Science.gov

Sample records for accommodate nickel electrode

  1. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  2. Battery electrode growth accommodation

    DOEpatents

    Bowen, Gerald K.; Andrew, Michael G.; Eskra, Michael D.

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  3. Nickel gradient electrode

    SciTech Connect

    Zimmerman, A.H.

    1988-03-31

    This invention relates generally to rechargeable batteries, and, in particular, relates to batteries that use nickel electrodes. It provides an improved nickel electrode with a selected gradient of additive materials. The concentration of additives in the impregnating solution are controlled during impregnation such that an additive gradient is generated. In the situation where the highest ionic conductivity is needed at the current collector boundary with the active material, the electrochemical impregnating solution is initially high in additive, and at the end of impregnation has been adjusted to significantly lower additive concentration. For chemical impregnation, the electrodes are similarly dipped in solutions that are initially high in additive. This invention is suitable for conventional additives such as cobalt, cadmium, barium, manganese, and zinc. It is therefore one objective of the invention to provide an improved nickel electrode of a battery cell with an additive in the active material to increase the life of the battery cell. Another objective is to provide for an improved nickel electrode having a greater concentration of additive near the current collector of nickel.

  4. Production method of nickel electrode

    NASA Technical Reports Server (NTRS)

    Ikeda, H.; Ohira, T.

    1982-01-01

    A nickel electrode having improved charging efficiency, an increased coefficient of discharging utilization, and large capacity is disclosed. Nickel hydroxide or nickel oxide is retained in a porous nickel substrate which is immersed in an aqueous solution of cobalt acetate with a pH 4.0 to 6.8. The electrode thus obtained is then immersed in an alkaline solution or heated to change cobalt acetate into cobalt hydroxide or cobalt oxide whereby the surface of nickel active material is covered with cobalt crystals and alloying of cobalt and nickel is promoted at the same time.

  5. Non-Sintered Nickel Electrode

    DOEpatents

    Bernard, Patrick; Dennig, Corinne; Cocciantelli, Jean-Michel; Alcorta, Jose; Coco, Isabelle

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  6. The CMG Nickel Electrode

    NASA Technical Reports Server (NTRS)

    Depaul, R. A.; Gutridge, I.

    1981-01-01

    The development and design of the Controlled Microgeometry electrode are described. Advantages of the electrode over others in existance include a higher number of ampere hours per kilogram and the ability to make them over a wide range of thicknesses. The parameters that control the performance of the electrode can be individually controlled over a wide range. Therefore, the electrode may be designed to give the optimum performance for a given duty cycle.

  7. Development of a lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, D. L.; Reid, M. A.

    1984-01-01

    Nickel electrodes made using lightweight plastic plaque are about half the weight of electrodes made from state of the art sintered nickel plaque. This weight reduction would result in a significant improvement in the energy density of batteries using nickel electrodes (nickel hydrogen, nickel cadmium and nickel zinc). These lightweight electrodes are suitably conductive and yield comparable capacities (as high as 0.25 AH/gm (0.048 AH/sq cm)) after formation. These lightweight electrodes also show excellent discharge performance at high rates.

  8. Lightweight Electrode For Nickel/Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1994-01-01

    Improved substrate for nickel electrode increases specific energy of nickel/hydrogen cell. Consists of 50 percent by weight nickel fiber, 35 percent nickel powder, and 15 percent cobalt powder. Porosity and thickness of nickel electrodes affect specific energy, initial performance, and cycle life of cell. Substrate easily manufactured with much larger porosities than those of heavy-sintered state-of-art nickel substrate.

  9. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Wheeler, James R.; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder and the second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested and evaluated at the electrode and cell level.

  10. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  11. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  12. Bending properties of nickel electrodes for nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries which fail prematurely by electrical shorting. This is believed to be a result of a blistering problem in the nickel electrodes. This study investigates the bending properties of nickel electrodes in an attempt to correlate the bending properties with the propensity of the electrode to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. Effects of specimen curvature and position within the electrode on the bending strength were studied and within-electrode and batch-to-batch variation were addressed. Two color imaging techniques were employed which allowed differentiation of phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hydroxide surface loading on each electrode, relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  13. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1996-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting. This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study, the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Bend strength was found to increase with the amount of surface loading.

  14. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  15. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  16. Lightweight nickel electrodes for nickel/hydrogen cells

    NASA Technical Reports Server (NTRS)

    Lim, Hong S.; Zelter, Gabriela R.

    1993-01-01

    Thick nickel electrodes with lightweight substrate material have been prepared and tested in Ni/H2 boilerplate cells containing 26 percent KOH electrolyte. Lightweight substrates used were either 85 or 90 percent in porosity and either 0.8 or 2 mm in thickness, respectively, compared with 80 to 82 percent porosity and 0.75 to 0.8 mm thickness of the state-of-the-art sintered plaque substrate. All of these thick electrodes had substantially improved theoretical (or chemical) capacity over that of state-of-the-art sintered nickel plaque electrodes. However, utilization of the active material was low (65 to 80 percent) compared with that of the state-of-the-art electrodes (approximately 90 percent) in 26 percent KOH. Due to this low utilization, the electrodes using 85 percent porous substrates did not show any advantage over the state-of-the-art ones. The electrodes using a 90 percent porous substrate, however, showed 17 percent higher usable specific capacity (about 0.13 Ah/g in 26 percent KOH) than that of the state-of-the-art nickel electrodes despite the low utilization. These electrodes achieved up to 4860 cycles at 40 percent depth-of-discharge with neither capacity loss nor any significant changes of rate capability and charging efficiency with cycling.

  17. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  18. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low earth orbit regime at 40 and 80 percent depths-of-discharge.

  19. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low Earth orbit regime at 40 and 80 percent depths-of-discharge.

  20. Method of Making a Nickel Fiber Electrode for a Nickel Based Battery System

    NASA Technical Reports Server (NTRS)

    Britton, Doris L. (Inventor)

    2001-01-01

    The general purpose of the invention is to develop a high specific energy nickel electrode for a nickel based battery system. The invention discloses a method of producing a lightweight nickel electrode which can be cycled to deep depths of discharge (i.e., 40% or greater of electrode capacity). These deep depths of discharge can be accomplished by depositing the required amount of nickel hydroxide active material into a lightweight nickel fiber substrate.

  1. Recent progress in the development of a lightweight nickel electrode

    SciTech Connect

    Britton, D.L.

    1995-12-31

    The nickel-hydrogen (Ni-H{sub 2}) cell is rapidly replacing nickel-cadmium (Ni-Cd) cell as the system of choice for aerospace applications where weight is crucial. The heavy-sintered nickel electrode used in this cell accounts for about 38% of the cell weight. The use of small diameter fiber nickel electrodes will reduce the weight and improve the specific energy of the state-of-the-art Ni-H{sub 2} cell by about 50%. One advantage of this small diameter nickel fiber material is the increase in the surface area available for the deposition of active material. Initial testing of this type of electrode is very promising. This electrode is also applicable to other nickel-based batteries, such as nickel-zinc, nickel-iron, and nickel-metal-hydride, both for space and commercial applications.

  2. Development of sintered fiber nickel electrodes for aerospace batteries

    SciTech Connect

    Francisco, J.; Chiappetti, D.; Brill, J.

    1997-12-01

    The nickel electrode is the specific energy limiting component in nickel battery systems. A concerted effort is currently underway to improve NiH{sub 2} performance while decreasing system cost. Increased performance with electrode specific energy (mAh/g) is the major goal of this effort. However, cost reduction is also an important part of the overall program, achieved by reducing the electrode weight. A lightweight, high energy density nickel electrode is being developed based on a highly porous, sintered fiber, nickel substrate. This developing technology has many applications, but is highly applicable to the military and aerospace industries.

  3. Development of Sintered Fiber Nickel Electrodes for Aerospace Batteries

    NASA Technical Reports Server (NTRS)

    Francisco, Jennifer; Chiappetti, Dennis; Brill, Jack

    1997-01-01

    The nickel electrode is the specific energy limiting component in nickel battery systems. A concerted effort is currently underway to improve NiH2 performance while decreasing system cost. Increased performance with electrode specific energy (mAh/g) is the major goal of this effort. However, cost reduction is also an important part of the overall program, achieved by reducing the electrode weight. A lightweight, high energy density, nickel electrode is being, developed based on a highly porous, sintered fiber, nickel substrate. This developing technology has many applications, but is highly, applicable to the military and aerospace industries.

  4. Development of a micro-fiber nickel electrode for nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1995-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  5. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.

    1994-01-01

    The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).

  6. Organic devices based on nickel nanowires transparent electrode

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmo; da Silva, Wilson Jose; Bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed.

  7. Organic devices based on nickel nanowires transparent electrode

    PubMed Central

    Kim, Jeongmo; da Silva, Wilson Jose; bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed. PMID:26804335

  8. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, B. C.

    1985-01-01

    Raman spectroscopy is sensitive to empirically controlled nickel electrode structural variations, and has unique potential for structural characterization of these materials. How the structure relates to electrochemical properties is examined so that the latter can be more completely understood, controlled, and optimized. Electrodes were impregnated and cycled, and cyclic voltammetry is being used for electrochemical characterization. Structural variation was observed which has escaped detection using other methods. Structural changes are induced by: (1) cobalt doping, (2) the state of change or discharge, (3) the preparation conditions and type of buffer used, and (4) the formation process. Charged active mass has an NiOOH-type structure, agreeing with X-ray diffraction results. Discharged active mass, however, is not isostructural with beta-Ni(OH)2. Chemically prepared alpha phases are not isostructural either. A disordered structural model, containing point defects, is proposed for the cycled materials. This model explains K(+) incorporation. Band assignments were made and spectra interpreted for beta-Ni(OH)2, electrochemical NiOOH and chemically precipitated NiOOH.

  9. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  10. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  11. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  12. Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Willis, Bob; Pickett, David F.

    2003-01-01

    The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.

  13. Electrochemical impregnation of nickel hydroxide in porous electrodes

    NASA Technical Reports Server (NTRS)

    Ho, Kuo-Chuan; Jorne, Jacob

    1987-01-01

    The electrochemical impregnation of nickel hydroxide in porous electrode was investigated both experimentally and theoretically. The loading level and plaque expansion were the most important parameters to be considered. The effects of applied current density, stirring, ratio of solution to electrode volume and pH were identified. A novel flow through electrochemical impregnation is proposed in which the electrolyte is forced through the porous nickel plaque. The thickening of the plaque can be reduced while maintaining high loading capacity. A mathematical model is presented which describes the transport of the nitrate, nickel and hydroxyl ions and the consecutive heterogeneous electrochemical reduction of nitrate and the homogeneous precipitation reaction of nickel hydroxide. The distributions of precipitation rate and active material within the porous electrode are obtained. A semiempirical model is also proposed which takes into account the plugging of the pores.

  14. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  15. Advanced catalytic electrode development for nickel-hydrogen batteries

    SciTech Connect

    Coates, D.K.; Grindstaff, B.K.; Hoofnagle, P.S.; Chiappetti, D.P.

    1995-12-31

    Low catalyst loading gas diffusion membrane electrodes have been developed for spaceflight qualified nickel-hydrogen (NiH{sub 2}) batteries. These electrodes involve the use of new electrode designs and innovative manufacturing methods. Supported catalysts, mixed catalysts and alterative catalyst systems have been developed to decrease catalyst loading levels, and therefore reduce electrode cost, without reducing performance or reliability. This advanced electrode technology has currently accumulated more than 13,000 charge/discharge cycles in real-time, low-earth-orbit (LEO) testing. The technology has been incorporated into several nickel-hydrogen spaceflight programs including the TUBSAT B spacecraft, built by the Technical University of Berlin and launched in January of 1994 aboard a Russian Cyclone rocket.

  16. Positive electrodes of nickel-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Wabner, D. W.; Kandler, L.; Krienke, W.

    1985-01-01

    Ni hydroxide sintered electrodes which are filled electrochemically are superior to chemically treated electrodes. In the electrochemical process, the hydroxide grows on the Ni grains and possesses a well-defined porous structure. Diffusion and conducting mechanisms are therefore facilitated.

  17. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    EPA Science Inventory

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  18. Progress in the Development of Lightweight Nickel Electrode for Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1999-01-01

    Development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (Ni-H2) program at the NASA Glenn Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at five different discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C. The electrodes are life cycle tested using a half-cell configuration at 40 and 80% depths-of-discharge (DOD) in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flight weight design are built and tested.

  19. Contribution to the knowledge of nickel hydroxide electrodes. 5. Analysis and electrochemical behavior of cadmium nickel hydroxides

    NASA Technical Reports Server (NTRS)

    Bode, H.; Dennstedt, W.

    1981-01-01

    Electrochemical experiments performed at sintered and bulk electrodes show that beta nickel hydroxide contains an electrochemically inactive proportion of cadmium hydroxide of up to 10%. The electrochemically ineffective cadmium hydroxide is homogeneously dissolved in beta nickel hydroxide.

  20. Characterization of cobalt-dipped nickel electrodes with fibrex substrates

    NASA Technical Reports Server (NTRS)

    Youngman, Carolyn A.; Reid, Margaret A.

    1995-01-01

    Nickel electrodes using fibrous substrates have poorer initial utilization of the active material than those using conventional nickel sinter substrates. Previous investigators had shown that utilization can be dramatically improved by dipping these electrodes in a cobalt solution immediately after the electrochemical impregnation, before formation and cycling is carried out. The present study looked at the gas evolution behavior of dipped and undipped electrodes, impedance curves, and the charge-discharge curves to try to understand the reasons for the improvement in utilization. Impedance measurements under open circuit conditions indicate that some of the improvement is due to a reduction in the ohmic resistance of the surface layer of the particles, in agreement with earlier work. The charge-discharge curves suggest that there may also be an additional increase in the ohmic resistance of the surface layer of the undipped electrode during charging.

  1. Non-gassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.

  2. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  3. Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode.

    PubMed

    Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S

    2015-12-01

    The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode.

  4. Light Weight Design Nickel-Alkaline Cells Using Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Pickett, David F.; Willis, Bob; Britton, Doris; Saelens, Johan

    2005-01-01

    Using fiber electrode technology, currently produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC., Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel-hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr/kg) as state-of-the-art nickel-hydrogen cells that are flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel-alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as ability to undergo continuous overcharge, reversal on discharge and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures. In development to date seven 50 ampere-hour nickel-hydrogen have been constructed, acceptance tested and briefly tested in a low earth orbit (LEO) cycle regime. The effort was jointly funded by Electro Energy, Inc. and NASA Glenn Research Center, Cleveland, OH. Five of the seven cells have been shipped to NASA GRC for further cycle testing. Two of the cells experienced failure due to internal short circuits during initial cycle testing at EEL Destructive Physical Analysis (DPA) of one of the cells has shown the failure mode to be due to inadequate hydrogen catalyst electrodes that were not capacity balanced with the higher energy density nickel oxide electrodes. In the investigators opinion, rebuild of the cells using proper electrode balance would result in cells that could sustain over 30,000 cycles at moderate depths-of-discharge in a LEO regime or endure over 20 years of geosynchronous orbit (GEO) cycling while realizing a two-fold increase in specific energy for the battery or a 1.1 kg weight savings per 50 ampere-hour cell. Additional

  5. Long Life Nickel Electrodes for a Nickel-hydrogen Cell: Cycle Life Tests

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1984-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, cycle life tests of nickel electrodes were carried out in Hi/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45-minute low earth orbit cycle regime at 80% depth-of-discharge. The results show that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength did not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. The best plaque type appears to be one which is made of INCO nickel powder type 287 and has a median pore size of 13 micron.

  6. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOEpatents

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  7. An Oxygen Electrode Based on Nickel/Cobalt Spinel,

    DTIC Science & Technology

    1981-07-01

    RESUME On a d~montr6 la formation de l oxyde mixte de cadmium et de nickel du type "spinelle" par ]a d~coposition thermique du nitrate de cadmium se...3). Metal oxide catalysts of the spinel or perovskite structure offer the possibility of high catalytic activity and extended life under a variety of...operating conditions. Tseung and co-workers (4,5) have shown that perovskite oxide electrodes prepared by doping LaCoU 3 with strontium perform

  8. Fabrication and Investigation of Nickel-Alkaline Cells. Part 1. Fabrication of Nickel-Hydroxide Electrodes Using Electrochemical Impregnation Techniques

    DTIC Science & Technology

    1975-10-01

    electrodes show capacities as high as 9.5 ampere-hours per cubic inch after these cycles. The alcohol process has been scaled to pilot production, FORM 1473...expel residual nitrogen as ammonia. This procedure must be repeated several * Presently only nickel-cadmium cells are used in Air Force missions; Nickel...hydrates of nickel and cadmium nitrates followed by a heat treatment to decompose the imbibed nitrates to hydroxides(2,3). The final process in all Ni-Cd

  9. Ruthenium oxide modified nickel electrode for ascorbic acid detection.

    PubMed

    Lee, Yuan-Gee; Liao, Bo-Xuan; Weng, Yu-Ching

    2017-04-01

    Electrodes of ruthenium oxide modified nickel were prepared by a thermal decomposition method. The stoichiometry of the modifier, RuOx, was quantitatively determined to be a meta-stable phase, RuO5. The electrodes were employed to sense ascorbic acid in alkaline solution with a high sensitivity, 296 μAcm(-2) mM(-1), and good selectivity for eight kinds of disturbing reagents. We found that the ascorbic acid was oxidized irreversibly in solution. To match with the variation of the morphology, the sensitivity reached a maximum when the RuOx segregated with a nano-crystalline feature. We find that the substrate oxidized as the deposited RuOx grew thicker. The feature of the deposited RuOx changed from nano-particles to small islands resulting from the wetting effect of the substrate oxide, NiO; meanwhile the sensitivity decreased dramatically. The endurance of the RuOx/Ni electrode also showed a good performance after 38 days of successive test.

  10. Recent progress in nickel based materials for high performance pseudocapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Feng, Liangdong; Zhu, Yufu; Ding, Hongyan; Ni, Chaoying

    2014-12-01

    Nickel based materials have been intensively investigated and considered as good potential electrode materials for pseudocapacitors due to their high theoretical specific capacity values, high chemical and thermal stability, ready availability, environmentally benign nature and lower cost. This review firstly examines recent progress in nickel oxides or nickel hydroxides for high performance pseudocapacitor electrodes. The advances of hybrid electrodes are then assessed to include hybrid systems of nickel based materials with compounds such as carbonaceous materials, metal and transition metal oxides or hydroxides, in which various strategies have been adopted to improve the electrical conductivity of nickel oxides or hydroxides. Furthermore, the energy density and power density of some recently reported NiO, nickel based composites and NiCo2O4 are summarized and discussed. Finally, we provide some perspectives as to the future directions of this intriguing field.

  11. Charge control of nickel-cadmium batteries by coulometer and third electrode method

    NASA Technical Reports Server (NTRS)

    Ford, F.; Paulkovitch, J.

    1968-01-01

    Combined coulometer/third electrode control circuit for a nickel-cadmium battery included at least one cell of the third electrode type is illustrated. The coulometer/third electrode sensing circuit controls the series regulator as necessary to maintain the sensing voltage at the preset sensing level.

  12. The structures of the sintered plaque in the nickel hydroxide electrode

    NASA Technical Reports Server (NTRS)

    Vyas, B.

    1981-01-01

    The various failure mechanisms were identified for the nickel electrode. The nickel sinter is involved in all these failure modes. The first one, chemical attack by carbonate, nitrate or other electrolyte components, involves corrosion of the nickel sinters. The second is the physical mode, which involves swelling of the electrode and physical shifting of the sinter in the electrodes. The third is the mechanical failure mode, and is due to fatigue or to the oxygen pressure that causes deformation or fracture of the sinter.

  13. Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Fen; Ye, Ke; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-03-01

    Fully metallic nickel nanowire arrays (NWAs) electrode is prepared by electrodepositing nickel within the pores and over-plating on the surface of polycarbonate template (PCT) with subsequent dissolution of the template in dichloromethane. The as-prepared electrode is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Urea electro-oxidation reaction in KOH solution on the nickel NWAs electrode is investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The results show that the nickel NWAs electrode achieves an onset oxidation potential of 0.25 V (vs. Ag/AgCl) and a peak current density of 160 mA cm-2 in 5 mol L-1 KOH and 0.33 mol L-1 urea accompanied with considerable stability.

  14. Effect of impregnation method on cycle life of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1986-01-01

    The nickel electrode has been identified as the life limiting component for individual pressure vessel (IPV) nickel-hydrogen cells when cycled under a low earth orbit (LEO) cycle regime at deep depths of discharge. As a part of an overall program to develop a long life nickel electrode for nickel-hydrogen cells, the effect of two different methods of electrochemical impregnation on the cycle life of the nickel electrode was investigated. One method was the Pickett (aqueous/ethanolic) process. The other was the modified Bell (aqueous) process. The plaques for both impregnation methods were made by sintering dry carbonyl nickel powder in a reducing atmosphere. The plaques contain a nickel screen substrate. Electrodes made from both processes were cycle tested in Air Force design IPV nickel-hydrogen cells. The only factor different for this test was the method of plaque impregnation; all other factors were the same. The cells were cycled to failure under a 90 min LEO cycle regime at a deep depth of discharge (80 percent DOD). Failure for this test was defined to occur when the cell voltage degraded to 1.0 V prior to the completion of the 35 min discharge.

  15. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  16. Paste Type Nickel Electrode Containing Compound And At Least One Other Element

    DOEpatents

    Bernard, Patrick; Bertrand, Fran.cedilla.oise; Simonneau, Olivier

    1999-11-30

    The present invention provides a paste type nickel electrode for a storage cell having an alkaline electrolyte, the electrode comprising a current collector and a paste containing a nickel-based hydroxide and an oxidized compound of cobalt syncrystallized with at least one other element, wherein said hydroxide forms a first powder and wherein said compound forms a second powder distinct from said first powder, said powders being mixed mechanically within said paste.

  17. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    A summary of previous Raman spectroscopic results and a discussion of important structural differences in the various phases of active mass and active mass precurors are presented. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to X-rays (i.e., does not scatter X-rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging will be discussed and related to electrode properties. Important structural differences include NiO2 layer stacking, nonstoichiometry (especially cation-deficit nonstoichiometry), disorder, dopant content, and water content. The results indicate that optimal nickel active mass is non-close packed and nonstoichiometric. The formation process transforms precursor phases into this structure. Therefore, the precursor disorder, or lack thereof, influences this final active mass structure and the rate of formation. Aging processes induce structural change which is believed to be detrimental. The role of cobalt addition can be appreciated in terms of structures favored or stabilized by the dopant. In recent work, the in situ Raman technique to characterize the critical structural parameters was developed. An in situ method relates structure, electrochemistry, and preparation. In situ Raman spectra of cells during charge and discharge, either during cyclic voltammetry or under constant current conditions were collected. With the structure-preparation knowledge and the in situ Raman tool, it will be possible to define the structure-property-preparation relations in more detail. This instrumentation has application to a variety of electrode systems.

  18. Electrocatalytic oxidation of formaldehyde on nickel ion implanted-modified indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Su, Wen; Yuan, Mengwei; Fu, Yingyi; Hu, Jingbo

    2015-07-01

    This work investigates formaldehyde (HCHO) oxidation on a novel nickel ion implanted-modified indium tin oxide electrode (NiNPs/ITO). The modified electrode exhibits high electrochemical activity with Ni ions at the fluences of 10 × 1016 ions cm-2. The size of nickel nanoparticles (NiNPs) is in the range of 15-40 nm determined by scanning electron microscope (SEM). The electrochemical behaviors of the modified electrode are characterized by cyclic voltammetry (CV). In alkaline medium (i.e. NaOH 0.1 M), a good redox behavior of Ni(III)/Ni(II) couple at the surface of modified electrodes can be observed. Electrochemical performances are measured by electrochemical impedance spectroscopy (EIS) and chronoamperometric. The NiNPs/ITO electrode shows prominent electrocatalytic activity towards the oxidation of formaldehyde with long-term stability, which can be a suitable electrode material in formaldehyde fuel cells.

