DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallman, R J; Gottula, R C; Holcomb, E E
1987-05-01
An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Groff, Loren; Newman, Richard L.; Foster, John V.; Crider, Dennis H.; Klyde, David H.; Huston, A. McCall
2014-01-01
Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes, and can result from a wide spectrum of hazards, often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and their validation must provide a means of assessing system effectiveness and coverage of these hazards. This requires the definition of a comprehensive set of LOC test scenarios based on accident and incident data as well as future risks. This paper defines a comprehensive set of accidents and incidents over a recent 15 year period, and presents preliminary analysis results to identify worst-case combinations of causal and contributing factors (i.e., accident precursors) and how they sequence in time. Such analyses can provide insight in developing effective solutions for LOC, and form the basis for developing test scenarios that can be used in evaluating them. Preliminary findings based on the results of this paper indicate that system failures or malfunctions, crew actions or inactions, vehicle impairment conditions, and vehicle upsets contributed the most to accidents and fatalities, followed by inclement weather or atmospheric disturbances and poor visibility. Follow-on research will include finalizing the analysis through a team consensus process, defining future risks, and developing a comprehensive set of test scenarios with correlation to the accidents, incidents, and future risks. Since enhanced engineering simulations are required for batch and piloted evaluations under realistic LOC precursor conditions, these test scenarios can also serve as a high-level requirement for defining the engineering simulation enhancements needed for generating them.
An Exercise Health Simulation Method Based on Integrated Human Thermophysiological Model
Chen, Xiaohui; Yu, Liang; Yang, Kaixing
2017-01-01
Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health transition sequence from finite state machine can be used in healthcare. PMID:28702074
Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.
Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less
Domino effect in chemical accidents: main features and accident sequences.
Darbra, R M; Palacios, Adriana; Casal, Joaquim
2010-11-15
The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes are external events (31%) and mechanical failure (29%). Storage areas (35%) and process plants (28%) are by far the most common settings for domino accidents. Eighty-nine per cent of the accidents involved flammable materials, the most frequent of which was LPG. The domino effect sequences were analyzed using relative probability event trees. The most frequent sequences were explosion→fire (27.6%), fire→explosion (27.5%) and fire→fire (17.8%). Copyright © 2010 Elsevier B.V. All rights reserved.
Expert systems for fault diagnosis in nuclear reactor control
NASA Astrophysics Data System (ADS)
Jalel, N. A.; Nicholson, H.
1990-11-01
An expert system for accident analysis and fault diagnosis for the Loss Of Fluid Test (LOFT) reactor, a small scale pressurized water reactor, was developed for a personal computer. The knowledge of the system is presented using a production rule approach with a backward chaining inference engine. The data base of the system includes simulated dependent state variables of the LOFT reactor model. Another system is designed to assist the operator in choosing the appropriate cooling mode and to diagnose the fault in the selected cooling system. The response tree, which is used to provide the link between a list of very specific accident sequences and a set of generic emergency procedures which help the operator in monitoring system status, and to differentiate between different accident sequences and select the correct procedures, is used to build the system knowledge base. Both systems are written in TURBO PROLOG language and can be run on an IBM PC compatible with 640k RAM, 40 Mbyte hard disk and color graphics.
Categorizing accident sequences in the external radiotherapy for risk analysis
2013-01-01
Purpose This study identifies accident sequences from the past accidents in order to help the risk analysis application to the external radiotherapy. Materials and Methods This study reviews 59 accidental cases in two retrospective safety analyses that have collected the incidents in the external radiotherapy extensively. Two accident analysis reports that accumulated past incidents are investigated to identify accident sequences including initiating events, failure of safety measures, and consequences. This study classifies the accidents by the treatments stages and sources of errors for initiating events, types of failures in the safety measures, and types of undesirable consequences and the number of affected patients. Then, the accident sequences are grouped into several categories on the basis of similarity of progression. As a result, these cases can be categorized into 14 groups of accident sequence. Results The result indicates that risk analysis needs to pay attention to not only the planning stage, but also the calibration stage that is committed prior to the main treatment process. It also shows that human error is the largest contributor to initiating events as well as to the failure of safety measures. This study also illustrates an event tree analysis for an accident sequence initiated in the calibration. Conclusion This study is expected to provide sights into the accident sequences for the prospective risk analysis through the review of experiences. PMID:23865005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondo, E.; Capman, J.L.; Herovard, M.
1985-05-01
Requirements for qualification of electrical equipment used in French-built nuclear power plants are stated in a national code, the RCC-E, or Regles de Construction et de Conception des Materiels Electriques. Under the RCC-E, safety related equipment is assigned to one of three different categories, according to location in the plant and anticipated normal, accident and post-accident behavior. Qualification tests differ for each category and procedures range in scope from the standard seismic test to the highly stringent VISA program, which specifies a predetermined sequence of aging, radiation, seismic and simulated accident testing. A network of official French test facilities wasmore » developed specifically to meet RCC-E requirements.« less
Analysis of loss of decay-heat-removal sequences at Browns Ferry Unit One
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, R.M.
1983-01-01
This paper summarizes the Oak Ridge National Laboratory (ORNL) report Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA). The purpose of the SASA studies is to predetermine the probable course of postulated severe accidents so as to establish the timing andmore » the sequence of events. The SASA studies also produce recommendations concerning the implementation of better system design and better emergency operating instructions and operator training. The ORNL studies also include a detailed, best-estimate calculation of the release and transport of radioactive fission products following postulated severe accidents.« less
1994 Accident sequence precursor program results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, R.J.; Cletcher, J.W.; Copinger, D.A.
1996-01-01
The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the analyses of the precursors for 1994, is NUREG/CR-4674, Vols. 21 and 22, Precursors to Potential Severe Core Damage Accidents: 1994, A Status Report, published in December 1995. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1994. 12more » refs., 2 figs., 4 tabs.« less
Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang
2014-09-05
The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.
Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang
2014-01-01
The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686
Radiant Heat Testing of the H1224A Shipping/Storage Container
1994-05-01
re - entry vehicles caused by credible accidents during air and ground transportation. Radiant heat testing of the H1224A storage/shipping container is...inner container, and re - entry vehicle (RV) temperatures during radiant heat testing. Computer modelling can be used to predict weapon response throughout...Nomenclature RV Re - entry Vehicle midsection mass mock-up WR War Reserve STS Stockpile-to-Target Sequence NAWC Simulated H1224A container by Naval Air
[The characteristics of computer simulation of traffic accidents].
Zou, Dong-Hua; Liu, Ning-Guo; Chen, Jian-Guo; Jin, Xian-Long; Zhang, Xiao-Yun; Zhang, Jian-Hua; Chen, Yi-Jiu
2008-12-01
To reconstruct the collision process of traffic accident and the injury mode of the victim by computer simulation technology in forensic assessment of traffic accident. Forty actual accidents were reconstructed by stimulation software and high performance computer based on analysis of the trace evidences at the scene, damage of the vehicles and injury of the victims, with 2 cases discussed in details. The reconstruction correlated very well in 28 cases, well in 9 cases, and suboptimal in 3 cases with the above parameters. Accurate reconstruction of the accident would be helpful for assessment of the injury mechanism of the victims. Reconstruction of the collision process of traffic accident and the injury mechanism of the victim by computer simulation is useful in traffic accident assessment.
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Alfonsi, Andrea; Maljovec, Daniel P.
2016-09-01
In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually calledmore » Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, “extracting information” means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.« less
10 CFR 70.62 - Safety program and integrated safety analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...
10 CFR 70.62 - Safety program and integrated safety analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...
10 CFR 70.62 - Safety program and integrated safety analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...
Benchmarking MARS (accident management software) with the Browns Ferry fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, S.M.; Liu, L.Y.; Raines, J.C.
1992-01-01
The MAAP Accident Response System (MARS) is a userfriendly computer software developed to provide management and engineering staff with the most needed insights, during actual or simulated accidents, of the current and future conditions of the plant based on current plant data and its trends. To demonstrate the reliability of the MARS code in simulatng a plant transient, MARS is being benchmarked with the available reactor pressure vessel (RPV) pressure and level data from the Browns Ferry fire. The MRS software uses the Modular Accident Analysis Program (MAAP) code as its basis to calculate plant response under accident conditions. MARSmore » uses a limited set of plant data to initialize and track the accidnt progression. To perform this benchmark, a simulated set of plant data was constructed based on actual report data containing the information necessary to initialize MARS and keep track of plant system status throughout the accident progression. The initial Browns Ferry fire data were produced by performing a MAAP run to simulate the accident. The remaining accident simulation used actual plant data.« less
Risk-Based Fire Safety Experiment Definition for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.
1989-01-01
Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.
Loss of control air at Browns Ferry Unit One: accident sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, R.M.; Hodge, S.A.
1986-04-01
This study describes the predicted response of the Browns Ferry Nuclear Plant to a postulated complete failure of plant control air. The failure of plant control air cascades to include the loss of drywell control air at Units 1 and 2. Nevertheless, this is a benign accident unless compounded by simultaneous failures in the turbine-driven high pressure injection systems. Accident sequence calculations are presented for Loss of Control Air sequences with assumed failure upon demand of the Reactor Core Isolation Cooling (RCIC) and the High Pressure Coolant Injection (HPCI) at Unit 1. Sequences with and without operator action are considered.more » Results show that the operators can prevent core uncovery if they take action to utilize the Control Rod Drive Hydraulic System as a backup high pressure injection system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.
1995-04-01
This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less
Ballo, J M; Dunne, M J; McMeekin, R R
1978-01-01
Digital simulation of aircraft-accident kinematics has heretofore been used almost exclusively as a design tool to explore structural load limits, precalculate decelerative forces at various cabin stations, and describe the effect of protective devices in the crash environment. In an effort to determine the value of digital computer simulation of fatal aircraft accidents, a fatality involving an ejection-system failure (out-of-envelope ejection) was modeled, and the injuries actually incurred were compared to those predicted; good agreement was found. The simulation of fatal aircraft accidents is advantageous because of a well-defined endpoint (death), lack of therapeutic intervention, and a static anatomic situation that can be minutely investigated. Such simulation techniques are a useful tool in the study of experimental trauma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, M.D.; Belles, R.J.; Cletcher, J.W.
The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the precursors for 1995, is NUREG/CR-4674, Volume 23, Precursors to Potential Severe Core Damage Accidents: 1995, A Status Report, published in April 1997. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1995.
Quantifying the risk of extreme aviation accidents
NASA Astrophysics Data System (ADS)
Das, Kumer Pial; Dey, Asim Kumer
2016-12-01
Air travel is considered a safe means of transportation. But when aviation accidents do occur they often result in fatalities. Fortunately, the most extreme accidents occur rarely. However, 2014 was the deadliest year in the past decade causing 111 plane crashes, and among them worst four crashes cause 298, 239, 162 and 116 deaths. In this study, we want to assess the risk of the catastrophic aviation accidents by studying historical aviation accidents. Applying a generalized Pareto model we predict the maximum fatalities from an aviation accident in future. The fitted model is compared with some of its competitive models. The uncertainty in the inferences are quantified using simulated aviation accident series, generated by bootstrap resampling and Monte Carlo simulations.
Paté-Cornell, M E; Lakats, L M; Murphy, D M; Gaba, D M
1997-08-01
The risk of death or brain damage to anesthesia patients is relatively low, particularly for healthy patients in modern hospitals. When an accident does occur, its cause is usually an error made by the anesthesiologist, either in triggering the accident sequence, or failing to take timely corrective measures. This paper presents a pilot study which explores the feasibility of extending probabilistic risk analysis (PRA) of anesthesia accidents to assess the effects of human and management components on the patient risk. We develop first a classic PRA model for the patient risk per operation. We then link the probabilities of the different accident types to their root causes using a probabilistic analysis of the performance shaping factors. These factors are described here as the "state of the anesthesiologist" characterized both in terms of alertness and competence. We then analyze the effects of different management factors that affect the state of the anesthesiologist and we compute the risk reduction benefits of several risk management policies. Our data sources include the published version of the Australian Incident Monitoring Study as well as expert opinions. We conclude that patient risk could be reduced substantially by closer supervision of residents, the use of anesthesia simulators both in training and for periodic recertification, and regular medical examinations for all anesthesiologists.
Simulating Wet Deposition of Radiocesium from the Chernobyl Accident
2001-03-01
In response to the Chernobyl nuclear power plant accident of 1986, a cesium-137 deposition dataset was assembled. Most of the airborne Chernobyl ... Chernobyl cesium-137. A cloud base parameterization modification is tested and appears to slightly improve the accuracy of one HYSPLIT simulation of...daily Chernobyl cesium-137 deposition over the course of the accident at isolated European sites, and degrades the accuracy of another HYSPLIT simulation
SBLOCA outside containment at Browns Ferry Unit One: accident sequence analysis. [Small break
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condon, W.A.; Harrington, R.M.; Greene, S.R.
1982-11-01
This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to a postulated small-break loss-of-coolant accident outside of the primary containment. The break has been assumed to occur in the scram discharge volume piping immediately following a reactor scram that cannot be reset. The events before core uncovering are discussed for both the worst-case accident sequence without operator action and for the more likely sequences with operator action. Without operator action, the events after core uncovering would include core meltdown and subsequent containment failure, and this event sequence has been determined through use of themore » MARCH code. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.
ATWS at Browns Ferry Unit One - accident sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, R.M.; Hodge, S.A.
1984-07-01
This study describes the predicted response of Unit One at the Browns Ferry Nuclear Plant to a postulated complete failure to scram following a transient occurrence that has caused closure of all Main Steam Isolation Valves (MSIVs). This hypothetical event constitutes the most severe example of the type of accident classified as Anticipated Transient Without Scram (ATWS). Without the automatic control rod insertion provided by scram, the void coefficient of reactivity and the mechanisms by which voids are formed in the moderator/coolant play a dominant role in the progression of the accident. Actions taken by the operator greatly influence themore » quantity of voids in the coolant and the effect is analyzed in this report. The progression of the accident sequence under existing and under recommended procedures is discussed. For the extremely unlikely cases in which equipment failure and wrongful operator actions might lead to severe core damage, the sequence of emergency action levels and the associated timing of events are presented.« less
Seiniger, Patrick; Bartels, Oliver; Pastor, Claus; Wisch, Marcus
2013-01-01
It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model. This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations. The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.
2002-07-01
The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enablemore » much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paladino, D.; Guentay, S.; Andreani, M.
2012-07-01
During a postulated severe accident with core degradation, hydrogen would form in the reactor pressure vessel mainly due to high temperatures zirconium-steam reaction and flow together with steam into the containment where it will mix with the containment atmosphere (steam-air). The hydrogen transport into the containment is a safety concern because it can lead to explosive mixtures through the associated phenomena of condensation, mixing and stratification. The ERCOSAM and SAMARA projects, co-financed by the European Union and the Russia, include various experiments addressing accident scenarios scaled down from existing plant calculations to different thermal-hydraulics facilities (TOSQAN, MISTRA, PANDA, SPOT). Themore » tests sequences aim to investigate hydrogen concentration build-up and stratification during a postulated accident and the effect of the activation of Severe Accident Management systems (SAMs), e.g. sprays, coolers and Passive Auto-catalytic Recombiners (PARs). Analytical activities, performed by the project participants, are an essential component of the projects, as they aim to improve and validate various computational methods. They accompany the projects in the various phases; plant calculations, scaling to generic containment and to the different facilities, planning pre-test and post-test simulations are performed. Code benchmark activities on the basis of conceptual near full scale HYMIX facility will finally provide a further opportunity to evaluate the applicability of the various methods to the study of scaling issues. (authors)« less
Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions
NASA Technical Reports Server (NTRS)
Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.
Accident sequence precursor events with age-related contributors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, G.A.; Kohn, W.E.
1995-12-31
The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as amore » contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.« less
Simulation on Poisson and negative binomial models of count road accident modeling
NASA Astrophysics Data System (ADS)
Sapuan, M. S.; Razali, A. M.; Zamzuri, Z. H.; Ibrahim, K.
2016-11-01
Accident count data have often been shown to have overdispersion. On the other hand, the data might contain zero count (excess zeros). The simulation study was conducted to create a scenarios which an accident happen in T-junction with the assumption the dependent variables of generated data follows certain distribution namely Poisson and negative binomial distribution with different sample size of n=30 to n=500. The study objective was accomplished by fitting Poisson regression, negative binomial regression and Hurdle negative binomial model to the simulated data. The model validation was compared and the simulation result shows for each different sample size, not all model fit the data nicely even though the data generated from its own distribution especially when the sample size is larger. Furthermore, the larger sample size indicates that more zeros accident count in the dataset.
Nishite, Yoshiaki; Takesawa, Shingo
2016-01-01
Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2011-01-01
Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Rosa, Felice
2006-07-01
In the ambit of the Severe Accident Network of Excellence Project (SARNET), funded by the European Union, 6. FISA (Fission Safety) Programme, one of the main tasks is the development and validation of the European Accident Source Term Evaluation Code (ASTEC Code). One of the reference codes used to compare ASTEC results, coming from experimental and Reactor Plant applications, is MELCOR. ENEA is a SARNET member and also an ASTEC and MELCOR user. During the first 18 months of this project, we performed a series of MELCOR and ASTEC calculations referring to a French PWR 900 MWe and to themore » accident sequence of 'Loss of Steam Generator (SG) Feedwater' (known as H2 sequence in the French classification). H2 is an accident sequence substantially equivalent to a Station Blackout scenario, like a TMLB accident, with the only difference that in H2 sequence the scram is forced to occur with a delay of 28 seconds. The main events during the accident sequence are a loss of normal and auxiliary SG feedwater (0 s), followed by a scram when the water level in SG is equal or less than 0.7 m (after 28 seconds). There is also a main coolant pumps trip when {delta}Tsat < 10 deg. C, a total opening of the three relief valves when Tric (core maximal outlet temperature) is above 603 K (330 deg. C) and accumulators isolation when primary pressure goes below 1.5 MPa (15 bar). Among many other points, it is worth noting that this was the first time that a MELCOR 1.8.5 input deck was available for a French PWR 900. The main ENEA effort in this period was devoted to prepare the MELCOR input deck using the code version v.1.8.5 (build QZ Oct 2000 with the latest patch 185003 Oct 2001). The input deck, completely new, was prepared taking into account structure, data and same conditions as those found inside ASTEC input decks. The main goal of the work presented in this paper is to put in evidence where and when MELCOR provides good enough results and why, in some cases mainly referring to its specific models (candling, corium pool behaviour, etc.) they were less good. A future work will be the preparation of an input deck for the new MELCOR 1.8.6. and to perform a code-to-code comparison with ASTEC v1.2 rev. 1. (author)« less
NASA Astrophysics Data System (ADS)
Nagai, Haruyasu; Terada, Hiroaki; Tsuduki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku
2017-09-01
In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric transport, dispersion and deposition model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. By the improvement of the ATDM simulation to use a new meteorological model and sophisticated deposition scheme, the ATDM simulations reproduced well the 137Cs and 131I deposition patterns. For the better reproducibility of dispersion processes, further refinement of the source term was carried out by optimizing it to the improved ATDM simulation by using new monitoring data.
MELCOR simulations of the severe accident at Fukushima Daiichi Unit 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoni, Jeffrey; Gauntt, Randall; Kalinich, Donald
In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of the MELCOR code and the Fukushima models against plant data. A MELCOR 2.1 model of the Fukushima Daiichi Unit 3 reactor is developed using plant-specific information and accident-specific boundary conditions, which involve considerable uncertainty duemore » to the inherent nature of severe accidents. Publicly available thermal-hydraulic data and radioactivity release estimates have evolved significantly since the accidents. Such data are expected to continually change as the reactors are decommissioned and more measurements are performed. As a result, the MELCOR simulations in this work primarily use boundary conditions that are based on available plant data as of May 2012.« less
MELCOR simulations of the severe accident at Fukushima Daiichi Unit 3
Cardoni, Jeffrey; Gauntt, Randall; Kalinich, Donald; ...
2014-05-01
In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of the MELCOR code and the Fukushima models against plant data. A MELCOR 2.1 model of the Fukushima Daiichi Unit 3 reactor is developed using plant-specific information and accident-specific boundary conditions, which involve considerable uncertainty duemore » to the inherent nature of severe accidents. Publicly available thermal-hydraulic data and radioactivity release estimates have evolved significantly since the accidents. Such data are expected to continually change as the reactors are decommissioned and more measurements are performed. As a result, the MELCOR simulations in this work primarily use boundary conditions that are based on available plant data as of May 2012.« less
Fission product transport analysis in a loss of decay heat removal accident at Browns Ferry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.P.; Weber, C.F.; Hodge, S.A.
1984-01-01
This paper summarizes an analysis of the movement of noble gases, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal (DHR) capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris ontomore » the drywell floor.« less
Methodology, status and plans for development and assessment of the code ATHLET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teschendorff, V.; Austregesilo, H.; Lerchl, G.
1997-07-01
The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The codemore » has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.« less
The effectiveness of using pictures in teaching young children about burn injury accidents.
Liu, Hsueh-Fen; Lin, Fang-Suey; Chang, Chien-Ju
2015-11-01
This study utilized the "story grammar" approach (Stein and Glenn, 1979) to analyze the within-corpus differences in recounting of sixty 6- and 7-year-old children, specifically whether illustrations (5-factor accident sequence) were or were not resorted to as a means to assist their narration of a home accident in which a child received a burn injury from hot soup. Our investigation revealed that the message presentation strategy "combining oral and pictures" better helped young children to memorize the story content (sequence of events leading to the burn injury) than "oral only." Specifically, the content of "the dangerous objects that caused the injury", "the unsafe actions that people involved took", and "how the people involved felt about the severity of the accident" differed significantly between the two groups. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
ERIC Educational Resources Information Center
Kolb, David C.
1989-01-01
Suggests staging simulated accidents for emergency planning and training. Describes planning and staging simulated accidents for outdoor programs. Offers tips on role playing and how to create imitation "wounds." Describes implementation of plan, emphasizing value of proper supervision and evaluation upon completion. (TES)
Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camous, F.; Jacq, F.; Chatelard, P.
1997-07-01
In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.P.; Hodge, S.A.; Weber, C.F.
1984-08-01
This report presents an analysis of the movement of noble gas, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris onto themore » drywell floor. The analysis of fission product transport presented in this report is based on the no-operator-action sequence and provides an estimate of fission product inventories, as a function of time, within 14 control volumes outside the core, with the atmosphere considered as the final control volume in the transport sequence. As in the case of accident sequences previously studied, we find small barrier for noble gas ejection to air, these gases being effectively purged from the drywell and reactor building by steam and concrete degradation gases. However, significant decay of krypton isotopes occurs during the long delay times involved in this sequence. In contrast, large degrees of holdup for iodine and cesium are projected due to the chemical reactivity of these elements. Only about 2 x 10/sup -4/% of the initial iodine and cesium activity are predicted to be released to the atmosphere. Principal barriers for release are deposition on reactor vessel and containment walls. A significant amount of iodine is captured in the water pool formed in the reactor building basement after actuation of the fire protection system.« less
Aircraft Loss-of-Control Accident Analysis
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Foster, John V.
2010-01-01
Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.
Potential safety benefits of intelligent cruise control systems.
Chira-Chavala, T; Yoo, S M
1994-04-01
Potential safety impact of a hypothetical intelligent cruise control system (ICCS) is evaluated in terms of changes in traffic accidents and some traffic operation characteristics affecting safety. The analysis of changes in traffic accidents is accomplished by in-depth examinations of police accident reports for four major counties in California. The evaluation of changes in traffic operation characteristics affecting safety is accomplished by vehicle simulation. The accident analysis reveals that the use of the hypothetical ICCS could potentially reduce traffic accidents by up to 7.5%. Preliminary vehicle simulation results based on a 10-vehicle convoy indicate that the use of the hypothetical ICCS could reduce frequencies of hard acceleration and deceleration, enhance speed harmonization among vehicles, and reduce incidence of "less-safe" headway.
Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.L.; Wilson, J.H.; Arwood, P.C.
The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) andmore » ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models.« less
Nishite, Yoshiaki; Takesawa, Shingo
2016-01-01
Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training. PMID:26981503
Monte Carlo simulation of single accident airport risk profile
NASA Technical Reports Server (NTRS)
1979-01-01
A computer simulation model was developed for estimating the potential economic impacts of a carbon fiber release upon facilities within an 80 kilometer radius of a major airport. The model simulated the possible range of release conditions and the resulting dispersion of the carbon fibers. Each iteration of the model generated a specific release scenario, which would cause a specific amount of dollar loss to the surrounding community. By repeated iterations, a risk profile was generated, showing the probability distribution of losses from one accident. Using accident probability estimates, the risks profile for annual losses was derived. The mechanics are described of the simulation model, the required input data, and the risk profiles generated for the 26 large hub airports.
Simulation study of traffic car accidents at a single lane roundabout
NASA Astrophysics Data System (ADS)
Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.
2016-07-01
In this paper, using the Nagel-Schreckenberg model, we numerically investigate the probability Pac of entering/circulating car accidents to occur at single-lane roundabout under the expanded open boundary. The roundabout consists of N on-ramps (respectively, off-ramps). The boundary is controlled by the injecting rates α1,α2 and the extracting rate β. The simulation results show that, depending on the injecting rates, the car accidents are more likely to happen when the capacity of the rotary is set to its maximum. Moreover, we found that the large values of rotary size L and the probability of preferential Pexit are reliable to improve safety and reduce accidents. However, the usage of indicator, the increase of β and/or N provokes an increase of car accident probability.
Analysis of helium purification system capability during water ingress accident in RDE
NASA Astrophysics Data System (ADS)
Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.
Motor vehicle seat belt restraint system analysis during rollover.
Meyer, Steven E; Hock, Davis; Forrest, Stephen; Herbst, Brian; Sances, Anthony; Kumaresan, Srirangam
2003-01-01
The multi-planar and multiple impact long duration accident sequence of a real world rollover results in multidirectional vehicle acceleration pulses and multiplanar occupant motions not typically seen in a planar crash sequence. Various researchers have documented that, while contemporary production emergency locking seatbelt retractors (ELRs) have been found to be extremely effective in the planar crashes in which they are extensively evaluated, when subjected to multi-planar acceleration environments their response may be different than expected. Specifically, accelerations in the vertical plane have been shown to substantially affect the timeliness of the retractors inertial sensor moving out of its neutral position and locking the seat belt. An analysis of the vehicle occupant motions relative to the acceleration pulses sensed at the retractor location indicates a time phase shift that, under certain circumstances, can result in unexpected seat belt spool out and occupant excursions in these multi-planar, multiple impact crash sequences. This paper will review the various previous studies focusing on the retractors response to these multidirectional, including vertical, acceleration environments and review statistical studies based upon U.S. government collected data indicating a significant difference in belt usage rates in rollover accidents as compared to all other planar accident modes. A significant number of real world accident case studies will be reviewed wherein the performance of ELR equipped seatbelt systems spooled out. Finally, the typical occupant injury and the associated mechanism due to belt spool out in real world accidents will be delineated.
Source Term Experiments Project (STEP): Aerosol characterization system
NASA Astrophysics Data System (ADS)
Schlenger, B. J.; Dunn, P. F.
A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They were designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Aq/In/Cd control rod material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.
Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less
Development of Northeast Asia Nuclear Power Plant Accident Simulator.
Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff
2017-06-15
A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hashimoto, Shoji; Matsuura, Toshiya; Nanko, Kazuki; Linkov, Igor; Shaw, George; Kaneko, Shinji
2013-01-01
The majority of the area contaminated by the Fukushima Dai-ichi nuclear power plant accident is covered by forest. To facilitate effective countermeasure strategies to mitigate forest contamination, we simulated the spatio-temporal dynamics of radiocesium deposited into Japanese forest ecosystems in 2011 using a model that was developed after the Chernobyl accident in 1986. The simulation revealed that the radiocesium inventories in tree and soil surface organic layer components drop rapidly during the first two years after the fallout. Over a period of one to two years, the radiocesium is predicted to move from the tree and surface organic soil to the mineral soil, which eventually becomes the largest radiocesium reservoir within forest ecosystems. Although the uncertainty of our simulations should be considered, the results provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident. PMID:23995073
Car-to-pedestrian collision reconstruction with injury as an evaluation index.
Weng, Yiliu; Jin, Xianlong; Zhao, Zhijie; Zhang, Xiaoyun
2010-07-01
Reconstruction of accidents is currently considered as a useful means in the analysis of accidents. By multi-body dynamics and numerical methods, and by adopting vehicle and pedestrian models, the scenario of the crash can often be simulated. When reconstructing the collisions, questions often arise regarding the criteria for the evaluation of simulation results. This paper proposes a reconstruction method for car-to-pedestrian collisions based on injuries of the pedestrians. In this method, pedestrian injury becomes a critical index in judging the correctness of the reconstruction result and guiding the simulation process. Application of this method to a real accident case is also presented in this paper. The study showed a good agreement between injuries obtained by numerical simulation and that by forensic identification. Copyright 2010 Elsevier Ltd. All rights reserved.
Technical challenges of upset recovery training : simulating the element of surprise
DOT National Transportation Integrated Search
2010-07-30
This invited paper is written in the context of a concerted effort by the aviation industry and regulators to reduce the occurrence of Loss of Control (LOC) accidents. LOC accidents have taken the lead among fatal airplane accidents, recently outpaci...
Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion
NASA Astrophysics Data System (ADS)
Lin, CherngShing; Hsu, JuiPei
2018-01-01
It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.
Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.
Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu
2012-12-01
To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.
ERIC Educational Resources Information Center
Griffeth, Rodger W.; Rogers, Ronald W.
1976-01-01
Examining the effects of the noxiousness of an automobile accident, probability of being in an accident, and efficacy of safe driving practices on driver education students, the results disclosed that all three independent variables affected attitudes toward safety, and performance on the simulator. (Author/BW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.
1982-08-01
experienced nearly the same wind shear problems as arose with the accident at JFK airport . The measurements are probably quite significant for Australia as...is between -4 and +4. (The accident at JFK airport occurred with a - +4). Roland produced z table showing that as a increased over the positive range...Eastern Airlines accident at JFK airport . He also mentioned that NSSL had a contract with MIT to use a flight simulator with a simulated convective wind
Assessment of the risk due to release of carbon fiber in civil aircraft accidents, phase 2
NASA Technical Reports Server (NTRS)
Pocinki, L.; Cornell, M. E.; Kaplan, L.
1980-01-01
The risk associated with the potential use of carbon fiber composite material in commercial jet aircraft is investigated. A simulation model developed to generate risk profiles for several airports is described. The risk profiles show the probability that the cost due to accidents in any year exceeds a given amount. The computer model simulates aircraft accidents with fire, release of fibers, their downwind transport and infiltration of buildings, equipment failures, and resulting ecomomic impact. The individual airport results were combined to yield the national risk profile.
Thermodynamic consequences of hydrogen combustion within a containment of pressurized water reactor
NASA Astrophysics Data System (ADS)
Bury, Tomasz
2011-12-01
Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajorek, Stephen; Diamond, David J.
This paper discusses liquid-fuel molten salt reactors, how they will operate under normal, transient, and accident conditions, and the results of an expert elicitation to determine the corresponding thermalhydraulic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC) to develop or identify modeling functionalities and tools required to carry out confirmatory analyses that examine the validity and accuracy of an applicant’s calculations and help determine the margin of safety in plant design. NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the statemore » of knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures-of-merit (FoMs) (e.g., salt temperature, velocity, and composition). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs.« less
Neutronics Phenomena Important in Modeling and Simulation of Liquid-Fuel Molten Salt Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David J.
This paper discusses liquid-fuel molten salt reactors, how they will operate under normal, transient, and accident conditions, and the results of an expert elicitation to determine the corresponding neutronic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC) to develop or identify modeling functionalities and tools required to carry out confirmatory analyses that examine the validity and accuracy of applicants’ calculations and help determine the margin of safety in plant design. NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the state ofmore » knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures-of-merit (FoMs) (e.g., power distribution, fluence, kinetics parameters and reactivity). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs.« less
Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment
NASA Technical Reports Server (NTRS)
Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.
2009-01-01
An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; MacPherson, R.E.
1983-03-01
The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through cladmore » melting at 1370/sup 0/C.« less
Driving simulator and neuropsychological [corrected] testing in OSAS before and under CPAP therapy.
Orth, M; Duchna, H-W; Leidag, M; Widdig, W; Rasche, K; Bauer, T T; Walther, J W; de Zeeuw, J; Malin, J-P; Schultze-Werninghaus, G; Kotterba, S
2005-11-01
Patients with obstructive sleep apnoea syndrome (OSAS) have an increased car accident rate. Investigations on accident frequency are based on case history, insurance reports and driving simulator studies. The present study combines neuropsychological testing of different attention aspects engaged in driving a car and driving simulation to evaluate a suitable instrument for assessing therapeutic effects of continuous positive airway pressure (CPAP). Driving simulator investigation and neuropsychological testing of alertness, vigilance and divided attention were performed in 31 patients with polysomnographically confirmed OSAS (apnoea-hypopnoea index 24.8+/-21.5.h(-1)) before, and 2 and 42 days after initiation of CPAP. Divided attention and alertness improved significantly during CPAP, whereas vigilance remained unchanged. However, accident frequency (OSAS before therapy: 2.7+/-2.0; 2 days after CPAP: 1.5+/-1.4; 42 days after CPAP: 0.9+/-1.3) and frequency of concentration faults (OSAS before therapy: 12.4+/-5.1; 2 days after CPAP: 6.5+/-3.9; 42 days after CPAP: 4.9+/-3.3) decreased in the simulated driving situation after 2 and 42 days of therapy. There was no relation between accident frequency, concentration faults and daytime sleepiness, as measured by the Epworth Sleepiness Scale, and polysomnographic or neuropsychological findings, respectively. In conclusion, the present results suggest that driving simulation is a possible benchmark parameter of driving performance in obstructive sleep apnoea syndrome patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi
1997-07-01
The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less
Using Immersive Virtual Reality to Reduce Work Accidents in Developing Countries.
Nedel, Luciana; de Souza, Vinicius Costa; Menin, Aline; Sebben, Lucia; Oliveira, Jackson; Faria, Frederico; Maciel, Anderson
2016-01-01
Thousands of people die or are injured in work accidents every year. Although the lack of safety equipment is one of the causes, especially in developing countries, behavioral issues caused by psychosocial factors are also to blame. This article introduces the use of immersive VR simulators to preventively reduce accidents in the workplace by detecting behavioral patterns that may lead to an increased predisposition to risk exposure. The system simulates day-to-day situations, analyzes user reactions, and classifies the behaviors according to four psychosocial groups. The results of a user study support the effectiveness of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinestiver, L.R.
Psychophysiological factors are not uncommon terms in the aviation incident/accident investigation sequence where human error is involved. It is highly suspect that the same psychophysiological factors may also exist in the industrial arena where operator personnel function; but, there is little evidence in literature indicating how management and subordinates cope with these factors to prevent or reduce accidents. It is apparent that human factors psychophysological training is quite evident in the aviation industry. However, while the industrial arena appears to analyze psychophysiological factors in accident investigations, there is little evidence that established training programs exist for supervisors and operator personnel.
NASA Astrophysics Data System (ADS)
Sudolská, Mária; Cantrel, Laurent; Budzák, Šimon; Černušák, Ivan
2014-03-01
Monohydrated complexes of iodine species (I, I2, HI, and HOI) have been studied by correlated ab initio calculations. The standard enthalpies of formation, Gibbs free energy and the temperature dependence of the heat capacities at constant pressure were calculated. The values obtained have been implemented in ASTEC nuclear accident simulation software to check the thermodynamic stability of hydrated iodine compounds in the reactor coolant system and in the nuclear containment building of a pressurised water reactor during a severe accident. It can be concluded that iodine complexes are thermodynamically unstable by means of positive Gibbs free energies and would be represented by trace level concentrations in severe accident conditions; thus it is well justified to only consider pure iodine species and not hydrated forms.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
1986-02-11
S86-28458 (28 Feb. 1986) --- Astronaut Michael L. Coats participates in a rehearsal for his assigned flight at the commander's station of the Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). NOTE: Coats, a veteran of spaceflight, originally trained for STS 61-H, which was cancelled in the wake of the Challenger accident. Following the Janaury 1986 accident he was named to serve on a mock crew (STS-61M) for personnel training and simulation purposes. Photo credit: NASA
Discussion on accuracy degree evaluation of accident velocity reconstruction model
NASA Astrophysics Data System (ADS)
Zou, Tiefang; Dai, Yingbiao; Cai, Ming; Liu, Jike
In order to investigate the applicability of accident velocity reconstruction model in different cases, a method used to evaluate accuracy degree of accident velocity reconstruction model is given. Based on pre-crash velocity in theory and calculation, an accuracy degree evaluation formula is obtained. With a numerical simulation case, Accuracy degrees and applicability of two accident velocity reconstruction models are analyzed; results show that this method is feasible in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klishin, G.S.; Seleznev, V.E.; Aleoshin, V.V.
1997-12-31
Gas industry enterprises such as main pipelines, compressor gas transfer stations, gas extracting complexes belong to the energy intensive industry. Accidents there can result into the catastrophes and great social, environmental and economic losses. Annually, according to the official data several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention of the accidents, analysis of the mechanisms of their development and prediction of their possible consequences are acute and important tasks nowadays. The accidents reasons are usually of a complicated character and can be presented as a complex combination of natural,more » technical and human factors. Mathematical and computer simulations are safe, rather effective and comparatively inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a failure occurrence and development, to assess its consequences and give recommendations to prevent it. Besides investigation of the failure cases, numerical simulation techniques play an important role in the treatment of the diagnostics results of the objects and in further construction of mathematical prognostic simulations of the object behavior in the period of time between two inspections. While solving diagnostics tasks and in the analysis of the failure cases, the techniques of theoretical mechanics, of qualitative theory of different equations, of mechanics of a continuous medium, of chemical macro-kinetics and optimizing techniques are implemented in the Conversion Design Bureau {number_sign}5 (DB{number_sign}5). Both universal and special numerical techniques and software (SW) are being developed in DB{number_sign}5 for solution of such tasks. Almost all of them are calibrated on the calculations of the simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth noting that in the long years of work there has been established a fruitful and effective collaboration of theoreticians, mathematicians and experimentalists of the institute to solve such tasks.« less
A Qualitative Study on Organizational Factors Affecting Occupational Accidents
ESKANDARI, Davood; JAFARI, Mohammad Javad; MEHRABI, Yadollah; KIAN, Mostafa Pouya; CHARKHAND, Hossein; MIRGHOTBI, Mostafa
2017-01-01
Background: Technical, human, operational and organizational factors have been influencing the sequence of occupational accidents. Among them, organizational factors play a major role in causing occupational accidents. The aim of this research was to understand the Iranian safety experts’ experiences and perception of organizational factors. Methods: This qualitative study was conducted in 2015 by using the content analysis technique. Data were collected through semi-structured interviews with 17 safety experts working in Iranian universities and industries and analyzed with a conventional qualitative content analysis method using the MAXQDA software. Results: Eleven organizational factors’ sub-themes were identified: management commitment, management participation, employee involvement, communication, blame culture, education and training, job satisfaction, interpersonal relationship, supervision, continuous improvement, and reward system. The participants considered these factors as effective on occupational accidents. Conclusion: The mentioned 11 organizational factors are probably involved in occupational accidents in Iran. Naturally, improving organizational factors can increase the safety performance and reduce occupational accidents. PMID:28435824
A Qualitative Study on Organizational Factors Affecting Occupational Accidents.
