Heat Transfer Issues in Finite Element Analysis of Bounding Accidents in PPCS Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pampin, R.; Karditsas, P.J.
2005-05-15
Modelling of temperature excursions in structures of conceptual power plants during hypothetical worst-case accidents has been performed within the European Power Plant Conceptual Study (PPCS). A new, 3D finite elements (FE) based tool, coupling the different calculations to the same tokamak geometry, has been extensively used to conduct the neutron transport, activation and thermal analyses for all PPCS plant models. During a total loss of cooling, the usual assumption for the bounding accident, passive removal of the decay heat from activated materials depends on conduction and radiation heat exchange between components. This paper presents and discusses results obtained during themore » PPCS bounding accident thermal analyses, examining the following issues: (a) radiation heat exchange between the inner surfaces of the tokamak, (b) the presence of air within the cryostat volume, and the heat flow arising from the circulation pattern provided by temperature differences between various parts, and (c) the thermal conductivity of pebble beds, and its degradation due to exposure to neutron irradiation, affecting the heat transfer capability and thermal response of a blanket based on these components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, C. B.; Felde, D. K.; Sutton, A. G.
1982-04-01
Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less
Emergency heat removal system for a nuclear reactor
Dunckel, Thomas L.
1976-01-01
A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.
Heat transfer of molten metal layers in severe accidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Seung Kai; Walton, A.; Yang, Zhilin
1997-12-01
In some scenarios of severe accidents of light water reactors, a layer of molten metal from internal structural components of the pressure vessel is predicted to occur on top of a ceramic core debris in the lower head. The layer transfers the heat generated in the ceramic pool to the side wall of the vessel, causing the latter to melt. This problem has been investigated by Theofanous et al. for the advanced light water reactor AP600 in the context of the accident management strategy of ex-vessel cooling, and the conclusion was drawn that the melting does not seriously compromise themore » integrity of the pressure vessel.« less
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation andmore » confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.« less
TMI-2 upper-core particle bed thermal behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, P.
1987-08-01
Models of dryout heat fluxes of particle beds believed to be applicable to the TMI-2 upper-core particle bed are reviewed and developed. A simplified Lipinski model and a model based on flooding are shown to agree between themselves and with experiments. These models are applied to the calculation of the dryout heat flux of the TMI-2 upper-core particle bed. The TMI-2 upper-core particle bed is shown to be: (a) coolable, if little heat is transferred to it from the consolidated region below, (b) only marginally coolable, if not uncoolable, before material relocation from the consolidated region, if most of themore » heat in the consolidiated region is transferred to it, and (c) coolable, after the relocation, regardless of heat transfer from the remaining consolidated region. Based on an analogy to quenching experiments, which show that the heat flux during the quench of a particle bed is approximately equal to the dryout heat flux, the time required to quench the TMI-2 upper-core particle bed from 2000 K to the saturation temperature of water during the accident is estimated. The bed was either quenched by 225 min after the initiation of the accident (assuming no heat was transferred to it from the consolidated region) or, at the latest, by 245 min (20 min after molten material relocation to the lower plenum from the consolidated region; assuming most of the heat generated in the consolidated region, both before and after the relocation, was transferred to the particle bed).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, P.; Umminger, K.J.; Schoen, B.
1995-09-01
The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where themore » decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).« less
Modeling Transients and Designing a Passive Safety System for a Nuclear Thermal Rocket Using Relap5
NASA Astrophysics Data System (ADS)
Khatry, Jivan
Long-term high payload missions necessitate the need for nuclear space propulsion. Several nuclear reactor types were investigated by the Nuclear Engine for Rocket Vehicle Application (NERVA) program of National Aeronautics and Space Administration (NASA). Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. A NERVA design known as the Pewee I was selected for this purpose. The following transients were run: (i) modeling of corrosion-induced blockages on the peripheral fuel element coolant channels and their impact on radiation heat transfer in the core, and (ii) modeling of loss-of-flow-accidents (LOFAs) and their impact on radiation heat transfer in the core. For part (i), the radiation heat transfer rate of blocked channels increases while their neighbors' decreases. For part (ii), the core radiation heat transfer rate increases while the flow rate through the rocket system is decreased. However, the radiation heat transfer decreased while there was a complete LOFA. In this situation, the peripheral fuel element coolant channels handle the majority of the radiation heat transfer. Recognizing the LOFA as the most severe design basis accident, a passive safety system was designed in order to respond to such a transient. This design utilizes the already existing tie rod tubes and connects them to a radiator in a closed loop. Hence, this is basically a secondary loop. The size of the core is unchanged. During normal steady-state operation, this secondary loop keeps the moderator cool. Results show that the safety system is able to remove the decay heat and prevent the fuel elements from melting, in response to a LOFA and subsequent SCRAM.
Decay Heat Removal from a GFR Core by Natural Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.
2004-07-01
One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a meansmore » for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)« less
Westinghouse Small Modular Reactor passive safety system response to postulated events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. C.; Wright, R. F.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less
Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces
NASA Astrophysics Data System (ADS)
Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.
2016-07-01
The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.
MELCOR Analysis of OSU Multi-Application Small Light Water Reactor (MASLWR) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Dhongik S.; Jo, HangJin; Fu, Wen
A multi-application small light water reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s abilitymore » to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with CFD simulation for confirmation. Furthermore, the corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.« less
MELCOR Analysis of OSU Multi-Application Small Light Water Reactor (MASLWR) Experiment
Yoon, Dhongik S.; Jo, HangJin; Fu, Wen; ...
2017-05-23
A multi-application small light water reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s abilitymore » to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with CFD simulation for confirmation. Furthermore, the corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Valentin Rodriguez, Francisco Ivan
High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.
NASA Technical Reports Server (NTRS)
Jansen, Michael C.
2002-01-01
The author recounts his experiences he helped to investigate the accident which destroyed the Space Shuttle Challenger. The focus was on how he used novel approaches to investigate heat transfer in the shuttle's hydrogen tank, after an expert he sought for advice proved unhelpful.
Heat up and failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.
In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Heat up and failure of BWR upper internals during a severe accident
Robb, Kevin R.
2017-02-21
In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Interfacial heat transfer in multiphase molten pools with gas injection
NASA Astrophysics Data System (ADS)
Bilbao Y Leon, Rosa Marina
1998-12-01
In the very unlikely event of a severe reactor accident involving core meltdown and pressure vessel failure, it is vital to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a safe and stable state. In this type of accident, the molten material which escapes from the reactor pressure vessel will accumulate as a molten pool in the reactor cavity below. To achieve coolability of the corium in this configuration it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. The effectiveness of this procedure depends largely on the rate of upward heat loss as well as on the formation and stability of an upper crust. In this situation the molten pool becomes a three phase mixture: the solid and liquid slurry formed by the molten pool cooled to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward considering the influence of the solid fraction in the pool and the viscosity effects, and the rate of heat loss through a solid layer. To complete this task a intermediate scale experimental test section has been designed and built at the University of Wisconsin - Madison, in which simulant materials are used to model the process of heat and mass transfer which involves the molten pool, the solid layer atop and the coolant layer above. The design includes volumetric heating, gas injection from the bottom and solids within the pool. New experimental results showing the heat transfer behavior for pools with different viscosities and various solid fractions are presented. The current results indicate a power split which favors heat transfer upward to the coolant simulant above by a 2:1 or 3:1 ratio. In addition, the power split is unaffected by the viscosity of the pool, the solid fractions in the pool and the superficial velocity.
Heat up and potential failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R
2015-01-01
In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, andmore » relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
NASA Astrophysics Data System (ADS)
Levashov, V. Yu; Kamenov, P. K.
2017-10-01
The paper is devoted to research of the heat and mass transfer processes on the vapor-liquid interface. These processes can be realized for example at metal tempering, accidents at nuclear power stations, followed by the release of the corium into the heat carrier, getting hot magma into the water during volcanic eruptions and other. In all these examples the vapor film can arise on the heated body surface. In this paper the vapor film formation process will be considered with help of molecular dynamics simulation methods. The main attention during this process modeling will be focused on the subject of the fluid and vapor interactions with the heater surface. Another direction of this work is to study of the processes inside the droplet that may take place as result of impact of the high-power laser radiation. Such impact can lead to intensive evaporation and explosive destruction of the droplet. At that the duration of heat and mass transfer processes in droplet substance is tens of femtoseconds. Thus, the methods of molecular dynamics simulation can give the possibilities describe the heat and mass transfer processes in the droplet and the vapor phase formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
NASA Astrophysics Data System (ADS)
Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.
2017-11-01
The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.
Workplace accidents in materials transfer in Finland.
Perttula, Pia; Salminen, Simo
2012-01-01
The aim of this study was to show the proportion of workplace accidents related to materials transfer and to decide whether they were more serious than other kinds of workplace accidents. The research material for this study were statistics and data, available in Finland, regarding workplace accidents and fatal accidents. Twenty-five percent of studied fatal accidents were related to materials transfer; 26.9-27.7% of all workplace accidents in Finland in 2003-2007 were workplace accidents related to materials transfer. Over half (54.7%) of workplace accidents related to materials transfer caused disabilities lasting over 3 days. Most accidents related to materials transfer occurred to men aged 20-49 years. The most common types of injuries were dislocations, sprains and strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, R.E.
Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar; Mariani, Robert; Bai, Xianming
Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less
Melin, B; Savourey, G
2001-06-30
During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium < 130 mEq/L) which is also a serious accident. Heat environment increases the thermal constraint and when the air humidity is high, evaporation of sweat is compromise. Thus, thermal stress becomes uncompensable which increases the risk of cardiovascular collapse. Cold exposure induces physiological responses to maintain internal temperature by both limiting thermal losses and increasing metabolic heat production. Cold can induce accidental hypothermia and local frost-bites; moreover, it increases the risk of arrhythmia during exercise. Some guidelines (cardiovascular fitness, water and electrolyte intakes, protective clothing) are given for each extreme condition.
Light-water-reactor safety research program. Quarterly progress report, July--September 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
Progress is summarized in the following research and development areas: (1) loss-of-coolant accident research; heat transfer and fluid dynamics; (2) transient fuel response and fission-product release; and (3) mechanical properties of Zircaloy containing oxygen. Also included is an appendix on Kinetics of Fission Gas and Volatile Fission-product Behavior under Transient Conditions in LWR Fuel.
Deformation and Heat Transfer on Three Sides Protected Beams under Fire Accident
NASA Astrophysics Data System (ADS)
Imran, M.; Liew, M. S.; Garcia, E. M.; Nasif, M. S.; Yassin, A. Y. M.; Niazi, U. M.
2018-04-01
Fire accidents are common in oil and gas industry. The application of passive fire protection (PFP) is a costly solution. The PFP is applied only on critical structural members to optimise project cost. In some cases, beams cannot be protected from the top flange in order to accommodate for the placement of pipe supports and grating. It is important to understand the thermal and mechanical response of beam under such condition. This paper discusses the response of steel beam under ISO 834 fire protected, unprotected and three sides protected beams. The model validated against an experimental study. The experimental study has shown good agreement with FE model. The study revealed that the beams protected from three sides heat-up faster compare to fully protected beam showing different temperature gradient. However, the affects load carrying capacity are insignificant under ISO 834 fire.
Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer
NASA Astrophysics Data System (ADS)
Song, Yong Jae
The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet steam mass flow rate increased, the length required for complete condensation also increased. Comparison of tube centerline temperature profiles was also used to examine the effect of inlet pressure on the heat transfer performance. From this assessment, it was determined that as the inlet pressure increased, the length required for complete condensation decreased. The investigation of tube bundle effects was conducted by comparing the condensate flow rates. The experimental results showed that the upper tubes in the bundle had better heat transfer performance than the lower tubes. In regard to modeling of the heat exchanger in this study, for the primary side, an empirical correlation was developed herein to provide Nusselt numbers for condensation heat transfer in horizontal tubes with noncondensable gases. Nusselt numbers were correlated as: Nu = 106.31·Re m0.147·W a-0.843. The empirical model for condensation heat transfer coefficients and the secondary-side model were integrated within a Matlab program to provide an analysis tool for horizontal tube bundle condenser heat exchangers. Also on the secondary side, two phase heat transfer coefficients were modeled considering both convective boiling and nucleate boiling as: hTP = 10.03·exp(-2.28·alpha)· hCV + 0.076·exp[3.73x10-6·(Re f-1.6x105)]·hNB.
Light-Water-Reactor safety research program. Quarterly progress report, January--March 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The report summarizes the Argonne National Laboratory work performed during January, February, and March 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.
NASA Technical Reports Server (NTRS)
Turney, G. E.; Petrik, E. J.; Kieffer, A. W.
1972-01-01
A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.
Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, J.O.; Schmitt, B.E.
1988-02-01
A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may bemore » exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.« less
Valentin, Francisco I.; Artoun, Narbeh; Anderson, Ryan; ...
2016-12-01
Very High Temperature Reactors (VHTRs) are one of the Generation IV gas-cooled reactor models proposed for implementation in next generation nuclear power plants. A high temperature/pressure test facility for forced and natural circulation experiments has been constructed. This test facility consists of a single flow channel in a 2.7 m (9’) long graphite column equipped with four 2.3kW heaters. Extensive 3D numerical modeling provides a detailed analysis of the thermal-hydraulic behavior under steady-state, transient, and accident scenarios. In addition, forced/mixed convection experiments with air, nitrogen and helium were conducted for inlet Reynolds numbers from 500 to 70,000. Our numerical resultsmore » were validated with forced convection data displaying maximum percentage errors under 15%, using commercial finite element package, COMSOL Multiphysics. Based on this agreement, important information can be extracted from the model, with regards to the modified radial velocity and property gas profiles. Our work also examines flow laminarization for a full range of Reynolds numbers including laminar, transition and turbulent flow under forced convection and its impact on heat transfer under various scenarios to examine the thermal-hydraulic phenomena that could occur during both normal operation and accident conditions.« less
NASA Astrophysics Data System (ADS)
Morozov, A. V.; Pityk, A. V.; Ragulin, S. V.; Sahipgareev, A. R.; Soshkina, A. S.; Shlepkin, A. S.
2017-09-01
In this paper the processes of boric acid mass transfer in a WWER-TOI nuclear reactor in case of the accidents with main coolant circuit rupture and operation of passive safety systems (the hydro accumulators systems of the first, second and third stages, as well as the passive heat removal system) are considered. The results of the calculation of changes in the boric acid solution concentration in the core for the WWER emergency mode are presented. According to the results of the calculation a significant excess of the ultimate concentration of boric acid in accidents with main coolant circuit rupture after 43 hours of emergency mode is observed. The positive influence of the boric acid droplet entrainment on the processes of its crystallization and accumulation in the core is shown. The mass of boric acid deposits on the internals is determined. The received results allow concluding that the accumulation and crystallization of boric acid in the core may lead to blocking the flow cross section and to deterioration of heat removal from fuel rods. The necessity of an experimental studies of the processes of boric acid drop entrainment under conditions specific to the WWER emergency modes is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRISC is a developmental prototype for a nextgeneration systems-level integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled burner nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less
A methodology for the transfer of probabilities between accident severity categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, J. D.; Neuhauser, K. S.
A methodology has been developed which allows the accident probabilities associated with one accident-severity category scheme to be transferred to another severity category scheme. The methodology requires that the schemes use a common set of parameters to define the categories. The transfer of accident probabilities is based on the relationships between probability of occurrence and each of the parameters used to define the categories. Because of the lack of historical data describing accident environments in engineering terms, these relationships may be difficult to obtain directly for some parameters. Numerical models or experienced judgement are often needed to obtain the relationships.more » These relationships, even if they are not exact, allow the accident probability associated with any severity category to be distributed within that category in a manner consistent with accident experience, which in turn will allow the accident probability to be appropriately transferred to a different category scheme.« less
NASA Technical Reports Server (NTRS)
Abramzon, B.; Edwards, D. K.; Sirignano, W. A.
1986-01-01
A numerical study has been made of transient heat transfer and fluid flow in a cylindrical enclosure containing a two-layer gas-and-liquid system. The geometric configuration and the boundary conditions of the problem are relevant to the analysis of the preignition processes during the fire accident situation involving a pool of liquid fuel in the vicinity of an ignition source. It is demonstrated that the effects of the natural and thermocapillary convection, radiative transfer, thermal inertia and conduction of the walls bounding the enclosure, as well as, the magnitude of the gravity field play important roles in the development of the temperature and velocity fields in the container.
The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.
Rameezdeen, Rameez; Elmualim, Abbas
2017-01-11
The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.
The Impact of Heat Waves on Occurrence and Severity of Construction Accidents
Rameezdeen, Rameez; Elmualim, Abbas
2017-01-01
The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067
DSMC Simulations in Support of the Columbia Shuttle Orbiter Accident Investigation
NASA Technical Reports Server (NTRS)
Boyles, Katie; LeBeau, Gerald J.; Gallis, Michael A.
2004-01-01
Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.
ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-11-01
1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69more » rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING« less
Structures for handling high heat fluxes
NASA Astrophysics Data System (ADS)
Watson, R. D.
1990-12-01
The divertor is reconized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes > 5 MW/m 2. High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2. Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villanueva, J. F.; Carlos, S.; Martorell, S.
The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less
International transferability of accident modification functions for horizontal curves.
Elvik, Rune
2013-10-01
Studies of the relationship between characteristics of horizontal curves and accident rate have been reported in several countries. The characteristic most often studied is the radius of a horizontal curve. Functions describing the relationship between the radius of horizontal curves and accident rate have been developed in Australia, Canada, Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, Sweden, and the United States. Other characteristics of horizontal curves that have been studied include deflection angle, curve length, the presence of transition curves, super-elevation in curves and distance to adjacent curves. This paper assesses the international transferability of mathematical functions (accident modification functions) that have been developed to relate the radius of horizontal curves to their accident rate. The main research problem is whether these functions are similar, which enhances international transferability, or dissimilar, which reduces international transferability. Accident modification functions for horizontal curve radius developed in the countries listed above are synthesised. The sensitivity of the functions to other characteristics of curves than radius is examined. Accident modification functions developed in different countries have important similarities. The functions diverge with respect to accident rate in the sharpest curves. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.
2002-07-01
The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enablemore » much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)« less
BISON Modeling of Reactivity-Initiated Accident Experiments in a Static Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles P.; Jensen, Colby B.; Williamson, Richard L.