  19. Electrooxidation of aliphatic alcohols on electrodes consisting of hydrophobicized supports coated with nickel oxides

    SciTech Connect

    Chaenko, N.V.; Kornienko, V.L.; Avrutskaya, I.A.; Fioshin, M.Ya.

    1987-12-01

    Two methods are presented to intensify the electrooxidation of aliphatic alcohols with low water solubility and to simplify end-product separation. One method comprised direct addition of higher nickel oxides to the active material of the electrode to be fabricated; the other involved depositing a layer of higher nickel oxides on a hydrophobicized support consisting of a mixture of a conducting material and the FP-4D hydrophobicizer. Electrolysis was carried out in a diaphragm-free two-compartment cell, one reagent and the other the electrolyte. Results are shown of hexyl alcohol oxidation on various composition supports coated with higher nickel oxides.

  20. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes

    PubMed Central

    Yaddanapudi, Haritha Sree; Tian, Kun; Teng, Shiang; Tiwari, Ashutosh

    2016-01-01

    We are reporting a facile way to prepare nickel/carbon nanocomposites from wood as a novel electrode material for supercapacitors. The surface morphology and the structure of the as-prepared electrodes were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that after high-temperature carbonization process, the wood is converted into graphitic carbon with nickel nanoparticles uniformly distributed within the three dimensional structure of the wood. Electrochemical characterization such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements were conducted. These results showed that the introduction of nickel into the carbonized wood improves the specific capacitance and the cyclic stability of the nanocomposite electrode over that of the pure carbonized wood electrode. The composite electrode displayed an enhanced capacitive performance of 3616 F/g at 8 A/g, and showed an excellent capacitance retention after 6000 charge-discharge cycles. These results endow the nickel nanoparticles impregnated carbonized wood with a great potential for future application in supercapacitors. PMID:27651005

  1. Effect of sinter fracture and ohmic resistance on capacity retention in the nickel oxide electrode

    NASA Technical Reports Server (NTRS)

    Lanzi, Oscar; Landau, Uziel

    1991-01-01

    The lifetime of batteries which utilize the nickel oxide electrode is often limited because this electrode loses a significant portion of its capacity as it is cycled. It is asserted that this capacity loss may often be attributed to cracking or separation of the conductive nickel sinter in the electrode, which forces electronic current to pass through the poorly conducting hydrated oxide and thus imposes a significant ohmic resistance. The model indicates that the oxide develops a nearly insulating layer which prevents complete discharge in the cycled electrode at usable rates. The capacity retention can be improved by reducing the cyclic stresses or strengthening the current collecting structure, redistributing it to provide a shorter current path through the solid phase, or by increasing the conductivity of the oxide to delay the formation of an insulating layer.

  2. Electrochemical performance of electroless nickel plated silicon electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Cetinkaya, T.; Uysal, M.; Akbulut, H.

    2015-04-01

    In this study, nickel plated silicon powders were produced using an electroless deposition process. The nickel content on the surface of silicon powders was changed by using different concentrations of NiCl2 in the plating bath. The surface morphology of the produced Ni plated composite powders was characterized using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) was used to determine the elemental surface composition of the composites. X-ray diffraction (XRD) analysis was performed to investigate the structure of the nickel plated silicon powders. Electrochemical cycling test of the nickel plated silicon electrodes were performed at a constant current of 100 mA/g in CR2016 test cells. In order to investigate electrochemical reactions of the nickel plated silicon powders with electrolyte, cyclic voltammetry test was performed at a scan rate of 0.1 mV/s. Among the used concentrations, the nickel plated silicon electrode produced using 40 g/L NiCl2 had a 246 mAh/g discharge capacity after 30 cycles.

  3. Copper conducting electrode with nickel as a seed layer for selective emitter crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    ur Rehman, Atteq; Shin, Eun Gu; Lee, Soo Hong

    2014-09-01

    In this research, we investigated selective emitter formation with a single-step photolithography process having a metallization scheme composed of nickel/copper metal stacks. The nickel seed layers were deposited by applying the electroless deposition process while copper was formed by light induced electro-plating arrangements as the main conducting electrode. The electroless deposition of nickel, along with a sintering process, was employed to create a diffusion barrier between copper and silicon. The nickel metal stack below the copper-conducting electrode also helped in lowering the sheet resistance and improving the contact adhesion. The nickel used as a seed layer was successfully demonstrated in the fabrication of a homogeneous 60 Ω/□ emitter and selective emitter cells. Lower series resistances of 0.165 Ω and 0.253 Ω were achieved for the selective emitter and the homogeneous emitter cells, respectively. The best cell efficiency of 18.37% for the selective emitter solar cell was achieved, with average cell efficiencies of 18.17% and 17.3% for the selective emitter and the homogeneous emitter cells, respectively. An approximate efficiency increase of about 0.8% was recorded for the selective emitter solar cells.

  4. Nanostructured nickel electrodes using the Tobacco mosaic virus for microbattery applications

    NASA Astrophysics Data System (ADS)

    Gerasopoulos, Konstantinos; McCarthy, Matthew; Royston, Elizabeth; Culver, James N.; Ghodssi, Reza

    2008-10-01

    The development of nanostructured nickel-zinc microbatteries utilizing the Tobacco mosaic virus (TMV) is presented in this paper. The TMV is a high aspect ratio cylindrical plant virus which has been used to increase the active electrode area in MEMS-fabricated batteries. Genetically modifying the virus to display multiple metal binding sites allows for electroless nickel deposition and self-assembly of these nanostructures onto gold surfaces. This work focuses on integrating the TMV deposition and coating process into standard MEMS fabrication techniques as well as characterizing nickel-zinc microbatteries based on this technology. Using a microfluidic packaging scheme, devices with and without TMV structures have been characterized. The TMV modified devices demonstrated charge-discharge operation up to 30 cycles reaching a capacity of 4.45 µAh cm-2 and exhibited a six-fold increase in capacity during the initial cycle compared to planar electrode geometries. The effect of the electrode gap has been investigated, and a two-fold increase in capacity is observed for an approximately equivalent decrease in electrode spacing.

  5. Initial capacity conditioning on electrochemical nickel hydroxide electrodes

    NASA Technical Reports Server (NTRS)

    Fritts, D. H.

    1981-01-01

    Conditioning is the initial cycling where cell capacity is usually unstable. The causes of the initial capacity build were examined. Gridless electrodes were fabricated to ensure mechanical homogeneity, so that a strain measured in one direction would be typical of a strain measured in the other directions. Plate hardness was also determined. These two parameters stabilize together.

  6. ESCA investigations on plastic-bonded nickel oxide electrodes

    NASA Astrophysics Data System (ADS)

    Jindra, J.; Krejčí, I.; Mrha, J.; Folkesson, B.; Johansson, L. Y.; Larsson, R.

    Electrode samples, prepared by a rolling technique from an active mass, graphite and Teflon mixture, were characterized by ESCA (X-ray photoelectron spectroscopy) before operation, after a short electrochemical formation, and after a certain number of charge—discharge cycles. The spectra of F 1s, C 1s, O 1s and Ni 2p 3/2 were measured in detail. A splitting of the F and C signals (from Teflon) in the Teflon—graphite mixture was interpreted as indicating different qualities of contacts between the Teflon and graphite particles. The change in character of this contact resulting from cycling of the electrode was followed and was considered to be the cause of the change of the electric resistance in the electrode. From the decrease of the intensity of the Ni signal one can conclude that part of the Ni(OH) 2/NiO(OH) system withdraws from the surface of the graphite particle structure during prolonged operation of the electrode. This effect is caused by a partial crystallization of the hydrated Ni(II)Ni(III) oxide system which, in its turn, causes discontinuities in the hydrogel to appear, reflected by an increase in the F 1s signal intensity.

  7. Reliability of multilayer ceramic capacitors with nickel electrodes

    NASA Astrophysics Data System (ADS)

    Yamamatsu, J.; Kawano, N.; Arashi, T.; Sato, A.; Nakano, Y.; Nomura, T.

    The reliability of multilayer ceramic capacitors (MLCCs) with Ni internal electrodes has been studied trom the viewpoint of partial oxygen pressure ( PO2) during firing. It is shown that the load-life time of the insulation resistance (1R) was prolonged by firing under low Po 2 annealing after firing, and the addition of dopants. It is also shown that the generation of oxygen vacancies led to the degradation of IR. Annealing treatment for the oxidation of the dielectric body accelerates the dielectric aging of MLCCs. It is found that the appropriate control of the PO2 during firing can improve the reliability of MLCCs with Ni electrodes to a level as high as that of MLCCs with precious metal electrodes. Thus, we have developed an MLCC with Ni electrodes that features high reliability and a large capacitance of 10 μF for the Y5V characteristic and 4.7 μF for the X7R characteristic, both in the case of the C3216 (3.2 mm × 1.6 mm × 1.4 mm) form.

  8. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes.

    PubMed

    Wang, Xiaoyan; Zhang, Yun; Banks, Craig E; Chen, Qiyuan; Ji, Xiaobo

    2010-07-01

    A non-enzymatic amperometric glucose biosensor based on the modification of functional nickel hexacyanoferrate nanoparticles was prepared via electrochemical deposition. The electrochemical deposition of the nickel hexacyanoferrate nanoparticles was obtained by potential cycling in a solution containing nickel (II) and hexacyanoferrate (III) producing a modified surface with a high degree of uniformity. The modified electrode is exemplified towards the non-enzymatic sensing of glucose where using cyclic voltammetry and amperometry, low micro-molar up to milli-molar glucose concentrations are readily detectable. The non-enzymatic sensing of glucose also shows a modest selectivity over ascorbic acid. This platform offers a novel route for glucose sensors with wide analytical applications.

  9. Study of nickel hydroxide electrodes. 2: Oxidation products of nickel (2) hydroxides

    NASA Technical Reports Server (NTRS)

    Bode, H.; Demelt, K.; White, J.

    1986-01-01

    Pure phases of some oxidized Ni oxides were prepared galvanimetrically with the Ni(2) hydroxide electrode of an alkaline battery. The crystallographic data of these phases, their chemical behavior, and conditions of transition were studied.

  10. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics.

    PubMed

    Dlubak, Bruno; Martin, Marie-Blandine; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Blume, Raoul; Schloegl, Robert; Fert, Albert; Anane, Abdelmadjid; Hofmann, Stephan; Seneor, Pierre; Robertson, John

    2012-12-21

    We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

  11. Screenable all-metal solar cell electrodes of nickel and copper

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.

    1981-01-01

    Screenable thick film solar cell electrodes are made using the all-metal electrode system, which eliminates the commonly used glass frit and substitutes an oxide scavenger such as silver fluoride. The low temperature firing copper metal systems give good results on solar cells obtaining cell efficiencies of 13% AM1, and adhering sintered structures are demonstrated with nickel systems. The potential effect of copper upon cell performance at elevated temperatures over long periods of time is determined, and it is found that the formation of a copper-silicon eutectic at 550 C produces needle-like structures with broad bases on the silicon, extending into and occasionally through the metallization layer.

  12. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  13. X7R Multilayer Ceramic Capacitors with Nickel Electrodes

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Chazono, Hirokazu; Kishi, Hiroshi; Yamaoka, Nobutatsu

    1991-09-01

    Electrical properties and microstructures of a holmium-doped (Ba1.01Mg0.01)O1.02(Ti0.98Zr0.02)O2 system were studied. Additions of Ho2O3 had little effect in preventing the dielectrics from reducing at high temperature, but the resistivity at low temperature increased with increasing amount of Ho2O3 when treated in oxidizing atmosphere at the cooling stage. From transmission electron micrograph (TEM) observation, it was noted that the microstructure exhibited a grain core-grain shell structure. Newly developed X7R multilayer ceramic capacitors with Ni electrodes revealed highly reliable electrical properties.

  14. Electroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system.

    PubMed

    Treetepvijit, Surudee; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Sato, Rika; Chailapakult, Orawon

    2005-05-01

    The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.

  15. On the Nickel Hydroxide Electrode. I. On Nickel (II) Hydroxide Hydrate,

    DTIC Science & Technology

    1980-10-27

    preparations. The nickel content is calculated as Ni(OH)2, and the remainder of the total water as water of hydration. The pycnometric density is...determined with anhydrous petroleum (b. p. 150-200*) as the sealing liquid. The pycnometric density of a well crystallized anhydrous P-Ni(OH)2 , prepared by...blue, and P-Co(OH)2 is pink. Table 2. Ni(OH)2 Zn(OH)2 H20 Ni,Zn(OH)2 H20 Pycnometric density % % % Mol Mol g/cm3 5 10 29.30 12,34 1 0.75 - 61,50

  16. Electrophoretic self-assembly of expanded mesocarbon microbeads with attached nickel nanoparticles as a high-rate electrode for supercapacitors.

    PubMed

    Wu, Mao-Sung; Fu, Yan-Hao

    2014-04-21

    Expanded mesocarbon microbeads (EMCMBs) with graphene oxide (GO) sheets were prepared by expanding graphitized mesocarbon microbeads (MCMBs) using a simple solution-based oxidative process. EMCMB-supported nickel nanoparticles with an average size of 4.6 nm were fabricated by an electrophoretic deposition (EPD) method in the presence of nickel nitrate additive. Nickel ions were self-assembled on the fluffy GO sheets resulting in a more positively charged EMCMB particle for facilitating EPD and dispersion. After heat treatment at 300 °C, GO could be converted to graphene which could provide a conductive network for facilitating the transport of electrons. Well-dispersed nickel nanoparticles on graphene sheets could act as a redox center to allow storage of extra charge and a nanospacer to prevent the graphene sheets from restacking. The specific capacitance of EMCMB-supported nickel electrode could reach 491 F g(-1), which is much higher than that of EMCMB electrode (43 F g(-1)) and bare nickel electrode (146 F g(-1)) at a discharge current of 5 A g(-1). More importantly, the EMCMB-supported nickel electrode is capable of delivering a high specific capacitance of 440 F g(-1) at a discharge current of 50 A g(-1), and could pave the way towards high-rate supercapacitors.

  17. A semi theoretical approach of the second plateau appearing during the discharge of aged nickel oxyhydroxide electrodes

    NASA Astrophysics Data System (ADS)

    Mancier, V.; Willmann, P.; Metrot, A.

    A semi theoretical explanation of the appearance of a second plateau during the discharge of overcharged nickel oxyhydroxide electrodes (NOHE) is proposed, based on transmission line models of the charge-discharge processes of the active matter. The model takes into account the double electronic and protonic conduction involved in nickel II α and β or nickel III β and γ phases: electrons and protons reach the transformation front inside the matter through the less resistive paths. The secondary plateau may occur when a resistive layer of β(II) isolates the transformation front from the nickel electron sink.

  18. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte.

    PubMed

    Shruthi, B; Bheema Raju, V; Madhu, B J

    2015-01-25

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44×10(-12) cm(2) s(-1). Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  19. A novel voltammetric sensor for amoxicillin based on nickel-curcumin complex modified carbon paste electrode.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2012-06-01

    The electrocatalytic oxidation of amoxicillin was investigated on a nickel-based (Ni(II)-curcumin) chemically modified electrode. This modified electrode was prepared by electropolymerization of complex (curcumin = 1,7-bis[4-hydroxyl-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) in alkaline solution. For the first time, the catalytic oxidation of amoxicillin was demonstrated by cyclic voltammetry, chronoamperometry, chronocoulometry and amperometry methods at the surface of this modified carbon paste electrode. The obtained results showed that NiOOH acts as an electrocatalyst for oxidation of amoxicillin. This electrocatalytic oxidation exhibited a good linear response for amoxicillin concentration over the range of 8 × 10⁻⁶-1×10⁻⁴ M with a detection limit of 5 × 10⁻⁶ M. Therefore, this electrocatalytic method was used as a simple, selective and rapid method able to determine amoxicillin in pharmaceutical preparations and biological media.

  20. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  1. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  2. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications.

    PubMed

    Bian, Chunli; Zeng, Qingxiang; Xiong, Huayu; Zhang, Xiuhua; Wang, Shengfu

    2010-08-01

    A carbon-coated nickel magnetic nanoparticles modified glassy carbon electrode (C-Ni/GCE) was fabricated. The carbon-coated nickel magnetic nanoparticles were characterized with transmission electron microscopy (TEM). The electrochemical behaviors of norepinephrine (NE) were investigated on the modified electrode by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The carbon-coated nickel magnetic nanoparticles showed excellent electrocatalytic activity for the electrochemical redox of NE. NE exhibited two couples of well-defined redox peaks on C-Ni/GCE over the potential range from -0.4 to 0.8V in phosphate buffer solution (PBS) (pH=7.0). The redox mechanism for NE was proposed. DPV response of NE on the C-Ni/GCE showed that the catalytic oxidative peak current was linear with the square root concentration of NE in the range of 2.0 x 10(-7) to 8.0 x 10(-5)M, with a detection limit of 6.0 x 10(-8)M. The C-Ni/GCE showed good sensitivity, selectivity and stability for the determination of NE.

  3. Nickel foam-based manganese dioxide-carbon nanotube composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 2-4 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of slurries of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNTs) into porous nickel foam current collectors. In the composite electrodes, MWCNT formed a secondary conductivity network within the nickel foam cells. Obtained composite electrodes, containing 0-20 wt.% MWCNT with total mass loading of 40 mg cm -2, showed a capacitive behavior in the 0.1-0.5 M Na 2SO 4 solutions. The highest specific capacitance (SC) of 155 F g -1 was obtained at a scan rate of 2 mV s -1 in the 0.5 M Na 2SO 4 solutions. The SC increased with increasing MWCNT content in the composite materials and increasing Na 2SO 4 concentration in the solutions and decreased with increasing scan rate.

  4. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun

    2015-05-01

    Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.

  5. Three-dimensional nickel foam/graphene/NiCo2O4 as high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Hoa; Shim, Jae-Jin

    2015-01-01

    A facile and efficient two-step method for the decoration of graphene sheets and nickel cobalt oxide (NiCo2O4) nanoparticles on conducting nickel foam was developed. First, graphene and a bimetallic (Ni, Co) hydroxide precursor were deposited on a Ni foam support by electrodeposition followed by a thermal transformation of the bimetallic hydroxide to NiCo2O4. The graphene layer with a thickness of a few nanometers was decorated with NiCo2O4 nanoparticles, ranging in size from 3 to 5 nm. The nickel foam electrode supported graphene and NiCo2O4 exhibited rapid electron and ion transport, large electroactive surface area, and excellent structural stability. The specific capacitance of the obtained electrode was as high as 1950 F g-1 at a high current density of 7.5 A g-1, suggesting its promising applications as an efficient electrode for electrochemical capacitors.

  6. NICKEL HYDROXIDES

    SciTech Connect

    MCBREEN,J.

    1997-11-01

    Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

  7. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  8. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  10. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  11. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage.

    PubMed

    Lee, Kangsuk; Song, Haeni; Lee, Kwang Hoon; Choi, Soo Hyung; Jang, Jong Hyun; Char, Kookheon; Son, Jeong Gon

    2016-08-31

    Electrochemical energy storage devices based on electric double layer capacitors (EDLCs) have received considerable attention due to their high power density and potential for obtaining improved energy density in comparison to the lithium ion battery. Ordered mesoporous carbon (OMC) is a promising candidate for use as an EDLC electrode because it has a high specific surface area (SSA), providing a wider charge storage space and size-controllable mesopore structure with a long-range order, suppling high accessibility to the electrolyte ions. However, OMCs fabricated using conventional methods have several drawbacks including low electronic conductivity and long ionic diffusion paths in mesopores. We used nickel nanofoam, which has a relatively small pore (sub-100 nm to subμm) network structure, as a current collector. This provides a significantly shortened electronic/ionic current paths and plentiful surface area, enabling stable and close attachment of OMCs without the use of binders. Thus, we present hierarchical binder-free electrode structures based on OMC/Ni nanofoams. These structures give rise to enhanced specific capacitance and a superior rate capability. We also investigated the mesopore structural effect of OMCs on electrolyte transport by comparing the capacitive performances of collapsed lamellar, cylindrical, and spherical mesopore electrodes. The highly ordered and straightly aligned cylindrical OMCs exhibited the highest specific capacitance and the best rate capability.

  12. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  13. Novel methods of stabilization of Raney-Nickel catalyst for fuel-cell electrodes

    NASA Astrophysics Data System (ADS)

    Al-Saleh, M. A.; Sleem-Ur-Rahman; Kareemuddin, S. M. M. J.; Al-Zakri, A. S.

    Two new methods of stabilizing Raney-Nickel (Raney-Ni) catalyst for making fuel-cell anodes were studied. In the first method, the catalyst was oxidized with aqueous H 2O 2 solution, while in the second, oxygen/air (O 2/air) was used in a slurry reactor. Effects of different concentrations of H 2O 2 (5-25 wt.%) and different pressures (10-20 psig) of gas were investigated. The stabilized catalyst was characterized using BET surface area, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The catalyst was used in fuel-cell anodes and the electrochemical performance was determined in an alkaline half-cell. The results were compared with electrodes prepared using conventionally stabilized catalysts. The hydrogen peroxide-treated catalyst has higher BET surface area and produces electrodes with lower polarization. In addition to this, H 2O 2 treatment is convenient, fast and needs simple equipment which involves no instrumentation. Use of oxygen in a slurry reactor to stabilize the catalyst is also convenient but electrode performance is relatively poor.

  14. Negatively strain-dependent electrical resistance of magnetically arranged nickel composites: application to highly stretchable electrodes and stretchable lighting devices.

    PubMed

    Kim, Sangwoo; Byun, Junghwan; Choi, Seongdae; Kim, Donghyun; Kim, Taehoon; Chung, Seungjun; Hong, Yongtaek

    2014-05-21

    A novel property of the negatively strain-dependent electrical resistance change of nickel conductive composites is presented. The composite shows negatively strain-dependent resistance change when magnetically arranged, while most conductive materials show opposite behavior. This negative dependency is utilized to produce highly stretchable electrodes and to demonstrate a new conceptual resolution-sustainable stretchable lighting/display device.

  15. Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi

    The effect of temperature on surface film formation on nickel electrode was studied in 1 mol dm -3 bis(perfluoroethylsulfonyl)imide dissolved in propylene carbonate by atomic force microscopy (AFM) and ac impedance spectroscopy. Cyclic voltammetry measurements revealed that electrolyte decomposition reactions are accelerated at elevated temperatures, especially at 60 and 80 °C. In situ AFM measurements showed that the film formation is fast and the resulting surface film is thicker at 80 °C than at room temperature. Furthermore, it was confirmed by ac impedance measurements that the resistance of surface film was very low at elevated temperatures. These results were discussed in relation to superior cycling characteristics of lithium deposition and dissolution at the elevated temperatures.

  16. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-07

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.

  17. A nonstoichiometric structural model to characterize changes in the nickel hydroxide electrode during cycling

    SciTech Connect

    Srinivasan, Venkat; Bahne, C. Cornilsen; Weidner, John W.