Eskandari, Davood; Jafari, Mohammad Javad; Mehrabi, Yadollah; Kian, Mostafa Pouya; Charkhand, Hossein; Mirghotbi, Mostafa
2017-03-01
Technical, human, operational and organizational factors have been influencing the sequence of occupational accidents. Among them, organizational factors play a major role in causing occupational accidents. The aim of this research was to understand the Iranian safety experts' experiences and perception of organizational factors. This qualitative study was conducted in 2015 by using the content analysis technique. Data were collected through semi-structured interviews with 17 safety experts working in Iranian universities and industries and analyzed with a conventional qualitative content analysis method using the MAXQDA software. Eleven organizational factors' sub-themes were identified: management commitment, management participation, employee involvement, communication, blame culture, education and training, job satisfaction, interpersonal relationship, supervision, continuous improvement, and reward system. The participants considered these factors as effective on occupational accidents. The mentioned 11 organizational factors are probably involved in occupational accidents in Iran. Naturally, improving organizational factors can increase the safety performance and reduce occupational accidents.
Predicting System Accidents with Model Analysis During Hybrid Simulation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land D.; Throop, David R.
2002-01-01
Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.
Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents
NASA Astrophysics Data System (ADS)
Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui
2015-09-01
The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.
Safety evaluation model of urban cross-river tunnel based on driving simulation.
Ma, Yingqi; Lu, Linjun; Lu, Jian John
2017-09-01
Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.
Nuclear accident dosimetry intercomparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, C.S.
1989-09-01
Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less
Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Dwight A.; Poore, III, Willis P.
2015-01-01
The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less
Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors
NASA Astrophysics Data System (ADS)
Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti
2010-12-01
Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.
Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents
NASA Astrophysics Data System (ADS)
Yamaji, Akifumi; Li, Xin
2016-08-01
Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.
Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.
2015-01-01
The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.
Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed
NASA Technical Reports Server (NTRS)
Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.
2016-01-01
The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.
Choudhary, Pushpa; Velaga, Nagendra R
2017-09-01
This study analysed and modelled the effects of conversation and texting (each with two difficulty levels) on driving performance of Indian drivers in terms of their mean speed and accident avoiding abilities; and further explored the relationship between speed reduction strategy of the drivers and their corresponding accident frequency. 100 drivers of three different age groups (young, mid-age and old-age) participated in the simulator study. Two sudden events of Indian context: unexpected crossing of pedestrians and joining of parked vehicles from road side, were simulated for estimating the accident probabilities. Generalized linear mixed models approach was used for developing linear regression models for mean speed and binary logistic regression models for accident probability. The results of the models showed that the drivers significantly compensated the increased workload by reducing their mean speed by 2.62m/s and 5.29m/s in the presence of conversation and texting tasks respectively. The logistic models for accident probabilities showed that the accident probabilities increased by 3 and 4 times respectively when the drivers were conversing or texting on a phone during driving. Further, the relationship between the speed reduction patterns and their corresponding accident frequencies showed that all the drivers compensated differently; but, among all the drivers, only few drivers, who compensated by reducing the speed by 30% or more, were able to fully offset the increased accident risk associated with the phone use. Copyright © 2017 Elsevier Ltd. All rights reserved.
Loss of DHR sequences at Browns Ferry Unit One - accident-sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.H.; Grene, S.R.; Harrington, R.M.
1983-05-01
This study describes the predicted response of Unit One at the Browns Ferry Nuclear Plant to a postulated loss of decay heat removal (DHR) capability following scram from full power with the power conversion system unavailable. In accident sequences without DHR capability, the residual heat removal (RHR) system functions of pressure suppression pool cooling and reactor vessel shutdown cooling are unavailable. Consequently, all decay heat energy is stored in the pressure suppression pool with a concomitant increase in pool temperature and primary containment pressure. With the assumption that DHR capability is not regained during the lengthy course of this accidentmore » sequence, the containment ultimately fails by overpressurization. Although unlikely, this catastrophic failure might lead to loss of the ability to inject cooling water into the reactor vessel, causing subsequent core uncovery and meltdown. The timing of these events and the effective mitigating actions that might be taken by the operator are discussed in this report.« less
RAMONA-3B application to Browns Ferry ATWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovik, G.C.; Neymotin, L.Y.; Saha, P.
1985-01-01
The Anticipated Transient Without Scram (ATWS) is known to be a dominant accident sequence for possible core melt in a Boiling Water Reactor (BWR). A recent Probabilistic Risk Assessment (PRA) analysis for the Browns Ferry nuclear power plant indicates that ATWS is the second most dominant transient for core melt in BWR/4 with Mark I containment. The most dominant sequence being the failure of long term decay heat removal function of the Residual Heat Removal (RHR) system. Of all the various ATWS scenarios, the Main Steam Isolation Valve (MSIV) closure ATWS sequence was chosen for present analysis because of itsmore » relatively high frequency of occurrence and its challenge to the residual heat removal system and containment integrity. The objective of this paper is to discuss four MSIV closure ATWS calculations using the RAMONA-3B code. The paper is a summary of a report being prepared for the USNRC Severe Accident Sequence Analysis (SASA) program which should be referred to for details. 10 refs., 20 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Larry J.; Howell, Michael; Robb, Kevin R.
Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate constant (3 times and 10 times that of the rate constant for APMT) had a negligible impact on the early stages of the accident and minor impacts on the accident progression after the first relocation of the fuel. At temperatures below 1,500°C, increasing the rate constant for APMT by a factor of 10 still resulted in only minor FeCrAl oxidation. In general, the gains afforded by the FeCrAl enhanced ATF concept with respect to accident sequence timing and combustible gas generation are consistent with previous efforts. Compared with the traditional Zircaloy-based cladding and channel box system, the FeCrAl concept could provide a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. For example, a station blackout was simulated in which cooling water injection was lost 36 hours after shutdown. The timing to first fuel relocation was delayed by approximately 5 h for the FeCrAl ATF concept compared with that of the traditional Zircaloy-based cladding and channel box system.« less
NASA Astrophysics Data System (ADS)
Liu, Luyao; Feng, Minquan
2018-03-01
[Objective] This study quantitatively evaluated risk probabilities of sudden water pollution accidents under the influence of risk sources, thus providing an important guarantee for risk source identification during water diversion from the Hanjiang River to the Weihe River. [Methods] The research used Bayesian networks to represent the correlation between accidental risk sources. It also adopted the sequential Monte Carlo algorithm to combine water quality simulation with state simulation of risk sources, thereby determining standard-exceeding probabilities of sudden water pollution accidents. [Results] When the upstream inflow was 138.15 m3/s and the average accident duration was 48 h, the probabilities were 0.0416 and 0.0056 separately. When the upstream inflow was 55.29 m3/s and the average accident duration was 48 h, the probabilities were 0.0225 and 0.0028 separately. [Conclusions] The research conducted a risk assessment on sudden water pollution accidents, thereby providing an important guarantee for the smooth implementation, operation, and water quality of the Hanjiang-to-Weihe River Diversion Project.
The Fukushima Daiichi Accident Study Information Portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shawn St. Germain; Curtis Smith; David Schwieder
This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear powermore » station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.« less
Simsek, V; Pozzoli, L; Unal, A; Kindap, T; Karaca, M
2014-11-15
The Chernobyl Nuclear Power Plant (CNPP) accident occurred on April 26 of 1986, it is still an episode of interest, due to the large amount of radionuclides dispersed in the atmosphere. Caesium-137 ((137)Cs) is one of the main radionuclides emitted during the Chernobyl accident, with a half-life of 30years, which can be accumulated in humans and animals, and for this reason the impacts on population are still monitored today. One of the main parameters in order to estimate the exposure of population to (137)Cs is the concentration in the air, during the days after the accident, and the deposition at surface. The transport and deposition of (137)Cs over Europe occurred after the CNPP accident has been simulated using the WRF-HYSPLIT modeling system. Four different vertical and temporal emission rate profiles have been simulated, as well as two different dry deposition velocities. The model simulations could reproduce fairly well the observations of (137)Cs concentrations and deposition, which were used to generate the 'Atlas of Caesium deposition on Europe after the Chernobyl accident' and published in 1998. An additional focus was given on (137)Cs deposition and air concentrations over Turkey, which was one of the main affected countries, but not included in the results of the Atlas. We estimated a total deposition of 2-3.5 PBq over Turkey, with 2 main regions affected, East Turkey and Central Black Sea coast until Central Anatolia, with values between 10 kBq m(-2) and 100 kBq m(-2). Mean radiological effective doses from simulated air concentrations and deposition has been estimated for Turkey reaching 0.15 mSv/year in the North Eastern part of Turkey, even if the contribution from ingestion of contaminated food and water is not considered, the estimated levels are largely below the 1 mSv limit indicated by the International Commission on Radiological Protection. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemistry, the Central Science? The History of the High School Science Sequence
ERIC Educational Resources Information Center
Sheppard, Keith; Robbins, Dennis M.
2005-01-01
Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.
Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle A.; Hales, Jason D.
2016-12-01
The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. Thus, the United States Department of Energy through its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is funded for a three-year period. The purpose of the HIP is to perform research into two potential accident tolerant concepts and provide an in-depth report to the Advanced Fuels Campaign (AFC) describing the behavior of themore » concepts, both of which are being considered for inclusion in a lead test assembly scheduled for placement into a commercial reactor in 2022. The initial focus of the HIP is on uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (INL, LANL, and ANL) a comprehensive mulitscale approach to modeling is being used including atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. In this paper, we present simulations of two proposed accident tolerant fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. The simulations investigate the fuel performance response of the proposed ATF systems under Loss of Coolant and Station Blackout conditions using the BISON code. Sensitivity analyses are completed using Sandia National Laboratories’ DAKOTA software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). Early results indicate that each concept has significant advantages as well as areas of concern. Further work is required prior to formulating the proposition report for the Advanced Fuels Campaign.« less
Udagawa, Sachiko; Iwase, Aiko; Susuki, Yuto; Kunimatsu-Sanuki, Shiho; Fukuchi, Takeo; Matsumoto, Chota; Ohno, Yuko; Ono, Hiroshi; Sugiyama, Kazuhisa; Araie, Makoto
2018-01-01
Purpose Traffic accidents are associated with the visual function of drivers, as well as many other factors. Driving simulator systems have the advantage of controlling for traffic- and automobile-related conditions, and using pinhole glasses can control the degree of concentric concentration of the visual field. We evaluated the effect of concentric constriction of the visual field on automobile driving, using driving simulator tests. Methods Subjects meeting criteria for normal eyesight were included in the study. Pinhole glasses with variable aperture sizes were adjusted to mimic the conditions of concentric visual field constrictions of 10° and 15°, using a CLOCK CHART®. The test contained 8 scenarios (2 oncoming right-turning cars and 6 jump-out events from the side). Results Eighty-eight subjects were included in the study; 37 (mean age = 52.9±15.8 years) subjects were assigned to the 15° group, and 51 (mean = 48.6±15.5 years) were assigned to the 10° group. For all 8 scenarios, the number of accidents was significantly higher among pinhole wearing subjects. The average number of all types of accidents per person was significantly higher in the pinhole 10° group (4.59±1.81) than the pinhole 15° group (3.68±1.49) (P = 0.032). The number of accidents associated with jump-out scenarios, in which a vehicle approaches from the side on a straight road with a good view, was significantly higher in the pinhole 10° group than in the pinhole 15° group. Conclusions Concentric constriction of the visual field was associated with increased number of traffic accidents. The simulation findings indicated that a visual field of 10° to 15° may be important for avoiding collisions in places where there is a straight road with a good view. PMID:29538425
A smart phone-based pocket fall accident detection, positioning, and rescue system.
Kau, Lih-Jen; Chen, Chih-Sheng
2015-01-01
We propose in this paper a novel algorithm as well as architecture for the fall accident detection and corresponding wide area rescue system based on a smart phone and the third generation (3G) networks. To realize the fall detection algorithm, the angles acquired by the electronic compass (ecompass) and the waveform sequence of the triaxial accelerometer on the smart phone are used as the system inputs. The acquired signals are then used to generate an ordered feature sequence and then examined in a sequential manner by the proposed cascade classifier for recognition purpose. Once the corresponding feature is verified by the classifier at current state, it can proceed to next state; otherwise, the system will reset to the initial state and wait for the appearance of another feature sequence. Once a fall accident event is detected, the user's position can be acquired by the global positioning system (GPS) or the assisted GPS, and sent to the rescue center via the 3G communication network so that the user can get medical help immediately. With the proposed cascaded classification architecture, the computational burden and power consumption issue on the smart phone system can be alleviated. Moreover, as we will see in the experiment that a distinguished fall accident detection accuracy up to 92% on the sensitivity and 99.75% on the specificity can be obtained when a set of 450 test actions in nine different kinds of activities are estimated by using the proposed cascaded classifier, which justifies the superiority of the proposed algorithm.
Ensemble Simulation of the Atmospheric Radionuclides Discharged by the Fukushima Nuclear Accident
NASA Astrophysics Data System (ADS)
Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru
2013-04-01
Enormous amounts of radionuclides were discharged into the atmosphere by a nuclear accident at the Fukushima Daiichi nuclear power plant (FDNPP) after the earthquake and tsunami on 11 March 2011. The radionuclides were dispersed from the power plant and deposited mainly over eastern Japan and the North Pacific Ocean. A lot of numerical simulations of the radionuclide dispersion and deposition had been attempted repeatedly since the nuclear accident. However, none of them were able to perfectly simulate the distribution of dose rates observed after the accident over eastern Japan. This was partly due to the error of the wind vectors and precipitations used in the numerical simulations; unfortunately, their deterministic simulations could not deal with the probability distribution of the simulation results and errors. Therefore, an ensemble simulation of the atmospheric radionuclides was performed using the ensemble Kalman filter (EnKF) data assimilation system coupled with the Japan Meteorological Agency (JMA) non-hydrostatic mesoscale model (NHM); this mesoscale model has been used operationally for daily weather forecasts by JMA. Meteorological observations were provided to the EnKF data assimilation system from the JMA operational-weather-forecast dataset. Through this ensemble data assimilation, twenty members of the meteorological analysis over eastern Japan from 11 to 31 March 2011 were successfully obtained. Using these meteorological ensemble analysis members, the radionuclide behavior in the atmosphere such as advection, convection, diffusion, dry deposition, and wet deposition was simulated. This ensemble simulation provided the multiple results of the radionuclide dispersion and distribution. Because a large ensemble deviation indicates the low accuracy of the numerical simulation, the probabilistic information is obtainable from the ensemble simulation results. For example, the uncertainty of precipitation triggered the uncertainty of wet deposition; the uncertainty of wet deposition triggered the uncertainty of atmospheric radionuclide amounts. Then the remained radionuclides were transported downwind; consequently the uncertainty signal of the radionuclide amounts was propagated downwind. The signal propagation was seen in the ensemble simulation by the tracking of the large deviation areas of radionuclide concentration and deposition. These statistics are able to provide information useful for the probabilistic prediction of radionuclides.
A Study of Airline Passenger Susceptibility to Atmospheric Turbulence Hazard
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2000-01-01
A simple, generic, simulation math model of a commercial airliner has been developed to study the susceptibility of unrestrained passengers to large, discrete gust encounters. The math model simulates the longitudinal motion to vertical gusts and includes (1) motion of an unrestrained passenger in the rear cabin, (2) fuselage flexibility, (3) the lag in the downwash from the wing to the tail, and (4) unsteady lift effects. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths of a simulated mountain rotor. A comparison of the model-predicted responses to data from three accidents indicates that the accelerations in actual accidents are sometimes much larger than the simulated gust encounters.
Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident
NASA Astrophysics Data System (ADS)
Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.
2012-04-01
Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, J J; Gallagher, D W; Modarres, M
Appendices are presented concerning isolation condenser makeup; vapor suppression system; station air system; reactor building closed cooling water system; turbine building secondary closed water system; service water system; emergency service water system; fire protection system; emergency ac power; dc power system; event probability estimation; methodology of accident sequence quantification; and assignment of dominant sequences to release categories.
Safety impacts of red light cameras at signalized intersections based on cellular automata models.
Chai, C; Wong, Y D; Lum, K M
2015-01-01
This study applies a simulation technique to evaluate the hypothesis that red light cameras (RLCs) exert important effects on accident risks. Conflict occurrences are generated by simulation and compared at intersections with and without RLCs to assess the impact of RLCs on several conflict types under various traffic conditions. Conflict occurrences are generated through simulating vehicular interactions based on an improved cellular automata (CA) model. The CA model is calibrated and validated against field observations at approaches with and without RLCs. Simulation experiments are conducted for RLC and non-RLC intersections with different geometric layouts and traffic demands to generate conflict occurrences that are analyzed to evaluate the hypothesis that RLCs exert important effects on road safety. The comparison of simulated conflict occurrences show favorable safety impacts of RLCs on crossing conflicts and unfavorable impacts for rear-end conflicts during red/amber phases. Corroborative results are found from broad analysis of accident occurrence. RLCs are found to have a mixed effect on accident risk at signalized intersections: crossing collisions are reduced, whereas rear-end collisions may increase. The specially developed CA model is found to be a feasible safety assessment tool.
Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa; ...
2016-09-07
VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa
VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less
Study on Brain Injury Biomechanics Based on the Real Pedestrian Traffic Accidents
NASA Astrophysics Data System (ADS)
Feng, Chengjian; Yin, Zhiyong
This paper aimed to research the dynamic response and injury mechanisms of head based on real pedestrian traffic accidents with video. The kinematics of head contact with the vehicle was reconstructed by using multi-body dynamics models. These calculated parameters such as head impact velocity and impact location and head orientation were applied to the THUMS-4 FE head model as initial conditions. The intracranial pressure and stress of brain were calculated from simulations of head contact with the vehicle. These results were consistent with that of others. It was proved that real traffic accidents combined with simulation analysis can be used to study head injury biomechanics. Increasing in the number of cases, a tolerance limit of brain injury will be put forward.
A cascading failure model for analyzing railway accident causation
NASA Astrophysics Data System (ADS)
Liu, Jin-Tao; Li, Ke-Ping
2018-01-01
In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.
Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempe, J. L.; Knudson, D. L.; Lutz, R. J.
The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure thatmore » critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that significantly exceeded QE limits for extended time periods for the low frequency STSBO sequence evaluated in this study. It is recognized that the core damage frequency (CDF) of the sequence evaluated in this scoping effort would be considerably lower if evaluations considered new FLEX equipment being installed by industry. Nevertheless, because of uncertainties in instrumentation response when exposed to conditions beyond QE limits and alternate challenges associated with different sequences that may impact sensor performance, it is recommended that additional evaluations of instrumentation performance be completed to provide confidence that operators have access to accurate, relevant, and timely information on the status of reactor systems for a broad range of challenges associated with risk important severe accident sequences.« less
Sances, Anthony; Kumaresan, Srirangam; Clarke, Richard; Herbst, Brian; Meyer, Steve
2005-01-01
A better understanding of occupant kinematics in rollover accidents helps to advance biomechanical knowledge and to enhance the safety features of motor vehicles. While many rollover accident simulation studies have adopted the static approach to delineate the occupant kinematics in rollover accidents, very few studies have attempted the dynamic approach. The present work was designed to study the biomechanics of restrained occupants during rollover accidents using the steady-state dynamic spit test and to address the importance of keeping the lap belt fastened. Experimental tests were conducted using an anthropometric 50% Hybrid III dummy in a vehicle. The vehicle was rotated at 180 degrees/second and the dummy was restrained using a standard three-point restraint system. The lap belt of the dummy was fastened either by using the cinching latch plate or by locking the retractor. Three configurations of shoulder belt harness were simulated: shoulder belt loose on chest with cinch plate, shoulder belt under the left arm and shoulder belt behind the chest. In all tests, the dummy stayed within the confinement of the vehicle indicating that the securely fastened lap belt holds the dummy with dynamic movement of 3 1/2" to 4". The results show that occupant movement in rollover accidents is least affected by various shoulder harness positions with a securely fastened lap belt. The present study forms a first step in delineating the biomechanics of occupants in rollover accidents.
[Computer simulation by passenger wound analysis of vehicle collision].
Zou, Dong-Hua; Liu, Nning-Guo; Shen, Jie; Zhang, Xiao-Yun; Jin, Xian-Long; Chen, Yi-Jiu
2006-08-15
To reconstruct the course of vehicle collision, so that to provide the reference for forensic identification and disposal of traffic accidents. Through analyzing evidences left both on passengers and vehicles, technique of momentum impulse combined with multi-dynamics was applied to simulate the motion and injury of passengers as well as the track of vehicles. Model of computer stimulation perfectly reconstructed phases of the traffic collision, which coincide with details found by forensic investigation. Computer stimulation is helpful and feasible for forensic identification in traffic accidents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin
2008-05-01
This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accidentmore » progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.« less
DOT National Transportation Integrated Search
2009-10-13
This paper describes a probabilistic approach to estimate the conditional probability of release of hazardous materials from railroad tank cars during train accidents. Monte Carlo methods are used in developing a probabilistic model to simulate head ...
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1982-07-01
A probabilistic risk assessment (PRA) was made of the Browns Ferry, Unit 1, nuclear plant as part of the Nuclear Regulatory Commission's Interim Reliability Evaluation Program (IREP). Specific goals of the study were to identify the dominant contributors to core melt, develop a foundation for more extensive use of PRA methods, expand the cadre of experienced PRA practitioners, and apply procedures for extension of IREP analyses to other domestic light water reactors. Event tree and fault tree analyses were used to estimate the frequency of accident sequences initiated by transients and loss of coolant accidents. External events such as floods,more » fires, earthquakes, and sabotage were beyond the scope of this study and were, therefore, excluded. From these sequences, the dominant contributors to probable core melt frequency were chosen. Uncertainty and sensitivity analyses were performed on these sequences to better understand the limitations associated with the estimated sequence frequencies. Dominant sequences were grouped according to common containment failure modes and corresponding release categories on the basis of comparison with analyses of similar designs rather than on the basis of detailed plant-specific calculations.« less
Reactivity Insertion Accident (RIA) Capability Status in the BISON Fuel Performance Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Richard L.; Folsom, Charles Pearson; Pastore, Giovanni
2016-05-01
One of the Challenge Problems being considered within CASL relates to modelling and simulation of Light Water Reactor LWR) fuel under Reactivity Insertion Accident (RIA) conditions. BISON is the fuel performance code used within CASL for LWR fuel under both normal operating and accident conditions, and thus must be capable of addressing the RIA challenge problem. This report outlines required BISON capabilities for RIAs and describes the current status of the code. Information on recent accident capability enhancements, application of BISON to a RIA benchmark exercise, and plans for validation to RIA behavior are included.
Collapse Causes Analysis and Numerical Simulation for a Rigid Frame Multiple Arch Bridge
NASA Astrophysics Data System (ADS)
Zuo, XinDai
2018-03-01
Following the collapse accident of Baihe Bridge, the author built a plane model of the whole bridge firstly and analyzed the carrying capacity of the structure for a 170-tons lorry load. Then the author built a spatial finite element model which can accurately simulate the bridge collapse course. The collapse course was simulated and the accident scene was reproduced. Spatial analysis showed rotational stiffness of the pier bottom had a large influence on the collapse from of the superstructures. The conclusion was that the170 tons lorry load and multiple arch bridge design were the important factors leading to collapse.
Modeling and simulation of cars in frontal collision
NASA Astrophysics Data System (ADS)
Deac, S. C.; Perescu, A.; Simoiu, D.; Nyaguly, E.; Crâştiu, I.; Bereteu, L.
2018-01-01
Protection of cars, mainly drivers and passengers in a collision are very important issues worldwide. Statistics given by “World Health Organization” are alarming rate of increase in the number of road accidents, most claiming with serious injury, human and material loss. For these reasons has been a continuous development of protection systems, especially car causing three quarters of all accidents. Mathematical modeling and simulation of a car behavior during a frontal collision leads to new solutions in the development of protective systems. This paper presents several structural models of a vehicle during a frontal collision and its behavior is analyzed by numerical simulation using Simulink.
Padmanaban, Jeya; Shields, Leland E; Scheibe, Robert R; Eyges, Vitaly E
2008-10-01
This study investigated 478 police accident reports from 9 states to examine and characterize rollover crashes involving ESC-equipped vehicles. The focus was on the sequence of critical events leading to loss of control and rollover, and the interactions between the accident, driver, and environment. Results show that, while ESC is effective in reducing loss of control leading to certain rollover crashes, its effectiveness is diminished in others, particularly when the vehicle departs the roadway or when environmental factors such as slick road conditions or driver factors such as speeding, distraction, fatigue, impairment, or overcorrection are present.
Padmanaban, Jeya; Shields, Leland E.; Scheibe, Robert R.; Eyges, Vitaly E.
2008-01-01
This study investigated 478 police accident reports from 9 states to examine and characterize rollover crashes involving ESC-equipped vehicles. The focus was on the sequence of critical events leading to loss of control and rollover, and the interactions between the accident, driver, and environment. Results show that, while ESC is effective in reducing loss of control leading to certain rollover crashes, its effectiveness is diminished in others, particularly when the vehicle departs the roadway or when environmental factors such as slick road conditions or driver factors such as speeding, distraction, fatigue, impairment, or overcorrection are present. PMID:19026219
Code of Federal Regulations, 2010 CFR
2010-01-01
... licensed before 1997, or use simplified, inherent, passive, or other innovative means to accomplish their... sequences, including equilibrium core conditions; or (2) There has been acceptable testing of a prototype... accident sequences, including equilibrium core conditions. If a prototype plant is used to comply with the...
DOT National Transportation Integrated Search
1995-12-01
Partial failures of aircraft primary flight-control systems and structural : damages to aircraft during flight have led to catastrophic accidents with : subsequent loss of life. These accidents can be prevented if sufficient : alternate control autho...
The engineering investigation of aircraft accidents
NASA Technical Reports Server (NTRS)
Anderson, S. B.
1982-01-01
The organization and plan for an investigation, procedures used at the scene of the accident, engineering aspects covered in the main investigation, use of special analytical techniques and simulation tools, and use of flight recorder data are discussed. Examples of investigations are used to illustrate the processes used.
Diagnostics of Loss of Coolant Accidents Using SVC and GMDH Models
NASA Astrophysics Data System (ADS)
Lee, Sung Han; No, Young Gyu; Na, Man Gyun; Ahn, Kwang-Il; Park, Soo-Yong
2011-02-01
As a means of effectively managing severe accidents at nuclear power plants, it is important to identify and diagnose accident initiating events within a short time interval after the accidents by observing the major measured signals. The main objective of this study was to diagnose loss of coolant accidents (LOCAs) using artificial intelligence techniques, such as SVC (support vector classification) and GMDH (group method of data handling). In this study, the methodologies of SVC and GMDH models were utilized to discover the break location and estimate the break size of the LOCA, respectively. The 300 accident simulation data (based on MAAP4) were used to develop the SVC and GMDH models, and the 33 test data sets were used to independently confirm whether or not the SVC and GMDH models work well. The measured signals from the reactor coolant system, steam generators, and containment at a nuclear power plant were used as inputs to the models, and the 60 sec time-integrated values of the input signals were used as inputs into the SVC and GMDH models. The simulation results confirmed that the proposed SVC model can identify the break location and the proposed GMDH models can estimate the break size accurately. In addition, even if the measurement errors exist and safety systems actuate, the proposed SVC and GMDH models can discover the break locations without a misclassification and accurately estimate the break size.
Zhu, Yuan; Chen, Guo-ming
2010-06-15
To study the sulfur dioxide (SO(2)) toxic environment after the ignition of uncontrolled sour gas flow of well blowout, we propose an integrated model to simulate the accident scenario and assess the consequences of SO(2) poisoning. The accident simulation is carried out based on computational fluid dynamics (CFD), which is composed of well blowout dynamics, combustion of sour gas, and products dispersion. Furthermore, detailed complex terrains are built and boundary layer flows are simulated according to Pasquill stability classes. Then based on the estimated exposure dose derived from the toxic dose-response relationship, quantitative assessment is carried out by using equivalent emergency response planning guideline (ERPG) concentration. In this case study, the contaminated areas are graded into three levels, and the areas, maximal influence distances, and main trajectories are predicted. We show that wind drives the contamination and its distribution to spread downwind, and terrains change the distribution shape through spatial aggregation and obstacles. As a result, the most dangerous regions are the downwind areas, the foot of the slopes, and depression areas such as valleys. These cause unfavorable influences on emergency response for accident control and public evacuation. In addition, the effectiveness of controlling the number of deaths by employing ignition is verified in theory. Based on the assessment results, we propose some suggestions for risk assessment, emergency response and accident decision making. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Budnitz, Robert J.
If Carbon dioxide Capture and Storage (CCS) is to be effective in mitigating climate change, it will need to be carried out on a very large scale. This will involve many thousands of miles of dedicated high-pressure pipelines in order to transport many millions of tonnes of CO 2 annually, with the CO 2 delivered to many thousands of wells that will inject the CO 2 underground. The new CCS infrastructure could rival in size the current U.S. upstream natural gas pipeline and well infrastructure. This new infrastructure entails hazards for life, health, animals, the environment, and natural resources. Pipelinesmore » are known to rupture due to corrosion, from external forces such as impacts by vehicles or digging equipment, by defects in construction, or from the failure of valves and seals. Similarly, wells are vulnerable to catastrophic failure due to corrosion, cement degradation, or operational mistakes. While most accidents involving pipelines and wells will be minor, there is the inevitable possibility of accidents with very high consequences, especially to public health. The most important consequence of concern is CO 2 release to the environment in concentrations sufficient to cause death by asphyxiation to nearby populations. Such accidents are thought to be very unlikely, but of course they cannot be excluded, even if major engineering effort is devoted (as it will be) to keeping their probability low and their consequences minimized. This project has developed a methodology for analyzing the risks of these rare but high-consequence accidents, using a step-by-step probabilistic methodology. A key difference between risks for pipelines and wells is that the former are spatially distributed along the pipe whereas the latter are confined to the vicinity of the well. Otherwise, the methodology we develop for risk assessment of pipeline and well failures is similar and provides an analysis both of the annual probabilities of accident sequences of concern and of their consequences, and crucially the methodology provides insights into what measures might be taken to mitigate those accident sequences identified as of concern. Mitigating strategies could address reducing the likelihood of an accident sequence of concern, or reducing the consequences, or some combination. The methodology elucidates both local and integrated risks along the pipeline or at the well providing information useful to decision makers at various levels including local (e.g., property owners and town councils), regional (e.g., county and state representatives), and national levels (federal regulators and corporate proponents).« less
Simulator fidelity requirements : the case of platform motion
DOT National Transportation Integrated Search
1998-05-01
Today, the use of airplane simulators in pilot training and evaluation is universal. Simulators not only enable savings in training cost, but they have also practically eliminated training accidents for major airlines. They allow the training of emer...
Application of forensic image analysis in accident investigations.
Verolme, Ellen; Mieremet, Arjan
2017-09-01
Forensic investigations are primarily meant to obtain objective answers that can be used for criminal prosecution. Accident analyses are usually performed to learn from incidents and to prevent similar events from occurring in the future. Although the primary goal may be different, the steps in which information is gathered, interpreted and weighed are similar in both types of investigations, implying that forensic techniques can be of use in accident investigations as well. The use in accident investigations usually means that more information can be obtained from the available information than when used in criminal investigations, since the latter require a higher evidence level. In this paper, we demonstrate the applicability of forensic techniques for accident investigations by presenting a number of cases from one specific field of expertise: image analysis. With the rapid spread of digital devices and new media, a wealth of image material and other digital information has become available for accident investigators. We show that much information can be distilled from footage by using forensic image analysis techniques. These applications show that image analysis provides information that is crucial for obtaining the sequence of events and the two- and three-dimensional geometry of an accident. Since accident investigation focuses primarily on learning from accidents and prevention of future accidents, and less on the blame that is crucial for criminal investigations, the field of application of these forensic tools may be broader than would be the case in purely legal sense. This is an important notion for future accident investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less
Locomotive crashworthiness research
DOT National Transportation Integrated Search
2015-04-01
conducts research on locomotive crashworthiness. The research approach includes four phases: : 1. Accident investigations to assemble sequences of events leading to injury and fatality. : 2. Locomotive performance is analyzed, and potential improveme...
NASA Astrophysics Data System (ADS)
Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.
2016-11-01
Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.
Development of water environment information management and water pollution accident response system
NASA Astrophysics Data System (ADS)
Zhang, J.; Ruan, H.
2009-12-01
In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.
DOT National Transportation Integrated Search
2015-04-01
Runway overrun accidents occurring during landings in slippery conditions continue to occur frequently worldwide. After a : number of specific landing overrun accidents in the U.S., the National Transportation Safety Board (NTSB) issued a safety : re...
Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.
Behavior analysis of container ship in maritime accident in order to redefine the operating criteria
NASA Astrophysics Data System (ADS)
Ancuţa, C.; Stanca, C.; Andrei, C.; Acomi, N.
2017-08-01
In order to enhance the efficiency of maritime transport, container ships operators proceeded to increase the sizes of ships. The latest generation of ships in operation has 19,000 TEU capacity and the perspective is 21,000 TEU within the next years. The increasing of the sizes of container ships involves risks of maritime accidents occurrences. Nowadays, the general rules on operational security, tend to be adjusted as a result of the evaluation for each vessel. To create the premises for making an informed decision, the captain have to be aware of ships behavior in such situations. Not less important is to assure permanent review of the procedures for operation of ship, including the specific procedures in special areas, confined waters or separation schemes. This paper aims at analysing the behavior of the vessel and the respond of the structure of a container ship in maritime accident, in order to redefine the operating criteria. The method selected by authors for carrying out the research is computer simulations. Computer program provides the responses of the container ship model in various situations. Therefore, the simulations allow acquisition of a large category of data, in the scope of improving the prevention of accidents or mitigation of effects as much as possible. Simulations and assessments of certain situations that the ship might experience will be carried out to redefine the operating criteria. The envisaged scenarios are: introducing of maneuver speed for specific areas with high risk of collision or grounding, introducing of flooding scenarios of some compartments in loading programs, conducting of complex simulations in various situations for each vessel type. The main results of this work are documented proposals for operating criteria, intended to improve the safety in case of marine accidents, collisions and groundings. Introducing of such measures requires complex cost benefit analysis, that should not neglect the extreme economic impact that may result from such casualties.
Otte, Dietmar; Jänsch, Michael; Haasper, Carl
2012-01-01
Within a study of accident data from GIDAS (German In-Depth Accident Study), vulnerable road users are investigated regarding injury risk in traffic accidents. GIDAS is the largest in-depth accident study in Germany. Due to a well-defined sampling plan, representativeness with respect to the federal statistics is also guaranteed. A hierarchical system ACASS (Accident Causation Analysis with Seven Steps) was developed in GIDAS, describing the human causation factors in a chronological sequence. The accordingly classified causation factors - derived from the systematic of the analysis of human accident causes ("7 steps") - can be used to describe the influence of accident causes on the injury outcome. The bases of the study are accident documentations over ten years from 1999 to 2008 with 8204 vulnerable road users (VRU), of which 3 different groups were selected as pedestrians n=2041, motorcyclists n=2199 and bicyclists n=3964, and analyzed on collisions with cars and trucks as well as vulnerable road users alone. The paper will give a description of the injury pattern and injury mechanisms of accidents. The injury frequencies and severities are pointed out considering different types of VRU and protective measures of helmet and clothes of the human body. The impact points are demonstrated on the car, following to conclusion of protective measures on the vehicle. Existing standards of protection devices as well as interdisciplinary research, including accident and injury statistics, are described. With this paper, a summarization of the existing possibilities on protective measures for pedestrians, bicyclists and motorcyclists is given and discussed by comparison of all three groups of vulnerable road users. Also the relevance of special impact situations and accident causes mainly responsible for severe injuries are pointed out, given the new orientation of research for the avoidance and reduction of accident patterns. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-15
This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in thesemore » appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.« less
Upon the reconstruction of accidents triggered by tire explosion. Analytical model and case study
NASA Astrophysics Data System (ADS)
Gaiginschi, L.; Agape, I.; Talif, S.
2017-10-01
Accident Reconstruction is important in the general context of increasing road traffic safety. In the casuistry of traffic accidents, those caused by tire explosions are critical under the severity of consequences, because they are usually happening at high speeds. Consequently, the knowledge of the running speed of the vehicle involved at the time of the tire explosion is essential to elucidate the circumstances of the accident. The paper presents an analytical model for the kinematics of a vehicle which, after the explosion of one of its tires, begins to skid, overturns and rolls. The model consists of two concurent approaches built as applications of the momentum conservation and energy conservation principles, and allows determination of the initial speed of the vehicle involved, by running backwards the sequences of the road event. The authors also aimed to both validate the two distinct analytical approaches by calibrating the calculation algorithms on a case study
Investigating accident causation through information network modelling.
Griffin, T G C; Young, M S; Stanton, N A
2010-02-01
Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.
Emergence of Complexity in Protein Functions and Metabolic Networks
NASA Technical Reports Server (NTRS)
Pohorille, Andzej
2009-01-01
In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.
BNL severe-accident sequence experiments and analysis program. [PWR; BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, G.A.; Ginsberg, T.; Tutu, N.K.
1983-01-01
In the analysis of degraded core accidents, the two major sources of pressure loading on light water reactor containments are: steam generation from core debris-water thermal interactions; and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described.
[Automobile versus pedestrian accidents analysis by fixed-parameters computer simulation].
