and professional emergency treatment on site, especially the immediate and continuous administration of normobaric oxygen, is decisive for the outcome of the accident victim. The definitive treatment includes rapid recompression with hyperbaric oxygen. The value of adjunctive medication, however, remains controversial.

  2. Tick removal

    MedlinePlus

    ... are small, insect-like creatures that live in woods and fields. They attach to you as you ... your clothes and skin often while in the woods. After returning home: Remove your clothes. Look closely ...

  3. Characterization of plutonium particles originating from the BOMARC accident - 1960

    NASA Astrophysics Data System (ADS)

    Gostic, Richard Charles

    Within the U.S. arsenal, 32 accidents with nuclear weapons were reported between 1950 and 1980. One of these accidents occurred at McGuire AFB in 1960. A BOMARC missile armed with a nuclear warhead caught on fire and as a result the warhead was destroyed. Sub-millimeter particles consisting of weapons grade plutonium (WGPu) produced by this accident were distributed around the site and remained in the environment for 47 years. Soil cores known to contain WGPu particles produced by this accident were obtained. The particles were localized and removed from the soil with the aid of high resolution computed tomography. The isotopic composition of the particles and the date of manufacture of the Pu were estimated using a combination of alpha and gamma spectroscopy. Scanning electron microscopy was used to study the surface morphology of the particles; energy dispersive spectroscopy and synchrotron based x-ray fluorescence were used to determine the composition and elemental distributions of the particles. The results of these experiments and their application to the field of nuclear forensic analysis are discussed in this thesis.

  4. Tattoo removal.

    PubMed

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal.

  5. Tattoo removal.

    PubMed

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal. PMID:21865802

  6. 49 CFR 230.22 - Accident reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements § 230.22 Accident reports. In the case of an accident due to failure, from any cause, of a steam locomotive boiler or any part or appurtenance thereof, resulting in serious injury or death to one or...

  7. Delta launch vehicle accident investigation

    NASA Astrophysics Data System (ADS)

    1986-03-01

    The text of the testimony given by several witnesses during the House hearings on the Delta launch vehicle accident of May 3, 1986 is given. Pre-launch procedures, failure analysis, the possibility of sabotage, and design and testing are among the topics discussed.

  8. [Accidential consumption of wart remover].

    PubMed

    Voorde, Pia Ten; Asklund, Camilla; Venzo, Alessandro

    2014-09-15

    Not seldom do people buy medicine abroad while on business or holiday, where international labelling is less than optimal. Once home, the medication is often kept alongside every-day products, sometimes resulting in home accidents due to a confusion of products. In this case a six-month-old girl was administered five drops of monochloroacetic acid orally as a result of mistaking a bottle of D-vitamin with a bottle of acid for the removal of warts. She suffered a mild poisoning, chemical burns and required intubation due to oedema of the upper airways, but no long-term effects.

  9. Determinants of injuries in passenger vessel accidents.

    PubMed

    Yip, Tsz Leung; Jin, Di; Talley, Wayne K

    2015-09-01

    This paper investigates determinants of crew and passenger injuries in passenger vessel accidents. Crew and passenger injury equations are estimated for ferry, ocean cruise, and river cruise vessel accidents, utilizing detailed data of individual vessel accidents that were investigated by the U.S. Coast Guard during the time period 2001-2008. The estimation results provide empirical evidence (for the first time in the literature) that crew injuries are determinants of passenger injuries in passenger vessel accidents.

  10. Determinants of injuries in passenger vessel accidents.

    PubMed

    Yip, Tsz Leung; Jin, Di; Talley, Wayne K

    2015-09-01

    This paper investigates determinants of crew and passenger injuries in passenger vessel accidents. Crew and passenger injury equations are estimated for ferry, ocean cruise, and river cruise vessel accidents, utilizing detailed data of individual vessel accidents that were investigated by the U.S. Coast Guard during the time period 2001-2008. The estimation results provide empirical evidence (for the first time in the literature) that crew injuries are determinants of passenger injuries in passenger vessel accidents. PMID:26070017

  11. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  12. Superfund fact sheet: The removal program. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    The fact sheet describes the Superfund Emergency Response Program, a program specifically designed to respond to multi-media hazardous materials accidents (e.g. illegal disposal or improper handling of materials, transportation accidents, chemical fires) that endanger people and/or the environment. Explanations of how the removal program works and how the affected communities are involved are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no scientific training.

  13. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  14. 48 CFR 836.513 - Accident prevention.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Accident prevention. 836... prevention. The contracting officer must insert the clause at 852.236-87, Accident Prevention, in solicitations and contracts for construction that contain the clause at FAR 52.236-13, Accident Prevention....

  15. 48 CFR 636.513 - Accident prevention.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Accident prevention. 636... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 636.513 Accident prevention. (a) In... contracting activities shall insert DOSAR 652.236-70, Accident Prevention, in lieu of FAR clause...

  16. 48 CFR 1836.513 - Accident prevention.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Accident prevention. 1836... 1836.513 Accident prevention. The contracting officer must insert the clause at 1852.223-70, Safety and Health, in lieu of FAR clause 52.236-13, Accident Prevention, and its Alternate I....

  17. 28 CFR 301.106 - Repetitious accidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Repetitious accidents. 301.106 Section 301.106 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION General § 301.106 Repetitious accidents. If an inmate worker is involved in successive...

  18. 28 CFR 301.106 - Repetitious accidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Repetitious accidents. 301.106 Section 301.106 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION General § 301.106 Repetitious accidents. If an inmate worker is involved in successive...

  19. Health costs of economic expansion: the case of manufacturing accident injuries.

    PubMed Central

    Catalano, R

    1979-01-01

    The hypothesized relationship between economic expansion and accident injuries is tested using archival economic and accident data from the Los Angeles-Long Beach, California metropolitan area. The association is measured using cross-correlation techniques after variation shared with a comparison metropolitan area (Anaheim-Santa Ana-Garden Grove) is removed. Two tests of association are conducted. The first uses the raw accident rate of the comparison metropolitan area as a control variable while the second adjusts the control variable to reflect shared industrial sectors. Findings suggest that the incidence of disabling accidents increases in the month before and during the month that the manufacturing work force expands. The impact appears strongest during the month that new workers are added. PMID:453412

  20. Medical management principles for radiation accidents.

    PubMed

    Meineke, Viktor; van Beuningen, Dirk; Sohns, Torsten; Fliedner, Theodor M

    2003-03-01

    The medical management of radiation accidents requires intensive planning and action. This article looks at the medical management of recent radiation accidents to derive principles for structuring and organizing the treatment of patients who may have radiation-induced health impairments. Although the radiation accidents in Tokai-mura, Japan and Lilo, Georgia were small-scale accidents, they illustrate important and characteristic symptoms and clinical developments. There are lessons to be learned and conclusions to be drawn for the military medical officers concerned with problems of medical management after radiation accidents.

  1. Simulation of thermal response of the 250 MWT modular HTGR during hypothetical uncontrolled heatup accidents

    SciTech Connect

    Harrington, R.M.; Ball, S.J.

    1985-01-01

    One of the central design features of the 250 MWT modular HTGR is the ability to withstand uncontrolled heatup accidents without severe consequences. This paper describes calculational studies, conducted to test this design feature. A multi-node thermal-hydraulic model of the 250 MWT modular HTGR reactor core was developed and implemented in the IBM CSMP (Continuous System Modeling Program) simulation language. Survey calculations show that the loss of forced circulation accident with loss of steam generator cooling water and with accidental depressurization is the most severe heatup accident. The peak hot-spot fuel temperature is in the neighborhood of 1600/sup 0/C. Fuel failure and fission product releases for such accidents would be minor. Sensitivity studies show that code input assumptions for thermal properties such as the side reflector conductivity have a significant effect on the peak temperature. A computer model of the reactor vessel cavity concrete wall and its surrounding earth was developed to simulate the extremely unlikely and very slowly-developing heatup accident that would take place if the worst-case loss of forced primary coolant circulation accident were further compounded by the loss of cooling water to the reactor vessel cavity liner cooling system. Results show that the ability of the earth surrounding the cavity to act as a satisfactory long-term heat sink is very sensitive to the assumed rate of decay heat generation and on the effective thermal conductivity of the earth.

  2. Exploratory analysis of Spanish energetic mining accidents.

    PubMed

    Sanmiquel, Lluís; Freijo, Modesto; Rossell, Josep M

    2012-01-01

    Using data on work accidents and annual mining statistics, the paper studies work-related accidents in the Spanish energetic mining sector in 1999-2008. The following 3 parameters are considered: age, experience and size of the mine (in number of workers) where the accident took place. The main objective of this paper is to show the relationship between different accident indicators: risk index (as an expression of the incidence), average duration index for the age and size of the mine variables (as a measure of the seriousness of an accident), and the gravity index for the various sizes of mines (which measures the seriousness of an accident, too). The conclusions of this study could be useful to develop suitable prevention policies that would contribute towards a decrease in work-related accidents in the Spanish energetic mining industry. PMID:22721539

  3. The Concept of Accident Proneness: A Review

    PubMed Central

    Froggatt, Peter; Smiley, James A.

    1964-01-01

    The term accident proneness was coined by psychological research workers in 1926. Since then its concept—that certain individuals are always more likely than others to sustain accidents, even though exposed to equal risk—has been questioned but seldom seriously challenged. This article describes much of the work and theory on which this concept is based, details the difficulties encountered in obtaining valid information and the interpretative errors that can arise from the examination of imperfect data, and explains why accident proneness became so readily accepted as an explanation of the facts. A recent hypothesis of accident causation, namely that a person's accident liability may vary from time to time, is outlined, and the respective abilities of this and of accident proneness to accord with data from the more reliable literature are examined. The authors conclude that the hypothesis of individual variation in liability is more realistic and in better agreement with the data than is accident proneness. PMID:14106130

  4. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  5. Accident/Mishap Investigation System

    NASA Technical Reports Server (NTRS)

    Keller, Richard; Wolfe, Shawn; Gawdiak, Yuri; Carvalho, Robert; Panontin, Tina; Williams, James; Sturken, Ian

    2007-01-01

    InvestigationOrganizer (IO) is a Web-based collaborative information system that integrates the generic functionality of a database, a document repository, a semantic hypermedia browser, and a rule-based inference system with specialized modeling and visualization functionality to support accident/mishap investigation teams. This accessible, online structure is designed to support investigators by allowing them to make explicit, shared, and meaningful links among evidence, causal models, findings, and recommendations.

  6. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    SciTech Connect

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.; Kenton, M.A.

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations.

  7. Method of making thermally removable polymeric encapsulants

    DOEpatents

    Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.

    2001-01-01

    A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.

  8. Investigations in gallium removal

    SciTech Connect

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  9. Decontamination of the populated areas contaminated as a result of nuclear accident

    SciTech Connect

    Voronik, N.I.; Shatilo, N.N.; Davydov, Y.P.

    1996-12-31

    Decontamination tests on urban surfaces contaminated by the Chernobyl accident have shown that Chernobyl fallout behaves differently from fallout from nuclear weapons tests and contamination on surfaces in nuclear power plant. The effectiveness of various decontamination compositions for removing Chernobyl fallout from urban surfaces and machinery was determined in a series of laboratory experiments and field trials.

  10. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  11. Condensate-removal device for heat exchangers

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W.

    1973-01-01

    Device comprises array of perforated tubes manifolded together and connected to a vacuum suction device. Vacuum applied to these tubes pulls mixture of condensate and effluent gas through perforations and along length of tubes to discharge device. Discharge device may be a separator which separates water vapor from effluent air and allows recirculation of both of them.

  12. Temporal Statistic of Traffic Accidents in Turkey

    NASA Astrophysics Data System (ADS)

    Erdogan, S.; Yalcin, M.; Yilmaz, M.; Korkmaz Takim, A.

    2015-10-01

    Traffic accidents form clusters in terms of geographic space and over time which themselves exhibit distinct spatial and temporal patterns. There is an imperative need to understand how, where and when traffic accidents occur in order to develop appropriate accident reduction strategies. An improved understanding of the location, time and reasons for traffic accidents makes a significant contribution to preventing them. Traffic accident occurrences have been extensively studied from different spatial and temporal points of view using a variety of methodological approaches. In literature, less research has been dedicated to the temporal patterns of traffic accidents. In this paper, the numbers of traffic accidents are normalized according to the traffic volume and the distribution and fluctuation of these accidents is examined in terms of Islamic time intervals. The daily activities and worship of Muslims are arranged according to these time intervals that are spaced fairly throughout the day according to the position of the sun. The Islamic time intervals are never been used before to identify the critical hour for traffic accidents in the world. The results show that the sunrise is the critical time that acts as a threshold in the rate of traffic accidents throughout Turkey in Islamic time intervals.

  13. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  14. Auditing reduces accidents by eliminating unsafe practices

    SciTech Connect

    Collinge, J.A. )

    1992-08-24

    This paper reports that auditing for unsafe acts can remove the basic causes of accidents through the adoption of a proactive approach to safety. The process of auditing for unsafe acts is aimed at eliminating unsafe situations and practices by a method of constructive dialogue between managers and workers. One of the major objectives of the process is to change the cultural attitude toward safety so that it is viewed as a personal responsibility of each member of management, supervision, and the workforce. In large organizations it is common to see policy statements concerning the health and safety of employees and people associated with the business, such as contractors. In recent years, such organizations have also placed emphasis on statements related to protecting the environment. Policy guidelines for Shell companies are unambiguous: Health. The companies conduct business in such a way as to avoid harm to the health of employees and others, and to promote, as appropriate, the health of employees. Safety. Companies work on the principle that all injuries should be prevented and actively promote the high standards of safety consciousness and discipline that this principle demands. Environment. Companies pursue progressive reductions of emissions, effluents, and discharges of waste materials known to have a negative impact on the environment, with the ultimate aim of eliminating those discharges.

  15. RELAP5 Application to Accident Analysis of the NIST Research Reactor

    SciTech Connect

    Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.; Diamond, D.

    2012-03-18

    Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accident and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.