    2003-09-15

    Experimental capacities and mass changes are recorded using an electrochemical quartz crystal microbalance during the first 9 charge and discharge cycles of nickel hydroxide thin films cycled in 3.0 weight percent (wt%) potassium hydroxide electrolyte. For the first time, the film capacities have been corrected for the oxygen evolution side reaction, and the data used as input into the point defect-containing structural model to track the changes that occur during short-term cycling. Variations in capacity and mass during formation and charge/discharge cycling are related to changes in the point defect parameters, thus providing a structural origin for the unique experimental variations observed here and often reported in the literature, but previously unexplained. Proton-, potassium-, and water-content vary in the active material during charge/discharge cycling. The observed capacity loss, or ''capacity fade'', is explained by incomplete incorporation of potassium ions in (or near) the nickel vacancy during charge, as additional protons are then allowed to occupy the vacant lattice site. The increase in water content during reduction parallels the expansion of the electrode that is well known during cycling. This result confirms the origin of the swelling phenomenon as being caused by water incorporation. The model and methodology developed in this paper can be used to correlate electrochemical signatures with material chemical structure.

  18. Nickel hydroxide deposited indium tin oxide electrodes as electrocatalysts for direct oxidation of carbohydrates in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Farzana, S.; Berchmans, Sheela

    In this work, the direct electrochemical oxidation of carbohydrates using nickel hydroxide modified indium tin oxide (ITO) electrodes in alkaline medium is demonstrated; suggesting the feasibility of using carbohydrates as a novel fuel in alkaline fuel cells applications. The chosen monosaccharides are namely glucose and fructose; disaccharides such as sucrose and lactose; and sugar acid like ascorbic acid for this study. ITO electrodes are chemically modified using a hexagonal lyotropic liquid crystalline phase template electrodeposition of nickel. Structural morphology, growth, orientation and electrochemical behaviour of Ni deposits are characterized using SEM, XRD, XPS and cyclic voltammetry (CV), respectively. Further electrochemical potential cycling process in alkaline medium is employed to convert these Ni deposits into corresponding nickel hydroxide modified electrodes. These electrodes are used as novel platform to perform the electrocatalytic oxidation of various carbohydrates in alkaline medium. It was found that bare and Ni coated ITO electrodes are inactive towards carbohydrates oxidation. The heterogeneous rate constant values are determined and calculated to be two orders of magnitude higher in the case of template method when compared to non-template technique. The observed effect is attributed to the synergistic effect of higher surface area of these deposits and catalytic ability of Ni(II)/Ni(III) redox couple.

  19. Migration of Co in nickel oxide/hydroxide of a nickel electrode in a Ni/H2 cell

    NASA Technical Reports Server (NTRS)

    Lim, Hong S.; Doty, Robert E.

    1993-01-01

    Cobalt redistribution in nickel active material has been reported. This redistribution was suspected to be related to capacity fading. The objective of this work is to establish a relationship between cobalt redistribution and capacity fading. Microscopic cobalt distribution in nickel active material was studied using three EDX techniques: line scan, point-by-point analysis, and dot maps. Results from this study are presented.

  20. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo2O4) electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Naveen, A. Nirmalesh; Selladurai, S.

    2015-06-01

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  1. Electrode-nanoparticle collisions: The measurement of the sticking coefficients of gold and nickel nanoparticles from aqueous solution onto a carbon electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Ge; Stuart, Emma J. E.; Pillay, Jeseelan; Vilakazi, Sibulelo; Tshikhudo, Robert; Rees, Neil V.; Compton, Richard G.

    2012-11-01

    We present experimental results to determine the proportion of nanoparticle (NP) impacts that result in adsorbed NPs, using gold and nickel nanoparticles (AuNPs/NiNPs) in collision with a glassy carbon electrode. Results are given for NP radii of 10 nm (Au) and 26 nm (Ni), as well as a range of electrode potentials. No significant systematic trends were found in either case, and the sticking coefficients were found to be s = 0.19 ± 0.03 for Au and s < 0.01 for Ni.

  2. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  3. Electro-oxidation and characterization of nickel foam electrode for removing boron.

    PubMed

    Kartikaningsih, Danis; Huang, Yao-Hui; Shih, Yu-Jen

    2017-01-01

    The electrocoagulation (EC) using metallic Ni foam as electrodes was studied for the removal of boron from solution. The electrolytic parameters were pH (4-12), current density (0.6-2.5 mA cm(-2)), and initial concentration of boron (10-100 mg L(-1)). Experimental results revealed that removal efficiency was maximized at pH 8-9, and decreased as the pH increased beyond that range. At particular onset potentials (0.5-0.8 V vs. Hg/HgO), the micro-granular nickel oxide that was created on the surface of the nickel metal substrate depended on pH, as determined by cyclic voltammetry. Most of the crystallites of the precipitates comprised a mixed phase of β-Ni(OH)2, a theophrastite phase, and NiOOH, as revealed by XRD and SEM analyses. A current density of 1.25 mA cm(-2) was effective in the EC of boron, and increasing the concentration of boric acid from 10 to 100 mg L(-1) did not greatly impair removal efficiency. A kinetic investigation revealed that the reaction followed a pseudo-second order rate model. The optimal conditions under which 99.2% of boron was removed from treated wastewater with 10 mg L(-1)-B, leaving less than 0.1 mg L(-1)-B in the electrolyte, were pH 8 and 1.25 mA cm(-2) for 120 min.

  4. Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2016-02-01

    The nickel cobalt sulfide/nickel sulfide (NiCo2S4/NiS) microspheres which exhibit flower-like morphologies are synthesized by a two-step hydrothermal method. Then the NiCo2S4/NiS microspheres are deposited on a fluorine doped SnO2 substrate by spin-casting the isopropyl alcohol solution of as-prepared microspheres. The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel tests are employed to measure the electrochemical performance of NiCo2S4/NiS counter electrode. The NiCo2S4 and NiS all are used to improve the conductivity and electrocatalytic ability of the films, and the NiS can also increase the specific surface area of microspheres. The dye-sensitized solar cells (DSSCs) with the NiCo2S4/NiS counter electrode exhibite a power conversion efficiency of 8.8%, which is higher than that of DSSC with Pt counter electrode (8.1%) under the light intensity of 100 mW cm-2 (AM 1.5 G).

  5. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage.

    PubMed

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M João; Silva, Teresa M; Montemor, M Fátima

    2015-08-07

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  6. Green synthesized nickel nanoparticles modified electrode in ionic liquid medium and its application towards determination of biomolecules.

    PubMed

    Babu, Rajendran Suresh; Prabhu, Pandurangan; Narayanan, Sangilimuthu Sriman

    2013-06-15

    An air and moisture stable ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate (EMIMES) was used as an electrolyte for electropolymerization of L-cysteine followed by electrodeposition of nickel nanoparticles (NiNP) on paraffin wax impregnated graphite electrode (PIGE). The electrodeposited NiNP modified electrode showed good redox activity and stability in 0.1M KOH solution. The modified electrode has been characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode was examined for electrocatalytic oxidation of some compounds of biological and clinical importance such as vitamin B6, L-tyrosine, L-tryptophan, vanillin, glucose and hydrogen peroxide by cyclic voltammetry to demonstrate the electrocatalytic activity of the electrodeposited NiNPs.

  7. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhai, Shengli; Wei, Li; Yuan, Yang; Yu, Dingshan; Wang, Liang; Wei, Jun; Chen, Yuan

    2015-08-01

    Nickel hydroxide (Ni(OH)2) is a promising pseudocapacitive material to increase the energy storage capacity of supercapacitors. Ni(OH)2 has three common crystalline structures: amorphous (amor-), α-, and β-Ni(OH)2. There is a lack of good understanding on their pros and cons as supercapacitor electrodes. In this work, we synthesized three nanocomposites with thin layers (10-15 nm) of amor-, α-, and β-Ni(OH)2 deposited on conductive multi-walled carbon nanotubes (MWCNTs). The mass loading of Ni(OH)2 is analogous in these nanocomposites, ranging from 49.1-52.2 wt% with a comparable narrow-pore size distribution centered around 4-5 nm. They were fabricated into supercapacitor electrodes at a mass loading of 6 mg cm-2 with a thickness of ˜250 μm, similar to the electrodes used in commercial supercapacitors. Our results show that MWCNT/amor-Ni(OH)2 has the highest specific capacitance (1495 or 2984 F g-1, based on the mass of total active materials or Ni(OH)2 only at the scan rate of 5 mV s-1 in 1 M KOH electrolyte). It also has the best rate capability among the three nanocomposites. Better performances can be attributed to its disordered structure, which increases its effective surface area and reduces diffusion resistance for redox reactions. However, superior performances gradually deteriorate to the same level as that of MWCNT/β-Ni(OH)2 over 3000 charge/discharge cycles, because amor- and α-Ni(OH)2 transform slowly to more ordered β-Ni(OH)2. Our results highlight that the electrochemical performances of MWCNT/Ni(OH)2 nanocomposites depend on the crystallinity of Ni(OH)2, and the performances of electrodes change upon the crystalline structure transformation of Ni(OH)2 under repeated redox reactions. Future research should focus on improving the structure stability of amor-Ni(OH)2.

  8. Preparation and characterization of chemically deposited nickel sulphide film and its application as a potential counter electrode

    NASA Astrophysics Data System (ADS)

    Ray, Jaymin; Patel, Mitesh; Ghediya, Prashant; Chaudhuri, Tapas K.

    2016-07-01

    Nickel sulphide (NiS) film has emerged as a counter electrode in many applications, such as thin film batteries, dye sensitized solar cells, and supercapacitors. In this regard, we report the direct liquid coating of pure hexagonal NiS films on glass using a precursor solution of nickel-thiourea complex. A uniform and void free film is observed using scanning electron microscopy. The room temperature electrical conductivity of ˜5 × 103 S cm-1 and the positive thermoelectric power (+6 μV K-1) specify p-type conduction. The temperature variation conductivity in the range 77-300 K depicts the transition of NiS films from conducting to semi-conducting behaviour at certain transition temperatures. Preliminary results from a cyclic voltammetry study shows the feasibility of NiS films as counter electrodes.

  9. Electrochemical behavior of heavily cycled nickel electrodes in Ni/H2 cells containing electrolytes of various KOH concentrations

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    A study has been made of charge and discharge voltage changes with cycling of Ni/H2 cells containing electrolytes of various KOH concentrations. A study has also been made of electrochemical behavior of the nickel electrodes from the cycled Ni/H2 cells as a function of overcharge amounts. Discharge voltages depressed gradually with cycling for cells having high KOH concentrations (31 to 36 percent), but the voltages increased for those having low KOH concentrations (21 to 26 percent). To determine if there was a crystallographic change of the active material due to cycling, electrochemical behavior of nickel electrodes was studied in an electrolyte flooded cell containing either 31 or 26 percent KOH electrolyte as a function of the amount of overcharge. The changes in discharge voltage appear to indicate crystal structure changes of active material from gamma-phase to beta-phase in low KOH concentrations, and vice versa in high KOH concentration.

  10. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-06-15

    A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP.

  11. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Wu, Jihuai; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-01

    Nickel selenide (Ni0.85Se) was synthesized by a facile one-step hydrothermal reaction and Ni0.85Se film was prepared by spin-coating Ni0.85Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni0.85Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I-/I3-. The electrocatalytic ability of Ni0.85Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni0.85Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni0.85Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  12. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.

    PubMed

    Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila

    2016-05-15

    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations.

  13. Mass Transfer of Nickel-Base Alloy Covered Electrode During Shielded Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; He, Guo

    2013-03-01

    The mass transfer in shielded metal arc welding of a group of nickel-base alloy covered electrodes according to AWS specification A5.11-A5.11M was investigated by directly measuring their deposited metal compositions. The results indicate that the chromium mass-transfer coefficient is in the range of 86 to 94 pct, iron in the range of 82 to 89 pct, manganese in the range of 60 to 73 pct, niobium in the range of 44 to 56 pct, and silicon in the range of 41 to 47 pct. The metal mass-transfer coefficient from the core wire is markedly higher than that from the coating. The basicity of slag, the metal contents in the flux coating, and the welding current together affect the mass transfer. As the basicity of slag increases, the mass-transfer coefficients of Mn, Fe, and Cr slightly increase, but those of Nb and Si decrease significantly. As the niobium and manganese contents increase in the coating, their mass-transfer coefficients also increase. However, iron is different. The content of iron in the coating in the range of 8 to 20 wt pct results in the optimal effective mass transfer. The lower, or higher, iron content leads to lower mass-transfer coefficient. As the welding current increases, the mass-transfer coefficients of niobium and manganese decrease, but chromium and silicon increase. Iron has the lowest mass-transfer coefficient when welded under the operating current of 100 A.

  14. Nickel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural significance of nickel (Ni) is becoming increasingly apparent; yet, relative few farmers, growers, specialists or researchers know much about its function in crops, nor symptoms of deficiency or toxicity. The body of knowledge is reviewed regarding Ni’s background, uptake, transloc...

  15. A Comparative Study of Microstructures and Properties of Two Types of Nickel-Base Alloy Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Huang; He, Guo

    2017-01-01

    Two types of nickel-base alloy covered electrodes, ENiCrMo-6 and ENiCrFe-9, were investigated and compared among their deposited metal compositions, microstructures, strengths, and cryogenic impact values. They all exhibited dendritic microstructures which were composed of dendritic fcc nickel-base solid solution, interdendritic phases, and grain boundary carbides. The molybdenum in the deposited metals tended to migrate and aggregate toward the edges of the dendrite arms during solidification. The niobium preferred to form oxide and/or carbide and aggregate in the interdendritic regions. The grain boundaries were filled with the continuous carbides and oxides. The differences in the tensile mechanical properties of the deposited metals of the two types of electrodes were relatively minor. The impact values of ENiCrMo-6 at -196 °C were above 80 J; while that of ENiCrFe-9 were in the range of 54-66 J. The relatively high level of carbon and sulfur and more grain boundary precipitates should be responsible for the lower cryogenic impact value of the ENiCrFe-9 covered electrode.

  16. A Comparative Study of Microstructures and Properties of Two Types of Nickel-Base Alloy Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Huang; He, Guo

    2016-11-01

    Two types of nickel-base alloy covered electrodes, ENiCrMo-6 and ENiCrFe-9, were investigated and compared among their deposited metal compositions, microstructures, strengths, and cryogenic impact values. They all exhibited dendritic microstructures which were composed of dendritic fcc nickel-base solid solution, interdendritic phases, and grain boundary carbides. The molybdenum in the deposited metals tended to migrate and aggregate toward the edges of the dendrite arms during solidification. The niobium preferred to form oxide and/or carbide and aggregate in the interdendritic regions. The grain boundaries were filled with the continuous carbides and oxides. The differences in the tensile mechanical properties of the deposited metals of the two types of electrodes were relatively minor. The impact values of ENiCrMo-6 at -196 °C were above 80 J; while that of ENiCrFe-9 were in the range of 54-66 J. The relatively high level of carbon and sulfur and more grain boundary precipitates should be responsible for the lower cryogenic impact value of the ENiCrFe-9 covered electrode.

  17. Fabrication and characterization of protonic-ceramic fuel cells and electrolysis cells utilizing infiltrated lanthanum nickelate electrodes

    NASA Astrophysics Data System (ADS)

    Babiniec, Sean M.

    High-temperature protonic ceramics (HTPCs) have gained interest as fuel cell and electrolysis cell electrolytes, as well as hydrogen separation membranes. The transport of hydrogen as opposed to oxygen results in several benefits and applications, including higher fuel efficiency, dehydrogenation of fuel streams, and hydrogen-based chemical synthesis. However, limited work has been done in the development of air/steam electrodes for these devices. This work presents the characterization of lanthanum nickelate, La 2NiO4+delta (LN), as a potential air/steam electrode material for use with BaCe0.2Zr0.7Y0.1O3-delta (BCZY27) HTPC electrolytes fabricated by the solid-state reactive sintering technique. Two types of devices were made; a symmetric cell used for electrode characterization, and a full fuel cell/electrolysis cell used for device performance characterization. The symmetric cell consists of a 1 mm thick BCZY27 substrate with identical air/steam electrodes on both sides. Air/steam electrodes were made by infiltrating ˜ 50 nm lanthanum nickelate nanoparticles into a BCZY27 porous backbone. The fuel cell/electrolysis cell consists of a 1mm thick Ni/BCZY27 anode support, a 25 mum thick BCZY27 electrolyte, and a 50 mum thick porous BCZY27 backbone infiltrated with lanthanum nickelate. Through symmetric cell testing, it was found that the electrode polarization resistance decreases with increasing oxygen content, indicating good oxygen reduction reaction characteristics. A minimum polarization resistance was found as 2.58 Ohm-cm2 in 3% humidied oxygen at 700 °C. Full cell testing revealed a peak power density of 27 mW-cm-2 at 700 °C. Hydrogen flux measurements were also taken in the both galvanic/post-galvanic and electrolytic operation. Galvanic/post-galvanic fluxes exhibit a very high faradaic efficiency. However, electrolytic hydrogen fluxes were much lower than the calculated hydrogen faradaic flux, indicating a different charge carrier other than protons is

  18. Electrochemical Imprinted Polycrystalline Nickel-Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of L-Serine.

    PubMed

    Dai, Wei; Li, Hongji; Li, Mingji; Li, Cuiping; Wu, Xiaoguo; Yang, Baohe

    2015-10-21

    This paper presents a novel and versatile method for the fabrication of half nanotubes (HNTs) using a flexible template-based nanofabrication method denoted as electrochemical imprinting. With use of this method, polycrystalline nickel and nickel(II) oxide (Ni-NiO) HNTs were synthesized using pulsed electrodeposition to transfer Ni, deposited by radio frequency magnetron sputtering on a porous polytetrafluoroethylene template, onto a boron-doped diamond (BDD) film. The Ni-NiO HNTs exhibited semicircular profiles along their entire lengths, with outer diameters of 50-120 nm and inner diameters of 20-50 nm. The HNT walls were formed of Ni and NiO nanoparticles. A biosensor for the detection of L-serine was fabricated using a BDD electrode modified with Ni-NiO HNTs, and the device demonstrated satisfactory analytical performance with high sensitivity (0.33 μA μM(-1)) and a low limit of detection (0.1 μM). The biosensor also exhibited very good reproducibility and stability, as well as a high anti-interference ability against amino acids such as L-leucine, L-tryptophan, L-cysteine, L-phenylalanine, L-arginine, and L-lysine.

  19. Effect of the bimetal ratio on the growth of nickel cobalt sulfide on the Ni foam for the battery-like electrode.

    PubMed

    Yu, Cheng-Fong; Lin, Lu-Yin

    2016-11-15

    The nickel cobalt sulfide is one of the most attractive electroactive materials for battery-like electrodes with multiple oxidation states for Faradaic reactions. Novel structures of the nickel cobalt sulfide with large surface areas and high conductivities have been proposed to improve the performance of the battery-like electrodes. The hydrothermal reaction is the most common used method for synthesizing nickel cobalt sulfide nanostructures due to the simple and cost-effective features, but the precursor concentration on the morphology and the resulting electrochemical performance is barely discussed. In this study, various Ni to Co ratios are used in the hydrothermal reaction to make nickel cobalt sulfides on the nickel foam, and the Ni to Co ratio is found to play great roles on the morphology and the electrocapacitive performance for the pertinent battery-like electrodes. The sheet-like structures are successfully obtained with large surface area for charge accumulation, and the optimized sample presents the largest nanosheets among all with several wrinkles on the surface. A high specific capacity of 258.2mAh/g measured at the current density of 5A/g and a high-rate charge/discharge capacity are also attended for the optimized battery-like electrodes. The excellent cycling stability of 94.5% retention after 2000 cycles repeated charge/discharge process is also obtained for this system.

  20. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  1. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating.

    PubMed

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-21

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  2. Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Li, Xinjie; Ma, Yuxiao; Liu, Ruili; Liu, Jianhua; Li, Songmei

    2017-02-01

    Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybrid electrodes for supercapacitor are synthesized by chemical vapor deposition and electrodeposition. The ternary sulfide electrode exhibits high specific capacitance (1938 F g-1 at 5 A g-1) with excellent rate capability (76.8% capacitance retention at 100 A g-1) due to the intercrossed feature of the nanowalls and three-dimensional interpenetrating nanoarchitecture. Moreover, the specific capacitance of the electrode after 4000 cycles at a high current density of 50 A g-1 is 1320 F g-1. The asymmetric supercapacitor assembled with the manganese cobalt sulfide electrode and an activated carbon electrode displays an energy density of 14.33 W h kg-1 at a power density of 74.87 W kg-1. The manganese cobalt sulfide is a promising electrode material for practical application.

  3. The zinc electrode - Its behaviour in the nickel oxide-zinc accumulator

    NASA Astrophysics Data System (ADS)

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling.

  4. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    SciTech Connect

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-09-15

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup −1} at a current density of 1 A g{sup −1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

  5. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    PubMed

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  6. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-01

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a

  7. Evaluation of nickel for positive electrode components in Li-Al/FeS cells

    NASA Astrophysics Data System (ADS)

    Smaga, J. A.; Battles, J. E.

    1982-03-01

    A series of tests were performed to examine the suitability of pure Ni positive electrodes, which have an oxidation potential of 2.2 V, in Li-Al/FeS batteries. A prismatic bicell was employed for the trials with the positive current collector sandwiched between the positive electrode halves, which were covered with Ni screens. The battery was run at 450 C for 31-153 days using different cells. Electrodes were then sectioned, cleaned, measured for thickness, evaluated for reactions, and examined microscopically and metallographically. Largest utilization gains were observed with a LiCl-rich electrolyte. Iron layers, with a thickness up to 6 microns, were found on the Ni components, but were considered too small to display significant life-shortening effects. Cells assembled in less than fully charged conditions showed noticeable intergranular corrosion, a process which was eliminated by using finer Fe particles in the positive electrode mix.

  8. The effect of different alkali metal hydroxides on nickel electrode life

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.; Clement, S. K.

    1988-01-01

    An accelerated cycle-life test (100-percent depth of discharge) of a sintered-type Ni electrode has been carried out in a flooded cell containing different alkali metal hydroxide electrolytes such as LiOH, NaOH, KOH, RbOH, and CsOH. Decrease in Ni electrode capacity with cycling was reduced as the radius of the alkali metal ions, with possible exception of CsOH.

  9. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo{sub 2}O{sub 4}) electrode material for supercapacitors

    SciTech Connect

    Naveen, A. Nirmalesh Selladurai, S.

    2015-06-24

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  10. Impedances of electrochemically impregnated nickel electrodes as functions of potential, KOH concentration, and impregnation method

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1989-01-01

    Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.

  11. Introduction of a carbon paste electrode based on nickel carbide for investigation of interaction between warfarin and vitamin K1.

    PubMed

    Torkashvand, Maryam; Gholivand, Mohammad Bagher; Taherpour, Avat Arman; Boochani, Arash; Akhtar, Arsalan

    2017-03-01

    In this paper a novel electrochemical sensor based on nickel carbide (Ni3C) nanoparticles as a new modifier was constructed. Ni3C nanoparticle was synthesized and characterized by scanning electron microscopy, X-ray diffraction and first-principles study. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies confirmed the electrode modification. Afterwards, the new electrode for the first time was used for interaction study between vitamin K1 and warfarin as an anticoagulant drug by differential pulse voltammetry. The adduct formation between the drug and vitamin K1 was improved by decreasing in anodic peak current of warfarin in the presence of different amounts of vitamin K1. The binding constant between warfarin and vitamin K1 was obtained by voltammetric and UV-vis and fluorescence spectroscopic methods. The molecular modeling method was also performed to explore the structural features and binding mechanism of warfarin to vitamin K1. The different aspects of modeling of vitamin K1 and warfarin and their adduct structures confirmed the adduct formation by hydrogen bonding.