Mao, Ming-Yuan; Chen, Yi-Jiu; Liu, Ning-Guo; Zou, Dong-Hua; Liu, Jun-Yong; Jin, Xian-Long
2008-04-01
Using computer simulation to analyze the effects of speed, type of automobile and impacted position on crash-course and injuries of pedestrians in automobile vs. pedestrian accidents. Automobiles (bus, minibus, car and truck) and pedestrian models were constructed with multi-body dynamics computing method. The crashes were simulated at different impact speeds (20, 30, 40, 50 and 60 km/h) and different positions (front, lateral and rear of pedestrians). Crash-courses and their biomechanical responses were studied. If the type of automobile and impact position were the same, the crash-courses were similar (impact speed < or = 60 km/h). There were some characteristics in the head acceleration, upper neck axial force and leg axial force. Multi-body dynamics computer simulation of crash can be applied to analyze crash-course and injuries (head, neck and leg) of pedestrians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tusheva, P.; Schaefer, F.; Kliem, S.
2012-07-01
The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safetymore » systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)« less
Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.
2015-08-01
Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramicmore » microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, FeCrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.« less
Advanced Instrumentation for Transient Reactor Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Michael L.; Anderson, Mark; Imel, George
Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less
Estimating Driving Performance Based on EEG Spectrum Analysis
NASA Astrophysics Data System (ADS)
Lin, Chin-Teng; Wu, Ruei-Cheng; Jung, Tzyy-Ping; Liang, Sheng-Fu; Huang, Teng-Yi
2005-12-01
The growing number of traffic accidents in recent years has become a serious concern to society. Accidents caused by driver's drowsiness behind the steering wheel have a high fatality rate because of the marked decline in the driver's abilities of perception, recognition, and vehicle control abilities while sleepy. Preventing such accidents caused by drowsiness is highly desirable but requires techniques for continuously detecting, estimating, and predicting the level of alertness of drivers and delivering effective feedbacks to maintain their maximum performance. This paper proposes an EEG-based drowsiness estimation system that combines electroencephalogram (EEG) log subband power spectrum, correlation analysis, principal component analysis, and linear regression models to indirectly estimate driver's drowsiness level in a virtual-reality-based driving simulator. Our results demonstrated that it is feasible to accurately estimate quantitatively driving performance, expressed as deviation between the center of the vehicle and the center of the cruising lane, in a realistic driving simulator.
Investigation of Zircaloy-2 oxidation model for SFP accident analysis
NASA Astrophysics Data System (ADS)
Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu; Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki
2017-05-01
The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study.
Comparative analysis of PA-31-350 Chieftain (N44LV) accident and NASA crash test data
NASA Technical Reports Server (NTRS)
Hayduk, R. J.
1979-01-01
A full scale, controlled crash test to simulate the crash of a Piper PA-31-350 Chieftain airplane is described. Comparisons were performed between the simulated crash and the actual crash in order to assess seat and floor behavior, and to estimate the acceleration levels experienced in the craft at the time of impact. Photographs, acceleration histories, and the tested airplane crash data is used to augment the accident information to better define the crash conditions. Measured impact parameters are presented along with flight path velocity and angle in relation to the impact surface.
NASA Standard for Models and Simulations (M and S): Development Process and Rationale
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Blattnig, Steve R.; Green, Lawrence L.; Hemsch, Michael J.; Luckring, James M.; Morison, Joseph H.; Tripathi, Ram K.
2009-01-01
After the Columbia Accident Investigation Board (CAIB) report. the NASA Administrator at that time chartered an executive team (known as the Diaz Team) to identify the CAIB report elements with Agency-wide applicability, and to develop corrective measures to address each element. This report documents the chronological development and release of an Agency-wide Standard for Models and Simulations (M&S) (NASA Standard 7009) in response to Action #4 from the report, "A Renewed Commitment to Excellence: An Assessment of the NASA Agency-wide Applicability of the Columbia Accident Investigation Board Report, January 30, 2004".
The Quantitative Study of Communicative Success: Politeness and Accidents in Aviation Discourse.
ERIC Educational Resources Information Center
Linde, Charlotte
1988-01-01
Uses transcripts of eight aviation accidents and 14 flight simulator sessions to study mitigation. A four-degree scale is developed to quantify the use of mitigation: (1) high mitigation; (2) low mitigation; (3) direct utterance; and (4) aggravation. Mitigation is sensitive to social rank and sometimes less effective than direct utterances in…
NASA Technical Reports Server (NTRS)
Crider, Dennis; Foster, John V.
2012-01-01
In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins. This paper addresses simulation modeling requirements that are unique to turboprop transport aircraft and highlights the growing need for aerodynamic models suitable for stall training for these configurations. A review of prominent accidents that involved aerodynamic stall is used to illustrate various modeling features unique to turboprop configurations and the impact of stall behavior on susceptibility to loss of control that has led to new training requirements. This is followed by an overview of stability and control behavior of straight-wing turboprops, the related aerodynamic characteristics, and a summary of recent experimental studies on icing effects. In addition, differences in flight dynamics behavior between swept-wing jets and straight-wing turboprop configurations are discussed to compare and contrast modeling requirements. Specific recommendations for aerodynamic models along with further research needs and data measurements are also provided. 1
10 CFR 963.13 - Preclosure suitability evaluation method.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to evaluate whether the geologic repository is likely to comply with the applicable radiation... prevent or mitigate the effects of postulated Category 1 and 2 event sequences. The preclosure safety... prevent accidents. ...
A variational technique for smoothing flight-test and accident data
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1980-01-01
The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence of linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.
Assessment of an explosive LPG release accident: a case study.
Bubbico, Roberto; Marchini, Mauro
2008-07-15
In the present paper, an accident occurred during a liquefied petroleum gas (LPG) tank filling activity has been taken into consideration. During the transfer of LPG from the source road tank car to the receiving fixed storage vessel, an accidental release of LPG gave rise to different final consequences ranging from a pool fire, to a fireball and to the catastrophic rupture of the tank with successive explosion of its contents. The sequence of events has been investigated by using some of the consequence calculation models most commonly adopted in risk analysis and accident investigation. On one hand, this allows to better understand the link between the various events of the accident. On the other hand, a comparison between the results of the calculations and the damages actually observed after the accident, allows to check the accuracy of the prediction models and to critically assess their validity. In particular, it was shown that the largest uncertainty is associated with the calculation of the energy involved in the physical expansion of the fluid (both liquid and vapor) after the catastrophic rupture of the tank.
Prediction and Prevention of Chemical Reaction Hazards: Learning by Simulation.
ERIC Educational Resources Information Center
Shacham, Mordechai; Brauner, Neima; Cutlip, Michael B.
2001-01-01
Points out that chemical hazards are the major cause of accidents in chemical industry and describes a safety teaching approach using a simulation. Explains a problem statement on exothermic liquid-phase reactions. (YDS)
A defense in depth approach for nuclear power plant accident management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chih-Yao Hsieh; Hwai-Pwu Chou
2015-07-01
An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identifymore » what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident management. (authors)« less
NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
Radioactive release during nuclear accidents in Chernobyl and Fukushima
NASA Astrophysics Data System (ADS)
Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab
2018-01-01
Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.
Insight from Fukushima Daiichi Unit 3 Investigations using MELCOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.; Francis, Matthew W.; Ott, Larry J.
During the emergency response period of the accidents that took place at Fukushima Daiichi in March of 2011, researchers at Oak Ridge National Laboratory (ORNL) conducted a number of studies using the MELCOR code to help understand what was occurring and what had occurred. During the post-accident period, the Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) jointly sponsored a study of the Fukushima Daiichi accident with collaboration among Oak Ridge, Sandia, and Idaho national laboratories. The purpose of the study was to compile relevant data, reconstruct the accident progression using computer codes, assess the codes predictivemore » capabilities, and identify future data needs. The current paper summarizes some of the early MELCOR simulations and analyses conducted at ORNL of the Fukushima Daiichi Unit 3 accident. Extended analysis and discussion of the Unit 3 accident is also presented taking into account new knowledge and modeling refinements made since the joint DOE/NRC study.« less
WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhegang Ma
The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significantmore » damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.« less
Dispersion of Fukushima radionuclides in the global atmosphere and the ocean.
Povinec, P P; Gera, M; Holý, K; Hirose, K; Lujaniené, G; Nakano, M; Plastino, W; Sýkora, I; Bartok, J; Gažák, M
2013-11-01
Large quantities of radionuclides were released in March-April 2011 during the accident of the Fukushima Dai-ichi Nuclear Power Plant to the atmosphere and the ocean. Atmospheric and marine modeling has been carried out to predict the dispersion of radionuclides worldwide, to compare the predicted and measured radionuclide concentrations, and to assess the impact of the accident on the environment. Atmospheric Lagrangian dispersion modeling was used to simulate the dispersion of (137)Cs over America and Europe. Global ocean circulation model was applied to predict the dispersion of (137)Cs in the Pacific Ocean. The measured and simulated (137)Cs concentrations in atmospheric aerosols and in seawater are compared with global fallout and the Chernobyl accident, which represent the main sources of the pre-Fukushima radionuclide background in the environment. The radionuclide concentrations in the atmosphere have been negligible when compared with the Chernobyl levels. The maximum (137)Cs concentration in surface waters of the open Pacific Ocean will be around 20 Bq/m(3). The plume will reach the US coast 4-5 y after the accident, however, the levels will be below 3 Bq/m(3). All the North Pacific Ocean will be labeled with Fukushima (137)Cs 10 y after the accident with concentration bellow 1 Bq/m(3). Copyright © 2013 Elsevier Ltd. All rights reserved.
Origins of Protein Functions in Cells
NASA Technical Reports Server (NTRS)
Seelig, Burchard; Pohorille, Andrzej
2011-01-01
In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known. Recently it was found that, as in the previous case, the proteins have a structure unknown among modern enzymes. In this case, in vitro evolution started from a small, non-enzymatic protein. A similar selection process initiated from a library of random polypeptides is in progress. These results not only allow for estimating the occurrence of function in random protein assemblies but also provide evidence for the possibility of alternative protein worlds. Extant proteins might simply represent a frozen accident in the world of possible proteins. Alternative collections of proteins, even with similar functions, could originate alternative evolutionary paths.
Preliminary calculations related to the accident at Three Mile Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchner, W.L.; Stevenson, M.G.
This report discusses preliminary studies of the Three Mile Island Unit 2 (TMI-2) accident based on available methods and data. The work reported includes: (1) a TRAC base case calculation out to 3 hours into the accident sequence; (2) TRAC parametric calculations, these are the same as the base case except for a single hypothetical change in the system conditions, such as assuming the high pressure injection (HPI) system operated as designed rather than as in the accident; (3) fuel rod cladding failure, cladding oxidation due to zirconium metal-steam reactions, hydrogen release due to cladding oxidation, cladding ballooning, cladding embrittlement,more » and subsequent cladding breakup estimates based on TRAC calculated cladding temperatures and system pressures. Some conclusions of this work are: the TRAC base case accident calculation agrees very well with known system conditions to nearly 3 hours into the accident; the parametric calculations indicate that, loss-of-core cooling was most influenced by the throttling of High-Pressure Injection (HPI) flows, given the accident initiating events and the pressurizer electromagnetic-operated valve (EMOV) failing to close as designed; failure of nearly all the rods and gaseous fission product gas release from the failed rods is predicted to have occurred at about 2 hours and 30 minutes; cladding oxidation (zirconium-steam reaction) up to 3 hours resulted in the production of approximately 40 kilograms of hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.; Corradini, M.; Rempe, J.
The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCORmore » results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. Finally, this paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.« less
Farmer, M. T.; Corradini, M.; Rempe, J.; ...
2016-11-02
The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCORmore » results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. Finally, this paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.« less
A Multiplex PCR assay to differentiate between dog and red fox.
Weissenberger, M; Reichert, W; Mattern, R
2011-11-01
Foxes are frequently the cause of car accidents in Baden-Württemberg (BW, Germany). The domestic dog (Canis familiaris) is in close relation to the red fox (Vulpes vulpes) and the silver fox which is a coat colour variant of the red fox. As insurance claims that involve accidents with animals require authentication, we analyzed frequency distribution and allele sizes in two canine microsatellite loci in 26 dogs (different breeds) and 19 red foxes of the region of BW, Germany. Moreover, sequencing analysis was performed. Red foxes exhibited only 1 allele at each microsatellite locus, whereas in dog 7 alleles at the CPH4 locus and 6 alleles at the CPH12 locus were detected. Sequences of PCR products from the two species revealed several differences between dogs and foxes. We established a sequenced allelic ladder and give population data from dogs and red foxes from the region of BW, Germany. Using microsatellite polymorphisms is efficient in differentiating between dogs and foxes in forensic casework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A new approach to road accident rescue.
Morales, Alejandro; González-Aguilera, Diego; López, Alfonso I; Gutiérrez, Miguel A
2016-01-01
This article develops and validates a new methodology and tool for rescue assistance in traffic accidents, with the aim of improving its efficiency and safety in the evacuation of people, reducing the number of victims in road accidents. Different tests supported by professionals and experts have been designed under different circumstances and with different categories of damaged vehicles coming from real accidents and simulated trapped victims in order to calibrate and refine the proposed methodology and tool. To validate this new approach, a tool called App_Rescue has been developed. This tool is based on the use of a computer system that allows an efficient access to the technical information of the vehicle and sanitary information of the common passengers. The time spent during rescue using the standard protocol and the proposed method was compared. This rescue assistance system allows us to make vital information accessible in posttrauma care services, improving the effectiveness of interventions by the emergency services, reducing the rescue time and therefore minimizing the consequences involved and the number of victims. This could often mean saving lives. In the different simulated rescue operations, the rescue time has been reduced an average of 14%.
Auriault, F; Thollon, L; Pérès, J; Behr, M
2016-12-01
This study documents the development of adverse fetal outcome predictors dedicated to the analysis of road accidents involving pregnant women. To do so, a pre-existing whole body finite element model representative of a 50th percentile 26 weeks pregnant woman was used. A total of 8 accident scenarios were simulated with the model positioned on a sled. Each of these scenarios was associated to a risk of adverse fetal outcome based on results from real car crash investigations involving pregnant women from the literature. The use of airbags and accidents involving unbelted occupants were not considered in this study. Several adverse fetal outcome potential predictors were then evaluated with regard to their correlation to this risk of fetal injuries. Three predictors appeared strongly correlated to the risk of adverse fetal outcome: (1) the intra uterine pressure at the placenta fetal side area (r=0.92), (2) the fetal head acceleration (HIC) (r=0.99) and (3) area of utero-placental interface over a strain threshold (r=0.90). Finally, sensitivity analysis against slight variations of the simulation parameters was performed and assess robustness of these criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Duhamel, Isabelle; Dechenaux, Benjamin
2017-09-01
The present paper presents the study carried out in the frame of the DISCOMS project, which stands for "DIstributed Sensing for COrium Monitoring and Safety". This study concerns the calculation of the neutron and gamma radiations received by the considered instrumentation during the normal reactor operation as well as in case of a severe accident for the EPR reactor, outside the reactor pressure vessel and in the containment basemat. This paper summarizes the methods and hypotheses used for the particle transport simulation outside the vessel during normal reactor operation. The results of the simulations are then presented including the responses for distributed Optical Fiber Sensors (OFS), such as the gamma dose and the fast neutron fluence, and for Self Powered Neutron Detectors (SPNDs), namely the neutron and gamma spectra. Same responses are also evaluated for severe accident situations in order to design the SPNDs being sensitive to the both types of received neutron-gamma radiation. By contrast, fibers, involved as transducers in distributed OFS have to resist to the total radiation gamma dose and neutron fluence received during normal operation and the severe accident.
Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu
2018-05-01
The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.
Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy
2017-12-14
Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.
Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.
Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min
2011-11-01
The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kyle W.; Gauntt, Randall O.; Cardoni, Jeffrey N.
2013-11-01
Data, a brief description of key boundary conditions, and results of Sandia National Laboratories’ ongoing MELCOR analysis of the Fukushima Unit 2 accident are given for the reactor core isolation cooling (RCIC) system. Important assumptions and related boundary conditions in the current analysis additional to or different than what was assumed/imposed in the work of SAND2012-6173 are identified. This work is for the U.S. Department of Energy’s Nuclear Energy University Programs fiscal year 2014 Reactor Safety Technologies Research and Development Program RC-7: RCIC Performance under Severe Accident Conditions.
Lorenz, D; Armbruster, W; Vogelgesang, C; Hoffmann, H; Pattar, A; Schmidt, D; Volk, T; Kubulus, D
2016-09-01
Chief emergency physicians are regarded as an important element in the care of the injured and sick following mass casualty accidents. Their education is very theoretical; practical content in contrast often falls short. Limitations are usually the very high costs of realistic (large-scale) exercises, poor reproducibility of the scenarios, and poor corresponding results. To substantially improve the educational level because of the complexity of mass casualty accidents, modified training concepts are required that teach the not only the theoretical but above all the practical skills considerably more intensively than at present. Modern training concepts should make it possible for the learner to realistically simulate decision processes. This article examines how interactive virtual environments are applicable for the education of emergency personnel and how they could be designed. Virtual simulation and training environments offer the possibility of simulating complex situations in an adequately realistic manner. The so-called virtual reality (VR) used in this context is an interface technology that enables free interaction in addition to a stereoscopic and spatial representation of virtual large-scale emergencies in a virtual environment. Variables in scenarios such as the weather, the number wounded, and the availability of resources, can be changed at any time. The trainees are able to practice the procedures in many virtual accident scenes and act them out repeatedly, thereby testing the different variants. With the aid of the "InSitu" project, it is possible to train in a virtual reality with realistically reproduced accident situations. These integrated, interactive training environments can depict very complex situations on a scale of 1:1. Because of the highly developed interactivity, the trainees can feel as if they are a direct part of the accident scene and therefore identify much more with the virtual world than is possible with desktop systems. Interactive, identifiable, and realistic training environments based on projector systems could in future enable a repetitive exercise with changes within a decision tree, in reproducibility, and within different occupational groups. With a hard- and software environment numerous accident situations can be depicted and practiced. The main expense is the creation of the virtual accident scenes. As the appropriate city models and other three-dimensional geographical data are already available, this expenditure is very low compared with the planning costs of a large-scale exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattison, M.B.; Schroeder, J.A.; Russell, K.D.
The Idaho National Engineering Laboratory (INEL) over the past year has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both NRR and AEOD. This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with amore » unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattison, M.B.; Schroeder, J.A.; Russell, K.D.
The Idaho National Engineering Laboratory (INEL) over the past year has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of conditional core damage probability (CCDP) evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both NRR and AEOD. This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according tomore » plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events.« less
To Err is Human Case Reports of Two Military Aircraft Accidents
Dikshit, Mohan B
2010-01-01
It has been postulated that pilot error or in-flight incapacitation may be the main contributory factors to 70–80% of aircraft accidents. Two fatal aircraft accidents are presented in which either of the above possibilities may have played a role. The first case report describes an erroneous decision by a fighter pilot to use a seat position adjustment of the ejection seat leading to fatal injuries when he had to eject from his aircraft. Injuries to the body of the pilot, and observations on the state of his flying clothing and the ejection seat were used to postulate the mechanism of fatal injury and establish the cause of the accident. The second case report describes the sequence of events which culminated in the incapacitation of a fighter pilot while executing a routine manouevre. This resulted in a fatal air crash. Possible contributions of environmental factors which may have resulted in failure of his physiological mechanisms are discussed. PMID:21509093
Deep Borehole Emplacement Mode Hazard Analysis Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David
This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent ofmore » this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.]« less
The Viareggio LPG railway accident: event reconstruction and modeling.
Brambilla, Sara; Manca, Davide
2010-10-15
This manuscript describes in detail the LPG accident occurred in Viareggio on June 2009 and its modeling. The accident investigation highlighted the uncertainty and complexity of assessing and modeling what happened in the congested environment close to the Viareggio railway station. Nonetheless, the analysis allowed comprehending the sequence of events, the way they influenced each other, and the different possible paths/evolutions. The paper describes suitable models for the quantitative assessment of the consequences of the most probable accidental dynamics and its outcomes. The main finding is that after about 80 s from the beginning of the release the dense-gas cloud reached the surrounding houses that were destroyed successively by internal explosions. This fact has two main implications. First, it shows that the adopted modeling framework can give a correct picture of what happened in Viareggio. Second, it confirms the need to develop effective mitigation measures because, in case of this kind of accidents, there is no time to apply any protective emergency plans/actions. 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villanueva, J. F.; Carlos, S.; Martorell, S.
The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less
Jeppsson, Hanna; Östling, Martin; Lubbe, Nils
2018-02-01
The objective of this study is to predict the real-life benefits, namely the number of injuries avoided rather than the reduction in impact speed, offered by a Vacuum Emergency Brake (VEB) added to a pedestrian automated emergency braking (AEB) system. We achieve this through the virtual simulation of simplified mathematical models of a system which incorporates expected future advances in technology, such as a wide sensor field of view, and reductions in the time needed for detection, classification, and brake pressure build up. The German In-Depth Accident Study database and the related Pre Crash Matrix, both released in the beginning of 2016, were used for this study and resulted in a final sample of 526 collisions between passenger car fronts and pedestrians. Weight factors were calculated for both simulation model and injury risk curves to make the data representative of Germany as a whole. The accident data was used with a hypothetical AEB system in a simulation model, and injury risk was calculated from the new impact speed using injury risk curves to generate new situations using real accidents. Adding a VEB to a car with pedestrian AEB decreased pedestrian casualties by an additional 8-22%, depending on system setting and injury level, over the AEB-only system. The overall decrease in fatalities was 80-87%, an improvement of 8%. Collision avoidance was improved by 14-28%. VEB with a maximum deceleration in the middle of the modelled performance range has an effectiveness similar to that of an "early activation" system, where the AEB is triggered as early as 2 s before collision. VEB may therefore offer a substantial increase in performance without increasing false positive rates, which earlier AEB activation does. Most collisions and injuries can be avoided when AEB is supplemented by the high performance VEB; remaining cases are characterised by high pedestrian walking speed and late visibility due to view obstructions. VEB is effective in all analysed accident scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
When does alcohol hurt? A driving simulator study.
Vollrath, Mark; Fischer, Josefine
2017-12-01
World-wide, alcohol is still a major cause of traffic accidents. The dose-related accident risk function has been found in a large number of risk studies. A plethora of laboratory studies has examined the effect of alcohol with regard to different information processing capabilities of drivers. Summarizing the results, alcohol effects occur at lower blood alcohol concentrations (BAC) the more complex the tasks get. However, in contrast, typical alcohol-related crashes are frequently single vehicle crashes but not so often crashes in complex situations like at intersections. It may be that the subjective assessment of the traffic situation and the adaptation of behavior under the influence of alcohol plays a major role in accident causation. In order to examine this hypothesis, two driving simulator studies were conducted at a target BAC of 0.5g/l comparing two (alcohol vs. placebo; n=48, Experiment 1) and three (sober, placebo and alcohol; n=63, Experiment 2) groups of subjects in two critical scenarios. The first scenario was a seemingly easy traffic situation and was supposed to lead to a relaxed driving behavior under alcohol. The second scenario involved a complex intersection situation where especially drivers under the influence of alcohol should try to concentrate and compensate their experienced alcohol effects. In all scenarios, a critical object appeared suddenly and the driver had to react fast in order to prevent a (simulated) accident. Overall, the results support the hypothesis. Accidents were more frequent for alcohol drivers as compared to placebo/sober drivers in the easy scenario, but not the complex one. The initial speed of the driver when entering the scenario seems to play a major role in the accident causation. Drivers under the influence of alcohol seem to lower their speed in complex scenarios, possibly to thus counteract alcohol effects. In seemingly easy scenarios this does not seem necessary for them and the arousing effect of alcohol may contribute to driving faster. The results are summarized in a model of alcohol-related crashes. Further in-depth analyses of real crashes would be an interesting next step to further corroborate this model. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Winter, Joost C F; Dodou, Dimitra; Stanton, Neville A
2015-01-01
This article synthesises the latest information on the relationship between the Driver Behaviour Questionnaire (DBQ) and accidents. We show by means of computer simulation that correlations with accidents are necessarily small because accidents are rare events. An updated meta-analysis on the zero-order correlations between the DBQ and self-reported accidents yielded an overall r of .13 (fixed-effect and random-effects models) for violations (57,480 participants; 67 samples) and .09 (fixed-effect and random-effects models) for errors (66,028 participants; 56 samples). An analysis of a previously published DBQ dataset (975 participants) showed that by aggregating across four measurement occasions, the correlation coefficient with self-reported accidents increased from .14 to .24 for violations and from .11 to .19 for errors. Our meta-analysis also showed that DBQ violations (r = .24; 6353 participants; 20 samples) but not DBQ errors (r = - .08; 1086 participants; 16 samples) correlated with recorded vehicle speed. Practitioner Summary: The DBQ is probably the most widely used self-report questionnaire in driver behaviour research. This study shows that DBQ violations and errors correlate moderately with self-reported traffic accidents.
Driving with a partially autonomous forward collision warning system: how do drivers react?
Muhrer, Elke; Reinprecht, Klaus; Vollrath, Mark
2012-10-01
The effects of a forward collision warning (FCW) and braking system (FCW+) were examined in a driving simulator study analyzing driving and gaze behavior and the engagement in a secondary task. In-depth accident analyses indicate that a lack of appropriate expectations for possible critical situations and visual distraction may be the major causes of rear-end crashes. Studies with FCW systems have shown that a warning alone was not enough for a driver to be able to avoid the accident. Thus,an additional braking intervention by such systems could be necessary. In a driving simulator experiment, 30 drivers took part in a car-following scenario in an urban area. It was assumed that different lead car behaviors and environmental aspects would lead to different drivers' expectations of the future traffic situation. Driving with and without FCW+ was introduced as a between-subjects factor. Driving with FCW+ resulted in significantly fewer accidents in critical situations. This result was achieved by the system's earlier reaction time as compared with that of drivers. The analysis of the gaze behavior showed that driving with the system did not lead to a stronger involvement in secondary tasks. The study supports the hypotheses about the importance of missing expectations for the occurrence of accidents. These accidents can be prevented by an FCW+ that brakes autonomously. The results indicate that an autonomous braking intervention should be implemented in FCW systems to increase the effectiveness of these assistance systems.
Station Blackout at Browns Ferry Unit One - accident sequence analysis. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.H.; Harrington, R.M.; Greene, S.R.
1981-11-01
This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. Every effort has been made to employ the most realistic assumptions during the process of defining the sequence of events for this hypothetical accident. DC power is assumed to remain available from the unit batteries during the initial phase and the operator actions and corresponding events during this period are described using results provided by an analysis code developed specifically for this purpose.more » The Station Blackout is assumed to persist beyond the point of battery exhaustion and the events during this second phase of the accident in which dc power would be unavailable were determined through use of the MARCH code. Without dc power, cooling water could no longer be injected into the reactor vessel and the events of the second phase include core meltdown and subsequent containment failure. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report. 58 refs., 75 figs., 8 tabs.« less
NASA Astrophysics Data System (ADS)
Kurihara, Osamu; Kim, Eunjoo; Kunishima, Naoaki; Tani, Kotaro; Ishikawa, Tetsuo; Furuyama, Kazuo; Hashimoto, Shozo; Akashi, Makoto
2017-09-01
A tool was developed to facilitate the calculation of the early internal doses to residents involved in the Fukushima Nuclear Disaster based on atmospheric transport and dispersion model (ATDM) simulations performed using Worldwide version of System for Prediction of Environmental Emergency Information 2nd version (WSPEEDI-II) together with personal behavior data containing the history of the whereabouts of individul's after the accident. The tool generates hourly-averaged air concentration data for the simulation grids nearest to an individual's whereabouts using WSPEEDI-II datasets for the subsequent calculation of internal doses due to inhalation. This paper presents an overview of the developed tool and provides tentative comparisons between direct measurement-based and ATDM-based results regarding the internal doses received by 421 persons from whom personal behavior data available.
Traffic accident simulation : final report.
DOT National Transportation Integrated Search
1992-06-01
The purpose of this research was to determine if HVOSM (Highway Vehicle Object Simulation Model) could be used to model a vehicle with a modern front (or rear) suspension system such as a McPherson strut and have the results of the dynamic model be v...
NASA Astrophysics Data System (ADS)
Tsumune, Daisuke; Aoyama, Michio; Tsubono, Takaki; Tateda, Yutaka; Misumi, Kazuhiro; Hayami, Hiroshi; Toyoda, Yasuhiro; Maeda, Yoshiaki; Yoshida, Yoshikatsu; Uematsu, Mitsuo
2014-05-01
A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition. We reconstructed spatiotemporal variability of 137Cs activity in the ocean by the comparison model simulations and observed data. We employed a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model to investigate the oceanic contamination. Direct releases of 137Cs were estimated for more than 2 years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly released 137Cs was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. The daily release rate of 137Cs was estimated to be 3.0 x 1010 Bq day-1 by the end of September 2013. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable, while simulated 137Cs activities attributable to atmospheric deposition were low compared to measured activities. The rate of atmospheric deposition onto the ocean was underestimated because of a lack of measurements of dose rate and air activity of 137Cs over the ocean when atmospheric deposition rates were being estimated. Observed 137Cs activities attributable to atmospheric deposition in the ocean helped to improve the accuracy of simulated atmospheric deposition rates. Although there is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011, observed data of marine biota should reflect the history of 137Cs activity in this early period. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. In addition, river runoff model simulations suggest that the river flux of 137Cs to the ocean was effective to the 137Cs activity in the ocean in this early period. The sediment transport model simulations suggests that the inventory of 137Cs in sediment was less than 10
Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy
2017-01-01
Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown. PMID:29286382
NASA Astrophysics Data System (ADS)
Tsumune, D.; Tsubono, T.; Aoyama, M.; Misumi, K.; Tateda, Y.
2015-12-01
A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition.We reconstructed spatiotemporal variability of 137Cs activity in the regional ocean for four years by numerical model, such as a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model. Direct release rate of 137Cs were estimated for four years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly release was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. Decrease rate were quite small after 2013. The daily release rate of 137Cs was estimated to be the order of magnitude of 1010 Bq/day by the end of March 2015. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. There is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011. Observed data of marine biota should reflect the history of 137Cs activity in this early period. We reconstructed the history of 137Cs activity in this early period by considering atmospheric deposition, river input, rain water runoff from the 1F NPP site. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. The simulated river flux of 137Cs to the ocean did not effect on 137Cs activity in the ocean even if the parameters in this simulation have uncertainties because of the lack of observed data in rivers in the earlier period.
NASA Astrophysics Data System (ADS)
Torn, M. S.; Koven, C. D.; Riley, W. J.; Zhu, B.; Hicks Pries, C.; Phillips, C. L.
2014-12-01
A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition.We reconstructed spatiotemporal variability of 137Cs activity in the regional ocean for four years by numerical model, such as a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model. Direct release rate of 137Cs were estimated for four years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly release was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. Decrease rate were quite small after 2013. The daily release rate of 137Cs was estimated to be the order of magnitude of 1010 Bq/day by the end of March 2015. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. There is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011. Observed data of marine biota should reflect the history of 137Cs activity in this early period. We reconstructed the history of 137Cs activity in this early period by considering atmospheric deposition, river input, rain water runoff from the 1F NPP site. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. The simulated river flux of 137Cs to the ocean did not effect on 137Cs activity in the ocean even if the parameters in this simulation have uncertainties because of the lack of observed data in rivers in the earlier period.
Modelling Accident Tolerant Fuel Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, Jason Dean; Gamble, Kyle Allan Lawrence
2016-05-01
The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. The United States Department of Energy (DOE) through its Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is a three-year project to perform research on two accident tolerant concepts. The final outcome of the ATF HIP will be an in-depth report to the DOE Advanced Fuels Campaign (AFC) giving a recommendation on whether eithermore » of the two concepts should be included in their lead test assembly scheduled for placement into a commercial reactor in 2022. The two ATF concepts under investigation in the HIP are uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (Idaho National Laboratory, Los Alamos National Laboratory, and Argonne National Laboratory), a comprehensive multiscale approach to modeling is being used that includes atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. Model development and fuel performance analysis are critical since a full suite of experimental studies will not be complete before AFC must prioritize concepts for focused development. In this paper, we present simulations of the two proposed accident tolerance fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. Sensitivity analyses are completed using Sandia National Laboratories’ Dakota software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). We also outline the multiscale modelling approach being employed. Considerable additional work is required prior to preparing the recommendation report for the Advanced Fuels Campaign.« less
Bajaj, Jasmohan S; Hafeezullah, Muhammad; Hoffmann, Raymond G; Varma, Rajiv R; Franco, Jose; Binion, David G; Hammeke, Thomas A; Saeian, Kia
2008-02-01
Patients with minimal hepatic encephalopathy (MHE) have attention, response inhibition, and working memory difficulties that are associated with driving impairment and high motor vehicle accident risk. Navigation is a complex system needed for safe driving that requires functioning working memory and other domains adversely affected by MHE. The aim of this study was to determine the effect of MHE on navigation skills and correlate them with psychometric impairment. Forty-nine nonalcoholic patients with cirrhosis (34 MHE+, 15 MHE-; divided on the basis of a battery of block design, digit symbol, and number connection test A) and 48 age/education-matched controls were included. All patients underwent the psychometric battery and inhibitory control test (ICT) (a test of response inhibition) and driving simulation. Driving simulation consisted of 4 parts: (1) training; (2) driving (outcome being accidents); (3) divided attention (outcome being missed tasks); and (4) navigation, driving along a marked path on a map in a "virtual city" (outcome being illegal turns). Illegal turns were significantly higher in MHE+ (median 1; P = 0.007) compared with MHE-/controls (median 0). Patients who were MHE+ missed more divided attention tasks compared with others (median MHE+ 1, MHE-/controls 0; P = 0.001). Similarly, accidents were higher in patients who were MHE+ (median 2.5; P = 0.004) compared with MHE- (median 1) or controls (median 2). Accidents and illegal turns were significantly correlated (P = 0.001, r = 0.51). ICT impairment was the test most correlated with illegal turns (r = 0.6) and accidents (r = 0.44), although impairment on the other tests were also correlated with illegal turns. Patients positive for MHE have impaired navigation skills on a driving simulator, which is correlated with impairment in response inhibition (ICT) and attention. This navigation difficulty may pose additional driving problems, compounding the pre-existing deleterious effect of attention deficits.
Veisten, Knut; Nossum, Ase; Akhtar, Juned
2009-07-01
Injury accidents occurring in the home, during educational, sports or leisure activities were estimated from samples of hospital data, combined with fatality data from vital statistics. Uncertainty of estimated figures was assessed in simulation-based analysis. Total economic costs to society from injuries and fatalities due to such accidents were estimated at approximately NOK 150 billion per year. The estimated costs reveal the scale of the public health problem and lead to arguments for the establishment of a proper injury register for the identification of preventive measures to reduce the costs to society.
Simulation of internal contamination screening with dose rate meters
NASA Astrophysics Data System (ADS)
Fonseca, T. C. F.; Mendes, B. M.; Hunt, J. G.
2017-11-01
Assessing the intake of radionuclides after an accident in a nuclear power plant or after the intentional release of radionuclides in public places allows dose calculations and triage actions to be carried out for members of the public and for emergency response teams. Gamma emitters in the lung, thyroid or the whole body may be detected and quantified by making dose rate measurements at the surface of the internally contaminated person. In an accident scenario, quick measurements made with readily available portable equipment are a key factor for success. In this paper, the Monte Carlo program Visual Monte Carlo (VMC) and MCNPx code are used in conjunction with voxel phantoms to calculate the dose rate at the surface of a contaminated person due to internally deposited radionuclides. A whole body contamination with 137Cs and a thyroid contamination with 131I were simulated and the calibration factors in kBq per μSv/h were calculated. The calculated calibration factors were compared with real data obtained from the Goiania accident in the case of 137Cs and the Chernobyl accident in terms of the 131I. The close comparison of the calculated and real measurements indicates that the method may be applied to other radionuclides. Minimum detectable activities are discussed.
Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years.
Hirose, Katsumi
2016-06-01
The Fukushima Daiichi Nuclear Plant (FDNPP) accident resulted in huge environmental and socioeconomic impacts to Japan. To document the actual environmental and socioeconomic effects of the FDNPP accident, we describe here atmospheric and marine contamination due to radionuclides released from the FDNPP accident using papers published during past five years, in which temporal and spatial variations of FDNPP-derived radionuclides in air, deposition and seawater and their mapping are recorded by local, regional and global monitoring activities. High radioactivity-contaminated area in land were formed by the dispersion of the radioactive cloud and precipitation, depending on land topography and local meteorological conditions, whereas extremely high concentrations of (131)I and radiocesium in seawater occurred due to direct release of radioactivity-contaminated stagnant water in addition to atmospheric deposition. For both of atmosphere and ocean, numerical model simulations, including local, regional and global-scale modeling, were extensively employed to evaluate source terms of the FDNPP-derived radionuclides from the monitoring data. These models also provided predictions of the dispersion and high deposition areas of the FDNPP-derived radionuclides. However, there are significant differences between the observed and simulated values. Then, the monitoring data would give a good opportunity to improve numerical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kenny, Michael T.; Sabel, Fred L.
1968-01-01
Andersen air samplers were used to determine the particle size distribution of Serratia marcescens aerosols created during several common laboratory procedures and simulated laboratory accidents. Over 1,600 viable particles per cubic foot of air sampled were aerosolized during blending operations. More than 98% of these particles were less than 5 μ in size. In contrast, 80% of the viable particles aerosolized by handling lyophilized cultures were larger than 5 μ. Harvesting infected eggs, sonic treatment, centrifugation, mixing cultures, and dropping infectious material produced aerosols composed primarily of particles in the 1.0- to 7.5-μ size range. Images Fig. 1 PMID:4877498
Markov switching multinomial logit model: An application to accident-injury severities.
Malyshkina, Nataliya V; Mannering, Fred L
2009-07-01
In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.
NASA Astrophysics Data System (ADS)
Suryono, T. J.; Gofuku, A.
2018-02-01
One of the important thing in the mitigation of accidents in nuclear power plant accidents is time management. The accidents should be resolved as soon as possible in order to prevent the core melting and the release of radioactive material to the environment. In this case, operators should follow the emergency operating procedure related with the accident, in step by step order and in allowable time. Nowadays, the advanced main control rooms are equipped with computer-based procedures (CBPs) which is make it easier for operators to do their tasks of monitoring and controlling the reactor. However, most of the CBPs do not include the time remaining display feature which informs operators of time available for them to execute procedure steps and warns them if the they reach the time limit. Furthermore, the feature will increase the awareness of operators about their current situation in the procedure. This paper investigates this issue. The simplified of emergency operating procedure (EOP) of steam generator tube rupture (SGTR) accident of PWR plant is applied. In addition, the sequence of actions on each step of the procedure is modelled using multilevel flow modelling (MFM) and influenced propagation rule. The prediction of action time on each step is acquired based on similar case accidents and the Support Vector Regression. The derived time will be processed and then displayed on a CBP user interface.