  16. Removing Solids From Supercritical Water

    NASA Technical Reports Server (NTRS)

    Hong, Glenn T.

    1992-01-01

    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  17. Use of heat pipes in electronic hardware

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1977-01-01

    A modular, multiple output power converter was developed in order to reduce costs of space hardware in future missions. The converter is of reduced size and weight, and utilizes advanced heat removal techniques, in the form of heat pipes which remove internally generated heat more effectively than conventional methods.

  18. Safety evaluation of MHTGR licensing basis accident scenarios

    SciTech Connect

    Kroeger, P.G.

    1989-04-01

    The safety potential of the Modular High-Temperature Gas Reactor (MHTGR) was evaluated, based on the Preliminary Safety Information Document (PSID), as submitted by the US Department of Energy to the US Nuclear Regulatory Commission. The relevant reactor safety codes were extended for this purpose and applied to this new reactor concept, searching primarily for potential accident scenarios that might lead to fuel failures due to excessive core temperatures and/or to vessel damage, due to excessive vessel temperatures. The design basis accident scenario leading to the highest vessel temperatures is the depressurized core heatup scenario without any forced cooling and with decay heat rejection to the passive Reactor Cavity Cooling System (RCCS). This scenario was evaluated, including numerous parametric variations of input parameters, like material properties and decay heat. It was found that significant safety margins exist, but that high confidence levels in the core effective thermal conductivity, the reactor vessel and RCCS thermal emissivities and the decay heat function are required to maintain this safety margin. Severe accident extensions of this depressurized core heatup scenario included the cases of complete RCCS failure, cases of massive air ingress, core heatup without scram and cases of degraded RCCS performance due to absorbing gases in the reactor cavity. Except for no-scram scenarios extending beyond 100 hr, the fuel never reached the limiting temperature of 1600/degree/C, below which measurable fuel failures are not expected. In some of the scenarios, excessive vessel and concrete temperatures could lead to investment losses but are not expected to lead to any source term beyond that from the circulating inventory. 19 refs., 56 figs., 11 tabs.

  19. MSHA releases data on CM crushing accidents

    SciTech Connect

    2007-02-15

    The US Mine Safety and Health Administration (MHSA) recently formed a committee to identify norms and trends in remote control continuous miner crushing accidents. The final report found that these types of accidents commonly happen to experienced miners during routine mining activities, with the majority occurring while moving the miner from one face to another, place changing. Another common aspect of the accidents is that many of the victims are experienced miners who are newly employed at the mine where the accident occurred. Training all employees to stay outside the turning radius of an energized remote control continuous miner, establishing this as a safe operating procedure, and consistently enforcing this practice among miners will reduce these types of accidents. This article was excerpted from the 'Remote Control Continuous Mining Machine Crushing Accident Data Study' published in May 2006. The report may be found from the website: www.msha.gov. 4 figs., 1 tab.

  20. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  1. Removable preheater elements improve oxide induction furnace

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1964-01-01

    Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.

  2. Cardiac damage presenting late after road accidents.

    PubMed Central

    Mackintosh, A F; Fleming, H A

    1981-01-01

    Six examples of cardiac damage secondary to non-penetrating trauma in road accidents are described. In all six cases the lesion was not recognised at the time of the accident but became clinically important two days to 17 years later. As the patients were young or had unusual lesions, the damage could be attributed to the accident. In older patients with common cardiac problems the trauma might not be recognised as the underlying cause. PMID:7330802

  3. Transportation accident scenarios for commercial spent fuel

    SciTech Connect

    Wilmot, E L

    1981-02-01

    A spectrum of high severity, low probability, transportation accident scenarios involving commercial spent fuel is presented together with mechanisms, pathways and quantities of material that might be released from spent fuel to the environment. These scenarios are based on conclusions from a workshop, conducted in May 1980 to discuss transportation accident scenarios, in which a group of experts reviewed and critiqued available literature relating to spent fuel behavior and cask response in accidents.

  4. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  5. Calculation notes that support accident scenario and consequence development for the subsurface leak remaining subsurface accident

    SciTech Connect

    Ryan, G.W., Westinghouse Hanford

    1996-07-12

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Subsurface Leak Remaining Subsurface. The calculations needed to quantify the risk associated with this accident scenario are included within.

  6. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  7. Industrial Safety and Accidents Prevention

    SciTech Connect

    Sajjad Akbar

    2006-07-01

    Accident Hazards, dangers, losses and risk are what we would to like to eliminate, minimize or avoid in industry. Modern industries have created many opportunities for these against which man's primitive instincts offer no protection. In today's complex industrial environment safety has become major preoccupation, especially after the realization that there is a clear economic incentive to do so. Industrial hazards may cause by human error or by physical or mechanical malfunction, it is very often possible to eliminate the worst consequences of human error by engineering modification. But the modification also needs checking very thoroughly to ensue that it has not introduced some new and unsuspected hazard. (author)

  8. HTGR severe accident sequence analysis

    SciTech Connect

    Harrington, R.M.; Ball, S.J.; Kornegay, F.C.

    1982-01-01

    Thermal-hydraulic, fission product transport, and atmospheric dispersion calculations are presented for hypothetical severe accident release paths at the Fort St. Vrain (FSV) high temperature gas cooled reactor (HTGR). Off-site radiation exposures are calculated for assumed release of 100% of the 24 hour post-shutdown core xenon and krypton inventory and 5.5% of the iodine inventory. The results show conditions under which dose avoidance measures would be desirable and demonstrate the importance of specific release characteristics such as effective release height. 7 tables.

  9. Summary of miscellaneous hazard environments for hypothetical Space Shuttle and Titan IV launch abort accidents

    NASA Technical Reports Server (NTRS)

    Eck, M.; Mukunda, M.

    1989-01-01

    The various analyses described here were aimed at obtaining a more comprehensive understanding and definition of the environments in the vicinity of the Radioisotope Thermal Generator (RTG) during certain Space Transportation System (STS) and Titan IV launch abort accidents. Addressed here are a number of issues covering explosion environments and General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) responses to those environments.

  10. The determinants of fishing vessel accident severity.

    PubMed

    Jin, Di

    2014-05-01

    The study examines the determinants of fishing vessel accident severity in the Northeastern United States using vessel accident data from the U.S. Coast Guard for 2001-2008. Vessel damage and crew injury severity equations were estimated separately utilizing the ordered probit model. The results suggest that fishing vessel accident severity is significantly affected by several types of accidents. Vessel damage severity is positively associated with loss of stability, sinking, daytime wind speed, vessel age, and distance to shore. Vessel damage severity is negatively associated with vessel size and daytime sea level pressure. Crew injury severity is also positively related to the loss of vessel stability and sinking.

  11. Thermal hydraulic features of the TMI accident

    NASA Astrophysics Data System (ADS)

    Tolman, B.

    1985-10-01

    The Three Mile island (TMI)-2 accident resulted in extensive core damage and recent data confirms that the reactor vessel was challenged from molten core materials. A hypothesized TMI accident scenario is presented that consistently explains the TMI data and is also consistent with research findings from independent severe fuel damage experiments. The TMI data will prove useful in confirming our understanding of severe core damage accidents under realistic reactor systems conditions. This understanding will aid in addressing safety and regulatory issues related to severe core damage accidents in light water reactors.

  12. Aircraft Loss-of-Control Accident Analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  13. [SAFETY IN THE ELDERLY: HOME ACCIDENTS].

    PubMed

    Martín-Espinosa, Noelia M; Píriz-Campos, Rosa Ma; Cordeiro, Raú; Muñoz Bermejo, Laura; Casado Verdjo, Inés; Postigo Mota, Salvador

    2016-05-01

    Home accidents are more common in the elderly and they can have serious consequences to the injured person's health. At home, chances to suffer accidents of any type are higher, because it's the place where old people spend most of their daily time. It is important to point out that a high percentage of domestic accidents could be easily avoided by taking some simple cautions. The main aim of this paper is to know how we can prevent most common domestic accidents in the aged population: falls, burnings, poisonings and fire prevention. PMID:27405149

  14. The determinants of fishing vessel accident severity.

    PubMed

    Jin, Di

    2014-05-01

    The study examines the determinants of fishing vessel accident severity in the Northeastern United States using vessel accident data from the U.S. Coast Guard for 2001-2008. Vessel damage and crew injury severity equations were estimated separately utilizing the ordered probit model. The results suggest that fishing vessel accident severity is significantly affected by several types of accidents. Vessel damage severity is positively associated with loss of stability, sinking, daytime wind speed, vessel age, and distance to shore. Vessel damage severity is negatively associated with vessel size and daytime sea level pressure. Crew injury severity is also positively related to the loss of vessel stability and sinking. PMID:24473412

  15. Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    McDanels, Steve J.

    2005-01-01

    The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

  16. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    PubMed

    Medverec Knežević, Zvonimira; Nadih, Martina; Josipović, Renata; Grgić, Ivanka; Cvitković, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this.

  17. Accident Analysis for the Plutonium Finishing Plant Polycube Stabilization Process

    SciTech Connect

    NELSON-MAKI, B.B.

    2001-05-14

    The Polycube Stabilization Project involves low temperature oxidation, without combustion, of polystyrene cubes using the production muffle furnaces in Glovebox HC-21C located in the Remote Mechanical ''C'' (RMC) Line in Room 230A in the 234-52 Facility. Polycubes are polystyrene cubes containing various concentrations of plutonium and uranium oxides. Hundreds of these cubes were manufactured for criticality experiments, and currently exist as unstabilized storage forms at the Plutonium Finishing Plant (PFP). This project is designed to stabilize and prepare the polycube material for stable storage using a process very similar to the earlier processing of sludges in these furnaces. The significant difference is the quantity of hydrogenous material present, and the need to place additional controls on the heating rate of the material. This calculation note documents the analyses of the Representative Accidents identified in Section 2.4.4 of Hazards Analysis for the Plutonium Finishing Plant Polycube Stabilization Process, HNF-7278 (HNF 2000). These two accidents, ''Deflagration in Glovebox HC-21C due to Loss of Power'' and ''Seismic Failure of Glovebox HC-21C'', will be further assessed in this accident analysis.

  18. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  19. Biorhythmic Cycles and the Incidence of Industrial Accidents

    ERIC Educational Resources Information Center

    Carvey, Davis W.; Nibler, Roger G.

    1977-01-01

    The biorhythm theory of accident explanation that has been increasingly popularized in the business press was empirically examined. Municipal employees involved in work-related vehicular accidents and in on-the-job accidents provided the data. Each accident was analyzed to determine whether or not the accident occurred on a biorhythmically…

  20. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments. PMID:16286290

  1. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  2. Radionuclide removal

    SciTech Connect

    Sorg, T.J.

    1991-01-01

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. During the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium, uranium and radon from drinking water. The research consisted of laboratory and field studies conducted by USEPA, universities and consultants. The paper summarizes the results of the most significant projects completed. General information is also presented on the general chemistry of the three radionuclides. The information presented indicates that the most practical treatment methods for radium are ion exchange and lime-soda softening and reverse osmosis. The methods tested for radon are aeration and granular activated carbon and the methods for uranium are anion exchange and reverse osmosis.

  3. Heat exchange apparatus utilizing thermal siphon pipes

    SciTech Connect

    Daman, E.L.; Kunsagi, L.

    1980-10-07

    A heat exchange apparatus is descirbed in which each of a plurality of thermal siphon pipes has an upper portion extending in an upper heat exchange section and a lower portion extending in a lower heat exchange section. Each pipe is closed at its ends and contains a heat transfer fluid so that when a hot fluid is passed through the lower heat exchange section, the heat is transferred from the hot fluid to the heat exchange fluid. A cool fluid is passed through the upper heat exchange section to remove the heat from the heat exchange fluid.

  4. Removing Bonded Integrated Circuits From Boards

    NASA Technical Reports Server (NTRS)

    Rice, John T.

    1989-01-01

    Small resistance heater makes it easier, faster, and cheaper to remove integrated circuit from hybrid-circuit board, package, or other substrate for rework. Heater, located directly in polymeric bond interface or on substrate under integrated-circuit chip, energized when necessary to remove chip. Heat generated softens adhesive or solder that bonds chip to substrate. Chip then lifted easily from substrate.

  5. Thermal removal of asbestos pipeline coating

    SciTech Connect

    Stevens, W.H.

    1997-03-01

    A heat (thermal) technique, not previously used in the US for removing external pipe coating was used to remove asbestos-wrapped coating from 17 miles of 24-inch-diameter pipe. The process was conducted in compliance with all asbestos and air quality regulations, and produced asbestos-free pipe at timely and cost-effective rates.

  6. Post-accident examination of platinum resistance thermometers installed in the TMI-2 reactor

    SciTech Connect

    Carroll, R.M.; Shepard, R.L.

    1985-09-01

    Laboratory tests conducted on one resistance thermometer and thermowell removed from TMI-2 showed that neither its calibration nor its time response was adversely affected by the accident or post-accident conditions to which it had been exposed. No Never-Seez was used in its thermowell. A broken conduit fitting allowed moisture to enter the extension cables, which affected their insulation resistance. Tests on similar thermometers installed in TMI-2 and Crystal River Unit 3 at shutdown and at full power showed that the time response of the TMI-2 thermometer met the 5-second limit required by the plant technical specifications.

  7. Modular high-temperature gas-cooled reactor core heatup accident simulations

    SciTech Connect

    Ball, S.J.; Conklin, J.C.

    1989-01-01

    The design features of the modular high-temperature gas-cooled reactor (HTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. Simulations of long-term loss-of-forced-convection (LOFC) accidents, both with and without depressurization of the primary coolant and with only passive cooling available to remove afterheat, have shown that maximum core temperatures stay below the point at which fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. 4 refs., 5 figs.