2016-09-01
In conjunction with the restart of the TREAT reactor and the design of test vehicles, modeling and simulation efforts are being used to model the response of Accident Tolerant Fuel (ATF) concepts under reactivity insertion accident (RIA) conditions. The purpose of this work is to model a baseline case of a 10 cm long UO2-Zircaloy fuel rodlet using BISON and RELAP5 over a range of energy depositions and with varying reactor power pulse widths. The results show the effect of varying the pulse width and energy deposition on both thermal and mechanical parameters that are important for predicting failure ofmore » the fuel rodlet. The combined BISON/RELAP5 model captures coupled thermal and mechanical effects on the fuel-to-cladding gap conductance, cladding-to-coolant heat transfer coefficient and water temperature and pressure that would not be capable in each code individually. These combined effects allow for a more accurate modeling of the thermal and mechanical response in the fuel rodlet and thermal-hydraulics of the test vehicle.« less
Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident
NASA Astrophysics Data System (ADS)
Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.
2018-02-01
RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.
Modeling of Kerena Emergency Condenser
NASA Astrophysics Data System (ADS)
Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver
2017-12-01
KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less
Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle
Kumar, Mithilesh; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, Ravi
2014-01-01
Numerical study on AHWR fuel bundle has been carried out to assess influence of circumferential and cross flow rewetting on the conduction heat transfer. The AHWR fuel bundle quenching under accident condition is designed primarily with radial jets at several axial locations. A 3D (r, θ, z) transient conduction fuel pin model has been developed to carry out the study with a finite difference method (FDM) technique with alternating direction implicit (ADI) scheme. The single pin has been considered to study effect of circumferential conduction and multipins have been considered to study the influence of cross flow. Both analyses are carried out with the same fluid temperature and heat transfer coefficients as boundary conditions. It has been found from the analyses that, for radial jet, the circumferential conduction is significant and due to influence of overall cross flow the reductions in fuel temperature in the same quench plane in different rings are different with same initial surface temperature. Influence of cross flow on rewetting is found to be very significant. Outer fuel pins rewetting time is higher than inner. PMID:24672341
Measurement of interfacial thermal conductance in Lithium ion batteries
NASA Astrophysics Data System (ADS)
Gaitonde, Aalok; Nimmagadda, Amulya; Marconnet, Amy
2017-03-01
Increasing usage and recent accidents due to Lithium ion (Li-ion) batteries exploding or catching on fire has inspired research on the thermal management of these batteries. In cylindrical 18650 cells, heat generated during the charge/discharge cycle must dissipate to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work develops a technique to measure the thermal resistance across the case-separator interface, which ultimately limits heat transfer out of the jelly roll. Commercial 18650 batteries are discharged and opened using a battery disassembly tool, and the 25 μm thick separator and the 200 μm thick metallic case are harvested to make samples. A miniaturized version of the conventional reference bar method (ASTM astm:D5470)
Propagation of fires along mine workings: criteria and limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervushin, Yu.V.
1978-01-01
Underground fires account for over 50% of the accidents occuring in Soviet mines. Their prevention therefore occupies a central place in mine rescue practice and accident prevention. The general features of the physical processes occurring during propagation of a flame have been studied in some detail. Attempts have been made to describe underground fires on the basis of experimental data. However, it is not yet possible to make accurate preductions of the behavior of fires in mine workings: very many factors influence their development. The dynamics of spread of a flame along a working involves such diverse phenomena as heatmore » transfer by thermal conduction, radiation, and convection, transfer of oxygen and combustible gaseous components by draughts and diffusion, various chemical reactions on the surface of combustible materials and within the flames, and finally complex surface effects accompanying heat and mass transfer at interfaces between media. In addition, we must take account of the specific conditions prevailing in a mine - the complex geometrical configuration of the workings, the nonuniformity of the combustible materials, and the role of ventilation and its instability during fires. There can be many approaches to the study of such a many-sided process. The most promising lines seem to be those in which experimental models of the complex of possible phenomena are combined with mathematical models of the process, based on the equations of chemical hydrodynamics, in which the alternative variants are realized on a computer.« less
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integral Reactor Containment Condensation Model and Experimental Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiao; Corradini, Michael
This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flowmore » into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure ranging from 4 to 21 bar with three different static inventories of non-condensable gas. Condensation and heat transfer rates were evaluated employing several methods, notably from measured temperature gradients in the HTP as well as measured condensate formation rates. A detailed mass and energy accounting was used to assess the various measurement methods and to support simplifying assumptions required for the analysis. Condensation heat fluxes and heat transfer coefficients are calculated and presented as a function of pressure to satisfy the objectives of this investigation. The major conclusions for those tests are summarized below: (1) In the steam blow-down tests, the initial condensation heat transfer process involves the heating-up of the containment heat transfer plate. An inverse heat conduction model was developed to capture the rapid transient transfer characteristics, and the analysis method is applicable to SMR safety analysis. (2) The average condensation heat transfer coefficients for different pressure conditions and non-condensable gas mass fractions were obtained from the integral test facility, through the measurements of the heat conduction rate across the containment heat transfer plate, and from the water condensation rates measurement based on the total energy balance equation. 15 (3) The test results using the measured HTP wall temperatures are considerably lower than popular condensation models would predict mainly due to the side wall conduction effects in the existing MASLWR integral test facility. The data revealed the detailed heat transfer characteristics of the model containment, important to the SMR safety analysis and the validation of associated evaluation model. However this approach, unlike separate effect tests, cannot isolate the condensation heat transfer coefficient over the containment wall, and therefore is not suitable for the assessment of the condensation heat transfer coefficient against system pressure and noncondensable gas mass fraction. (4) The average condensation heat transfer coefficients measured from the water condensation rates through energy balance analysis are appropriate, however, with considerable uncertainties due to the heat loss and temperature distribution on the containment wall. With the consideration of the side wall conduction effects, the results indicate that the measured heat transfer coefficients in the tests is about 20% lower than the prediction of Dehbi’s correlation, mainly due to the side wall conduction effects. The investigation also indicates an increase in the condensation heat transfer coefficient at high containment pressure conditions, but the uncertainties invoked with this method appear to be substantial. (5) Non-condensable gas in the tests has little effects on the condensation heat transfer at high elevation measurement ports. It does affect the bottom measurements near the water level position. The results suggest that the heavier non-condensable gas is accumulated in the lower portion of the containment due to stratification in the narrow containment space. The overall effects of the non-condensable gas on the heat transfer process should thus be negligible for tall containments of narrow condensation spaces in most SMR designs. Therefore, the previous correlations with noncondensable gas effects are not appropriate to those small SMR containments due to the very poor mixing of steam and non-condensable gas. The MELCOR simulation results agree with the experimental data reasonably well. However, it is observed that the MELCOR overpredicts the heat flux for all analyzed tests. The MELCOR predicts that the heat fluxes for CCT’s approximately range from 30 to 45 kW/m2 whereas the experimental data (averaged) ranges from about 25 to 40 kW/m2. This may be due to the limited availability of liquid film models included in MELCOR. Also, it is believed that due to complex test geometry, measured temperature gradients across the heat transfer plate may have been underestimated and thus the heat flux had been underestimated. The MELCOR model predicts a film thickness on the order of 100 microns, which agrees very well with film flow model developed in this study for scaling analysis. However, the expected differences in film thicknesses for near vacuum and near atmospheric test conditions are not significant. Further study on the behavior of condensate film is expected to refine the simulation results. Possible refinements include but are not limited to, the followings: CFD simulation focusing on the liquid film behavior and benchmarking with experimental analyses for simpler geometries. 16 1 INTRODUCTION This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). The experimental results are employed to validate the containment condensation model in reactor containment system safety analysis code for integral SMRs. Such a containment condensation model is important to demonstrate the adequate cooling. In the three years of investigation, following the original proposal, the following planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). The results are applicable to integral Small Modular Reactor (SMR) designs, including NuScale, mPower, Westinghouse SMR, Holtec-160 and other integral reactors with small containments of relatively high pressures under accidental conditions. Testing has been conducted at the OrSU laboratory in the existing MASLWR (Multi-Application Small Light Water Reactor) integral test facility sponsored by the US Department of Energy. Its highpressure stainless steel containment model (~2 MPa) is scaled to the NuScale SMR currently under development at NuScale Power, Inc.. Minor modifications to the model containment have been made to control the non-condensable gas fraction and to utilize the secondary loop stable steam flow for condensation testing. UW-Madison has developed a containment condensation model, which leveraged previous validated containment heat transfer work carried out at UW-Madison, and extended the range of applicability of the model to integral SMR designs that utilize containment vessels of high heat transfer efficiencies. In this final report, the research background and literature survey are presented in Chapter 2 and 3, respectively. The test facility description and modifications are summarized in Chapter 4, and the scaling analysis is introduced in Chapter 5. The tests description, procedures, and data analysis are presented in Chapter 6, while the numerical modeling is presented in Chapter 7, followed by a conclusion section in Chapter 8.« less
Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.
2004-01-01
The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation developed and the condition of recovered debris was examined, increasing emphasis was placed on identifying wing leading edge damage (partially and fully missing reinforced carbon-carbon panels, and eventually holes in the wing leading edge with venting to the wing upper surface) that produced off-nominal heating trends consistent with extracted Orbiter flight recorder temperature data.
NASA Astrophysics Data System (ADS)
Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.
2017-07-01
The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.
Posttest TRAC-PD2/MOD1 predictions for FLECHT SEASET test 31504. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, C.P.
TRAC-PD2/MOD1 is a publicly released version of TRAC that is used primarily to analyze large-break loss-of-coolant accidents in pressurized-water reactors (PWRs). TRAC-PD2 can calculate, among other things, reflood phenomena. TRAC posttest predictions are compared with test 31504 reflood data from the Full-Length Emergency Core Heat Transfer (FLECHT) System Effects and Separate Effects Tests (SEASET) facility. A false top-down quench is predicted near the top of the core and the subcooling is underpredicted at the bottom of the core. However, the overall TRAC predictions are good, especially near the center of the core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.
Preliminary Design of Critical Function Monitoring System of PGSFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-07-01
A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benet, L.V.; Caroli, C.; Cornet, P.
1995-09-01
This paper reports part of a study of possible severe pressurized water reactor (PWR) accidents. The need for containment modeling, and in particular for a hydrogen risk study, was reinforced in France after 1990, with the requirement that severe accidents must be taken into account in the design of future plants. This new need of assessing the transient local hydrogen concentration led to the development, in the Mechanical Engineering and Technology Department of the French Atomic Energy Commission (CEA/DMT), of the multidimensional code GEYSER/TONUS for containment analysis. A detailed example of the use of this code is presented. The mixturemore » consisted of noncondensable gases (air or air plus hydrogen) and water vapor and liquid water. This is described by a compressible homogeneous two-phase flow model and wall condensation is based on the Chilton-Colburn formula and the analogy between heat and mass transfer. Results are given for a transient two-dimensional axially-symmetric computation for the first hour of a simplified accident sequence. In this there was an initial injection of a large amount of water vapor followed by a smaller amount and by hydrogen injection.« less
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T.T.; Keller, J.O.
1987-07-10
A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.
CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan-Bill Cheung; Joy L. Rempe
2004-06-01
In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less
Analysis of the influence of the heat transfer phenomena on the late phase of the ThAI Iod-12 test
NASA Astrophysics Data System (ADS)
Gonfiotti, B.; Paci, S.
2014-11-01
Iodine is one of the major contributors to the source term during a severe accident in a Nuclear Power Plant for its volatility and high radiological consequences. Therefore, large efforts have been made to describe the Iodine behaviour during an accident, especially in the containment system. Due to the lack of experimental data, in the last years many attempts were carried out to fill the gaps on the knowledge of Iodine behaviour. In this framework, two tests (ThAI Iod-11 and Iod-12) were carried out inside a multi-compartment steel vessel. A quite complex transient characterizes these two tests; therefore they are also suitable for thermal- hydraulic benchmarks. The two tests were originally released for a benchmark exercise during the SARNET2 EU Project. At the end of this benchmark a report covering the main findings was issued, stating that the common codes employed in SA studies were able to simulate the tests but with large discrepancies. The present work is then related to the application of the new versions of ASTEC and MELCOR codes with the aim of carry out a new code-to-code comparison vs. ThAI Iod-12 experimental data, focusing on the influence of the heat exchanges with the outer environment, which seems to be one of the most challenging issues to cope with.
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL-Dahhan, Muthanna; Rizwan-Uddin, Rizwan; Usman, S.
All the goals and the objectives set for the project were successfully executed and achieved and all the milestones have been successfully completed. The results that have been obtained for the first time advance the scientific and engineering knowledge and understanding of the plenum-to plenum natural convection of prismatic block nuclear reactors that is encountered during accident or abnormal operation. These have been accomplished by developing and implementing for the first time unique and flexible scaled-down separate and integrated effects experimental plenumto- plenum facility (P2PF) with dual channels at this time that has been equipped with sophisticated measurement techniques integratedmore » in a novel way on the heated and cooled channels. The unique facility is an asset now that can be extended to research multiple channels and to study the effects of hot plumes in the plena for future projects if funding will be available. It can also be modified to research natural convection of pebble bed reactors. Hence, it complement the HTTF at Oregon State University. However, in this study, heat transfer coefficients from the inner wall surface to the flowing gas (both helium and air were used) and the radial temperature and gas velocity profiles have been measured and investigated along the height of the heated and cooled channels using in house developed wall flush mounted heat transfer probes, thermocouple with in house developed adjuster for radial movement with 1 mm increment inside the channel and hot wire anemometry with also in house developed adjuster for 1 mm radial movement inside the channel, respectively. Also advanced tracer technique has been developed to quantify also for the first time the dispersion of the gas dynamics of the hot and cold channels. The research has provided new knowledge and new benchmarking data that can be used to validate computational fluid dynamics (CFD) codes with conjugate heat transfer. The work and its results that have been performed within the budget have demonstrated their superior technical effectiveness and high economic feasibility to perform needed studies for safety analysis and assessment at least cost for these types of gas cooled very high temperature 4th generation nuclear reactors. Accordingly, the results obtained in this project and the unique facility and techniques that have been developed will benefit greatly the public by advancing the technology of the prismatic block nuclear reactors toward commercialization and to ensure they will be designed and operated safely by utilizing the obtained knowledge and having well validated CFD simulations integrated with heat transfer computations« less
Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY
2011-12-20
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
NASA Astrophysics Data System (ADS)
Yang, Li; Wang, Ye; Liu, Huikai; Yan, Guanghui; Kou, Wei
2014-11-01
The components overheating inside an object, such as inside an electric control cabinet, a moving object, and a running machine, can easily lead to equipment failure or fire accident. The infrared remote sensing method is used to inspect the surface temperature of object to identify the overheating components inside the object in recent years. It has important practical application of using infrared thermal imaging surface temperature measurement to identify the internal overheating elements inside an electric control cabinet. In this paper, through the establishment of test bench of electric control cabinet, the experimental study was conducted on the inverse identification technology of internal overheating components inside an electric control cabinet using infrared thermal imaging. The heat transfer model of electric control cabinet was built, and the temperature distribution of electric control cabinet with internal overheating element is simulated using the finite volume method (FVM). The outer surface temperature of electric control cabinet was measured using the infrared thermal imager. Combining the computer image processing technology and infrared temperature measurement, the surface temperature distribution of electric control cabinet was extracted, and using the identification algorithm of inverse heat transfer problem (IHTP) the position and temperature of internal overheating element were identified. The results obtained show that for single element overheating inside the electric control cabinet the identifying errors of the temperature and position were 2.11% and 5.32%. For multiple elements overheating inside the electric control cabinet the identifying errors of the temperature and positions were 3.28% and 15.63%. The feasibility and effectiveness of the method of IHTP and the correctness of identification algorithm of FVM were validated.
Development of an accident duration prediction model on the Korean Freeway Systems.
Chung, Younshik
2010-01-01
Since duration prediction is one of the most important steps in an accident management process, there have been several approaches developed for modeling accident duration. This paper presents a model for the purpose of accident duration prediction based on accurately recorded and large accident dataset from the Korean Freeway Systems. To develop the duration prediction model, this study utilizes the log-logistic accelerated failure time (AFT) metric model and a 2-year accident duration dataset from 2006 to 2007. Specifically, the 2006 dataset is utilized to develop the prediction model and then, the 2007 dataset was employed to test the temporal transferability of the 2006 model. Although the duration prediction model has limitations such as large prediction error due to the individual differences of the accident treatment teams in terms of clearing similar accidents, the results from the 2006 model yielded a reasonable prediction based on the mean absolute percentage error (MAPE) scale. Additionally, the results of the statistical test for temporal transferability indicated that the estimated parameters in the duration prediction model are stable over time. Thus, this temporal stability suggests that the model may have potential to be used as a basis for making rational diversion and dispatching decisions in the event of an accident. Ultimately, such information will beneficially help in mitigating traffic congestion due to accidents.
Operation of a cascade air conditioning system with two-phase loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yinshan; Wang, Jinliang; Zhao, Futao
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Shrivastava; Brian Williams; Ali S. Siahpush
2014-06-01
There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less
Capillary-Condenser-Pumped Heat-Transfer Loop
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun
2015-07-01
A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less
High heat flux issues for plasma-facing components in fusion reactors
NASA Astrophysics Data System (ADS)
Watson, Robert D.
1993-02-01
Plasma facing components in tokamak fusion reactors are faced with a number of difficult high heat flux issues. These components include: first wall armor tiles, pumped limiters, diverter plates, rf antennae structure, and diagnostic probes. Peak heat fluxes are 15 - 30 MW/m2 for diverter plates, which will operate for 100 - 1000 seconds in future tokamaks. Disruption heat fluxes can approach 100,000 MW/m2 for 0.1 ms. Diverter plates are water-cooled heat sinks with armor tiles brazed on to the plasma facing side. Heat sink materials include OFHC, GlidcopTM, TZM, Mo-41Re, and niobium alloys. Armor tile materials include: carbon fiber composites, beryllium, silicon carbide, tungsten, and molybdenum. Tile thickness range from 2 - 10 mm, and heat sinks are 1 - 3 mm. A twisted tape insert is used to enhance heat transfer and increase the burnout safety margin from critical heat flux limits to 50 - 60 MW/m2 with water at 10 m/s and 4 MPa. Tests using rastered electron beams have shown thermal fatigue failures from cracks at the brazed interface between tiles and the heat sink after only 1000 cycles at 10 - 15 MW/m2. These fatigue lifetimes need to be increased an order of magnitude to meet future requirements. Other critical issues for plasma facing components include: surface erosion from sputtering and disruption erosion, eddy current forces and runaway electron impact from disruptions, neutron damage, tritium retention and release, remote maintenance of radioactive components, corrosion-erosion, and loss-of-coolant accidents.