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Examination of Icing Induced Loss of Control and Its Mitigations
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.
2010-01-01
Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed
Computer simulation of stair falls to investigate scenarios in child abuse.
Bertocci, G E; Pierce, M C; Deemer, E; Aguel, F
2001-09-01
To demonstrate the usefulness of computer simulation techniques in the investigation of pediatric stair falls. Since stair falls are a common falsely reported injury scenario in child abuse, our specific aim was to investigate the influence of stair characteristics on injury biomechanics of pediatric stair falls by using a computer simulation model. Our long-term goal is to use knowledge of biomechanics to aid in distinguishing between accidents and abuse. A computer simulation model of a 3-year-old child falling down stairs was developed using commercially available simulation software. This model was used to investigate the influence that stair characteristics have on biomechanical measures associated with injury risk. Since femur fractures occur in unintentional and abuse scenarios, biomechanical measures were focused on the lower extremities. The number and slope of steps and stair surface friction and elasticity were found to affect biomechanical measures associated with injury risk. Computer simulation techniques are useful for investigating the biomechanics of stair falls. Using our simulation model, we determined that stair characteristics have an effect on potential for lower extremity injuries. Although absolute values of biomechanical measures should not be relied on in an unvalidated model such as this, relationships between accident-environment factors and biomechanical measures can be studied through simulation. Future efforts will focus on model validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1982-07-01
This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix C generally describes the methods used to estimate accident sequence frequency values. Information is presented concerning the approach, example collection, failure data, candidate dominant sequences, uncertainty analysis, and sensitivity analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Prescott, Steven R; Smith, Curtis L
2011-07-01
In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of amore » power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.« less
Reconstruction of the 1994 Pittsburgh Airplane Accident Using a Computer Simulation
NASA Technical Reports Server (NTRS)
Parks, Edwin K.; Bach, Ralph E., Jr.; Shin, Jae Ho
1998-01-01
On September 8, 1994, a Boeing 737-300 passenger airplane was on a downwind approach to the Pittsburgh International Airport at an altitude of 5000 feet above ground level (6000 feet MSL). While in a shallow left turn onto a downwind approach heading, the airplane crossed into the vortex trail of a Boeing 727 flying in the same approach pattern about 4 miles ahead. The B-737 airplane rolled and turned sharply to the left, exited the vortex wake and plunged into the ground. Weather was not a factor in the accident. The airplane was equipped with a 11+ channel digital Flight Data Recorder (FDR) and a multiple channel Cockpit Voice Recorder (CVR). Both recorders were recovered from the crash site and provided excellent data for the development of an accident scenario. Radar tracking of the two airplanes as well as the indicated air speed (IAS) perturbations clearly visible on the B-737 FDR recordings indicate that the upset was apparently initiated by the airplane's crossing into the wake of the B-727 flying ahead in the same traffic pattern. A 6 degree-of-freedom simulation program for the B-737 airplane using MATLAB and SIMULINK was constructed. The simulation was initialized at the stabilized flight conditions of the airplane about 13 seconds prior to its entry into the vortex trail of the B-727 airplane. By assuming a certain combination of control inputs, it was possible to produce a simulated motion that closely matched that recorded on the FDR.
Chasing the silver bullet: measuring driver fatigue using simple and complex tasks.
Baulk, S D; Biggs, S N; Reid, K J; van den Heuvel, C J; Dawson, D
2008-01-01
Driver fatigue remains a significant cause of motor-vehicle accidents worldwide. New technologies are increasingly utilised to improve road safety, but there are no effective on-road measures for fatigue. While simulated driving tasks are sensitive, and simple performance tasks have been used in industrial fatigue management systems (FMS) to quantify risk, little is known about the relationship between such measures. Establishing a simple, on-road measure of fatigue, as a fitness-to-drive tool, is an important issue for road safety and accident prevention, particularly as many fatigue related accidents are preventable. This study aimed to measure fatigue-related performance decrements using a simple task (reaction time - RT) and a complex task (driving simulation), and to determine the potential for a link between such measures, thus improving FMS success. Fifteen volunteer participants (7 m, 8 f) aged 22-56 years (mean 33.6 years), underwent 26 h of supervised wakefulness before an 8h recovery sleep opportunity. Participants were tested using a 30-min interactive driving simulation test, bracketed by a 10-min psychomotor vigilance task (PVT) at 4, 8, 18 and 24h of wakefulness, and following recovery sleep. Extended wakefulness caused significant decrements in PVT and driving performance. Although these measures are clearly linked, our analyses suggest that driving simulation cannot be replaced by a simple PVT. Further research is needed to closely examine links between performance measures, and to facilitate accurate management of fitness to drive, which requires more complex assessments of performance than RT alone.
Recent plant studies using Victoria 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
BIXLER,NATHAN E.; GASSER,RONALD D.
2000-03-08
VICTORIA 2.0 is a mechanistic computer code designed to analyze fission product behavior within the reactor coolant system (RCS) during a severe nuclear reactor accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS and secondary circuits. These predictions account for the chemical and aerosol processes that affect radionuclide behavior. VICTORIA 2.0 was released in early 1999; a new version VICTORIA 2.1, is now under development. The largest improvements in VICTORIA 2.1 are connected with the thermochemical database, which is being revised andmore » expanded following the recommendations of a peer review. Three risk-significant severe accident sequences have recently been investigated using the VICTORIA 2.0 code. The focus here is on how various chemistry options affect the predictions. Additionally, the VICTORIA predictions are compared with ones made using the MELCOR code. The three sequences are a station blackout in a GE BWR and steam generator tube rupture (SGTR) and pump-seal LOCA sequences in a 3-loop Westinghouse PWR. These sequences cover a range of system pressures, from fully depressurized to full system pressure. The chief results of this study are the fission product fractions that are retained in the core, RCS, secondary, and containment and the fractions that are released into the environment.« less
Comparison of driving simulator performance and neuropsychological testing in narcolepsy.
Kotterba, Sylvia; Mueller, Nicole; Leidag, Markus; Widdig, Walter; Rasche, Kurt; Malin, Jean-Pierre; Schultze-Werninghaus, Gerhard; Orth, Maritta
2004-09-01
Daytime sleepiness and cataplexy can increase automobile accident rates in narcolepsy. Several countries have produced guidelines for issuing a driving license. The aim of the study was to compare driving simulator performance and neuropsychological test results in narcolepsy in order to evaluate their predictive value regarding driving ability. Thirteen patients with narcolepsy (age: 41.5+/-12.9 years) and 10 healthy control patients (age: 55.1+/-7.8 years) were investigated. By computer-assisted neuropsychological testing, vigilance, alertness and divided attention were assessed. In a driving simulator patients and controls had to drive on a highway for 60 min (mean speed of 100 km/h). Different weather and daytime conditions and obstacles were presented. Epworth Sleepiness Scale-Scores were significantly raised (narcolepsy patients: 16.7+/-5.1, controls: 6.6+/-3.6, P < or = 0.001). The accident rate of the control patients increased (3.2+/-1.8 versus 1.3+/-1.5, P < or = 0.01). Significant differences in concentration lapses (e.g. tracking errors and deviation from speed limit) could not be revealed (9.8+/-3.5 versus 7.1+/-3.2, pns). Follow-up investigation in five patients after an optimising therapy could demonstrate the decrease in accidents due to concentration lapses (P < or = 0.05). Neuropsychological testing (expressed as percentage compared to a standardised control population) revealed deficits in alertness (32.3+/-28.6). Mean percentage scores of divided attention (56.9+/-25.4) and vigilance (58.7+/-26.8) were in a normal range. There was, however, a high inter-individual difference. There was no correlation between driving performance and neuropsychological test results or ESS Score. Neuropsychological test results did not significantly change in the follow-up. The difficulties encountered by the narcolepsy patient in remaining alert may account for sleep-related motor vehicle accidents. Driving simulator investigations are closely related to real traffic situations than isolated neuropsychological tests. At the present time the driving simulator seems to be a useful instrument judging driving ability especially in cases with ambiguous neuropsychological results.
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Lin, Yuh-Lang
2004-01-01
During the grant period, several tasks were performed in support of the NASA Turbulence Prediction and Warning Systems (TPAWS) program. The primary focus of the research was on characterizing the preturbulence environment by developing predictive tools and simulating atmospheric conditions that preceded severe turbulence. The goal of the research being to provide both dynamical understanding of conditions that preceded turbulence as well as providing predictive tools in support of operational NASA B-757 turbulence research flights. The advancements in characterizing the preturbulence environment will be applied by NASA to sensor development for predicting turbulence onboard commercial aircraft. Numerical simulations with atmospheric models as well as multi-scale observational analyses provided insights into the environment organizing turbulence in a total of forty-eight specific case studies of severe accident producing turbulence on commercial aircraft. These accidents exclusively affected commercial aircraft. A paradigm was developed which diagnosed specific atmospheric circulation systems from the synoptic scale down to the meso-y scale that preceded turbulence in both clear air and in proximity to convection. The emphasis was primarily on convective turbulence as that is what the TPAWS program is most focused on in terms of developing improved sensors for turbulence warning and avoidance. However, the dynamical paradigm also has applicability to clear air and mountain turbulence. This dynamical sequence of events was then employed to formulate and test new hazard prediction indices that were first tested in research simulation studies and then ultimately were further tested in support of the NASA B-757 turbulence research flights. The new hazard characterization algorithms were utilized in a Real Time Turbulence Model (RTTM) that was operationally employed to support the NASA B-757 turbulence research flights. Improvements in the RTTM were implemented in an effort to increase the accuracy of the operational characterization of the preturbulence environment. Additionally, the initial research necessary to create a statistical evaluation scheme for the characterization indices utilized in the RTTM was undertaken. Results of all components of this research were then published in NASA contractor reports and scientific journal papers.
An interactive drilling simulator for teaching and research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, G.A.; Cooper, A.G.; Bihn, G.
1995-12-31
An interactive program has been constructed that allows a student or engineer to simulate the drilling of an oil well, and to optimize the drilling process by comparing different drilling plans. The program operates in a very user-friendly way, with emphasis on menu and button-driven commands. The simulator may be run either as a training program, with exercises that illustrate various features of the drilling process, as a game, in which a student is set a challenge to drill a well with minimum cost or time under constraints set by an instructor, or as a simulator of a real situationmore » to investigate the merit of different drilling strategies. It has three main parts, a Lithology Editor, a Settings Editor and the simulation program itself. The Lithology Editor allows the student, instructor or engineer to build a real or imaginary sequence of rock layers, each characterized by its mineralogy, drilling and log responses. The Settings Editor allows the definition of all the operational parameters, ranging from the drilling and wear rates of particular bits in specified rocks to the costs of different procedures. The simulator itself contains an algorithm that determines rate of penetration and rate of wear of the bit as drilling continues. It also determines whether the well kicks or fractures, and assigns various other {open_quotes}accident{close_quotes} conditions. During operation, a depth vs. time curve is displayed, together with a {open_quotes}mud log{close_quotes} showing the rock layers penetrated. If desired, the well may be {open_quotes}logged{close_quotes} casings may be set and pore and fracture pressure gradients may be displayed. During drilling, the total time and cost are shown, together with cost per foot in total and for the current bit run.« less
Analysis of unmitigated large break loss of coolant accidents using MELCOR code
NASA Astrophysics Data System (ADS)
Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.
2017-11-01
In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.
Nuclear power and probabilistic safety assessment (PSA): past through future applications
NASA Astrophysics Data System (ADS)
Stamatelatos, M. G.; Moieni, P.; Everline, C. J.
1995-03-01
Nuclear power reactor safety in the United States is about to enter a new era -- an era of risk- based management and risk-based regulation. First, there was the age of `prescribed safety assessment,' during which a series of design-basis accidents in eight categories of severity, or classes, were postulated and analyzed. Toward the end of that era, it was recognized that `Class 9,' or `beyond design basis,' accidents would need special attention because of the potentially severe health and financial consequences of these accidents. The accident at Three Mile Island showed that sequences of low-consequence, high-frequency events and human errors can be much more risk dominant than the Class 9 accidents. A different form of safety assessment, PSA, emerged and began to gain ground against the deterministic safety establishment. Eventually, this led to the current regulatory requirements for individual plant examinations (IPEs). The IPEs can serve as a basis for risk-based regulation and management, a concept that may ultimately transform the U.S. regulatory process from its traditional deterministic foundations to a process predicated upon PSA. Beyond the possibility of a regulatory environment predicated upon PSA lies the possibility of using PSA as the foundation for managing daily nuclear power plant operations.
ERIC Educational Resources Information Center
Van Camp, Julie
1986-01-01
This article provides background on the voir dire (jury selection) process, explaining its importance to the outcome of a trial. Offers a simulation experience which has students take the role of lawyers interviewing 29 prospective jurors for an alcohol-related traffic accident involving a 20-year-old driver. Profiles for prospective jurors and…
EscapeScape: Simulating Ecopedagogy for the Tourist
ERIC Educational Resources Information Center
Nakagawa, Yoshifumi
2018-01-01
Environmental education as a theory and practice of ecopedagogical simulation positively acknowledges various accidental happenings in the learner's experience. By working with and on the accidents, the learner is encouraged to imagine the real object that escapes his/her experience and thus cannot be and should not be reduced into human…
Stability and failure analysis of steering tie-rod
NASA Astrophysics Data System (ADS)
Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei
2008-11-01
A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.
Conceptual design study of Fusion Experimental Reactor (FY86 FER): Safety
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu
1987-08-01
This report describes the study on safety for FER (Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. The report consists of two chapters. The first chapter summarizes the FER system and describes FMEA (Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including purification, isotope separation and storage. Probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Bauer, T.H.; Morman, J.A.
Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less
NASA Astrophysics Data System (ADS)
Tseng, Tung-Tse
In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
Core cooling under accident conditions at the high-flux beam reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.; Cheng, L.; Fauske, H.
The High-Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is cooled and moderated by heavy water and contains {sup 235}U in the form of narrow-channel, parallel-plate-type fuel elements. During normal operation, the flow direction is downward through the core. This flow direction is maintained at a reduced flow rate during routine shutdown and on loss of commercial power by means of redundant pumps and power supplies. However, in certain accident scenarios, e.g. loss-of-coolant accidents (LOCAs), all forced-flow cooling is lost. Although there was experimental evidence during the reactor design period (1958-1963) that the heat removal capacity in the fullymore » developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. Accordingly, a test program was initiated using an electrically heated section to simulate the fuel channel and a cooling loop to simulate the balance of the primary cooling system.« less
Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos; Wen, Wei; Capolungo, Laurent
2017-08-01
This report focuses on the development of a physics-based thermal creep model aiming to predict the behavior of Zr alloy under reactor accident condition. The current models used for this kind of simulations are mostly empirical in nature, based generally on fits to the experimental steady-state creep rates under different temperature and stress conditions, which has the following limitations. First, reactor accident conditions, such as RIA and LOCA, usually take place in short times and involve only the primary, not the steady-state creep behavior stage. Moreover, the empirical models cannot cover the conditions from normal operation to accident environments. Formore » example, Kombaiah and Murty [1,2] recently reported a transition between the low (n~4) and high (n~9) power law creep regimes in Zr alloys depending on the applied stress. Capturing such a behavior requires an accurate description of the mechanisms involved in the process. Therefore, a mechanism-based model that accounts for the evolution with time of microstructure is more appropriate and reliable for this kind of simulation.« less
Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.
2017-01-01
Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.
Fukushima Accident: Sequence of Events and Lessons Learned
NASA Astrophysics Data System (ADS)
Morse, Edward C.
2011-10-01
The Fukushima Dai-Ichi nuclear power station suffered a devastating Richter 9.0 earthquake followed by a 14.0 m tsunami on 11 March 2011. The subsequent loss of power for emergency core cooling systems resulted in damage to the fuel in the cores of three reactors. The relief of pressure from the containment in these three reactors led to sufficient hydrogen gas release to cause explosions in the buildings housing the reactors. There was probably subsequent damage to a spent fuel pool of a fourth reactor caused by debris from one of these explosions. Resultant releases of fission product isotopes in air were significant and have been estimated to be in the 3 . 7 --> 6 . 3 ×1017 Bq range (~10 MCi) for 131I and 137Cs combined, or approximately one tenth that of the Chernobyl accident. A synopsis of the sequence of events leading up to this large release of radioactivity will be presented, along with likely scenarios for stabilization and site cleanup in the future. Some aspects of the isotope monitoring programs, both locally and at large, will also be discussed. An assessment of radiological health risk for the plant workers as well as the general public will also be presented. Finally, the impact of this accident on design and deployment of nuclear generating stations in the future will be discussed.
Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu
2013-07-01
The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.
Conceptual design study for an advanced cab and visual system, volume 2
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.
Internal Dose from Food and Drink Ingestion in the Early Phase after the Accident
NASA Astrophysics Data System (ADS)
Kawai, Masaki; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Sato, Osamu; Takagi, Shunji; Miyatake, Hirokazu; Takahashi, Tomoyuki; Suzuki, Gen
2017-09-01
Activity concentrations in food and drink, represented by water and vegetables, have been monitored continuously since the Fukushima Daiichi Nuclear Power Plant accident, with a focus on radioactive cesium. On the other hand, iodine-131 was not measured systematically in the early phase after the accident. The activity concentrations of iodine-131 in food and drink are important to estimate internal exposure due to ingestion pathway. When the internal dose from ingestion in the evacuation areas is estimated, water is considered as the main ingestion pathway. In this study, we estimated the values of activity concentrations in water in the early phase after the accident, using a compartment model as an estimation method. The model uses measurement values of activity concentration and deposition rate of iodine-131 onto the ground, which is calculated from an atmospheric dispersion simulation. The model considers how drinking water would be affected by radionuclides deposited into water. We estimated the activity concentrations of water on Kawamata town and Minamisouma city during March of 2011 and the committed effective doses were 0.08 mSv and 0.06 mSv. We calculated the transfer parameters in the model for estimating the activity concentrations in the areas with a small amount of measurement data. In addition, we estimated the committed effective doses from vegetables using atmospheric dispersion simulation and FARMLAND model in case of eating certain vegetables as option information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.L.; Musicki, Z.; Kohut, P.
1994-06-01
During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.« less
ERIC Educational Resources Information Center
Thumm, Walter
1975-01-01
Relates the story of Wilhelm Conrad Rontgen and presents one view of the extent to which the discovery of the x-ray was an accident. Reconstructs the sequence of events that led to the discovery and includes photographs of the lab where he worked and replicas of apparatus used. (GS)
a Study of the Reconstruction of Accidents and Crime Scenes Through Computational Experiments
NASA Astrophysics Data System (ADS)
Park, S. J.; Chae, S. W.; Kim, S. H.; Yang, K. M.; Chung, H. S.
Recently, with an increase in the number of studies of the safety of both pedestrians and passengers, computer software, such as MADYMO, Pam-crash, and LS-dyna, has been providing human models for computer simulation. Although such programs have been applied to make machines beneficial for humans, studies that analyze the reconstruction of accidents or crime scenes are rare. Therefore, through computational experiments, the present study presents reconstructions of two questionable accidents. In the first case, a car fell off the road and the driver was separated from it. The accident investigator was very confused because some circumstantial evidence suggested the possibility that the driver was murdered. In the second case, a woman died in her house and the police suspected foul play with her boyfriend as a suspect. These two cases were reconstructed using the human model in MADYMO software. The first case was eventually confirmed as a traffic accident in which the driver bounced out of the car when the car fell off, and the second case was proved to be suicide rather than homicide.
NASA Astrophysics Data System (ADS)
Broström, G.; Carrasco, A.; Hole, L. R.; Dick, S.; Janssen, F.; Mattsson, J.; Berger, S.
2011-11-01
Oil spill modeling is considered to be an important part of a decision support system (DeSS) for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution), the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.
Simulation of Hydrogen Distribution in Ignalina NPP ALS Compartments During BDBA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babilas, Egidijus; Urbonavicius, Egidijus; Rimkevicius, Sigitas
2006-07-01
Accident Localisation System (ALS) of Ignalina NPP is a 'pressure suppression' type confinement, which protects the population, employees and environment from the radiation hazards. According to the Safety Analysis Report for Ignalina NPP {approx}110 m{sup 3} of hydrogen is released to ALS compartments during the Maximum Design Basis Accident. However in case of beyond design basis accident, when the oxidation of zirconium starts, the amount of generated hydrogen could be significantly higher. If the volume concentration of hydrogen in the compartment reaches 4%, there is a possibility for a combustible mixture to appear. To prevent the possible hydrogen accumulation inmore » the ALS of the Ignalina NPP during an accident the H{sub 2} control system is installed. The results of the performed analysis derived the places of the possible H{sub 2} accumulation in the ALS compartments during the transient processes and assessed the mixture combustibility in these places for a beyond design basis accident scenario. Such analysis of H{sub 2} distribution in the ALS of Ignalina NPP in case of BDBA was not performed before. (authors)« less
Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trambauer, K.
1997-07-01
The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonablemore » accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C. M.; Cagliostro, D. J.
Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-sec hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, an upper internals structure (UIS), and, in the more complex models SM 4 and SM 5, a Ni 200 thermal liner and core support structure. Water simulated the liquid sodium coolant and a low-density explosive simulated the HCDA loads.« less
Wang, Wei; Huang, Li; Liang, Xuedong
2018-01-06
This paper investigates the reliability of complex emergency logistics networks, as reliability is crucial to reducing environmental and public health losses in post-accident emergency rescues. Such networks' statistical characteristics are analyzed first. After the connected reliability and evaluation indices for complex emergency logistics networks are effectively defined, simulation analyses of network reliability are conducted under two different attack modes using a particular emergency logistics network as an example. The simulation analyses obtain the varying trends in emergency supply times and the ratio of effective nodes and validates the effects of network characteristics and different types of attacks on network reliability. The results demonstrate that this emergency logistics network is both a small-world and a scale-free network. When facing random attacks, the emergency logistics network steadily changes, whereas it is very fragile when facing selective attacks. Therefore, special attention should be paid to the protection of supply nodes and nodes with high connectivity. The simulation method provides a new tool for studying emergency logistics networks and a reference for similar studies.
On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues
Wang, Wei; Huang, Li; Liang, Xuedong
2018-01-01
This paper investigates the reliability of complex emergency logistics networks, as reliability is crucial to reducing environmental and public health losses in post-accident emergency rescues. Such networks’ statistical characteristics are analyzed first. After the connected reliability and evaluation indices for complex emergency logistics networks are effectively defined, simulation analyses of network reliability are conducted under two different attack modes using a particular emergency logistics network as an example. The simulation analyses obtain the varying trends in emergency supply times and the ratio of effective nodes and validates the effects of network characteristics and different types of attacks on network reliability. The results demonstrate that this emergency logistics network is both a small-world and a scale-free network. When facing random attacks, the emergency logistics network steadily changes, whereas it is very fragile when facing selective attacks. Therefore, special attention should be paid to the protection of supply nodes and nodes with high connectivity. The simulation method provides a new tool for studying emergency logistics networks and a reference for similar studies. PMID:29316614
BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D
Mandelli, D.; Smith, C.; Riley, T.; ...
2016-01-01
The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less
Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandi, G.; Moberg, L.
SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less
Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment
NASA Technical Reports Server (NTRS)
Pocinki, L.; Cornell, M.; Kaplan, L.
1980-01-01
An assessment of the risk associated with accidents involving aircraft with carbon fiber composite structural components is examined. The individual fiber segments cause electrical and electronic equipment to fail under certain operating conditions. A Monte Carlo simulation model was used to computer the risk. Aircraft accidents with fire, release of carbon fiber material, entrainment of carbon fibers in a smoke plume transport of fibers downwind, transfer of some fibers/into the the interior of buildings, failures of electrical and electronic equipment, and economic impact of failures are discussed. Risk profiles were prepared for individual airports and the Nation. The vulnerability of electrical transmission equipment to carbon fiber incursion and aircraft accident total costs is investigated.
Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R
2015-01-01
Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditionalmore » Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaja, R.E.; Greene, R.T.; Sims, C.S.
1985-04-01
An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less
Impaired alertness and performance driving home from the night shift: a driving simulator study.
Akerstedt, Torbjörn; Peters, Björn; Anund, Anna; Kecklund, Göran
2005-03-01
Driving in the early morning is associated with increased accident risk affecting not only professional drivers but also those who commute to work. The present study used a driving simulator to investigate the effects of driving home from a night shift. Ten shift workers participated after a normal night shift and after a normal night sleep. The results showed that driving home from the night shift was associated with an increased number of incidents (two wheels outside the lane marking, from 2.4 to 7.6 times), decreased time to first accident, increased lateral deviation (from 18 to 43 cm), increased eye closure duration (0.102 to 0.143 s), and increased subjective sleepiness. The results indicate severe postnight shift effects on sleepiness and driving performance.
Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies.
DeMaere, Matthew Z; Darling, Aaron E
2018-02-01
Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype. We describe a computational simulator that, given simple parameters and reference genome sequences, will simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D structure of randomly generated topologically associating domains is provided. The simulator considers several sources of error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events and sequencing error. We have introduced the first comprehensive simulator for 3C and Hi-C sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempe, Joy; Farmer, Mitchell; Corradini, Michael
The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized watermore » reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.« less
DAMS: A Model to Assess Domino Effects by Using Agent-Based Modeling and Simulation.
Zhang, Laobing; Landucci, Gabriele; Reniers, Genserik; Khakzad, Nima; Zhou, Jianfeng
2017-12-19
Historical data analysis shows that escalation accidents, so-called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent-based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent-based modeling technique explains the domino effects from a bottom-up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher-level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large-scale complicated cases. © 2017 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C M; Cagliostro, D J
Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-s hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, and an upper internals structure (UIS).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.L.; Musicki, Z.; Kohut, P.
1994-06-01
During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less
NASA Astrophysics Data System (ADS)
Artnak, Edward Joseph, III
This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.
Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso
2016-09-01
As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less
NASA Astrophysics Data System (ADS)
Hayashi, Toshinori; Yamada, Keiichi
Deviation of driving behavior from usual could be a sign of human error that increases the risk of traffic accidents. This paper proposes a novel method for predicting the possibility a driving behavior leads to an accident from the information on the driving behavior and the situation. In a previous work, a method of predicting the possibility by detecting the deviation of driving behavior from usual one in that situation has been proposed. In contrast, the method proposed in this paper predicts the possibility by detecting the deviation of the situation from usual one when the behavior is observed. An advantage of the proposed method is the number of the required models is independent of the variety of the situations. The method was applied to a problem of predicting accidents by right-turn driving behavior at an intersection, and the performance of the method was evaluated by experiments on a driving simulator.
Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F
2004-01-01
The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
Station blackout calculations for Browns Ferry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, L.J.; Weber, C.F.; Hyman, C.R.
1985-01-01
This paper presents the results of calculations performed with the ORNL SASA code suite for the Station Blackout Severe Accident Sequence at Browns Ferry. The accident is initiated by a loss of offsite power combined with failure of all onsite emergency diesel generators to start and load. The Station Blackout is assumed to persist beyond the point of battery exhaustion (at six hours) and without DC power, cooling water could no longer be injected into the reactor vessel. Calculations are continued through the period of core degradation and melting, reactor vessel failure, and the subsequent containment failure. An estimate ofmore » the magnitude and timing of the concomitant fission product releases is also provided.« less
CFD Applications in Support of the Space Shuttle Risk Assessment
NASA Technical Reports Server (NTRS)
Baum, Joseph D.; Mestreau, Eric; Luo, Hong; Sharov, Dmitri; Fragola, Joseph; Loehner, Rainald; Cook, Steve (Technical Monitor)
2000-01-01
The paper describes a numerical study of a potential accident scenario of the space shuttle, operating at the same flight conditions as flight 51L, the Challenger accident. The interest in performing this simulation is derived by evidence that indicates that the event itself did not exert large enough blast loading on the shuttle to break it apart. Rather, the quasi-steady aerodynamic loading on the damaged, unbalance vehicle caused the break-up. Despite the enormous explosive potential of the shuttle total fuel load (both liquid and solid), the post accident explosives working group estimated the maximum energy involvement to be equivalent to about five hundreds of pounds of TNT. This understanding motivated the simulation described here. To err on the conservative side, we modeled the event as an explosion, and used the maximum energy estimate. We modeled the transient detonation of a 500 lbs spherical charge of TNT, placed at the main engine, and the resulting blast wave propagation about the complete stack. Tracking of peak pressures and impulses at hundreds of locations on the vehicle surface indicate that the blast load was insufficient to break the vehicle, hence demonstrating likely crew survivability through such an event.
NASA Astrophysics Data System (ADS)
Barbot, Loïc; Villard, Jean-François; Fourrez, Stéphane; Pichon, Laurent; Makil, Hamid
2018-01-01
In the framework of the French National Research Agency program on nuclear safety and radioprotection, the `DIstributed Sensing for COrium Monitoring and Safety' project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named `MATiSSe'. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor.
Driver fatigue and highway driving: a simulator study.
Ting, Ping-Huang; Hwang, Jiun-Ren; Doong, Ji-Liang; Jeng, Ming-Chang
2008-06-09
Long duration of driving is a significant cause of fatigue-related accidents on motorways or major roadways. The fatigue caused by driving for extended periods acutely impairs driver alertness and performance and can compromise transportation safety. This study quantitatively measured the progression of driver fatigue and identified the conservative safe duration of continuous highway driving. Thirty young male subjects were analyzed during 90 min of laboratory-simulated highway driving. Sleepiness ratings (SSS) and reaction time (RT) tests were used to assess impairment of driver alertness and vigilance. Additionally, various measures of driving performance recorded throughout the experiment were used to measure temporal deterioration of driver performance from alert to fatigued using principal component analysis (PCA). The analytical results revealed that SSS scores, reaction times (RTs) and unstable driving performance significantly increased over time, indicating that excessive driving time is a significant fatigue factor and potential cause of fatigue-related accidents. Moreover, the analytical results indicated that 80 min was the safe limit for monotonous highway driving. Based on the experimental findings of this study, public awareness of the adverse affects of driver fatigue during long-distance driving should be enhanced. This study provides explicit information of fatigue development that can be used to prevent fatigue-related accidents.
Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance
NASA Technical Reports Server (NTRS)
Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter
2018-01-01
In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.
Berthelon, Catherine; Damm, Loïc
2012-01-01
In order to prevent the over-representation of young drivers in car crashes, France instated an early driver training from the age of 16, but the positive effects of this opportunity have not yet been proven. Three groups of male drivers (12 subjects each) were confronted with some prototypical accident scenarios introduced in a simulated urban circuit. The first and second groups were composed of young drivers having less than one month of driving licence; twelve have had a traditional learning course, and twelve had followed, in addition to the initial course, an early driver training under the supervision of an adult. The third group was composed of experienced drivers. Strategies of the three groups were analyzed through their response time, speed and maneuvers. No difference appeared across groups regarding obstacle detection. But traditionally-trained drivers' position control was more conservative than the two others groups, which were more likely to involve efficient evasive action. The exposure gained during early training could thus increase the development of visuo-motor coordination and involve better skills in case of difficult situations. Others accidents' scenarios could be used to confront young drivers with difficult situations not commonly encountered in natural driving.
NASA Technical Reports Server (NTRS)
1972-01-01
The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.
Image-based computer-assisted diagnosis system for benign paroxysmal positional vertigo
NASA Astrophysics Data System (ADS)
Kohigashi, Satoru; Nakamae, Koji; Fujioka, Hiromu
2005-04-01
We develop the image based computer assisted diagnosis system for benign paroxysmal positional vertigo (BPPV) that consists of the balance control system simulator, the 3D eye movement simulator, and the extraction method of nystagmus response directly from an eye movement image sequence. In the system, the causes and conditions of BPPV are estimated by searching the database for record matching with the nystagmus response for the observed eye image sequence of the patient with BPPV. The database includes the nystagmus responses for simulated eye movement sequences. The eye movement velocity is obtained by using the balance control system simulator that allows us to simulate BPPV under various conditions such as canalithiasis, cupulolithiasis, number of otoconia, otoconium size, and so on. Then the eye movement image sequence is displayed on the CRT by the 3D eye movement simulator. The nystagmus responses are extracted from the image sequence by the proposed method and are stored in the database. In order to enhance the diagnosis accuracy, the nystagmus response for a newly simulated sequence is matched with that for the observed sequence. From the matched simulation conditions, the causes and conditions of BPPV are estimated. We apply our image based computer assisted diagnosis system to two real eye movement image sequences for patients with BPPV to show its validity.
Decision-problem state analysis methodology
NASA Technical Reports Server (NTRS)
Dieterly, D. L.
1980-01-01
A methodology for analyzing a decision-problem state is presented. The methodology is based on the analysis of an incident in terms of the set of decision-problem conditions encountered. By decomposing the events that preceded an unwanted outcome, such as an accident, into the set of decision-problem conditions that were resolved, a more comprehensive understanding is possible. All human-error accidents are not caused by faulty decision-problem resolutions, but it appears to be one of the major areas of accidents cited in the literature. A three-phase methodology is presented which accommodates a wide spectrum of events. It allows for a systems content analysis of the available data to establish: (1) the resolutions made, (2) alternatives not considered, (3) resolutions missed, and (4) possible conditions not considered. The product is a map of the decision-problem conditions that were encountered as well as a projected, assumed set of conditions that should have been considered. The application of this methodology introduces a systematic approach to decomposing the events that transpired prior to the accident. The initial emphasis is on decision and problem resolution. The technique allows for a standardized method of accident into a scenario which may used for review or the development of a training simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattison, M.B.
The Idaho National Engineering Laboratory (INEL) over the three years has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both the U.S. Nuclear Regulatory Commission`s (NRC`s) Office of Nuclear Reactor Regulation (NRR) and the Office for Analysis and Evaluation of Operational Data (AEOD). This paper presents an overviewmore » of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events. Future plans for the ASP models is also presented.« less
How life changes itself: the Read-Write (RW) genome.
Shapiro, James A
2013-09-01
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences. © 2013 Elsevier B.V. All rights reserved.
Quantifying Pilot Contribution to Flight Safety during Drive Shaft Failure
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Tim; Last, Mary Carolyn; Bailey, Randall E.; Kennedy, Kellie D.
2017-01-01
Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base simulation experiment specifically addressed this void by collecting data to quantify the human (pilot) contribution to safety-of-flight and the methods they use in today's National Airspace System. A human-in-the-loop test was conducted using the FAA's Oklahoma City Flight Simulation Branch Level D-certified B-737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Eighteen U.S. airline crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution to safety of flight, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance during single pilot and reduced crew operations were measured for comparison against the normal two-crew complement during normal and non-normal situations. This paper details the crew's actions, including decision-making, and responses while dealing with a drive shaft failure - one of 6 non-normal events that were simulated in this experiment.
CFD Analyses of Air-Ingress Accident for VHTRs
NASA Astrophysics Data System (ADS)
Ham, Tae Kyu
The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental strategy and apparatus installation to obtain the best results when conducting an experiment. The validation of the generated CFD solutions will be performed with the OSU air-ingress experimental results. (Abstract shortened by UMI.).
Sander, Ulrich; Lubbe, Nils
2018-04-01
Intersection accidents are frequent and harmful. The accident types 'straight crossing path' (SCP), 'left turn across path - oncoming direction' (LTAP/OD), and 'left-turn across path - lateral direction' (LTAP/LD) represent around 95% of all intersection accidents and one-third of all police-reported car-to-car accidents in Germany. The European New Car Assessment Program (Euro NCAP) have announced that intersection scenarios will be included in their rating from 2020; however, how these scenarios are to be tested has not been defined. This study investigates whether clustering methods can be used to identify a small number of test scenarios sufficiently representative of the accident dataset to evaluate Intersection Automated Emergency Braking (AEB). Data from the German In-Depth Accident Study (GIDAS) and the GIDAS-based Pre-Crash Matrix (PCM) from 1999 to 2016, containing 784 SCP and 453 LTAP/OD accidents, were analyzed with principal component methods to identify variables that account for the relevant total variances of the sample. Three different methods for data clustering were applied to each of the accident types, two similarity-based approaches, namely Hierarchical Clustering (HC) and Partitioning Around Medoids (PAM), and the probability-based Latent Class Clustering (LCC). The optimum number of clusters was derived for HC and PAM with the silhouette method. The PAM algorithm was both initiated with random start medoid selection and medoids from HC. For LCC, the Bayesian Information Criterion (BIC) was used to determine the optimal number of clusters. Test scenarios were defined from optimal cluster medoids weighted by their real-life representation in GIDAS. The set of variables for clustering was further varied to investigate the influence of variable type and character. We quantified how accurately each cluster variation represents real-life AEB performance using pre-crash simulations with PCM data and a generic algorithm for AEB intervention. The usage of different sets of clustering variables resulted in substantially different numbers of clusters. The stability of the resulting clusters increased with prioritization of categorical over continuous variables. For each different set of cluster variables, a strong in-cluster variance of avoided versus non-avoided accidents for the specified Intersection AEB was present. The medoids did not predict the most common Intersection AEB behavior in each cluster. Despite thorough analysis using various cluster methods and variable sets, it was impossible to reduce the diversity of intersection accidents into a set of test scenarios without compromising the ability to predict real-life performance of Intersection AEB. Although this does not imply that other methods cannot succeed, it was observed that small changes in the definition of a scenario resulted in a different avoidance outcome. Therefore, we suggest using limited physical testing to validate more extensive virtual simulations to evaluate vehicle safety. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident
NASA Astrophysics Data System (ADS)
Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.
2018-02-01
RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.
ERIC Educational Resources Information Center
Smith, Denis
2004-01-01
This article explores how organizations can prepare for crisis events by training crisis management teams (CMTs) using real-time, simulated crises. The article focuses on the impact of such training on the performance of CMTs and the manner in which such training can improve the capability of the organization to deal with adverse events. The…
NASA Standard for Models and Simulations: Philosophy and Requirements Overview
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.
2013-01-01
Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.
NASA Standard for Models and Simulations: Philosophy and Requirements Overview
NASA Technical Reports Server (NTRS)
Blattnig, St3eve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.
2009-01-01
Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behafarid, F.; Shaver, D. R.; Bolotnov, I. A.