  8. A Serious Game for Traffic Accident Investigators

    ERIC Educational Resources Information Center

    Binsubaih, Ahmed; Maddock, Steve; Romano, Daniela

    2006-01-01

    In Dubai, traffic accidents kill one person every 37 hours and injure one person every 3 hours. Novice traffic accident investigators in the Dubai police force are expected to "learn by doing" in this intense environment. Currently, they use no alternative to the real world in order to practice. This paper argues for the use of an alternative…

  9. Normal Accident at Three Mile Island.

    ERIC Educational Resources Information Center

    Perrow, Charles

    1981-01-01

    Discusses some aspects of the accident at the Three Mile Island nuclear power plant. Explains a number of factors involved including the type of accident, warnings, design and equipment failure, operator error, and negative synergy. Presents alternatives to systems with catastrophic potential. (MK)

  10. 48 CFR 36.513 - Accident prevention.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Accident prevention. 36.513 Section 36.513 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL... prevention. (a) The contracting officer shall insert the clause at 52.236-13, Accident Prevention,...

  11. Global estimates of fatal occupational accidents.

    PubMed

    Takala, J

    1999-09-01

    Data on occupational accidents are not available from all countries in the world. Furthermore, underreporting, limited coverage by reporting and compensation schemes, and non-harmonized accident recording and notification systems undermine efforts to obtain worldwide information on occupational accidents. This paper presents a method and new estimated global figures of fatal accidents at work by region. The fatal occupational accident rates reported to the International Labour Office are extended to the total employed workforce in countries and regions. For areas not covered by the reported information, rates from other countries that have similar or comparable conditions are applied. In 1994, an average estimated fatal occupational accident rate in the whole world was 14.0 per 100,000 workers, and the total estimated number of fatal occupational accidents was 335,000. The rates are different for individual countries and regions and for separate branches of economic activity. In conclusion, fatal occupational accident figures are higher than previously estimated. The new estimates can be gradually improved by obtaining and adding data from countries where information is not yet available. Sectoral estimates for at least key economic branches in individual countries would further increase the accuracy.

  12. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration representatives. If a scheduled United States air carrier is involved the airline representatives concerned will... promptly to the nearest office of the airline concerned and to the nearest office of the Civil...

  13. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration representatives. If a scheduled United States air carrier is involved the airline representatives concerned will... promptly to the nearest office of the airline concerned and to the nearest office of the Civil...

  14. Aircraft accidents.method of analysis

    NASA Technical Reports Server (NTRS)

    1937-01-01

    This report is a revision of NACA-TR-357. It was prepared by the Committee on Aircraft Accidents. The purpose of this report is to provide a basis for the classification and comparison of aircraft accidents, both civil and military.

  15. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    PubMed

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively.

  16. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    PubMed

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  17. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1

    PubMed Central

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-01-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by 137Cesium (137Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as 132Te-132I, 131I, 134Cs and 137Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h−1 per initial 137Cs deposition of 1000 kBq m−2, whereas it was 100 μGy h−1 around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m−2 for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums (134Cs + 137Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  18. Commercial SNF Accident Release Fractions

    SciTech Connect

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  19. Road accidents caused by drivers falling asleep.

    PubMed

    Sagberg, F

    1999-11-01

    About 29600 Norwegian accident-involved drivers received a questionnaire about the last accident reported to their insurance company. About 9200 drivers (31%) returned the questionnaire. The questionnaire contained questions about sleep or fatigue as contributing factors to the accident. In addition, the drivers reported whether or not they had fallen asleep some time whilst driving. and what the consequences had been. Sleep or drowsiness was a contributing factor in 3.9% of all accidents, as reported by drivers who were at fault for the accident. This factor was strongly over-represented in night-time accidents (18.6%), in running-off-the-road accidents (8.3%), accidents after driving more than 150 km on one trip (8.1%), and personal injury accidents (7.3%). A logistic regression analysis showed that the following additional factors made significant and independent contributions to increasing the odds of sleep involvement in an accident: dry road, high speed limit, driving one's own car, not driving the car daily, high education, and few years of driving experience. More male than female drivers were involved in sleep-related accidents, but this seems largely to be explained by males driving relatively more than females on roads with high speed limits. A total of 10% of male drivers and 4% of females reported to have fallen asleep while driving during the last 12 months. A total of 4% of these events resulted in an accident. The most frequent consequence of falling asleep--amounting to more than 40% of the reported incidents--was crossing of the right edge-line before awaking, whereas crossing of the centreline was reported by 16%. Drivers' lack of awareness of important precursors of falling asleep--like highway hypnosis, driving without awareness, and similar phenomena--as well as a reluctance to discontinue driving despite feeling tired are pointed out as likely contributors to sleep-related accidents. More knowledge about the drivers' experiences immediately

  20. [Poisoning accidents with household chemicals among children].

    PubMed

    Johannsen, H G; Mikkelsen, J B

    1994-10-01

    A review is presented of the registration of all poisoning accidents among children aged 0-6 years treated at the University Hospital, Odense, Denmark during the period 1.1.1980-31.12.1992. There were 1751 poisoning accidents of which 482 were accidents with household chemicals. There were 69 accidents with lamp oil (Petroleum) of which 67 were in the age group 0-3 years. A peak incidence in the age group 0-3 years old is seen in 1986. In 1992 the incidence is at about the same level as in 1980. The incidence in the age group 4-6 years is at almost the same level throughout the entire period. We conclude that it is necessary to continue with campaigns to prevent accidents with household chemicals among children.

  1. [Clinical examinations for the traffic accident patients].

    PubMed

    Hitosugi, Masahito

    2008-11-30

    Traffic accident is a leading cause of unintentional death and about six-thousands annually died in Japan. As about one-million of persons suffer from traffic injuries, most of them seek medical attention. Therefore, medical staffs have to find the injuries accurately and treat immediately. Furthermore, the cause of accident should also be considered; why the accident was occurred, human error of the driver? To solve these problems, clinical examinations were needed. Medical staffs have to understand the characteristics of the traffic injuries: severe and multiple blunt injuries, popular injuries can be estimated with considering the pattern of the accident. Because some of the accidents are occurred when the driver is under the influence of alcohol and other drugs, screening of these subjects should be performed. Because the public is largely unaware of the preventable nature of traffic injuries, in addition to diagnose and treat accurately, we medical staffs have to attend on the primary prevention of the traffic injuries.

  2. The Fukushima Daiichi Accident Study Information Portal

    SciTech Connect

    Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

    2012-11-01

    This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

  3. Accident prevention: the health visitor's role.

    PubMed

    Levene, S

    1992-10-01

    The health of the nation white paper sets targets in five key areas for reductions in both mortality and morbidity: coronary heart disease and stroke, cancers, mental illness, HIV/Aids and sexual health and accidents. In a series of articles in Health visitor, experts will be considering the opportunities the white paper offers for community nurses in each of the key areas. Here Dr Sara Levene, medical consultant to the Child Accident Prevention Trust, considers accidents, a major problem which health visitors can do much to control. She reviews how accidents are presented in the white paper, what health visitors can do and what resources are available to help them. She offers particular advice on special accident prevention initiatives and discusses some of the opportunities created by the white paper.

  4. Pilot-error accidents: male vs female.

    PubMed

    Vail, G J; Ekman, L G

    1986-12-01

    In this study, general aviation accident records from the files of the National Transportation Safety Board (NTSB), have been analysed by gender to observe the number and rate of pilot-error related accidents from 1972 to 1981 inclusive. If both females and males have no difference in performance, then data would have indicated similarities of accident rates and types of injuries. Males had a higher rate of accidents than females, and a higher portion of the male accidents resulted in fatalities or serious injuries than for females. Type of certificate, age, total flight time, flight time in type of aircraft, phase of operation, category of flying, degree of injury, specific cause factors, cause factor miscellaneous acts/conditions were analysed, taking the total number of United States Active Civilian General Aviation Pilots into consideration. The data did indicate a difference in all variables.

  5. Human Factors in Cabin Accident Investigations

    NASA Technical Reports Server (NTRS)

    Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.

  6. Heat management in aluminum/air batteries: Sources of heat

    NASA Astrophysics Data System (ADS)

    Patnaik, R. S. M.; Ganesh, S.; Ashok, G.; Ganesan, M.; Kapali, V.

    1994-07-01

    One of the problems with the aluminum/air battery is the generation of heat, during both idle and discharge periods. The main sources of heat are: (1) corrosion of the aluminum anode during the idle period; (2) inefficient, or less efficient, dissolution of anode during discharge; (3) Joule heat during discharge, and (4) non-uniform mass transfer during both discharge and idle periods. These components of heat act in a cumulative way because they are all interconnected. This paper addresses the basic reasons for the origin of these sources of heat. Suitable and practical remedial measures for the effective removal of such heat in the aluminum/air battery are suggested.

  7. [Cerebral vascular accidents in French Polynesia].

    PubMed

    Gras, C; Papouin, G; Prigent, D; Beaugendre, E; Lionet, P; Brodin, S; Legall, R; Marjou, F; Spiegel, A; Gendron, Y

    1992-01-01

    The authors report on the results of a survey on cardiovascular accidents hospitalized between 01 April 1990 and 31 January 1991 carried out in the Services of Medicine and Cardiology in the Territorial Hospital Center of Papeete. This survey was: 56 cardiovascular accidents: 1/4 (hemorrhagic and 3/4 (42) ischemic. Mean age 59 (extremes 23-86). 36 males (64%); 20 females (36%). 50 Polynesians; 6 Chinese people. Among the risk factors recorded, 38 (68%) were hypertensed patients; 17 (30%) were due to tabagism and 15 (25%) to diabetes; 3 (5%) are known to be carriers of a hypercholesterolemia. 59% of the patients had no case history; 25% the cardiovascular accidents have been observed in patients with cardiopathy; 12.5% are recurrent cardiovascular accidents. Clinically, 5 transient ischemic accidents (12%) out of 42 cardiovascular ischemic accidents. High arterial tension was recognized in 12/14 (86%) of hemorrhagic cardiovascular accidents and in 26/42 (62%) of ischemic cardiovascular accidents. In 42 ischemic cardiovascular accidents, 31 patients suffered from cardiopathy (74%) of which 15 (36%) presented an embolic cardiopathy. Interest of echography and electrocardiogram are discussed. Ultrasonic exam of carotid vessels was found abnormal in almost half of the cases when utilized (12/26). Finally, etiological diagnosis was certain in 17 cases, of presumption in 16 cases, and in 9 cases, it was not possible to precise any cardiovascular etiology. Tomodensitometric tests are discussed. 86% of the ischemic cardiovascular accident were treated with anticoagulants/thrombocyte antiagglutination. 24% of the patients died, 50% recovered incompletely and 26% completely. PMID:1602953

  8. Starch removal from potato tuber sections.

    PubMed

    Fronda, A; Jona, R

    1991-01-01

    Heating plant sections at 90 C with 0.5% aqueous ammonium oxalate is required to remove pectins. When applied to tissues rich in starch such as potato, this step produces heavy dextrinization of the starch which hinders subsequent evaluation of the extinction values of the cell walls. To overcome this a method has been devised to brush away the starch granules from the sections with a thin paint brush, just after paraffin removal by xylene. The slide is then processed as usual: pectins are removed by heat treatment, cell walls are stained with PAS and the stain intensity can be evaluated by photometry. PMID:1790235

  9. The Fukushima accident was preventable.

    PubMed

    Synolakis, Costas; Kânoğlu, Utku

    2015-10-28

    The 11 March 2011 tsunami was probably the fourth largest in the past 100 years and killed over 15 000 people. The magnitude of the design tsunami triggering earthquake affecting this region of Japan had been grossly underestimated, and the tsunami hit the Fukushima Dai-ichi nuclear power plant (NPP), causing the third most severe accident in an NPP ever. Interestingly, while the Onagawa NPP was also hit by a tsunami of approximately the same height as Dai-ichi, it survived the event 'remarkably undamaged'. We explain what has been referred to as the cascade of engineering and regulatory failures that led to the Fukushima disaster. One, insufficient attention had been given to evidence of large tsunamis inundating the region earlier, to Japanese research suggestive that large earthquakes could occur anywhere along a subduction zone, and to new research on mega-thrusts since Boxing Day 2004. Two, there were unexplainably different design conditions for NPPs at close distances from each other. Three, the hazard analysis to calculate the maximum probable tsunami at Dai-ichi appeared to have had methodological mistakes, which almost nobody experienced in tsunami engineering would have made. Four, there were substantial inadequacies in the Japan nuclear regulatory structure. The Fukushima accident was preventable, if international best practices and standards had been followed, if there had been international reviews, and had common sense prevailed in the interpretation of pre-existing geological and hydrodynamic findings. Formal standards are needed for evaluating the tsunami vulnerability of NPPs, for specific training of engineers and scientists who perform tsunami computations for emergency preparedness or critical facilities, as well as for regulators who review safety studies.

  10. The Fukushima accident was preventable.

    PubMed

    Synolakis, Costas; Kânoğlu, Utku

    2015-10-28

    The 11 March 2011 tsunami was probably the fourth largest in the past 100 years and killed over 15 000 people. The magnitude of the design tsunami triggering earthquake affecting this region of Japan had been grossly underestimated, and the tsunami hit the Fukushima Dai-ichi nuclear power plant (NPP), causing the third most severe accident in an NPP ever. Interestingly, while the Onagawa NPP was also hit by a tsunami of approximately the same height as Dai-ichi, it survived the event 'remarkably undamaged'. We explain what has been referred to as the cascade of engineering and regulatory failures that led to the Fukushima disaster. One, insufficient attention had been given to evidence of large tsunamis inundating the region earlier, to Japanese research suggestive that large earthquakes could occur anywhere along a subduction zone, and to new research on mega-thrusts since Boxing Day 2004. Two, there were unexplainably different design conditions for NPPs at close distances from each other. Three, the hazard analysis to calculate the maximum probable tsunami at Dai-ichi appeared to have had methodological mistakes, which almost nobody experienced in tsunami engineering would have made. Four, there were substantial inadequacies in the Japan nuclear regulatory structure. The Fukushima accident was preventable, if international best practices and standards had been followed, if there had been international reviews, and had common sense prevailed in the interpretation of pre-existing geological and hydrodynamic findings. Formal standards are needed for evaluating the tsunami vulnerability of NPPs, for specific training of engineers and scientists who perform tsunami computations for emergency preparedness or critical facilities, as well as for regulators who review safety studies. PMID:26392611

  11. An idealized transient model for melt dispersal from reactor cavities during pressurized melt ejection accident scenarios

    SciTech Connect

    Tutu, N.K.