Vogel, H
2007-08-01
Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.
The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.; Brunett, A. J.; Sumner, T.
The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transientmore » thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.« less
Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.
2015-10-06
A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, Jacopo; Hu, Lin-wen
2009-07-31
Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.« less
Fission product transport analysis in a loss of decay heat removal accident at Browns Ferry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.P.; Weber, C.F.; Hodge, S.A.
1984-01-01
This paper summarizes an analysis of the movement of noble gases, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal (DHR) capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris ontomore » the drywell floor.« less
NASA Astrophysics Data System (ADS)
Blaszczuk, Artur; Nowak, Wojciech
2016-10-01
In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenhove, Hildegarde
The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig; Chad Pope; Jason Andrus
The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure,more » temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.« less
[Worker heat disorders at the Fukushima Daiichi nuclear power plant].
Tsuji, Masayoshi; Kakamu, Takeyasu; Hayakawa, Takehito; Kumagai, Tomohiro; Hidaka, Tomoo; Kanda, Hideyuki; Fukushima, Tetsuhito
2013-01-01
Ever since the Fukushima Daiichi nuclear power plant (NPP) accident, every day about 3,000 workers have been working to repair the situation. The frequent occurrence of heat disorders has been a concern for the workers wearing protective clothing with poor ventilation. We have been analyzing the heat disorder problem since the accident in order to come up with a solution to prevent future heat disorder incidents among Fukushima Daiichi NPP accident clean-up workers. From March 22 to September 16, 2011, the Fukushima Labor Bureau assessed 43 cases of nuclear power plant workers with heat disorders. Age of subject, month and time of occurrence, temperature, and humidity were examined for each case, as well as the severity of heat disorders. The grade of severity was divided into Grade I and Grade II or higher. Then, age, temperature, and humidity were analyzed using the Mann-Whitney Utest, and age, temperature, humidity, and presence or absence of a cool-vest were analyzed using the χ(2) test and logistic regression analysis. SPSS version 17.0 statistical software was used with a level of significance of p< 0.05. Heat disorders occurred most frequently in subjects in their 40s (30.2%), followed by those in their 30s (25.6%), mostly in July (46.5%) between 7 am and 12 pm (69.8%). Heat disorders occurred most frequently in environments with temperatures more than 25°C (76.7%) and humidity of 70-80% (39.5%). Heat disorders of Grade II or higher occurred in 10 cases, 5 of which were in June. According to statistical analysis, there were no significant differences in difference of severity for all factors. Heat disorders usually occur in workers aged 45-60; however, cases of heat disorders at the Fukushima Daiichi NPP occurred in clean-up workers at the relatively younger ages of 30-40, suggesting the need for heat disorder prevention measures for these younger workers. Heat disorder cases primarily occurred in the morning, necessitating preventive measures for the early hours of the day. In addition, because heat disorders of Grade II or higher occurred in June in 5 of 10 cases, we believe heat disorder precautions should be implemented from June. The lack of significant difference in severity difference may be attributable to the small number of cases or other factors. We think Fukushima Daiichi NPP accident clean-up workers need heat disorder prevention measures for their safety, based on the results of this study.
TRAC-PF1/MOD1 support calculations for the MIST/OTIS program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, R.K.; Knight, T.D.
1984-01-01
We are using the Transient Reactor Analysis Code (TRAC), specifically version TRAC-PF1/MOD1, to perform analyses in support of the MultiLoop Integral-System Test (MIST) and the Once-Through Integral-System (OTIS) experiment program. We have analyzed Geradrohr Dampferzeuger Anlage (GERDA) Test 1605AA to benchmark the TRAC-PF1/MOD1 code against phenomena expected to occur in a raised-loop B and W plant during a small-break loss-of-coolant accident (SBLOCA). These results show that the code can calculate both single- and two-phase natural circulation, flow interruption, boiler-condenser-mode (BCM) heat transfer, and primary-system refill in a B and W-type geometry with low-elevation auxiliary feedwater. 19 figures, 7 tables.
Overview of Fuel Rod Simulator Usage at ORNL
NASA Astrophysics Data System (ADS)
Ott, Larry J.; McCulloch, Reg
2004-02-01
During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.
NASA Astrophysics Data System (ADS)
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baratta, A.J.
1997-07-01
To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less
NASA Astrophysics Data System (ADS)
Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.
2018-04-01
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek J.; Diamond D.; Cuadra, A.
Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less
NASA Technical Reports Server (NTRS)
Kim, K.; Wiedner, B.; Camci, C.
1993-01-01
A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.
Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant
2015-04-21
The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.
The effect of heating direction on flow boiling heat transfer of R134a in micro-channels
NASA Astrophysics Data System (ADS)
Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi
2017-04-01
This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
McGuire, Joseph C.
1982-01-01
A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
[Accidents in travellers - the hidden epidemic].
Walz, Alexander; Hatz, Christoph
2013-06-01
The risk of malaria and other communicable diseases is well addressed in pre-travel advice. Accidents are usually less discussed. Thus, we aimed at assessing accident figures for the Swiss population, based on data of the register from 2004 to 2008 of the largest Swiss accident insurance organization (SUVA). More than 139'000 accidents over 5 years showed that 65 % of the accidents overseas are injuries, and 24 % are caused by poisoning or harm by cold, heat or air pressure. Most accidents happened during leisure activities or sports. More than one third of the non-lethal and more than 50 % of the fatal accidents happened in Asia. More than three-quarters of non-lethal accidents take place in people between 25 and 54 years. One out of 74 insured persons has an accident abroad per year. Despite of many analysis short-comings of the data set with regard to overseas travel, the figures document the underestimated burden of disease caused by accidents abroad and should affect the given pre-health advice.
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
AHTR Mechanical, Structural, And Neutronic Preconceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, Venugopal Koikal; Holcomb, David Eugene; Peretz, Fred J
2012-10-01
This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming a commercial reactor class. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The AHTR employs plate type coated particle fuel assemblies with rapid,more » off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month 2-batch cycle with 9 weight-percent enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The present design intent is for used fuel to be stored inside of containment for at least 6 months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates multiple levels of radioactive material containment including fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents. Key building design elements include: 1) below grade siting to minimize vulnerability to aircraft impact, 2) multiple natural circulation decay heat rejection chimneys, 3) seismic base isolation, and 4) decay heat powered back-up electricity generation. The report provides a preconceptual design of the manipulators, the fuel transfer system, and the salt transfer loops. The mechanical handling of the fuel and how it is accomplished without instrumentation inside the salt is described within the report. All drives for the manipulators reside outside the reactor top flange. The design has also taken into account the transportability of major components and how they will be assembled on site« less
2011-01-01
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877
Ramesh, Gopalan; Prabhu, Narayan Kotekar
2011-04-14
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.
FAST TRACK COMMUNICATION Heat transfer between graphene and amorphous SiO2
NASA Astrophysics Data System (ADS)
Persson, B. N. J.; Ueba, H.
2010-11-01
We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.
Fluid-cooled heat sink for use in cooling various devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth
The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop ofmore » the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.« less
Relationship between work-related accidents and hot weather conditions in Tuscany (central Italy).
Morabito, Marco; Cecchi, Lorenzo; Crisci, Alfonso; Modesti, Pietro Amedeo; Orlandini, Simone
2006-07-01
Nowadays, no studies have been published on the relationship between meteorological conditions and work-related mortality and morbidity in Italy. The aim of this study was to evaluate the relationship between hot weather conditions and hospital admissions due to work-related accidents in Tuscany (central Italy) over the period 1998-2003. Apparent temperature (AT) values were calculated to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather conditions might represent a risk factor for work-related accidents in Italy during summer. In particular early warming days during June, characterized by heat discomfort, are less tolerated by workers than warming days of the following summer months. The peak of work-related accidents occurred on days characterized by high, but not extreme, thermal conditions. Workers maybe change their behaviour when heat stress increases, reducing risks by adopting preventive measures. Results suggested that days with an average daytime AT value ranged between 24.8 degrees C and 27.5 degrees C were at the highest risk of work-related accidents. In conclusion, present findings might represent the first step for the development of a watch/warning system for workers that might be used by employers for planning work activities.
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.
2016-07-01
The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling
NASA Technical Reports Server (NTRS)
Faghri, Amir
2005-01-01
In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which
Takamatsu, Kuniyoshi; Hu, Rui
2014-11-27
A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (°C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient airmore » as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (°C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). Finally, when the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal.« less
APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadday, M.A.
1999-09-20
The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the module could adequately conduct heat to the outer module surfaces, given reasonable values for the convection heat transfer coefficients. The second part of the analysis consisted of two-phase flow modeling of the natural circulation of the cavity flood fluid past the top modules. Slots in the top shield allow the cavity flood fluid to circulate. The required width for these slots, to prevent steam from backing up and blanketing the outer surfaces of the top modules, was determined.« less
Modeling of Heating During Food Processing
NASA Astrophysics Data System (ADS)
Zheleva, Ivanka; Kamburova, Veselka
Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.
Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes
NASA Astrophysics Data System (ADS)
Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi
Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.
Computational study of heat transfer in gas fluidization
NASA Astrophysics Data System (ADS)
Hou, Q. F.; Zhou, Z. Y.; Yu, A. B.
2013-06-01
Heat transfer in gas fluidization is investigated at a particle scale by means of a combined discrete element method and computational fluid dynamicsapproach. To develop understanding of heat transfer at various conditions, the effects of a few important material properties such as particle size, the Hamaker constant and particle thermal conductivity are examined through controlled numerical experiments. It is found that the convective heat transfer is dominant, and radiative heat transfer becomes important when the temperature is high. Conductive heat transfer also plays a role depending on the flow regimes and material properties. The heat transfer between a fluidized bed and an immersed surface is enhanced by the increase of particle thermal conductivity while it is little affected by Young's modulus. The findings should be useful for better understanding and predicting the heat transfer in gas fluidization.
Forced-convection Heat-transfer Characteristics of Molten Sodium Hydroxide
NASA Technical Reports Server (NTRS)
Grele, Milton D; Gedeon, Louis
1953-01-01
The forced-convection heat-transfer characteristics of sodium hydroxide were experimentally investigated. The heat-transfer data for heating fall slightly above the McAdams correlation line, and the heat-transfer data for cooling are fairly well represented by the McAdams correlation line.
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Crowley, Christopher J.
2005-01-01
A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.
NASA Technical Reports Server (NTRS)
Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)
1988-01-01
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Elovic, E.; O'Brien, J. E.; Pepper, D. W.
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu
2016-09-01
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.
Heat transfer in aeropropulsion systems
NASA Astrophysics Data System (ADS)
Simoneau, R. J.
1985-07-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Heat transfer in aeropropulsion systems
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1985-01-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Analysis of the heat transfer in double and triple concentric tube heat exchangers
NASA Astrophysics Data System (ADS)
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Two part condenser for varying the rate of condensing and related method
Dobos, James G.
2007-12-11
A heat transfer apparatus, such as a condenser, is provided. The apparatus includes a first component with a first heat transfer element that has first component inlet and outlet ports through which a first fluid may pass. A second component is also included and likewise has a second heat transfer element with second component inlet and outlet ports to pass a second fluid. The first component has a body that can receive a third fluid for heat transfer with the first heat transfer element. The first and second components are releasably attachable with one another so that when attached both the first and second heat transfer elements effect heat transfer with the third fluid. Attachment and removal of the first and second components allows for the heat transfer rate of the apparatus to be varied. An associated method is also provided.
NASA Astrophysics Data System (ADS)
Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua
2018-05-01
This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.
2010-01-01
Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.
NASA Astrophysics Data System (ADS)
Liu, T. L.; Liu, W. R.; Xu, X. H.
2017-11-01
Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.
Thermocapillary flow contribution to dropwise condensation heat transfer
NASA Astrophysics Data System (ADS)
Phadnis, Akshay; Rykaczewski, Konrad
2017-11-01
With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.
NASA Technical Reports Server (NTRS)
Yee, Layton; Bailey, Harry E.; Woodward, Henry T.
1961-01-01
A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.
Heat transfer in freeboard region of fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyikli, S.; Tuzla, K.; Chen, J.C.
1983-10-01
This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2017-02-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts
NASA Astrophysics Data System (ADS)
Huddar, Lakshana Ravindranath
With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by underlining key distortions between the experimental and the prototypical conditions. This dissertation is broadly split into four parts. Firstly, the heat transfer phenomenology in the PB-FHR core was outlined. Although the viscous dissipation term and the thermal diffusion term (including thermal dispersion) were similar in magnitude, they were overshadowed by the advection term which was about 104 times bigger during normal operation and 105 times bigger during accident transients in which natural circulation becomes the main mode of fluid flow. Thus it is safe to neglect the viscous dissipation and the thermal diffusion terms in the PB-FHR core without a significant loss of accuracy. Secondly, separate effects tests (SET) were performed using simulant oils, and the results were compared to the prototypical conditions using flinak as the fluoride salt. The main purpose of these experiments was to study natural convection heat transfer and identify any distortions between the two cases. An isolated copper sphere was immersed in flinak and a parallel experiment was performed using simulant oil. A large discrepancy between the flinak and the oil was noted, due to distortions from assuming quasi-steady state conditions. A steady state experiment using a cylindrical heater immersed in oil was also performed, and the results compared to a similar experiment done at Oak Ridge National Laboratory (ORNL) using flinak. The Nusselt numbers matched within 10% for laminar flows. This supports the conclusion that natural convection similitude does exist for oils used in scaled experiments, allowing natural convection data to be used for for FHR and MSR modeling. This is important, due to the lack of significant experimental data showing natural convection in fluoride salts, so these SETs add to the overall understanding of their heat transfer properties. With the knowledge of the distortions between the oil and the salt, an experiment to measure heat transfer coefficients within a pebble-bed test section was designed, constructed and performed. Oil was pumped through a test section filled with randomly packed copper spheres. The temperature of the oil was pulsed at a constant frequency, which caused a temperature difference between the pebbles and the oil. An excellent match was found between the measured heat transfer coefficients and the literature. This data provides an essential closure parameter for multiphysics modeling of the PB-FHR. Using frequency response techniques in scaled experiments is an innovative approach for extracting dynamic responses to coolant-structure interactions. Finally, an integrated model of the passive decay heat removal system was presented using Flownex and the simulations compared to experimental data. A good match was found with the data, which was within 14%. The work presented in this dissertation shows fundamental details on heat transfer in the PB-FHR core using experimental data and simulations, leading us closer to developing advanced nuclear reactors that can later be commercialized. Advanced nuclear reactors such as the PB-FHR have immense potential in reducing greenhouse gas emissions and combating climate change while being exceedingly safe and providing reliable electricity.
Cooperative heat transfer and ground coupled storage system
Metz, Philip D.
1982-01-01
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Heat exchanger with transpired, highly porous fins
Kutscher, Charles F.; Gawlik, Keith
2002-01-01
The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.
NASA Astrophysics Data System (ADS)
Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor
2017-12-01
The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.
Thermal-hydraulic analysis of low activity fusion blanket designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J A; Powell, J; Yu, W S
1977-01-01
The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required.
Film-Cooling Heat-Transfer Measurements Using Liquid Crystals
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.
1997-01-01
The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
NASA Astrophysics Data System (ADS)
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
Ideal heat transfer conditions for tubular solar receivers with different design constraints
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez
2017-06-01
The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.
NASA Astrophysics Data System (ADS)
Duan, Luanfang; Qi, Chonggang; Ling, Xiang; Peng, Hao
2018-03-01
In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE) was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 - 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder's model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%.
Flow and heat transfer in a curved channel
NASA Technical Reports Server (NTRS)
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Emergency cooling system and method
Oosterkamp, W.J.; Cheung, Y.K.
1994-01-04
An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
Core cooling under accident conditions at the high-flux beam reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.; Cheng, L.; Fauske, H.
The High-Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is cooled and moderated by heavy water and contains {sup 235}U in the form of narrow-channel, parallel-plate-type fuel elements. During normal operation, the flow direction is downward through the core. This flow direction is maintained at a reduced flow rate during routine shutdown and on loss of commercial power by means of redundant pumps and power supplies. However, in certain accident scenarios, e.g. loss-of-coolant accidents (LOCAs), all forced-flow cooling is lost. Although there was experimental evidence during the reactor design period (1958-1963) that the heat removal capacity in the fullymore » developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. Accordingly, a test program was initiated using an electrically heated section to simulate the fuel channel and a cooling loop to simulate the balance of the primary cooling system.« less
NASA Astrophysics Data System (ADS)
Wengler, C.; Addy, J.; Luke, A.
2018-03-01
Due to high energy demand required for chemical processes, refrigeration and process industries the increase of efficiency and performance of thermal systems especially evaporators is indispensable. One of the possibilities to meet this purpose are investigations in enhancement of the heat transfer in nucleate boiling where high heat fluxes at low superheat are transferred. In the present work, the heat transfer in pool boiling is investigated with pure R134a over wide ranges of reduced pressures and heat fluxes. The heating materials of the test tubes are aluminum and stainless steel. The influence of the thermal conductivity on the heat transfer coefficients is analysed by the surface roughness of sandblasted surfaces. The heat transfer coefficient increases with increasing thermal conductivity, surface roughness and reduced pressures. The experimental results show a small degradation of the heat transfer coefficients between the two heating materials aluminum and stainless steel. In correlation with the VDI Heat Atlas, the experimental results are matching well with the predictions but do not accurately consider the stainless steel material reference properties.
Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Shafik, Ramel
2013-06-01
The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.
NASA Astrophysics Data System (ADS)
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar; Allen, Todd; Anderson, Mark
The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less
Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach
NASA Astrophysics Data System (ADS)
Ooi, KT; Goh, AL
2016-09-01
This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.
Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol
1996-01-01
Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).
Heat transfer unit and method for prefabricated vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one ofmore » the plurality of peripheral rods.« less
Model wall and recovery temperature effects on experimental heat transfer data analysis
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Stone, D. R.
1974-01-01
Basic analytical procedures are used to illustrate, both qualitatively and quantitatively, the relative impact upon heat transfer data analysis of certain factors which may affect the accuracy of experimental heat transfer data. Inaccurate knowledge of adiabatic wall conditions results in a corresponding inaccuracy in the measured heat transfer coefficient. The magnitude of the resulting error is extreme for data obtained at wall temperatures approaching the adiabatic condition. High model wall temperatures and wall temperature gradients affect the level and distribution of heat transfer to an experimental model. The significance of each of these factors is examined and its impact upon heat transfer data analysis is assessed.