The required technological and safety standards for future Gen IV Reactors can only be achieved if advanced simulation capabilities become available, which combine high performance computing with the necessary level of modeling detail and high accuracy of predictions. The purpose of this paper is to present new results of multi-scale three-dimensional (3D) simulations of the inter-related phenomena, which occur as a result of fuel element heat-up and cladding failure, including the injection of a jet of gaseous fission products into a partially blocked Sodium Fast Reactor (SFR) coolant channel, and gas/molten sodium transport along the coolant channels. The computational approachmore » to the analysis of the overall accident scenario is based on using two different inter-communicating computational multiphase fluid dynamics (CMFD) codes: a CFD code, PHASTA, and a RANS code, NPHASE-CMFD. Using the geometry and time history of cladding failure and the gas injection rate, direct numerical simulations (DNS), combined with the Level Set method, of two-phase turbulent flow have been performed by the PHASTA code. The model allows one to track the evolution of gas/liquid interfaces at a centimeter scale. The simulated phenomena include the formation and breakup of the jet of fission products injected into the liquid sodium coolant. The PHASTA outflow has been averaged over time to obtain mean phasic velocities and volumetric concentrations, as well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which have served as the input to the core-scale simulations using the NPHASE-CMFD code. A sliding window time averaging has been used to capture mean flow parameters for transient cases. The results presented in the paper include testing and validation of the proposed models, as well the predictions of fission-gas/liquid-sodium transport along a multi-rod fuel assembly of SFR during a partial loss-of-flow accident. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daling, P.M.; Marler, J.E.; Vo, T.V.
This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plantmore » from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, R.R.
1982-01-01
Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, fmore » a loss of offsite power (LOSP) occurs (i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid), the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10/sup -4/ events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators.« less
The Lagerlunda collision and the introduction of color vision testing.
Mollon, J D; Cavonius, L R
2012-01-01
In histories of vision testing, the origins of occupational screening for color blindness are often traced to a fatal railroad accident that occurred in Sweden on the night of 14-15 November 1875. The scene of the accident was the estate of Baron Lagerfelt in Östergötland, but the critical events were played out at Linköping (the normal passing place for the northbound and southbound expresses) and at Bankeberg (a small station to which the passing place was reassigned at a few minutes' notice). First to arrive at Bankeberg, the northbound express slowed almost to a halt, but then inexplicably accelerated forwards towards the Lagerlunda estate, despite a sequence of signals from the stationmaster, Uno Björkelund, and a lineman, Oskar Johansson. Soon after the accident, the ophthalmologist Frithiof Holmgren suggested that the engineer of the northbound express, Andersson, or his oiler, Larsson, had been color blind. Neither survived to be tested. Using the records of the subsequent trial and other archival materials, we have re-examined the role of color blindness in the Lagerlunda incident and conclude that the accident cannot be attributed to color blindness alone. Yet the accident undoubtedly had a central role in the introduction of color vision testing by European and North American railroads. To persuade the railroad management to introduce universal screening of employees for color blindness, Holmgren used a dramatic coup de theatre and some unashamed subterfuge. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohout, E.F.; Folga, S.; Mueller, C.
1996-03-01
This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less
Chen, Xinyuan; Dai, Jianrong
2018-05-01
Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Potential effects of the fire protection system sprays at Browns Ferry on fission product transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemczyk, S.J.
1983-01-01
The fire protection system (FPS) sprays within any nuclear plant are not intended to mitigate radioactive releases to the environment resulting from severe core-damage accidents. However, it has been shown here that during certain postulated severe accident scenarios at the Browns Ferry Nuclear Plant, the functioning of FPS sprays could have a significant impact on the radioactive releases. Thus the effects of those sprays need to be taken into account for realistic estimation of source terms for some accident scenarios. The effects would include direct ones such as cooling of the reactor building atmosphere and scrubbing of radioactivity from it,more » as well as indirect effects such as an altered likelihood of hydrogen burning and flooding of various safety-related pumps in the reactor building basement. Thus some of the impacts of the sprays would be beneficial with respect to mitigating releases to the environment but some others might not be. The effects of the FPS would be very scenario dependent with a wide range of potential effects often existing for a given accident sequence. Any generalization of the specific results presented here for Browns Ferry to other nuclear plants must be done cautiously, as it appears from a preliminary investigation that the relevant physical and operational characteristics of FPS spray systems differ widely among even otherwise apparently similar plants. Likewise the standby gas treatment systems, which substantially impact the effects of the FPS, differ significantly among plants. More work for both Mark I plants and other plants, BWRs and PWRs alike, is indicated so the potential effects of FPS spray systems during severe accidents can be at least ball-parked for more realistic accident analyses.« less
Both texting and eating are associated with impaired simulated driving performance.
Alosco, Michael L; Spitznagel, Mary Beth; Fischer, Kimberly Hall; Miller, Lindsay A; Pillai, Vivek; Hughes, Joel; Gunstad, John
2012-09-01
Distracted driving is a known contributor to traffic accidents, and many states have banned texting while driving. However, little is known about the potential accident risk of other common activities while driving, such as eating. The objective of the current study was to examine the adverse impact of eating/drinking behavior relative to texting and nondistracted behaviors on a simulated driving task. A total of 186 participants were recruited from undergraduate psychology courses over 2 semesters at Kent State University. We utilized the Kent Multidimensional Assessment Driving Simulation (K-MADS) to compare simulated driving performance among participants randomly assigned to texting (N = 45), eating (N = 45), and control (N = 96) conditions. Multivariate analyses of variance (MANOVA) were conducted to examine between-group differences on simulated driving indices. MANOVA analyses indicated that groups differed in simulated driving performance, F(14, 366) = 7.70, P < .001. Both texting and eating produced impaired driving performance relative to controls, though these behaviors had approximately equal effect. Specifically, both texting and eating groups had more collisions, pedestrian strikes, and center line crossings than controls. In addition, the texting group had more road edge excursions than either eating or control participants and the eating group missed more stop signs than controls. These findings suggest that both texting and eating are associated with poorer simulated driving performance. Future work is needed to determine whether these findings generalize to real-world driving and the development of strategies to reduce distracted driving.
NASA Astrophysics Data System (ADS)
Schoeppner, M.; Plastino, W.; Budano, A.; De Vincenzi, M.; Ruggieri, F.
2012-04-01
Several nuclear reactors at the Fukushima Dai-ichi power plant have been severely damaged from the Tōhoku earthquake and the subsequent tsunami in March 2011. Due to the extremely difficult on-site situation it has been not been possible to directly determine the emissions of radioactive material. However, during the following days and weeks radionuclides of 137-Caesium and 131-Iodine (amongst others) were detected at monitoring stations throughout the world. Atmospheric transport models are able to simulate the worldwide dispersion of particles accordant to location, time and meteorological conditions following the release. The Lagrangian atmospheric transport model Flexpart is used by many authorities and has been proven to make valid predictions in this regard. The Flexpart software has first has been ported to a local cluster computer at the Grid Lab of INFN and Department of Physics of University of Roma Tre (Rome, Italy) and subsequently also to the European Mediterranean Grid (EUMEDGRID). Due to this computing power being available it has been possible to simulate the transport of particles originating from the Fukushima Dai-ichi plant site. Using the time series of the sampled concentration data and the assumption that the Fukushima accident was the only source of these radionuclides, it has been possible to estimate the time-dependent source-term for fourteen days following the accident using the atmospheric transport model. A reasonable agreement has been obtained between the modelling results and the estimated radionuclide release rates from the Fukushima accident.
EMERALD REV.1. PWR Accident Activity Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunot, W.K.; Fray, R.R.; Gillespie, S.G.
1975-10-01
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less
Bartnicki, Jerzy; Amundsen, Ingar; Brown, Justin; Hosseini, Ali; Hov, Øystein; Haakenstad, Hilde; Klein, Heiko; Lind, Ole Christian; Salbu, Brit; Szacinski Wendel, Cato C; Ytre-Eide, Martin Album
2016-01-01
The Russian nuclear submarine K-27 suffered a loss of coolant accident in 1968 and with nuclear fuel in both reactors it was scuttled in 1981 in the outer part of Stepovogo Bay located on the eastern coast of Novaya Zemlya. The inventory of spent nuclear fuel on board the submarine is of concern because it represents a potential source of radioactive contamination of the Kara Sea and a criticality accident with potential for long-range atmospheric transport of radioactive particles cannot be ruled out. To address these concerns and to provide a better basis for evaluating possible radiological impacts of potential releases in case a salvage operation is initiated, we assessed the atmospheric transport of radionuclides and deposition in Norway from a hypothetical criticality accident on board the K-27. To achieve this, a long term (33 years) meteorological database has been prepared and used for selection of the worst case meteorological scenarios for each of three selected locations of the potential accident. Next, the dispersion model SNAP was run with the source term for the worst-case accident scenario and selected meteorological scenarios. The results showed predictions to be very sensitive to the estimation of the source term for the worst-case accident and especially to the sizes and densities of released radioactive particles. The results indicated that a large area of Norway could be affected, but that the deposition in Northern Norway would be considerably higher than in other areas of the country. The simulations showed that deposition from the worst-case scenario of a hypothetical K-27 accident would be at least two orders of magnitude lower than the deposition observed in Norway following the Chernobyl accident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, K. A.; Hales, J. D.; Miao, Y.
Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced accident tolerance when compared to traditional \\uo~fuel zircaloy clad fuel rods. One of the potential replacement fuels is uranium silicide (\\usi) for its higher thermal conductivity and uranium density. The lower melting temperature is of potential concern during postulated accident conditions. Another disadvantage for \\usi~ is the lack of experimental data under power reactor conditions. Due to the aggressive development schedule for inserting some of the potential materials into leadmore » test assemblies or rods by 2022~\\cite{bragg-sitton_2014} multiscale multiphysics modeling approaches have been used to provide insight into these materials. \\\\ \
Park, Soon-Ung; Lee, In-Hye; Joo, Seung Jin; Ju, Jae-Won
2017-12-01
Site specific radionuclide dispersion databases were archived for the emergency response to the hypothetical releases of 137 Cs from the Uljin nuclear power plant in Korea. These databases were obtained with the horizontal resolution of 1.5 km in the local domain centered the power plant site by simulations of the Lagrangian Particle Dispersion Model (LPDM) with the Unified Model (UM)-Local Data Assimilation Prediction System (LDAPS). The Eulerian Dispersion Model-East Asia (EDM-EA) with the UM-Global Data Assimilation Prediction System (UM-GDAPS) meteorological models was used to get dispersion databases in the regional domain. The LPDM model was performed for a year with a 5-day interval yielding 72 synoptic time-scale cases in a year. For each case hourly mean near surface concentrations, hourly mean column integrated concentrations, hourly total depositions for 5 consecutive days were archived by the LPDM model in the local domain and by the EDM-EA model in the regional domain of Asia. Among 72 synoptic cases in a year the worst synoptic case that showed the highest mean surface concentration averaged for 5 days in the LPDM model domain was chosen to illustrate the emergency preparedness to the hypothetical accident at the site. The simulated results by the LPDM model with the 137 Cs emission rate of the Fukushima nuclear power plant accident for the first 5-day period were found to be able to provide prerequisite information for the emergency response to the early phase of the accident whereas those of the EDM-EA model could provide information required for the environmental impact assessment of the accident in the regional domain. The archived site-specific database of 72 synoptic cases in a year could have a great potential to be used as a prognostic information on the emergency preparedness for the early phase of accident. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maderich, V; Jung, K T; Bezhenar, R; de With, G; Qiao, F; Casacuberta, N; Masque, P; Kim, Y H
2014-10-01
The 3D compartment model POSEIDON-R was applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of (90)Sr in the period 1945-2010 and to perform a radiological assessment on the releases of (90)Sr due to the Fukushima Dai-ichi nuclear accident for the period 2011-2040. The contamination due to runoff of (90)Sr from terrestrial surfaces was taken into account using a generic predictive model. A dynamical food-chain model describes the transfer of (90)Sr to phytoplankton, zooplankton, molluscs, crustaceans, piscivorous and non-piscivorous fishes. Results of the simulations were compared with observation data on (90)Sr for the period 1955-2010 and the budget of (90)Sr activity was estimated. It was found that in the East China Sea and Yellow Sea the riverine influx was 1.5% of the ocean influx and it was important only locally. Calculated concentrations of (90)Sr in water, bottom sediment and marine organisms before and after the Fukushima Dai-ichi accident are in good agreement with available experimental measurements. The concentration of (90)Sr in seawater would return to the background levels within one year after leakages were stopped. The model predicts that the concentration of (90)Sr in fish after the Fukushima Dai-ichi accident shall return to the background concentrations only 2 years later due to the delay of the transfer throughout the food web and specific accumulation of (90)Sr. The contribution of (90)Sr to the maximal dose rate due to the FDNPP accident was three orders of magnitude less than that due to (137)Cs, and thus well below the maximum effective dose limits for the public. Copyright © 2014 Elsevier B.V. All rights reserved.
Radiological dose in Muria peninsula from SB-LOCA event
NASA Astrophysics Data System (ADS)
Sunarko; Suud, Zaki
2017-01-01
Dose assessment for accident condition is performed for Muria Peninsula region using source-term from Three-Mile Island unit 2 SB-LOCA accident. Xe-133, Kr-88, 1-131 and Cs-137 isotopes are considered in the calculation. The effluent is assumed to be released from a 50 m stack. Lagrangian particle dispersion method (LPDM) employing non-Gaussian dispersion coefficient in 3-dimensional mass-consistent wind-field is employed to obtain periodic surface-level concentration which is then time-integrated to obtain spatial distribution of ground-level dose. In 1-hour simulation, segmented plumes with 60 seconds duration with a total of 18.000 particles involved. Simulations using 6-hour worst-case meteorological data from Muria peninsula results in a peak external dose of around 1.668 mSv for low scenario and 6.892 mSv for high scenario in dry condition. In wet condition with 5 mm/hour and 10 mm/hour rain for the whole duration of the simulation provides only minor effect to dose. The peak external dose is below the regulatory limit of 50 mSv for effective skin dose from external gamma exposure.
Traffic barriers on curves, curbs, and slopes
DOT National Transportation Integrated Search
1993-10-01
A review of past research and accident databases, conduct of full-scale testing, and computer simulation and validation were conducted in an attempt to develop definitive guidelines for the placement of traffic barriers on curves, curbs, and slopes.
Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.
ERIC Educational Resources Information Center
ApSimon, H. M.; And Others
1988-01-01
Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)
Crashworthiness of the AT-400A shipping container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruda, J.D.; York, A.R. II
1996-05-01
Shipping containers used for transporting radioactive material must be certified using federal regulations. These regulations require the container be tested or evaluated in severe mechanical and thermal environments which represent hypothetical accident scenarios. The containers are certified if the inner container remains leaktight. This paper presents results from finite element simulations of the accidents which include subjecting the AT-400A (for Pu from dismantled nuclear weapons) to a 30-foot (9 m) drop onto an unyielding target and crushing the container with an 1100 lb (500 kg) steel plate dropped from 30 feet. The nonlinear PRONTO3D finite element results were validated usingmore » test results. The simulations of the various impacts and crushes identified trends and worst-case orientations. They also showed that there is a significant margin of safety based on the failure of the containment vessel.« less
Assessment of risk due to the use of carbon fiber composites in commercial and general aviation
NASA Technical Reports Server (NTRS)
Fiksel, J.; Rosenfield, D.; Kalelkar, A.
1980-01-01
The development of a national risk profile for the total annual aircraft losses due to carbon fiber composite (CFC) usage through 1993 is discussed. The profile was developed using separate simulation methods for commercial and general aviation aircraft. A Monte Carlo method which was used to assess the risk in commercial aircraft is described. The method projects the potential usage of CFC through 1993, investigates the incidence of commercial aircraft fires, models the potential release and dispersion of carbon fibers from a fire, and estimates potential economic losses due to CFC damaging electronic equipment. The simulation model for the general aviation aircraft is described. The model emphasizes variations in facility locations and release conditions, estimates distribution of CFC released in general aviation aircraft accidents, and tabulates the failure probabilities and aggregate economic losses in the accidents.
Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Gamble, Kyle A.; Andersson, David
Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less
Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.
2004-01-01
The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.
Zheng, Jian; Tagami, Keiko; Uchida, Shigeo
2013-09-03
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has caused serious contamination in the environment. The release of Pu isotopes renewed considerable public concern because they present a large risk for internal radiation exposure. In this Critical Review, we summarize and analyze published studies related to the release of Pu from the FDNPP accident based on environmental sample analyses and the ORIGEN model simulations. Our analysis emphasizes the environmental distribution of released Pu isotopes, information on Pu isotopic composition for source identification of Pu releases in the FDNPP-damaged reactors or spent fuel pools, and estimation of the amounts of Pu isotopes released from the FDNPP accident. Our analysis indicates that a trace amount of Pu isotopes (∼2 × 10(-5)% of core inventory) was released into the environment from the damaged reactors but not from the spent fuel pools located in the reactor buildings. Regarding the possible Pu contamination in the marine environment, limited studies suggest that no extra Pu input from the FDNPP accident could be detected in the western North Pacific 30 km off the Fukushima coast. Finally, we identified knowledge gaps remained on the release of Pu into the environment and recommended issues for future studies.
Context-aware system for pre-triggering irreversible vehicle safety actuators.
Böhmländer, Dennis; Dirndorfer, Tobias; Al-Bayatti, Ali H; Brandmeier, Thomas
2017-06-01
New vehicle safety systems have led to a steady improvement of road safety and a reduction in the risk of suffering a major injury in vehicle accidents. A huge leap forward in the development of new vehicle safety systems are actuators that have to be activated irreversibly shortly before a collision in order to mitigate accident consequences. The triggering decision has to be based on measurements of exteroceptive sensors currently used in driver assistance systems. This paper focuses on developing a novel context-aware system designed to detect potential collisions and to trigger safety actuators even before an accident occurs. In this context, the analysis examines the information that can be collected from exteroceptive sensors (pre-crash data) to predict a certain collision and its severity to decide whether a triggering is entitled or not. A five-layer context-aware architecture is presented, that is able to collect contextual information about the vehicle environment and the actual driving state using different sensors, to perform reasoning about potential collisions, and to trigger safety functions upon that information. Accident analysis is used in a data model to represent uncertain knowledge and to perform reasoning. A simulation concept based on real accident data is introduced to evaluate the presented system concept. Copyright © 2017 Elsevier Ltd. All rights reserved.
A study of finite element modeling for simulation of vehicle rollover
NASA Astrophysics Data System (ADS)
Lin, Zhigui; Liu, Changye; Lv, Juncheng; Jia, Ligang; Sun, Haichao; Chen, Tao
2017-04-01
At present, the automobile ownership has been a very large figure, and growing rapidly with the social progress and development. Automobile has been one of the most important transportation in people's life. Accordingly, there are a large number of fatalities and serious injuries in traffic accident every year. Vehicle safety has been paid more and more attentions in recent years. There are several kinds of traffic accidents including frontal crash, side crash, etc., while rollover crash is a special kind. The vehicle rollover has the lowest incidence in the all kinds of traffic accidents but has the highest rate of seriously injuries, most of which lead to death. For these reasons, it is very necessary to study the vehicle rollover crash. However, it's so hard that there are a small amount of literatures studying rollover due to its variety, large degree of freedom, and difficulty to repeat and control. The method to investigate rollover crash contains experiment, the finite element method and rigid-body-based models. The finite element method contains many advantages such as low cost, repeatability, detailed data and so on, but the limitation is obvious. A test and simulation has been accomplished to study the FEM for vehicle rollover crash particularly in this paper.
Analysis and Implementation of Accident Tolerant Nuclear Fuels
NASA Astrophysics Data System (ADS)
Prewitt, Benjamin Joseph
To improve the reliability and robustness of LWR, accident tolerant nuclear fuels and cladding materials are being developed to possibly replace the current UO2/zirconium system. This research highlights UN and U3Si 2, two of the most favorable accident tolerant fuels being developed. To evaluate the commercial feasiblilty of these fuels, two areas of research were conducted. Chemical fabrication routes for both fuels were investigated in detail, considering UO2 and UF6 as potential starting materials. Potential pathways for industrial scale fabrication using these methods were discussed. Neutronic performance of 70%UN-30%U3Si2 composite was evaluated in MNCP using PWR assembly and core models. The results showed comparable performance to an identical UO2 fueled simulation with the same configuration. The parameters simulated for composite and oxide fuel include the following: fuel to moderator ratio curves; energy dependent flux spectra; temperature coefficients for fuel and moderator; delayed neutron fractions; power peaking factors; axial and radial flux profiles in 2D and 3D; burnup; critical boron concentration; and shutdown margin. Overall, the neutronic parameters suggest that the transition from UO2 to composite in existing nuclear systems will not require significant changes in operating procedures or modifications to standards and regulations.
Using negative emotional feedback to modify risky behavior of young moped riders.
Megías, Alberto; Cortes, Abilio; Maldonado, Antonio; Cándido, Antonio
2017-05-19
The aim of this research was to investigate whether the use of messages with negative emotional content is effective in promoting safe behavior of moped riders and how exactly these messages modulate rider behavior. Participants received negative feedback when performing risky behaviors using a computer task. The effectiveness of this treatment was subsequently tested in a riding simulator. The results demonstrated how riders receiving negative feedback had a lower number of traffic accidents than a control group. The reduction in accidents was accompanied by a set of changes in the riding behavior. We observed a lower average speed and greater respect for speed limits. Furthermore, analysis of the steering wheel variance, throttle variance, and average braking force provided evidence for a more even and homogenous riding style. This greater abidance of traffic regulations and friendlier riding style could explain some of the causes behind the reduction in accidents. The use of negative emotional feedback in driving schools or advanced rider assistance systems could enhance riding performance, making riders aware of unsafe practices and helping them to establish more accurate riding habits. Moreover, the combination of riding simulators and feedback-for example, in the training of novice riders and traffic offenders-could be an efficient tool to improve their hazard perception skills and promote safer behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng
2016-09-01
U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significantmore » progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.« less
A neutron dosemeter for nuclear criticality accidents.
d'Errico, F; Curzio, G; Ciolini, R; Del Gratta, A; Nath, R
2004-01-01
A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photomicrosensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc, France. The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets.
STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs
NASA Astrophysics Data System (ADS)
Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.
2016-07-01
Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.
The Influence of Plaintiff’s Body Weight on Judgments of Responsibility: The Role of Weight Bias
White, Darrell E.; Wott, Carissa B.; Carels, Robert A.
2014-01-01
Problem The current study investigated the influence of a plaintiff’s weight and the location of an accident on a simulated jury’s perceptions of plaintiff’s personal responsibility for an accident. Methods Participants were 185 lean and overweight male and female adults (mean self-reported body mass index: 24.87 ± 5.45) who read one of three vignettes describing an accident that occurred while leaving one of three different establishments (fast food burger restaurant; fitness gym; department store) while viewing one of two silhouettes of the alleged plaintiff (a lean female; an obese female). Results Participants were significantly more likely to report the plaintiff’s weight entered into their perceptions of personal responsibility when they viewed the overweight plaintiff compared to the thin plaintiff. As respondent’s self-reported weight bias increased, participants were more likely to hold the plaintiff responsible and more likely to blame plaintiff characteristics for the accident. Conclusion The weight of a plaintiff may affect juror perceptions of personal responsibility particularly if the juror possesses self-reported weight bias. PMID:25434916
Lew, Henry L; Poole, John H; Lee, Eun Ha; Jaffe, David L; Huang, Hsiu-Chen; Brodd, Edward
2005-03-01
To evaluate whether driving simulator and road test evaluations can predict long-term driving performance, we conducted a prospective study on 11 patients with moderate to severe traumatic brain injury. Sixteen healthy subjects were also tested to provide normative values on the simulator at baseline. At their initial evaluation (time-1), subjects' driving skills were measured during a 30-minute simulator trial using an automated 12-measure Simulator Performance Index (SPI), while a trained observer also rated their performance using a Driving Performance Inventory (DPI). In addition, patients were evaluated on the road by a certified driving evaluator. Ten months later (time-2), family members observed patients driving for at least 3 hours over 4 weeks and rated their driving performance using the DPI. At time-1, patients were significantly impaired on automated SPI measures of driving skill, including: speed and steering control, accidents, and vigilance to a divided-attention task. These simulator indices significantly predicted the following aspects of observed driving performance at time-2: handling of automobile controls, regulation of vehicle speed and direction, higher-order judgment and self-control, as well as a trend-level association with car accidents. Automated measures of simulator skill (SPI) were more sensitive and accurate than observational measures of simulator skill (DPI) in predicting actual driving performance. To our surprise, the road test results at time-1 showed no significant relation to driving performance at time-2. Simulator-based assessment of patients with brain injuries can provide ecologically valid measures that, in some cases, may be more sensitive than a traditional road test as predictors of long-term driving performance in the community.
Comparison of next generation sequencing technologies for transcriptome characterization
2009-01-01
Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica) and the magnoliid avocado (Persea americana) using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms. PMID:19646272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Pratas, Diogo; Pinho, Armando J; Rodrigues, João M O S
2014-01-16
The emerging next-generation sequencing (NGS) is bringing, besides the natural huge amounts of data, an avalanche of new specialized tools (for analysis, compression, alignment, among others) and large public and private network infrastructures. Therefore, a direct necessity of specific simulation tools for testing and benchmarking is rising, such as a flexible and portable FASTQ read simulator, without the need of a reference sequence, yet correctly prepared for producing approximately the same characteristics as real data. We present XS, a skilled FASTQ read simulation tool, flexible, portable (does not need a reference sequence) and tunable in terms of sequence complexity. It has several running modes, depending on the time and memory available, and is aimed at testing computing infrastructures, namely cloud computing of large-scale projects, and testing FASTQ compression algorithms. Moreover, XS offers the possibility of simulating the three main FASTQ components individually (headers, DNA sequences and quality-scores). XS provides an efficient and convenient method for fast simulation of FASTQ files, such as those from Ion Torrent (currently uncovered by other simulators), Roche-454, Illumina and ABI-SOLiD sequencing machines. This tool is publicly available at http://bioinformatics.ua.pt/software/xs/.
Instrumentation Performance During the TMI-2 Accident
NASA Astrophysics Data System (ADS)
Rempe, Joy L.; Knudson, Darrell L.
2014-08-01
The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. The loss of coolant and the hydrogen combustion that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focused upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this paper. As noted within this paper, several techniques were invoked in the TMI-2 post-accident program to evaluate sensor survivability status and data qualification, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this paper provides recommendations related to sensor survivability and the data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.
The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.; Brunett, A. J.; Sumner, T.
The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transientmore » thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalimullah
1994-03-01
Some special purpose heavy-water reactors (EM) are made of assemblies consisting of a number of coaxial aluminum-clad U-Al alloy fuel tubes and an outer Al sleeve surrounding the fuel tubes. The heavy water coolant flows in the annular gaps between the circular tubes. Analysis of severe accidents in such reactors requires a model for predicting the behavior of the fuel tubes as they melt and disrupt. This paper describes a detailed, mechanistic model for fuel tube heatup, melting, freezing, and molten material relocation, called MARTINS (Melting and Relocation of Tubes in Nuclear subassembly). The paper presents the modeling of themore » phenomena in MARTINS, and an application of the model to analysis of a reactivity insertion accident. Some models are being developed to compute gradual downward relocation of molten material at decay-heat power levels via candling along intact tubes, neglecting coolant vapor hydrodynamic forces on molten material. These models are inadequate for high power accident sequences involving significant hydrodynamic forces. These forces are included in MARTINS.« less
MySSP: Non-stationary evolutionary sequence simulation, including indels
Rosenberg, Michael S.
2007-01-01
MySSP is a new program for the simulation of DNA sequence evolution across a phylogenetic tree. Although many programs are available for sequence simulation, MySSP is unique in its inclusion of indels, flexibility in allowing for non-stationary patterns, and output of ancestral sequences. Some of these features can individually be found in existing programs, but have not all have been previously available in a single package. PMID:19325855
Numerical human models for accident research and safety - potentials and limitations.
Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja
2008-01-01
The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.
Recalibration of indium foil for personnel screening in criticality accidents.
Takada, C; Tsujimura, N; Mikami, S
2011-03-01
At the Nuclear Fuel Cycle Engineering Laboratories of the Japan Atomic Energy Agency (JAEA), small pieces of indium foil incorporated into personal dosemeters have been used for personnel screening in criticality accidents. Irradiation tests of the badges were performed using the SILENE reactor to verify the calibration of the indium activation that had been made in the 1980s and to recalibrate them for simulated criticalities that would be the most likely to occur in the solution process line. In addition, Monte Carlo calculations of the indium activation using the badge model were also made to complement the spectral dependence. The results lead to a screening level of 15 kcpm being determined that corresponds to a total dose of 0.25 Gy, which is also applicable in posterior-anterior exposure. The recalibration based on the latest study will provide a sounder basis for the screening procedure in the event of a criticality accident.
Simulation-Based Evaluation of Learning Sequences for Instructional Technologies
ERIC Educational Resources Information Center
McEneaney, John E.
2016-01-01
Instructional technologies critically depend on systematic design, and learning hierarchies are a commonly advocated tool for designing instructional sequences. But hierarchies routinely allow numerous sequences and choosing an optimal sequence remains an unsolved problem. This study explores a simulation-based approach to modeling learning…
EEG and ECG changes during simulator operation reflect mental workload and vigilance.
Dussault, Caroline; Jouanin, Jean-Claude; Philippe, Matthieu; Guezennec, Charles-Yannick
2005-04-01
Performing mission tasks in a simulator influences many neurophysiological measures. Quantitative assessments of electroencephalography (EEG) and electrocardiography (ECG) have made it possible to develop indicators of mental workload and to estimate relative physiological responses to cognitive requirements. To evaluate the effects of mental workload without actual physical risk, we studied the cortical and cardiovascular changes that occurred during simulated flight. There were 12 pilots (8 novices and 4 experts) who simulated a flight composed of 10 sequences that induced several different mental workload levels. EEG was recorded at 12 electrode sites during rest and flight sequences; ECG activity was also recorded. Subjective tests were used to evaluate anxiety and vigilance levels. Theta band activity was lower during the two simulated flight rest sequences than during visual and instrument flight sequences at central, parietal, and occipital sites (p < 0.05). On the other hand, rest sequences resulted in higher beta (at the C4 site; p < 0.05) and gamma (at the central, parietal, and occipital sites; p < 0.05) power than active segments. The mean heart rate (HR) was not significantly different during any simulated flight sequence, but HR was lower for expert subjects than for novices. The subjective tests revealed no significant anxiety and high values for vigilance levels before and during flight. The different flight sequences performed on the simulator resulted in electrophysiological changes that expressed variations in mental workload. These results corroborate those found during study of real flights, particularly during sequences requiring the heaviest mental workload.
Computers in Traffic Education.
ERIC Educational Resources Information Center
Alexander, O. P.
1983-01-01
Traffic education covers basic road skills, legal/insurance aspects, highway code, accident causation/prevention, and vehicle maintenance. Microcomputer applications to traffic education are outlined, followed by a selected example of programs currently available (focusing on drill/practice, simulation, problem-solving, data manipulation, games,…
Learning the Job from the Ground Down
ERIC Educational Resources Information Center
Kaye, Terrence
1975-01-01
A simulated mine provides a six-week preemployment training program for new coal miners. The training school, a cooperative effort involving labor, management, and government, was set up to help meet growing demand, and to reduce turnover and accident rates. (MW)
The effects of text messaging on young novice driver performance
DOT National Transportation Integrated Search
2006-02-01
This project aimed to evaluate, using the advanced driving simulator located at the Monash University Accident Research Centre, the effects of text (SMS) messaging on the driving performance of young novice drivers. Twenty participants drove on a sim...
Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, M.; Yanez, J.; Grune, J.
2012-07-01
The hydrogen accumulation at the top of containment or reactor building may occur due to an interaction of molten corium and water followed by a severe accident of a nuclear reactor (TMI, Chernobyl, Fukushima Daiichi). The hydrogen, released from the reactor, accumulates usually as a stratified semi-confined layer of hydrogen-air mixture. A series of large scale experiments on hydrogen combustion and explosion in a semi-confined layer of uniform and non-uniform hydrogen-air mixtures in presence of obstructions or without them was performed at the Karlsruhe Inst. of Technology (KIT). Different flame propagation regimes from slow subsonic to relative fast sonic flamesmore » and then to the detonations were experimentally investigated in different geometries and then simulated with COMSD code with respect to evaluate amount of burnt hydrogen taken place during the Fukushima Daiichi Accident (FDA). The experiments were performed in a horizontal semi-confined layer with dimensions of 9x3x0.6 m with/without obstacles opened from below. The hydrogen concentration in the mixtures with air was varied in the range of 0-34 vol. % without or with a gradient of 0-60 vol. %H{sub 2}/m. Effects of hydrogen concentration gradient, thickness of the layer, geometry of the obstructions, average and maximum hydrogen concentration on flame propagation regimes were investigated with respect to evaluate the maximum pressure loads of internal structures. Blast wave strength and dynamics of propagation after explosion of the layer of hydrogen-air mixture was numerically simulated to reproduce the hydrogen explosion process during the Fukushima Daiichi Accident. (authors)« less
EMERALD REVISION 1; PWR accident activity release. [IBM360,370; FORTRAN IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T.B.; Tobias, M.L.; Fox, J.N.
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370 (IBM360,370); 520K bytes of memory are required..« less
Ni, Ying; Li, Keping
2014-01-01
Rear-end accidents are the most common accident type at signalized intersections, because the diversity of actions taken increases due to signal change. Green signal countdown devices (GSCDs), which have been widely installed in Asia, are thought to have the potential of improving capacity and reducing accidents, but some negative effects on intersection safety have been observed in practice; for example, an increase in rear-end accidents. A microscopic modeling approach was applied to estimate rear-end accident probability during the phase transition interval in the study. The rear-end accident probability is determined by the following probabilities: (1) a leading vehicle makes a "stop" decision, which was formulated by using a binary logistic model, and (2) the following vehicle fails to stop in the available stopping distance, which is closely related to the critical deceleration used by the leading vehicle. Based on the field observation carried out at 2 GSCD intersections and 2 NGSCD intersections (i.e., intersections without GSCD devices) along an arterial in Suzhou, the rear-end probabilities at GSCD and NGSCD intersections were calculated using Monte Carlo simulation. The results suggested that, on the one hand, GSCDs caused significantly negative safety effects during the flashing green interval, especially for vehicles in a zone ranging from 15 to 70 m; on the other hand, GSCD devices were helpful in reducing rear-end accidents during the yellow interval, especially in a zone from 0 to 50 m. GSCDs helped shorten indecision zones and reduce rear-end collisions near the stop line during the yellow interval, but they easily resulted in risky car following behavior and much higher rear-end collision probabilities at indecision zones during both flashing green and yellow intervals. GSCDs are recommended to be cautiously installed and education on safe driving behavior should be available.
Application of systems and control theory-based hazard analysis to radiation oncology.
Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G
2016-03-01
Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.
Sander, Ulrich; Lubbe, Nils
2018-06-01
Car occupants account for one third of all junction fatalities in the European Union. Driver warning can reduce intersection accidents by up to 50 percent; adding Autonomous Emergency Braking (AEB) delivers a reduction of up to 70 percent. However, these findings are based on an assumed 100 percent equipment rate, which may take decades to achieve. Our study investigates the relationship between intersection AEB market penetration rates and avoidance of accidents and injuries in order to guide implementation strategies. Additionally, residual accident characteristics (impact configurations and severity) are analyzed to provide a basis for future in-crash protection requirements. We determined which accidents would have been avoided through the use of an Intersection AEB system with different sensor field-of-views (180° and 120°) by means of re-simulating the pre-crash phase of 792 straight crossing path (SCP) car-to-car accidents recorded in the German In-Depth Accident Study (GIDAS) and the associated Pre-Crash Matrix (PCM). Intersection AEB was activated when neither of the conflict opponents could avoid the crash through reasonable braking or steering reactions. For not-avoided accidents, we used the Kudlich-Slibar rigid body impulse model to calculate the change of velocity during the impact as a measure of impact severity and the principal direction of force. Accident avoidance over market penetration is not linear but exponential, with higher gains at low penetration rates and lower gains at higher rates. A wide field-of-view sensor (180°) substantially increased accident avoidance and injury mitigation rates compared to a 120° field-of-view sensor. For a 180° field-of-view sensor at 100 percent market penetration, about 80 percent of the accidents and 90 percent of the MAIS2 + F injuries could be avoided. For the remaining accidents, AEB intervention rarely affected side of impact. The median change of velocity (delta-V) of the remaining crashes reduces only marginally at low penetration rates but this reduction increases with higher penetration rates. With 100 percent market penetration, one quarter of the vehicles still involved in straight crossing path accidents will sustain a delta-V higher than 17 km/h. Intersection AEB is very effective. Enabling a fast initial implementation of systems with wide field-of-view sensor(s) and ensuring a high market penetration over the longer term is essential to achieve high crash avoidance and injury mitigation rates over time. The standards for in-crash protection must be high to mitigate injury in the unavoidable, residual accidents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parallel sequencing lives, or what makes large sequencing projects successful
Cuartero, Yasmina; Stadhouders, Ralph; Graf, Thomas; Marti-Renom, Marc A; Beato, Miguel
2017-01-01
Abstract T47D_rep2 and b1913e6c1_51720e9cf were 2 Hi-C samples. They were born and processed at the same time, yet their fates were very different. The life of b1913e6c1_51720e9cf was simple and fruitful, while that of T47D_rep2 was full of accidents and sorrow. At the heart of these differences lies the fact that b1913e6c1_51720e9cf was born under a lab culture of Documentation, Automation, Traceability, and Autonomy and compliance with the FAIR Principles. Their lives are a lesson for those who wish to embark on the journey of managing high-throughput sequencing data. PMID:29048533
Piloted Flight Simulator Developed for Icing Effects Training
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.
2005-01-01
In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.
Parameter Studies, time-dependent simulations and design with automated Cartesian methods
NASA Technical Reports Server (NTRS)
Aftosmis, Michael
2005-01-01
Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.
Design of a Low-cost Oil Spill Tracking Buoy
NASA Astrophysics Data System (ADS)
Zhao, Y.; Hu, X.; Yu, F.; Dong, S.; Chen, G.