    1991-06-01

    The direct Containment Heating (DCH) calculations require that the transient rate at which the melt is ejected from the reactor cavity during hypothetical pressurized melt ejection accident scenarios be calculated. However, at present no models, that are able to predict the available melt dispersal data from small scale reactor cavity models, are available. In this report, a simple idealized model of the melt dispersal process within a reactor cavity during a pressurized melt ejection accident scenario is presented. The predictions from the model agree reasonably well with the integral data obtained from the melt dispersal experiments using a small scale model of the Surry reactor cavity. 17 refs., 15 figs.

  12. Large break loss of coolant severe accident sequences at the HFIR (High Flux Isotope Reactor)

    SciTech Connect

    Simpson, D.B.; Greene, S.R.

    1990-01-01

    An assessment of many potential HFIR severe accident phenomena was conducted during the HFIR design effort, and many severe accident mitigating features were designed into the plant. These evaluation typically incorporated a bounding'' or highly conservative analysis approach and employed tools and techniques representative of the state of knowledge in the mid-1960s. Recently, programs to address severe accident issues were initiated at the Oak Ridge National Laboratory (ORNL) to support the HFIR probabilistic risk assessment (PRA) and equipment qualification and accident management studies. This paper presents the results of environment condition calculations conducted to evaluate a response of HFIR's heat exchanger cell environment to a double-ended rupture of a 0.25 m diameter coolant loop downstream of the circulating pump and check valve. The confinement calculations were performed using an atmospheric fission product source for the heat exchanger cell consistent with, but more conservative than that stipulated in Regulatory Guide 1.89. The results of the calculations indicate that the heat exchanger cell atmospheric temperature peaks at 377 K 225 seconds into the transient and then begins decreasing at approximately 1.7 K per minute. 8 refs., 5 figs.

  13. [A study on fall accident].

    PubMed

    Lee, H S; Kim, M J

    1997-01-01

    The study was conducted from November 1995 to May 1996 at the one general hospital in Seoul. The total subjects of this study were 412 patients who have the experience of fall accident, among them 31 was who have fallen during hospitalization and 381 was who visited emergency room and out patient clinic. The purposes of this study were to determine the characteristics, risk factors and results of fall accident and to suggest the nursing strategies for prevention of fall. Data were collected by reviewing the medical records and interviewing with the fallers and their family members. For data analysis spss/pc+ program was utilized for descriptive statistics, adjusted standardized X2-test. The results of this study were as follows: 1) Total subjects were 412 fallers, of which 245 (59.5%) were men and 167 (40.5%) were women. Age were 0-14 years 79 (19.2%), 15-44 years 125 (30.4%), 45-64 years 104 (25.2%), over 65 years 104 (25.2%). 2) There was significant association between age and the sexes (X2 = 39.17, P = 0.00). 3) There was significant association between age and history of falls (X2 = 44.41, P = .00). And history of falls in the elderly was significantly associated with falls. 4) There was significant association with age and medical diagnosis (X2 = 140.66, P = .00), chief medical diagnosis were hypertension (34), diabetes mellitus (22), arthritis (11), stroke (8), fracture (7), pulmonary tuberculosis (6), dementia (5) and cataract (5). 5) There was significant association between age and intrinsic factors: cognitive impairment, mobility impairment, insomnia, emotional problems, urinary difficulty, visual impairments, hearing impairments, use of drugs (sedatives, antihypertensive drugs, diuretics, antidepressants) (P < 0.05). But there was no significant association between age and dizziness (X2 = 2.87, P = .41). 6) 15.3% of total fallers were drunken state when they were fallen. 7) Environmental factors of fall accident were unusual posture (50.9%), slips (35

  14. Fuel removal, transport, and storage

    SciTech Connect

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  15. Analysis of occupational accidents: prevention through the use of additional technical safety measures for machinery

    PubMed Central

    Dźwiarek, Marek; Latała, Agata

    2016-01-01

    This article presents an analysis of results of 1035 serious and 341 minor accidents recorded by Poland's National Labour Inspectorate (PIP) in 2005–2011, in view of their prevention by means of additional safety measures applied by machinery users. Since the analysis aimed at formulating principles for the application of technical safety measures, the analysed accidents should bear additional attributes: the type of machine operation, technical safety measures and the type of events causing injuries. The analysis proved that the executed tasks and injury-causing events were closely connected and there was a relation between casualty events and technical safety measures. In the case of tasks consisting of manual feeding and collecting materials, the injuries usually occur because of the rotating motion of tools or crushing due to a closing motion. Numerous accidents also happened in the course of supporting actions, like removing pollutants, correcting material position, cleaning, etc. PMID:26652689

  16. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    SciTech Connect

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

  17. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  18. An analysis of aircraft accidents involving fires

    NASA Technical Reports Server (NTRS)

    Lucha, G. V.; Robertson, M. A.; Schooley, F. A.

    1975-01-01

    All U. S. Air Carrier accidents between 1963 and 1974 were studied to assess the extent of total personnel and aircraft damage which occurred in accidents and in accidents involving fire. Published accident reports and NTSB investigators' factual backup files were the primary sources of data. Although it was frequently not possible to assess the relative extent of fire-caused damage versus impact damage using the available data, the study established upper and lower bounds for deaths and damage due specifically to fire. In 12 years there were 122 accidents which involved airframe fires. Eighty-seven percent of the fires occurred after impact, and fuel leakage from ruptured tanks or severed lines was the most frequently cited cause. A cost analysis was performed for 300 serious accidents, including 92 serious accidents which involved fire. Personal injury costs were outside the scope of the cost analysis, but data on personnel injury judgements as well as settlements received from the CAB are included for reference.

  19. Accidents in Canada: mortality and hospitalization.

    PubMed

    Riley, R; Paddon, P

    1989-01-01

    For Canadians under 45, accidents are the leading cause of both death and hospitalization. For the Canadian population as a whole, accidents rank fourth as a cause of death, after cardiovascular disease (CVD), cancer and respiratory disease. This article analyzes accident mortality and hospitalization in Canada using age-specific rates, age-standardized mortality rates (ASMR), and potential years of life lost (PYLL). The six major causes of accidental death for men are motor vehicle traffic accidents (MVTA), falls, drowning, fires, suffocation and poisoning. For women, the order is slightly different: MVTA, falls, fires, suffocation, poisoning and drowning. From 1971 to 1986, age-standardized mortality rates (ASMR) for accidents decreased by 44% for men and 39% for women. The largest decrease occurred in the under 15 age group. Accidents accounted for 11.5% of total hospital days in 1985, and 8% of hospital discharges. Because young people have the highest rates of accidental death, potential years of life lost (PYLL) are almost as high for accidents as for cardiovascular disease, although CVD deaths outnumbered accidental deaths by almost five to one in 1985. PMID:2491351

  20. Road accidents and business cycles in Spain.

    PubMed

    Rodríguez-López, Jesús; Marrero, Gustavo A; González, Rosa Marina; Leal-Linares, Teresa

    2016-11-01

    This paper explores the causes behind the downturn in road accidents in Spain across the last decade. Possible causes are grouped into three categories: Institutional factors (a Penalty Point System, PPS, dating from 2006), technological factors (active safety and passive safety of vehicles), and macroeconomic factors (the Great recession starting in 2008, and an increase in fuel prices during the spring of 2008). The PPS has been blessed by incumbent authorities as responsible for the decline of road fatalities in Spain. Using cointegration techniques, the GDP growth rate, the fuel price, the PPS, and technological items embedded in motor vehicles appear to be statistically significantly related with accidents. Importantly, PPS is found to be significant in reducing fatal accidents. However, PPS is not significant for non-fatal accidents. In view of these results, we conclude that road accidents in Spain are very sensitive to the business cycle, and that the PPS influenced the severity (fatality) rather than the quantity of accidents in Spain. Importantly, technological items help explain a sizable fraction in accidents downturn, their effects dating back from the end of the nineties.

  1. Childhood accidents: epidemiology, trends, and prevention.

    PubMed Central

    Kemp, A; Sibert, J

    1997-01-01

    Accidents are the most common cause of death in children over one year of age. Prevention remains a high priority. We have reviewed the current epidemiology of childhood accidents and their prevention, and made recommendations for the future. In 1992, 559 children died in United Kingdom as a result of an accidents--240 from road traffic accidents and 100 from burns and scalds. Every year 50 children drown. Accidents cause significant disability to children. Many children, up to one in four of the population in urban areas, attend accident and emergency departments, and 5-10% of these are admitted to hospital. Accident risk factors include low social class, psychosocial stress, an unsafe environment, and child developmental disorders. Research has shown that prevention is best achieved by making the child's environment safer, often through legislation. Insufficient resources have been put into both research into childhood injuries and preventive work in communities. Collaboration between health authorities, NHS trusts, local authorities and community networks is vital if success is to be achieved. A national safety agenda for children would focus the attention that this problem deserves. PMID:9315935

  2. Accidents in Canada: mortality and hospitalization.

    PubMed

    Riley, R; Paddon, P

    1989-01-01

    For Canadians under 45, accidents are the leading cause of both death and hospitalization. For the Canadian population as a whole, accidents rank fourth as a cause of death, after cardiovascular disease (CVD), cancer and respiratory disease. This article analyzes accident mortality and hospitalization in Canada using age-specific rates, age-standardized mortality rates (ASMR), and potential years of life lost (PYLL). The six major causes of accidental death for men are motor vehicle traffic accidents (MVTA), falls, drowning, fires, suffocation and poisoning. For women, the order is slightly different: MVTA, falls, fires, suffocation, poisoning and drowning. From 1971 to 1986, age-standardized mortality rates (ASMR) for accidents decreased by 44% for men and 39% for women. The largest decrease occurred in the under 15 age group. Accidents accounted for 11.5% of total hospital days in 1985, and 8% of hospital discharges. Because young people have the highest rates of accidental death, potential years of life lost (PYLL) are almost as high for accidents as for cardiovascular disease, although CVD deaths outnumbered accidental deaths by almost five to one in 1985.

  3. Chemical considerations in severe accident analysis

    SciTech Connect

    Malinauskas, A.P.; Kress, T.S.

    1988-01-01

    The Reactor Safety Study presented the first systematic attempt to include fission product physicochemical effects in the determination of expected consequences of hypothetical nuclear reactor power plant accidents. At the time, however, the data base was sparse, and the treatment of fission product behavior was not entirely consistent or accurate. Considerable research has since been performed to identify and understand chemical phenomena that can occur in the course of a nuclear reactor accident, and how these phenomena affect fission product behavior. In this report, the current status of our understanding of the chemistry of fission products in severe core damage accidents is summarized and contrasted with that of the Reactor Safety Study.

  4. Impact of nuclear accidents on marine biota.

    PubMed

    Vives i Batlle, Jordi

    2011-07-01

    The accident at the Fukushima Daiichi nuclear power plant, precipitated by the earthquake and subsequent tsunami that struck the northeastern coast of Japan in March 2011, has raised concerns about the potential impact to marine biota posed by the release of radioactive water and radionuclide particles into the environment. The Fukushima accident is the only major nuclear accident that has resulted in the direct discharge of radioactive materials into a coastal environment. This article briefly summarizes what is currently understood about the effects of radioactive wastewaters and radionuclides to marine life.

  5. Weather and Dispersion Modeling of the Fukushima Daiichi Nuclear Power Station Accident

    NASA Astrophysics Data System (ADS)

    Dunn, Thomas; Businger, Steven

    2014-05-01

    The surface deposition of radioactive material from the accident at the Fukushima Daiichi nuclear power station was investigated for 11 March to 17 March 2011. A coupled weather and dispersion modeling system was developed and simulations of the accident performed using two independent source terms that differed in emission rate and height and in the total amount of radioactive material released. Observations in Japan during the first week of the accident revealed a natural grouping between periods of dry (12-14 March) and wet (15-17 March) weather. The distinct weather regimes served as convenient validation periods for the model predictions. Results show significant differences in the distribution of cumulative surface deposition of 137Cs due to wet and dry removal processes. A comparison of 137Cs deposition predicted by the model with aircraft observations of surface-deposited gamma radiation showed reasonable agreement in surface contamination patterns during the dry phase of the accident for both source terms. It is suggested that this agreement is because of the weather model's ability to simulate the extent and timing of onshore flow associated with a sea breeze circulation that developed around the time of the first reactor explosion. During the wet phase of the accident the pattern is not as well predicted. It is suggested that this discrepancy is because of differences between model predicted and observed precipitation distributions.

  6. An Application of CICCT Accident Categories to Aviation Accidents in 1988-2004

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2007-01-01

    Interventions or technologies developed to improve aviation safety often focus on specific causes or accident categories. Evaluation of the potential effectiveness of those interventions is dependent upon mapping the historical aviation accidents into those same accident categories. To that end, the United States civil aviation accidents occurring between 1988 and 2004 (n=26,117) were assigned accident categories based upon the taxonomy developed by the CAST/ICAO Common Taxonomy Team (CICTT). Results are presented separately for four main categories of flight rules: Part 121 (large commercial air carriers), Scheduled Part 135 (commuter airlines), Non-Scheduled Part 135 (on-demand air taxi) and Part 91 (general aviation). Injuries and aircraft damage are summarized by year and by accident category.

  7. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    SciTech Connect

    Salay, Michael; Gauntt, Randall O.; Lee, Richard Y.; Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  8. Review of models applicable to accident aerosols

    SciTech Connect

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  9. Safety analysis of surface haulage accidents

    SciTech Connect

    Randolph, R.F.; Boldt, C.M.K.