  12. A novel asymmetric supercapacitors based on binder-free carbon fiber paper@ nickel cobaltite nanowires and graphene foam electrodes

    NASA Astrophysics Data System (ADS)

    Tang, Qianqiu; Chen, Mingming; Wang, Le; Wang, Gengchao

    2015-01-01

    Aqueous-based asymmetric supercapacitors (AASCs) provide an effective way to improve the energy density of the device by broadening the operating voltage window. In this work, nickel cobaltite (NiCo2O4) nanowires are grown homogenously on carbon fiber paper (CFP) to obtain a binder-free CFP@NiCo2O4 positive electrode through a simple hydrothermal method followed by calcination. The highly porous graphene foam (GF) as negative electrode which also exhibits self-supporting structure is prepared by a facile mild reduction process. Taking advantages of the complementary voltage window of CFP@NiCo2O4 and GF, the as-fabricated CFP@NiCo2O4//GF AASC obtains a stable working voltage window of 1.6 V, and a high energy density of 34.5 Wh kg-1 at the power density of 547 W kg-1, which still maintains 17.1 Wh kg-1 at 9.68 kW kg-1. Furthermore, it exhibits superior cycling performance with 92.2% capacitance retention rate after 10000 cycles.

  13. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-05-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

  14. Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2016-10-01

    Precious platinum counter electrode (CE) has been an economic burden for future commercialization of dye-sensitized solar cells (DSSCs). Low-platinum alloy CE catalysts are promising in bringing down the solar cell cost without reducing photovoltaic performances. We present here a facile strategy of fabricating ZnO nanorods assisted platinum-nickel (PtNi) alloy microtube CEs for liquid-junction DSSCs. By adjusting the concentration of zinc precursors, the ZnO nanostructures and therefore PtNi alloys are optimized to maximize the electrocatalytic behaviors toward triiodide reduction reaction. The maximal power conversion efficiency is determined as high as 8.43% for liquid-junction DSSC device with alloyed PtNi microtube CE synthesized at 75 mM Zn(NO3)2 aqueous solution, yielding a 32.8% enhancement in cell efficiency in comparison with the solar cell from pristine platinum electrode. Moreover, the dissolution resistance and charge-transfer ability toward redox couples have also been markedly enhanced due to competitive dissolution reactions and alloyed effects.

  15. Application of Gold Electrodes for the Study of Nickel Based Homogeneous Catalysts for Hydrogen Oxidation

    SciTech Connect

    Nepomnyashchii, Alexander B.; Liu, Fei; Roberts, John A.; Parkinson, Bruce A.

    2013-08-12

    Gold and glassy carbon working electrode materials are compared as suitable substrates for the hydrogen oxidation reaction with Ni(PCy2Nt-Bu2)2(BF4)2 used as a catalyst. Voltammetric responses showing electrocatalytic hydrogen oxidation mediated by the homogeneous electrocatalyst Ni(PCy2Nt-Bu2)2(BF4)2 are identical at glassy carbon and gold electrodes, which shows that gold electrode can be used for hydrogen oxidation reaction. This work is supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP 56073.

  16. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries

    SciTech Connect

    Huang, X.H. Zhang, P.; Wu, J.B.; Lin, Y.; Guo, R.Q.

    2016-08-15

    Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as the core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.

  17. End-of-life nickel-cadmium accumulators: characterization of electrode materials and industrial Black Mass.

    PubMed

    Hazotte, Claire; Leclerc, Nathalie; Diliberto, Sébastien; Meux, Eric; Lapicque, Francois

    2015-01-01

    The aim of this paper is the characterization of spent NiCd batteries and the characterization of an industrial Black Mass obtained after crushing spent NiCd batteries and physical separation in a treatment plant. The characterization was first performed with five cylindrical NiCd batteries which were manually dismantled. Their characterization includes mass balance of the components, active powders elemental analysis and phase identification by X-ray powder diffraction. Chemical speciation of the two metals was also investigated. For cadmium, speciation was previously developed on solid synthetic samples. In a spent battery, the active powders correspond to about 43% of the battery weight. The other components are the separator and polymeric pieces (5%), the support plates (25%) and the carbon steel external case (27%). The sequential procedure shows that the nickel in the positive powders from the dismantled Ni-Cd batteries is distributed between Ni0 (39.7%), Ni(OH)2 (58.5%) and NiOOH (1.8%). Cadmium in the negative powder is about 99.9% as the Cd(OH)2 form with 0.1% of metal cadmium. In the industrial Black Mass, the distribution of cadmium is the same, whereas the distribution of nickel is Ni0 (46.9%), Ni(OH)2 (43.2%) and NiOOH (9.9%). This material contains also 1.8% cobalt and approx. 1% iron.

  18. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Deyang; Yan, Hailong; Lu, Yang; Qiu, Kangwen; Wang, Chunlei; Tang, Chengchun; Zhang, Yihe; Cheng, Chuanwei; Luo, Yongsong

    2014-03-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications.

  19. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications. PMID:24661431

  20. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  1. Characterization of Redox Sates of Nickel Hydroxide Film Electrodes by In-Situ Raman Spectroscopy.

    DTIC Science & Technology

    1987-09-25

    ET AL . 25 SEP 8? Tl-65 7 UNCLMSSIFIED NSWI4-B5-K-S56 F074 I.. 1.6 L % -~I.8 . l . t ., , .w~f . ,- , ,k ,, . 1.1-11 .2 5 111, - 1, . 4 .6 . . • j...provide a measure of the film thickness (Fig. 2; N rr ~ m~~’ |d ~ kaabi Ih l~ll l d - - 5 see also Fig. 1 in ref. 6). Films on gold with thicknesses...by Bode et al . (5c). The film stoichiometry can be written as M(NiO 2)3 xH20 (x = 2), where M is the metal countercation. Here the effective nickel

  2. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    PubMed Central

    2014-01-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors. PMID:25258611

  3. A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water.

    PubMed

    Ji, Xuqiang; Cui, Liang; Liu, Danni; Hao, Shuai; Liu, Jingquan; Qu, Fengli; Ma, Yongjun; Du, Gu; Asiri, Abdullah M; Sun, Xuping

    2017-02-28

    The exploration of high-performance and cost-effective water oxidation catalysts operating under mild conditions is still urgent and challenging. In this communication, a nickel-borate nanoarray supported on carbon cloth (Ni-Bi/CC) has been fabricated through oxidative polarization of a nickel oxide nanoarray on CC (NiO/CC) in a borate electrolyte (pH 9.2). As a 3D electrode, this Ni-Bi/CC exhibits superior catalytic activity for water oxidation in 0.1 M potassium borate (K-Bi) solution, yielding a geometrical catalytic current density of 10 mA cm(-2) at an overpotential of 470 mV. Notably, this electrode also demonstrates outstanding long-term electrochemical durability for 25 h with 100% Faradaic efficiency.

  4. Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination.

    PubMed

    He, Zhiqiao; Sun, Junjun; Wei, Jie; Wang, Qiong; Huang, Chengxiang; Chen, Jianmeng; Song, Shuang

    2013-04-15

    To enhance the activity of chemi-deposited palladium/nickel foam (Pd/Ni) electrodes used for an electrochemical dechlorination process, silver or copper was deposited electrochemically onto the nickel foam substrate (to give Ag/Ni or Cu/Ni) before the chemical deposition of palladium. The physicochemical properties of the resulting materials (Pd/Ni, Pd/Ag/Ni and Pd/Cu/Ni) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and their electrochemical catalytic activities were evaluated by monitoring the electrochemical dechlorination of 2-chlorobiphenyl (2-CB) in strongly alkaline methanol/water solution. The results show that the Pd/Ag/Ni and Pd/Cu/Ni electrodes had consistently higher electrocatalytic activities and current efficiencies (CEs) compared with the untreated Pd/Ni electrode. The Pd/Ag/Ni electrode exhibited the highest activity. The dechlorination was also studied as a function of Pd loading, the Ag or Cu interlayer loadings, and the current density. The Pd loading and the interlayer loadings both had positive effects on the dechlorination reaction. Increasing the current density increased the reaction rate but reduced the CE. The improvement of the electrocatalytic activities of the Pd/Ni electrode by applying the interlayer of Ag or Cu resulted from the enlargement of the effective surface area of the electrode and the adjustment of the metal-H bond energy to the appropriate value, as well as the effective adsorption of 2-CB on Ag. Moreover, the high catalytic activity of the Pd/Ag/Ni electrode was maintained after six successive cyclic experiments, whereas Pd/Cu/Ni electrodes deactivate severely under the same conditions.

  5. Partial conversion of current collectors into nickel copper oxide electrode materials for high-performance energy storage devices.

    PubMed

    Zhang, Liuyang; Gong, Hao

    2015-07-22

    A novel substrate sacrifice process is proposed and developed for converting part of a current collector into supercapacitor active materials, which provides a new route in achieving high energy density of supercapacitor device. Part of a copper foam current collector is successfully converted into highly porous nickel copper oxide electrode for light- and high-performance supercapacitors. Remarkably, this strategy circumvents the problem associated with poor contact interface between electrode and current collector. Meanwhile, the overall weight of the supercapacitor could be minimized. The charge transfer kinetics is improved while the advantage of the excellent mechanical properties of metal current collector is not traded off. By virtue of this unique current collector self-involved architecture, the material derived from the current collector manifests large areal capacitance of 3.13 F cm(-2) at a current density of 1 A g(-1). The capacitance can retain 2.97 F cm(-2) at a much higher density (4 A g(-1)). Only a small decay of 6.5% appears at 4 A g(-1) after 1600 cycles. The strategy reported here sheds light on new strategies in making additional use of the metal current collector. Furthermore, asymmetric supercapacitor using both solid-state gel electrolyte and liquid counterpart are obtained and analyzed. The liquid asymmetric supercapacitor can deliver a high energy density up to 0.5 mWh cm(-2) (53 Wh kg(-1)) at a power density of 13 mW cm(-2) (1.4 kW kg(-1)).

  6. Solution-Processed Transparent Nickel-Mesh Counter Electrode with in-Situ Electrodeposited Platinum Nanoparticles for Full-Plastic Bifacial Dye-Sensitized Solar Cells.

    PubMed

    Khan, Arshad; Huang, Yu-Ting; Miyasaka, Tsutomu; Ikegami, Masashi; Feng, Shien-Ping; Li, Wen-Di

    2017-03-08

    A new type of embedded metal-mesh transparent electrode (EMTE) with in-situ electrodeposited catalytic platinum nanoparticles (PtNPs) is developed as a high-performance counter electrode (CE) for lightweight flexible bifacial dye-sensitized solar cells (DSSCs). The thick but narrow nickel micromesh fully embedded in a plastic film provides superior electrical conductivity, optical transmittance, and mechanical stability to the novel electrode. PtNPs decorated selectively on the nickel micromesh surface provide catalytic function with minimum material cost and without interfering with optical transparency. Facile and fully solution-processed fabrication of the novel CE is demonstrated with potential for scalable and cost-effective production. Using this PtNP-decorated nickel EMTE as the CE and titanium foil as the photoanode, unifacial flexible DSSCs are fabricated with a power conversion efficiency (PCE) of 6.91%. By replacing the titanium foil with a transparent ITO-PEN photoanode, full-plastic bifacial DSSCs are fabricated and tested, demonstrating a remarkable PCE of 4.87% under rear-side illumination, which approaches 85% of the 5.67% PCE under front-side illumination, among the highest ratio in published results. These promising results reveal the enormous potential of this hybrid transparent CE in scalable production and commercialization of low-cost and efficient flexible DSSCs.

  7. The definition of the process of electrochemical impregnation of nickel electrodes

    NASA Technical Reports Server (NTRS)

    Antoine, P.

    1983-01-01

    Electrochemical impregnation was studied during a series of experiments designed to define the optimal conditions for the fabrication of dimensionally stable cell anodes of Ni-H2 and Ni-Cd systems. The influence of various parameters, such as current and duration of electrolysis, temperature and acidity of the chemical bath, the concentrations of Ni and Co as well as the use of ethanol was determined. Results show that the electrochemical impregnation process as defined is industrially feasible and it is suggested that Ni-H2 and Ni-Cd type electrodes be produced in sufficient quantity to further evaluate their performance characteristics.

  8. Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. M.; Srinivasa Rao, S.; Kim, Soo-Kyoung; Punnoose, Dinah; Kim, Hee-Je

    2015-02-01

    Nickel sulfide (NiS) thin film has been deposited on a fluorine-doped tin oxide substrate by a hydrothermal method using 3-mercaptopropionic acid and used as an efficient counter electrode (CE) for polysulfide redox reactions in quantum dot-sensitized solar cells (QDSSCs). NiS has low toxicity and environmental compatibility. In the present study, the size of the NiS nanoparticle increases with the hydrothermal deposition time. The performance of the QDSSCs is examined in detail using polysulfide electrolyte with the NiS CE. A TiO2/CdS/CdSe/ZnS-based QDSSC using the NiS CE shows enhanced photovoltaic performance with a power conversion efficiency (PCE) of 3.03%, which is superior to that of a cell with Pt CE (PCE 2.20%) under one sun illumination (AM 1.5, 100 mW cm-2). The improved photovoltaic performance of the NiS-based QDSSC may be attributed to a low charge transfer resistance (5.08 Ω) for the reduction of polysulfide on the CE, indicating greater electrocatalytic activity of the NiS. Electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the NiS and Pt CEs.

  9. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Liu, J.; Stoll, M. E.; Henriksen, G.; Vissers, D. R.; Amine, K.

    Non-doped and aluminum-doped LiNi 0.8Co 0.2O 2 cathodes from three industrial developers coupled with graphite anodes were made into lithium-ion cells for high-power applications. The powder morphology of the active cathode materials was examined by a scanning electron microscope. The electrochemical performance of these cells was investigated by hybrid pulse power characterization (HPPC) testing, accelerated aging, and AC impedance measurement of symmetric cells. Although all of the fresh cells are found to meet and exceed the power requirements set by PNGV, the power capability of those cells with non-doped LiNi 0.8Co 0.2O 2 cathodes fades rapidly due to the rise of the cell impedance. Al-doping is found very effective to suppress the cell impedance rise by stabilizing the charge-transfer impedance on the cathode side. The stabilization mechanism may be related to the low average oxidation state of nickel ions in the cathode. The powder morphology also plays a secondary role in determining the impedance stabilization.

  10. Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Je; Kim, Su-Weon; Gopi, Chandu V. V. M.; Kim, Soo-Kyoung; Rao, S. Srinivasa; Jeong, Myeong-Soo

    2014-12-01

    Cobalt sulfide (CoS), nickel sulfide (NiS), and cobalt sulfide/nickel sulfide (CoS/NiS) were deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method and utilized as counter electrodes (CEs) for polysulfide redox reactions in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). The thickness of 750 nm and 695 nm are optimized for NiS and CoS electrodes to prepare the CoS/NiS CE. Compared to a platinum (Pt) electrode, the CoS, NiS, and composite CoS/NiS electrodes provide higher electrocatalytic activity and lower charge-transfer resistance. The combination of a QDSSC with composite CoS/NiS CE shows an improved power conversion efficiency of 3.40% under the illumination of one sun (100 mW cm-2), which is higher than the CoS (2.53%), NiS (2.61%), and Pt (1.47%) CEs. This enhancement is mainly attributed to the NiS nanoparticles deposited on CoS film, due to which the composite structure exhibits a lower charge transfer resistance (7.61 Ω) at the interface of the CE and the electrolyte, along with superior electrochemical catalytic ability. This is well supported by the cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization measurements.

  11. Studies on hydride-forming alloys as the active material of a metal hydride electrode for a nickel metal hydride cell

    SciTech Connect

    Lim, H.S.; Zelter, G.R.; Allison, D.U.; Reilly, J.J.; Srinivasan, S.; Stockel, J.F.

    1997-12-01

    Multi-component AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel-cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. This paper deals with the effect on cycle life upon the partial substitution of various lanthanides for La and Sn, In, Al, Co, and Mn for Ni. The presence of Ce was shown to enhance cycle life as did Sn in some cases. An electrode of La{sub 0.67}Ce{sub 0.33}B{sub 5} alloy gave over 3,500 cycles (to specific capacity of 200 mAh/g), indicating that it is a very attractive alloy for a practical Ni/MH{sub x} cell.

  12. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Luojiang; Hui, Kwun Nam; San Hui, Kwan; Lee, Haiwon

    2016-06-01

    The synthesis of layered double hydroxide (LDH) as electroactive material has been well reported; however, fabricating an LDH electrode with excellent electrochemical performance at high current density remains a challenge. In this paper, we report a 3D hierarchical porous flower-like NiAl-LDH grown on nickel foam (NF) through a liquid-phase deposition method as a high-performance binder-free electrode for energy storage. With large ion-accessible surface area as well as efficient electron and ion transport pathways, the prepared LDH-NF electrode achieves high specific capacity (1250 C g-1 at 2 A g-1 and 401 C g-1 at 50 A g-1) after 5000 cycles of activation at 20 A g-1 and high cycling stability (76.7% retention after another 5000 cycles at 50 A g-1), which is higher than those of most previously reported NiAl-LDH-based materials. Moreover, a hybrid supercapacitor with LDH-NF as the positive electrode and porous graphene nanosheet coated on NF (GNS-NF) as the negative electrode, delivers high energy density (30.2 Wh kg-1 at a power density of 800 W kg-1) and long cycle life, which outperforms the other devices reported in the literature. This study shows that the prepared LDH-NF electrode offers great potential in energy storage device applications.

  13. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  14. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  15. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

    SciTech Connect

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C.; Wu, Jinsong; Dravid, Vinayak P.; Yan, Pengfei; Wang, Chongmin; Kim, Soo; Wolverton, Christopher; Benedek, Roy; Dogan, Fulya; Park, Joong Sun; Croy, Jason R.; Thackeray, Michael M.

    2016-10-19

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li0) relative to manganese oxide spinels (~2.9 V vs. Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0x0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

  16. Exploring Lithium-Cobalt-Nickel-Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells.

    PubMed

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C; Wu, Jinsong; Dravid, Vinayak P; Yan, Pengfei; Wang, Chongmin; Kim, Soo; Wolverton, Christopher; Benedek, Roy; Dogan, Fulya; Park, Joong Sun; Croy, Jason R; Thackeray, Michael Makepeace

    2016-10-04

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3●(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li(0)) relative to manganese oxide spinels (~2.9 V vs. Li(0)) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0≤x≤0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 °C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

  17. Preparation of Sandwich-like NiCo2O4/rGO/NiO Heterostructure on Nickel Foam for High-Performance Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Delong; Gong, Youning; Wang, Miaosheng; Pan, Chunxu

    2017-04-01

    A kind of sandwich-like NiCo2O4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo2O4, reduced graphene oxide (rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo2O4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm-2 at current density of 1 mA cm-2, and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.

  18. Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Hui, Kwun Nam; Hui, Kwan San; Tang, Zikang; Jadhav, V. V.; Xia, Qi Xun

    2016-10-01

    Hierarchical chestnut-like manganese cobalt oxide (MnCo2O4) nanoneedles (NNs) are successfully grown on nickel foam using a facile and cost-effective hydrothermal method. High resolution TEM image further verifies that the chestnut-like MnCo2O4 structure is assembled by numerous 1D MnCo2O4 nanoneedles, which are formed by numerous interconnected MnCo2O4 nanoparticles with grain diameter of ∼10 nm. The MnCo2O4 electrode exhibits high specific capacitance of 1535 F g-1 at 1 A g-1 and good rate capability (950 F g-1 at 10 A g-1) in a 6 M KOH electrolyte. An asymmetric supercapacitor is fabricated using MnCo2O4 NNs on Ni foam (MnCo2O4 NNs/NF) as the positive electrode and graphene/NF as the negative electrode. The device shows an operation voltage of 1.5 V and delivers a high energy density of ∼60.4 Wh kg-1 at a power density of ∼375 W kg-1. Moreover, the device exhibits an excellent cycling stability of 94.3% capacitance retention after 12000 cycles at 30 A g-1. This work demonstrates that hierarchical chestnut-like MnCo2O4 NNs could be a promising electrode for the high performance energy storage devices.

  19. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode.

    PubMed

    Qiu, Bin; Lin, Zhenyu; Wang, Jian; Chen, Zhihuang; Chen, Jinhua; Chen, Guonan

    2009-04-15

    A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0x10(-6) to 1.0x10(-4) mol L(-1) with a detection limit of 8.0x10(-8) mol L(-1) (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.

  20. Nickel nanocrystals grown on sparse hierarchical CuS microflowers as high-performance counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoliang; Zhou, Wei; Ma, Yiran

    2016-07-01

    Three kinds of hierarchical CuS microflowers composed of thin nanosheets have been synthesized by a simple wet chemical method. It is shown that the CuS microflowers provide suitable substrates to grow nickel nanocrystals. The prepared Ni@CuS hybrids combined with conductive glass (FTO) have been used as counter electrodes for dye-sensitized solar cells (DSSCs). The electrode made of the active material of Ni@CuS microflowers with sparsest petals show an optimal photoelectric conversion efficiency of 4.89%, better than those made of single component of Ni (3.39%) or CuS (1.65%), and other two Ni@CuS composites. The improved performances could be ascribed to the synergetic effect of the catalytic effect towards I3-/I- from sparse CuS hierarchical structure and uniformly grown Ni nanocrystals. Besides, the introduced Ni nanocrystals could increase the conductivity of the hybrid and facilitate the transport of electrons. The hybrid Ni@CuS composites serving as counter electrodes have much enhanced electrochemical properties, which provide a feasible route to develop high-active non-noble hybrid counter electrode materials.

  1. Electrode

    SciTech Connect

    Clere, T.M.

    1983-08-30

    A 3-dimensional electrode is disclosed having substantially coplanar and substantially flat portions and ribbon-like curved portions, said curved portions being symmetrical and alternating in rows above and below said substantially coplanar, substantially flat portions, respectively, and a geometric configuration presenting in one sectional aspect the appearance of a series of ribbon-like oblate spheroids interrupted by said flat portions and in another sectional aspect, 90/sup 0/ from said one aspect, the appearance of a square wave pattern.

  2. Amorçage d'une décharge dans le vide entre deux electrodes d'argent ou des alliages argent-nickel

    NASA Astrophysics Data System (ADS)

    Zouache, N.; Lefort, A.

    1997-03-01

    Comparison of the characteristics of an electric are breakdown in vacuum between two silver or silver-nickel alloy electrodes prompted us to study the evolution of the breakdown voltage with electrode separation, with resistance value placed between the anode and the high voltage supply used for the breakdown, and with the effect of conditionning by heating in vacuum. The measurement of the commutation time and delay time, and the observations by a metallographic microscope of the electrodes surfaces after one breakdown, enabled us to evidence the origin of the electric arc for each of the studied materials. La comparaison des caractéristiques de l'amorçage d'un arc électrique dans le vide entre deux électrodes bombées de 8mm de diamètre et de rayon de courbure en surface de 16mm, constituées d'argent ou de son alliage avec le nickel, nous a amené à étudier l'évolution de la tension d'amorçage avec plusieurs paramètres : la distance inter-électrodes, les valeurs de la résistance intercalée entre la source haute tension servant au claquage et les électrodes et le conditionnement par chauffage sous vide des électrodes. La mesure du temps de commutation, du temps de retard et les observations au microscope métallographique de la surface des électrodes après un amorçage donnent des informations sur l'origine de l'arc électrique concernant chaque matériau étudié.

  3. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  4. Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors.