2017-12-01
As the rapid development of oil exploitation and transportation, oil spill accidents, such as Prestige oil spill, Gulf of Mexico oil spill accident and so on, happened frequently in recent years which would result in long-term damage to the environment and human life. It would be helpful for rescue operation if we can locate the oil slick diffusion area in real time. Equipped with GNSS system, current tracking buoys(CTB), such as Lagrangian drifting buoy, Surface Velocity Program (SVP) drifter, iSLDMB (Iridium self locating datum marker buoy) and Argosphere buoy, have been used as oil tracking buoy in oil slick observation and as validation tools for oil spill simulation. However, surface wind could affect the movement of oil slick, which couldn't be reflected by CTB, thus the oil spill tracking performance is limited. Here, we proposed an novel oil spill tracking buoy (OSTB) which has a low cost of less than $140 and is equipped with Beidou positioning module and sails to track oil slick. Based on hydrodynamic equilibrium model and ocean dynamic analysis, the wind sails and water sails are designed to be adjustable according to different marine conditions to improve tracking efficiency. Quick release device is designed to assure easy deployment from air or ship. Sea experiment was carried out in Jiaozhou Bay, Northern China. OSTB, SVP, iSLDMB, Argosphere buoy and a piece of oil-simulated rubber sheet were deployed at the same time. Meanwhile, oil spill simulation model GNOME (general NOAA operational modeling environment) was configured with the wind and current field, which were collected by an unmanned surface vehicle (USV) mounted with acoustic Doppler current profilers (ADCP) and wind speed and direction sensors. Experimental results show that the OSTB has better relevance with rubber sheet and GNOME simulation results, which validate the oil tracking ability of OSTB. With low cost and easy deployment, OSTB provides an effective way for oil spill numerical modeling validation and quick response to oil spill accidents.
Corruption of genomic databases with anomalous sequence.
Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L
1992-06-11
We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%.
Ning, Xu; Dong, Zhao-jun; Mu, Ling; Zhai, Jian-cai
2006-12-01
To plan and develop a Chongqing chemical accident rescue command system. Based on the modes of leakage and diffusion of various poisonous gases and chemicals, different modes of injuries produced, and their appropriate rescue and treatments, also taking the following factors such as the condition of storage of chemicals, meteorological and geographic conditions, medical institutions and equipment, and their rescuing capacity into consideration, a plan was drafted to establish the rescue system. Real-time simulation technology, data analysis, evaluation technology and database technology were employed in the planning. Using Visual Studio 6.0 as the software development platform, this project aimed to design the software of an emergency command system for chemical accidents in Chongqing which could be operated with the Windows 2000/XP operating system. This system provided a dynamic scope of the endangered area, casualty number estimates, and recommendation of measures and a rescue plan for various chemical accidents. Furthermore, the system helped retrieve comprehensive information regarding the physical and chemical characteristics of more than 4 200 dangerous poisonous chemicals and their appropriate treatment modalities. This system is easy to operate with a friendly interface, functions rapidly and can provide real-time analysis with comparatively precise results. This system could satisfy the requirements of executing the command and the rescue of a chemical accident with good prospects of application.
Solid Rocket Launch Vehicle Explosion Environments
NASA Technical Reports Server (NTRS)
Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.
2014-01-01
Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.
The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempe, Joy L.; Knudson, Darrell L.
2015-02-01
The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken bymore » these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.« less
Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.
2015-01-01
We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608
Shahly, Victoria; Berglund, Patricia A; Coulouvrat, Catherine; Fitzgerald, Timothy; Hajak, Goeran; Roth, Thomas; Shillington, Alicia C; Stephenson, Judith J; Walsh, James K; Kessler, Ronald C
2012-10-01
Insomnia is a common and seriously impairing condition that often goes unrecognized. To examine associations of broadly defined insomnia (ie, meeting inclusion criteria for a diagnosis from International Statistical Classification of Diseases, 10th Revision, DSM-IV, or Research Diagnostic Criteria/International Classification of Sleep Disorders, Second Edition) with costly workplace accidents and errors after excluding other chronic conditions among workers in the America Insomnia Survey (AIS). A national cross-sectional telephone survey (65.0% cooperation rate) of commercially insured health plan members selected from the more than 34 million in the HealthCore Integrated Research Database. Four thousand nine hundred ninety-one employed AIS respondents. Costly workplace accidents or errors in the 12 months before the AIS interview were assessed with one question about workplace accidents "that either caused damage or work disruption with a value of $500 or more" and another about other mistakes "that cost your company $500 or more." Current insomnia with duration of at least 12 months was assessed with the Brief Insomnia Questionnaire, a validated (area under the receiver operating characteristic curve, 0.86 compared with diagnoses based on blinded clinical reappraisal interviews), fully structured diagnostic interview. Eighteen other chronic conditions were assessed with medical/pharmacy claims records and validated self-report scales. Insomnia had a significant odds ratio with workplace accidents and/or errors controlled for other chronic conditions (1.4). The odds ratio did not vary significantly with respondent age, sex, educational level, or comorbidity. The average costs of insomnia-related accidents and errors ($32 062) were significantly higher than those of other accidents and errors ($21 914). Simulations estimated that insomnia was associated with 7.2% of all costly workplace accidents and errors and 23.7% of all the costs of these incidents. These proportions are higher than for any other chronic condition, with annualized US population projections of 274 000 costly insomnia-related workplace accidents and errors having a combined value of US $31.1 billion. Effectiveness trials are needed to determine whether expanded screening, outreach, and treatment of workers with insomnia would yield a positive return on investment for employers.
Another Approach to Enhance Airline Safety: Using Management Safety Tools
NASA Technical Reports Server (NTRS)
Lu, Chien-tsug; Wetmore, Michael; Przetak, Robert
2006-01-01
The ultimate goal of conducting an accident investigation is to prevent similar accidents from happening again and to make operations safer system-wide. Based on the findings extracted from the investigation, the "lesson learned" becomes a genuine part of the safety database making risk management available to safety analysts. The airline industry is no exception. In the US, the FAA has advocated the usage of the System Safety concept in enhancing safety since 2000. Yet, in today s usage of System Safety, the airline industry mainly focuses on risk management, which is a reactive process of the System Safety discipline. In order to extend the merit of System Safety and to prevent accidents beforehand, a specific System Safety tool needs to be applied; so a model of hazard prediction can be formed. To do so, the authors initiated this study by reviewing 189 final accident reports from the National Transportation Safety Board (NTSB) covering FAR Part 121 scheduled operations. The discovered accident causes (direct hazards) were categorized into 10 groups Flight Operations, Ground Crew, Turbulence, Maintenance, Foreign Object Damage (FOD), Flight Attendant, Air Traffic Control, Manufacturer, Passenger, and Federal Aviation Administration. These direct hazards were associated with 36 root factors prepared for an error-elimination model using Fault Tree Analysis (FTA), a leading tool for System Safety experts. An FTA block-diagram model was created, followed by a probability simulation of accidents. Five case studies and reports were provided in order to fully demonstrate the usefulness of System Safety tools in promoting airline safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-04
The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)
Genesis Failure Investigation Report
NASA Technical Reports Server (NTRS)
Klein, John
2004-01-01
The-Genesis mission to collect solar-wind samples and return them to Earth for detailed analysis proceeded successfully for 3.5 years. During reentry on September 8, 2004, a failure in the entry, descent and landing sequence resulted in a crash landing of the Genesis sample return capsule. This document describes the findings of the avionics sub-team that supported the accident investigation of the JPL Failure Review Board.
Car accidents induced by a bottleneck
NASA Astrophysics Data System (ADS)
Marzoug, Rachid; Echab, Hicham; Ez-Zahraouy, Hamid
2017-12-01
Based on the Nagel-Schreckenberg model (NS) we study the probability of car accidents to occur (Pac) at the entrance of the merging part of two roads (i.e. junction). The simulation results show that the existence of non-cooperative drivers plays a chief role, where it increases the risk of collisions in the intermediate and high densities. Moreover, the impact of speed limit in the bottleneck (Vb) on the probability Pac is also studied. This impact depends strongly on the density, where, the increasing of Vb enhances Pac in the low densities. Meanwhile, it increases the road safety in the high densities. The phase diagram of the system is also constructed.
Drift simulation of MH370 debris using superensemble techniques
NASA Astrophysics Data System (ADS)
Jansen, Eric; Coppini, Giovanni; Pinardi, Nadia
2016-07-01
On 7 March 2014 (UTC), Malaysia Airlines flight 370 vanished without a trace. The aircraft is believed to have crashed in the southern Indian Ocean, but despite extensive search operations the location of the wreckage is still unknown. The first tangible evidence of the accident was discovered almost 17 months after the disappearance. On 29 July 2015, a small piece of the right wing of the aircraft was found washed up on the island of Réunion, approximately 4000 km from the assumed crash site. Since then a number of other parts have been found in Mozambique, South Africa and on Rodrigues Island. This paper presents a numerical simulation using high-resolution oceanographic and meteorological data to predict the movement of floating debris from the accident. Multiple model realisations are used with different starting locations and wind drag parameters. The model realisations are combined into a superensemble, adjusting the model weights to best represent the discovered debris. The superensemble is then used to predict the distribution of marine debris at various moments in time. This approach can be easily generalised to other drift simulations where observations are available to constrain unknown input parameters. The distribution at the time of the accident shows that the discovered debris most likely originated from the wide search area between 28 and 35° S. This partially overlaps with the current underwater search area, but extends further towards the north. Results at later times show that the most probable locations to discover washed-up debris are along the African east coast, especially in the area around Madagascar. The debris remaining at sea in 2016 is spread out over a wide area and its distribution changes only slowly.
Simulation-based evaluation of an in-vehicle smart situation awareness enhancement system.
Gregoriades, Andreas; Sutcliffe, Alistair
2018-07-01
Situation awareness (SA) constitutes a critical factor in road safety, strongly related to accidents. This paper describes the evaluation of a proposed SA enhancement system (SAES) that exploits augmented reality through a head-up display (HUD). Two SAES designs were evaluation (information rich vs. minimal information) using a custom-made simulator and the Situation Awareness Global Assessment Technique with performance and EEG measures. The paper describes the process of assessing the SA of drivers using the SAES, through a series of experiments with participants in a Cave Automatic Virtual Environment. The effectiveness of the SAES was tested in a within-group research design. The results showed that the information rich (radar-style display) was superior to the minimal (arrow hazard indicator) design and that both SAES improved drivers' SA and performance compared to the control (no HUD) design. Practitioner Summary: Even though driver situation awareness is considered as one of the leading causes of road accidents, little has been done to enhance it. The current study demonstrates the positive effect of a proposed situation awareness enhancement system on driver situation awareness, through an experiment using virtual prototyping in a simulator.
Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.
Shariff, Azmi Mohd; Zaini, Dzulkarnain
2010-10-15
Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.
Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.
Spielman, Stephanie J; Wilke, Claus O
2015-01-01
We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.
Studies and simulations of the DigiCipher system
NASA Technical Reports Server (NTRS)
Sayood, K.; Chen, Y. C.; Kipp, G.
1993-01-01
During this period the development of simulators for the various high definition television (HDTV) systems proposed to the FCC was continued. The FCC has indicated that it wants the various proposers to collaborate on a single system. Based on all available information this system will look very much like the advanced digital television (ADTV) system with major contributions only from the DigiCipher system. The results of our simulations of the DigiCipher system are described. This simulator was tested using test sequences from the MPEG committee. The results are extrapolated to HDTV video sequences. Once again, some caveats are in order. The sequences used for testing the simulator and generating the results are those used for testing the MPEG algorithm. The sequences are of much lower resolution than the HDTV sequences would be, and therefore the extrapolations are not totally accurate. One would expect to get significantly higher compression in terms of bits per pixel with sequences that are of higher resolution. However, the simulator itself is a valid one, and should HDTV sequences become available, they could be used directly with the simulator. A brief overview of the DigiCipher system is given. Some coding results obtained using the simulator are looked at. These results are compared to those obtained using the ADTV system. These results are evaluated in the context of the CCSDS specifications and make some suggestions as to how the DigiCipher system could be implemented in the NASA network. Simulations such as the ones reported can be biased depending on the particular source sequence used. In order to get more complete information about the system one needs to obtain a reasonable set of models which mirror the various kinds of sources encountered during video coding. A set of models which can be used to effectively model the various possible scenarios is provided. As this is somewhat tangential to the other work reported, the results are included as an appendix.
NASA Astrophysics Data System (ADS)
Shirley, Rachel Elizabeth
Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize and diagnose the accident in the scenario. These models estimate how the effects of the scenario conditions are mediated by simulator bias, and demonstrate how to quantify the strength of the simulator bias. Third, development of a quantitative model of subjective PSFs based on objective data (plant parameters, alarms, etc.) and PSF values reported by student operators. The objective PSF model is based on the PSF network in the IDAC HRA method. The final model is a mixed effects Bayesian hierarchical linear regression model. The subjective PSF model includes three factors: The Environmental PSF, the simulator Bias, and the Context. The Environmental Bias is mediated by an operator sensitivity coefficient that captures the variation in operator reactions to plant conditions. The data collected in the pilot experiments are not expected to reflect professional NPP operator performance, because the students are still novice operators. However, the models used in this research and the methods developed to analyze them demonstrate how to consider simulator bias in experiment design and how to use simulator data to enhance the technical basis of a complex HRA method. The contributions of the research include a framework for discussing simulator bias, a quantitative method for estimating simulator bias, a method for obtaining operator-reported PSF values, and a quantitative method for incorporating the variability in operator perception into PSF models. The research demonstrates applications of Structural Equation Modeling and hierarchical Bayesian linear regression models in HRA. Finally, the research demonstrates the benefits of using student operators as a test platform for HRA research.
A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.
Tian, Siyu; Huang, Xiaoxia; Li, Hongga
2017-03-15
Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Walshe, David; Lewis, Elizabeth; O'Sullivan, Kathleen; Kim, Sun I
2005-12-01
There is a small but growing body of research supporting the effectiveness of computer-generated environments in exposure therapy for driving phobia. However, research also suggests that difficulties can readily arise whereby patients do not immerse in simulated driving scenes. The simulated driving environments are not "real enough" to undertake exposure therapy. This sets a limitation to the use of virtual reality (VR) exposure therapy as a treatment modality for driving phobia. The aim of this study was to investigate if a clinically acceptable immersion/presence rate of >80% could be achieved for driving phobia subjects in computer generated environments by modifying external factors in the driving environment. Eleven patients referred from the Accident and Emergency Department of a general hospital or from their General Practitioner following a motor vehicle accident, who met DSM-IV criteria for Specific Phobia-driving were exposed to a computer-generated driving environment using computer driving games (London Racer/Midtown Madness). In an attempt to make the driving environments "real enough," external factors were modified by (a) projection of images onto a large screen, (b) viewing the scene through a windscreen, (c) using car seats for both driver and passenger, and (d) increasing vibration sense through use of more powerful subwoofers. Patients undertook a trial session involving driving through computer environments with graded risk of an accident. "Immersion/presence" was operationally defined as a subjective rating by the subject that the environment "feels real," together with an increase in subjective units of distress (SUD) ratings of >3 and/or an increase of heart rate of >15 beats per minute (BPM). Ten of 11 (91%) of the driving phobic subjects met the criteria for immersion/presence in the driving environment enabling progression to VR exposure therapy. These provisional findings suggest that the paradigm adopted in this study might be an effective and relatively inexpensive means of developing driving environments "real enough," to make VR exposure therapy a viable treatment modality for driving phobia following a motor vehicle accident (MVA).
NASA Astrophysics Data System (ADS)
Coyne, Kevin Anthony
The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.
R/S analysis of reaction time in Neuron Type Test for human activity in civil aviation
NASA Astrophysics Data System (ADS)
Zhang, Hong-Yan; Kang, Ming-Cui; Li, Jing-Qiang; Liu, Hai-Tao
2017-03-01
Human factors become the most serious problem leading to accidents of civil aviation, which stimulates the design and analysis of Neuron Type Test (NTT) system to explore the intrinsic properties and patterns behind the behaviors of professionals and students in civil aviation. In the experiment, normal practitioners' reaction time sequences, collected from NTT, exhibit log-normal distribution approximately. We apply the χ2 test to compute the goodness-of-fit by transforming the time sequence with Box-Cox transformation to cluster practitioners. The long-term correlation of different individual practitioner's time sequence is represented by the Hurst exponent via Rescaled Range Analysis, also named by Range/Standard deviation (R/S) Analysis. The different Hurst exponent suggests the existence of different collective behavior and different intrinsic patterns of human factors in civil aviation.
Parallel sequencing lives, or what makes large sequencing projects successful.
Quilez, Javier; Vidal, Enrique; Dily, François Le; Serra, François; Cuartero, Yasmina; Stadhouders, Ralph; Graf, Thomas; Marti-Renom, Marc A; Beato, Miguel; Filion, Guillaume
2017-11-01
T47D_rep2 and b1913e6c1_51720e9cf were 2 Hi-C samples. They were born and processed at the same time, yet their fates were very different. The life of b1913e6c1_51720e9cf was simple and fruitful, while that of T47D_rep2 was full of accidents and sorrow. At the heart of these differences lies the fact that b1913e6c1_51720e9cf was born under a lab culture of Documentation, Automation, Traceability, and Autonomy and compliance with the FAIR Principles. Their lives are a lesson for those who wish to embark on the journey of managing high-throughput sequencing data. © The Author 2017. Published by Oxford University Press.
A better sequence-read simulator program for metagenomics.
Johnson, Stephen; Trost, Brett; Long, Jeffrey R; Pittet, Vanessa; Kusalik, Anthony
2014-01-01
There are many programs available for generating simulated whole-genome shotgun sequence reads. The data generated by many of these programs follow predefined models, which limits their use to the authors' original intentions. For example, many models assume that read lengths follow a uniform or normal distribution. Other programs generate models from actual sequencing data, but are limited to reads from single-genome studies. To our knowledge, there are no programs that allow a user to generate simulated data following non-parametric read-length distributions and quality profiles based on empirically-derived information from metagenomics sequencing data. We present BEAR (Better Emulation for Artificial Reads), a program that uses a machine-learning approach to generate reads with lengths and quality values that closely match empirically-derived distributions. BEAR can emulate reads from various sequencing platforms, including Illumina, 454, and Ion Torrent. BEAR requires minimal user input, as it automatically determines appropriate parameter settings from user-supplied data. BEAR also uses a unique method for deriving run-specific error rates, and extracts useful statistics from the metagenomic data itself, such as quality-error models. Many existing simulators are specific to a particular sequencing technology; however, BEAR is not restricted in this way. Because of its flexibility, BEAR is particularly useful for emulating the behaviour of technologies like Ion Torrent, for which no dedicated sequencing simulators are currently available. BEAR is also the first metagenomic sequencing simulator program that automates the process of generating abundances, which can be an arduous task. BEAR is useful for evaluating data processing tools in genomics. It has many advantages over existing comparable software, such as generating more realistic reads and being independent of sequencing technology, and has features particularly useful for metagenomics work.
137Cs and 134Cs activity in the North Pacific Ocean water from 1945 to 2020 by eddy-resolving ROMS
NASA Astrophysics Data System (ADS)
Tsubono, Takaki; Misumi, Kazuo; Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi
2017-04-01
We conducted the simulation of 137Cs activity in the North Pacific Ocean (NPO) water from 1945 to 2020, before and after the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) accident. Using the Regional Ocean Model System (ROMS) with high resolution (1/12°-1/4° in horizontal, 45 levels in vertical), of which domain was the NPO, we preliminarily estimated a factor multiplying the total 134Cs fluxes, which have been estimated for the atmospheric deposition and the direct discharge from the accident. The direct comparison of the observed and calculated 134Cs showed that the total 134Cs flux was 1.6 times greater than the previous estimates. We re-calculated the 134Cs activityies in the NPO water using the flux multiplied by 1.6 and confirmed the improvement of the simulation by the multiplied flux, which suggested that 134Cs and 137Cs inventories in the NPO increase by about 16PBq, respectively, due to the accident. For the hindcast and forecast of the 137Cs activityies in the NPO water, we calculated the 137Cs activityy in the NPO water from 1945 to 2020 by using the global fallout flux due to atmospheric nuclear weapons' tests and the Chernobyl accident and the estimated fluxes of the 1F NPP accident. For the calculation, five ensemble calculations of 137Cs activity were conducted by moving the start period of the input flux for one year. The 137Cs activity in the surface water showed that the plume due to the 1F NPP accident with relatively higher activity than 5 Bq m-3, which was lower than that in 1985, was transported to the western area of 135°W in 2015. The peak year of the 137Cs activity can be estimated from the hindcast and forecast. The 137Cs activity in the surface water north of 30°N shows that the 137Cs peak in 2011 occurs up to 180°, but the peak from 2012 to 2017 is distributed from near 180° to 90°W. The total inventory of 137Cs in the NPO increased up to 77 PBq in 2011 and gradually decreased to 61PBq in 2018 by transport outside of the domain, which is almost the same as that in Dec. 2010. The whole amount of 137Cs in the subsurface layer ( 200-600m depth ) is larger than that in the surface layer ( 0-200m depth) since the 1F NPP accident except 2011.
Unlocking the Mystery of Columbia's Tragic Accident Through Materials Characterization
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Jerman, Gregory; Coston, James
2003-01-01
The wing and underbelly reconstruction of Space Shuttle Columbia took place at the Shuttle Landing Facility Hangar after the accident which destroyed STS-107. Fragments were placed on a grid according to their original location on the orbiter. Some Reinforced Carbon-Carbon (RCC) panels of the left wing leading edge and other parts from both leading edges were recovered and incorporated into the reconstruction. The recovered parts were tracked on a database according to a number and also tracked on a map of the orbiter. This viewgraph presentation describes the process of failure analysis undertaken by the Materials and Processes (M&P) Problem Resolution Team. The team started with factual observations about the accident, and identified highest level questions for it to answer in order to understand where on the orbiter failure occured, what component(s) failed, and what was the sequence of events. The finding of Columbia's MADS/OEX data recorder shifted the focus of the team's analysis to the left wing leading edge damage. The team placed particular attention on slag deposits on some of the RCC panels. The presentation lists analysis techniques, and lower level questions for the team to answer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolaczkowski, A.M.; Lambright, J.A.; Ferrell, W.L.
This document contains the internal event initiated accident sequence analyses for Peach Bottom, Unit 2; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Peach Bottom, Unit 2, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provided additional insights regarding the dominant contributors to the Peach Bottom core damage frequency estimate. The mean core damage frequency at Peach Bottom wasmore » calculated to be 8.2E-6. Station blackout type accidents (loss of all ac power) were found to dominate the overall results. Anticipated Transient Without Scram accidents were also found to be non-negligible contributors. The numerical results are largely driven by common mode failure probability estimates and to some extent, human error. Because of significant data and analysis uncertainties in these two areas (important, for instance, to the most dominant scenario in this study), it is recommended that the results of the uncertainty and sensitivity analyses be considered before any actions are taken based on this analysis.« less
Mayayo, Emilio; Stchigel, Alberto M; Cano, José F; Bernal-Escoté, Xana; Guarro, Josep
2013-01-03
Cutaneous mucormycosis (zygomycosis), with subcutaneous spreading and dissemination, in immunocompetent patients is an uncommon disease caused by species belonging to the fungal genera Apophysomyces, Rhizopus and Saksenaea, among others. A case of necrotising fasciitis by Saksenaea vasiformis in an immunocompetent woman is described. The infection was acquired through a car accident resulting in multiple injuries affecting mainly her right arm. After the surgical reduction of fractures, skin lesions worsened and led to necrosis. The patient quickly developed a severe necrotising fasciitis with negative cultures at first. Despite the extensive surgical debridement and the aggressive antifungal treatment, the patient died. The histopathological study showed a fungal infection due to a fungus belonging to the Mucorales order, which was confirmed by culturing the clinical sample on Sabouraud agar, and identifying the species by cultures on Czapek-Dox agar, and sequencing of the ITS region of the ribosomal DNA. This case confirm the presence of this fungus in Spain, the value of histopathology for the mucormycosis diagnosis, as well as the need to perform special cultures to facilitate their isolation and identification to the species level by the combined use of Czapek-Dox agar and sequencing of the ITS region. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier España, S.L. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Goldmann, Andrew; Kalinich, Donald A.
2016-12-01
In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in thismore » study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU analyses. Additionally, current analyses suggest that the NUREG-1465 release fractions are conservative by about a factor of 2 in terms of release fractions and that release durations for in-vessel and late in-vessel release periods are in fact longer than the NUREG-1465 durations. It is currently planned that a subsequent report will further characterize these results using more refined statistical methods, permitting a more precise reformulation of the NUREG-1465 alternative source term for both LBU and HBU fuels, with the most important finding being that the NUREG-1465 formula appears to embody significant conservatism compared to current best-estimate analyses. ACKNOWLEDGEMENTS This work was supported by the United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The authors would like to thank Dr. Ian Gauld and Dr. Germina Ilas, of Oak Ridge National Laboratory, for their contributions to this work. In addition to development of core fission product inventory and decay heat information for use in MELCOR models, their insights related to fuel management practices and resulting effects on spatial distribution of fission products in the core was instrumental in completion of our work.« less
NASA Astrophysics Data System (ADS)
Tsumune, Daisuke; Aoyama, Michio; Tsubono, Takaki; Misumi, Kazuhiro; Tateda, Yutaka
2017-04-01
A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition. Additional release pathways by river input and runoff from 1F NPP site with precipitation and were also effective for coastal zone in the specific periods before starting direct release on March 26 2011. Direct release from 1F NPP site is dominant one year after the accident. We estimated the direct release rate of 137Cs and 90Sr for more than five-and-a-half years after the accident by the Regional Ocean Model System (ROMS). Direct release rate of 137Cs were estimated for five-and-a-half years after the accident by comparing simulated results and measured activities adjacent to the 1F NPP site(at 5,6 discharge and south discharge). Directly release rate of 137Cs was estimated to be the order of magnitude of 1014 Bq/day and decreased exponentially with time to be the order of magnitude of 109 Bq/day by the end of September 2016. Estimated direct release rate have exponentially reduced with constant rate since November 2011. Apparent half-life of direct release rate was estimated to be 346 days. The estimated total amounts of directly released 137Cs was 3.7±0.7 PBq for five and a half years. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. Simulated 137Cs activity affected off coast in the Fukushima prefecture. We used the measured 137Cs activities by the Tokyo Electric Power Company (TEPCO) for the estimation of direct release. The sea water samples were corrected from the coast. The averaged 137Cs activities from November 2013 to June 2016 were 391 and 383 Bq/m3 at 5,6 discharge and south discharge, respectively. The averaged 137Cs activities measured by the Nuclear Regulation Agency (NRA) is about five times smaller than the one by the TEPCO because the NRA corrected seawater samples at 300-500m offshore by ship. Horizontal resolution of the model was 1km x 1km, therefore it is important to consider the difference of activities in the sub-grid scale for the detailed estimations of direct release. 90Sr/137Cs activity ratio measured adjacent to the 1F NPP is variable with time. The 90Sr/137Cs activity ratio was 0.62 due to the global fallout before the accident. The 90Sr/137Cs activity ratio decreased to 0.01 after the accident before April 2011. And the ratio increased to 1 by September 2013. And then the ratio decreased to 0.1-1. After October 2015, the ratio decreased to 0.1-0.2. Directly release rate of 90Sr was estimated to be the order of magnitude of 1012 Bq/day and decreased to the order of magnitude of 108 Bq/day by the end of September 2016. The estimated total amounts of directly released 90Sr was 35 ± 7 TBq.
RELAP5 Application to Accident Analysis of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.
Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accidentmore » and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joy L. Rempe; Darrell L. Knudson
2013-03-01
The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensorsmore » that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joy L. Rempe; Darrell L. Knudson
2014-05-01
The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensorsmore » that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.« less
Cognitive simulation as a tool for cognitive task analysis.
Roth, E M; Woods, D D; Pople, H E
1992-10-01
Cognitive simulations are runnable computer programs that represent models of human cognitive activities. We show how one cognitive simulation built as a model of some of the cognitive processes involved in dynamic fault management can be used in conjunction with small-scale empirical data on human performance to uncover the cognitive demands of a task, to identify where intention errors are likely to occur, and to point to improvements in the person-machine system. The simulation, called Cognitive Environment Simulation or CES, has been exercised on several nuclear power plant accident scenarios. Here we report one case to illustrate how a cognitive simulation tool such as CES can be used to clarify the cognitive demands of a problem-solving situation as part of a cognitive task analysis.
Melting Penetration Simulation of Fe-U System at High Temperature Using MPS_LER
NASA Astrophysics Data System (ADS)
Mustari, A. P. A.; Yamaji, A.; Irwanto, Dwi
2016-08-01
Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS_LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS_LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS_LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate.
Raemer, Daniel B
2014-06-01
The story of Ignaz Semmelweis suggests a lesson to beware of unintended consequences, especially with in situ simulation. In situ simulation offers many important advantages over center-based simulation such as learning about the real setting, putting participants at ease, saving travel time, minimizing space requirements, involving patients and families. Some substantial disadvantages include frequent distractions, lack of privacy, logistics of setup, availability of technology, and supply costs. Importantly, in situ simulation amplifies some of the safety hazards of simulation itself including maintaining control of simulated medications and equipment, limiting the use of valuable hospital resources, preventing incorrect learning from simulation shortcuts, and profoundly upsetting patients and their families. Mitigating these hazards by labeling effectively, publishing policies and procedures, securing simulation supplies and equipment, educating simulation staff, and informing participants of the risks are all methods that may lessen the potential for an accident. Each requires a serious effort of analysis, design, and implementation.
Control Characteristics of Alcohol-Impaired Operators
NASA Technical Reports Server (NTRS)
Jex, Henry R.; McRuer, Duane T.; Allen, R. Wade; Klein, Richard H.
1974-01-01
Although the operation of vehicles like airplanes, cars, and bicycles involves a complex array of perceptual, decision and control activities, most accident statistics clearly show that intoxicated operators are a dominant cause of accidents, and not the difficulty of the task itself. This paper summarizes some recent research on the nature of the impairment of operator control under blood alcohol concentrations (BAC) up to above 0.16 percent. Alcohol toxicity is shown to be quite specific with respect to visual-motor functions involved in control of a vehicle, and experiments with a generalized workload task and special driving simulator show how these are reflected in terms of changes in operator control parameters such as response latency, gains, stability margins, and coherency.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Rauner, M S; Mayer, B; Schaffhauser-Linzatti, M M
2015-08-01
Occupational injuries cause short-term, direct costs as well as long-term follow-up costs over the lifetime of the casualties. Due to shrinking budgets accident insurance companies focus on cost reduction programmes and prevention measures. For this reason, a decision support system for consequential cost calculation of occupational injuries was developed for the main Austrian social occupational insurance institution (AUVA) during three projects. This so-called cost calculation tool combines the traditional instruments of accounting with quantitative methods such as micro-simulation. The cost data are derived from AUVA-internal as well as external economic data sources. Based on direct and indirect costs, the subsequent occupational accident costs from the time of an accident and, if applicable, beyond the death of the individual casualty are predicted for the AUVA, the companies in which the casualties are working, and the other economic sectors. By using this cost calculation tool, the AUVA classifies risk groups and derives related prevention campaigns. In the past, the AUVA concentrated on falling, accidents at construction sites and in agriculture/forestry, as well as commuting accidents. Currently, among others, a focus on hand injuries is given and first prevention programmes have been initiated. Hand injuries represent about 38% of all casualties with average costs of about 7,851 Euro/case. Main causes of these accidents are cutting injuries in production, agriculture, and forestry. Beside a low, but costly, number of amputations with average costs of more than 100,000 Euro/case, bone fractures and strains burden the AUVA-budget with about 17,500 and 10,500 € per case, respectively. Decision support systems such as this cost calculation tool represent necessary instruments to identify risk groups and their injured body parts, causes of accidents, and economic activities, which highly burden the budget of an injury company, and help derive countermeasures to avoid injuries. Target-group specific, suitable prevention measures for hand injuries can reduce accidents in a cost-effective way and lower their consequences. © Georg Thieme Verlag KG Stuttgart · New York.
White, Melanie J; Cunningham, Lauren C; Titchener, Kirsteen
2011-07-01
This study aimed to determine whether two brief, low cost interventions would reduce young drivers' optimism bias for their driving skills and accident risk perceptions. This tendency for such drivers to perceive themselves as more skillful and less prone to driving accidents than their peers may lead to less engagement in precautionary driving behaviours and a greater engagement in more dangerous driving behaviour. 243 young drivers (aged 17-25 years) were randomly allocated to one of three groups: accountability, insight or control. All participants provided both overall and specific situation ratings of their driving skills and accident risk relative to a typical young driver. Prior to completing the questionnaire, those in the accountability condition were first advised that their driving skills and accident risk would be later assessed via a driving simulator. Those in the insight condition first underwent a difficult computer-based hazard perception task designed to provide participants with insight into their potential limitations when responding to hazards in difficult and unpredictable driving situations. Participants in the control condition completed only the questionnaire. Results showed that the accountability manipulation was effective in reducing optimism bias in terms of participants' comparative ratings of their accident risk in specific situations, though only for less experienced drivers. In contrast, among more experienced males, participants in the insight condition showed greater optimism bias for overall accident risk than their counterparts in the accountability or control groups. There were no effects of the manipulations on drivers' skills ratings. The differential effects of the two types of manipulations on optimism bias relating to one's accident risk in different subgroups of the young driver sample highlight the importance of targeting interventions for different levels of experience. Accountability interventions may be beneficial for less experienced young drivers but the results suggest exercising caution with the use of insight type interventions, particularly hazard perception style tasks, for more experienced young drivers typically still in the provisional stage of graduated licensing systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobromir Panayotov; Andrew Grief; Brad J. Merrill
'Fusion for Energy' (F4E) develops designs and implements the European Test Blanket Systems (TBS) in ITER - Helium-Cooled Lithium-Lead (HCLL) and Helium-Cooled Pebble-Bed (HCPB). Safety demonstration is an essential element for the integration of TBS in ITER and accident analyses are one of its critical segments. A systematic approach to the accident analyses had been acquired under the F4E contract on TBS safety analyses. F4E technical requirements and AMEC and INL efforts resulted in the development of a comprehensive methodology for fusion breeding blanket accident analyses. It addresses the specificity of the breeding blankets design, materials and phenomena and atmore » the same time is consistent with the one already applied to ITER accident analyses. Methodology consists of several phases. At first the reference scenarios are selected on the base of FMEA studies. In the second place elaboration of the accident analyses specifications we use phenomena identification and ranking tables to identify the requirements to be met by the code(s) and TBS models. Thus the limitations of the codes are identified and possible solutions to be built into the models are proposed. These include among others the loose coupling of different codes or code versions in order to simulate multi-fluid flows and phenomena. The code selection and issue of the accident analyses specifications conclude this second step. Furthermore the breeding blanket and ancillary systems models are built on. In this work challenges met and solutions used in the development of both MELCOR and RELAP5 codes models of HCLL and HCPB TBSs will be shared. To continue the developed models are qualified by comparison with finite elements analyses, by code to code comparison and sensitivity studies. Finally, the qualified models are used for the execution of the accident analyses of specific scenario. When possible the methodology phases will be illustrated in the paper by limited number of tables and figures. Description of each phase and its results in detail as well the methodology applications to EU HCLL and HCPB TBSs will be published in separate papers. The developed methodology is applicable to accident analyses of other TBSs to be tested in ITER and as well to DEMO breeding blankets.« less
Accident analysis of heavy water cooled thorium breeder reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki
2015-04-16
Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k,more » and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.« less
Accident analysis of heavy water cooled thorium breeder reactor
NASA Astrophysics Data System (ADS)
Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki
2015-04-01
Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.
Experimental field test of proposed anti-dart-out training programs. Volume 1, Conduct and results
DOT National Transportation Integrated Search
1981-12-01
This report describes the conduct and results of an evaluation of a child pedestrian anti-dart-out training program. Two versions were tested: A film program and a film/simulator program. Before/after accident and street crossing behavior data were c...
A simulation-based assessment approach to increase safety among senior drivers : [research brief].
DOT National Transportation Integrated Search
2013-03-01
In the U.S., there are about 38 million licensed drivers over : age 65; about 1/8 of our population. By 2024, this figure : will DOUBLE to 25%. The current research is intended to : address the driving capabilities of our older population, : as accid...
Validation of Operational Multiscale Environment Model With Grid Adaptivity (OMEGA).
1995-12-01
Center for the period of the Chernobyl Nuclear Accident. The physics of the model is tested using National Weather Service Medium Range Forecast data by...Climatology Center for the first three days following the release at the Chernobyl Nuclear Plant. A user-defined source term was developed to simulate
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
Consequences of severe nuclear accidents in Europe
NASA Astrophysics Data System (ADS)
Seibert, Petra; Arnold, Delia; Mraz, Gabriele; Arnold, Nikolaus; Gufler, Klaus; Kromp-Kolb, Helga; Kromp, Wolfgang; Sutter, Philipp
2013-04-01
A first part of the presentation is devoted to the consequences of the severe accident in the 1986 Chernobyl NPP. It lead to a substantial radioactive contaminated of large parts of Europe and thus raised the awareness for off-site nuclear accident consequences. Spatial patterns of the (transient) contamination of the air and (persistent) contamination of the ground were studied by both measurements and model simulations. For a variety of reasons, ground contamination measurements have variability at a range of spatial scales. Results will be reviewed and discussed. Model simulations, including inverse modelling, have shown that the standard source term as defined in the ATMES study (1990) needs to be updated. Sensitive measurements of airborne activities still reveal the presence of low levels of airborne radiocaesium over the northern hemisphere which stems from resuspension. Over time scales of months and years, the distribution of radionuclides in the Earth system is constantly changing, for example relocated within plants, between plants and soil, in the soil, and into water bodies. Motivated by the permanent risk of transboundary impacts from potential major nuclear accidents, the multidisciplinary project flexRISK (see http://flexRISK.boku.ac.at) has been carried out from 2009 to 2012 in Austria to quantify such risks and hazards. An overview of methods and results of flexRISK is given as a second part of the presentation. For each of the 228 NPPs, severe accidents were identified together with relevant inventories, release fractions, and release frequencies. Then, Europe-wide dispersion and dose calculations were performed for 2788 cases, using the Lagrangian particle model FLEXPART. Maps of single-case results as well as various aggregated risk parameters were produced. It was found that substantial consequences (intervention measures) are possible for distances up to 500-1000 km, and occur more frequently for a distance range up to 100-300 km, which is in agreement with Chernobyl experiences. However, emergency planning presently is still often focussing on too small areas. In reality, almost all of Europe should be prepared for nuclear disaster. The project investigated also the effect of a simple phase-out scenario. A regional phase-out policy is effective for reducing or even eliminating high damage in the respective regions. It should also be mentioned that risk distribution depends strongly on accident frequency, but this parameter is highly uncertain. The work in flexRISK was funded by the Austrian Climate and Energy Fund (KLI.EN).