    1996-12-31

    Research on improving haulage truck safety, started by the U.S. Bureau of Mines, is being continued by its successors. This paper reports the orientation of the renewed research efforts, beginning with an update on accident data analysis, the role of multiple causes in these accidents, and the search for practical methods for addressing the most important causes. Fatal haulage accidents most often involve loss of control or collisions caused by a variety of factors. Lost-time injuries most often involve sprains or strains to the back or multiple body areas, which can often be attributed to rough roads and the shocks of loading and unloading. Research to reduce these accidents includes improved warning systems, shock isolation for drivers, encouraging seatbelt usage, and general improvements to system and task design.

  10. Chernobyl accident: A comprehensive risk assessment

    SciTech Connect

    Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

    1999-11-01

    The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

  11. Chernobyl accident: A comprehensive risk assessment

    SciTech Connect

    Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

    1999-01-01

    The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

  12. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    SciTech Connect

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  13. 50 CFR 25.72 - Reporting of accidents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., but in no event later than 24 hours after the accident, by the persons involved, to the refuge manager... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Reporting of accidents. 25.72 Section 25... Reporting of accidents. Accidents involving damage to property, injury to the public or injury to...

  14. 50 CFR 25.72 - Reporting of accidents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., but in no event later than 24 hours after the accident, by the persons involved, to the refuge manager... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Reporting of accidents. 25.72 Section 25... Reporting of accidents. Accidents involving damage to property, injury to the public or injury to...

  15. 40 CFR 68.42 - Five-year accident history.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Five-year accident history. 68.42... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Hazard Assessment § 68.42 Five-year accident history. (a) The owner or operator shall include in the five-year accident history all accidental releases...

  16. 40 CFR 68.42 - Five-year accident history.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Five-year accident history. 68.42... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Hazard Assessment § 68.42 Five-year accident history. (a) The owner or operator shall include in the five-year accident history all accidental releases...

  17. Oranges and Peaches: Understanding Communication Accidents in the Reference Interview.

    ERIC Educational Resources Information Center

    Dewdney, Patricia; Michell, Gillian

    1996-01-01

    Librarians often have communication "accidents" with reference questions as initially presented. This article presents linguistic analysis of query categories, including: simple failures of hearing, accidents involving pronunciation or homophones, accidents where users repeat earlier misinterpretations to librarians, and accidents where users…

  18. 48 CFR 852.236-87 - Accident prevention.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Accident prevention. 852... Accident prevention. As prescribed in 836.513, insert the following clause: Accident Prevention (SEP 1993....236-13, Accident Prevention. However, only the Contracting Officer may issue an order to stop all...

  19. 40 CFR 68.42 - Five-year accident history.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Five-year accident history. 68.42... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Hazard Assessment § 68.42 Five-year accident history. (a) The owner or operator shall include in the five-year accident history all accidental releases...

  20. 46 CFR 97.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accidents to machinery. 97.30-5 Section 97.30-5 Shipping... Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use...

  1. 46 CFR 196.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Accidents to machinery. 196.30-5 Section 196.30-5... Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use...

  2. 46 CFR 78.33-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Accidents to machinery. 78.33-5 Section 78.33-5 Shipping... Accidents, Repairs, and Unsafe Equipment § 78.33-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use of the...

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  5. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  6. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  7. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  8. Learning lessons from Natech accidents - the eNATECH accident database

    NASA Astrophysics Data System (ADS)

    Krausmann, Elisabeth; Girgin, Serkan

    2016-04-01

    When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of

  9. Environmental measurements during the TMI-2 accident

    SciTech Connect

    Hull, A.P.

    1988-01-01

    Although the environmental consequences of the TMI accident were relatively insignificant, it was a major test of the ability of the involved state and federal radiological agencies to make a coordinated environmental monitoring response. This was accomplished largely on an ad hoc basis under the leadership of DOE. With some fine tuning, it is the basis for today's integrated FRMAP monitoring plan, which would be put into operation should another major accident occur at a US nuclear facility.

  10. [Dysbaric accident in deep sea fishing].

    PubMed

    López Oblaré, B; Campos Pascual, F

    1995-05-20

    The case of a dysbaric accident with occurred in a professional athlete during a national competition is herein reported. The clinical symptoms and response to treatment in a depressurization chamber in addition to CT controls should alert physicians in coastal areas in which this sport is carried out in order to take into consideration neurologic disorders which may be due to dysbaric accidents such as those which occur in scuba divers.

  11. MELCOR analyses for accident progression issues

    SciTech Connect

    Dingman, S.E.; Shaffer, C.J.; Payne, A.C.; Carmel, M.K. )

    1991-01-01

    Results of calculations performed with MELCOR and HECTR in support of the NUREG-1150 study are presented in this report. The analyses examined a wide range of issues. The analyses included integral calculations covering an entire accident sequence, as well as calculations that addressed specific issues that could affect several accident sequences. The results of the analyses for Grand Gulf, Peach Bottom, LaSalle, and Sequoyah are described, and the major conclusions are summarized. 23 refs., 69 figs., 8 tabs.

  12. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  13. Truck accident involving unirradiated nuclear fuel

    SciTech Connect

    Carlson, R.W.; Fischer, L.E.

    1992-07-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 nuclear fuel assemblies in 12 containers on Interstate 1-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the.tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1300{degrees}F and 1800{degrees}F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk.

  14. Truck accident involving unirradiated nuclear fuel

    SciTech Connect

    Carlson, R.W.; Fischer, L.E.

    1992-07-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 nuclear fuel assemblies in 12 containers on Interstate 1-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the.tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1300[degrees]F and 1800[degrees]F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk.

  15. Anthropotechnological analysis of industrial accidents in Brazil.

    PubMed Central

    Binder, M. C.; de Almeida, I. M.; Monteau, M.

    1999-01-01

    The Brazilian Ministry of Labour has been attempting to modify the norms used to analyse industrial accidents in the country. For this purpose, in 1994 it tried to make compulsory use of the causal tree approach to accident analysis, an approach developed in France during the 1970s, without having previously determined whether it is suitable for use under the industrial safety conditions that prevail in most Brazilian firms. In addition, opposition from Brazilian employers has blocked the proposed changes to the norms. The present study employed anthropotechnology to analyse experimental application of the causal tree method to work-related accidents in industrial firms in the region of Botucatu, São Paulo. Three work-related accidents were examined in three industrial firms representative of local, national and multinational companies. On the basis of the accidents analysed in this study, the rationale for the use of the causal tree method in Brazil can be summarized for each type of firm as follows: the method is redundant if there is a predominance of the type of risk whose elimination or neutralization requires adoption of conventional industrial safety measures (firm representative of local enterprises); the method is worth while if the company's specific technical risks have already largely been eliminated (firm representative of national enterprises); and the method is particularly appropriate if the firm has a good safety record and the causes of accidents are primarily related to industrial organization and management (multinational enterprise). PMID:10680249

  16. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  17. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  18. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  19. Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)

    SciTech Connect

    Ruggles, A. E.; Cheng, L. Y.; Dimenna, R. A.; Griffith, P.; Wilson, G. E.

    1994-06-01

    A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

  20. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    SciTech Connect

    2013-09-25

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  1. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    ScienceCinema

    None

    2016-07-12

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  2. Pumped, Two-Phase Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1986-01-01

    Two-phase heat-transfer system delivers coolant to equipment as liquid and removes it as vapor. Alternatively, system heats equipment by delivering vapor and removing condensed liquid. Two-phase scheme effective for heat transfer over long distances. Heat-transfer plates remove heat from or supply heat to equipment. If temperature of plate is high, valve opens liquid-supply line to plate, and cooling results. If plate temperature is low, valve opens liquid-suction line to plate, and heating ensues.

  3. Heat reclaiming method and apparatus

    DOEpatents

    Jardine, Douglas M.

    1984-01-01

    Method and apparatus to extract heat by transferring heat from hot compressed refrigerant to a coolant, such as water, without exceeding preselected temperatures in the coolant and avoiding boiling in a water system by removing the coolant from direct or indirect contact with the hot refrigerant.

  4. Lockout/tagout accident investigation.

    PubMed

    White, James R

    2014-08-01

    When I was in boot camp, our drill instructor told us that assume makes an ass out of u and me. It was true then, and it is true today. In this instance, assumptions came into play several times, both by the worker and by the companies involved. The good news is that it did not result in a fatality, but that does not relieve the pain and suffering that the employee had to endure. This same type of scenario is likely repeated at many job sites throughout the United States. Multiple contractors, dozens--maybe hundreds--of workers, power system equipment and devices; all of these have to be taken into consideration when performing maintenance activities. It can become a blur. People are people, and people make mistakes. That is why we have OSHA regulations, NFPA 70E, company procedures, policies, etc. Most if not all of us have either been involved in accidents or know people who have been. It's not like it's a secret that people make mistakes, but talk to some and they seem to think only others have that failing. Safety is not about just any one procedure or rule. It's about slowing down, making a plan, and executing that plan. There are plenty of tools available to help us: policies, procedures, codes, standards, federal regulations, and state and local laws. I am not about to say that the worker involved in this incident was not taking safety seriously, but he failed to follow some fundamental safety rules like test-before-touch. If he had taken just that one step, there would be nothing to write about. PMID:25188988

  5. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  6. Designing the accident and emergency system: lessons from manufacturing

    PubMed Central

    Walley, P

    2003-01-01

    Objectives: To review the literature on manufacturing process design and demonstrate applicability in health care. Methods: Literature review and application of theory using two years activity data from two healthcare communities and extensive observation of activities over a six week period by seven researchers. Results: It was possible to identify patient flows that could be used to design treatment processes around the needs of the patient. Some queues are built into existing treatment processes and can be removed by better process design. Capacity imbalance, not capacity shortage, causes some unnecessary waiting in accident and emergency departments. Conclusions: Clinicians would find that modern manufacturing theories produce more acceptable designs of systems. In particular, good quality is seen as a necessary pre-requisite of fast, efficient services. PMID:12642523

  7. An in vitro study into the effect of a limited range of denture cleaners on surface roughness and removal of Candida albicans from conventional heat-cured acrylic resin denture base material.

    PubMed

    Harrison, Z; Johnson, A; Douglas, C W I

    2004-05-01

    This study evaluated the abrasiveness of four denture cleaners on the surface of denture base material and assessed their ability to remove Candida albicans. Acrylic resin discs 20 mm diameter and 2 mm thick were identically produced and polished. Four cleaners were evaluated: conventional toothpaste; toothpaste with stain remover; denture cleaning paste and an immersion type cleaner, and water were used as control. These were used at dilutions of 1:1, 1:2 and 1:3 with water. An electric toothbrush was used, and the discs cleaned to simulate 1 years' cleaning. The surface roughness of the discs were then measured, before and after cleaning, using a stylus profilometer, then inoculated with 1.2 x 10(6)C. albicans cells. The effectiveness of the denture cleaners to remove C. albicans cells was assessed following a single cleaning event. The immersion cleaner was significantly less abrasive than paste cleaners (P < 0.05). There were no significant differences between any dilutions for any cleaner used (P > 0.05). Immersion and paste cleaners removed almost all recoverable C. albicans from the discs, as cleaning with water alone was less effective (P < 0.05). An immersion type cleaner was found to be the most suitable cleaner because of its low abrasivity and effective removal of organic debris. PMID:15140172

  8. Heat Without Heat

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    1997-04-01

    Logic of the Second Law of Thermodynamics demands acquisition of naked entropy. Accordingly, the leanest liaison between systems is not a diathermic membrane, it is a purely informational tickler, leaking no appreciable energy. The subsystem here is a thermodynamic universe, which gets `heated' entropically, yet without gaining calories. Quantum Mechanics graciously supports that(Lubkin, E. and Lubkin, T., International Journal of Theoretical Physics,32), 933-943 (1993) (at a cost of about 1 bit) through entanglement---across this least permeable of membranes---with what is beyond that universe. Heat without heat(Also v. forthcoming Proceedings of the 4th Drexel University Conference of September 1994) is the aspirin for Boltzmann's headache, conserving entropy in mechanical isolation, even while increasing entropy in thermodynamic isolation.

  9. Simplified Heat-Source/Thermionic Converter

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1983-01-01

    Radiation coupling of heat from heat-source cylinder to converter cylinder through vacuum gap eliminates need for high-temperature electrical insulators between reactor heat pipes and thermionic converters. In addition no radiatior heat pipe is necessary because collectors of thermionic converters from which excess heat must be removed radiate directly to space. New design concept is also applicable to terrestrial and non-nuclear thermionic power supplies.

  10. Analysis of station blackout accidents for the Bellefonte pressurized water reactor

    SciTech Connect

    Gasser, R D; Bieniarz, P P; Tills, J L

    1986-09-01

    An analysis has been performed for the Bellefonte PWR Unit 1 to determine the containment loading and the radiological releases into the environment from a station blackout accident. A number of issues have been addressed in this analysis which include the effects of direct heating on containment loading, and the effects of fission product heating and natural convection on releases from the primary system. The results indicate that direct heating which involves more than about 50% of the core can fail the Bellefonte containment, but natural convection in the RCS may lead to overheating and failure of the primary system piping before core slump, thus, eliminating or mitigating direct heating. Releases from the primary system are significantly increased before vessel breach due to natural circulation and after vessel breach due to reevolution of retained fission products by fission product heating of RCS structures.

  11. Drudgery, accidents and injuries in Indian agriculture.

    PubMed

    Nag, Pranab Kumar; Nag, Anjali

    2004-04-01

    The Indian farming employs 225 million workforce to cover 140 million hectares of total cultivated land. In spite of rapid farm mechanization (e.g., 149 million farm machinery), the vast resource-poor family farming has primary dependence on traditional methods (e.g., 520 million hand tools and 37 million animal-drawn implements are in operation). The work drudgery, the traumatic accidents and injuries are the major concerns to examine options for ergonomics intervention and betterment of work in crop production activities. This review summarizes human energy expenditure in crop production activities, to assess the job severity, tools and machinery, and formulate the basis to reorganize work and work methods. While the farm mechanization is more in the northern India, the accidents were more in the villages in southern India. On average of the four regions, the tractor incidents (overturning, falling from the tractor, etc.) were highest (27.7%), followed by thresher (14.6%), sprayer/duster (12.2%), sugarcane crusher (8.1%) and chaff cutter (7.8%) accidents. Most of the fatal accidents resulted from the powered machinery, with the annual fatality rate estimated as 22 per 100,000 farmers. The hand tools related injuries (8% of the total accidents) were non-fatal in nature. In spite of the enactment of legislation, the shortcomings in production and monitoring of the machinery in field use may be responsible for the high rate of accidents (e.g., 42 thresher accidents/1,000 mechanical threshers/year in southern India). Due to the lack of technical capability of the local artisans, adhering to safety and design standards is impractical to the implements fabricated in the rural areas. The analysis emphasizes that the effective safety and health management may be possible through legislative enabling of the local infra-structure, such as block development authority and primary health services, to permeate occupational health and safe work practices in the farming sector

  12. [An analysis of industrial accidents in the working field with a particular emphasis on repeated accidents].