    PubMed

    Xu, Juan; Ma, Chaojie; Cao, Jianyu; Chen, Zhidong

    2017-03-07

    Core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides (HCNs@NiCo-LDH) were fabricated using a facile hydrothermal method and investigated as high-performance electrode materials for supercapacitors. HCNs were acquired by a successive polymerization, carbonization and etching process, which was subsequently wrapped by ultrathin NiCo-LDH nanosheets. The HCNs@NiCo-LDH electrode achieved a high specific capacitance (2558 F g(-1) at 1 A g(-1)) and outstanding rate capability with 74.9% capacitance retention after a 20-fold increase in current density. Capacitances of 2405, 2310, 2168, 2006 and 1916 F g(-1) can be achieved at rates of 3, 5, 10, 15 and 20 A g(-1), respectively, which are much higher than the specific capacitances of most reported carbon loaded NiCo-LDH. Specifically, the assembled HCNs@NiCo-LDH//graphene asymmetric supercapacitor displayed distinguished capacitive behaviors with a prominent specific capacitance of 172.8 F g(-1) and eminent cycling stability with 93.5% capacitance retention after 3000 cycles. These remarkable electrochemical properties indicate that the unique HCNs@NiCo-LDH core-shell electrode is highly promising for application in energy storage fields.

  5. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil

    2012-08-01

    The modification of glassy carbon (GC) electrode with electrodeposited nickel oxide nanoparticles (NiOxNPs) and deoxyribonucleic acid (DNA) is utilized as a new efficient platform for entrapment of osmium (III) complex. Surface morphology and electrochemical properties of the prepared nanocomposite modified electrode (GC/DNA/NiOxNPs/Os(III)-complex) were investigated by FESEM, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Cyclic voltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of l-cysteine (CySH) at reduced overpotential (0.1 V vs. Ag/AgCl). Using chronoamperometry to CySH detection, the sensitivity and detection limit of the biosensor are obtained as 44 μA mM(-1) and 0.07 μM with a concentration range up to 1000 μM. The electrocatalytic activity of the modified electrode not only for oxidation of low molecular-mass biothiols derivatives such as, glutathione, l-cystine, l-methionine and electroactive biological species ( dopamine, uric acid, glucose) is negligible but also for very similar biothiol compound (homocysteine) no recognizable response is observed at the applied potential window. Furthermore, the simultaneous voltammetric determination of l-cysteine and homocysteine compounds without any separation or pretreatment process was reported for the first time in this work. Finally, the applicability of sensor for the analysis of CySH concentration in complex serum samples was successfully demonstrated. Highly selectivity, excellent electrocatalytic activity and stability, remarkable antifouling property toward thiols and their oxidation products, as well as the ability for simultaneous detection of l-cysteine and homocysteine are remarkably advantageous of the proposed DNA based biosensor.

  6. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices.

    PubMed

    Yang, Jiang; Yu, Ji-Hyuk; Rudi Strickler, J; Chang, Woo-Jin; Gunasekaran, Sundaram

    2013-09-15

    A facile one-step strategy is reported to synthesize nanocomposites of chitosan-reduced graphene oxide-nickel nanoparticles (CS-RGO-NiNPs) onto a screen-printed electrode (SPE). The synthesis is initiated by electrostatic and hydrophobic interactions and formation of self-assembled nanocomposite precursors of negatively charged graphene oxide (GO) and positively charged CS and nickel cations (Ni(2+)). The intrinsic mechanism of co-depositions from the nanocomposite precursor solution under cathodic potentials is based on simultaneous depositions of CS at high localized pH and in situ reduced hydrophobic RGO from GO as well as cathodically reduced metal precursors into nanoparticles. There is no need for any pre- or post-reduction of GO due to the in situ electrochemical reduction and the removal of oxygenated functionalities, which lead to an increase in hydrophobicity of RGO and successive deposition on the electrode surface. The as-prepared CS-RGO-NiNPs-modified SPE sensor exhibited outstanding performance for enzymeless glucose (Glc) sensing in alkaline media with high sensitivity (318.4µAmM(-1)cm(-2)), wide linear range (up to 9mM), low detection limit (4.1µM), acceptable selectivity against common interferents in physiological fluids, and excellent stability. A microfluidic device was fabricated incorporating the SPE sensor for real-time Glc detection in human urine samples; the results obtained were comparable to those obtained using a high-performance liquid chromatography (HPLC) coupled with an electrochemical detector. The excellent sensing performance, operational characteristics, ease of fabrication, and low cost bode well for this electrochemical microfluidic device to be developed as a point-of-care healthcare monitoring unit.

  7. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  8. One-Step Fabrication of a Multifunctional Magnetic Nickel Ferrite/Multi-walled Carbon Nanotubes Nanohybrid-Modified Electrode for the Determination of Benomyl in Food.

    PubMed

    Wang, Qiong; Yang, Jichun; Dong, Yuanyuan; Zhang, Lei

    2015-05-20

    Benomyl, as one kind of agricultural pesticide, has adverse impact on human health and the environment. It is urgent to develop effective and rapid methods for quantitative determination of benomyl. A simple and sensitive electroanalytical method for determination of benomyl using a magnetic nickel ferrite (NiFe2O4)/multi-walled carbon nanotubes (MWCNTs) nanohybrid-modified glassy carbon electrode (GCE) was presented. The electrocatalytic properties and electroanalysis of benomyl on the modified electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In the phosphate-buffered saline (PBS) of pH 6.0, this constructed biosensor exhibited two linear relationships with the benomyl concentration range from 1.00 × 10(-7) to 5.00 × 10(-7) mol/L and from 5.00 × 10(-7) to 1.00 × 10(-5) mol/L, respectively. The detection limit was 2.51 × 10(-8) mol/L (S/N = 3). Moreover, the proposed method was successfully applied to determine benomyl in real samples with satisfactory results. The NiFe2O4/MWCNTs/GCE showed good reproducibility and stability, excellent catalytic activity, and anti-interference.

  9. Nanoporous gold on three-dimensional nickel foam: An efficient hybrid electrode for hydrogen peroxide electroreduction in acid media

    NASA Astrophysics Data System (ADS)

    Ke, Xi; Xu, Yantong; Yu, Changchun; Zhao, Jie; Cui, Guofeng; Higgins, Drew; Li, Qing; Wu, Gang

    2014-12-01

    A hybrid structure of nanoporous gold (NPG) on three-dimensional (3D) macroporous Ni foam has been synthesized by electrodeposition of Au-Sn alloy film followed by a facile chemical dealloying process under free corrosion conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to characterize the morphology and structure of the NPG/Ni foam hybrids. It is shown that the Ni foam skeletons are uniformly wrapped by the NPG film which is composed of bicontinuous nanostructures consisting of interconnected ligaments and nanopores. Electroreduction of H2O2 on the NPG/Ni foam hybrid electrode in acid media is investigated by linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy. It is found that such hierarchical porous electrode displays superior activity, durability and mass transport property for H2O2 electroreduction. These results demonstrate the potential of the NPG/Ni foam hybrid electrodes for the applications in fuel cell technology.

  10. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  11. Development of a Lead-free Piezoelectric (K,Na)NbO3 Thin Film Deposited on Nickel-based Electrodes

    NASA Astrophysics Data System (ADS)

    Bani Milhim, Alaeddin

    It is desirable to replace noble metals used as electrode materials for piezoelectric thin film with base metals. This will reduce the piezoelectric thin film fabrication cost. A nickel?based layer in conjunction with other protective layers is proposed as a bottom electrode for lead-free piezoelectric KNN thin film. The obtained results do not indicate the oxidation of the nickel?based bottom electrode after the deposition of KNN at 600 °C for 10 hours in the presence of oxygen and/or after annealing the sample at 400 °C for an hour in air. The fabricated KNN thin film was fully characterized in this work. The effective piezoelectric coefficients d33 and d31 were estimated to be 37 pm/V and 17.2 pm/V, respectively, at 100 kV/cm. The piezoelectric properties of the fabricated KNN/Ni/Ti/SiO2/Si are affected by the crystal orientation of the KNN layer, which was preferentially oriented in the (110) direction. Optimization of the deposition parameters of the fabricated KNN/Ni/Ti/SiO2/Si film is expected to further enhance the piezoelectric properties. Two novel systems utilizing the developed KNN piezoelectric thin film are proposed and their performance simulated based on the achieved KNN thin film parameters. The first is a precision automated nanomanipulation system using an AFM as a sensor and piezo-actuated manipulators. Real-time feedback of the particle being manipulated can be achieved using the proposed system. The length of the manipulators needs to be at least 2 mm to be incorporated with a commercial AFM system. To fabricate the required manipulators, a three-step electrochemical etching technique was developed. Tungsten tips combining well-defined conical shape, a length as large as 2 mm, and sharpness with a radius of curvature of around 20 nm were fabricated using the proposed technique. By depositing the KNN thin film on the fabricated manipulator, nanomanipulators with out-of-plane actuation can be produced. Ultrasonic piezoelectric fan array, the

  12. High-performance electrode materials of hierarchical mesoporous nickel oxide ultrathin nanosheets derived from self-assembled scroll-like α-nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Yao, Mingming; Hu, Zhonghua; Xu, Zijie; Liu, Yafei; Liu, Peipei; Zhang, Qiang

    2015-01-01

    A two-step approach is proposed to prepare high-performance NiO electrode material. First, the scroll-like α-Ni(OH)2 is prepared by hydrothermal reaction via a self-assembly growth process using guanidine hydrochloride as precipitant. Second, the precursor Ni(OH)2 is converted to NiO by calcination. The resultants of hierarchical mesoporous NiO ultrathin nanosheets are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) patterns and N2 adsorption and desorption. The electrochemical properties of the samples are evaluated though cyclic voltammetry (CV), charge-discharge and electrochemical impedance spectroscopy (EIS) in 6.0 M KOH electrolytic solution. The results show that the typical hierarchical mesoporous NiO ultrathin nanosheets exhibits a very large specific capacitance of 1060 F g-1 at 1 A g-1, an outstanding cyclic stability with a capacitance retention of 91% after 5000 cycles of charge-discharge and a low resistance.

  13. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sk, Md Moniruzzaman; Yue, Chee Yoon; Ghosh, Kalyan; Jena, Rajeeb Kumar

    2016-03-01

    Recently, porous nanostructured transition metal oxides with excellent electrochemical performance have become a new class of energy storage materials for supercapacitors. The ever-growing global demand of electrically powered devices makes it imperative to develop renewable, efficient and reliable electrochemical energy storage devices. This review article focuses on the Ni based transition metal oxides and their composite electrode materials including carbons, metals and transition metal oxides for supercapacitor applications, providing an overview on the charge mechanisms, methodologies and nanostructures discovered in recent years, and latest research findings. The NiO and their composites possess higher reversible capacity, good structural stability, and have been studied for usage as novel electrode materials for supercapacitors. Their fine-tuned physical and chemical properties make them ideal candidates for supercapacitor applications as they possess higher accessible electroactive sites, which will provide both high power density and also high energy density. Moreover, synergistic effects can be derived from the constituent materials of the NiO based composite electrodes. The potential problems like device fabrication, measurement techniques, and future prospects of utilizing these materials as supercapacitor electrodes highlighting the fundamental understanding of the relationship between electrochemical and structural performances are also discussed.

  14. Noise coupling between accommodation and accommodative vergence

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1973-01-01

    For monocular viewing, the fluctuations in accommodative lens power in the frequency range from 0.5 to 3 Hz were found to be considerably greater than those in accommodative vergence movements of the covered eye. Considering the close synkinesis between these motor responses for step changes or slow variations in accommodative stimulus, this finding is unexpected. This apparent lack of synkinesis is found to result mainly from the fact that the decrease in small-signal linear gain with increasing frequency is more rapid in the case of the accommodative vergence system than in the case of the accommodation system, rather than from some nonlinear phenomenon.

  15. New Method for the Deposition of Nickel Oxide in Porous Scaffolds for Electrodes in Solid Oxide Fuel Cells and Electrolyzers.

    PubMed

    Ruiz-Trejo, Enrique; Puolamaa, Milla; Sum, Brian; Tariq, Farid; Yufit, Vladimir; Brandon, Nigel P

    2017-01-10

    A simple chemical bath deposition is used to coat a complex porous ceramic scaffold with a conformal Ni layer. The resulting composite is used as a solid oxide fuel cell electrode, and its electrochemical response is measured in humidified hydrogen. X-ray tomography is used to determine the microstructural characteristics of the uncoated and Ni-coated porous structure, which include the surface area to total volume, the radial pore size, and the size of the necks between the pores.

  16. Discontinuous and Continuous Processing of Low-Solvent Battery Slurries for Lithium Nickel Cobalt Manganese Oxide Electrodes

    NASA Astrophysics Data System (ADS)

    Dreger, Henning; Bockholt, Henrike; Haselrieder, Wolfgang; Kwade, Arno

    2015-11-01

    Different discontinuously and continuously working dispersing devices were investigated to determine their influence on the structural and electrochemical properties of electrodes made from commercial LiNi1/3Co1/3Mn1/3O2 (NCM) cathode active material. A laboratory-scale dispersing device was compared with a discontinuously working laboratory kneader and a continuously working extruder, both using 50% less solvent than the dissolver process. Rheological, mechanical, structural, conductive, imaging, and electrochemical analyses (C-rate test, long-term cycling) were carried out. The dispersing method and time were found to have a considerable impact on the structure and electrochemical performance. The continuous extrusion process resulted in good performance with more than 20% higher specific capacity at elevated C-rates compared with the discontinuous process. This can be attributed to better deagglomeration of the carbon black in the slurries, also resulting in 60% higher electrode conductivity. On top of these positive results, the changes in the drying step due to the reduced solvent use led to a 50% decrease in the time required for the constant-drying-rate period. The continuously working extrusion process was found to be most suitable for large-scale, cost-efficient, environmentally friendly production of slurries for lithium-ion battery electrodes.

  17. Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene.

    PubMed

    Kubendhiran, Subbiramaniyan; Sakthinathan, Subramanian; Chen, Shen-Ming; Tamizhdurai, P; Shanthi, K; Karuppiah, Chelladurai

    2017-07-01

    Nitrobenzene (NB) is widely used in the manufacturing of different types of products and other aromatic chemicals. Moreover, it is highly toxic and environmental pollutant compound. Therefore, the detection of nitro aromatic compounds (NACs) has gained more attention in the field of sensor. This article describes the green reduction utilized to preparation of green reduced graphene oxide/nickel tetraphenyl porphyrin (GRGO/Ni-TPP) nanocomposite modified electrode for the determination of nitrobenzene (NB). The GRGO was prepared by environmentally friendly method and using caffeic acid (CA) as a reducing agent. Moreover, the GRGO/Ni-TPP nanocomposite was prepared via the π-π stacking interaction between the RGO and Ni-TPP. In addition, the prepared material was confirmed by the UV-Visible spectroscopy (UV), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The structural morphology and elemental composition of the prepared nanocomposite was confirmed by the scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). Besides, the electrochemical studies of the prepared nanocomposite was characterized by the CV and DPV technique. The DPV studies displayed the linearity response of the proposed sensor about 0.5-878µM with the sensitivity of 1.277µAµM(-1)cm(-2) and the limit of detection (LOD) is 0.14µM. Furthermore, the GRGO/Ni-TPP nanocomposite modified electrode shows good selectivity towards the detection of NB. In addition, the real sample analysis exhibited appreciable recovery towards the determination of NB using various types of water samples.

  18. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing.

    PubMed

    Kannan, Palanisamy; Maiyalagan, Thandavarayan; Marsili, Enrico; Ghosh, Srabanti; Niedziolka-Jönsson, Joanna; Jönsson-Niedziolka, Martin

    2016-01-14

    Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM(-1) cm(-2)) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.

  19. New Method for the Deposition of Nickel Oxide in Porous Scaffolds for Electrodes in Solid Oxide Fuel Cells and Electrolyzers

    PubMed Central

    Puolamaa, Milla; Sum, Brian; Tariq, Farid; Yufit, Vladimir; Brandon, Nigel P.

    2016-01-01

    Abstract A simple chemical bath deposition is used to coat a complex porous ceramic scaffold with a conformal Ni layer. The resulting composite is used as a solid oxide fuel cell electrode, and its electrochemical response is measured in humidified hydrogen. X‐ray tomography is used to determine the microstructural characteristics of the uncoated and Ni‐coated porous structure, which include the surface area to total volume, the radial pore size, and the size of the necks between the pores. PMID:27739632

  20. In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory

    SciTech Connect

    Sun, Jun; Wu, Xing; Xu, Feng; Xu, Tao; Sun, Litao; Liu, Qi; Xie, Hongwei; Long, Shibing; Lv, Hangbing; Li, Yingtao; Liu, Ming

    2013-02-04

    In this letter, we dynamically investigate the resistive switching characteristics and physical mechanism of the Ni/ZrO{sub 2}/Pt device. The device shows stable bipolar resistive switching behaviors after forming process, which is similar to the Ag/ZrO{sub 2}/Pt and Cu/ZrO{sub 2}/Pt devices. Using in situ transmission electron microscopy, we observe in real time that several conductive filaments are formed across the ZrO{sub 2} layer between Ni and Pt electrodes after forming. Energy-dispersive X-ray spectroscopy results confirm that Ni is the main composition of the conductive filaments. The ON-state resistance increases with increasing temperature, exhibiting the feature of metallic conduction. In addition, the calculated resistance temperature coefficient is equal to that of the 10-30 nm diameter Ni nanowire, further indicating that the nanoscale Ni conductive bridge is the physical origin of the observed conductive filaments. The resistive switching characteristics and the conductive filament's component of Ni/ZrO{sub 2}/Pt device are consistent with the characteristics of the typical solid-electrolyte-based resistive random access memory. Therefore, aside from Cu and Ag, Ni can also be used as an oxidizable electrode material for resistive random access memory applications.

  1. A Facile Method to In-Situ Synthesize Porous Ni₂GeO₄ Nano-Sheets on Nickel Foam as Advanced Anode Electrodes for Li-Ion Batteries.

    PubMed

    Ma, Delong; Shi, Xiaomin; Hu, Anming

    2016-11-19

    A strategy for growth of porous Ni₂GeO₄ nanosheets on conductive nickel (Ni) foam with robust adhesion as a high-performance electrode for Li-ion batteries is proposed and realized, through a facile two-step method. It involves the low temperature hydro-thermal synthesis of bimetallic (Ni, Ge) hydroxide nanosheets precursor on Ni foam substrates and subsequent thermal transformation to porous Ni₂GeO₄ nanosheets. The as-prepared Ni₂GeO₄ nanosheets possess many interparticle mesopores with a size range from 5 to 15 nm. The hierarchical structure of porous Ni₂GeO₄ nanosheets supported by Ni foam promises fast electron and ion transport, large electroactive surface area, and excellent structural stability. The efficacy of the specially designed structure is demonstrated by the superior electrochemical performance of the generated Ni₂GeO₄ nanosheets including a high capacity of 1.8 mA·h·cm(-2) at a current density of 50 μA·cm(-2), good cycle stability, and high power capability at room temperature. Because of simple conditions, this fabrication strategy may be easily extended to other mixed metal oxides (MxGeOy).

  2. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.

    PubMed

    Wang, Xiaobo; Yan, Yong; Hao, Bo; Chen, Ge

    2013-05-01

    Through an aqueous, protein-mediated layer-by-layer titania deposition process, we have fabricated a protamine/titania composite layer on nickel foam. The coating was composed of amorphous carbon and TiO2(B)/anatase nanoparticles and formed upon organic pyrolysis under a reducing atmosphere (5% H2-Ar mixture). X-ray diffraction analyses, Auger electron spectroscopy, and high-resolution transmission electron microscopy revealed that the obtained coatings contained fine monoclinic TiO2(B) and anatase nanocrystals, along with amorphous carbon. Moreover, the coating can be used as a binder-free negative electrode material for lithium-ion batteries and exhibits high reversible capacity and fast charge-discharge properties; a reversible capacity of 245 mAh g(-1) was obtained at a current density of 50 mA g(-1), and capacities of 167 and 143 mAh g(-1) were obtained at current densities of 1 and 2 A g(-1), respectively.

  3. One-step solvothermal tailoring the compositions and phases of nickel cobalt sulfides on conducting oxide substrates as counter electrodes for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Niu; Li, Guowang; Huang, Hua; Sun, Panpan; Xiong, Tianli; Xia, Zhifen; Zheng, Fang; Xu, Jixing; Sun, Xiaohua

    2016-12-01

    Several nickel cobalt sulfide (Ni-Co-S) counter electrodes (CEs) are prepared, and the Ni-Co-S nanoparticles are in-situ grown on SnO2: F (FTO) transparent conductive glasses via a facile solvothermal process, in which thiourea is used as the sulfurizing reagent. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometer are employed to measure the microstructure and composition of the Ni-Co-S CEs. When a proper amount of thiourea is adopted, fine crystalline NiCo2S4 CE is obtained. When the amount of thiourea is small or large, (Ni,Co)4S3 or (Ni,Co)3S4 CE is acquired, respectively. Cyclic voltammetry, electrochemical impedance spectroscopy, Tafel polarization and open-circuit voltage decay (OCVD) measurements all demonstrate that the electrocatalytic activities and electrical conductivities of these Ni-Co-S CEs all approach or exceed those of Pt-pyrolysis CE. Their superior electrochemical performances are further confirmed by fabricating DSSCs with the Ni-Co-S CEs, they display similar or better photo-electric conversion efficiencies to/than the Pt-pyrolysis counterpart.

  4. Exploring the main function of reduced graphene oxide nano-flakes in a nickel cobalt sulfide counter electrode for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lu, Man-Ning; Lin, Jeng-Yu; Wei, Tzu-Chien

    2016-11-01

    Addition of carbonaceous materials into transition metal sulfide counter electrode (CE) of a dye-sensitized solar cell (DSSC) is a common method to improve the performance of the CE and consequent photovoltaic performance. This improvement is almost without exception attributed to the improvement of overall conductivity after the carbonaceous material addition; however, the root function of these carbonaceous materials in promoting the solar cell efficiency is seldom discussed. In this study, highly crystallized nickel cobalt sulfide (NCS) micro-particles were mixed with a small portion of home-made reduced graphene oxide (rGO) nano-flakes. This NCS/rGO hybrid is subjected to extensive characterizations including X-ray diffraction, Raman spectroscopy, field emission scanning microscopy and electrochemical impedance spectroscopy. It is found that the rGO acts bi-functionally including a co-catalyst in accelerating the tri-iodide reduction for the main NCS catalysts, conductivity promotor to decrease the series resistance of the CE. Proved by electrochemical impedance spectroscopy, it is confirmed that the decrease in series resistance is less insignificant than that in charge transfer resistance, indicating rGO functions more profoundly as a co-catalyst than as a conductivity promotor. Moreover, an argument to highlight the requirement of a CE in a dim-light optimized DSSC is also proposed.

  5. Flexible Fiber-Shaped Supercapacitor Based on Nickel-Cobalt Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber.

    PubMed

    Gao, Libo; Surjadi, James Utama; Cao, Ke; Zhang, Hongti; Li, Peifeng; Xu, Shang; Jiang, Chenchen; Song, Jian; Sun, Dong; Lu, Yang

    2017-02-15

    Flexible fiber-shaped supercapacitors (FSSCs) are recently of extensive interest for portable and wearable electronic gadgets. Yet the lack of industrial-scale flexible fibers with high conductivity and capacitance and low cost greatly limits its practical engineering applications. To this end, we here present pristine twisted carbon fibers (CFs) coated with a thin metallic layer via electroless deposition route, which exhibits exceptional conductivity with ∼300% enhancement and superior mechanical strength (∼1.8 GPa). Subsequently, the commercially available conductive pen ink modified high conductive composite fibers, on which uniformly covered ultrathin nickel-cobalt double hydroxides (Ni-Co DHs) were introduced to fabricate flexible FSSCs. The synthesized functionalized hierarchical flexible fibers exhibit high specific capacitance up to 1.39 F·cm(-2) in KOH aqueous electrolyte. The asymmetric solid-state FSSCs show maximum specific capacitance of 28.67 mF·cm(-2) and energy density of 9.57 μWh·cm(-2) at corresponding power density as high as 492.17 μW·cm(-2) in PVA/KOH gel electrolyte, with demonstrated high flexibility during stretching, demonstrating their potential in flexible electronic devices and wearable energy systems.