NASA Astrophysics Data System (ADS)
Farahani, Somayeh Davoodabadi; Kowsary, Farshad
2017-09-01
An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin; Wang, Yaqi
This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/kmore » $. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$$_2$$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the control rod models in MAMMOTH and adding the BISON thermo-elastic models and thermal-fluids heat transfer.« less
Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls
NASA Technical Reports Server (NTRS)
Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.
1991-01-01
An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.
FILM-30: A Heat Transfer Properties Code for Water Coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARSHALL, THERON D.
2001-02-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less
EMERALD REV.1. PWR Accident Activity Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunot, W.K.; Fray, R.R.; Gillespie, S.G.
1975-10-01
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less
Study of a high performance evaporative heat transfer surface
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hamasaki, R. H.
1977-01-01
An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.
Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA
2003-04-01
The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
It's Hard Saying Goodbye to an Old Flame
ERIC Educational Resources Information Center
Roy, Ken
2004-01-01
As heat sources go, the old standby for elementary and middle school science laboratories has been the centuries old alcohol lamp. Unfortunately, this inexpensive heat producer has been a continuous source of accidents--many of which are relatively serious. Hot plates are emerging as the most popular source of heat for science experiments. The…
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; İpek, Osman
2017-02-01
In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.
7 CFR 2902.54 - Heat transfer fluids.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Heat transfer fluids. 2902.54 Section 2902.54... Items § 2902.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants for use in...
Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles
ERIC Educational Resources Information Center
Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.
2010-01-01
This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
NASA Technical Reports Server (NTRS)
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.
Seebacher, F
2000-03-21
Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Andrzejczyk, Rafał; Muszyński, Tomasz
2016-12-01
The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Heat exchanger device and method for heat removal or transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P
2015-03-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P [San Ramon, CA
2012-07-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
2015-12-08
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Tunable heat transfer with smart nanofluids.
Bernardin, Michele; Comitani, Federico; Vailati, Alberto
2012-06-01
Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.
Direct-contact closed-loop heat exchanger
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1984-01-01
A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
NASA Astrophysics Data System (ADS)
Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong
2017-10-01
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.
NASA Technical Reports Server (NTRS)
Davis, L. R. (Editor); Wilson, R. E.
1974-01-01
Recent theoretical and experimental studies in heat transfer and fluid mechanics, including some environmental protection investigations, are presented in a number of papers. Some of the topics covered include condensation heat transfer, a model of turbulent momentum and heat transfer at points of separation and reattachment, an explicit scheme for calculations of confined turbulent flows with heat transfer, heat transfer effects on a delta wing in subsonic flow, fluid mechanics of ocean outfalls, thermal plumes from industrial cooling water, a photochemical air pollution model for the Los Angeles air basin, and a turbulence model of diurnal variations in the planetary boundary layer. Individual items are announced in this issue.
30 CFR 50.20-2 - Criteria-“Transfer to another job.”
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Criteria-âTransfer to another job.â 50.20-2 Section 50.20-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR ACCIDENTS..., Injuries, and Illnesses § 50.20-2 Criteria—“Transfer to another job.” “Transfer to another job” means...
30 CFR 50.20-2 - Criteria-“Transfer to another job.”
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Criteria-âTransfer to another job.â 50.20-2 Section 50.20-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR ACCIDENTS..., Injuries, and Illnesses § 50.20-2 Criteria—“Transfer to another job.” “Transfer to another job” means...
30 CFR 50.20-2 - Criteria-“Transfer to another job.”
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-âTransfer to another job.â 50.20-2 Section 50.20-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR ACCIDENTS..., Injuries, and Illnesses § 50.20-2 Criteria—“Transfer to another job.” “Transfer to another job” means...
30 CFR 50.20-2 - Criteria-“Transfer to another job.”
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Criteria-âTransfer to another job.â 50.20-2 Section 50.20-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR ACCIDENTS..., Injuries, and Illnesses § 50.20-2 Criteria—“Transfer to another job.” “Transfer to another job” means...
30 CFR 50.20-2 - Criteria-“Transfer to another job.”
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Criteria-âTransfer to another job.â 50.20-2 Section 50.20-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR ACCIDENTS..., Injuries, and Illnesses § 50.20-2 Criteria—“Transfer to another job.” “Transfer to another job” means...
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A.; Zawacki, Thomas S.
1996-12-03
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.
1992-01-01
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels
Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.
Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo
2013-01-01
To accurately predict the stability of thiamine nitrate as a model drug in pharmaceutical products under uncontrolled temperature conditions, the average reaction rate constant was determined, taking into account the heat transfer from the atmosphere to the product. The stability tests of thiamine nitrate in the three packages with different heat transfers were performed under non-isothermal conditions. The stability data observed were compared with the predictions based on a newly developed method, showing that the stability was well predicted by the method involving the heat transfer. By contrast, there were some deviations observed from the predicted data, without considering heat transfer in the packages with low heat transfer. The above-mentioned result clearly shows that heat transfer should be considered to ensure accurate prediction of the stability of commercial pharmaceutical products under non-isothermal atmospheres.
NASA Astrophysics Data System (ADS)
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
Core cooling under accident conditions at the high flux beam reactor (HFBR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.; Cheng, L.; Fauske, H.
In certain accident scenarios, e.g. loss of coolant accidents (LOCA) all forced flow cooling is lost. Decay heating causes a temperature increase in the core coolant and the resulting thermal buoyancy causes a reversal of the flow direction to a natural circulation mode. Although there was experimental evidence during the reactor design period (1958--1963) that the heat removal capacity in the fully developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. In a LOCA scenario where even limited fuelmore » damage occurs and natural circulation is established, fission product gases could be carried from the damaged fuel by steam into areas where operator access is required to maintain the core in a coolable configuration. This would force evacuation of the building and lead to extensive core damage. As a result the HFBR was shut down by the Department of Energy (DOE) and an extensive review of the HFBR was initiated. In an effort to address this issue BNL developed a model designed to predict the heat removal limit during flow reversal that was found to be in good agreement with the test results. Currently a thermal-hydraulic test program is being developed to provide a more realistic and defensible estimate of the flow reversal heat removal limit so that the reactor power level can be increased.« less
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.
1994-01-01
The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.
Numerical simulation of heat transfer in metal foams
NASA Astrophysics Data System (ADS)
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
NASA Astrophysics Data System (ADS)
Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad
2011-12-01
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
NASA Technical Reports Server (NTRS)
Kim, Jungho
2004-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across the array during boiling. The instantaneous heat transfer into the substrate was numerically determined and subtracted from the supplied heat to obtain the wall to liquid heat flux.
NASA Astrophysics Data System (ADS)
Pagliarini, G.; Vocale, P.; Mocerino, A.; Rainieri, S.
2017-01-01
Passive convective heat transfer enhancement techniques are well known and widespread tool for increasing the efficiency of heat transfer equipment. In spite of the ability of the first principle approach to forecast the macroscopic effects of the passive techniques for heat transfer enhancement, namely the increase of both the overall heat exchanged and the head losses, a first principle analysis based on energy, momentum and mass local conservation equations is hardly able to give a comprehensive explanation of how local modifications in the boundary layers contribute to the overall effect. A deeper insight on the heat transfer enhancement mechanisms can be instead obtained within a second principle approach, through the analysis of the local exergy dissipation phenomena which are related to heat transfer and fluid flow. To this aim, the analysis based on the second principle approach implemented through a careful consideration of the local entropy generation rate seems the most suitable, since it allows to identify more precisely the cause of the loss of efficiency in the heat transfer process, thus providing a useful guide in the choice of the most suitable heat transfer enhancement techniques.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
NASA Astrophysics Data System (ADS)
Sergis, Antonis; Hardalupas, Yannis
2011-05-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.
Sergis, Antonis; Hardalupas, Yannis
2011-05-19
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
NASA Astrophysics Data System (ADS)
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Undergraduate Laboratory on a Turbulent Impinging Jet
NASA Astrophysics Data System (ADS)
Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael
2017-11-01
An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
2011-01-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932
Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei
2017-09-12
Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.
Heat transfer enhancement with mixing vane spacers using the field synergy principle
NASA Astrophysics Data System (ADS)
Yang, Lixin; Zhou, Mengjun; Tian, Zihao
2017-01-01
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.
Haque, A K M Mahmudul; Kim, Sedong; Kim, Junhyo; Noh, Jungpil; Huh, Sunchul; Choi, Byeongkeun; Chung, Hanshik; Jeong, Hyomin
2018-03-01
This study presents the forced convective heat transfer of a nanofluid consisting of distilled water and different weight concentrations (1 wt% and 2 wt%) of Al2O3 nanoparticles flowing in a vertical shell and tube heat exchanger under counter flow and laminar flow regime with certain constant heat flaxes (at 20 °C, 30 °C, 40 °C and 50 °C). The Al2O3 nanoparticles of about 50 nm diameter are used in the present study. Stability of aqueous Al2O3 nanofluids, TEM, thermal conductivity, temperature differences, heat transfer rate, T-Q diagrams, LMTD and convective heat transfer coefficient are investigated experimentally. Experimental results emphasize the substantial enhancement of heat transfer due to the Al2O3 nanoparticles presence in the nanofluid. Heat transfer rate for distilled water and aqueous nanofluids are calculated after getting an efficient setup which shows 19.25% and 35.82% enhancement of heat transfer rate of 1 wt% and 2 wt% aqueous Al2O3 nanofluids as compared to that of distilled water. Finally, the analysis shows that though there are 27.33% and 59.08% enhancement of 1 wt% Al2O3 and 2 wt% Al2O3 respectively as compared to that of distilled water at 30 °C, convective heat transfer coefficient decreases with increasing heat flux of heated fluid in this experimental setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronowski, D.R.; Madsen, M.M.
The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2008-11-01
In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
2009-07-01
presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation
2010-05-11
convective heat transfer , researchers have been drawn to the high heat flux potentials of microfluidic devices. Microchannel flows, with hydraulic...novel heat transfer enhancement technique proven on the conventional scale to the mini and microchannel scales. 1.3 Background: Conventional...S.G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” International Conference on Microchannels
Direct-contact closed-loop heat exchanger
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
NASA Technical Reports Server (NTRS)
Stainback, Calvin
1960-01-01
An experimental investigation was conducted to evaluate the heat-transfer characteristics of a hypersonic glide configuration having 79.5 deg of sweepback (measured in the plane of the leading edges) and 45 of dihedral. The tests were conducted at a nominal Mach number of 4.95 and a stagnation temperature of 400 F. The test-section unit Reynolds number was varied from 1.95 x 10(exp 6) to 12.24 x 10(exp 6) per foot. The results indicated that the laminar-flow heat-transfer rate to the lower surface of the model decreased as the distance from the ridge line increased except for thermocouples located near the semispan at an angle of attack of 00 with respect to the plane of the leading edges. The heat-transfer distribution (local heating rate relative to the ridge-line heating rate) was similar to the theoretical heat-transfer distribution for a two-dimensional blunt body, if the ridge line was assumed to be the stagnation line, and could be predicted by this theory provided a modified Newtonian pressure distribution was used. Except in the vicinity of the apex, the ridge-line heat-transfer rate could also be predicted from two-dimensional blunt-body heat-transfer theory provided it was assumed that the stagnation-line heat-transfer rate varied as the cosine of the effective sweep (sine of the angle of attack of the ridge line). The heat-transfer level on the lower surface and the nondimensional heat-transfer distribution around the body on the lower surface were in qualitative agreement with the results of a geometric study of highly swept delta wings with large positive dihedrals made in reference 1.
Heat Transfer in a Thermoacoustic Process
ERIC Educational Resources Information Center
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
Flow and heat transfer enhancement in tube heat exchangers
NASA Astrophysics Data System (ADS)
Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2015-11-01
The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.
Heterogonous Nanofluids for Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Alammar, Khalid
2014-09-01
Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.
Air/molten salt direct-contact heat-transfer experiment and economic analysis
NASA Astrophysics Data System (ADS)
Bohn, M. S.
1983-11-01
Direct-contact heat-transfer coefficients have been measured in a pilot-scale packed column heat exchanger for molten salt/air duty. Two types of commercial tower packings were tested: metal Raschig rings and initial Pall rings. Volumetric heat-transfer coefficients were measured and appeared to depend upon air flow but not on salt flow rate. An economic analysis was used to compare the cost-effectiveness of direct-contact heat exchange with finned-tube heat exchanger in this application. Incorporating the measured volumetric heat-transfer coefficients, a direct-contact system appeared to be from two to five times as cost-effective as a finned-tube heat exchanger, depending upon operating temperature. The large cost advantage occurs for higher operating temperatures (2700(0)C), where high rates of heat transfer and flexibility in materials choice give the cost advantage to the direct-contact heat exchanger.
Moisture effects in heat transfer through clothing systems for wildland firefighters.
Lawson, Lelia K; Crown, Elizabeth M; Ackerman, Mark Y; Dale, J Douglas
2004-01-01
Wildland firefighters work in unfavourable environments involving both heat and moisture. Moisture in clothing systems worn by wildland firefighters may increase or decrease heat transfer, depending on its source and location in the clothing system, location on the body, timing of application and degree of sorption. In this experiment, 4 outerwear/underwear combinations were exposed to 1 of 5 different conditions varying on amount and location of moisture. The fabric systems were then exposed to either a high-heat-flux flame exposure (83 kW/m(2)) or a low-heat-flux radiant exposure (10 kW/m(2)). Under high-heat-flux flame exposures, external moisture tended to decrease heat transfer through the fabric systems, while internal moisture tended to increase heat transfer. Under low-heat-flux radiant exposures, internal moisture decreased heat transfer through the fabric systems. The nature and extent of such differences was fabric dependent. Implications for test protocol development are discussed.
NASA Astrophysics Data System (ADS)
Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira
The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.
1981-06-01
in order that the complete theoretical solution of the effects of the Taylor- Gortler vortices on heat transfer be explained. In 1977, - R. Kahawita ...Kelleher, M.D., "Taylor- Gortler Vortices and Their Effect on Heat Transfer" Journal of Heat Transfer, V.92, pp. 101-112, February 1970. 20. Kahawita , R
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1992-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.
Evaluation of generalized heat-transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Evaluation of generalized heat transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
NASA Technical Reports Server (NTRS)
Turner, E. R.; Wilson, M. D.; Hylton, L. D.; Kaufman, R. M.
1985-01-01
Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection.
Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II
NASA Technical Reports Server (NTRS)
Zhang, Burt X.; Karr, Gerald R.
1991-01-01
Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.
Analysis of buoyancy effect on fully developed laminar heat transfer in a rotating tube
NASA Technical Reports Server (NTRS)
Siegel, R.
1985-01-01
Laminar heat transfer is analyzed in a tube rotating about an axis perpendicular to the tube axis. The solution applies for flow that is either radially outward from the axis of rotation, or radially inward toward the axis of rotation. The conditions are fully developed, and there is uniform heat addition at the tube wall. The analysis is performed by expanding velocities and temperature in power series using the Taylor number as a perturbation parameter. Coriolis and buoyancy forces caused by tube rotation are included, and the solution is calculated through second-order terms. The secondary flow induced by the Coriolis terms always tends to increase the heat transfer coefficient; this effect can dominate for small wall heating. For radial inflow, buoyancy also tends to improve heat transfer. For radial outflow, however, buoyancy tends to reduce heat transfer; for large wall heating this effect can dominate, and there is a net reduction in heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Umer, Asim; Naveed, Shahid; Ramzan, Naveed
2016-10-01
Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, N.J.; Marseille, T.J.; White, M.D.
TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic inmore » form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.« less
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T. Tazwell; Keller, Jay O.
1989-01-01
A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu
2015-04-22
This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
NASA Astrophysics Data System (ADS)
Kuzevanov, V. S.; Garyaev, A. B.; Zakozhurnikova, G. S.; Zakozhurnikov, S. S.
2017-11-01
A porous wet medium with solid and gaseous components, with distributed or localized heat sources was considered. The regimes of temperature changes at the heating at various initial material moisture were studied. Mathematical model was developed applied to the investigated wet porous multicomponent medium with internal heat sources, taking into account the transfer of the heat by heat conductivity with variable thermal parameters and porosity, heat transfer by radiation, chemical reactions, drying and moistening of solids, heat and mass transfer of volatile products of chemical reactions by flows filtration, transfer of moisture. The algorithm of numerical calculation and the computer program that implements the proposed mathematical model, allowing to study the dynamics of warming up at a local or distributed heat release, in particular the impact of the transfer of moisture in the medium on the temperature field were created. Graphs of temperature change were obtained at different points of the graphics with different initial moisture. Conclusions about the possible control of the regimes of heating a solid porous body by the initial moisture distribution were made.
Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.
Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari
2014-01-01
This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Colby B.; Folsom, Charles P.; Davis, Cliff B.
Experimental testing in the Multi-Static Environment Rodlet Transient Test Apparatus (SERTTA) will lead the rebirth of transient fuel testing in the United States as part of the Accident Tolerant Fuels (ATF) progam. The Multi-SERTTA is comprised of four isolated pressurized environments capable of a wide variety of working fluids and thermal conditions. Ultimately, the TREAT reactor as well as the Multi-SERTTA test vehicle serve the purpose of providing desired thermal-hydraulic boundary conditions to the test specimen. The initial ATF testing in TREAT will focus on reactivity insertion accident (RIA) events using both gas and water environments including typical PWR operatingmore » pressures and temperatures. For the water test environment, a test configuration is envisioned using the expansion tank as part of the gas-filled expansion volume seen by the test to provide additional pressure relief. The heat transfer conditions during the high energy power pulses of RIA events remains a subject of large uncertainty and great importance for fuel performance predictions. To support transient experiments, the Multi-SERTTA vehicle has been modeled using RELAP5 with a baseline test specimen composed of UO2 fuel in zircaloy cladding. The modeling results show the influence of the designs of the specimen, vehicle, and transient power pulses. The primary purpose of this work is to provide input and boundary conditions to fuel performance code BISON. Therefore, studies of parameters having influence on specimen performance during RIA transients are presented including cladding oxidation, power pulse magnitude and width, cladding-to-coolant heat fluxes, fuel-to-cladding gap, transient boiling effects (modified CHF values), etc. The results show the great flexibility and capacity of the TREAT Multi-SERTTA test vehicle to provide testing under a wide range of prototypic thermal-hydraulic conditions as never done before.« less
Quantification of the heat exchange of chicken eggs.