    PubMed

    Wakisaka, I; Yanagihashi, T; Tomari, T; Sato, M

    1990-03-01

    The present study is based on an analysis of routinely submitted reports of occupational accidents experienced by the workers of industrial enterprises under the jurisdiction of Kagoshima Labor Standard Office during a 5-year period 1983 to 1987. Officially notified injuries serious enough to keep employees away from their job for work at least 4 days were utilized in this study. Data was classified so as to give an observed frequency distribution for workers having any specified number of accidents. Also, the accident rate which is an indicator of the risk of accident was compared among different occupations, between age groups and between the sexes. Results obtained are as follows; 1) For the combined total of 6,324 accident cases for 8 types of occupation (Construction, Transportation, Mining & Quarrying, Forestry, Food manufacture, Lumber & Woodcraft, Manufacturing industry and Other business), the number of those who had at least one accident was 6,098, of which 5,837 were injured only once, 208 twice, 21 three times and 2 four times. When occupation type was fixed, however, the number of workers having one, two, three and four times of accidents were 5,895, 182, 19 and 2, respectively. This suggests that some workers are likely to have experienced repeated accidents in more than one type of occupation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2131982

  13. Preliminary evaluation of the Accident Response Mobile Manipulation System for accident site salvage operations

    SciTech Connect

    Trujillo, J.M.; Morse, W.D.; Jones, D.P.

    1994-10-01

    This paper describes and evaluates operational experiences with the Accident Response Mobile Manipulation System (ARMMS) during simulated accident site salvage operations which might involve nuclear weapons. The ARMMS is based upon a teleoperated mobility platform with two Schilling Titan 7F Manipulators.

  14. [An analysis of industrial accidents in the working field with a particular emphasis on repeated accidents].

    PubMed

    Wakisaka, I; Yanagihashi, T; Tomari, T; Sato, M

    1990-03-01

    The present study is based on an analysis of routinely submitted reports of occupational accidents experienced by the workers of industrial enterprises under the jurisdiction of Kagoshima Labor Standard Office during a 5-year period 1983 to 1987. Officially notified injuries serious enough to keep employees away from their job for work at least 4 days were utilized in this study. Data was classified so as to give an observed frequency distribution for workers having any specified number of accidents. Also, the accident rate which is an indicator of the risk of accident was compared among different occupations, between age groups and between the sexes. Results obtained are as follows; 1) For the combined total of 6,324 accident cases for 8 types of occupation (Construction, Transportation, Mining & Quarrying, Forestry, Food manufacture, Lumber & Woodcraft, Manufacturing industry and Other business), the number of those who had at least one accident was 6,098, of which 5,837 were injured only once, 208 twice, 21 three times and 2 four times. When occupation type was fixed, however, the number of workers having one, two, three and four times of accidents were 5,895, 182, 19 and 2, respectively. This suggests that some workers are likely to have experienced repeated accidents in more than one type of occupation.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Simulation of reflooding on two parallel heated channel by TRACE

    NASA Astrophysics Data System (ADS)

    Zakir, Md. Ghulam

    2016-07-01

    In case of Loss-Of-Coolant accident (LOCA) in a Boiling Water Reactor (BWR), heat generated in the nuclear fuel is not adequately removed because of the decrease of the coolant mass flow rate in the reactor core. This fact leads to an increase of the fuel temperature that can cause damage to the core and leakage of the radioactive fission products. In order to reflood the core and to discontinue the increase of temperature, an Emergency Core Cooling System (ECCS) delivers water under this kind of conditions. This study is an investigation of how the power distribution between two channels can affect the process of reflooding when the emergency water is injected from the top of the channels. The peak cladding temperature (PCT) on LOCA transient for different axial level is determined as well. A thermal-hydraulic system code TRACE has been used. A TRACE model of the two heated channels has been developed, and three hypothetical cases with different power distributions have been studied. Later, a comparison between a simulated and experimental data has been shown as well.

  16. Natural convection heat transfer analysis of ATR fuel elements

    SciTech Connect

    Langerman, M.A.

    1992-05-01

    Natural convection air cooling of the Advanced Test Reactor (ATR) fuel assemblies is analyzed to determine the level of decay heat that can be removed without exceeding the melting temperature of the fuel. The study was conducted to assist in the level 2 PRA analysis of a hypothetical ATR water canal draining accident. The heat transfer process is characterized by a very low Rayleigh number (Ra {approx} 10{sup {minus}5}) and a high temperature ratio. Since neither data nor analytical models were available for Ra < 0.1, an analytical approach is presented based upon the integral boundary layer equations. All assumptions and simplifications are presented and assessed and two models are developed from similar foundations. In one model, the well-known Boussinesq approximations are employed, the results from which are used to assess the modeling philosophy through comparison to existing data and published analytical results. In the other model, the Boussinesq approximations are not used, thus making the model more general and applicable to the ATR analysis.

  17. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    SciTech Connect

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  18. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Yoder, G.L. ); Wendel, M.W. )

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs.

  19. Latest innovations for tattoo and permanent makeup removal.

    PubMed

    Mao, Johnny C; DeJoseph, Louis M

    2012-05-01

    The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented.

  20. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction. PMID:20099174

  1. The three essentials for accident prevention.

    PubMed

    Eastman, Crystal

    2014-11-01

    This article was written by Crystal Eastman when she was Secretary of the New York Commission on Employers' Liability and Causes of Industrial Accidents, Unemployment, and Lack of Farm Labor. It was published in July of 1911, in Volume 38, Number 1 of the Annals of the American Academy of Political and Social Science, pages 98-107. The issue title was "Risks in Modern Industry." Eastman calls for the prevention of workplace accidents through three essentials: injury surveillance/reporting (with annual public reporting of the data); government enforcement of accident prevention laws, via departments with well-paid and well-trained officials and inspectors, fines that are high enough to be a deterrence to employers, and the power to have police shut down a factory if preventive measures are not installed; and a workers' compensation system-"a system of liability by which an employer can reduce his accident costs, not by hiring a more unscrupulous attorney and a more hard-hearted claim agent, but only by reducing his accidents." PMID:25261022

  2. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2011-01-01

    This slide presentation reviews NASA's role in the response to spacecraft accidents that involve human fatalities or injuries. Particular attention is given to the work of the Mishap Investigation Team (MIT), the first response to the accidents and the interface to the accident investigation board. The MIT does not investigate the accident, but the objective of the MIT is to gather, guard, preserve and document the evidence. The primary medical objectives of the MIT is to receive, analyze, identify, and transport human remains, provide assistance in the recovery effort, and to provide family Casualty Coordinators with latest recovery information. The MIT while it does not determine the cause of the accident, it acts as the fact gathering arm of the Mishap Investigation Board (MIB), which when it is activated may chose to continue to use the MIT as its field investigation resource. The MIT membership and the specific responsibilities and tasks of the flight surgeon is reviewed. The current law establishing the process is also reviewed.

  3. Single pilot IFR accident data analysis

    NASA Technical Reports Server (NTRS)

    Harris, D. F.; Morrisete, J. A.

    1982-01-01

    The aircraft accident data recorded and maintained by the National Transportation Safety Board for 1964 to 1979 were analyzed to determine what problems exist in the general aviation single pilot instrument flight rules environment. A previous study conducted in 1978 for the years 1964 to 1975 provided a basis for comparison. The purpose was to determine what changes, if any, have occurred in trends and cause-effect relationships reported in the earlier study. The increasing numbers have been tied to measures of activity to produce accident rates which in turn were analyzed in terms of change. Where anomalies or unusually high accident rates were encountered, further analysis was conducted to isolate pertinent patterns of cause factors and/or experience levels of involved pilots. The bulk of the effort addresses accidents in the landing phase of operations. A detailed analysis was performed on controlled/uncontrolled collisions and their unique attributes delineated. Estimates of day vs. night general aviation activity and accident rates were obtained.

  4. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson

    2014-05-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  5. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson

    2013-03-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  6. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  7. Surfactants for Bubble Removal against Buoyancy.

    PubMed

    Raza, Md Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  8. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  9. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  10. Beam shaping for cosmetic hair removal

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  11. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-08-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  12. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  13. A Review of Criticality Accidents 2000 Revision

    SciTech Connect

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

    2000-05-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

  14. [Psychosocial aspects and accidents in land transport].

    PubMed

    Morales-Soto, Nelson; Alfaro-Basso, Daniel; Gálvez-Rivero, Wilfredo

    2010-06-01

    Road traffic accidents are a public health problem in Peru, having caused 35 596 deaths in Peru between 1998 and 2008. Lima is the most affected region, presenting 61.7% of the accidents, the annual cost reached one thousand million dollars, equivalent to a third part of the investment in health. Available studies give emphasis to the protagonists--the drivers, the pedestrians--or to equipment and roads; the laws have been modified and containment plans for accidents have been implemented, but the incidence remains the same. We raise the possibility of exploring behavioral and social factors that could be relevant in the genesis of the problem, revising those related to current disorder in transport, the behaviors of drivers and pedestrians and the permissiveness of society in general particularly of the authority. We propose research and a multidisciplinary and intersectoral intervention. PMID:21072481

  15. Structural aspects of the Chernobyl accident

    SciTech Connect

    Murray, R.C.; Cummings, G.E.

    1988-09-02

    On April 26, 1986 the world's worst nuclear power plant accident occurred at the Unit 4 of the Chernobyl Nuclear Power Station in the USSR. This paper presents a discussion of the design of the Chernobyl Power Plant, the sequence of events that led to the accident and the damage caused by the resulting explosion. The structural design features that contributed to the accident and resulting damage will be highlighted. Photographs and sketches obtained from various worldwide news agencies will be shown to try and gain a perspective of the extent of the damage. The aftermath, clean-up, and current situation will be discussed and the important lessons learned for the structural engineer will be presented. 15 refs., 10 figs.

  16. Reconfigurable mobile manipulation for accident response

    SciTech Connect

    ANDERSON,ROBERT J.; MORSE,WILLIAM D.; SHIREY,DAVID L.; CDEBACA,DANIEL M.; HOFFMAN JR.,JOHN P.; LUCY,WILLIAM E.

    2000-06-06

    The need for a telerobotic vehicle with hazard sensing and integral manipulation capabilities has been identified for use in transportation accidents where nuclear weapons are involved. The Accident Response Mobile Manipulation System (ARMMS) platform has been developed to provide remote dexterous manipulation and hazard sensing for the Accident Response Group (ARG) at Sandia National Laboratories. The ARMMS' mobility platform is a military HMMWV [High Mobility Multipurpose Wheeled Vehicle] that is teleoperated over RF or Fiber Optic communication channels. ARMMS is equipped with two high strength Schilling Titan II manipulators and a suite of hazardous gas and radiation sensors. Recently, a modular telerobotic control architecture call SMART (Sandia Modular Architecture for Robotic and Teleoperation) has been applied to ARMMS. SMART enables input devices and many system behaviors to be rapidly configured in the field for specific mission needs. This paper summarizes current SMART developments applied to ARMMS.

  17. Allometric scaling and accidents at work

    PubMed Central

    Cempel, Czesław; Tabaszewski, Maciej; Ordysiński, Szymon

    2016-01-01

    Allometry is the knowledge concerning relations between the features of some beings, like animals, or cities. For example, the daily energy rate is proportional to a mass of mammals rise of 3/4. This way of thinking has spread quickly from biology to many areas of research concerned with sociotechnical systems. It was revealed that the number of innovations, patents or heavy crimes rises as social interaction increases in a bigger city, while other urban indexes such as suicides decrease with social interaction. Enterprise is also a sociotechnical system, where social interaction and accidents at work take place. Therefore, do these interactions increase the number of accidents at work or, on the contrary, are they reduction-driving components? This article tries to catch such links and assess the allometric exponent between the number of accidents at work and the number of employees in an enterprise. PMID:26655044

  18. Bundled automobile insurance coverage and accidents.

    PubMed

    Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang

    2013-01-01

    This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.

  19. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  20. Use of artificial intelligence in severe accident diagnosis for PWRs

    SciTech Connect

    Wu, Zheng; Okrent, D.; Kastenberg, W.E.

    1995-12-31

    A combination approach of an expert system and neural networks is used to implement a prototype severe accident diagnostic system which would monitor the progression of the severe accident and provide necessary plant status information to assist the plant staff in accident management during the accident. The station blackout accident in a pressurized water reactor (PWR) is used as the study case. The current phase of research focus is on distinguishing different primary system failure modes and following the accident transient before and up to vessel breach.

  1. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.