  6. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  7. Advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Advanced designs for individual pressure vessel nickel-hydrogen cells have been concieved which should improve the cycle life at deep depths-of-discharge. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  8. High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: Preparation and application as binder-free electrode for pseudo-supercapacitor

    NASA Astrophysics Data System (ADS)

    Cui, Lifeng; Huang, Lihua; Ji, Min; Wang, Yangang; Shi, Huancong; Zuo, Yuanhui; Kang, Shifei

    2016-11-01

    Uniform MgCo2O4 nanocone arrays (NCAs) grown radially on three-dimensional (3D) nickel foams were fabricated through a facile hydrothermal process. These MgCo2O4 NCAs were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy, N2 adsorption Brunauer-Emmett-Teller method, scanning electron microscopy and transmission electron microscopy. The MgCo2O4 NCAs were directly used as a binder-free integrated electrode for electrochemical pseudocapacitors. The electrode yielded a high specific capacitance of 750 F g-1 with high cycling ability at a charge-discharge current density of 1 A g-1 (84.0% of initial specific capacitance was remained after 1000cycles) and it was much higher compared with the powder MgCo2O4 (320 F g-1 at 0.5 A g-1). Evidently, MgCo2O4 NCAs achieved excellent electrochemical performance owing to the unique 3D nickel-foam-based in-situ self-assembly, which accelerated electron transport and diffusion as well as intimate electrode/electrolyte contact. The remarkable performance of the aqueous symmetric supercapacitor device without addition of binders or conductive additive is attributed to the close-knit combination of MgCo2O4 nanocone with highly-conductive origin nickel foam, as well as the enlarged specific surface area (335.8 m2 g-1). This study approves the future applications of the MgCo2O4 NCAs inspired large-scale supercapacitor grown on low-cost nickel foams.

  9. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples.

  10. Nickel-hydrogen component development

    NASA Technical Reports Server (NTRS)

    Charleston, J. A.

    1983-01-01

    Light weight energy storage systems for future space missions are investigated. One of the systems being studied is the nickel hydrogen battery. This battery is designed to achieve longer life, improve performance, and higher energy densities for space applications. The nickel hydrogen component development is discussed. Test data from polarization measurements of the hydrogen electrode component is presented.

  11. Synthese, etude structurale et electrochimique des materiaux d'electrode positive d'oxydes mixtes lithium cobalt nickel oxide (0 /= 1) pour les batteries rechargeables au lithium

    NASA Astrophysics Data System (ADS)

    Grincourt, Yves

    Depuis une dizaine d'annees, on observe un interet grandissant pour les batteries rechargeables au lithium de tension superieure a 4 volts. La commercialisation de ces batteries pour l'electronique grand marche tend de plus en plus a supplanter celle des accumulateurs Ni-Cd et Ni-MH, de tension nominate 1,2 V. Ces batteries au lithium font appel a des materiaux d'electrode positive (cathode a la decharge) du type oxydes mixtes de metaux de transition LiMnO 2, LiMn2O4, LiNiO2 ou LiCoO2. Si le compose LiCoO2 est relativement aise a synthetiser, il n'en demeure pas moins que le cobalt reste un metal plus couteux compare au nickel et au manganese. La synthese de LiNiO2, quart a elle, demeure un probleme du point de vue stoechiometrique. Un defaut de lithium (5 a 10% molaire) conduira a des proprietes electrochimiques mediocres de la batterie. Dans cette etude nous nous proposons donc de preparer par voie humide et par voie seche les materiaux d'electrode positive de la famille LiCoyNi1-yO2 aver (0 ≤ y ≤ 1) et d'etudier en detail l'influence du pourcentage de nickel et de cobalt sur les proprietes electrochimiques des oxydes mixtes Li-Ni-Co. Une des caracteristiques est la morphologie plus fine des poudres de materiaux, observes par microscopie electronique a balayage (MEB). Un traitement thermique a plus basse temperature (750°C) que pour LiCoO2 (850°C) ainsi qu'un leger exces de lithium dans la preparation, ont permis d'aboutir a un materiau de stoechiometrie quasi parfaite. Neanmoins, le role de pilfer joue par 2 a 4% de moles de Ni2+ presents sur les sites lithium, permet de conserver intacte la structure hexagonale de la maille entre deux cycles consecutifs. Afin de mieux comprendre l'influence du vieillissement dune demi-pile Li/LiMeO2 (Me = Ni, Co) a temperature ambiante, des etudes electrochimiques et d'impedance spectroscopique ont ete menees en parallele. Le vieillissement de la cellule s'accompagne seulement dune chute de son potentiel due a son auto

  12. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Palanisamy; Maiyalagan, Thandavarayan; Marsili, Enrico; Ghosh, Srabanti; Niedziolka-Jönsson, Joanna; Jönsson-Niedziolka, Martin

    2015-12-01

    Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM-1 cm-2) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for

  13. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.

    PubMed

    Lai, Feili; Miao, Yue-E; Zuo, Lizeng; Lu, Hengyi; Huang, Yunpeng; Liu, Tianxi

    2016-06-01

    The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications.

  14. One-Step In Situ Growth of Iron-Nickel Sulfide Nanosheets on FeNi Alloy Foils: High-Performance and Self-Supported Electrodes for Water Oxidation.

    PubMed

    Yuan, Cheng-Zong; Sun, Zhong-Ti; Jiang, Yi-Fan; Yang, Zheng-Kun; Jiang, Nan; Zhao, Zhi-Wei; Qazi, Umair Yaqub; Zhang, Wen-Hua; Xu, An-Wu

    2017-03-10

    Efficient and durable oxygen evolution reaction (OER) catalysts are highly required for the cost-effective generation of clean energy from water splitting. For the first time, an integrated OER electrode based on one-step direct growth of metallic iron-nickel sulfide nanosheets on FeNi alloy foils (denoted as FeNi3 S2 /FeNi) is reported, and the origin of the enhanced OER activity is uncovered in combination with theoretical and experimental studies. The obtained FeNi3 S2 /FeNi electrode exhibits highly catalytic activity and long-term stability toward OER in strong alkaline solution, with a low overpotential of 282 mV at 10 mA cm(-2) and a small Tafel slope of 54 mV dec(-1) . The excellent activity and satisfactory stability suggest that the as-made electrode provides an attractive alternative to noble metal-based catalysts. Combined with density functional theory calculations, exceptional OER performance of FeNi3 S2 /FeNi results from a combination of efficient electron transfer properties, more active sites, the suitable O2 evolution kinetics and energetics benefited from Fe doping. This work not only simply constructs an excellent electrode for water oxidation, but also provides a deep understanding of the underlying nature of the enhanced OER performance, which may serve as a guide to develop highly effective and integrated OER electrodes for water splitting.

  15. Nickel Allergy

    MedlinePlus

    Nickel allergy Overview By Mayo Clinic Staff Nickel allergy is a common cause of allergic contact dermatitis — an itchy rash that appears where your skin touches a usually harmless substance. Nickel ...

  16. A dual anode nickel-hydrogen cell

    NASA Astrophysics Data System (ADS)

    Gahn, Randall F.; Ryan, Timothy P.

    1992-02-01

    A dual anode cell with decreased polarization effects provides improved performance characteristics, such as voltage characteristics and depth-of-discharge characteristics. A hydrogen electrode is placed on both sides of a nickel electrode. An electrolyte saturated separator is placed between each hydrogen electrode and the nickel electrode. The electrolyte saturated separator can be a layered-type separator consisting of one layer of zirconia knit cloth next to the hydrogen electrode and a layer of radiation-grafted polyethylene film next to the nickel electrode. These layers of the electrochemical cell are cut in a pineapple-slice configuration. Both hydrogen electrodes are connected in parallel to form a single electrical node. The electrochemical cell is placed in a vessel pressurized with hydrogen and saturated with a potassium hydroxide electrolyte. A gas screen is placed on the outer surface of each of the hydrogen electrodes.

  17. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  18. Fabrication and testing of large size nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1977-01-01

    The design and construction of nickel zinc cells, containing sintered nickel electrodes and asbestos coated inorganic separator materials, were outlined. Negative electrodes were prepared by a dry pressing process while various inter-separators were utilized on the positive electrodes, consisting of non-woven nylon, non-woven polypropylene, and asbestos.

  19. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  20. Handbook of Reasonable Accommodation.

    ERIC Educational Resources Information Center

    Heaton, Sandra M.; And Others

    The booklet discusses a basic concept in affirmative action and nondiscrimination for the handicapped, which requires federal agencies to make reasonable accommodation to the physical or mental limitations of a qualified handicapped applicant or employee unless the accommodation would impose an undue hardship on the agency. Reasonable…

  1. Analyzing Disability Accommodation Statements

    ERIC Educational Resources Information Center

    Barnard-Brak, L.; Lan, W. Y.

    2011-01-01

    Studies have indicated that the willingness of faculty members to accommodate students with disabilities differs according to academic discipline and instructor gender. The authors examined the attitudes of faculty members toward students with disabilities as reflected in course syllabi to discern instructor willingness to accommodate these…

  2. Habitability sleep accommodations

    NASA Technical Reports Server (NTRS)

    Fisher, H. T.

    1985-01-01

    Schematic outlines are presented with various design requirements for the accommodation of the spacecrew of Space Stations. The primary concern is for sleeping accommodations. Some other general requirements given are for a rest place, entertainment, dressing area, personal item stowage, body restraint, total privacy, external viewing, and grooming provisions. Several plans are given for sleep quarters concepts.

  3. A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices.

    PubMed

    Trang, Nguyen Thi Hong; Ngoc, Huynh Van; Lingappan, Niranjanmurthi; Kang, Dae Joon

    2014-02-21

    We demonstrated an efficient method for the fabrication of novel, flexible electrodes based on ZnO nanoflakes and nickel-cobalt layered double hydroxides (denoted as ZnONF/NiCoLDH) as a core-shell nanostructure on textile substrates for wearable energy storage devices. NiCoLDH coated ZnO nanowire (denoted as ZnONW/NiCoLDH) flexible electrodes are also prepared for comparison. As an electrode for supercapacitors, ZnONF/NiCoLDH exhibits a high specific capacitance of 1624 F g(-1), which is nearly 1.6 times greater than ZnONW/NiCoLDH counterparts. It also shows a maximum energy density of 48.32 W h kg(-1) at a power density of 27.53 kW kg(-1), and an excellent cycling stability with capacitance retention of 94% and a Coulombic efficiency of 93% over 2000 cycles. We believe that the superior performance of the ZnONF/NiCoLDH hybrids is due primarily to the large surface area of the nanoflake structure and the open spaces between nanoflakes, both of which provide a large space for the deposition of NiCoLDH, resulting in reduced internal resistance and improved capacitance performance. Our results are significant for the development of electrode materials for high-performance wearable energy storage devices.

  4. Accommodation dynamics in aging rhesus monkeys.

    PubMed

    Croft, M A; Kaufman, P L; Crawford, K S; Neider, M W; Glasser, A; Bito, L Z

    1998-12-01

    Accommodation, the mechanism by which the eye focuses on near objects, is lost with increasing age in humans and monkeys. This pathophysiology, called presbyopia, is poorly understood. We studied aging-related changes in the dynamics of accommodation in rhesus monkeys aged 4-24 yr after total iridectomy and midbrain implantation of an electrode to permit visualization and stimulation, respectively, of the eye's accommodative apparatus. Real-time video techniques were used to capture and quantify images of the ciliary body and lens. During accommodation in youth, ciliary body movement was biphasic, lens movement was monophasic, and both slowed as the structures approached their new steady-state positions. Disaccommodation occurred more rapidly for both ciliary body and lens, but with longer latent period, and slowed near the end point. With increasing age, the amplitude of lens and ciliary body movement during accommodation declined, as did their velocities. The latent period of lens and ciliary body movements increased, and ciliary body movement became monophasic. The latent period of lens and ciliary body movement during disaccommodation was not significantly correlated with age, but their velocity declined significantly. The age-dependent decline in amplitude and velocity of ciliary body movements during accommodation suggests that ciliary body dysfunction plays a role in presbyopia. The age changes in lens movement could be a consequence of increasing inelasticity or hardening of the lens, or of age changes in ciliary body motility.

  5. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  6. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell.

  7. Initial performance of advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1985-01-01

    Advanced designs for individual pressure vessel nickel hydrogen cells were conceived which should improve the life cycle at deep depths of discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) the use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  8. The effect of compression on individual pressure vessel nickel/hydrogen components

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Perez-Davis, Marla E.

    1988-01-01

    Compression tests were performed on representative Individual Pressure Vessel (IPV) Nickel/Hydrogen cell components in an effort to better understand the effects of force on component compression and the interactions of components under compression. It appears that the separator is the most easily compressed of all of the stack components. It will typically partially compress before any of the other components begin to compress. The compression characteristics of the cell components in assembly differed considerably from what would be predicted based on individual compression characteristics. Component interactions played a significant role in the stack response to compression. The results of the compression tests were factored into the design and selection of Belleville washers added to the cell stack to accommodate nickel electrode expansion while keeping the pressure on the stack within a reasonable range of the original preset.

  9. Initial performance of advanced designs for IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1986-01-01

    Advanced designs for individual pressure vessel nickel-hydrogen cells have been conceived which should improve the cycle life at deep depths-of-discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.

  10. Frequency response measurements in battery electrodes

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1992-01-01

    Electrical impedance spectroscopy was used to investigate the behavior of porous zinc, silver, cadmium, and nickel electrodes. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two AgZn cells, one apparently good and the other bad. The impedance data was fit to equivalent circuit models.

  11. Disposable mercury-free cell-on-a-chip devices with integrated microfabricated electrodes for the determination of trace nickel(II) by adsorptive stripping voltammetry.

    PubMed

    Kokkinos, Christos; Economou, Anastasios; Raptis, Ioannis; Speliotis, Thanassis

    2008-08-01

    This work reports the fabrication of disposable three-electrode cells with integrated sputtered metal-film electrodes. The working electrode was a bismuth-film electrode (BiFE) while the reference and counter electrodes were made of Ag and Pt, respectively. The deposition of the metal layers was carried out by sputtering of the respective metals on a silicon substrate while the exact geometry of the electrodes was defined via a metal mask placed on the substrate during the deposition process. Initially, the electrodes were characterised by cyclic voltammetry. The utility of these devices was tested for the trace determination of Ni(II) by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the presence of oxygen, the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3sigma limit of detection was 100 ng L(-1) for Ni(II) (for 90 s of preconcentration) and the relative standard deviation for Ni(II) was 2.3% at the 10 microg L(-1) level (n=8). Finally, the method was applied to the determination of Ni(II) in a certified river water sample.

  12. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  13. One-step solution combustion synthesis of cobalt-nickel oxides/C/Ni/CNTs nanocomposites as electrochemical capacitors electrode materials

    NASA Astrophysics Data System (ADS)

    Kang, Litao; Deng, Jiachun; Liu, Tiejun; Cui, Mangwei; Zhang, Xinyu; Li, Peiyang; Li, Ying; Liu, Xuguang; Liang, Wei

    2015-02-01

    With Co(NO3)2·6H2O (oxidizer and Co source), Ni(NO3)2·6H2O (oxidizer and Ni source) and citric acid (fuel) as starting materials, cobalt-nickel oxides/C/Ni ternary nanocomposites have been synthesized by a scalable, one-step solution combustion process at only 300 °C within 30 min in air. In these composites, the metallic nickel and amorphous carbon (conductive phases) were in situ formed by the reduction of Ni2+ and carbonization of the excess citric acid during combustion, respectively. Experimental results indicated that the fuel:oxidant and Co:Ni molar ratios in precursor solution showed strong influences on the phase composition, morphology and electrochemical performance of products. With the increase of the fuel dosage, the products transformed from well-crystallized cubic NiO/Ni to Ni (nickel-related phases), then to relatively amorphous Ni/NiO and finally NiO. Electrochemical tests indicated that the optimized product showed a high specific capacitance of 446 F g-1 at 1 A g-1 (or 280 F g-1 at 10 A g-1) with a Co:Ni:C6H8O7 molar ratio of 4:5:86/9. Significantly, besides its mild experimental conditions, the method could be used to prepare cobalt-nickel oxides/C/Ni/CNTs quarternary nanocomposites by simply adding acid-treated CNTs into precursor combustion solution. Thanks to the high electrical conduction of CNTs, the specific capacitance could be further improved up to 579 F g-1 at 1 A g-1, or 350 F g-1 at 10 A g-1.

  14. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  15. Accommodating Picky Palates

    ERIC Educational Resources Information Center

    Lum, Lydia

    2007-01-01

    Healthy gourmet offerings are fast becoming the norm at college dining halls around the country. At a time when the children of Baby Boomers are hitting higher education in record numbers, college officials have scrambled to accommodate their picky palates and their insistence for healthier meals than were served to past generations. At the same…

  16. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Yuejiao; Qu, Baihua; Hu, Lingling; Xu, Zhi; Li, Qiuhong; Wang, Taihong

    2013-09-01

    A facile hydrothermal method is developed for large-scale production of three-dimensional (3D) hierarchical porous nickel cobaltate nanowire cluster arrays derived from nanosheet arrays with robust adhesion on Ni foam. Based on the morphology evolution upon reaction time, a possible formation process is proposed. The role of NH4F in formation of the structure has also been investigated based on different NH4F amounts. This unique structure significantly enhances the electroactive surface areas of the NiCo2O4 arrays, leading to better interfacial/chemical distributions at the nanoscale, fast ion and electron transfer and good strain accommodation. Thus, when it is used for supercapacitor testing, a specific capacitance of 1069 F g-1 at a very high current density of 100 A g-1 was obtained. Even after more than 10 000 cycles at various large current densities, a capacitance of 2000 F g-1 at 10 A g-1 with 93.8% retention can be achieved. It also exhibits a high-power density (26.1 kW kg-1) at a discharge current density of 80 A g-1. When used as an anode material for lithium-ion batteries (LIBs), it presents a high reversible capacity of 976 mA h g-1 at a rate of 200 mA g-1 with good cycling stability and rate capability. This array material is rarely used as an anode material. Our results show that this unique 3D hierarchical porous nickel cobaltite is promising for electrochemical energy applications.A facile hydrothermal method is developed for large-scale production of three-dimensional (3D) hierarchical porous nickel cobaltate nanowire cluster arrays derived from nanosheet arrays with robust adhesion on Ni foam. Based on the morphology evolution upon reaction time, a possible formation process is proposed. The role of NH4F in formation of the structure has also been investigated based on different NH4F amounts. This unique structure significantly enhances the electroactive surface areas of the NiCo2O4 arrays, leading to better interfacial/chemical distributions

  17. Nickel phosphate molecular sieve as electrochemical capacitors material

    NASA Astrophysics Data System (ADS)

    Yang, Jing-He; Tan, Juan; Ma, Ding

    2014-08-01

    The nickel phosphate molecular sieve VSB-5 as an electrode material for supercapacitors is investigated by cyclic voltammetry (CV) and chronopotentiometry in alkaline media. The VSB-5 shows high specific capacitance and excellent cycling stability. The specific capacitance of VSB-5 is 2740 F g-1 at a current density of 3 A g-1 and there is no significant reduction in Coulombic efficiency after 3000 cycles at 30 A g-1. In comparison with mesoporous nickel phosphate NiPO, porous nickel hydroxide and mesoporous nickel oxide, this remarkable electrochemical performance of VSB-5 will make nickel phosphate material a promising new electrode material for high performance supercapacitors.

  18. Simultaneous voltammetric determination of dopamine and epinephrine in human body fluid samples using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film.

    PubMed

    Figueiredo-Filho, Luiz C S; Silva, Tiago A; Vicentini, Fernando C; Fatibello-Filho, Orlando

    2014-06-07

    A simple and highly selective electrochemical method was developed for the single or simultaneous determination of dopamine (DA) and epinephrine (EP) in human body fluids using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film using square-wave voltammetry (SWV) or differential-pulse voltammetry (DPV). Using DPV with the proposed electrode, a separation of ca. 360 mV between the peak reduction potentials of DA and EP present in binary mixtures was obtained. The analytical curves for the simultaneous determination of dopamine and epinephrine showed an excellent linear response, ranging from 7.0 × 10(-8) to 4.8 × 10(-6) and 3.0 × 10(-7) to 9.5 × 10(-6) mol L(-1) for DA and EP, respectively. The detection limits for the simultaneous determination of DA and EP were 5.0 × 10(-8) mol L(-1) and 8.2 × 10(-8) mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in human body fluid samples of cerebrospinal fluid, human serum and lung fluid.

  19. [Efficiency of tritium enrichment by electrolytic cell with multi-nickel-plates electrode and its application to the determination of tritium in environmental water].

    PubMed

    Kondo, Y; Sasaki, M; Kimura, S

    1984-06-01

    For the purpose of speeding up the tritium enrichment by electrolysis, we have produced an electrolytic cell with the multi-plate-electrode system instead of the commonly used single-plate-electrode, and examined the efficiencies for the tritium enrichment under the conditions of different current densities and electrode gaps. From the results, the tritium recovery and the separation factor beta were found to be maximized under the condition of 70 mA/cm2 of current density and 1.6 mm of electrode gap, and they were 90 percent and 23, respectively. Using this cell, it took 28 hours to reduce 100 ml of a sample water to 10 ml, and took 2 days, including the time required for other operations, to determine the tritium concentration of 1.85 Bq/l (50 pCi/l) with the counting error of within +/- 10 percent. This method has been applied to determining the tritium concentrations of environmental samples from Yamato River region during July 1981-February 1983. They were in the range of 1.11-9.48 Bq/l (30-256 pCi/l).

  20. Studies in Binocular Accommodation.

    NASA Astrophysics Data System (ADS)

    Winn, Barry

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. A study of the binocular accommodation response is presented for normal and amblyopic observers to selected stimulus conditions using a binocular infra-red optometer and a commercially-available autorefractor. The work reviews the neural control of the near triad and discusses the historical development of models of mutual interaction between accommodation and convergence, presenting experimental evidence to support or refute each proposition. The basic characteristics of the accommodation response are reviewed along with the influencing factors. A central feature of this work is the evaluation of the correlation present between the eyes for both step -wise changes in target vergence and steady-state viewing. Reaction times for visually normal subjects were found to be similar to those found by previous workers and were independent of both size and direction of the step change. Response times for a mean step size of approximately 2.5D exhibited a marked degree of intersubject variability, particularly for the decreasing response and were step -size dependent. Eye dominancy was not found to be a significant factor in the overall response time. The binocular accommodation responses were found to have a high level of correlation to step-wise changes in target vergence. Assessment of the microfluctuations was necessary. A high degree of correlation between amblyopic eyes and their fellow normal eyes is reported for both reaction and response times. Steady-state viewing shows the microfluctuations to have a high level of coherence. As target luminance decreased, rms values and low frequency drifts increased. Amblyopic eyes show an increase in the magnitude of the low frequency components of the microfluctuations for moderate to high stimulus vergences. The presence of different behaviour to that observed in normals supports a role for the microfluctuations. The response of amblyopic eyes to

  1. A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel in ethanol fuel.

    PubMed

    Takeuchi, Regina M; Santos, André L; Padilha, Pedro M; Stradiotto, Nelson R

    2007-02-19

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni(2+) determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni(2+) preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni(2+) adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)(2) complex, whose electrochemical reduction provides the analytical signal. All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L(-1) with detection limit of 2.0 x 10(-9) mol L(-1). Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 micromol L(-1) Ni(2+) and the developed electrode was totally stable in ethanolic solutions. The contents of Ni(2+) found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni(2+) determination in commercial ethanol fuel samples without any sample pretreatment or dilution step.