Van Brecht, A; Hens, H; Lemaire, J L; Aerts, J M; Degraeve, P; Berckmans, D
2005-03-01
In the incubation process of domestic avian eggs, the development of the embryo is mainly influenced by the physical microenvironment around the egg. Only small spatiotemporal deviations in the optimal incubator air temperature are allowed to optimize hatchability and hatchling quality. The temperature of the embryo depends on 3 factors: (1) the air temperature, (2) the exchange of heat between the egg and its microenvironment and (3) the time-variable heat production of the embryo. Theoretical estimates on the heat exchange between an egg and its physical microenvironment are approximated using equations that assume an approximate spherical shape for eggs. The objective of this research was to determine the heat transfer between the eggshell and its microenvironment and then compare this value to various theoretical estimates. By using experimental data, the overall and the convective heat transfer coefficients were determined as a function of heat production, air humidity, air speed, and air temperature. Heat transfer was not affected by air humidity but solely by air temperature, embryonic heat generation, and air speed and flow around eggs. Also, heat transfer in forced-air incubators occurs mainly by convective heat loss, which is dependent on the speed of airflow. A vertical airflow is more efficient than a horizontal airflow in transferring heat from the egg. We showed that describing an egg as a sphere underestimated convective heat transfer by 33% and was, therefore, too simplistic to accurately assess actual heat transfer from real eggs.
EMERALD REVISION 1; PWR accident activity release. [IBM360,370; FORTRAN IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T.B.; Tobias, M.L.; Fox, J.N.
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370 (IBM360,370); 520K bytes of memory are required..« less
Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer
NASA Astrophysics Data System (ADS)
Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee
2017-03-01
Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems.
Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube
NASA Astrophysics Data System (ADS)
Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il
2017-05-01
In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles
NASA Technical Reports Server (NTRS)
Scammell, Alexander David
2016-01-01
Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field. Results were compared and shown to agree with numerical simulations of colleagues from EPFL, Switzerland.In addition, a preliminary study was completed on the effect of a Taylor bubble passing through nucleate flow boiling, showing that the thinning thermal boundary layer within the film suppressed nucleation, thereby decreasing the heat transfer coefficient.
2015-08-01
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink”, International Journal of Heat and Mass Transfer 48 (2005) 3615-3627. 3. Cao...from Pin Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow”, International Journal of Heat and Mass Transfer, Vol. 25 No. 5...Flow Forced Convection”, International Journal of Heat and Mass Transfer, Vol. 39, No. 2, pp. 311-317, 1996. 11. Khan, W., Culham, J., and Yovanovich
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena; Strąk, Kinga; Maciejewska, Beata; Grabas, Bogusław
2016-09-01
The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Heat transfer coefficients for staggered arrays of short pin fins
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1981-01-01
Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2017-02-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
NASA Astrophysics Data System (ADS)
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Sphere Drag and Heat Transfer.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-20
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Correlation of HIFiRE-5 Flight Data with Computed Pressure and Heat Transfer (Postprint)
2015-06-01
AFRL-RQ-WP-TP-2015-0149 CORRELATION OF HIFiRE-5 FLIGHT DATA WITH COMPUTED PRESSURE AND HEAT TRANSFER (POSTPRINT) Joseph S. Jewell...results with St was compared to flight heat transfer measurements, and transition locations were inferred. Finally, a computational heat conduction...HIFiRE-5 Flight Data With Computed Pressure and Heat Transfer Joseph S. Jewell,1 James H. Miller,2 and Roger L. Kimmel3 U.S. Air Force Research
Experimental study on convective heat transfer of TiO2 nanofluids
NASA Astrophysics Data System (ADS)
Vakili, M.; Mohebbi, A.; Hashemipour, H.
2013-08-01
In this study, nanofluids with different TiO2 nanoparticle concentrations were synthesized and measured in different constant heat fluxes for their heat transfer behavior upon flowing through a vertical pipe. Addition of nanoparticles into the base fluid enhances the forced convective heat transfer coefficient. The results show that the enhancement of the convective heat transfer coefficient in the mixture consisting of ethylene glycol and distilled water is more than distilled water as a base fluid.
Heat transfer correlations for multilayer insulation systems
NASA Astrophysics Data System (ADS)
Krishnaprakas, C. K.; Badari Narayana, K.; Dutta, Pradip
2000-01-01
Multilayer insulation (MLI) blankets are extensively used in spacecrafts as lightweight thermal protection systems. Heat transfer analysis of MLI is sometimes too complex to use in practical design applications. Hence, for practical engineering design purposes, it is necessary to have simpler procedures to evaluate the heat transfer rate through MLI. In this paper, four different empirical models for heat transfer are evaluated by fitting against experimentally observed heat flux through MLI blankets of various configurations, and the results are discussed.
Influence of Oil on Refrigerant Evaporator Performance
NASA Astrophysics Data System (ADS)
Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki
In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.
NASA Technical Reports Server (NTRS)
Ettouney, H. M.; Brown, R. A.
1982-01-01
The effects of the heat transfer environment in Edge-Defined Film-Fed Growth on melt-solid interface shape and lateral dopant segregation are studied by finite-element analysis of two-dimensional models for heat and mass transfer. Heat transfer configurations are studied that correspond to the uniform surroundings assumed in previous models and to lowand high-speed growth systems. The maximum growth rate for a silicon sheet is calculated and the range of validity of one-dimensional heat transfer models is established. The lateral segregation that results from curvature of the solidification interface is calculated for two solutes, boron and aluminum. In this way, heat transfer is linked directly to the uniformity of the product crystal.
Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades
NASA Technical Reports Server (NTRS)
Graham, R. W.
1979-01-01
Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.
NASA Astrophysics Data System (ADS)
Zipf, Verena; Willert, Daniel; Neuhäuser, Anton
2016-05-01
An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.
NASA Astrophysics Data System (ADS)
Jiang, Yuguang; Feng, Yu; Zhang, Silong; Qin, Jiang; Bao, Wen
2016-01-01
Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection.
The measurement of the heat-transfer coefficient between high-temperature liquids and solid surfaces
NASA Astrophysics Data System (ADS)
Utigard, T. A.; Warczok, A.; Desclaux, P.
1994-01-01
Two experimental techniques were developed for the purpose of measuring the heat-transfer coefficient between liquid slags/salts and solid surfaces. This was carried out because the heat-transfer coefficient is important for the design and operation of metallurgical reactors. A “cold-finger” technique was developed for the purpose of carrying out heat-transfer measurements during steady-state conditions simulating heat fluxes through furnace sidewalls. A lump capacitance method was developed and tested for the purpose of simulating transient conditions. To determine the effect of fluid flow on the heat-transfer coefficient, nitrogen gas stirring was used. The two techniques were tested in molten (1) and NaNO3, (2) NaCl, (3) Na3AlF6, and (4) 2FeO·SiO2, giving consistent results. It was found that the heat-transfer coefficient increases with increasing bath superheat and stirring.
Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer.
Castonguay, Thomas C; Wang, Feng
2008-03-28
In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.
Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer
NASA Astrophysics Data System (ADS)
Castonguay, Thomas C.; Wang, Feng
2008-03-01
In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.
Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon
NASA Astrophysics Data System (ADS)
Long, Z. Q.; Zhang, P.
2013-10-01
The heat transfer performance of a cryogenic thermosyphon filled with helium as the working fluid is investigated experimentally with a G-M cryocooler as the heat sink in this study. The cryogenic thermosyphon acts as a thermal link between the cryocooler and the cooled target (the copper evaporator with a large mass). Helium is charged in different filling ratios, and the cooling down process and the heat transfer characteristics of the cryogenic thermosyphon are investigated. The cooling down process of the cooled target can be significantly accelerated by the presence of helium in the cryogenic thermosyphon and the cooling down period can be further shortened by the increase of filling ratio. The heat transfer mode changes from the liquid-vapor phase change to natural convection as the increase of the heating power applied on the evaporator. The heat transfer limit and thermal resistance are discussed for the liquid-vapor phase change heat transfer, and they can be estimated by empirical correlations. For the natural convection heat transfer, it can be enhanced by increasing the filling ratio, and the natural convection of supercritical helium is much stronger than that of gaseous helium.
NASA Astrophysics Data System (ADS)
Waghole, D. R.
2018-06-01
Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.
Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS
NASA Astrophysics Data System (ADS)
Wang, Yongwei; Huai, Xiulan
2018-04-01
The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.
Dominic, A; Sarangan, J; Suresh, S; Sai, Monica
2014-03-01
The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.
Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.
English, M J; Hemmerling, T M
2008-07-01
To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.
Heat transfer enhancement by application of nano-powder
NASA Astrophysics Data System (ADS)
Mosavian, M. T. Hamed; Heris, S. Zeinali; Etemad, S. Gh.; Esfahany, M. Nasr
2010-09-01
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.
Double diffusive conjugate heat transfer: Part III
NASA Astrophysics Data System (ADS)
Soudagar, Manzoor Elahi M.; Azeem
2018-05-01
The placement of a small solid wall towards cold surface of square porous cavity affects the heat transfer behavior of porous region due to restriction of fluid motion in the region occupied by solid wall. An investigation of heat transfer is carried out to understand the fluid flow and heat transfer behavior in porous cavity by solving the governing partial differential equations. Galerkin's approach is used to convert the partial differential equations into algebraic form of equations by applying finite element method. The heat transfer increases for solid towards right surface as compared to the case of solid at center of cavity.
Stagnation-point Heat Transfer to Blunt Shapes in Hypersonic Flight, Including Effects of Yaw
NASA Technical Reports Server (NTRS)
Eggers, A J , Jr; Hansen, C Frederick; Cunningham, Bernard E
1958-01-01
An approximate theory is developed for predicting the rate of heat transfer to the stagnation region of blunt bodies in hypersonic flight. Attention is focused on the case where wall temperature is small compared to stagnation temperature. The theoretical heat-transfer rate at the stagnation point of a hemispherical body is found to agree with available experimental data. The effect of yaw on heat transfer to a cylindrical stagnation region is treated at some length, and it is predicted that large yaw should cause sizable reductions in heat-transfer rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David A.; McWilliams, Anthony J.; Hardy, Bruce J.
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one ofmore » the plurality of peripheral rods.« less
NASA Astrophysics Data System (ADS)
Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.
2018-03-01
To reduce heat loses in a flat plate solar collector, double glasses cover is employed. Several studies show that the heat loss from the glass cover is still very significant in comparison with other losses. Here, double glasses cover with attached fins is proposed. In the present work, the fluid flow and heat transfer characteristics of the enclosure between the double glass cover are investigated numerically. The objective is to examine the effect of the fin to the heat transfer rate of the cover. Two-dimensional governing equations are developed. The governing equations and the boundary conditions are solved using commercial Computational Fluid Dynamics code. The fluid flow and heat transfer characteristics are plotted, and numerical results are compared with empirical correlation. The results show that the presence of the fin strongly affects the fluid flow and heat transfer characteristics. The fin can reduce the heat transfer rate up to 22.42% in comparison with double glasses cover without fins.
Influence of the boundary conditions on heat and mass transfer in spacer-filled channels
NASA Astrophysics Data System (ADS)
Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.
2017-11-01
The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels
TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts
NASA Astrophysics Data System (ADS)
Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.
2018-05-01
Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.
NASA Astrophysics Data System (ADS)
Tisha, Dixit; Indranil, Ghosh
2017-02-01
Passive cryogenic radiators work on the principle of dissipating heat to the outer space purely by radiation. High porosity open-cell metal foams are a relatively new class of extended surfaces. These possess the advantages of high surface area density and low weight, characteristics which the space industry looks for. In case of radiative heat transfer, the porous nature of metal foams permits a deeper penetration of the incident radiation. Consequently, the heat transfer area participating in radiative heat exchange increases thereby enhancing the heat transfer rate. However, effective heat conduction in between the foam struts reduces as a result of the void spaces. These two conflicting phenomenon for radiation heat transfer in metal foams have been studied in this work. Similar to the foam conduction-convection heat transfer analysis, a conduction-radiation heat transfer model has been developed for metal foams in analogy with the conventional solid fin theory. Metal foams have been theoretically represented as simple cubic structures. A comparison of the radiative heat transfer through metal foams and solid fins attached to a surface having constant temperature has been presented. Effect of changes in foam characteristic properties such as porosity and pore density have also been studied.
NASA Astrophysics Data System (ADS)
Vasilev, V. Ya; Nikiforova, S. A.
2018-03-01
Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.
NASA Astrophysics Data System (ADS)
Omojaro, Adebola Peter; Breitkopf, Cornelia
2017-07-01
Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38-63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.
Miles, Robin; Havstad, Mark; LeBlanc, Mary; ...
2015-09-15
External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m 2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.
Periodic Heat Transfer at Small Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Pfriem, H.
1943-01-01
The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.
Numerical studies of convective heat transfer in an inclined semiannular enclosure
NASA Technical Reports Server (NTRS)
Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
NASA Astrophysics Data System (ADS)
Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.
2016-09-01
The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.
Human Factors in Cabin Accident Investigations
NASA Technical Reports Server (NTRS)
Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)
1996-01-01
Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.
NASA Technical Reports Server (NTRS)
Eaton, L. R. (Inventor)
1976-01-01
An improved heat transfer device particularly suited for use as an evaporator plate in a diffusion cloud chamber. The device is characterized by a pair of mutually spaced heat transfer plates, each being of a planar configuration, having a pair of opposed surfaces defining therebetween a heat pipe chamber. Within the heat pipe chamber, in contiguous relation with the pair of opposed surfaces, there is disposed a pair of heat pipe wicks supported in a mutually spaced relationship by a foraminous spacer of a planar configuration. A wick including a foraminous layer is contiguously related to the external surfaces of the heat transfer plates for uniformly wetting these surfaces.
Heat pump/refrigerator using liquid working fluid
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.
1982-01-01
A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.
NASA Astrophysics Data System (ADS)
Venkitaraj, K. P.; Suresh, S.; Alwin Mathew, T.; Bibin, B. S.; Abraham, Jisa
2018-03-01
Nanofluids are advanced heat transfer fluids that exhibit thermal properties superior than that of the conventional fluids such as water, oil etc. This paper reports the experimental study on convective heat transfer characteristics of water based titanium dioxide nanofluids in fully developed flow through a uniformly heated pipe heat exchanger fitted with modified butterfly inserts. Nanofluids are prepared by dispersing TiO2 nanoparticles of average particle size 29 nm in deionized water. The heat transfer experiments are performed in laminar regime using nanofluids prepared with 0.1% and 0.3% volume fractions of TiO2 nanoparticles. The thermal performance characteristics of conventional butterfly inserts and modified butterfly inserts are also compared using TiO2 nanofluid. The inserts with different pitches 6 cm, 9 cm and 12 cm are tested to determine the effect of pitch distance of inserts in the heat transfer and friction. The experimental results showed that the modification made in the butterfly inserts were able to produce higher heat transfer than conventional butterfly inserts.
Heat transfer between a heated plate and an impinging transient diesel spray
NASA Astrophysics Data System (ADS)
Arcoumanis, C.; Chang, J.-C.
1993-12-01
An experimental investigation was performed to determine the heat-transfer distribution in the vicinity of a transient diesel spray impinging on a heated flat plate. The spray prior to impingement was characterised in terms of simultaneous droplet sizes and velocities by phase-Doppler anemometry while during its impingement on the plate, which was heated at temperatures between 150 205°C, the instantaneous surface temperature and associated rates of wall heat transfer were monitored by fast response thermocouples. The parameters examined in this work included the distance between the nozzle and the wall surface, the radial distance from the impingement point, the injection frequency, the injected volume and the pre-impingement wall temperature. The results showed that the wall heat transfer rates are dependent on the spray characteristics prior to impingement; the higher the “velocity of arrival” of the droplet is, the higher the heat transfer. A correlation was thus developed for the instantaneous and spatially-resolved spray/wall heat transfer based on experimentally-determined Nusselt, Reynolds, Prandtl and Weber numbers over a wide range of test conditions.
Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, H.; Umeda, Y.; Nakamura, Y.
1991-01-01
This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generallymore » in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.« less
doctoral student since 2007. Jason's area of expertise is heat and mass transfer, including the design , analysis, and testing of heat and mass transfer devices and processes. Research Interests Membrane Thermal energy storage Heat and mass transfer enhancements Combined cooling, heat, and power (CCHP
Integrated Heat Exchange For Recuperation In Gas Turbine Engines
2016-12-01
exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat...transfer coefficients in turbomachinery are extremely high, making this possible. Heat transfer between the turbine and compressor blade surfaces could be...exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat transfer
NASA Astrophysics Data System (ADS)
Chen, H.; Hu, C.; Chen, G.; Zhang, Q.
2017-12-01
Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.
Heat transfer and hydrodynamic analysis in an industrial circulating fluidized bed boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maggio, T.; Piedfer, O.; Jestin, L.
In order to scale-up Circulating Fluidized Bed boilers (up to 600 MWe), Electricite de France has initiated a Research and Development program including: laboratory work on mock-up, numerical modeling and on-site tests in the 125 MWe CFB Emile Huchet plant. This paper is devoted to on-site measurements analysis in two main components of this industrial unit: the external fluidized bed heat exchangers and the backpass. This study particularly concerns hydrodynamics and heat transfer with the final target of developing a physical model of a CFB unit. The first part of this paper describes the specific instrumentation set up on externalmore » fluidized bed heat exchangers. The comparison between experimental data collected on these heat exchangers and the theoretical heat transfer models mainly used, shows a great difference about the value of the overall heat transfer coefficient. To explain this discrepancy, the particle flow pattern initially used in the thermal balance calculation is modified and a solid bypass is introduced. The analysis of the by-pass behavior, connected to the geometrical and operating parameters of each exchanger, confirms the particle flow pattern suggested. The second part of this paper shows an analysis of the specific measurements set up on the backpass to study heat transfer. The physical model of heat transfer used to assess the importance of each convection, radiation and conduction components is presented. This model allows one to assess the influence of heat exchangers design on heat transfer. Moreover, the analysis of heat transfer variations during sweeping cycles gives the amount of dust that is removed from the heat exchanger tubes. These results are used to evaluate the amount of power that can be recovered by optimizing both design and sweeping of the backpass.« less
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
NASA Astrophysics Data System (ADS)
Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.