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.
On-line measurements of RuO{sub 4} during a PWR severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reymond-Laruinaz, S.; Doizi, D.; Manceron, L.
After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is notmore » trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)« less
Hazard assessment of substances produced from the accidental heating of chemical compounds.
Lunghi, A; Gigante, L; Cardillo, P; Stefanoni, V; Pulga, G; Rota, R
2004-12-10
Accidental events concerning process industries can affect not only the staff working in, but also the environment and people living next to the factory. For this reason a regulation is imposed by the European Community to prevent accidents that could represent a risk for the population and the environment. In particular, Directive 96/82/CE, the so-called 'Seveso II directive', requests a risk analysis involving also the hazardous materials generated in accidental events. Therefore, it is necessary to develop simple and economic procedure to foresee the hazardous materials that can be produced in the case of major accidents, among which the accidental heating of a chemical due to a fire or a runaway reaction is one of the most frequent. The procedure proposed in this work is based on evolved gas analysis methodology that consists in coupling two instruments: a thermogravimetric analyzer or a flash pyrolyzer, that are employed to simulate accident conditions, and a FTIR spectrometer that can be used to detect the evolved gas composition. More than 40 materials have been examined in various accident scenarios and the obtained data have been statistically analyzed in order to identify meaningful correlations between the presence of a chemical group in the molecule of a chemical and the presence of a given hazardous species in the fume produced.
NASA Astrophysics Data System (ADS)
Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng
2018-03-01
As an effective fall accident preventive method, insight into near-miss falls provides an efficient solution to find out the causes of fall accidents, classify the type of near-miss falls and control the potential hazards. In this context, the paper proposes a method to detect and identify near-miss falls that occur when a worker walks in a workplace based on artificial neural network (ANN). The energy variation generated by workers who meet with near-miss falls is measured by sensors embedded in smart phone. Two experiments were designed to train the algorithm to identify various types of near-miss falls and test the recognition accuracy, respectively. At last, a test was conducted by workers wearing smart phones as they walked around a simulated construction workplace. The motion data was collected, processed and inputted to the trained ANN to detect and identify near-miss falls. Thresholds were obtained to measure the relationship between near-miss falls and fall accidents in a quantitate way. This approach, which integrates smart phone and ANN, will help detect near-miss fall events, identify hazardous elements and vulnerable workers, providing opportunities to eliminate dangerous conditions in a construction site or to alert possible victims that need to change their behavior before the occurrence of a fall accident.
[Risk management for endoscopic surgery].
Kimura, Taizo
2010-05-01
The number of medical accidents in endoscopic surgery has recently increased. Surgical complications caused by inadequate preparation or immature technique or those resulting in serious adverse outcomes may be referred to as medical accidents. The Nationwide Survey of Endoscopic Surgery showed that bile duct injury and uncontrollable bleeding were seen in 0.68% and in 0.58%, respectively, of cholecystectomy patients; interoperative and postoperative complications in 0.84% and in 3.8%, respectively, of gastric cancer surgery patients; and operative complications in 6.74% of bowel surgery patients. Some required open repair, and 49 patients died. The characteristic causes of complications in endoscopic surgery are a misunderstanding of anatomy, handling of organs outside the visual field, burn by electrocautery, and injuries caused by forceps. Bleeding that requires a laparotomy for hemostasis is also a complication. Furthermore, since the surgery is usually videorecorded, immature techniques resulting in complications are easily discovered. To decrease the frequency of accidents, education through textbooks and seminars, training using training boxes, simulators, or animals, proper selection of the surgeon depending on the difficulty of the procedure, a low threshold for conversion to laparotomy, and use of the best optical equipment and surgical instruments are important. To avoid malpractice lawsuits, informed consent obtained before surgery and proper communication after accidents are necessary.
Differential evolution-simulated annealing for multiple sequence alignment
NASA Astrophysics Data System (ADS)
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
The effect of pavement markings on driving behaviour in curves: a simulator study.
Ariën, Caroline; Brijs, Kris; Vanroelen, Giovanni; Ceulemans, Wesley; Jongen, Ellen M M; Daniels, Stijn; Brijs, Tom; Wets, Geert
2017-05-01
This study investigates the effect of two pavement markings (transverse rumble strips (TRS) and a backward pointing herringbone pattern (HP)) on speed and lateral control in and nearby curves. Two real-world curves with strong indications of a safety problem were replicated as realistic as possible in the simulator. Results show that both speed and lateral control differ between the curves. These behavioural differences are probably due to curve-related dissimilarities with respect to geometric alignment, cross-sectional design and speed limit. TRS and HP both influenced mean speed and mean acceleration/deceleration but not lateral control. TRS generated an earlier and more stable speed reduction than HP which induced significant speed reductions along the curve. The TRS gives drivers more time to generate the right expectations about the upcoming curve. When accidents occur primarily near the curve entry, TRS is recommended. The HP has the potential to reduce accidents at the curve end. Practitioner Summary: Two pavement markings (transversal rumble strips and HP) nearby dangerous curves were investigated in the driving simulator. TRS generated an earlier and more stable speed reduction than HP which induced speed reductions along the curve. The TRS gives drivers more time to generate right expectations about the upcoming curve.
NASA Astrophysics Data System (ADS)
Geiger, E.; Le Gall, C.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.
2017-11-01
Within the framework of the International Source Term Programme (ISTP), the VERDON programme aims at quantifying the source term of radioactive materials in case of a hypothetical severe accident in a light water reactor (LWR). Tests were performed in a new experimental laboratory (VERDON) built in the LECA-STAR facility (CEA Cadarache). The VERDON-1 test was devoted to the study of a high burn-up UO2 fuel and FP releases at very high temperature (≈2873 K) in a reducing atmosphere. Post-test qualitative and quantitative characterisations of the VERDON-1 sample led to the proposal of a scenario explaining the phenomena occurring during the experimental sequence. Hence, the fuel and the cladding may have interacted which led to the melting of UO2-ZrO2 alloy. Although no relocation was observed during the test, it may have been imminent.
Can Yilmaz, Ali; Aci, Cigdem; Aydin, Kadir
2016-08-17
Currently, in Turkey, fault rates in traffic accidents are determined according to the initiative of accident experts (no speed analyses of vehicles just considering accident type) and there are no specific quantitative instructions on fault rates related to procession of accidents which just represents the type of collision (side impact, head to head, rear end, etc.) in No. 2918 Turkish Highway Traffic Act (THTA 1983). The aim of this study is to introduce a scientific and systematic approach for determination of fault rates in most frequent property damage-only (PDO) traffic accidents in Turkey. In this study, data (police reports, skid marks, deformation, crush depth, etc.) collected from the most frequent and controversial accident types (4 sample vehicle-vehicle scenarios) that consist of PDO were inserted into a reconstruction software called vCrash. Sample real-world scenarios were simulated on the software to generate different vehicle deformations that also correspond to energy-equivalent speed data just before the crash. These values were used to train a multilayer feedforward artificial neural network (MFANN), function fitting neural network (FITNET, a specialized version of MFANN), and generalized regression neural network (GRNN) models within 10-fold cross-validation to predict fault rates without using software. The performance of the artificial neural network (ANN) prediction models was evaluated using mean square error (MSE) and multiple correlation coefficient (R). It was shown that the MFANN model performed better for predicting fault rates (i.e., lower MSE and higher R) than FITNET and GRNN models for accident scenarios 1, 2, and 3, whereas FITNET performed the best for scenario 4. The FITNET model showed the second best results for prediction for the first 3 scenarios. Because there is no training phase in GRNN, the GRNN model produced results much faster than MFANN and FITNET models. However, the GRNN model had the worst prediction results. The R values for prediction of fault rates were close to 1 for all folds and scenarios. This study focuses on exhibiting new aspects and scientific approaches for determining fault rates of involvement in most frequent PDO accidents occurring in Turkey by discussing some deficiencies in THTA and without regard to initiative and/or experience of experts. This study yields judicious decisions to be made especially on forensic investigations and events involving insurance companies. Referring to this approach, injury/fatal and/or pedestrian-related accidents may be analyzed as future work by developing new scientific models.
Ridoux, Olivier; Foucault, Cédric; Drancourt, Michel
1998-01-01
Encephalitozoon species are strict intracellular microsporidia. Cocultures with eukaryotic cell lines can become accidently contaminated by mycoplasmas. We propose a decontamination protocol based on differential cell targeting after intraperitoneal inoculation in mice. Mycoplasma-free microsporidia were isolated from the brains and spleens of inoculated mice 24 h postinoculation by using the centrifugation shell vial system. Identification was confirmed by direct sequencing of PCR-amplified 16S rRNA. PMID:9666031
NASA Astrophysics Data System (ADS)
Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.
2013-03-01
The coupled model LMDzORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5°×1.25°, and the same grid stretched over Europe to reach a resolution of 0.45°×0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels, respectively, extending up to mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 vertical levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The best choice for the model validation was the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986. This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. However, the best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to Atlas), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of the levels in conjunction with the uncertainty of the source term. Moreover, the ecological half-life of 137Cs in the atmosphere after the accident ranged between 6 and 9 days, which is in good accordance to what previously reported and in the same range with the recent accident in Japan. The high response of LMDzORINCA model for 137Cs reinforces the importance of atmospheric modeling in emergency cases to gather information for protecting the population from the adverse effects of radiation.
NASA Astrophysics Data System (ADS)
Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.
2013-07-01
The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5° × 1.27°, and the same grid stretched over Europe to reach a resolution of 0.66° × 0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of the levels in conjunction with the uncertainty of the source term. Moreover, the ecological half-life of 137Cs in the atmosphere after the accident ranged between 6 and 9 days, which is in good accordance to what previously reported and in the same range with the recent accident in Japan. The high response of LMDZORINCA model for 137Cs reinforces the importance of atmospheric modelling in emergency cases to gather information for protecting the population from the adverse effects of radiation.
A finite element model of a six-year-old child for simulating pedestrian accidents.
Meng, Yunzhu; Pak, Wansoo; Guleyupoglu, Berkan; Koya, Bharath; Gayzik, F Scott; Untaroiu, Costin D
2017-01-01
Child pedestrian protection deserves more attention in vehicle safety design since they are the most vulnerable road users who face the highest mortality rate. Pediatric Finite Element (FE) models could be used to simulate and understand the pedestrian injury mechanisms during crashes in order to mitigate them. Thus, the objective of the study was to develop a computationally efficient (simplified) six-year-old (6YO-PS) pedestrian FE model and validate it based on the latest published pediatric data. The 6YO-PS FE model was developed by morphing the existing GHBMC adult pedestrian model. Retrospective scan data were used to locally adjust the geometry as needed for accuracy. Component test simulations focused only the lower extremities and pelvis, which are the first body regions impacted during pedestrian accidents. Three-point bending test simulations were performed on the femur and tibia with adult material properties and then updated using child material properties. Pelvis impact and knee bending tests were also simulated. Finally, a series of pediatric Car-to-Pedestrian Collision (CPC) were simulated with pre-impact velocities ranging from 20km/h up to 60km/h. The bone models assigned pediatric material properties showed lower stiffness and a good match in terms of fracture force to the test data (less than 6% error). The pelvis impact force predicted by the child model showed a similar trend with test data. The whole pedestrian model was stable during CPC simulations and predicted common pedestrian injuries. Overall, the 6YO-PS FE model developed in this study showed good biofidelity at component level (lower extremity and pelvis) and stability in CPC simulations. While more validations would improve it, the current model could be used to investigate the lower limb injury mechanisms and in the prediction of the impact parameters as specified in regulatory testing protocols. Copyright © 2016 Elsevier Ltd. All rights reserved.
INITIAL ANALYSIS OF TRANSIENT POWER TIME LAG DUE TO HETEROGENEITY WITHIN THE TREAT FUEL MATRIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; A.X. Zabriskie, W.R. Marcum
2014-06-01
The topic Nuclear Safety encompasses a broad spectrum of focal areas within the nuclear industry; one specific aspect centers on the performance and integrity of nuclear fuel during a reactivity insertion accident (RIA). This specific accident has proven to be fundamentally difficult to theoretically characterize due to the numerous empirically driven characteristics that quantify the fuel and reactor performance. The Transient Reactor Test (TREAT) facility was designed and operated to better understand fuel behavior under extreme (i.e. accident) conditions; it was shutdown in 1994. Recently, efforts have been underway to commission the TREAT facility to continue testing of advanced accidentmore » tolerant fuels (i.e. recently developed fuel concepts). To aid in the restart effort, new simulation tools are being used to investigate the behavior of nuclear fuels during facility’s transient events. This study focuses specifically on the characterizing modeled effects of fuel particles within the fuel matrix of the TREAT. The objective of this study was to (1) identify the impact of modeled heterogeneity within the fuel matrix during a transient event, and (2) demonstrate acceptable modeling processes for the purpose of TREAT safety analyses, specific to fuel matrix and particle size. Hypothetically, a fuel that is dominantly heterogeneous will demonstrate a clearly different temporal heating response to that of a modeled homogeneous fuel. This time difference is a result of the uniqueness of the thermal diffusivity within the fuel particle and fuel matrix. Using MOOSE/BISON to simulate the temperature time-lag effect of fuel particle diameter during a transient event, a comparison of the average graphite moderator temperature surrounding a spherical particle of fuel was made for both types of fuel simulations. This comparison showed that at a given time and with a specific fuel particle diameter, the fuel particle (heterogeneous) simulation and the homogeneous simulation were related by a multiplier relative to the average moderator temperature. As time increases the multiplier is comparable to the factor found in a previous analytical study from literature. The implementation of this multiplier and the method of analysis may be employed to remove assumptions and increase fidelity for future research on the effect of fuel particles during transient events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring
2015-07-01
The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describesmore » current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.« less
NASA Astrophysics Data System (ADS)
Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.
2014-06-01
Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates associated with reactor pressure changes in Units 2 and 3. The modified WSPEEDI-II simulation using the new source term reproduced local and regional patterns of cumulative surface deposition of total 131I and 137Cs and air dose rate obtained by airborne surveys. The new source term was also tested using three atmospheric dispersion models (MLDP0, HYSPLIT, and NAME) for regional and global calculations and showed good agreement between calculated and observed air concentration and surface deposition of 137Cs in East Japan. Moreover, HYSPLIT model using the new source term also reproduced the plume arrivals at several countries abroad showing a good correlation with measured air concentration data. A large part of deposition pattern of total 131I and 137Cs in East Japan was explained by in-cloud particulate scavenging. However, for the regional scale contaminated areas, there were large uncertainties due to the overestimation of rainfall amounts and the underestimation of fogwater and drizzle depositions. The computations showed that approximately 27% of 137Cs discharged from FNPS1 deposited to the land in East Japan, mostly in forest areas.
Apros-based Kola 1 nuclear power plant compact training simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porkholm, K.; Kontio, H.; Nurmilaukas, P.
1996-11-01
Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. Themore » delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.« less
The Simulator Development for RDE Reactor
NASA Astrophysics Data System (ADS)
Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.
A multimodal assessment of driving performance in HIV infection.
Marcotte, T D; Wolfson, T; Rosenthal, T J; Heaton, R K; Gonzalez, R; Ellis, R J; Grant, I
2004-10-26
To examine if HIV-seropositive (HIV+) individuals are at risk for impaired driving. Sixty licensed drivers (40 HIV+, 20 HIV-) completed a neuropsychological (NP) test battery and driving assessments. Eleven HIV+ subjects were NP-impaired. Driving-related skills were assessed using 1) two driving simulations (examining accident avoidance and navigational abilities), 2) the Useful Field of View (UFOV) test, and 3) an on-road evaluation. HIV+ NP-impaired subjects had greater difficulty than cognitively intact subjects on all driving measures, whereas the HIV- and HIV+ NP-normal groups performed similarly. On the UFOV, the HIV+ NP-impaired group had worse performance on Visual Processing and Divided Attention tasks but not in overall risk classification. They also had a higher number of simulator accidents (1.3 vs 2.0; p = 0.03), were less efficient at completing the navigation task (3.2 vs 9.2 blocks; p = 0.001), and were more likely to fail the on-road evaluation (6 vs 36%; p = 0.02). Impairment in Executive Functioning was the strongest NP predictor of failing the on-road drive test. NP performance and both simulations independently contributed to a model predicting 48% of the variance in on-road performance. HIV+ NP-impaired individuals are at increased risk for on-road driving impairments, whereas HIV+ individuals with normal cognition are not at a significantly higher risk than HIV- subjects. Executive Functioning is most strongly associated with impaired on-road performance. Cognitive and simulator testing may each provide data in identifying driving-impaired individuals.
A comparative study of two hazard handling training methods for novice drivers.
Wang, Y B; Zhang, W; Salvendy, G
2010-10-01
The effectiveness of two hazard perception training methods, simulation-based error training (SET) and video-based guided error training (VGET), for novice drivers' hazard handling performance was tested, compared, and analyzed. Thirty-two novice drivers participated in the hazard perception training. Half of the participants were trained using SET by making errors and/or experiencing accidents while driving with a desktop simulator. The other half were trained using VGET by watching prerecorded video clips of errors and accidents that were made by other people. The two groups had exposure to equal numbers of errors for each training scenario. All the participants were tested and evaluated for hazard handling on a full cockpit driving simulator one week after training. Hazard handling performance and hazard response were measured in this transfer test. Both hazard handling performance scores and hazard response distances were significantly better for the SET group than the VGET group. Furthermore, the SET group had more metacognitive activities and intrinsic motivation. SET also seemed more effective in changing participants' confidence, but the result did not reach the significance level. SET exhibited a higher training effectiveness of hazard response and handling than VGET in the simulated transfer test. The superiority of SET might benefit from the higher levels of metacognition and intrinsic motivation during training, which was observed in the experiment. Future research should be conducted to assess whether the advantages of error training are still effective under real road conditions.
NASA Technical Reports Server (NTRS)
Reveley, Mary S.
2003-01-01
The goal of the NASA Aviation Safety Program (AvSP) is to develop and demonstrate technologies that contribute to a reduction in the aviation fatal accident rate by a factor of 5 by the year 2007 and by a factor of 10 by the year 2022. Integrated safety analysis of day-to-day operations and risks within those operations will provide an understanding of the Aviation Safety Program portfolio. Safety benefits analyses are currently being conducted. Preliminary results for the Synthetic Vision Systems (SVS) and Weather Accident Prevention (WxAP) projects of the AvSP have been completed by the Logistics Management Institute under a contract with the NASA Glenn Research Center. These analyses include both a reliability analysis and a computer simulation model. The integrated safety analysis method comprises two principal components: a reliability model and a simulation model. In the reliability model, the results indicate how different technologies and systems will perform in normal, degraded, and failed modes of operation. In the simulation, an operational scenario is modeled. The primary purpose of the SVS project is to improve safety by providing visual-flightlike situation awareness during instrument conditions. The current analyses are an estimate of the benefits of SVS in avoiding controlled flight into terrain. The scenario modeled has an aircraft flying directly toward a terrain feature. When the flight crew determines that the aircraft is headed toward an obstruction, the aircraft executes a level turn at speed. The simulation is ended when the aircraft completes the turn.
DSMC Simulations in Support of the Columbia Shuttle Orbiter Accident Investigation
NASA Technical Reports Server (NTRS)
Boyles, Katie; LeBeau, Gerald J.; Gallis, Michael A.
2004-01-01
Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.
Situated Learning in Virtual Simulations: Researching the Authentic Dimension in Virtual Worlds
ERIC Educational Resources Information Center
Falconer, Liz
2013-01-01
This paper describes and discusses a case study of postgraduate students undertaking accident investigation and risk assessment exercises in an online virtual world as part of their course curriculum. These exercises were constructed to overcome the ethical and practical barriers inherent in real-world exercises. In particular this paper focusses…
Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mecartnery, Martha; Graeve, Olivia; Patel, Maulik
2017-05-25
The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity
Data reduction and analysis of graphite fiber release experiments
NASA Technical Reports Server (NTRS)
Lieberman, P.; Chovit, A. R.; Sussholz, B.; Korman, H. F.
1979-01-01
The burn and burn/explode effects on aircraft structures were examined in a series of fifteen outdoor tests conducted to verify the results obtained in previous burn and explode tests of carbon/graphite composite samples conducted in a closed chamber, and to simulate aircraft accident scenarios in which carbon/graphite fibers would be released. The primary effects that were to be investigaged in these tests were the amount and size distribution of the conductive fibers released from the composite structures, and how these various sizes of fibers transported downwind. The structures included plates, barrels, aircraft spoilers and a cockpit. The heat sources included a propane gas burner and 20 ft by 20 ft and 40 ft by 60 ft JP-5 pool fires. The larger pool fire was selected to simulate an aircraft accident incident. The passive instrumentation included sticky paper and sticky bridal veil over an area 6000 ft downwind and 3000 ft crosswind. The active instrumentation included instrumented meteorological towers, movies, infrared imaging cameras, LADAR, high voltage ball gages, light emitting diode gages, microwave gages and flame velocimeter.
NASA Astrophysics Data System (ADS)
D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.
2015-11-01
In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.
Cui, Jinshu; Rosoff, Heather; John, Richard S
2018-05-01
Many studies have investigated public reactions to nuclear accidents. However, few studies focused on more common events when a serious accident could have happened but did not. This study evaluated public response (emotional, cognitive, and behavioral) over three phases of a near-miss nuclear accident. Simulating a loss-of-coolant accident (LOCA) scenario, we manipulated (1) attribution for the initial cause of the incident (software failure vs. cyber terrorist attack vs. earthquake), (2) attribution for halting the incident (fail-safe system design vs. an intervention by an individual expert vs. a chance coincidence), and (3) level of uncertainty (certain vs. uncertain) about risk of a future radiation leak after the LOCA is halted. A total of 773 respondents were sampled using a 3 × 3 × 2 between-subjects design. Results from both MANCOVA and structural equation modeling (SEM) indicate that respondents experienced more negative affect, perceived more risk, and expressed more avoidance behavioral intention when the near-miss event was initiated by an external attributed source (e.g., earthquake) compared to an internally attributed source (e.g., software failure). Similarly, respondents also indicated greater negative affect, perceived risk, and avoidance behavioral intentions when the future impact of the near-miss incident on people and the environment remained uncertain. Results from SEM analyses also suggested that negative affect predicted risk perception, and both predicted avoidance behavior. Affect, risk perception, and avoidance behavior demonstrated high stability (i.e., reliability) from one phase to the next. © 2017 Society for Risk Analysis.
Gokulakrishnan, P; Ganeshkumar, P
2015-01-01
A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU's coverage area or outside RSU's coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads.
P, Gokulakrishnan; P, Ganeshkumar
2015-01-01
A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU’s coverage area or outside RSU’s coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads. PMID:26636576
Assembling in Sequence: A Saleable Work Skill. Occupation Simulation Packet. Grades 3rd-4th.
ERIC Educational Resources Information Center
Hueston, Jean
This teacher's guide for grades 3 and 4 contains simulated work experiences for students using the isolated skill concept - assembling in sequence. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Three pre-skill activities are suggested,…
Tsumune, Daisuke; Tsubono, Takaki; Aoyama, Michio; Hirose, Katsumi
2012-09-01
Radioactive materials were released to the environment from the Fukushima Dai-ichi Nuclear Power Plant as a result of the reactor accident after the Tohoku earthquake and tsunami of 11 March 2011. The measured (137)Cs concentration in a seawater sample near the Fukushima Dai-ichi Nuclear Power Plant site reached 68 kBq L(-1) (6.8 × 10(4)Bq L(-1)) on 6 April. The two major likely pathways from the accident site to the ocean existed: direct release of high radioactive liquid wastes to the ocean and the deposition of airborne radioactivity to the ocean surface. By analysis of the (131)I/(137)Cs activity ratio, we determined that direct release from the site contributed more to the measured (137)Cs concentration than atmospheric deposition did. We then used a regional ocean model to simulate the (137)Cs concentrations resulting from the direct release to the ocean off Fukushima and found that from March 26 to the end of May the total amount of (137)Cs directly released was 3.5 ± 0.7 PBq ((3.5 ± 0.7) × 10(15)Bq). The simulated temporal change in (137)Cs concentrations near the Fukushima Daini Nuclear Power Plant site agreed well with observations. Our simulation results showed that (1) the released (137)Cs advected southward along the coast during the simulation period; (2) the eastward-flowing Kuroshio and its extension transported (137)C during May 2011; and (3) (137)Cs concentrations decreased to less than 10 BqL(-1) by the end of May 2011 in the whole simulation domain as a result of oceanic advection and diffusion. We compared the total amount and concentration of (137)Cs released from the Fukushima Dai-ichi reactors to the ocean with the (137)Cs released to the ocean by global fallout. Even though the measured (137)Cs concentration from the Fukushima accident was the highest recorded, the total released amount of (137)Cs was not very large. Therefore, the effect of (137)Cs released from the Fukushima Dai-ichi reactors on concentration in the whole North Pacific was smaller than that of past release events such as global fallout, and the amount of (137)Cs expected to reach other oceanic basins is negligible comparing with the past radioactive input. Copyright © 2011 Elsevier Ltd. All rights reserved.
A benchmark for fault tolerant flight control evaluation
NASA Astrophysics Data System (ADS)
Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.
2013-12-01
A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.
Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da
2016-04-01
A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.
Overview of Fuel Rod Simulator Usage at ORNL
NASA Astrophysics Data System (ADS)
Ott, Larry J.; McCulloch, Reg
2004-02-01
During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.
A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank
2004-01-01
The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.
NASA Astrophysics Data System (ADS)
Tsubono, T.; Misumi, K.; Tsumune, D.; Aoyama, M.; Hirose, K.
2015-12-01
We conducted a hindcast and forecast of 137Cs activities in the North Pacific waters from 1945 to 2020, before and after the Fukushima Dai-ichi Nuclear Power Plant (F1NPP) accident. We used the Regional Ocean Model System (ROMS) with high resolution (1/12º-1/4º in horizontal, 45 levels in vertical), of which domain was the North Pacific Ocean. The model was driven by the exactly repeating "Normal Year" forcing Coordinated Ocean Reference Experiment (CORE) forcing dataset (Large and Yeager, 2008) using bulk formulae and the model-predicted sea surface temperature and the 50 years averaged SODA data as boundary conditions. The reconstructed global fallout due to atmospheric nuclear weapons' tests and Chernobyl accident was employed for atmospheric flux of 137Cs from 1945 to 2011. After the accident, the atmospheric deposition and direct release of 137Cs from F1NPP were also employed for input condition. Five ensemble calculations of 137Cs activities in seawater were conducted under different initial conditions, but had identical forcing. The net input of 16 PBq of 137Cs from F1NPP, which was employed in this study, corresponded to 26% of the total amount (61 PBq) of 137Cs that was estimated in the North Pacific before the F1NPP accident in 2011. Before the accident in 2011, the 137Cs on surface ranged from 0.75 to 1.7 Bq m-3. The direct comparison between simulated and observed 134Cs activities in the surface layer represented that the root-mean-square error and correlation coefficient were 5.6 Bq m-3 and 0.86, respectively, suggesting the model result were consistent with the observations. The main body of high 137Cs activity water from F1NPP was transported to south of the Subarctic Front around 42°N via the Oyashio Coastal Current, the Oyashio intrusion, and the Kuroshio bifurcation and then to the western North Pacific. This model simulation suggested that the 137Cs activities in surface waters at P26 (P04) would increase to 4.1 Bq m-3 (4.3 Bq m-3 ) in 2015 (2016) and then decrease to 1.3 Bq m-3 (1.8 Bq m-3 ) in last 2020.
Self-mutilations in private-accident-insurance cases.
Dotzauer, G; Iffland, R
1976-04-21
Self-inflicted injuries can be classified in groups. One group deals with the simulation of illness, another with the occurrence itself and the application of chemical, thermic or mechanical methods. One sector concerns self-mutilation, which, from a psychiatrist's point of view, is interesting. At this time we are more concerned with the problems of proving it. In wartime and even during military service in peace-time soldiers inflict mutilating injuries on themselves. They are motivated by the notion that they will gain benefit from their action. Economic gain plays a role in the case of people who have taken out private accident insurance: self mutilation to simulate the result of an accident. Our investigation into self-mutilation started with an analysis under the following aspects of 123 cases: age, sex, occupation, place of residence, place and time of deed, method employed (weapon used), localisation, single or multiple wound, direction of injury, position of fingers, nature of edges of wound. Whether or not an injury was suffered voluntarily or involuntarily can only be determined with the help of auxiliary facts. It must be clarified whether or not the information given by the injured person ties in with facts concerning the place where the injury was sustained, its position and its direction. The medico-legal expert should not interpret medical findings without relating them to the facts of the case. Indeed, he should start by examining the claimant's account of the accident. To some extent it almost requires the work of a general staff to compare the findings of a careful medical investigation with the injuries themselves. If the injury was inflicted by a certain tool information must be available regarding, for example, the "accident with the saw" together with an assessment of the wounds sustained (utilization of clinical material). Sometimes tests on corpses need to be carried out because these can provide information on mechanical and physical problems. When the direction of the wound is being clarified together with an appraisal of any traces found electron scanning and microscopic tests should also be incorporated into the examination in addition to medical and X-ray tests. At the slightest suspicion that a wound might have been self-inflicted appropriate tests should be carried out immediately. Conclusions should only be drawn by someone who has made an intensive study of this special field which is of such great forensic interest.
NASA Astrophysics Data System (ADS)
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Cheng, Xi
2014-11-01
The middle route of the South-to-North Water Transfer Project (MRP) will divert water to Beijing Tuancheng Lake from Taocha in the Danjiangkou reservoir located in the Hubei province of China. The MRP is composed of a long canal and complex hydraulic structures and will transfer water in open channel areas to provide drinking water for Beijing, Shijiazhuang and other cities under extremely strict water quality requirements. A large number of vehicular accidents, occurred on the many highway bridges across the main canal would cause significant water pollution in the main canal. To ensure that water quality is maintained during the diversion process, the effects of pollutants on water quality due to sudden pollution accidents were simulated and analyzed in this paper. The MIKE11 HD module was used to calculate the hydraulic characteristics of the 42-km Xishi-to-Beijuma River channel of the MRP. Six types of hydraulic structures, including inverted siphons, gates, highway bridges, culverts and tunnels, were included in this model. Based on the hydrodynamic model, the MIKE11 AD module, which is one-dimensional advection dispersion model, was built for TP, NH3-N, CODMn and F. The validated results showed that the computed values agreed well with the measured values. In accordance with transportation data across the Dianbei Highway Bridge, the effects of traffic accidents on the bridge on water quality were analyzed. Based on simulated scenarios with three discharge rates (ranged from 12 m3/s to 17 m3/s, 40 m3/s, and 60 m3/s) and three pollution loading concentration levels (5 t, 10 t and 20 t) when trucks spill their contents (i.e., phosphate fertilizer, cyanide, oil and chromium solution) into the channel, emergency measures were proposed. Reasonable solutions to ensure the water quality with regard to the various types of pollutants were proposed, including treating polluted water, maintaining materials, and personnel reserves.
Hack, M.; Davies, R.; Mullins, R.; Choi, S. J.; Ramdassingh-Dow, S.; Jenkinson, C.; Stradling, J.
2000-01-01
BACKGROUND—Obstructive sleep apnoea (OSA) impairs vigilance and may lead to an increased rate of driving accidents. In uncontrolled studies accident rates and simulated steering performance improve following treatment with nasal continuous positive airway pressure (NCPAP). This study seeks to confirm the improvement in steering performance in a randomised controlled trial using subtherapeutic NCPAP as a control treatment. METHODS—Fifty nine men with OSA (Epworth Sleepiness Score (ESS) of ⩾10, and ⩾10/h dips in SaO2 of >4% due to OSA) received therapeutic or subtherapeutic NCPAP (≈1 cm H2O) for one month. Simulated steering performance over three 30-minute "drives" was quantified as: standard deviation (SD) of road position, deterioration in SD across the drive, length of drive before "crashing", and number of off-road events. The reaction times to peripheral target stimuli during the drive were also measured. RESULTS—Subtherapeutic NCPAP did not improve overnight >4% SaO2 dips/h compared with baseline values, thus acting as a control. The SD of the steering position improved from 0.36 to 0.21 on therapeutic NCPAP, and from 0.35 to 0.30 on subtherapeutic NCPAP (p = 0.03). Deterioration in SD of the steering position improved from 0.18to 0.06 SD/h with therapeutic NCPAP and worsened from 0.18 to 0.24 with subtherapeutic NCPAP (p = 0.04). The reaction time to target stimuli was quicker after therapeutic than after subtherapeutic NCPAP (2.3 versus 2.7 seconds, p = 0.04). CONCLUSIONS—Therapeutic NCPAP improves steering performance and reaction time to target stimuli in patients with OSA, lending further support to the hypothesis that OSA impairs driving, increases driving accident rates, and that these improve following treatment with NCPAP. PMID:10679542
Fossils out of sequence: Computer simulations and strategies for dealing with stratigraphic disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, A.H.; Flessa, K.W.
Microstratigraphic resolution is limited by vertical mixing and reworking of fossils. Stratigraphic disorder is the degree to which fossils within a stratigraphic sequence are not in proper chronological order. Stratigraphic disorder arises through in situ vertical mixing of fossils and reworking of older fossils into younger deposits. The authors simulated the effects of mixing and reworking by simple computer models, and measured stratigraphic disorder using rank correlation between age and stratigraphic position (Spearman and Kendall coefficients). Mixing was simulated by randomly transposing pairs of adjacent fossils in a sequence. Reworking was simulated by randomly inserting older fossils into a youngermore » sequence. Mixing is an inefficient means of producing disorder; after 500 mixing steps stratigraphic order is still significant at the 99% to 95% level, depending on the coefficient used. Reworking disorders sequences very efficiently: significant order begins to be lost when reworked shells make up 35% of the sequence. Thus a sequence can be dominated by undisturbed, autochthonous shells and still be disordered. The effects of mixing-produced disorder can be minimized by increasing sample size at each horizon. Increased spacing between samples is of limited utility in dealing with disordered sequences: while widely separated samples are more likely to be stratigraphically ordered, the smaller number of samples makes the detection of trends problematic.« less
Daruwalla, Nayreen; Belur, Jyoti; Kumar, Meena; Tiwari, Vinay; Sarabahi, Sujata; Tilley, Nick; Osrin, David
2014-11-30
Most burns happen in low- and middle-income countries. In India, deaths related to burns are more common in women than in men and occur against a complex background in which the cause - accidental or non-accidental, suicidal or homicidal - is often unclear. Our study aimed to understand the antecedents to burns and the problem of ascribing cause, the sequence of medicolegal events after a woman was admitted to hospital, and potential opportunities for improvement. We conducted semi-structured interviews with 33 women admitted to two major burns units, their families, and 26 key informant doctors, nurses, and police officers. We used framework analysis to examine the context in which burns occurred and the sequence of medicolegal action after admission to hospital. Interviewees described accidents, attempted suicide, and attempted homicide. Distinguishing between these was difficult because the underlying combination of poverty and cultural precedent was common to all and action was contingent on potentially conflicting narratives. Space constraint, problems with cooking equipment, and inflammable clothing increased the risk of accidental burns, but coexisted with household conflict, gender-based violence, and alcohol use. Most burns were initially ascribed to accidents. Clinicians adhered to medicolegal procedures, the police carried out their investigative requirements relatively rapidly, but both groups felt vulnerable in the face of the legal process. Women's understandable reticence to describe burns as non-accidental, the contested nature of statements, their perceived history of changeability, the limited quality and validity of forensic evidence, and the requirement for resilience on the part of clients underlay a general pessimism. The similarities between accident and intention cluster so tightly as to make them challenging to distinguish, especially given women's understandable reticence to describe burns as non-accidental. The contested status of forensic evidence and a reliance on testimony means that only a minority of cases lead to conviction. The emphasis should be on improving documentation, communication between service providers, and public understanding of the risks of burns.
Farmer, M. T.; Gerardi, C.; Bremer, N.; ...
2016-10-31
The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.; Gerardi, C.; Bremer, N.
The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benet, L.V.; Caroli, C.; Cornet, P.
1995-09-01
This paper reports part of a study of possible severe pressurized water reactor (PWR) accidents. The need for containment modeling, and in particular for a hydrogen risk study, was reinforced in France after 1990, with the requirement that severe accidents must be taken into account in the design of future plants. This new need of assessing the transient local hydrogen concentration led to the development, in the Mechanical Engineering and Technology Department of the French Atomic Energy Commission (CEA/DMT), of the multidimensional code GEYSER/TONUS for containment analysis. A detailed example of the use of this code is presented. The mixturemore » consisted of noncondensable gases (air or air plus hydrogen) and water vapor and liquid water. This is described by a compressible homogeneous two-phase flow model and wall condensation is based on the Chilton-Colburn formula and the analogy between heat and mass transfer. Results are given for a transient two-dimensional axially-symmetric computation for the first hour of a simplified accident sequence. In this there was an initial injection of a large amount of water vapor followed by a smaller amount and by hydrogen injection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.
The overall objective of the current work is to carry out a scoping analysis to determine the impact of ATF on late phase accident progression; in particular, the molten core-concrete interaction portion of the sequence that occurs after the core debris fails the reactor vessel and relocates into containment. This additional study augments previous work by including kinetic effects that govern chemical reaction rates during core-concrete interaction. The specific ATF considered as part of this study is SiC-clad UO 2.
Interim reliability evaluation program, Browns Ferry 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1981-01-01
Probabilistic risk analysis techniques, i.e., event tree and fault tree analysis, were utilized to provide a risk assessment of the Browns Ferry Nuclear Plant Unit 1. Browns Ferry 1 is a General Electric boiling water reactor of the BWR 4 product line with a Mark 1 (drywell and torus) containment. Within the guidelines of the IREP Procedure and Schedule Guide, dominant accident sequences that contribute to public health and safety risks were identified and grouped according to release categories.
Sequence-dependent DNA deformability studied using molecular dynamics simulations.
Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori
2007-01-01
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Heng, E-mail: hengli@mdanderson.org; Zhu, X. Ronald; Zhang, Xiaodong
Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization,more » the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.« less
Analysis of simulated image sequences from sensors for restricted-visibility operations
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar
1991-01-01
A real time model of the visible output from a 94 GHz sensor, based on a radiometric simulation of the sensor, was developed. A sequence of images as seen from an aircraft as it approaches for landing was simulated using this model. Thirty frames from this sequence of 200 x 200 pixel images were analyzed to identify and track objects in the image using the Cantata image processing package within the visual programming environment provided by the Khoros software system. The image analysis operations are described.