  2. Development of nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  3. Development of nickel hydrogen battery expert system

    NASA Astrophysics Data System (ADS)

    Shiva, Sajjan G.

    1990-10-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  4. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    SciTech Connect

    Timmerman, P.; Ratnakumar, B.V.; Distefano, S.

    1996-02-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  5. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    NASA Technical Reports Server (NTRS)

    Timmerman, P.; Ratnakumar, B. V.; Distefano, S.

    1996-01-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  6. Visual accommodation trainer-tester

    NASA Technical Reports Server (NTRS)

    Randle, R. J., Jr. (Inventor)

    1983-01-01

    An apparatus for training of the human visual accommodation system is presented, specifically, useful for training a person to volitionally control his focus to his far point (normaly infinity) from a position of myopia due to functional causes. The functional causes could be due, for example, to a behavioral accommodative spasm or the effects of an empty field. The device may also be used to measure accommodation, the accommodation resting position and the near and far points of vision.

  7. [Spasm of accommodation].

    PubMed

    Lindberg, Laura

    2014-01-01

    Spasm of accommodation refers to prolonged contraction of the ciliary muscle, most commonly causing pseudomyopia to varying degrees in both eyes by keeping the lens in a state of short sightedness. It may also be manifested as inability to allow the adaptation spasticity prevailing in the ciliary muscle relax without measurable myopia. As a rule, this is a functional ailment triggered by prolonged near work and stress. The most common symptoms include blurring of distance vision, varying visual acuity as well as pains in the orbital region and the head, progressing into a chronic state. Cycloplegic eye drops are used as the treatment.

  8. Evaluation program for secondary spacecraft cells: Acceptance tests of Eagle-Picher 12.0 ampere-hour nickel-cadmium cells with auxiliary electrodes

    NASA Technical Reports Server (NTRS)

    Christy, D. E.

    1971-01-01

    An acceptance test program was conducted on 24 cells to insure that all cells put into the life cycle program were of high quality by the removal of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open circuit voltage above 1.150 volts after the cell short test. The cells were rated at 12.0 ampere-hours and equipped with auxiliary electrodes. Test results were: (1) The capacity of the 24 cells ranged from 14.6 to 16.8 ah. All the cells exceeded the rated capacity on all three capacity checks. (2) One cell failed to recover to 1.150 volts after the cell short test. (3) During the overcharge tests, all cells but one failed the test at the c/10 rate after the first minute. (4) A special resistance test was conducted on the auxiliary electrodes of these cells to establish the resistance value necessary which would provide maximum signal power across the auxiliary electrode. The resistance value established was 10 ohms. (5) No electrolyte leakage was observed.

  9. Lightweight porous plastic plaque. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Reid, M.

    1978-01-01

    The porosity and platability of various materials were investigated to determine a suitable substrate for nickel-plated electrodes. Immersion, ultrasonics, and flow-through plating techniques were tried using nonproprietary formulations, and proprietary phosphide and boride baths. Modifications to the selected material include variations in formulation and treatment, carbon loading to increase conductivity, and the incorporation of a grid. Problems to be solved relate to determining conductivities and porosities as a function of amount of nickel plated on the plastics; loading; charge and discharge curves of electrodes at different current densities; cell performance; and long-term degradation of electrodes.

  10. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  11. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  12. A Facile Method to In-Situ Synthesize Porous Ni2GeO4 Nano-Sheets on Nickel Foam as Advanced Anode Electrodes for Li-Ion Batteries

    PubMed Central

    Ma, Delong; Shi, Xiaomin; Hu, Anming

    2016-01-01

    A strategy for growth of porous Ni2GeO4 nanosheets on conductive nickel (Ni) foam with robust adhesion as a high-performance electrode for Li-ion batteries is proposed and realized, through a facile two-step method. It involves the low temperature hydro-thermal synthesis of bimetallic (Ni, Ge) hydroxide nanosheets precursor on Ni foam substrates and subsequent thermal transformation to porous Ni2GeO4 nanosheets. The as-prepared Ni2GeO4 nanosheets possess many interparticle mesopores with a size range from 5 to 15 nm. The hierarchical structure of porous Ni2GeO4 nanosheets supported by Ni foam promises fast electron and ion transport, large electroactive surface area, and excellent structural stability. The efficacy of the specially designed structure is demonstrated by the superior electrochemical performance of the generated Ni2GeO4 nanosheets including a high capacity of 1.8 mA·h·cm−2 at a current density of 50 μA·cm−2, good cycle stability, and high power capability at room temperature. Because of simple conditions, this fabrication strategy may be easily extended to other mixed metal oxides (MxGeOy). PMID:28335346

  13. Synthesis of carbon nanotubes over 3D cubical Co-KIT-6 and nickel decorated graphene by Hummer's method, its application as counter electrode in dye sensitive solar cell

    NASA Astrophysics Data System (ADS)

    Subramanian, Sunu; Pandurangan, Arumugam

    2016-04-01

    The challenges on carbon nanotubes and graphene are still the subject of many research works due to its unique properties. There are three main methods to synthesis carbon nanotubes in which chemical vapor deposition (CVD) method can use for large scale production. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for CVD method using metal impregnation method to produce cobalt loadings of 2, 4 and 6 wt%. The catalysts were characterized by XRD, FTIR &TEM. Carbon nanotubes (CNTs) synthesized on Co-KIT-6 was also characterized by XRD, TGA, SEM & Raman spectra. Graphene was synthesized by Hummers method, which is the most common method for preparing graphene oxide. Graphene oxide was prepared by oxidation of graphite using some oxidizing agents like sulphuric acid, sodium nitrate and potassium permanganate. This graphene oxide is further treated with hydrazine solution to convert it into chemically converted graphene and also decorated with nickel metal and characterized. Hummer's method is important for large scale production of graphene. Both Graphene and carbon nanotubes are used in different fields due to its unique properties. Both Graphene and carbon nanotubes are fabricated in counter electrode of Dye sensitized solar cells (DSSC). By cyclic voltammetry study, it confirms that both materials are good and efficient to replace platinum in the DSSC.

  14. Evaluation program for secondary spacecraft cells: Acceptance test of Eagle-Picher 100 ampere-hour nickel-cadmium cells with auxiliary electrodes

    NASA Technical Reports Server (NTRS)

    Christy, D. E.

    1972-01-01

    Tests were conducted on a group of 29 cells for the purpose of removing from the life cycle program all cells found to have electrolyte leakage, internal shorts, low capacity, or inability to recover open circuit voltage above 1.150 volts after the cell short test. The test findings include the following: (1) All the cells exceeded the rated capacity of 103.5 to 119.0 ampere-hours on all three capacity checks. (2) All cells recovered above the 1.150 volt requirement after the cell short test. (3) The cells cannot be overcharged at the c/10 rate without exceeding 1.500 volts after approximately 12 to 13 hours of charge. (4) The resistance value necessary to provide maximum signal power across the auxiliary electrode was found to be 10 ohms. (5) One cell revealed a definite leak at the negative terminal.

  15. Making Positive Electrodes For Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry

    1992-01-01

    High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.

  16. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  17. Electrode for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    A sintered porous electrode useful for a molten carbonate fuel cell is produced which is composed of a plurality of 5 wt. % to 95 wt. % nickel balance copper alloy encapsulated ceramic particles sintered together by the alloy.

  18. The Accommodation Operation. Accommodation Management Module. Operational Management Programme.

    ERIC Educational Resources Information Center

    Chapman, Janet

    This module on accommodation operation is intended to help supervisors or managers achieve a balance in the day-to-day running of the premises and plan for a smooth and successful future. Much of the material is concerned with the housekeeping aspects of accommodation management. The material is presented in a self-instructional format in seven…

  19. Effect of charging methods on battery electrodes

    NASA Astrophysics Data System (ADS)

    McBreen, J.

    The effect of modified charging methods on the structure and behavior of several battery electrodes are reviewed. These include the alkaline cadmium, zinc, silver oxide and nickel oxide electrodes. Also included are recent results obtained for pasted zinc electrodes and in acidic zinc chloride electrolytes. Modified charging methods can greatly affect electrodes particularly when the charging reaction involving the nucleation, and growth of a new phase. Many of the observed morphological effects are described with regard to nucleation and orientation effects.

  20. Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes

    SciTech Connect

    Rodriguez-Macia, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J.; Rudiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we’ve come in mimicking the impressive enzymatic performance. Here we directly compare the catalytic properties of the [Ni(PCy2NGly2)2]2+ complex with the [NiFe]-hydrogenase from Desulfobivrio vulgaris Miyazaki F (DvMF) immobilized to a functionalized electrode under identical conditions. At pH=7, the enzyme has higher performance in both activity and overpotential, and is more stable, while at low pH, the molecular catalyst outperforms the enzyme in all respects. The Ni complex also has increased tolerance to CO. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bioinspired complexes in fuel cells. AD and WJS acknowledge the Office of Science Early Career Research Program through the US Department of Energy (US DOE), Office of Science, Office of Basic Energy Sciences (BES), and Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE.

  1. The renewable bismuth bulk annular band working electrode: fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II).

    PubMed

    Baś, Bogusław; Węgiel, Krystian; Jedlińska, Katarzyna

    2015-06-30

    The paper presents the first report on fabrication and application of a user friendly and mercury free electrochemical sensor, with the renewable bismuth bulk annular band working electrode (RBiABE), in stripping voltammetry (SV). The sensor body is partly filled with the internal electrolyte solution, in which the RBiABE is cleaned and activated before each measurement. Time of the RBiABE contact with the sample solution is precisely controlled. The usefulness of this sensor was tested by Ni(II) and Co(II) traces determination by means of differential pulse adsorptive stripping voltammetry (DP AdSV), after complexation with dimethylglyoxime (DMG) in ammonia buffer (pH 8.2). The experimental variables (composition of the supporting electrolyte, pre-concentration potential and time, potential of the RBiABE activation, and DP parameters), as well as possible interferences, were investigated. The linear calibration graphs for Ni(II) and Co(II), determined individually and together, in the range from 1×10(-8) to 70×10(-8)molL(-1) and from 1×10(-9) to 70×10(-9)molL(-1) respectively, were obtained. The calculated limit of detection (LOD), for 30s of the accumulation time, was 3×10(-9)molL(-1) for Ni(II) in case of a single element's analysis, whereas the LOD was 5×10(-9)molL(-1) for Ni(II) and 3×10(-10)molL(-1) for Co(II), when both metal ions were measured together. The repeatability of the Ni(II) and Co(II) adsorptive stripping voltammetric signals obtained at the RBiABE were equal to 5.4% and 2.5%, respectively (n=5). Finally, the proposed method was validated by determining Ni(II) and Co(II) in the certified reference waters (SPS-SW1 and SPS-SW2) with satisfactory results.

  2. Anthropometric accommodation in USAF cockpits

    NASA Technical Reports Server (NTRS)

    Zehner, Gregory F.

    1994-01-01

    Over the past three years, a new set of methodologies has been developed to specify and evaluate anthropometric accommodation in USAF crewstation designs. These techniques are used to improve the ability of the pilot to reach controls, to safely escape the aircraft, to achieve adequate mobility and comfort, and to assure full access to the visual field both inside and outside the aircraft. This paper summarized commonly encountered aircraft accommodation problems, explains the failure of the traditional 'percentile man' design concept to resolve these difficulties, and suggests an alternative approach for improving cockpit design to better accommodate today's more heterogeneous flying population.

  3. Nickel carbonyl

    Integrated Risk Information System (IRIS)

    Nickel carbonyl ; CASRN 13463 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  4. Nickel subsulfide

    Integrated Risk Information System (IRIS)

    Nickel subsulfide ; CASRN 12035 - 72 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  5. Cyclic voltammetry response of coprecipitated Ni(OH) 2 electrode in 5 M KOH solution

    NASA Astrophysics Data System (ADS)

    Ding Yunchang; Yuan Jiongliang; Chang Zhaorong

    A study of the cyclic voltammetry response of a coprecipitated nickel hydroxide electrode in 5 M KOH solution shows that cobalt, manganese and zinc are beneficial additives in practical nickel batteries because they can increase the overpotentials for oxygen evolution reaction at the nickel hydroxide electrodes and decrease redox peak potentials. By contrast, iron and lead are considered harmful to nickel batteries because they can decrease the overpotentials at the nickel hydroxide electrode. On the other hand, the addition of iron is beneficial to the water electrolysis process. Cobalt can act as antidote to iron and lead in batteries.

  6. Nickel hydrogen batteries: An overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1994-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A LeRC innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass,volume, and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a reduction in

  7. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  8. Second Plateau Voltage in Nickel-cadmium Cells

    NASA Technical Reports Server (NTRS)

    Vasanth, K. L.

    1984-01-01

    Sealed nickel cadmium cells having large number of cycles on them are discharged using Hg/HgO reference electrode. The negative electrode exhibits the second plateau. A SEM of negative plates of such cells show a number of large crystals of cadmium hydroxide. The large crystals on the negative plates disappear after continuous overcharging in flooded cells.

  9. 43 CFR 17.211 - Reasonable accommodation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental... that the accommodation would impose an undue hardship on the operation of its program or activity. (b... accommodation would impose an undue hardship on the operation of a recipient's program or activity, factors...

  10. 24 CFR 100.204 - Reasonable accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Reasonable accommodations. 100.204... Handicap § 100.204 Reasonable accommodations. (a) It shall be unlawful for any person to refuse to make reasonable accommodations in rules, policies, practices, or services, when such accommodations may...

  11. 24 CFR 100.204 - Reasonable accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Reasonable accommodations. 100.204... Handicap § 100.204 Reasonable accommodations. (a) It shall be unlawful for any person to refuse to make reasonable accommodations in rules, policies, practices, or services, when such accommodations may...

  12. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  13. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application.

    PubMed

    Abdalla, Ahmed M; Sahu, Rakesh P; Wallar, Cameron J; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K

    2017-02-17

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g(-1) and  an areal capacitance of 3.28 F cm(-2) at a scan rate of 2 mV s(-1) is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm(-2).

  14. Accommodations for Multiple Choice Tests

    ERIC Educational Resources Information Center

    Trammell, Jack

    2011-01-01

    Students with learning or learning-related disabilities frequently struggle with multiple choice assessments due to difficulty discriminating between items, filtering out distracters, and framing a mental best answer. This Practice Brief suggests accommodations and strategies that disability service providers can utilize in conjunction with…

  15. Reasonable Accommodation in Training Safety.

    ERIC Educational Resources Information Center

    Sandoz, Jeff

    A pictograph and icon-driven training program has been specifically designed for educators who are responsible for teaching the developmentally disabled regarding the safe use of hazardous chemicals. In alignment with the Americans with Disabilities Act, it offers "reasonable accommodation" by those who educate and train this special…

  16. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  17. Review of electrochemical impregnation for nickel cadmium cells. [aerospace applications

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A method of loading active material within the electrodes of nickel cadmium cells is examined. The basic process of electrochemical impregnation of these electrodes is detailed, citing the principle that when current is applied reactions occur which remove hydrogen ions from solution, making the interior of the plaque less acidic. Electrodes result which are superior in energy density, stability, and life. The technology is reviewed and illustrated with typical performance data. Recommendations are made for additional research and development.

  18. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  19. STS payload data collection and accommodations analysis study. Volume 3: Accommodations analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Payload requirements were compared to launch site accommodations and flight accommodations for a number of Spacelab payloads. Experiment computer operating system accommodations were also considered. A summary of accommodations in terms of resources available for payload discretionary use and recommendations for Spacelab/STS accommodation improvements are presented.

  20. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, T.D.

    1996-07-16

    A method of making a negative electrode is described, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell. 7 figs.

  1. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect

    Not Available

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  2. International Space Station payload accommodations

    NASA Astrophysics Data System (ADS)

    Hartman, Daniel W.

    1999-01-01

    The International Space Station (ISS) is a low Earth orbiting facility for conducting research in life science, microgravity, Earth observations, and Engineering Research and Technology. Assembled on-orbit at a nominal altitude of 220 nautical miles, it will provide a shirt-sleeve environment for conducting research in six laboratories: the US Laboratory (US Lab), the Japanese Experiment Module (JEM), the European Columbus Orbiting Facility (COF), the Centrifuge Accommodations Module (CAM), and the Russian Research Modules. Supplies will be replenished using the Multi-Purpose Pressurized Logistics Module (MPLM), a conditioned pressurized transport carrier which will also return passive and perishable payload cargo to earth. External Earth observations can be performed by utilizing the payload attachment points on the truss, the Russian Science Power Platform, the JEM Exposed Facility (EF), and the COF backporch. The pressurized and external locations are equipped with a variety of electrical, avionics, fluids, and gas interfaces to support the experiments. ISS solar arrays, thermal radiators, communication system, propulsion, environmental control, and robotic devices provide the infrastructure to support sustained research. This paper, which reflects the design maturity of payload accommodations at the time of its submittal (10/20/98), is primarily based on the assembly complete configuration of the station. As the design matures, ISS Payload Accommodations will be updated to reflect qualification tests of components and associated analyses of the integrated performance.

  3. A new composite electrode architecture for energy storage devices

    NASA Technical Reports Server (NTRS)

    Ferro, Richard E.; Swain, Greg M.; Tatarchuk, B. J.

    1992-01-01

    The research objective is to determine how the electrode microstructure (architecture) affect the performance of the nickel hydroxide electrochemical system. It was found that microstructure and additional surface area makes a difference. The best architectures are the FIBREX/nickel and nickel fiber composite electrodes. The conditioning time for full utilization was greatly reduced. The accelerated increase in capacity vs. cycling appears to be a good indicator of the condition of the electrode/active material microstructure and morphology. Conformal deposition of the active material may be indicated and important. Also higher utilizations were obtained; greater than 80 pct. after less than 5 cycles and greater than 300 pct. after more than 5 cycles using nickel fiber composite electrode assuming a 1 electron transfer per equivalent.

  4. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  5. Independent and reciprocal accommodation in anisometropic amblyopia

    PubMed Central

    Horwood, Anna M.; Riddell, Patricia M

    2015-01-01

    Accommodation is considered to be a symmetrical response, and to be driven by the least ametropic and nonamblyopic eye in anisometropia. We report a case of a 4-year-old child with anisometropic amblyopia who accommodates asymmetrically, reliably demonstrating normal accommodation in the nonamblyopic eye and anti-accommodation of the amblyopic eye to near targets. The abnormal accommodation of the amblyopic eye remained largely unchanged over seven subsequent testing sessions undertaken over the course of therapy. We suggest that a congenital dysinnervation syndrome may result in relaxation of accommodation in relation to near cues and might be a hitherto-unconsidered additional etiologic factor in anisometropic amblyopia. PMID:20863728

  6. Development and fabrication of large vented nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1975-01-01

    A preliminary cell design for a 300AH vented nickel-zinc cell was established based on volume requirements and cell component materials selected by NASA Lewis Research Center. A 100AH cell configuration was derived from the 300AH cell design utilizing the same size electrodes, separators, and cell terminal hardware. The first cells fabricated were four groups of three cells each in the 100AH size. These 100AH experimental nickel-zinc cells had as common components the nickel positive electrodes (GFM), flexible inorganic separator (GFM) bags on the negative electrodes, pressed powder zinc oxide electrodes, and cell containers with hardware. The variations introduced were four differing electrolyte absorber (interseparator) systems used to encase the nickel positive electrodes of each cell group. The four groups of 100AH experimental vented nickel-zinc cells were tested to determine, based on cell performance, the best two interseparator systems. Using the two interseparator systems, two groups of experimental 300AH cells were fabricated. Each group of three cells differed only in the interseparator material used. The six cells were filled, formed and tested to evaluate the interseparator materials and investigate the performance characteristics of the 300AH cell configuration and its components.

  7. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  8. Determination of SCN- in urine and saliva of smokers and non-smokers by SCN(-)-selective polymeric membrane containing a nickel(II)-azamacrocycle complex coated on a graphite electrode.

    PubMed

    Ganjali, Mohammad Reza; Yousefi, Mohammad; Javanbakht, Mehran; Poursaberi, Tahereh; Salavati-Niasari, Masoud; Hajiagha-Babaei, Leila; Latifi, Elnaz; Shamsipur, Mojtaba

    2002-08-01

    The construction, performance characteristics, and application of a novel polymeric membrane coated on a graphite electrode with unique selectivity towards SCN- are reported. The electrode was prepared by incorporating Ni(II)-2,2,4,9,9,11-hexamethyltetraazacyclotetradecanediene perchlorate into a plasticized poly(vinyl chloride) membrane. The influences of membrane composition, pH and foreign ions were investigated. The electrode displays a near Nernstian slope (-57.8 mV decade-1) over a wide concentration range of 1 x 10(-7)-1 x 10(-1) M of SCN- ion. The electrode has a detection limit of 4.8 x 10(-8) M (2.8 ng/cm3) SCN- and shows response times of about 15 s and 120 s for low to high and high to low concentration sequences, respectively. The proposed sensor shows high selectivity towards SCN- over several common organic and inorganic anions. The electrode revealed a great enhancement in selectivity coefficients and detection limit for SCN-, in comparison with the previously reported electrodes. It was successfully applied to the direct determination of SCN- in milk and biological samples, and as an indicator electrode in titration of Ag+ ions with thiocyanate.

  9. Experimental study of cylindrical air electrodes

    NASA Astrophysics Data System (ADS)

    Viitanen, M.; Lamminen, J.; Lampinen, M. J.

    1991-11-01

    The electrodes studied here are cylindrical and prepared to be placed inside the inner surface of a sintered brass tube, which is nickel-plated. Previously we have reported on the preparation of flat air electrodes and also on long run tests carried out with these electrodes. The electrode material was prepared by the so-called wet method to obtain a carbon dough which is easy to handle. The material preparation remains the same, but owing to the different geometrical shape, the preparation of the electrode itself is quite different. We have studied here the long-term performance of these new cylindrical air electrodes and at the same time measured the carbonate content of the electrolyte. We have also analyzed by comparative methods which property of the electrode lowers the performance after a fairly long period.

  10. Accommodative spasm in siblings: A unique finding

    PubMed Central

    Rutstein, Robert P

    2010-01-01

    Accommodative spasm is a rare condition occurring in children, adolescents, and young adults. A familial tendency for this binocular vision disorder has not been reported. I describe accommodative spasm occurring in a brother and sister. Both children presented on the same day with complaints of headaches and blurred vision. Treatment included cycloplegia drops and bifocals. Siblings of patients having accommodative spasm should receive a detailed eye exam with emphasis on recognition of accommodative spasm. PMID:20534925

  11. Telemedicine for AIDS patients accommodations.

    PubMed

    Kulik, J F; de la Tribonnière, X; Bricon-Souf, N; Beuscart, R J; Mouton, Y

    1997-01-01

    People suffering from AIDS are subject to frequent hospitalisations. In some cases, they cannot go back home after hospitalisations, due to severe illness, family or sociologic problems. This is the reason why some therapeutic flats are at their disposal to make easier their medical follow-up after the hospital's discharge. In these Therapy Accommodation, they are treated by trained GP who often suffer from lack of information and lack of expertise in difficult cases. For this purpose we included these flats in the regional Telemedicine AIDS network to give these physicians free access to the computerised multimedia medical record of their patients and to provide them with synchronous co-operation facilities.