2017-11-01
We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert
2002-08-01
A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numericalmore » modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.« less
Diamond Fire: Serious Accident Investigation Report
John Waconda; Ivan Pupulidy; Leonard Diaz; Robin Broyles; Roberta Junge; James Saveland
2012-01-01
This incident is effectively two studies. The first study, and the reason the Serious Accident Investigation Team was assembled, was due to a fatality, which the autopsy later determined to have been caused by a heart attack. The team was not aware of the cause of death for over 4 weeks after the incident occurred. However, the observed and reported cases of heat...
Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.
1996-01-01
An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
NASA Astrophysics Data System (ADS)
Komov, A. T.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Boltenko, É. A.
2017-01-01
The present work is a continuation of experimental investigations conducted at the Moscow Power Engineering Institute (MPEI) on heat-transfer intensification. Brief descriptions of the working section and structure of intensifiers are given and their basic geometric parameters are enumerated. New systematized experimental data on the coefficients of hydraulic resistance and heat transfer in the regime of single-phase convection are given in an extended range of regime parameters and geometric characteristics of the intensifiers. Considerable increase in the heat-transfer coefficient as a function of the geometric characteristics of the intensifier has been established experimentally. The values of the relative fin height, at which these are the maxima of heat transfer and hydraulic resistance, have been established. Calculated dependences for the coefficient of hydraulic resistance and heat transfer have been obtained.
Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Inoue, T.
1990-03-01
An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence; Smith, Justin
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, A.K.; Das, P.K.; Saha, P.
2010-11-15
Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnelsmore » for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)« less
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.; Ching, Chan Y.
1994-01-01
The purpose of the present work was threefold: (1) to determine if a free-stream turbulence length scale existed that would cause the greatest augmentation in stagnation-region heat transfer over laminar levels; (2) to investigate the effect of velocity gradient on stagnation-region heat transfer augmentation by free-stream turbulence; and (3) to develop a prediction tool for stagnation heat transfer in the presence of free-stream turbulence. Heat transfer was measured in the stagnation region of four models with elliptical leading edges that had ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Five turbulence-generating grids were fabricated; four were square mesh, biplane grids made from square bars. The fifth grid was an array of fine parallel wires that were perpendicular to the model spanwise direction. Heat transfer data were taken at Reynolds numbers ranging from 37 000 to 228 000. Turbulence intensities were in the range of 1.1 to 15.9% while the ratio of integral length scale to leading-edge diameter ranged from 0.05 to 0.30. Stagnation-point velocity gradient was varied by nearly 50%. Stagnation-region heat transfer augmentation was found to increase with decreasing length scale but no optimum length scale was found. Heat transfer augmentation due to turbulence was found to be unaffected by the velocity gradient near the leading edge. A correlation was developed that fit heat transfer data for the square-bar grids to within +/- 4%.
Woods, Jason; Kozubal, Eric
2018-02-06
Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Jason; Kozubal, Eric
Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less
Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures
NASA Technical Reports Server (NTRS)
Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.
2007-01-01
Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.
Solution of Radiation and Convection Heat-Transfer Problems
NASA Technical Reports Server (NTRS)
Oneill, R. F.
1986-01-01
Computer program P5399B developed to accommodate variety of fin-type heat conduction applications involving radiative or convective boundary conditions with additionally imposed local heat flux. Program also accommodates significant variety of one-dimensional heat-transfer problems not corresponding specifically to fin-type applications. Program easily accommodates all but few specialized one-dimensional heat-transfer analyses as well as many twodimensional analyses.
NASA Technical Reports Server (NTRS)
Taylor, Maynard F.; Kirchgessner, Thomas A.
1959-01-01
Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
Heat-Pipe-Associated Localized Thermoelectric Power Generation System
NASA Astrophysics Data System (ADS)
Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo
2014-06-01
The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.
Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina
2013-05-01
The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.
Boiling and quenching heat transfer advancement by nanoscale surface modification.
Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N
2017-07-21
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer
Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee
2017-01-01
Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems. PMID:28345613
Heat Transfer of Confined Impinging Air-water Mist Jet
NASA Astrophysics Data System (ADS)
Chang, Shyy Woei; Su, Lo May
This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.
NASA Astrophysics Data System (ADS)
Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli
2016-10-01
This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.
Processes of Heat Transfer in Rheologically Unstable Mixtures of Organic Origin
NASA Astrophysics Data System (ADS)
Tkachenko, S. I.; Pishenina, N. V.; Rumyantseva, T. Yu.
2014-05-01
The dependence of the coefficient of heat transfer from the heat-exchange surface to a rheologically unstable organic mixture on the thermohydrodynamic state of the mixture and its prehistory has been established. A method for multivariant investigation of the process of heat transfer in compound organic mixtures has been proposed; this method makes it possible to evaluate the character and peculiarities of change in the rheological structure of the mixture as functions of the thermohydrodynamic conditions of its treatment. The possibility of evaluating the intensity of heat transfer in a biotechnological system for production of energy carriers at the step of its designing by multivariant investigation of the heat-transfer intensity in rheologically unstable organic mixtures with account of their prehistory has been shown.
Electroless-plating technique for fabricating thin-wall convective heat-transfer models
NASA Technical Reports Server (NTRS)
Avery, D. E.; Ballard, G. K.; Wilson, M. L.
1984-01-01
A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.
The effect of free-stream turbulence on heat transfer from a flat plate
NASA Technical Reports Server (NTRS)
Sugawara, Sugao; Sato, Takashi; Komatsu, Hiroyasu; Osaka, Hiroichi
1958-01-01
Turbulence was generated by using screens, and the turbulence percentage was measured by a hot-wire anemometer both in the boundary layer and the free stream. The local heat-transfer coefficient was measured at 12 locations along the plate for the cases of various turbulence levels. The transition Reynolds number from laminar to turbulent flow decreases as the main-stream turbulence level increases. In the range of laminar heat transfer the effect of turbulence in the main flow was not great, but in the range of turbulent heat transfer the heat-transfer coefficient increases according to the increase of turbulence.
Heat Transfer Modelling of Glass Media within TPV Systems
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola
2004-11-01
Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.
Heat transfer prediction in a square porous medium using artificial neural network
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.
Measurement of airfoil heat transfer coefficients on a turbine stage
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.
1984-01-01
The primary basis for heat transfer analysis of turbine airfoils is experimental data obtained in linear cascades. A detailed set of heat transfer coefficients was obtained along the midspan of a stator and a rotor in a rotating turbine stage. The data are to be compared to standard analyses of blade boundary layer heat transfer. A detailed set of heat transfer coefficients was obtained along the midspan of a stator located in the wake of a full upstream turbine stage. Two levels of inlet turbulence (1 and 10 percent) were used. The analytical capability will be examined to improve prediction of the experimental data.
NASA Astrophysics Data System (ADS)
Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang
2018-06-01
In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.
Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code
NASA Technical Reports Server (NTRS)
Hou, Gene
2000-01-01
The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.
Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves
NASA Astrophysics Data System (ADS)
Zhang, R. P.
2017-04-01
A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.
Heat Transfer in the Bayer Process
NASA Astrophysics Data System (ADS)
Thomas, Daniel
Heat transfer equipment represents a significant portion of Bayer process plant capital and operating costs. Heater operation and maintenance activities can also create potential hazard exposure. Very early flowsheets tended to rely on direct heat transfer, i.e. steam injection heating and flash cooling, and this still persists to some extent today. There has however been an ever increasing utilization of indirect heat exchange over the past 100 years. This has been driven by higher energy efficiency targets and enabled by improvements in heat transfer equipment. In more recent decades there has been a partial shift towards slurry heating and cooling instead of liquor heating and cooling. This paper presents an historical perspective, explores some heater selection scenarios, and looks at future challenges and opportunities.
Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.
Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel
2017-11-01
Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
NASA Astrophysics Data System (ADS)
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.
1995-08-01
Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less
Forced convective heat transfer in curved diffusers
NASA Technical Reports Server (NTRS)
Rojas, J.; Whitelaw, J. H.; Yianneskis, M.
1987-01-01
Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Martinek, Janna G
Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles andmore » s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.« less
A passively-safe fusion reactor blanket with helium coolant and steel structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosswait, Kenneth Mitchell
1994-04-01
Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel asmore » a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.« less
Investigation of nitrate salts for solar latent heat storage
NASA Astrophysics Data System (ADS)
Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T.
1980-01-01
The properties of heat transfer in the discharging of a model solar latent heat storage unit based on various nitrate salts and salt mixtures are investigated. A shell-and-tube-type passive heat exchanger containing NaNO3 or eutectic or off-eutectic mixtures of NaNO3 with KNO3 and Ca(NO3)2 was heated to 40 K above the melting temperature of the salt, when air was made to flow through a heat transfer tube at a constant flow rate, and heat transfer material and air temperatures were monitored. Thermal conductivity and the apparent heat transfer coefficient are estimated from the heat extraction rate and temperature profiles, and it is found that although the thermal conductivities of the materials are similar, the off-eutectic salts exhibit higher heat transfer coefficients. Temperature distributions in the NaNO3-KNO3 mixtures are found to be in fairly good agreement with those predicted by numerical solutions of a one-dimensional finite difference equation, and with approximate analytical solutions. It is observed that the temperature of the heat transfer surface drops rapidly after the appearance of a solid phase, due to the low thermal conductivity of the salts, and means of avoiding this temperature drop are considered.
Comparative evaluation of three heat transfer enhancement strategies in a grooved channel
NASA Astrophysics Data System (ADS)
Herman, C.; Kang, E.
Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re=200-6500, corresponding to flow velocities from 0.076 to 2.36m/s. Flow oscillations were first observed between Re=1050 and 1320 for the basic grooved channel, and around Re=350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly.
Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions
NASA Astrophysics Data System (ADS)
Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.
2016-09-01
To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.
Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer
NASA Technical Reports Server (NTRS)
Siegel, R.
1974-01-01
Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.
Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer
NASA Technical Reports Server (NTRS)
Siegel, R.
1973-01-01
Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media, and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential, The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.
NASA Astrophysics Data System (ADS)
Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi
2017-10-01
The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
NASA Astrophysics Data System (ADS)
Sheremet, M. A.; Shishkin, N. I.
2012-07-01
Mathematical simulation of the nonstationary regimes of heat-and-mass transfer in a ventilated rectangular cavity with heat-conducting walls of finite thickness in the presence of a heat-generating element of constant temperature has been carried out with account for the radiative heat transfer in the Rosseland approximation. As mechanisms of energy transfer in this cavity, the combined convection and the thermal radiation in the gas space of the cavity and the heat conduction in the elements of its fencing solid shell were considered. The mathematical model formulated in the dimensionless stream function-vorticity vector-temperature-concentration variables was realized numerically with the use of the finite-difference method. The streamline, temperature-field, and concentration distributions reflecting the influence of the Rayleigh number (Ra = 104, 105, 106), the nonstationarity (0 < τ ≤ 1000), and the optical thickness of the medium (τλ = 50, 100, 200) on the regimes of the gas flow and the heat-and-mass transfer in the cavity have been obtained.
Experimental study on heat transfer to supercritical water flowing through tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, M.; Gu, H.; Cheng, X.
2012-07-01
A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less
Heat transfer and pressure drop for air flow through enhanced passages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obot, N.T.; Esen, E.B.
1992-06-01
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less
Heat transfer and pressure drop for air flow through enhanced passages. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obot, N.T.; Esen, E.B.
1992-06-01
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less
NASA Technical Reports Server (NTRS)
Dunavant, J. C.
1974-01-01
An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.
Heat transfer in a tank with a cryogenic fluid under conditions of external heating
NASA Astrophysics Data System (ADS)
Notkin, V. L.
Heat transfer in the gas layer of a horizontal cylindrical tank with a fluctuating level of boiling liquid nitrogen is investigated experimentally. Criterial equations for heat transfer in the gas cavity of the tank are obtained. A procedure is proposed for calculating heat fluxes, temperature fields, and cryogenic fluid evaporation during the filling and draining of the tank.
ERIC Educational Resources Information Center
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Evaporator film coefficients of grooved heat pipes
NASA Technical Reports Server (NTRS)
Kamotani, Y.
1978-01-01
The heat transfer rate in the meniscus attachment region of a grooved heat pipe evaporator is studied theoretically. The analysis shows that the evaporation takes place mainly in the region where the liquid changes its shape sharply. However, comparisons with available heat transfer data indicate that the heat transfer rate in the meniscus varying region is substantially reduced probably due to groove wall surface roughness.
NASA Astrophysics Data System (ADS)
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
M. A. Dietenberger
2006-01-01
Understanding heat and moisture transfer in a wood specimen as used in the K-tester has led to an unconventional numerical solution arid intriguing protocol to deriving the transfer properties. Laplace transform solutions of Luikovâs differential equations are derived for one-dimensional heat and moisture transfer in porous hygroscopic orthotropic materials and for a...
Improved heat transfer modeling of the eye for electromagnetic wave exposures.
Hirata, Akimasa
2007-05-01
This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
NASA Technical Reports Server (NTRS)
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo;
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
NASA Astrophysics Data System (ADS)
Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao
1988-08-01
Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.
An improved heat transfer configuration for a solid-core nuclear thermal rocket engine
NASA Technical Reports Server (NTRS)
Clark, John S.; Walton, James T.; Mcguire, Melissa L.
1992-01-01
Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.
Improved Stirling engine performance using jet impingement
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Britt, E. J.; Thieme, L. G.
1982-01-01
Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
NASA Astrophysics Data System (ADS)
Awasarmol, Umesh Vandeorao; Pise, Ashok T.
2018-02-01
The main objective of this experimental work is to investigate and compare heat transfer enhancement of alternate dwarf fin array at different angles of inclination. In this study, the steady state heat transfer from the full length fin arrays and alternate dwarf fin arrays are measured in natural convection and radiation environment. Largest increase in the Nusselt number was achieved with alternate dwarf fin at angle of orientation 90°, which shows about 28% enhanced heat transfer coefficient as opposed to the full-length fin array with 25% saving in material. In case of non-black FAB, contribution of radiation heat transfer is found to be very small nearly within 1% of the heater input. After coating lamp black contribution of radiation heat transfer is found to increase to about 3-4% of the heater input in the range of temperatures considered in this study.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
46 CFR 52.25-15 - Fired thermal fluid heaters.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer fluid from being heated above its flash point. (c) The heat transfer fluid must be chemically compatible with any cargo carried in the cargo tanks serviced by the heat transfer system. (d) Each fired thermal...
46 CFR 52.25-15 - Fired thermal fluid heaters.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer fluid from being heated above its flash point. (c) The heat transfer fluid must be chemically compatible with any cargo carried in the cargo tanks serviced by the heat transfer system. (d) Each fired thermal...
Hal E. Anderson
1969-01-01
Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...
NASA Astrophysics Data System (ADS)
Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan
2016-01-01
A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, W; Hein, D
1986-09-01
The influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube was investigated for a parameter range occurring in fossil-fired steam generators. Included in the analysis are quantities which determine the wetting state in steady and transient flow. The experimental work consists of the following: Occurrence of critical heat flux (CHF) and post-CHF heat transfer in a vertical upflow evaporator tube; influence of pressure and enthalpy transients on heat transfer in the unwetted region; influence of pipe orientation on heat transfer; and two phase flow pressure loss in wetted and unwettedmore » region. Based on these experiments a method of predicting CHF for a vertical upflow evaporator tube was developed. The heat transfer in the unwetted region was newly formulated taking into account thermal nonequilibrium between the water and steam phases. Wall temperature excursions during pressure and enthalpy transients are interpreted with the help of the boiling curve and the Leidenfrost phenomenon. A method is developed by means of which it is possible to determine the influence of the pipe orientation on the location of the boiling crisis as well as on the heat transfer in the unwetted region. The influence of the wetting state of the heated surface on the two phase flow pressure loss is interpreted as ''Wall effect'' and is calculated using a simplified computer model. 68 refs., 83 figs.« less
NASA Astrophysics Data System (ADS)
Ott, L. J.; Robb, K. R.; Wang, D.
2015-06-01
In Section 5.2, certain material properties for "FeCrAl oxide" were not modeled based on "stainless steel oxide" as indicated in the text. Instead, the "FeCrAl oxide" material properties were modeled using the default properties in MELCOR for "zirconium oxide". The properties affected are the FeCrAl oxide density, specific heat, enthalpy, thermal conductivity, melting point, and latent heat of fusion. Table 5.1 and Figs. 5.1a-d from Section 5.2 have been corrected below. As discussed below, the overall conclusions of the paper remain unchanged.
Methods for calculating conjugate problems of heat transfer
NASA Astrophysics Data System (ADS)
Kalinin, E. K.; Dreitser, G. A.; Kostiuk, V. V.; Berlin, I. I.
Methods are examined for calculating various conjugate problems of heat transfer in channels and closed vessels in cases of single-phase and two-phase flow in steady and unsteady conditions. The single-phase-flow studies involve the investigation of gaseous and liquid heat-carriers in pipes, annular and plane channels, and pipe bundles in cases of cooling and heating. General relationships are presented for heat transfer in cases of film, transition, and nucleate boiling, as well as for boiling crises. Attention is given to methods for analyzing the filling and cooling of conduits and tanks by cryogenic liquids; and ways to intensify heat transfer in these conditions are examined.
Investigation of heat transfer of tube line of staggered tube bank in two-phase flow
NASA Astrophysics Data System (ADS)
Jakubcionis, Mindaugas
2015-06-01
This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.
RELAP5 Application to Accident Analysis of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.
Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accidentmore » and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.« less
TRAC-PF1 code verification with data from the OTIS test facility. [Once-Through Intergral System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childerson, M.T.; Fujita, R.K.
1985-01-01
A computer code (TRAC-PF1/MOD1) developed for predicting transient thermal and hydraulic integral nuclear steam supply system (NSSS) response was benchmarked. Post-small break loss-of-coolant accident (LOCA) data from a scaled, experimental facility, designated the One-Through Integral System (OTIS), were obtained for the Babcock and Wilcox NSSS and compared to TRAC predictions. The OTIS tests provided a challenging small break LOCA data set for TRAC verification. The major phases of a small break LOCA observed in the OTIS tests included pressurizer draining and loop saturation, intermittent reactor coolant system circulation, boiler-condenser mode, and the initial stages of refill. The TRAC code wasmore » successful in predicting OTIS loop conditions (system pressures and temperatures) after modification of the steam generator model. In particular, the code predicted both pool and auxiliary-feedwater initiated boiler-condenser mode heat transfer.« less
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. A. Anderson; P. Sabharwall
2014-01-01
The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate thatmore » heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.« less
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Maciejewska, Beata; Piasecka, Magdalena
2018-06-01
In this paper, the solution of the two-dimensional inverse heat transfer problem with the use of the Beck method coupled with the Trefftz method is proposed. This method was applied for solving an inverse heat conduction problem. The aim of the calculation was to determine the boiling heat transfer coefficient on the basis of temperature measurements taken by infrared thermography. The experimental data of flow boiling heat transfer in a single vertical minichannel of 1.7 mm depth, heated asymmetrically, were used in calculations. The heating element for two refrigerants (FC-72 and HFE-7100, 3M) flowing in the minichannel was the plate enhanced on the side contacting with the fluid. The analysis of the results was performed on the basis of experimental series obtained for the same heat flux and two different mass flow velocities. The results were presented as infrared thermographs, heated wall temperature and heat transfer coefficient as a function of the distance from the minichannel inlet. The results was discussed for the subcooled and saturated boiling regions separately.