  2. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments. PMID:20823633

  3. Epidemiological survey of the medical consequences of the Chernobyl accident in Ukraine.

    PubMed

    Buzunov, V A; Strapko, N P; Pirogova, E A; Krasnikova, L I; Bugayev, V N; Korol, N A; Treskunova, T V; Ledoschuk, B A; Gudzenko, N A; Bomko, E I; Bobyleva, O A; Kartushin, G I

    1996-01-01

    The characteristics of the contamination resulting from the Chernobyl accident are defined, as a basis for epidemiological investigations. Due to loss of integrity of the nuclear fuel and thermal buoyancy from fire and nuclear heating, a large quantity of radioisotopes were released over a period of up to 16 days. The areas affected were very large, 37 million hectares in Ukraine alone. About 5 million persons were affected in one way or another, over 2 million of them in Ukraine. For registration and follow-up of health consequences from the accident, 4 main groups were distinguished, namely: (1) the participants in the containment of the accident and its cleanup ("liquidators"); (2) evacuees; (3) residents of contaminated areas; and (4) children born to parents with significant radiation exposure. Registration and epidemiological follow-up in the former USSR and the three republics afterwards are presented with an emphasis on Ukraine. Considering the long incubation times for some of the expected illnesses and relatively low average doses, the difficulties of confirming significant effects become evident. For example leucosis morbidity among cleanup personnel within a 30 km zone around the accident was 3.4 per 100,000 before the accident and 7 per 100,000 afterwards. The question of the statistical significance of such numbers is discussed by the authors, in the context of confounding factors. For some of the observed effects it has already been established that stress and anxiety caused by the accident and living conditions in the affected areas are the principal cause rather than radiation. According to the authors, more detailed retrospective and prospective epidemiological studies are needed in the future, in order to clarify the causes of observed health effects.

  4. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  5. [Traffic accidents--the national killer].

    PubMed

    Shemer, Joshua

    2004-02-01

    Traffic accidents are the most prevalent cause of death in developed countries between the ages of 1-33 years. In spite of a low motorization level in Israel, the rate of injury per 100,000 residents in Israel (2.8) was higher than in the US (1.8), NZ (1.7), Canada (1.7), Japan (1.3) and most European countries. The worst injuries were among pedestrians; particularly children aged 1-9 years and elderly (70+ years). In the past decade there have been significant advances in trauma care in Israel. Major strides included the foundation of trauma centers in hospitals, the establishment of the National Council for Trauma and the National Center for Trauma and Emergency Medicine Research at the Gertner Institute that coordinates the national trauma registry. One of the primary aims of the registry was to provide data to support decision-makers in setting national policy for accident prevention. The Israeli Police Department provides data on traffic accident victims to the Israeli Central Bureau of Statistics (CBS) which publishes the national figures. In their article in this edition of the journal, Dr Peleg and Dr. Aharonson-Daniel present a grave concern regarding the fact that details of over 50% of hospitalized traffic accident victims were not reported to the CBS by the police, including data on the severely injured casualties. Traffic accidents are a major cause of loss of life and disability, creating a heavy economic burden on the state and the health care system. Hence, the authors recommend establishing a national database which will combine data from medical and other sources and present the complete comprehensive picture of traffic accident injuries. Such a database will improve the decision-making process, providing more focused data to enhance the preparation and dissemination of appropriate injury prevention policies.

  6. Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.

    2004-01-01

    The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation

  7. Hypothetical accident condition thermal analysis and testing of a Type B drum package

    SciTech Connect

    Hensel, S.J.; Alstine, M.N. Van; Gromada, R.J.

    1995-07-01

    A thermophysical property model developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the 10 CFR 71 hypothetical accident condition (HAC) has been benchmarked against two Type B drum package fire test results. The model 9973 package was fire tested after a 30 ft. top down drop and puncture, and an undamaged model 9975 package containing a heater (21W) was fire tested to determine content heat source effects. Analysis results using a refined version of a previously developed HAC fiberboard model compared well against the test data from both the 9973 and 9975 packages.

  8. Accident progression event tree analysis for postulated severe accidents at N Reactor

    SciTech Connect

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. ); Medford, G.T. )

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

  9. LESSONS LEARNED FROM A RECENT LASER ACCIDENT

    SciTech Connect

    Woods, Michael; /SLAC

    2011-01-26

    A graduate student received a laser eye injury from a femtosecond Ti:sapphire laser beam while adjusting a polarizing beam splitter optic. The direct causes for the accident included failure to follow safe alignment practices and failure to wear the required laser eyewear protection. Underlying root causes included inadequate on-the-job training and supervision, inadequate adherence to requirements, and inadequate appreciation for dimly visible beams outside the range of 400-700nm. This paper describes how the accident occurred, discusses causes and lessons learned, and describes corrective actions being taken.

  10. Lessons learned from early criticality accidents

    SciTech Connect

    Malenfant, R.E.

    1996-06-01

    Four accidents involving the approach to criticality occurred during the period July, 1945, through May, 1996. These have been described in the format of the OPERATING EXPERIENCE WEEKLY SUMMARY which is distributed by the Office of Nuclear and Facility Safety. Although the lessons learned have been incorporated in standards, codes, and formal procedures during the last fifty years, this is their first presentation in this format. It is particularly appropriate that they be presented in the forum of the Nuclear Criticality Technology Safety Project Workshop closest to the fiftieth anniversary of the last of the four accidents, and that which was most instrumental in demonstrating the need to incorporate lessons learned.

  11. The medical investigation of airship accidents.

    PubMed

    Stahl, C J; McMeekin, R R; Ruehle, C J; Canik, J J

    1988-07-01

    A review of the autopsy reports for 18 of 21 victims in 3 of the 4 nonrigid Navy airship accidents during the period 1955 to 1966 revealed that the patterns of injury, complicated by postcrash entrapment, immersion, or fire, are similar to the injuries observed in the low-speed, low-altitude crashes of rigid airships and of light aircraft. With the renewed interest in the development of airships for military purposes, there is a need for improved design related to crashworthiness and to aircrew habitability, safety, restraint, and egress in order to enhance the chance for survival in the event of an accident. PMID:3171506

  12. Child protection. Accident prevention: a community approach.

    PubMed

    Roberts, H

    1991-07-01

    Child accidents are the main cause of death and a considerable cause of morbidity in children, as well as anxiety to adults. Attempts to tackle this major health problem have tended to rely on campaigns of education and exhortation; public health strategies remain underdeveloped. Health visitors are well placed to pursue child safety strategies which build on parents' own knowledge and experience. Helen Roberts describes an initiative based not on the question, why did that accident happen? but the more intriguing question of how is it that most parents manage to keep their children safe most of the time and what can we learn from them?

  13. Accident tolerant fuels for LWRs: A perspective

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Terrani, K. A.; Gehin, J. C.; Ott, L. J.; Snead, L. L.

    2014-05-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms.

  14. Czech Republic 20 years after Chernobyl accident.

    PubMed

    Rosina, Jozef; Kvasnák, Eugen; Suta, Daniel; Kostrhun, Tomás; Drábová, Dana

    2008-01-01

    The territory of the Czech Republic was contaminated as a result of the breakdown in the Chernobyl nuclear power plant in 1986. The Czech population received low doses of ionising radiation which, though it could not cause a deterministic impact, could have had stochastic effects expressed in the years following the accident. Twenty years after the accident is a long enough time to assess its stochastic effects, primarily tumours and genetic impairment. The moderate amount of radioactive fallout received by the Czech population in 1986 increased thyroid cancer in the following years; on the other hand, no obvious genetic impact was found.

  15. World commercial aircraft accidents. Second edition, 1946--1992

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  16. Tritium Removal from Carbon Plasma Facing Components

    SciTech Connect

    C.H. Skinner; J.P. Coad; G. Federici

    2003-11-24

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating.

  17. Effectiveness of decanter modifications on organic removal

    SciTech Connect

    Lambert, D.P.

    1992-08-20

    A series of runs were planned in the Precipitate Hydrolysis Experimental Facility (PHEF) at the Savannah River Plant to determine the effectiveness of equipment and process modifications on the PHEF decanter organic removal efficiency. Runs 54-59 were planned to test the effectiveness of spray recirculation, a new decanter, heated organic recirculation and aqueous drawoff on organic removal efficiency in the revised HAN flowsheet. Runs 60-63 were planned to provide a comparison of the original and new decanter designs on organic removal efficiency in the late wash flowsheet without organic recirculation. Operational problems were experienced in both the PHEF and IDMS pilot facilities because of the production of high boiling organics and the low organic removal efficiency of the PHEF decanters. To prevent these problems in the DWPF Salt and Chemical Cells, modifications were proposed to the decanter and flowsheet to maximize the organic removal efficiency and minimize production of high boiling organics.

  18. [Medical protection during radiation accidents: some results and lessons of the Chernobyl accident].

    PubMed

    Legeza, V I; Grebeniuk, A N; Zatsepin, V V

    2011-01-01

    Actions of medical radiation protection of liquidators of consequences of on Chernobyl atomic power station accident are analysed. It is shown, that during the early period of the accident medical protection of liquidators was provided by administration of radioprotectors, means of prophylaxis: of radioactive iodine incorporation and agent for preventing psychological and emotional stress. When carrying out decontamination and regenerative works, preparations which action is caused by increase of nonspecific resistance of an organism were applied. The lessons taken from the results of the Chernobyl accident, have allowed one to improve the system of medical protection and to introduce in practice new highly effective radioprotective agents.

  19. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  20. Calculated in-air leakage spectra and power levels for the ANSI standard minimum accident of concern. Final report

    SciTech Connect

    Lee, B.L. Jr.; Dobelbower, M.C.; Tayloe, R.W. Jr.

    1995-07-01

    This document represents Phase I of a two-phase project. The entire project consists of determining a series of minimum accidents of concern and their associated neutron and photon leakage spectra that may be used to determine Criticality Accident Alarm compliance with ANSI/ANS-8.3. The inadvertent assembly of a critical mass of material presents a multitude of unknown quantities. Depending on the particular process, one can make an educated guess as to fissile material. In a gaseous diffusion cascade, this material is assumed to be uranyl fluoride. However, educated assumptions cannot be readily made for the other variables. Phase I of this project is determining a bounding minimum accident of concern and its associated neutron and photon leakage spectra. To determine the composition of the bounding minimum accident of concern, work was done to determine the effects of geometry, moderation level, and enrichment on the leakage spectra of a critical assembly. The minimum accident of concern is defined as the accident that may be assumed to deliver the equivalent of an absorbed dose in free air of 20 rad at a distance of 2 meters from the reacting material within 60 seconds. To determine this dose, an analyst makes an assumption and choose an appropriate flux to dose response function. The power level required of a critical assembly to constitute a minimum accident of concern depends heavily on the response function chosen. The first step in determining the leakage spectra was to attempt to isolate the effects of geometry, after which all calculations were conducted on critical spheres. The moderation level and enrichment of the spheres were varied and their leakage spectra calculated. These spectra were then multiplied by three different response functions: the Henderson Flux to Dose conversion factors, the ICRU 44 Kerma in Air, and the MCNP Heating Detector. The power level required to produce a minimum accident of concern was then calculated for each combination.

  1. Revisiting Insights from Three Mile Island Unit 2 Postaccident Examinations and Evaluations in View of the Fukushima Daiichi Accident

    SciTech Connect

    Rempe, Joy; Farmer, Mitchell; Corradini, Michael; Ott, Larry; Gauntt, Randall; Powers, Dana

    2012-11-01

    The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized water reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.

  2. Nuclear Facilities Fire Accident Model

    1999-09-01

    4. NATURE OF PROBLEM SOLVED FIRAC predicts fire-induced flows, thermal and material transport, and radioactive and nonradioactive source terms in a ventilation system. It is designed to predict the radioactive and nonradioactive source terms that lead to gas dynamic, material transport, and heat transfer transients. FIRAC's capabilities are directed toward nuclear fuel cycle facilities and the primary release pathway, the ventilation system. However, it is applicable to other facilities and can be used to modelmore » other airflow pathways within a structure. The basic material transport capability of FIRAC includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, and gas dynamics are also simulated. A ventilation system model includes elements such as filters, dampers, ducts, and blowers connected at nodal points to form networks. A zone-type compartment fire model is incorporated to simulate fire-induced transients within a facility. 5. METHOD OF SOLUTION FIRAC solves one-dimensional, lumped-parameter, compressible flow equations by an implicit numerical scheme. The lumped-parameter method is the basic formulation that describes the gas dynamics system. No spatial distribution of parameters is considered in this approach, but an effect of spatial distribution can be approximated by noding. Network theory, using the lumped parameter method, includes a number of system elements, called branches, joined at certain points, called nodes. Ventilation system components that exhibit flow resistance and inertia, such as dampers, ducts, valves, and filters, and those that exhibit flow potential, such as blowers, are located within the branches of the system. The connection points of branches are nodes for components that have finite volumes, such as rooms, gloveboxes, and plenums, and for boundaries where the volume is practically infinite. All internal nodes, therefore, possess some

  3. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  4. Cross-analysis of hazmat road accidents using multiple databases.

    PubMed

    Trépanier, Martin; Leroux, Marie-Hélène; de Marcellis-Warin, Nathalie

    2009-11-01

    Road selection for hazardous materials transportation relies heavily on risk analysis. With risk being generally expressed as a product of the probability of occurrence and the expected consequence, one will understand that risk analysis is data intensive. However, various authors have noticed the lack of statistical reliability of hazmat accident databases due to the systematic underreporting of such events. Also, official accident databases alone are not always providing all the information required (economical impact, road conditions, etc.). In this paper, we attempt to integrate many data sources to analyze hazmat accidents in the province of Quebec, Canada. Databases on dangerous goods accidents, road accidents and work accidents were cross-analyzed. Results show that accidents can hardly be matched and that these databases suffer from underreporting. Police records seem to have better coverage than official records maintained by hazmat authorities. Serious accidents are missing from government's official databases (some involving deaths or major spills) even though their declaration is mandatory.

  5. PNNL Results from 2009 Silene Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect

    Hill, Robin L.; Conrady, Matthew M.

    2010-06-30

    This document reports the results of testing of the Hanford Personnel Nuclear Accident Dosimeter (PNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on October 13, 14, and 15, 2009.

  6. A general approach to critical infrastructure accident consequences analysis

    NASA Astrophysics Data System (ADS)

    Bogalecka, Magda; Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-06-01

    The probabilistic general model of critical infrastructure accident consequences including the process of the models of initiating events generated by its accident, the process of environment threats and the process of environment degradation is presented.