BISON Modeling of Reactivity-Initiated Accident Experiments in a Static Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles P.; Jensen, Colby B.; Williamson, Richard L.
2016-09-01
In conjunction with the restart of the TREAT reactor and the design of test vehicles, modeling and simulation efforts are being used to model the response of Accident Tolerant Fuel (ATF) concepts under reactivity insertion accident (RIA) conditions. The purpose of this work is to model a baseline case of a 10 cm long UO2-Zircaloy fuel rodlet using BISON and RELAP5 over a range of energy depositions and with varying reactor power pulse widths. The results show the effect of varying the pulse width and energy deposition on both thermal and mechanical parameters that are important for predicting failure ofmore » the fuel rodlet. The combined BISON/RELAP5 model captures coupled thermal and mechanical effects on the fuel-to-cladding gap conductance, cladding-to-coolant heat transfer coefficient and water temperature and pressure that would not be capable in each code individually. These combined effects allow for a more accurate modeling of the thermal and mechanical response in the fuel rodlet and thermal-hydraulics of the test vehicle.« less
MELCOR Analysis of OSU Multi-Application Small Light Water Reactor (MASLWR) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Dhongik S.; Jo, HangJin; Fu, Wen
A multi-application small light water reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s abilitymore » to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with CFD simulation for confirmation. Furthermore, the corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.
As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlomore » simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.« less
MELCOR Analysis of OSU Multi-Application Small Light Water Reactor (MASLWR) Experiment
Yoon, Dhongik S.; Jo, HangJin; Fu, Wen; ...
2017-05-23
A multi-application small light water reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s abilitymore » to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with CFD simulation for confirmation. Furthermore, the corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.« less
Yao, Po-Ju; Chung, Ren-Hua
2016-02-15
It is difficult for current simulation tools to simulate sequence data in a pre-specified pedigree structure and pre-specified affection status. Previously, we developed a flexible tool, SeqSIMLA2, for simulating sequence data in either unrelated case-control or family samples with different disease and quantitative trait models. Here we extended the tool to efficiently simulate sequences with multiple disease sites in large pedigrees with a given disease status for each pedigree member, assuming that the disease prevalence is low. SeqSIMLA2_exact is implemented with C++ and is available at http://seqsimla.sourceforge.net. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Picelli, Carina G; Borges, Rafael J; Fernandes, Carlos A H; Matioli, Fabio M; Fernandes, Carla F C; Sobrinho, Juliana C; Holanda, Rudson J; Ozaki, Luiz S; Kayano, Anderson M; Calderon, Leonardo A; Fontes, Marcos R M; Stábeli, Rodrigo G; Soares, Andreimar M
2017-10-01
Phospholipases A 2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIβ and PLIγ. Phospholipases A 2 (PLA 2 s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA 2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunot, W.K.; Fray, R.R.; Gillespie, S.G.
1974-03-01
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less
Fast high-energy X-ray imaging for Severe Accidents experiments on the future PLINIUS-2 platform
NASA Astrophysics Data System (ADS)
Berge, L.; Estre, N.; Tisseur, D.; Payan, E.; Eck, D.; Bouyer, V.; Cassiaut-Louis, N.; Journeau, C.; Tellier, R. Le; Pluyette, E.
2018-01-01
The future PLINIUS-2 platform of CEA Cadarache will be dedicated to the study of corium interactions in severe nuclear accidents, and will host innovative large-scale experiments. The Nuclear Measurement Laboratory of CEA Cadarache is in charge of real-time high-energy X-ray imaging set-ups, for the study of the corium-water and corium-sodium interaction, and of the corium stratification process. Imaging such large and high-density objects requires a 15 MeV linear electron accelerator coupled to a tungsten target creating a high-energy Bremsstrahlung X-ray flux, with corresponding dose rate about 100 Gy/min at 1 m. The signal is detected by phosphor screens coupled to high-framerate scientific CMOS cameras. The imaging set-up is established using an experimentally-validated home-made simulation software (MODHERATO). The code computes quantitative radiographic signals from the description of the source, object geometry and composition, detector, and geometrical configuration (magnification factor, etc.). It accounts for several noise sources (photonic and electronic noises, swank and readout noise), and for image blur due to the source spot-size and to the detector unsharpness. In a view to PLINIUS-2, the simulation has been improved to account for the scattered flux, which is expected to be significant. The paper presents the scattered flux calculation using the MCNP transport code, and its integration into the MODHERATO simulation. Then the validation of the improved simulation is presented, through confrontation to real measurement images taken on a small-scale equivalent set-up on the PLINIUS platform. Excellent agreement is achieved. This improved simulation is therefore being used to design the PLINIUS-2 imaging set-ups (source, detectors, cameras, etc.).
Active numerical model of human body for reconstruction of falls from height.
Milanowicz, Marcin; Kędzior, Krzysztof
2017-01-01
Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated injuries overlap with the real injuries sustained by the casualty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Advances in Discrete-Event Simulation for MSL Command Validation
NASA Technical Reports Server (NTRS)
Patrikalakis, Alexander; O'Reilly, Taifun
2013-01-01
In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.
Simulation of hydrostatic water level measuring system for pressure vessels with the ATHLET-code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampel, R.; Vandreier, B.; Kaestner, W.
1996-11-01
The static and dynamic behavior of measuring systems determine the value indicated by the measuring systems in relation to the true operating conditions. This paper demonstrates the necessity to involve the behavior of measuring systems in accident analysis with the thermohydraulic code ATHLET (developed by GRS Germany) by the example of hydrostatic water level measurement for horizontal steam generators on NPP (VVER). The modelling of a comparison vessel for the level measuring system with high sensitivity and a limited range of measurement (narrow-range level measuring system) by using ATHLET components and the checking of the function of the module weremore » realized. A good correspondence (maximal deviation 3%) between the measured and calculated narrow-range water level by the module was obtained for a realized post calculation of a measured operational transient in a NPP (VVER). The research carried out was sponsored by the Federal Ministry for Research and Technology within the projects {open_quotes}Basic research of process and system behaviour of NPP, control technique for accident management{close_quotes} (Project number 150 0855/7) and the project RS 978. The research work appertains to the theoretic and experimental work of institute {open_quotes}Institut fuer ProzeBtechnik, ProzeBautomatisierung und MeBtechnik (IPM){close_quotes} for accident analysis and accident management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun
2015-07-01
A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less
ERIC Educational Resources Information Center
Harteis, Christian; Morgenthaler, Barbara; Kugler, Christine; Ittner, Karl-Peter; Roth, Gabriel; Graf, Bernhard
2012-01-01
Intuition presents as a crucial component of professional competence for many occupations, including emergency physicians because many of their decisions have to be made quickly. When arriving at the scene of an accident, they promptly have to assess the circumstances and initiate immediate life-saving measures without opportunities for deep…
ERIC Educational Resources Information Center
Cox, Daniel J.; Merkel, R. Lawrence; Penberthy, Jennifer Kim; Kovatchev, Boris; Hankin, Cheryl S.
2004-01-01
Objective: Adolescents with attention-deficit/hyperactivity disorder (ADHD) are at high risk for driving accidents. One dose of methylphenidate (MPH) improves simulator driving performances of ADHD-diagnosed adolescents at 1.5 hours post-dose. However, little is known about the effects of different MPH delivery profiles on driving performance…
Vieira, Edgar R; Lim, Hyun-Hwa; Brunt, Denis; Hallal, Camilla Z; Kinsey, Laura; Errington, Lisa; Gonçalves, Mauro
2015-02-01
Most traffic accidents involving pedestrians happen during street crossing. Safe street crossing by older adults requires complex planning and imposes high cognitive demands. Understanding how street crossing situations affect younger and older adults' gait is important to create evidence-based policies, education and training. The objective of this study was to develop and test a method to evaluate temporo-spatial gait parameters of younger and older adults during simulated street crossing situations. Twenty-two younger (25±2 years old) and 22 older adults (73±6 years old) who lived independently in the community completed 3 walking trials at preferred gait speed and during simulated street crossing with regular and with reduced time. There were significant differences between groups (p<0.001) and conditions (p<0.001). Older adults' street crossing walking speed was higher than their preferred speed (p<0.001). Gait during simulated street crossing resulted in significant and progressive gait changes. The methods developed and tested can be used to (1) evaluate if people are at risk of falls and accidents during street crossing situations, (2) to compare among different groups, and (3) to help establish appropriate times for older pedestrians to cross streets safely. The current time to cross streets is too short even for healthy older adults. Copyright © 2014 Elsevier B.V. All rights reserved.
Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Ye, Bei; Hofman, Gerard
As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U 3Si 2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U 3Si 2 at LWR conditions. The fission gas behavior of U 3Si 2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranularmore » bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U 3Si 2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U 3Si 2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U 3Si 2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.« less
Huang, Qiuhua; Vittal, Vijay
2018-05-09
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; Vittal, Vijay
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics
NASA Astrophysics Data System (ADS)
Zhu, Yan; Lu, Yu-hui; Ling, Ai-min
2017-07-01
In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.
Aléx, Jonas; Gyllencreutz, Lina
2018-02-05
Trauma care at an accident site is of great importance for patient survival. The purpose of the study was to observe the compliance of ambulance nurses with the Prehospital Trauma Life Support (PHTLS) concept of trauma care in a simulation situation. The material consisted of video recordings in trauma simulation and an observation protocol was designed to analyze the video material. The result showed weaknesses in systematic exam and an ineffective use of time at the scene of injury. Development of observation protocols in trauma simulation can ensure the quality of ambulance nurses' compliance with established concepts. Our pilot study shows that insufficiencies in systematic care lead to an ineffective treatment for trauma patients which in turn may increase the risk of complications and mortality.
Tan, Cheng; Takada, Shoji
2017-01-01
While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements. PMID:29194442
Real time simulation of computer-assisted sequencing of terminal area operations
NASA Technical Reports Server (NTRS)
Dear, R. G.
1981-01-01
A simulation was developed to investigate the utilization of computer assisted decision making for the task of sequencing and scheduling aircraft in a high density terminal area. The simulation incorporates a decision methodology termed Constrained Position Shifting. This methodology accounts for aircraft velocity profiles, routes, and weight classes in dynamically sequencing and scheduling arriving aircraft. A sample demonstration of Constrained Position Shifting is presented where six aircraft types (including both light and heavy aircraft) are sequenced to land at Denver's Stapleton International Airport. A graphical display is utilized and Constrained Position Shifting with a maximum shift of four positions (rearward or forward) is compared to first come, first serve with respect to arrival at the runway. The implementation of computer assisted sequencing and scheduling methodologies is investigated. A time based control concept will be required and design considerations for such a system are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, L.T.; Johnson, J.D.; Blond, R.M.
The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.
NASA Astrophysics Data System (ADS)
Chen, Shuzhe; Huang, Liwen
the river of Yangtze River in Chongqing area is continuous curved. Hydrology and channel situation is complex, and the transportation is busy. With the increasing of shipments of hazardous chemicals year by year, oil spill accident risk is rising. So establishment of three-dimensional virtual simulation of oil spill and its application in decision-making has become an urgent task. This paper detailed the process of three-dimensional virtual simulation of oil spill and established a system of three-dimensional virtual Simulation of oil spill of Yangtze River in Chongqing area by establishing an oil spill model of the Chongqing area based on oil particles model, and the system has been used in emergency decision to provide assistance for the oil spill response.
Pregnant women in vehicles: Driving habits, position and risk of injury.
Auriault, F; Brandt, C; Chopin, A; Gadegbeku, B; Ndiaye, A; Balzing, M-P; Thollon, L; Behr, M
2016-04-01
This study proposed to broadly examine vehicle use by pregnant women in order to improve realism of accident simulations involving these particular occupants. Three research pathways were developed: the first consisted in a questionnaire survey examining the driving habits of 135 pregnant women, the second obtained measurements of 15 pregnant women driving position in their own vehicle from the 6th to the 9th month of pregnancy by measuring distances between body parts and vehicle parts, and the third examined car accidents involving pregnant occupants. Results obtained indicate that between 90% and 100% of pregnant women wore their seat belts whatever their stage of pregnancy, although nearly one third of subjects considered the seat belt was dangerous for their unborn child. The measurements obtained also showed that the position of the pregnant woman in her vehicle, in relation to the various elements of the passenger compartment, changed significantly during pregnancy. In the studied accidents, no correlation was found between the conditions of the accident and the resulting fetal injury. Results reveal that pregnant women do not modify significantly the seat setting as a function of pregnancy stage. Only the distance between maternal abdomen and steering wheel change significantly, from 16 cm to 12 cm at 6 and 9 month respectively. Pregnant women are mainly drivers before 8 months of pregnancy, passengers after that. Car use frequency falls down rapidly from 6 to 9 months of pregnancy. Real crashes investigations indicate a low rate of casualties, i.e. 342 car accidents involving pregnant women for a period of 9 years in an approximately 1.7 million inhabitants area. No specific injury was found as a function of stage of pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure
NASA Technical Reports Server (NTRS)
Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.
2017-01-01
Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.
Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.
2014-09-01
The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less
Alcohol consumption for simulated driving performance: A systematic review.
Rezaee-Zavareh, Mohammad Saeid; Salamati, Payman; Ramezani-Binabaj, Mahdi; Saeidnejad, Mina; Rousta, Mansoureh; Shokraneh, Farhad; Rahimi-Movaghar, Vafa
2017-06-01
Alcohol consumption can lead to risky driving and increase the frequency of traffic accidents, injuries and mortalities. The main purpose of our study was to compare simulated driving performance between two groups of drivers, one consumed alcohol and the other not consumed, using a systematic review. In this systematic review, electronic resources and databases including Medline via Ovid SP, EMBASE via Ovid SP, PsycINFO via Ovid SP, PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINHAL) via EBSCOhost were comprehensively and systematically searched. The randomized controlled clinical trials that compared simulated driving performance between two groups of drivers, one consumed alcohol and the other not consumed, were included. Lane position standard deviation (LPSD), mean of lane position deviation (MLPD), speed, mean of speed deviation (MSD), standard deviation of speed deviation (SDSD), number of accidents (NA) and line crossing (LC) were considered as the main parameters evaluating outcomes. After title and abstract screening, the articles were enrolled for data extraction and they were evaluated for risk of biases. Thirteen papers were included in our qualitative synthesis. All included papers were classified as high risk of biases. Alcohol consumption mostly deteriorated the following performance outcomes in descending order: SDSD, LPSD, speed, MLPD, LC and NA. Our systematic review had troublesome heterogeneity. Alcohol consumption may decrease simulated driving performance in alcohol consumed people compared with non-alcohol consumed people via changes in SDSD, LPSD, speed, MLPD, LC and NA. More well-designed randomized controlled clinical trials are recommended. Copyright © 2017. Production and hosting by Elsevier B.V.
Driving Simulator Performance in Patients with Possible and Probable Alzheimer’s Disease
Stein, Anthony C.; Dubinsky, Richard M.
2011-01-01
Drivers with more advanced stages of Alzheimer’s disease (AD) have been previously associated with an increased rate of motor vehicle accidents. Drivers suffering from early AD are also involved in, and may even cause motor vehicle accidents with greater frequency than “normal” drivers. Consequently there is considerable public concern regarding traffic safety issues for those with AD and subsequently for society, but there has been little research in understanding whether deterioration in driving ability is progressive, or has a sudden onset once the disease has reached a certain severity. The purpose of this study was to identify possible degradation in simulated driving performance that may occur at the earliest stages of AD, and compare these decrements to a control group of normal drivers. Using a single blind design, seventeen AD subjects, eight at a Clinical Dementia Rating (CDR) of 0.5 (possible AD) and nine at a CDR of 1 (probable AD), were compared to 63 cognitively normal, elderly controls. All subjects were trained to drive a computerized interactive driving simulator and then tested on a 19.3 km (12 mile) test course. The AD subjects demonstrated impaired driving performance when compared to the controls. The simulated driving performance of the CDR 1 AD subjects was so degraded that it would be regarded as unsafe by standard assessment criteria. The CDR 0.5 subjects made similar errors, suggesting that driving impairment may occur at the earliest stages of the disease. Further work will be necessary to determine the significance of these findings. PMID:22105407
NASA Astrophysics Data System (ADS)
Manser, Michael P.; Hancock, Peter A.
1996-06-01
Human beings and technology have attained a mutually dependent and symbiotic relationship. It is easy to recognize how each depends on the other for survival. It is also easy to see how technology advances due to human activities. However, the role technology plays in advancing humankind is seldom examined. This presentation examines two research areas where the role of advanced visual simulation systems play an integral and essential role in understanding human perception and behavior. The ultimate goal of this research is the betterment of humankind through reduced accident and death rates in transportation environments. The first research area examined involved the estimation of time-to-contact. A high-fidelity wrap-around simulator (RAS) was used to examine people's ability to estimate time-to- contact. The ability of people to estimate the amount of time before an oncoming vehicle will collide with them is a necessary skill for avoiding collisions. A vehicle approached participants at one of three velocities, and while en route to the participant, the vehicle disappeared. The participants' task was to respond when they felt the accuracy of time-to-contact estimates and the practical applications of the result. The second area of research investigates the effects of various visual stimuli on underground transportation tunnel walls for the perception of vehicle speed. A RAS is paramount in creating visual patterns in peripheral vision. Flat-screen or front-screen simulators do not have this ability. Results are discussed in terms of speed perception and the application of these results to real world environments.
The role of visual attention in predicting driving impairment in older adults.
Hoffman, Lesa; McDowd, Joan M; Atchley, Paul; Dubinsky, Richard
2005-12-01
This study evaluated the role of visual attention (as measured by the DriverScan change detection task and the Useful Field of View Test [UFOV]) in the prediction of driving impairment in 155 adults between the ages of 63 and 87. In contrast to previous research, participants were not oversampled for visual impairment or history of automobile accidents. Although a history of automobile accidents within the past 3 years could not be predicted using any variable, driving performance in a low-fidelity simulator could be significantly predicted by performance in the change detection task and by the divided and selection attention subtests of the UFOV in structural equation models. The sensitivity and specificity of each measure in identifying at-risk drivers were also evaluated with receiver operating characteristic curves.
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
Car Accident Reconstruction and Head Injury Correlation
NASA Astrophysics Data System (ADS)
Chawla, A.; Grover, V.; Mukherjee, S.; Hassan, A. M.
2013-04-01
Estimation of brain damage remains an elusive issue and controlled tests leading to brain damage cannot be carried out on volunteers. This study reconstructs real-world car accidents to estimate the kinematics of the head impact. This data is to be used to estimate the head injury measures through computer simulations and then correlate reported skull as well as brain damage to impact measures; whence validating the head FE model (Willinger, IJCrash 8:605-617, 2003). In this study, two crash cases were reconstructed. Injury correlation was successful in one of these cases in that the injuries to the brain of one of the car drivers could be correlated in terms of type, location and severity when compared with the tolerance limits of relevant injury parameters (Willinger, IJCrash 8:605-617, 2003).
Microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1984-01-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less
BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences
NASA Astrophysics Data System (ADS)
Kose, Ryoichi; Kose, Katsumi
2017-08-01
A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.
High performance MRI simulations of motion on multi-GPU systems.
Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H
2014-07-04
MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications.
NASA Astrophysics Data System (ADS)
Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.
2015-01-01
Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative surface deposition of total 131I and 137Cs and air dose rate obtained by airborne surveys. The new source term was also tested using three atmospheric dispersion models (Modèle Lagrangien de Dispersion de Particules d'ordre zéro: MLDP0, Hybrid Single Particle Lagrangian Integrated Trajectory Model: HYSPLIT, and Met Office's Numerical Atmospheric-dispersion Modelling Environment: NAME) for regional and global calculations, and the calculated results showed good agreement with observed air concentration and surface deposition of 137Cs in eastern Japan.
Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.
Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue
2016-04-01
The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-05-01
The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kymaelaeinen, O.; Tuomisto, H.; Theofanous, T.G.
1997-02-01
The concept of lower head coolability and in-vessel retention of corium has been approved as a basic element of the severe accident management strategy for IVO`s Loviisa Plant (VVER-440) in Finland. The selected approach takes advantage of the unique features of the plant such as low power density, reactor pressure vessel without penetrations at the bottom and ice-condenser containment which ensures flooded cavity in all risk significant sequences. The thermal analyses, which are supported by experimental program, demonstrate that in Loviisa the molten corium on the lower head of the reactor vessel is coolable externally with wide margins. This papermore » summarizes the approach and the plant modifications being implemented. During the approval process some technical concerns were raised, particularly with regard to thermal loadings caused by contact of cool cavity water and hot corium with the reactor vessel. Resolution of these concerns is also discussed.« less
The Aznalcollar mining spill contaminated the nearby Guadiamar river that flows into the Guadalquivir Estuary. The mining accident produced almost 6 Hm3 of mud and acidic waters, with high concentrations of metals in solution including Cd, Cu, Mn, As, Pb and especially Zn. As a ...
Very high temperature behavior of HTGR core materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soo, P.; Uneberg, G.; Sabatini, R.
1978-01-01
A description is given of experiments to investigate the behavior of HTGR core materials during hypothetical heatup accidents in which the core temperature is assumed to reach values between 2400/sup 0/C and the graphite sublimation range (>3600/sup 0/C). The work includes BISO coated fuel particle failure, simulated fission product migration in core graphite, and graphite sublimation behavior.
Virtual reality technology prevents accidents in extreme situations
NASA Astrophysics Data System (ADS)
Badihi, Y.; Reiff, M. N.; Beychok, S.
2012-03-01
This research is aimed at examining the added value of using Virtual Reality (VR) in a driving simulator to prevent road accidents, specifically by improving drivers' skills when confronted with extreme situations. In an experiment, subjects completed a driving scenario using two platforms: A 3-D Virtual Reality display system using an HMD (Head-Mounted Display), and a standard computerized display system based on a standard computer monitor. The results show that the average rate of errors (deviating from the driving path) in a VR environment is significantly lower than in the standard one. In addition, there was no compensation between speed and accuracy in completing the driving mission. On the contrary: The average speed was even slightly faster in the VR simulation than in the standard environment. Thus, generally, despite the lower rate of deviation in VR setting, it is not achieved by driving slower. When the subjects were asked about their personal experiences from the training session, most of the subjects responded that among other things, the VR session caused them to feel a higher sense of commitment to the task and their performance. Some of them even stated that the VR session gave them a real sensation of driving.
Enhancing hazard avoidance in teen-novice riders.
Vidotto, Giulio; Bastianelli, Alessia; Spoto, Andrea; Sergeys, Filip
2011-01-01
Research suggests that novice drivers' safety performance is inferior to that of experienced drivers in different ways. One of the most critical skills related to accident avoidance by a novice driver is the detection, recognition and reaction to traffic hazards; it is called hazard perception and is defined as the ability to identify potentially dangerous traffic situations. The focus of this research is to assess how far a motorcycle simulator could improve hazard avoidance skills in teenagers. Four hundred and ten participants (207 in the experimental group and 203 in the control group) took part in this research. Results demonstrated that the mean proportion of avoided hazards increases as a function of the number of tracks performed in the virtual training. Participants of the experimental group after the training had a better proportion of avoided hazards than participants of the control group with a passive training based on a road safety lesson. Results provide good evidence that training with the simulator increases the number of avoided accidents in the virtual environment. It would be reasonable to explain this improvement by a higher level of hazard perception skills. Copyright © 2010 Elsevier Ltd. All rights reserved.
Quenching behavior of molten pool with different strategies – A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrikant,, E-mail: 2014rmt9018@mnit.ac.in; Pandel, U.; Duchaniya, R. K.
After the major severe accident in nuclear reactor, there has been lot of concerns regarding long term core melt stabilization following a severe accident in nuclear reactors. Numerous strategies have been though for quenching and stabilization of core melt like top flooding, bottom flooding, indirect cooling, etc. However, the effectiveness of these schemes is yet to be determined properly, for which, lot of experiments are needed. Several experiments have been performed for coolability of melt pool under bottom flooding as well as for indirect cooling. Besides these tests are very scattered because they involve different simulants material initial temperatures andmore » masses of melt, which makes it very complex to judge the effectiveness of a particular technique and advantage over the other. In this review paper, a study has been carried on different cooling techniques of simulant materials with same mass. Three techniques have been compared here and the results are discussed. Under top flooding technique it took several hours to cool the melt under without decay heat condition. In bottom flooding technique was found to be the best technique among in indirect cooling technique, top flooded technique, and bottom flooded technique.« less
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less
ARTIST: An International Project Investigating Aerosol Retention in a Ruptured Steam Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guentay, S.; Dehbi, A.; Suckow, D.
2002-07-01
Steam generator tube ruptures (SGTR) with a concurrent stuck open safety relief valve are counted among the risk dominant accident sequences because of the potential for radioactive products to bypass the containment. Owing to the absence of relevant empirical data and the complexity of the geometry and controlling processes, the aerosol removal in the steam generator (SG) tubes and in the secondary side is not well understood. Therefore, little or no credit is usually taken for aerosol retention due to natural processes in the various components of a SG. To help reduce the uncertainties associated with fission product release followingmore » an SGTR sequence, the Paul Scherrer Institut has initiated an international experimental project to be performed in the ARTIST (AeRosol Trapping In a Steam generaTor) facility in the time period from 2002 to 2007. The ARTIST test section is a scaled model of a real SG, and is comprised of a 264-tube bundle with a maximum height of 3.8 m, as well as one full-size droplet separator and one full-size steam dryer. The ARTIST facility is capable of producing soluble and insoluble aerosols and entrain them at sonic gas flow rates (up to 0.25 kg/s, thus matching comparable values predicted by the codes. In addition, aerosols can be generated at prototypical concentrations (up to 5 g/m{sup 3}) and sizes (0.2-5 mm AMMD). State of the art instrumentation is used (Low-pressure impactors, photometers, on-line particle sizer, online droplet sizer, etc.). The ARTIST project will simulate the flow and retention of aerosol-borne fission products in the SG, and provide a unique database to support safety assessments and analytical models. The project is foreseen in seven phases: 1) Aerosol retention in the tube under dry secondary side conditions, 2) Aerosol retention in the near field close to break under dry conditions, 3) Aerosol retention in the bundle far field under dry conditions, 4) Aerosol retention in the separator and dryer under dry conditions, 5) Aerosol retention in the bundle section under wet conditions, 6) Droplet retention in separator and dryer sections and 7) Integral tests to examine overall retention in the SG unit. The project will investigate phenomena at the separate effect and integral levels, and will also address selected accident management (AM) issues. The kick-off experiments are scheduled for the first half of 2002, and some early results will be summarized at the meeting. (authors)« less
Use of simulated data sets to evaluate the fidelity of metagenomic processing methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavromatis, K; Ivanova, N; Barry, Kerrie
2007-01-01
Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and twomore » sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.« less
Use of simulated data sets to evaluate the fidelity of Metagenomicprocessing methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavromatis, Konstantinos; Ivanova, Natalia; Barry, Kerri
2006-12-01
Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity--based (blast hit distribution) and twomore » sequence composition--based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.« less
NASA Astrophysics Data System (ADS)
Dou, Zhi-Wu
2010-08-01
To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.
Venetsanos, A G; Huld, T; Adams, P; Bartzis, J G
2003-12-12
Hydrogen is likely to be the most important future energy carrier, for many stationary and mobile applications, with the potential to make significant reductions in greenhouse gas emissions especially if renewable primary energy sources are used to produce the hydrogen. A safe transition to the use of hydrogen by members of the general public requires that the safety issues associated with hydrogen applications have to be investigated and fully understood. In order to assess the risks associated with hydrogen applications, its behaviour in realistic accident scenarios has to be predicted, allowing mitigating measures to be developed where necessary. A key factor in this process is predicting the release, dispersion and combustion of hydrogen in appropriate scenarios. This paper illustrates an application of CFD methods to the simulation of an actual hydrogen explosion. The explosion occurred on 3 March 1983 in a built up area of central Stockholm, Sweden, after the accidental release of approximately 13.5 kg of hydrogen from a rack of 18 interconnected 50 l industrial pressure vessels (200 bar working pressure) being transported by a delivery truck. Modelling of the source term, dispersion and combustion were undertaken separately using three different numerical tools, due to the differences in physics and scales between the different phenomena. Results from the dispersion calculations together with the official accident report were used to identify a possible ignition source and estimate the time at which ignition could have occurred. Ignition was estimated to occur 10s after the start of the release, coinciding with the time at which the maximum flammable hydrogen mass and cloud volume were found to occur (4.5 kg and 600 m(3), respectively). The subsequent simulation of the combustion adopts initial conditions for mean flow and turbulence from the dispersion simulations, and calculates the development of a fireball. This provides physical values, e.g. maximum overpressure and far-field overpressure that may be used as a comparison with the known accident details to give an indication of the validity of the models. The simulation results are consistent with both the reported near-field damage to buildings and persons and with the far-field damage to windows. The work was undertaken as part of the European Integrated Hydrogen Project-Phase 2 (EIHP2) with partial funding from the European Commission via the Fifth Framework Programme.
NASA Standard for Models and Simulations: Credibility Assessment Scale
NASA Technical Reports Server (NTRS)
Babula, Maria; Bertch, William J.; Green, Lawrence L.; Hale, Joseph P.; Moser, Gary E.; Steele, Martin J.; Sylvester, Andre; Woods, Jody
2008-01-01
As one of its many responses to the 2003 Space Shuttle Columbia accident, NASA decided to develop a formal standard for models and simulations (M and S)ii. Work commenced in May 2005. An interim version was issued in late 2006. This interim version underwent considerable revision following an extensive Agency-wide review in 2007 along with some additional revisions as a result of the review by the NASA Engineering Management Board (EMB) in the first half of 2008. Issuance of the revised, permanent version,hereafter referred to as the M and S Standard or just the Standard, occurred in July 2008.
Use of cryopumps on large space simulation systems
NASA Technical Reports Server (NTRS)
Mccrary, L. E.
1980-01-01
The need for clean, oil free space simulation systems has demanded the development of large, clean pumping systems. The assurance of optically dense liquid nitrogen baffles over diffusion pumps prevents backstreaming to a large extent, but does not preclude contamination from accidents or a control failure. Turbomolecular pumps or ion pumps achieve oil free systems but are only practical for relatively small chambers. Large cryopumps were developed and checked out which do achieve clean pumping of very large chambers. These pumps can be used as the original pumping system or can be retrofitted as a replacement for existing diffusion pumps.
Validation of CESAR Thermal-hydraulic Module of ASTEC V1.2 Code on BETHSY Experiments
NASA Astrophysics Data System (ADS)
Tregoures, Nicolas; Bandini, Giacomino; Foucher, Laurent; Fleurot, Joëlle; Meloni, Paride
The ASTEC V1 system code is being jointly developed by the French Institut de Radioprotection et Sûreté Nucléaire (IRSN) and the German Gesellschaft für Anlagen und ReaktorSicherheit (GRS) to address severe accident sequences in a nuclear power plant. Thermal-hydraulics in primary and secondary system is addressed by the CESAR module. The aim of this paper is to present the validation of the CESAR module, from the ASTEC V1.2 version, on the basis of well instrumented and qualified integral experiments carried out in the BETHSY facility (CEA, France), which simulates a French 900 MWe PWR reactor. Three tests have been thoroughly investigated with CESAR: the loss of coolant 9.1b test (OECD ISP N° 27), the loss of feedwater 5.2e test, and the multiple steam generator tube rupture 4.3b test. In the present paper, the results of the code for the three analyzed tests are presented in comparison with the experimental data. The thermal-hydraulic behavior of the BETHSY facility during the transient phase is well reproduced by CESAR: the occurrence of major events and the time evolution of main thermal-hydraulic parameters of both primary and secondary circuits are well predicted.
NASA Astrophysics Data System (ADS)
Huh, Chih-An; Hsu, Shih-Chieh; Lin, Chuan-Yao
2012-02-01
The 2011 Fukushima nuclear accident in Japan was the worst nuclear disaster following the 1986 Chernobyl accident. Fission products (nuclides) released from the Fukushima plant site since March 12, 2011 had been detected around the northern hemisphere in about two weeks and also in the southern hemisphere about one month later. We report here detailed time series of radioiodine and radiocesium isotopes monitored in a regional network around Taiwan, including one high-mountain and three ground-level sites. Our results show several pulses of emission from a sequence of accidents in the Fukushima facility, with the more volatile 131I released preferentially over 134Cs and 137Cs at the beginning. In the middle of the time series, there was a pronounced peak of radiocesium observed in northern Taiwan, with activity concentrations of 134Cs and 137Cs far exceeding that of 131I during that episode. From the first arrival time of these fission nuclides and their spatial and temporal variations at our sampling sites and elsewhere, we suggest that Fukushima-derived radioactive nuclides were transported to Taiwan and its vicinity via two pathways at different altitudes. One was transported in the free troposphere by the prevailing westerly winds around the globe; the other was transported in the planetary boundary layer by the northeast monsoon wind directly toward Taiwan.
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
Yebra, Gonzalo; Hodcroft, Emma B.; Ragonnet-Cronin, Manon L.; Pillay, Deenan; Brown, Andrew J. Leigh; Fraser, Christophe; Kellam, Paul; de Oliveira, Tulio; Dennis, Ann; Hoppe, Anne; Kityo, Cissy; Frampton, Dan; Ssemwanga, Deogratius; Tanser, Frank; Keshani, Jagoda; Lingappa, Jairam; Herbeck, Joshua; Wawer, Maria; Essex, Max; Cohen, Myron S.; Paton, Nicholas; Ratmann, Oliver; Kaleebu, Pontiano; Hayes, Richard; Fidler, Sarah; Quinn, Thomas; Novitsky, Vladimir; Haywards, Andrew; Nastouli, Eleni; Morris, Steven; Clark, Duncan; Kozlakidis, Zisis
2016-01-01
HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree’s using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences. PMID:28008945
Yebra, Gonzalo; Hodcroft, Emma B; Ragonnet-Cronin, Manon L; Pillay, Deenan; Brown, Andrew J Leigh
2016-12-23
HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree's using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences.
Application of artificial neural networks to identify equilibration in computer simulations
NASA Astrophysics Data System (ADS)
Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric
2017-11-01
Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.
A fortran program for Monte Carlo simulation of oil-field discovery sequences
Bohling, Geoffrey C.; Davis, J.C.
1993-01-01
We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.
Yannis, George; Laiou, Alexandra; Papantoniou, Panagiotis; Christoforou, Charalambos
2014-06-01
This research aims to investigate the impact of texting on the behavior and safety of young drivers on urban and rural roads. A driving simulator experiment was carried out in which 34 young participants drove in different driving scenarios; specifically, driving in good weather, in raining conditions, in daylight and in night were examined. Lognormal regression methods were used to investigate the influence of texting as well as various other parameters on the mean speed and mean reaction time. Binary logistic methods were used to investigate the influence of texting use as well as various other parameters in the probability of an accident. It appears that texting leads to statistically significant decrease of the mean speed and increase of the mean reaction time in urban and rural road environment. Simultaneously, it leads to an increased accident probability due to driver distraction and delayed reaction at the moment of the incident. It appeared that drivers using mobile phones with a touch screen present different driving behavior with respect to their speed, however, they had an even higher probability of being involved in an accident. The analysis of the distracted driving performance of drivers who are texting while driving may allow for the identification of measures for the improvement of driving performance (e.g., restrictive measures, training and licensing, information campaigns). The identification of some of the parameters that have an impact on the behavior and safety of young drivers concerning texting and the consequent results can be exploited by policy decision makers in future efforts for the improvement of road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.
We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...
Epstein, F H; Mugler, J P; Brookeman, J R
1994-02-01
A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.
Analysis of Radionuclide Releases from the Fukushima Dai-ichi Nuclear Power Plant Accident Part II
NASA Astrophysics Data System (ADS)
Achim, Pascal; Monfort, Marguerite; Le Petit, Gilbert; Gross, Philippe; Douysset, Guilhem; Taffary, Thomas; Blanchard, Xavier; Moulin, Christophe
2014-03-01
The present part of the publication (Part II) deals with long range dispersion of radionuclides emitted into the atmosphere during the Fukushima Dai-ichi accident that occurred after the March 11, 2011 tsunami. The first part (Part I) is dedicated to the accident features relying on radionuclide detections performed by monitoring stations of the Comprehensive Nuclear Test Ban Treaty Organization network. In this study, the emissions of the three fission products Cs-137, I-131 and Xe-133 are investigated. Regarding Xe-133, the total release is estimated to be of the order of 6 × 1018 Bq emitted during the explosions of units 1, 2 and 3. The total source term estimated gives a fraction of core inventory of about 8 × 1018 Bq at the time of reactors shutdown. This result suggests that at least 80 % of the core inventory has been released into the atmosphere and indicates a broad meltdown of reactor cores. Total atmospheric releases of Cs-137 and I-131 aerosols are estimated to be 1016 and 1017 Bq, respectively. By neglecting gas/particulate conversion phenomena, the total release of I-131 (gas + aerosol) could be estimated to be 4 × 1017 Bq. Atmospheric transport simulations suggest that the main air emissions have occurred during the events of March 14, 2011 (UTC) and that no major release occurred after March 23. The radioactivity emitted into the atmosphere could represent 10 % of the Chernobyl accident releases for I-131 and Cs-137.
NASA Astrophysics Data System (ADS)
Vazquez, Justin A.; Caracappa, Peter F.; Xu, X. George
2014-09-01
The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.
Vazquez, Justin A; Caracappa, Peter F; Xu, X George
2014-09-21
The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.
NASA Astrophysics Data System (ADS)
Coindreau, O.; Duriez, C.; Ederli, S.
2010-10-01
Progress in the treatment of air oxidation of zirconium in severe accident (SA) codes are required for a reliable analysis of severe accidents involving air ingress. Air oxidation of zirconium can actually lead to accelerated core degradation and increased fission product release, especially for the highly-radiotoxic ruthenium. This paper presents a model to simulate air oxidation kinetics of Zircaloy-4 in the 600-1000 °C temperature range. It is based on available experimental data, including separate-effect experiments performed at IRSN and at Forschungszentrum Karlsruhe. The kinetic transition, named "breakaway", from a diffusion-controlled regime to an accelerated oxidation is taken into account in the modeling via a critical mass gain parameter. The progressive propagation of the locally initiated breakaway is modeled by a linear increase in oxidation rate with time. Finally, when breakaway propagation is completed, the oxidation rate stabilizes and the kinetics is modeled by a linear law. This new modeling is integrated in the severe accident code ASTEC, jointly developed by IRSN and GRS. Model predictions and experimental data from thermogravimetric results show good agreement for different air flow rates and for slow temperature transient conditions.