System and method for treatment of a medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surinder Prabhjot; Acharya, Harish Radhakrishna; Perry, Robert James
2017-05-23
A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and amore » reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.« less
Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer
NASA Astrophysics Data System (ADS)
Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław
2017-10-01
The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.
10 CFR 52.47 - Contents of applications; technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... accidents, e.g., challenges to containment integrity caused by core-concrete interaction, steam explosion... such as the service water intake structure and the ultimate heat sink; (2) An application for... design except for site-specific elements such as the service water intake structure and the ultimate heat...
10 CFR 52.47 - Contents of applications; technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accidents, e.g., challenges to containment integrity caused by core-concrete interaction, steam explosion... such as the service water intake structure and the ultimate heat sink; (2) An application for... design except for site-specific elements such as the service water intake structure and the ultimate heat...
10 CFR 52.47 - Contents of applications; technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accidents, e.g., challenges to containment integrity caused by core-concrete interaction, steam explosion... such as the service water intake structure and the ultimate heat sink; (2) An application for... design except for site-specific elements such as the service water intake structure and the ultimate heat...
10 CFR 52.47 - Contents of applications; technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accidents, e.g., challenges to containment integrity caused by core-concrete interaction, steam explosion... such as the service water intake structure and the ultimate heat sink; (2) An application for... design except for site-specific elements such as the service water intake structure and the ultimate heat...
10 CFR 52.47 - Contents of applications; technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accidents, e.g., challenges to containment integrity caused by core-concrete interaction, steam explosion... such as the service water intake structure and the ultimate heat sink; (2) An application for... design except for site-specific elements such as the service water intake structure and the ultimate heat...
International contributions to IAEA-NEA heat transfer databases for supercritical fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. K. H.; Yamada, K.
2012-07-01
An IAEA Coordinated Research Project on 'Heat Transfer Behaviour and Thermohydraulics Code Testing for SCWRs' is being conducted to facilitate collaboration and interaction among participants from 15 organizations. While the project covers several key technology areas relevant to the development of SCWR concepts, it focuses mainly on the heat transfer aspect, which has been identified as the most challenging. Through the collaborating effort, large heat-transfer databases have been compiled for supercritical water and surrogate fluids in tubes, annuli, and bundle subassemblies of various orientations over a wide range of flow conditions. Assessments of several supercritical heat-transfer correlations were performed usingmore » the complied databases. The assessment results are presented. (authors)« less
Simulation and analysis of main steam control system based on heat transfer calculation
NASA Astrophysics Data System (ADS)
Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai
2018-05-01
In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.
Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend
NASA Astrophysics Data System (ADS)
Patro, Pandaba; Rout, Ani; Barik, Ashok
2018-06-01
Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
NASA Astrophysics Data System (ADS)
Patil, Harshal Bhauso; Dingare, Sunil Vishnu
2018-03-01
Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).
NASA Astrophysics Data System (ADS)
Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh
2017-09-01
The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.
Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.
Ito, Kota; Nishikawa, Kazutaka; Miura, Atsushi; Toshiyoshi, Hiroshi; Iizuka, Hideo
2017-07-12
Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm 2 across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.
Particle shape effect on heat transfer performance in an oscillating heat pipe.
Ji, Yulong; Wilson, Corey; Chen, Hsiu-Hung; Ma, Hongbin
2011-04-05
The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.
Particle shape effect on heat transfer performance in an oscillating heat pipe
2011-01-01
The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP. PMID:21711830
Pool Boiling Heat Transfer on structured Surfaces
NASA Astrophysics Data System (ADS)
Addy, J.; Olbricht, M.; Müller, B.; Luke, A.
2016-09-01
The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
NASA Astrophysics Data System (ADS)
Kruizenga, Alan Michael
An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due to the presence of the corners within the channels caused an increase in pressure drop by four to five times the pressure drop measured in the straight channel. Based on the results, more innovative geometries were recommended for future testing to reduce form losses found in the typical prototypic geometries.
Energy Conservation Strategies for Windows and Glazed Surfaces
1998-07-01
When activated, photochromies reduce only the visual transmittance, not the infrared, so much of the solar heat gain is unaffected. • Thermochromic ...Strategies Windows and Glazed Surfaces by Brian M. Deal, Robert J. Nemeth, and Lee P. DeBaille for Solar Radiation Reflected Transmitted Absorbed...10 Fenestration Design 12 3 Heat Transfer Fundamentals 14 Mechanisms of Heat Transfer 14 Heat Transfer Process Through Glass 16 Solar Heat Gain
A model for allometric scaling of mammalian metabolism with ambient heat loss.
Kwak, Ho Sang; Im, Hong G; Shim, Eun Bo
2016-03-01
Allometric scaling, which represents the dependence of biological traits or processes on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer, which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value < 2/3. The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.
Heat transfer direction dependence of heat transfer coefficients in annuli
NASA Astrophysics Data System (ADS)
Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.
2018-04-01
In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.
Hibler, Susanne; Wagner, Christophe; Gieseler, Henning
2012-03-01
In order to optimize a freeze-drying cycle, information regarding the heat transfer characteristics of the container system is imperative. Two most recently developed tubing (TopLyo™) and molded (EasyLyo™) vial designs were compared with a standard serum tubing and molded vial, a polymer vial (TopPac™), and an amber molded EasyLyo™. In addition, the impact of methodology on the determination of reliable vial heat transfer coefficient (K(v) ) data is examined in detail. All K(v) s were gravimetrically determined by sublimation tests with pure water at 50, 100, 200, and 400 mTorr. In contrast to the traditional assumption that molded vials exhibit inefficient heat transfer characteristics, these vials showed a very similar performance compared with their serum tubing counterparts in the relevant pressure range for freeze-drying. At 100 mTorr, the TopLyo™ center vials show only 4% higher K(v) values than the EasyLyo™ center vials. All glass vials outmatch the polymer vial in terms of heat transfer, up to 30% elevated heat transfer for the TopLyo™ center vials at 400 mTorr. Sublimation tests have demonstrated to be a valuable tool to investigate the heat transfer characteristics of vials, but results are dependent on methodology. New developments in molded vial manufacturing lead to improved heat transfer performance. Copyright © 2011 Wiley Periodicals, Inc.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph
1994-11-29
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
NASA Technical Reports Server (NTRS)
Ames, Forrest E.
1994-01-01
A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower wakes than the baseline case. High levels of flow field turbulence were found to correlate with a significant increase in total pressure loss in the core of the flow. Documenting the wake growth and characteristics provides boundary conditions for the downstream rotor.
Measurement of heat transfer coefficient using termoanemometry methods
NASA Astrophysics Data System (ADS)
Dančová, P.; Sitek, P.; Vít, T.
2014-03-01
This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC) is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.
NASA Astrophysics Data System (ADS)
Polyakov, A. F.; Strat'ev, V. K.; Tret'yakov, A. F.; Shekhter, Yu. L.
2010-06-01
Heat transfer from six samples of porous reticular material to cooling gas (air) at small Reynolds numbers is experimentally studied. The specific features pertinent to heat transfer essentially affected by longitudinal heat conductivity along gas flow are analyzed. The experimental results are generalized in the form of dimensionless empirical relations.
Heat transfer in an evaporation-condensation system in simulated weightlessness conditions
NASA Astrophysics Data System (ADS)
Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.
2017-10-01
The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.
A review on boiling heat transfer enhancement with nanofluids
2011-01-01
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin
1989-01-01
The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
NASA Astrophysics Data System (ADS)
Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
ERIC Educational Resources Information Center
Barnes, George
1991-01-01
Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)
Methods for heat transfer and temperature field analysis of the insulated diesel
NASA Technical Reports Server (NTRS)
Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.
1984-01-01
Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.
Effect of aperture geometry on heat transfer in tilted partially open cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.M.; Chakroun, W.
1999-11-01
Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
NASA Astrophysics Data System (ADS)
Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.
2014-05-01
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
Enhanced heat transfer with full circumferential ribs in helical pipe
NASA Astrophysics Data System (ADS)
Chang, S. W.; Su, L. M.; Yang, T. L.
2002-08-01
This paper describes an experimental study of heat transfers in the smooth-walled and rib-roughened helical pipes with reference to the design of enhanced cooling passages in the cylinder head and liner of a marine propulsive diesel engine. The manner in which the repeated ribs modify the forced heat convection in the helical pipe is considered for the case where the flow is turbulent upon entering the coil but laminar in further downstream. A selection of experimental results illustrates the individual and interactive effects of Dean vortices and rib-flows on heat transfer along the inner and outer helixes of coils. The experimental-based observations reveal that the centrifugal force modifies the heat transfer in a manner to generate circumferential heat transfer variation with better cooling performance on the outer edge relative to its inner counterpart even with the agitated flow field caused by the repeated ribs. Heat transfer augmentation factor in the range of 1.3 - 3 times of the smooth-walled level is achieved using the present ribbing geometry. A set of empirical correlations based on the experimental data has been developed to permit the evaluation of heat transfers along the inner and outer helixes of the smooth-walled and rib-roughened helical pipes.
Experimental investigation of heat transfer characteristics of guar-based polymer solutions and gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azouz, I.; Vinod, P.S.; Shah, S.N.
1996-12-31
An experimental investigation of the heat transfer characteristics of hydraulic fracturing fluids was conducted at the Fracturing Fluid Characterization Facility (FFCF) of the University of Oklahoma. The facility is equipped with a high pressure fracture simulator, coiled tubing fluid pre-conditioning system, and a full-scale, counter-current, double pipe heat exchanger. The fluids investigated include non-crosslinked and borate-crosslinked guar gum and hydroxypropyl guar (HPG). Results were also obtained for water and were used as a basis for comparison. The effects of flow rate, operating temperature, pH, and various levels of shear pre-conditioning, on the heat transfer behavior of the test fluids weremore » investigated. Results show a significant difference between the heat transfer coefficient of the pure solvent (water) and those of the polymer solutions tested. While all polymer solutions tested exhibited lower heat transfer coefficients than that of the pure solvent, crosslinking appears to enhance the heat transfer characteristics of the polymer fluids. It was also observed that shear preconditioning does not seem to have a significant effect on the heat transfer coefficient of the crosslinked gels. These findings are of great interest to the industry, especially to the petroleum industry where these fluids are commonly used during hydraulic fracturing of hydrocarbon reservoirs.« less
NASA Astrophysics Data System (ADS)
Lei, Yuchuan; Chen, Zhenqian; Shi, Juan
2017-12-01
Numerical simulations of condensation heat transfer of R134a in curved triangle microchannels with various curvatures are proposed. The model is established on the volume of fluid (VOF) approach and user-defined routines which including mass transfer at the vapor-liquid interface and latent heat. Microgravity operating condition is assumed in order to highlight the surface tension. The predictive accuracy of the model is assessed by comparing the simulated results with available correlations in the literature. Both an increased mass flux and the decreased hydraulic diameter could bring better heat transfer performance. No obvious effect of the wall heat flux is observed in condensation heat transfer coefficient. Changes in geometry and surface tension lead to a reduction of the condensate film thickness at the sides of the channel and accumulation of the condensate film at the corners of the channel. Better heat transfer performance is obtained in the curved triangle microchannels over the straight ones, and the performance could be further improved in curved triangle microchannels with larger curvatures. The minimum film thickness where most of the heat transfer process takes place exists near the corners and moves toward the corners in curved triangle microchannels with larger curvatures.
NASA Astrophysics Data System (ADS)
Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari
2018-05-01
In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
Effect of pulsation on black liquor gasification. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinn, B.T.; Jagoda, J.; Jeong, H.
1998-12-01
Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less
Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V
2012-10-01
Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Xie, Qi
Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.
Faryabi, Javad; Rajabi, Mahboobeh; Alirezaee, Shahin
2014-01-01
Background: Motorcycle crashes are the cause of severe morbidity and mortality especially because of head injuries. It seems that wearing a helmet has an effective role in protection against head injuries. Nevertheless, motorcyclists usually have no tendency to wear a helmet when driving in cities and have several reasons for this behavior. Objectives: This study aimed to evaluate the use and reasons for not using a helmet by motorcyclists admitted to an emergency ward of a trauma hospital due to accident in Kerman, Iran. Patients and Methods: This study was carried out by recoding the opinions of motorcyclists who had been transferred to the emergency ward of Shahid Bahonar Hospital (Kerman/Iran). Since no data was available on the frequency of the use of helmets, a pilot study was carried out and a sample size of 377 was determined for the main study. Then a researcher-made questionnaire was used to investigate the motorcyclists’ reasons for not using a helmet. Results: Only 21.5% of the motorcyclists had been wearing helmets at the time of the accident. The most frequent reasons for not using a helmet were the heavy weight of the helmet (77%), feeling of heat (71.4%), pain in the neck (69.4%), feeling of suffocation (67.7%), limitation of head and neck movements (59.6%) and all together, physical discomfort was the main cause of not wearing a helmet during motorcycle rides. Conclusions: In general, it appears that it is possible to increase the use of helmets by eliminating its physical problems, and increasing the knowledge of community members in relation to the advantages of helmet use, which will result in a significant decrease in traumas resulting from motorcycle accidents. PMID:25599066
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
NASA Technical Reports Server (NTRS)
Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.
2000-01-01
Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.
Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow
NASA Technical Reports Server (NTRS)
Bakirov, F. G.; Shaykhutdinov, Z. G.
1985-01-01
An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Idar, E. S., III; Galanski, S. R.
1977-01-01
The theoretical heat-transfer distributions are compared with experimental heat-transfer distributions obtained in Tunnel B at AEDC using a 0.0175 scale model of the space shuttle orbiter configuration for which the first 80% of the windward surface was roughened by a simulated tile misalignment. The theoretical solutions indicate that thinning the boundary layer by surface cooling increased the nondimensionalized value of the local heat-transfer coefficient. Tile misalignment did not significantly affect the heat-transfer rate in regions where the boundary layer was either laminar or turbulent.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2009-01-01
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler
NASA Astrophysics Data System (ADS)
Liu, Lin; Ling, Xiang; Peng, Hao
2015-07-01
In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.
Dropwise Condensation on Soft Hydrophobic Coatings.
Phadnis, Akshay; Rykaczewski, Konrad
2017-10-31
Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.
An experimental study of heat transfer in a large-scale turbine rotor passage
NASA Astrophysics Data System (ADS)
Blair, Michael F.
1992-06-01
An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three-dimensionality on the heat transfer in a rotating blade row (vs a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system.
Immiscible fluid: Heat of fusion heat storage system
NASA Technical Reports Server (NTRS)
Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.
1980-01-01
Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.
Study on heat transfer coefficients during cooling of PET bottles for food beverages
NASA Astrophysics Data System (ADS)
Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco
2016-08-01
The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.
2012-06-01
calculates a constant convection heat transfer coefficient on the hot and cold side of the cooling jacket wall. The calculated maximum wall temperature for...regeneratively cools the combustion chamber and nozzle. The heat transferred to the fuel from cooling provides enough power to the turbine to power both... heat transfer at the throat compared to a bell nozzle. This increase in heat transfer surface area means more power to the turbine, increased chamber
NASA Technical Reports Server (NTRS)
Gai, S. L.; Cain, T.; Joe, W. S.; Sandeman, R. J.; Miller, C. G.
1988-01-01
Heat transfer rate measurements have been obtained at 0, 5, 15, and 21 deg angles-of-attack for a straight biconic scale model of an aeroassisted orbital vehicle proposed for planetary probe missions. Heat-transfer distributions were measured using palladium thin-film resistance gauges deposited on a glass-ceramic substrate. The windward heat transfer correlations were based on equilibrium flow in the shock layer of the model, although the flow may depart from equilibrium in the flow-field.
Microscale Convective Heat Transfer for Thermal Management of Compact Systems
2012-03-12
pages 641–645, 1997. [9] S.V. Garimella and C.B. Sobhan. Transport in microchannels -a critical review. Annual Review of Heat Transfer , 13, 2003. [10] A... heat transfer for thermal management of compact systems Sb. GRANT NUMBER F A9550-08-l-0057 Sc. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Sd...improve the performance of many components. The e ects of digitized heat transfer using electrowetting on a dielectric were investigated in this paper
2013-11-01
Flows in Microchannels ," Heat Transfer Engineering, Vol. 27, No. 9, 2006, pp. 4-19. 2Kandlikar, S. G., " Heat Transfer Mechanisms During Flow...Boiling in Microchannels ," Journal of Heat Transfer , Vol. 126, No. 1, 2004, pp. 8-16. 3Kreitzer, P. J., Byrd, L., and Willebrand, B. J., "Initial...an integral aspect of modeling two phase flows as most pressure drop and heat transfer correlations rely on a priori knowledge of the flow regime for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyawong, Adirek; Wongwises, Somchai
2010-11-15
A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less
Investigation of Sensible and Latent Heat Storage System using various HTF
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Manoj, A.; Keerthan, J. S.; Stallan, Joseph Paul; Amithkishore, P.
2017-05-01
The objective of the work is investigating the latent heat storage system by varying heat transfer fluid (HTF). In this experiment, the effect of using different heat transfer fluids on the combined system is studied while using a low melting phase change material (PCM) i.e., paraffin wax. The heat transfer fluids chosen are water (low boiling fluid) and Therminol-66 (High boiling fluid). A comparison is made between the heat transfers by employing both the Heat transfer fluids. In the beginning, water is made to flow as the HTF and the charging process is undertaken followed by the discharging process by utilizing the different encapsulation materials namely, copper, aluminium and brass. These processes are then repeated for therminol-66 as HTF. At the end of the experiment it was concluded that even though therminol-66 enhances the latent heat storage capacity, water offers a higher sensible heat storage capacity, making it a better HTF for low melting PCM. Similar to above said process the experiments can be conducted for high and medium range melting point PCM with variation of HTF.