  7. Cross-analysis of hazmat road accidents using multiple databases.

    PubMed

    Trépanier, Martin; Leroux, Marie-Hélène; de Marcellis-Warin, Nathalie

    2009-11-01

    Road selection for hazardous materials transportation relies heavily on risk analysis. With risk being generally expressed as a product of the probability of occurrence and the expected consequence, one will understand that risk analysis is data intensive. However, various authors have noticed the lack of statistical reliability of hazmat accident databases due to the systematic underreporting of such events. Also, official accident databases alone are not always providing all the information required (economical impact, road conditions, etc.). In this paper, we attempt to integrate many data sources to analyze hazmat accidents in the province of Quebec, Canada. Databases on dangerous goods accidents, road accidents and work accidents were cross-analyzed. Results show that accidents can hardly be matched and that these databases suffer from underreporting. Police records seem to have better coverage than official records maintained by hazmat authorities. Serious accidents are missing from government's official databases (some involving deaths or major spills) even though their declaration is mandatory. PMID:19819367

  8. Remote control continuous mining machine crushing accident data study

    SciTech Connect

    2006-05-11

    A committee was formed to identify norms and trends in remote control continuous miner crushing accidents as part of US MSHA's efforts to reduce and eliminate these types of accidents. The committee was tasked with collecting, reviewing, and evaluating remote control accident data to identify significant factors that could possibly contribute to remote control accidents. The report identifies that these types of accidents commonly happen to experienced miners during routine mining activities, with the majority occurring while moving the miner from one face to another (place changing). Another common aspect of the accidents is that many of the victims are newly employed at the mine where the accident occurred. Training all employees to stay outside the turning radius of an energized remote control continuous miner, establishing this as a safe operating procedure, and consistently enforcing this practice among miners will reduce these types of accidents. 10 figs., 5 tabs., 7 apps.

  9. Heat-related illness.

    PubMed

    Becker, Jonathan A; Stewart, Lynsey K

    2011-06-01

    Heat-related illness is a set of preventable conditions ranging from mild forms (e.g., heat exhaustion, heat cramps) to potentially fatal heat stroke. Hot and humid conditions challenge cardiovascular compensatory mechanisms. Once core temperature reaches 104°F (40°C), cellular damage occurs, initiating a cascade of events that may lead to organ failure and death. Early recognition of symptoms and accurate measurement of core temperature are crucial to rapid diagnosis. Milder forms of heat-related illness are manifested by symptoms such as headache, weakness, dizziness, and an inability to continue activity. These are managed by supportive measures including hydration and moving the patient to a cool place. Hyperthermia and central nervous system symptoms should prompt an evaluation for heat stroke. Initial treatments should focus on lowering core temperature through cold water immersion. Applying ice packs to the head, neck, axilla, and groin is an alternative. Additional measures include transporting the patient to a cool environment, removing excess clothing, and intravenous hydration. Delayed access to cooling is the leading cause of morbidity and mortality in persons with heat stroke. Identification of at-risk groups can help physicians and community health agencies provide preventive measures. PMID:21661715

  10. Heat Pipe Integrated Microsystems

    SciTech Connect

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to

  11. A high-speed hydroplane accident.

    PubMed

    Flaherty, G N

    1975-03-29

    This report records the investigation into a high-speed hydroplane accident in which the driver died. He was ejected head first into the water at 117 to 126 ft/sec (80 to 85 mph), suffering brain damage and a fractured skull. Suggestions are made to minimize the effects of these inevitable crashes. PMID:1143139

  12. School Bus Accidents: Reducing Incidents and Injuries

    ERIC Educational Resources Information Center

    Mahoney, Daniel

    2009-01-01

    The number of children injured in nonfatal school bus accidents annually is more than double the number previously estimated. In Ohio alone, approximately 20,800 children younger than 18 were occupants of school buses that were involved in crashes in 2003 and 2004 (McGeehan 2007). Among those children, most had minor or no injuries. However, there…

  13. 49 CFR 659.33 - Accident notification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Agency § 659.33 Accident notification. (a) The oversight agency must require the rail transit agency to notify the oversight agency within two (2) hours of any incident involving a rail transit vehicle or taking place on rail transit-controlled property where one or more of the following occurs: (1)...

  14. 49 CFR 659.33 - Accident notification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Agency § 659.33 Accident notification. (a) The oversight agency must require the rail transit agency to notify the oversight agency within two (2) hours of any incident involving a rail transit vehicle or taking place on rail transit-controlled property where one or more of the following occurs: (1)...

  15. 49 CFR 659.33 - Accident notification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Agency § 659.33 Accident notification. (a) The oversight agency must require the rail transit agency to notify the oversight agency within two (2) hours of any incident involving a rail transit vehicle or taking place on rail transit-controlled property where one or more of the following occurs: (1)...

  16. 49 CFR 659.33 - Accident notification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Agency § 659.33 Accident notification. (a) The oversight agency must require the rail transit agency to notify the oversight agency within two (2) hours of any incident involving a rail transit vehicle or taking place on rail transit-controlled property where one or more of the following occurs: (1)...

  17. 49 CFR 659.33 - Accident notification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Agency § 659.33 Accident notification. (a) The oversight agency must require the rail transit agency to notify the oversight agency within two (2) hours of any incident involving a rail transit vehicle or taking place on rail transit-controlled property where one or more of the following occurs: (1)...

  18. Tragic Car Accident Involves ESO Employees

    NASA Astrophysics Data System (ADS)

    2000-06-01

    Saturday, May 27, turned into a tragic day for ESO. The team installing TIMMI2 at La Silla, went on an excursion to the Elqui valley, 70 km east of the city of La Serena and suffered a serious car accident, crashing against another car driving from the opposite direction.

  19. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Reporting accidents. 644.532 Section 644.532 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed Excess...

  20. [Case Report - Really a diving accident?].

    PubMed

    Fichtner, Andreas

    2015-10-01

    A 17 y old male SCUBA diver presents himself for hospital admission after a suspected diving accident. All clinical signs are favouring the initial diagnosis: loss of leg motor function, paresthesia, disturbed vision and headache. What are your further diagnostic and therapeutic steps? Can you proof the initial diagnosis? What differential diagnoses are relevant or even mimicked? PMID:26510103

  1. [Splenic rupture--a skateboard accident].

    PubMed

    Kruse, P

    1990-03-01

    A 13-year-old boy presented with persisting abdominal pain after a skateboard accident. Primary clinical and laboratory findings disclosed no signs of intra abdominal bleeding. Ultrasound scanning indicated rupture of the spleen which was confirmed by acute exploratory laparotomy.

  2. ANS severe accident program overview & planning document

    SciTech Connect

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  3. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Reporting accidents. 644.532 Section 644.532 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed Excess...

  4. Accident Prevention: A Workers' Education Manual.

    ERIC Educational Resources Information Center

    International Labour Office, Geneva (Switzerland).

    Devoted to providing industrial workers with a greater knowledge of precautionary measures undertaken and enforced by industries for the protection of workers, this safety education manual contains 14 lessons ranging from "The Problems of Accidents during Work" to "Trade Unions and Workers and Industrial Safety." Fire protection, safety equipment…

  5. [Case Report - Really a diving accident?].

    PubMed

    Fichtner, Andreas

    2015-10-01

    A 17 y old male SCUBA diver presents himself for hospital admission after a suspected diving accident. All clinical signs are favouring the initial diagnosis: loss of leg motor function, paresthesia, disturbed vision and headache. What are your further diagnostic and therapeutic steps? Can you proof the initial diagnosis? What differential diagnoses are relevant or even mimicked?

  6. [Current situation of accidents in the world].

    PubMed

    Aguilar-Zinser, José Valente

    2010-01-01

    According to the World Health Organization (WHO), the number of traffic accidents is of concern. About 1.2 million people die every year on the roadways and about 20 to 50 million suffer from non-lethal trauma. Countries with low or medium incomes have higher rates of lethality by traffic accidents (21.5 and 19.5 per 100,000 habitants, respectively) than countries with higher incomes (10.3 per 100,000). It is estimated that the cost of traffic accidents in countries that are members of the Organization for Economic Cooperation and Development (OECD), escalate to rates that are between 2-5% of the gross domestic product (GDP). According to data from the health sector in Mexico, these rates are equivalent to 1.3 of GDR The WHO foresees that traffic accident traumas will rise to be the third cause of mortality in 2030. Because of the high complexity of the transport sector, it is necessary that the Transport and Communication Ministry works in a multidisciplinary and intersectorial fashion to ensure that the land transportation systems operate effectively in accordance with national economic development and the quality of life of the Mexican people.

  7. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Reporting accidents. 644.532 Section 644.532 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed Excess...

  8. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Reporting accidents. 644.532 Section 644.532 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed Excess...

  9. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Reporting accidents. 644.532 Section 644.532 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed Excess...

  10. Stepwise integral scaling method and its application to severe accident phenomena

    SciTech Connect

    Ishii, M.; Zhang, G.; No, H.C.

    1993-10-01

    Severe accidents in light water reactors are characterized by an occurrence of multiphase flow with complicated phase changes, chemical reaction and various bifurcation phenomena. Because of the inherent difficulties associated with full-scale testing, scaled down and simulation experiments are essential part of the severe accident analyses. However, one of the most significant shortcomings in the area is the lack of well-established and reliable scaling method and scaling criteria. In view of this, the stepwise integral scaling method is developed for severe accident analyses. This new scaling method is quite different from the conventional approach. However, its focus on dominant transport mechanisms and use of the integral response of the system make this method relatively simple to apply to very complicated multi-phase flow problems. In order to demonstrate its applicability and usefulness, three case studies have been made. The phenomena considered are (1) corium dispersion in DCH, (2) corium spreading in BWR MARK-I containment, and (3) incore boil-off and heating process. The results of these studies clearly indicate the effectiveness of their stepwise integral scaling method. Such a simple and systematic scaling method has not been previously available to severe accident analyses.

  11. RECENT LASER ACCIDENTS AT DEPARTMENT OF ENERGY LABORATORIES

    SciTech Connect

    ODOM, CONNON R.

    2007-02-02

    Recent laser accidents and incidents at research laboratories across the Department of Energy complex are reviewed in this paper. Factors that contributed to the accidents are examined. Conclusions drawn from the accident reports are summarized and compared. Control measures that could have been implemented to prevent the accidents will be summarized and compared. Recommendations for improving laser safety programs are outlined and progress toward achieving them are summarized.

  12. Utilization of accident databases and fuzzy sets to estimate frequency of HazMat transport accidents.

    PubMed

    Qiao, Yuanhua; Keren, Nir; Mannan, M Sam

    2009-08-15

    Risk assessment and management of transportation of hazardous materials (HazMat) require the estimation of accident frequency. This paper presents a methodology to estimate hazardous materials transportation accident frequency by utilizing publicly available databases and expert knowledge. The estimation process addresses route-dependent and route-independent variables. Negative binomial regression is applied to an analysis of the Department of Public Safety (DPS) accident database to derive basic accident frequency as a function of route-dependent variables, while the effects of route-independent variables are modeled by fuzzy logic. The integrated methodology provides the basis for an overall transportation risk analysis, which can be used later to develop a decision support system.

  13. Utilization of accident databases and fuzzy sets to estimate frequency of HazMat transport accidents.

    PubMed

    Qiao, Yuanhua; Keren, Nir; Mannan, M Sam

    2009-08-15

    Risk assessment and management of transportation of hazardous materials (HazMat) require the estimation of accident frequency. This paper presents a methodology to estimate hazardous materials transportation accident frequency by utilizing publicly available databases and expert knowledge. The estimation process addresses route-dependent and route-independent variables. Negative binomial regression is applied to an analysis of the Department of Public Safety (DPS) accident database to derive basic accident frequency as a function of route-dependent variables, while the effects of route-independent variables are modeled by fuzzy logic. The integrated methodology provides the basis for an overall transportation risk analysis, which can be used later to develop a decision support system. PMID:19250750

  14. Process for removing carbon from uranium

    DOEpatents

    Powell, George L.; Holcombe, Jr., Cressie E.

    1976-01-01

    Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

  15. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  16. Explaining the road accident risk: weather effects.

    PubMed

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion.

  17. Concussion in Motor Vehicle Accidents: The Concussion Identification Index

    ClinicalTrials.gov

    2016-08-03

    Motor Vehicle Accidents; TBI (Traumatic Brain Injury); Brain Contusion; Brain Injuries; Cortical Contusion; Concussion Mild; Cerebral Concussion; Brain Concussion; Accidents, Traffic; Traffic Accidents; Traumatic Brain Injury With Brief Loss of Consciousness; Traumatic Brain Injury With no Loss of Consciousness; Traumatic Brain Injury With Loss of Consciousness

  18. Developing techniques for cause-responsibility analysis of occupational accidents.

    PubMed

    Jabbari, Mousa; Ghorbani, Roghayeh

    2016-11-01

    The aim of this study was to specify the causes of occupational accidents, determine social responsibility and the role of groups involved in work-related accidents. This study develops occupational accidents causes tree, occupational accidents responsibility tree, and occupational accidents component-responsibility analysis worksheet; based on these methods, it develops cause-responsibility analysis (CRA) techniques, and for testing them, analyzes 100 fatal/disabling occupational accidents in the construction setting that were randomly selected from all the work-related accidents in Tehran, Iran, over a 5-year period (2010-2014). The main result of this study involves two techniques for CRA: occupational accidents tree analysis (OATA) and occupational accidents components analysis (OACA), used in parallel for determination of responsible groups and responsibilities rate. From the results, we find that the management group of construction projects has 74.65% responsibility of work-related accidents. The developed techniques are purposeful for occupational accidents investigation/analysis, especially for the determination of detailed list of tasks, responsibilities, and their rates. Therefore, it is useful for preventing work-related accidents by focusing on the responsible group's duties.

  19. 10 CFR 76.85 - Assessment of accidents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Assessment of accidents. 76.85 Section 76.85 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.85 Assessment of accidents. The Corporation shall perform an analysis of potential accidents and consequences...

  20. 10 CFR 76.85 - Assessment of accidents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Assessment of accidents. 76.85 Section 76.85 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.85 Assessment of accidents. The Corporation shall perform an analysis of potential accidents and consequences...