Is metal nanofluid reliable as heat carrier?
Nine, Md J; Chung, Hanshik; Tanshen, Md Riyad; Osman, N A B Abu; Jeong, Hyomin
2014-05-30
A pre- and post experimental analysis of copper-water and silver-water nanofluids are conducted to investigate minimal changes in quality of nanofluids before and after an effective heat transfer. A single loop oscillating heat pipe (OHP) having inner diameter of 2.4mm is charged with aforementioned nanofluids at 60% filling ratio for end to end heat transfer. Post experimental analysis of both nanofluids raises questions to the physical, chemical and thermal stability of such suspension for hazardless uses in the field of heat transfer. The color, deposition, dispersibility, propensity to be oxidized, disintegration, agglomeration and thermal conductivity of metal nanofluids are found to be strictly affected by heat transfer process and vice versa. Such degradation in quality of basic properties of metal nanofluids implies its challenges in practical application even for short-term heat transfer operations at oxidative environment as nano-sized metal particles are chemically more unstable than its bulk material. The use of the solid/liquid suspension containing metal nanoparticles in any heat exchanger as heat carrier might be detrimental to the whole system. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger
NASA Astrophysics Data System (ADS)
Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.
2017-02-01
In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.
NASA Technical Reports Server (NTRS)
Scherrer, Richard
1951-01-01
An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.
Advanced radioisotope heat source for Stirling Engines
NASA Astrophysics Data System (ADS)
Dobry, T. J.; Walberg, G.
2001-02-01
The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .
Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.
Házi, Gábor; Márkus, Attila
2008-02-01
A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.; Power, G. D.; Verdon, J. M.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. Heat transfer measurements were obtained using low conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient (incidence), first-stator/rotor axial spacing, Reynolds number, and relative circumferential position of the first and second stators. Aerodynamic measurements include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions and a examination of solutions of the unstead boundary layer equipment.
Nucleate boiling performance evaluation of cavities at mesoscale level
Mu, Yu-Tong; Chen, Li; He, Ya-Ling; ...
2016-09-29
Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. Here, a 3D multi-relaxation-time (MRT) phase-change lattice Boltzmann method in conjunction with conjugated heat transfer treatment is proposed and then applied to the study of cavities behaviours for nucleation on roughened surfaces for an entire ebullition cycle without introducing any artificial disturbance. The bubble departure diameter, departure frequency and total boiling heat transfer rate are also explored. We demonstrate that the cavity shapes show significant influence on the features of NBHT. The total heat transfer rate increases with the cavity mouth and cavitymore » base area while decreases with the increase in cavity bottom wall thickness. The cavity with low wetting can enhance the heat transfer and improve the bubble release frequency.« less
Active control of near-field radiative heat transfer between graphene-covered metamaterials
NASA Astrophysics Data System (ADS)
Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua
2017-04-01
In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.
Radiative heat transfer in low-dimensional systems -- microscopic mode
NASA Astrophysics Data System (ADS)
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
Mass Transfer Cooling Near The Stagnation Point
NASA Technical Reports Server (NTRS)
Roberts, Leonard
1959-01-01
A simplified analysis is made of mass transfer cooling, that is, injection of a foreign gas, near the stagnation point for two-dimensional and axisymmetric bodies. The reduction in heat transfer is given in terms of the properties of the coolant gas and it is shown that the heat transfer may be reduced considerably by the introduction of a gas having appropriate thermal and diffusive properties. The mechanism by which heat transfer is reduced is discussed.
Analysis of loss of decay-heat-removal sequences at Browns Ferry Unit One
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, R.M.
1983-01-01
This paper summarizes the Oak Ridge National Laboratory (ORNL) report Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA). The purpose of the SASA studies is to predetermine the probable course of postulated severe accidents so as to establish the timing andmore » the sequence of events. The SASA studies also produce recommendations concerning the implementation of better system design and better emergency operating instructions and operator training. The ORNL studies also include a detailed, best-estimate calculation of the release and transport of radioactive fission products following postulated severe accidents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leskovar, Matjaz; Koncar, Bostjan
An ex-vessel steam explosion may occur when during a severe reactor accident the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles at later times, during the expansion of the highly pressurized water vapor, that may endanger surrounding structures. In contrast to specialized steammore » explosion CFD codes, where the steam explosion is modeled on micro-scale using fundamental averaged multiphase flow conservation equations, in the presented approach the steam explosion is modeled in a simplified manner as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapor. Applying the developed steam explosion model, a comprehensive analysis of the ex-vessel steam explosion in a typical PWR reactor cavity was done using the CFD code CFX-10. At four selected locations, which are of importance for the assessment of the vulnerability of cavity structures, the pressure histories were recorded and the corresponding pressure impulses calculated. The pressure impulses determine the destructive potential of the steam explosion and represent the input for the structural mechanical analysis of the cavity structures. The simulation results show that the pressure impulses depend mainly on the steam explosion energy conversion ratio, whereas the influence of the pre-mixture vapor volume fraction, which is a parameter in our model and determines the maximum steam explosion pressure, is not significant. (authors)« less
Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Ching, Chang Y.
1994-01-01
The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.
Code for Multiblock CFD and Heat-Transfer Computations
NASA Technical Reports Server (NTRS)
Fabian, John C.; Heidmann, James D.; Lucci, Barbara L.; Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur
2006-01-01
The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn-HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heat-transfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.
Investigation of an inverted meniscus heat pipe wick concept
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1975-01-01
A wicking concept is described for efficient evaporation of heat pipe working fluids under diverse conditions. It embodies the high heat transfer coefficient of the circumferential groove while retaining the circumferential fluid transport capability of a thick porous wick or screen. Experimental tests are described which substantiate the efficacy of the evaporation technique for a circumferentially-grooved heat pipe charged alternately with ammonia and R-ll (CCl3F). With ammonia, heat transfer coefficients in the range of 2 to 2.7 W/sq cm K were measured at heat flux densities up to 20 W/sq cm while, with R-ll, a heat transfer coefficient of l.0 W/sq cm K was measured with flux densities up to 5 W/sq cm. Heat transfer coefficients and flux densities were unusually high compared to literature data for other nonboiling evaporative surfaces.
NASA Astrophysics Data System (ADS)
Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong
2018-02-01
A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.
DOT National Transportation Integrated Search
1999-04-01
This report presents the results of a study to determine if skills developed in competitive athletics transfer to driving ability, and whether such transfer is mediated by gender. To test these questions, the authors compared the driving ability of m...
Exergy Analysis for Energy Systems
2006-09-01
Webb, The effect of viscous dissipation in thermally fully- developed electro-osmotic heat transfer in microchannels, International Journal of Heat...electro-osmotic heat transfer in microchannel, International Journal of Heat & Mass Transfer 46(2003)1359–1369 [19] D. Maynes, B. Webb, Fully...AFRL-VA-WP-TM-2007-3095 EXERGY ANALYSIS FOR ENERGY SYSTEMS Dr. Rama S.R. Gorla Gorla Consultants, Inc. SEPTEMBER 2006 Final
Thermal Isolation and Differential Cooling of Heterogeneously Integrated Devices
2016-07-01
materials with co-continuous phases , "Int. J. Heat Mass Transfer , vol. 51, pp. 2389-2397, 2008. [27] Y. Yamaji, T. Ando, T. Morifuji, M. Tomisaka...for Semi-infinite Heat Flux Tubes , "Journal of Heat Transfer , vol. 111, pp. 804-807, August 1, 1989. [34] S. Song, S. Lee and V. Au, "Closed-form...Underside Cooling Heat Transfer Coefficient
NASA Astrophysics Data System (ADS)
Puzu, N.; Prasertsan, S.; Nuntadusit, C.
2017-09-01
The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
Evaluation of heat transfer in acupuncture needles: convection and conduction approaches.
Tzou, Chieh-Han John; Yang, Tzyy-Yih; Chung, Ya-Chien
2015-04-01
Originating in ancient China, acupuncture using needles has been developed for thousands of years and has received attention for its reported medical remedies, such as pain relief and chronic disease treatment. Heat transfer through the needles, which might have effects on the biomechanism of acupuncture, providing a stimulus and regulating homeostasis, has never been studied. This article analyzes the significance of heat transfer through needles via convection and conduction, approached by means of computational analysis. The needle is a cylindrical body, and an axis symmetrical steady-state heat-transfer model that viscosity and static pressure was not applied. This article evaluates heat transfer via acupuncture needles by using five metal materials: silver, copper, brass, iron, and stainless steel. A silver needle of the type extensively applied in acupuncture can dissipate more than seven times as much heat as a stainless steel needle of the same type. Heat transfer through such a needle is significant, compared to natural body-energy consumption over a range of ambient temperatures. The mechanism by which heat flows in or out of the body through the needles may be crucial in the remedial efficacy of acupuncture. Copyright © 2015. Published by Elsevier B.V.
The influence of a wall function on turbine blade heat transfer prediction
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1989-01-01
The second phase of a continuing investigation to improve the prediction of turbine blade heat transfer coefficients was completed. The present study specifically investigated how a numeric wall function in the turbulence model of a two-dimensional boundary layer code, STAN5, affected heat transfer prediction capabilities. Several sources of inaccuracy in the wall function were identified and then corrected or improved. Heat transfer coefficient predictions were then obtained using each one of the modifications to determine its effect. Results indicated that the modifications made to the wall function can significantly affect the prediction of heat transfer coefficients on turbine blades. The improvement in accuracy due the modifications is still inconclusive and is still being investigated.
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
Numerical investigation of two- and three-dimensional heat transfer in expander cycle engines
NASA Technical Reports Server (NTRS)
Burch, Robert L.; Cheung, Fan-Bill
1993-01-01
The concept of using tube canting for enhancing the hot-side convective heat transfer in a cross-stream tubular rocket combustion chamber is evaluated using a CFD technique in this study. The heat transfer at the combustor wall is determined from the flow field generated by a modified version of the PARC Navier-Stokes Code, using the actual dimensions, fluid properties, and design parameters of a split-expander demonstrator cycle engine. The effects of artificial dissipation on convergence and solution accuracy are investigated. Heat transfer results predicted by the code are presented. The use of CFD in heat transfer calculations is critically examined to demonstrate the care needed in the use of artificial dissipation for good convergence and accurate solutions.
NASA Technical Reports Server (NTRS)
Rohde, J. E.
1982-01-01
Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.
SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-09-25
U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in amore » remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.« less
SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary
None
2018-01-16
U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.
Transferring Aviation Practices into Clinical Medicine for the Promotion of High Reliability.
Powell-Dunford, Nicole; McPherson, Mark K; Pina, Joseph S; Gaydos, Steven J
2017-05-01
Aviation is a classic example of a high reliability organization (HRO)-an organization in which catastrophic events are expected to occur without control measures. As health care systems transition toward high reliability, aviation practices are increasingly transferred for clinical implementation. A PubMed search using the terms aviation, crew resource management, and patient safety was undertaken. Manuscripts authored by physician pilots and accident investigation regulations were analyzed. Subject matter experts involved in adoption of aviation practices into the medical field were interviewed. A PubMed search yielded 621 results with 22 relevant for inclusion. Improved clinical outcomes were noted in five research trials in which aviation practices were adopted, particularly with regard to checklist usage and crew resource-management training. Effectiveness of interventions was influenced by intensity of application, leadership involvement, and provision of staff training. The usefulness of incorporating mishap investigation techniques has not been established. Whereas aviation accident investigation is highly standardized, the investigation of medical error is characterized by variation. The adoption of aviation practices into clinical medicine facilitates an evolution toward high reliability. Evidence for the efficacy of the checklist and crew resource-management training is robust. Transference of aviation accident investigation practices is preliminary. A standardized, independent investigation process could facilitate the development of a safety culture commensurate with that achieved in the aviation industry.Powell-Dunford N, McPherson MK, Pina JS, Gaydos SJ. Transferring aviation practices into clinical medicine for the promotion of high reliability. Aerosp Med Hum Perform. 2017; 88(5):487-491.
NASA Astrophysics Data System (ADS)
Timofeev, D. V.; Malyavina, E. G.
2017-11-01
The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.
NASA Astrophysics Data System (ADS)
Maddah, Heydar; Ghasemi, Nahid
2017-12-01
In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur; Heidmann, James D.; Fabian, John C.
2008-01-01
The effect of the upstream wake on the blade heat transfer has been numerically examined. The geometry and the flow conditions of the first stage turbine blade of GE s E3 engine with a tip clearance equal to 2 percent of the span was utilized. Based on numerical calculations of the vane, a set of wake boundary conditions were approximated, which were subsequently imposed upon the downstream blade. This set consisted of the momentum and thermal wakes as well as the variation in modeled turbulence quantities of turbulence intensity and the length scale. Using a one-blade periodic domain, the distributions of unsteady heat transfer rate on the turbine blade and its tip, as affected by the wake, were determined. Such heat transfer coefficient distribution was computed using the wall heat flux and the adiabatic wall temperature to desensitize the heat transfer coefficient to the wall temperature. For the determination of the wall heat flux and the adiabatic wall temperatures, two sets of computations were required. The results were used in a phase-locked manner to compute the unsteady or steady heat transfer coefficients. It has been found that the unsteady wake has some effect on the distribution of the time averaged heat transfer coefficient on the blade and that this distribution is different from the distribution that is obtainable from a steady computation. This difference was found to be as large as 20 percent of the average heat transfer on the blade surface. On the tip surface, this difference is comparatively smaller and can be as large as four percent of the average.
Comparison of different bioheat transfer models for assessment of burns injuries
NASA Astrophysics Data System (ADS)
Łapka, Piotr; Furmański, Piotr; Wiśniewski, Tomasz S.
2016-12-01
Two bioheat transfer models i.e.: the classical Pennes model and a more realistic two-equation model which accounted for blood vessel structure in the skin as well as heat transfer in the tissue and arteria blood were coupled with heat and mass transfer model in the protective multilayer garment. The clothing model included conductive-radiative heat transfer with water vapor diffusion in pores and air gaps as well as sorption and desorption of water in fibers. Thermal radiation was modeled rigorously e.g.: both the tissue and fabrics were assumed non-gray, absorbing, emitting and anisotropically scattering. Additionally different refractive indices of fabrics, air and tissue and resulting optical phenomena at separating interfaces were accounted for. Both bioheat models were applied for predicting skin temperature distributions and possibility of burns for different exposition times and radiative heat fluxes incident on external surface of the protective garment. Performed analyses revealed that heat transfer in the skin subjected to high heat flux is independent of the blood vessel structure.
Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.
1996-01-01
An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.
Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature
NASA Astrophysics Data System (ADS)
Hojjat, M.; Etemad, S. Gh.; Bagheri, R.; Thibault, J.
2011-02-01
Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity.
Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes
2011-01-01
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901
NASA Astrophysics Data System (ADS)
Kim, Nae-Hyun
2016-12-01
R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.
Kuu, Wei Y; Nail, Steven L; Hardwick, Lisa M
2007-01-01
The spatial distribution of local shelf heat transfer coefficients, Ks, was determined by mapping the transient temperature response of the shelf surface along the serpentine internal channels of the shelf while the temperature of the heat transfer fluid was ramped from -40 degrees to 40 degrees C. The solution of a first-order non-steady-state differential equation resulted in a predicted shelf surface temperature as a function of the shelf fluid temperature at any point along the flow path. During the study, the shelf surfaces were maintained under a thermally insulated condition so that the heat transfers by gas conduction and radiation were negligible. To minimize heat conduction by gas, the chamber was evacuated to a low pressure, such as 100 mTorr. To minimize heat transfers between shelves, shelves were moved close together, with a gap of approximately 3 mm between any two shelves, because the shelf surface temperatures at corresponding vertical locations of two shelves are virtually equal. In addition, this also provides a shielding from radiation heat transfer from shelf to walls. Local heat transfer coefficients at the probed locations h(x) ( approximately Ks) were calculated by fitting the experimental shelf temperature response to the theoretical value. While the resulting values of K(s) are in general agreement with previously reported values, the values of Ks close to the inlet are significantly higher than those of other locations of the shelf channel. This observation is most likely attributed to the variation of the flow pattern of heat transfer fluid within the channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J. D.
2012-07-01
Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimesmore » fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)« less
Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study
NASA Astrophysics Data System (ADS)
Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.
2018-04-01
1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
AHTR Mechanical, Structural, and Neutronic Preconceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, V.K.; Holcomb, D.E.; Peretz, F.J.
2012-09-15
This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual levelmore » of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents as well as multiple levels of radioactive material containment. Key building design elements include (1) below grade siting to minimize vulnerability to aircraft impact, (2) multiple natural circulation decay heat rejection chimneys, (3) seismic base isolation, and (4) decay heat powered back-up electricity generation.« less
Convective heat transfer in a porous enclosure saturated by nanofluid with different heat sources
NASA Astrophysics Data System (ADS)
Muthtamilselvan, M.; Sureshkumar, S.
2018-03-01
The present study is proposed to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid-driven porous cavity filled with nanofluid. A higher temperature is maintained on the left wall where three different lengths and three different locations of the heat source are considered for the analysis. The right wall is kept at a lower temperature while the top and bottom walls, and the remaining portions of the heated wall are adiabatic. The governing equations are solved by finite volume method. The results show that among the different lengths of the heat source, an enhancement in the heat transfer rate is observed only for the length LH = 1/3 of the heat source. In the case of location of the heat source, the overall heat transfer rate is increased when the heat source is located at the top of the hot wall. For Ri = 1 and 0.01, a better heat transfer rate is obtained when the heat source is placed at the top of the hot wall whereas for Ri = 100, it occurs when the heating portion is at the middle of the hot wall. As the solid volume fraction increases, the viscosity of the fluid is increased, which causes a reduction in the flow intensity. An addition of nanoparticles in the base fluid enhances the overall heat transfer rate significantly for all Da considered. The permeability of the porous medium plays a major role in convection of nanofluid than porosity. A high heat transfer rate (57.26%) is attained for Da = 10-1 and χ = 0.06.
Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh
2000-11-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inversemore » heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.« less
NASA Technical Reports Server (NTRS)
Eck, M.; Mukunda, M.
1989-01-01
The various analyses described here were aimed at obtaining a more comprehensive understanding and definition of the environments in the vicinity of the Radioisotope Thermal Generator (RTG) during certain Space Transportation System (STS) and Titan IV launch abort accidents. Addressed here are a number of issues covering explosion environments and General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) responses to those environments.