  12. Modal Identification Experiment accommodations review

    NASA Technical Reports Server (NTRS)

    Klich, Phillip J.; Stillwagen, Frederic H.; Mutton, Philip

    1994-01-01

    The Modal Identification Experiment (MIE) will monitor the structure of the Space Station Freedom (SSF), and measure its response to a sequence of induced disturbances. The MIE will determine the frequency, damping, and shape of the important modes during the SSF assembly sequence including the Permanently Manned Configuration. This paper describes the accommodations for the proposed instrumentation, the data processing hardware, and the communications data rates. An overview of the MIE operational modes for measuring SSF acceleration forces with accelerometers is presented. The SSF instrumentation channel allocations and the Data Management System (DMS) services required for MIE are also discussed.

  13. Procedural Guide to Accommodating Adults with Disabilities.

    ERIC Educational Resources Information Center

    Mellard, Daryl

    This guide is designed to provide a framework and sequence for working jointly with adult learners to confirm their disability, assess their functional needs, select appropriate accommodations, provide instruction for using accommodations, and monitor accommodation effectiveness. In addition to procedural information, the guide contains instructor…

  14. 22 CFR 142.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices § 142.12 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations... the accommodation would impose an undue hardship on the operation of the program or activity....

  15. 22 CFR 217.12 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices § 217.12 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations... the accommodation would impose an undue hardship on the operation of its program or activity....

  16. 7 CFR 15b.13 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices § 15b.13 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an... accommodation would impose an undue hardship on the operation of its program or activity. (b)...

  17. 22 CFR 142.12 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices § 142.12 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations... the accommodation would impose an undue hardship on the operation of the program or activity....

  18. 22 CFR 217.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices § 217.12 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations... the accommodation would impose an undue hardship on the operation of its program or activity....

  19. 14 CFR 1251.201 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Reasonable accommodation. 1251.201 Section... OF HANDICAP Employment Practices § 1251.201 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an otherwise qualified...

  20. 45 CFR 1170.22 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Reasonable accommodation. 1170.22 Section 1170.22... ASSISTED PROGRAMS OR ACTIVITIES Employment Practices § 1170.22 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an...

  1. 45 CFR 1151.32 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operation of its program or activity. (b) Reasonable accommodation may include: (1) Making facilities used... 45 Public Welfare 3 2010-10-01 2010-10-01 false Reasonable accommodation. 1151.32 Section 1151.32... Prohibited Employment § 1151.32 Reasonable accommodation. (a) A recipient shall make reasonable...

  2. 46 CFR 169.317 - Accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... separating accommodations from machinery spaces, paint lockers, storerooms, washrooms, and toilet facilities... 46 Shipping 7 2010-10-01 2010-10-01 false Accommodations. 169.317 Section 169.317 Shipping COAST... and Arrangement Living Spaces § 169.317 Accommodations. (a) Quarters must have sufficient fresh...

  3. Advanced Solar Observatory (ASO) accommodations requirements study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results of an accommodations analysis for the Advanced Solar Observatory on Space Station Freedom are reported. Concepts for the High Resolution Telescope Cluster, Pinhole/Occulter Facility, and High Energy Cluster were developed which can be accommodated on Space Station Freedom. It is shown that workable accommodations concepts are possible. Areas of emphasis for the next stage of engineering development are identified.

  4. 46 CFR 108.143 - Accommodation space.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Accommodation space. 108.143 Section 108.143 Shipping... EQUIPMENT Construction and Arrangement Structural Fire Protection § 108.143 Accommodation space. (a) Each corridor bulkhead in an accommodation space must be an A class or B class bulkhead except if an A...

  5. 46 CFR 108.143 - Accommodation space.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Accommodation space. 108.143 Section 108.143 Shipping... EQUIPMENT Construction and Arrangement Structural Fire Protection § 108.143 Accommodation space. (a) Each corridor bulkhead in an accommodation space must be an A class or B class bulkhead except if an A...

  6. 46 CFR 108.143 - Accommodation space.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Accommodation space. 108.143 Section 108.143 Shipping... EQUIPMENT Construction and Arrangement Structural Fire Protection § 108.143 Accommodation space. (a) Each corridor bulkhead in an accommodation space must be an A class or B class bulkhead except if an A...

  7. 46 CFR 108.143 - Accommodation space.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Accommodation space. 108.143 Section 108.143 Shipping... EQUIPMENT Construction and Arrangement Structural Fire Protection § 108.143 Accommodation space. (a) Each corridor bulkhead in an accommodation space must be an A class or B class bulkhead except if an A...

  8. 46 CFR 108.143 - Accommodation space.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accommodation space. 108.143 Section 108.143 Shipping... EQUIPMENT Construction and Arrangement Structural Fire Protection § 108.143 Accommodation space. (a) Each corridor bulkhead in an accommodation space must be an A class or B class bulkhead except if an A...

  9. Thin film fuel cell electrodes.

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  10. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  11. Advances in nickel hydrogen technology at Yardney Battery Division

    NASA Technical Reports Server (NTRS)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  12. Soyuz/ACRV accommodation study

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan; Gould, Marston J.; Dahlstrom, Eric

    1993-01-01

    Included is a set of viewgraphs that present the results of a study conducted at the LaRC Space Station Freedom Office at the request of the Space Station Freedom Level 1 Program Office and the JSC ACRV Project Office to determine the implications of accommodating two Soyuz TM spacecraft as Assured Crew Return Vehicles (ACRV) on the Space Station Freedom (SSF) at the Permanently Crewed Capability (PCC) stage. The study examined operational as well as system issues associated with the accommodation of the Soyuz for several potential configuration options. Operational issues considered include physical hardware clearances, worst case Soyuz departure paths, and impacts to baseline operations such as Pressurized Logistics Module (PLM) exchange, Space Station Remote Manipulator System (SSRMS) attachment, Extravehicular Activity (EVA), and automatic rendezvous and docking (AR&D). Systems impact analysis included determining differences between Soyuz interface requirements and SSF capabilities for the Electrical Power System (EPS), Thermal Control System (TCS), Communications and Tracking (C&T), Audio-Video Subsystem (A/V), Data Management System (DMS), and Environmental Control and Life Support System (ECLSS). Significant findings of this study have indicated that the current AV capability of the Soyuz will need to be increased to provide adequate departure clearances for a worst case escape from an uncontrolled SSF and that an interface element will be required to mate the Soyuz vehicles to station, provide for AR&D structural loads, and to house Soyuz-to-SSF system interfaces.

  13. Soyuz/ACRV accommodation study

    NASA Astrophysics Data System (ADS)

    Cruz, Jonathan; Gould, Marston J.; Dahlstrom, Eric

    1993-11-01

    Included is a set of viewgraphs that present the results of a study conducted at the LaRC Space Station Freedom Office at the request of the Space Station Freedom Level 1 Program Office and the JSC ACRV Project Office to determine the implications of accommodating two Soyuz TM spacecraft as Assured Crew Return Vehicles (ACRV) on the Space Station Freedom (SSF) at the Permanently Crewed Capability (PCC) stage. The study examined operational as well as system issues associated with the accommodation of the Soyuz for several potential configuration options. Operational issues considered include physical hardware clearances, worst case Soyuz departure paths, and impacts to baseline operations such as Pressurized Logistics Module (PLM) exchange, Space Station Remote Manipulator System (SSRMS) attachment, Extravehicular Activity (EVA), and automatic rendezvous and docking (AR&D). Systems impact analysis included determining differences between Soyuz interface requirements and SSF capabilities for the Electrical Power System (EPS), Thermal Control System (TCS), Communications and Tracking (C&T), Audio-Video Subsystem (A/V), Data Management System (DMS), and Environmental Control and Life Support System (ECLSS). Significant findings of this study have indicated that the current AV capability of the Soyuz will need to be increased to provide adequate departure clearances for a worst case escape from an uncontrolled SSF and that an interface element will be required to mate the Soyuz vehicles to station, provide for AR&D structural loads, and to house Soyuz-to-SSF system interfaces.

  14. Bipolar Nickel-Metal Hydride Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  15. Vestibular-ocular accommodation reflex in man

    NASA Technical Reports Server (NTRS)

    Clark, B.; Randle, R. J.; Stewart, J. D.

    1975-01-01

    Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present paper studies a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 sec of rotating. Accommodation was recorded continuously on an infrared optometer for 110 sec under two conditions: while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.

  16. Performance model of a recirculating stack nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for

  17. MEMS conformal electrode array for retinal implant.

    SciTech Connect

    Wessendorf, Kurt O.; Christenson, Todd R.; Myers, Ramona Lynn; Lemp, Thomas; Okandan, Murat; James, Conrad D.; Shul, Randy John; Stein, David J.; Baker, Michael Sean

    2003-03-01

    Retinal prosthesis projects around the world have been pursuing a functional replacement system for patients with retinal degeneration. In this paper, the concept for a micromachined conformal electrode array is outlined. Individual electrodes are designed to float on micromachined springs on a substrate that will enable the adjustment of spring constants-and therefore contact force-by adjusting the dimensions of the springs at each electrode. This also allows the accommodation of the varying curvature/topography of the retina. We believe that this approach provides several advantages by improving the electrode/tissue interface as well as generating some new options for in-situ measurements and overall system design.

  18. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  19. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  20. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  1. Nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1991-01-01

    The Hubble Telescope Battery Testbed at MSFC uses the Nickel Cadmium (NiCd) Battery Expert System (NICBES-2) which supports the evaluation of performance of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort is summarized which was used to modify NICBES-2 to accommodate Nickel Hydrogen (NiH2) battery environment now in MSFC testbed. The NICBES-2 is implemented on a Sun Microsystem and is written in SunOS C and Quintus Prolog. The system now operates in a multitasking environment. NICBES-2 spawns three processes: serial port process (SPP); data handler process (DHP); and the expert system process (ESP) in order to process the telemetry data and provide the status and action advice. NICBES-2 performs orbit data gathering, data evaluation, alarm diagnosis and action advice and status and history display functions. The adaptation of NICBES-2 to work with NiH2 battery environment required modification to all of the three component processes.

  2. Understanding reduction of carbon tetrachloride at nickel surfaces.

    PubMed

    Wang, Jiankang; Blowers, Paul; Farrell, James

    2004-03-01

    Nickel has been found to be an effective cathode material and catalyst for reductive destruction of chlorinated solvents in contaminated water. This study investigated reductive dechlorination of carbon tetrachloride (CT) at a nickel rotating disk electrode using chronoamperometry and electrochemical impedance spectroscopy. Chronoamperometry experiments were performed to determine rates of CT reduction as a function of the electrode potential, pH, CT concentration, and temperature. The reaction products of CT dechlorination were 95 +/- 4% methane and 4.1 +/- 2.5% chloroform. Only trace levels of methylene chloride and chloromethane were produced, indicating that sequential hydrogenolysis was not the predominant pathway for methane production. Electrochemical impedance spectroscopy showed that the rate-limiting step for methane production was the transfer of the first electron to a physically adsorbed CT molecule. The temperature independence of the electron transfer coefficient and the decreasing activation energy with decreasing electrode potential indicated that the rate-limiting step involved an outer-sphere electron transfer. At neutral pH values, oxides inactivated much of the electrode surface for both CT reduction and hydrogen evolution. At lower pH values, oxide dissolution served to increase the electroactive surface area of the disk electrode. Anson analysis and kinetic modeling showed that CT adsorption to electroactive sites was a nonlinear function of the CT concentration and was in equilibrium with the bulk solution. CT dechlorination rates on nickel electrodes were 16 times slower than those on iron electrodes under similar conditions. However, CT reactions at nickel surfaces produced predominantly methane as the first detectable product, while reduction at iron surfaces produced chloroform. These results suggest that, although nickel is not a catalyst for the rate-limiting step for CT dechlorination, it may serve a catalytic role in subsequent

  3. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  4. Layered method of electrode for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1991-07-30

    A process for fabricating a fuel electrode comprising: slurry dipping to form layers which are structurally graded from all or mostly all stabilized zirconia at a first layer, to an outer most layer of substantially all metal powder, such an nickel. Higher performaance fuel electrodes may be achieved if sinter active stabilized zirconia doped for electronic conductivity is used.

  5. The cadmium electrode: Review of the status of research

    NASA Technical Reports Server (NTRS)

    Gross, S.; Glockling, R. J.

    1976-01-01

    Investigations characterizing the negative cadmium electrode used in a nickel cadmium battery cell are summarized with citations to references where more detailed information is available. Emphasis is placed on data pertinent to aerospace applications. An evaluation of some of the published results of cadmium electrode research is included.

  6. Nickel transfer by fingers.

    PubMed

    Isnardo, D; Vidal, J; Panyella, D; Vilaplana, J

    2015-06-01

    We investigated fingers as a potential source of nickel transfer to the face in patients with allergic contact dermatitis to nickel and a history of facial dermatitis. Samples were collected from the fingers and cheeks of volunteers using the stripping method with standard adhesive tape, and nickel levels were quantified using mass spectrometry. Fingers and cheeks of individuals who had handled coins were both positive for nickel, with levels ranging from 14.67 to 58.64 ppm and 1.28 to 8.52 ppm, respectively. The levels in a control group were considerably and significantly lower. Transfer of nickel from a person's fingers to their face after handling a nickel-containing object could explain the presence of facial dermatitis in patients with nickel hypersensitivity.

  7. Initial evaluation tests of General Electric Company 26.5 ampere-hour nickel-cadmium spacecraft cells with auxiliary electrodes for the TIROS-N and NOAA-A satellites

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1978-01-01

    This evaluation test program had the purpose to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are referenced to as normally expected values based on past performance of aerospace nickel-cadmium cells with demonstrated life characteristics. A requirement does not constitute a limit for discontinuance from test.

  8. A new type of auxiliary electrode for alkaline zinc cells

    NASA Astrophysics Data System (ADS)

    Skowronski, J. M.; Reksc, Wl.; Jurewicz, K.

    1988-07-01

    Auxiliary electrodes having a low hydrogen overpotential were prepared by electrodepositing active nickel onto chemically-metallized polypropylene fiber. They effectively overcame the problem of zinc anode shape change in alkaline electrolyte by dissolving residual zinc, which remained on the anode plates due to passivation and exhaustion of cathode capacity. Residual discharge with such an auxiliary electrode restores the balance of charge efficiencies. Polypropylene-nickel auxiliary electrodes with a very long lifespan can be made in various shapes and sizes. Their polarization curves and the effect they have on the zinc anode discharge process are both illustrated.

  9. A review of nickel hydrogen battery technology

    NASA Astrophysics Data System (ADS)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  10. A review of nickel hydrogen battery technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  11. Nickel-Hydrogen Batteries - An Overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; ODonnell, Patricia M.

    1996-01-01

    This article on nickel-hydrogen batteries is an overview of the various nickel-hydrogen battery design options, technical accomplishments, validation test results, and trends. There is more than one nickel-hydrogen battery design, each having its advantage for specific applications. The major battery designs are Individual Pressure Vessel (IPV), Common Pressure Vessel (CPV), bipolar, and low-pressure metal hydride. State-of-the-art nickel-hydrogen batteries are replacing nickel-cadmium batteries in almost all geosynchronous Earth orbit applications requiring power above 1 kW. However, for the more severe Low-Earth Orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000-10,000 cycles at 60 - 80 % DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel-hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep Depths of Discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low-cost satellites. Hence, the challenge is to reduce battery mass, volume, and cost. A key is to develop a lightweight nickel electrode and alternate battery designs. A CPV nickel-hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume, and manufacturing costs. A 10-A-h CPV battery has successfully provided power on the relatively short-lived Clementine spacecraft. A bipolar nickel -hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 % DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high-pulse power capability. A low-pressure aerospace nickel-metal-hydride battery cell has been developed and is on the market. It is a prismatic design that has the advantage of a significant reduction in volume and a reduction in manufacturing cost.

  12. [Current progress of the artificial accommodation system].

    PubMed

    Bretthauer, G; Gengenbach, U; Nagel, J A; Beck, C; Fliedner, J; Koker, L; Krug, M; Martin, T; Stachs, O; Guthoff, R F

    2014-12-01

    In case of presbyopia or cataract the "artificial accommodation system" represents one future possibility to durably restore the ability to accommodate. The work presented describes recent progress in the development of the artificial accommodation system. Major advances were achieved in the fields of the actuator system for the active optics, the pupil near reflex sensor, the communication system, the power supply system as well as in system integration. Beside the technical advances, first trials were performed to implant the artificial accommodation system into animals. These trials showed that the new lens shaped design and the C-shaped haptics are beneficial for implantation and secure fixation of the implant inside the capsular bag.

  13. Payload accommodations. Satellite servicing support

    NASA Technical Reports Server (NTRS)

    Lee, Roscoe

    1990-01-01

    The proposed technology studies discussed at the Space Transportation Avionics Symposium in Williamsburg, VA on 7 to 9 November 1989, are discussed. The discussions and findings of the Payload Accommodations Subpanel are also summarized. The major objective of the proposed focused technology development is to develop and demonstrate (ground and flight) autonomous rendezvous, proximity operations, and docking/berthing capabilities to support satellite servicing. It is expected that autonomous rendezvous and docking (AR and D) capabilities will benefit both the users (e.g., satellite developers and operators) and the transportation system developers and operators. AR and D will provide increased availability of rendezvous and docking services by reducing the operational constraints associated with current capabilities. These constraints include specific lighting conditions, continuous space-to-ground communications, and lengthy ground tracking periods. AR and D will provide increased cost efficiency with the potential for reduced propellant expenditures and workloads (flight and/or ground crews). The AR and D operations will be more consistent, allowing more flexibility in the design of the satellite control system and docking/berthing mechanisms.

  14. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  15. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  16. Advanced IPV Nickel/Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O.; Soltis, D. G.

    1986-01-01

    Expansion and contraction of electrode stack accommodated to increase cycle life. Three features of advanced designs new and not incorporated but fully compatible in either contemporary cells: use of alternate methods of oxygen recombination, serrated-edge separators, and expandable stack. Designs also consider electrolyte volume requirements over life of cells and are fully compatible with state-of-the-art designs. Cells improve performance, life, and usable energy leading to lighter storage devices for low Earthorbit applications for commercial or government applications.

  17. Dual role of nickel in sodium/nickel chloride batteries

    NASA Astrophysics Data System (ADS)

    Prakash, J.; Redey, L.; Skocypec, R.; Lowrey, R.; Vissers, D.

    Corrosion of Ni metal in chloroaluminate melts containing sulfur additive was investigated in order to see whether Ni could be used not only as active material but also as current collector and cell- case material. Three layers were found after three days; they comprised NiCl2, Ni sulfide, and NaAlCl4. Ni-200 wires were also tested under tension in NaAlCl4 + 2 wt percent S at 300 C; no stress corrosion was observed. Results show that Ni metal is very stable even under severe cell conditions with respect to corrosion or electochemical dissolution. The nickel metal, therefore, can serve the dial role of active material for the positive electode and material for the current-collector and cell-case assembly in the Na/NiCl2 cell with sulfur additive in the positive electrode.

  18. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  19. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOEpatents

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  20. Method of preparing a dimensionally stable electrode for use in a MCFC

    DOEpatents

    Swarr, Thomas E.; Wnuck, Wayne G.

    1987-12-22

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H.sub.2 gas mixture in a ratio of about 100/1 and at a temperature below 800.degree. C. is used as the oxidizing medium. This method permits the use of less than 5 weight percent chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  1. Low-Earth-Orbit (LEO) Life Cycle Evaluation of Nickel-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Coates, D.; Ferreira, E.; Nyce, M.; Charkey, A.

    1997-01-01

    The conclusion of the Low-Earth-Orbit (LEO) life cycle evaluation of nickel-zinc batteries are: that composite nickel electrode provide excellent performance at a reduced weight and lower cost; calcium / zinc electrode minimizes shape change; unioptimized cell designs yield 60 Wh/kg; nickel-zinc delivers 600 cycles at 80% DOD; long cycle life obtainable at low DOD; high rate capability power density; long-term failure mechanism is stack dry; and anomalous overcharge (1120%) greatly affected cell performance but did not induce failure and was recoverable.

  2. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates.

    PubMed

    Qu, Weidong; Zhang, Luyan; Chen, Gang

    2013-04-15

    Graphene-nickel nanoparticle hybrid was prepared by the one-step far infrared-assisted reduction of graphene oxide and nickel (II) ions using hydrazine. It was loaded on the surface of a magnetic electrode for electrochemical sensing. The feasibility and performance of the novel electrode were demonstrated by measuring carbohydrates using cyclic voltammetry and amperometry. It demonstrated that nickel nanoparticles decorated on graphene sheets exhibited higher electrocatalytic activity toward the oxidation of carbohydrates while graphene improved the electron transduction. The synergistic effect significantly enhanced the current response of carbohydrates.

  3. 14 CFR 1251.201 - Reasonable accommodation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reasonable accommodation to the known physical or mental limitations of an otherwise qualified handicapped... hardship on the operation of its program or activity. (b) Reasonable accommodation may include: (1) Making... recipient's programor activity, factors to be considered include: (1) The overall size of the...

  4. 28 CFR 42.511 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; POLICIES AND PROCEDURES Nondiscrimination Based on Handicap in Federally Assisted Programs or Activities...) A recipient shall make reasonable accommodation to the known physical or mental limitations of an... the operation of its program or activity. (b) Reasonable accommodation may include making...

  5. 45 CFR 1232.10 - Reasonable accommodation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICE NONDISCRIMINATION ON BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL... shall make reasonable accommodation to the known physical or mental limitations of an otherwise... accommodation would impose an undue hardship on the operation of its program or activity. (b)...

  6. 45 CFR 1232.10 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICE NONDISCRIMINATION ON BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL... shall make reasonable accommodation to the known physical or mental limitations of an otherwise... accommodation would impose an undue hardship on the operation of its program or activity. (b)...

  7. 38 CFR 18.412 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... known physical or mental limitations of a handicapped applicant or employee if such accommodation would... that the accommodation would impose an undue hardship on the operation of its program or activity. (b... impose an undue hardship on the operation of a recipient's program or activity, factors to be...

  8. 46 CFR 177.710 - Overnight accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overnight accommodations. 177.710 Section 177.710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Crew Spaces § 177.710 Overnight accommodations....

  9. 50 CFR 260.101 - Lavatory accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... toilet accommodations, including, but not being limited to, running hot water (135 °F. or more) and cold water, soap, and single service towels, shall be provided. Such accommodations shall be in or near... which provides an adequate flow of water for washing hands. (d) Durable signs shall be...

  10. Accommodation Outcomes and the ICF Framework

    ERIC Educational Resources Information Center

    Schreuer, Naomi

    2009-01-01

    Accommodation of the environment and technology is one of the key mediators of adjustment to disability and participation in community. In this article, accommodations are tested empirically as facilitators of return to work and participation, as defined by the "International Classification of Disability, Function, and Health" (ICF) and…

  11. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Reasonable accommodation. 605.12 Section 605.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...; and (3) The nature and cost of the accommodation needed. (d) A recipient may not deny any...

  12. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Reasonable accommodation. 605.12 Section 605.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...; and (3) The nature and cost of the accommodation needed. (d) A recipient may not deny any...

  13. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Reasonable accommodation. 605.12 Section 605.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...; and (3) The nature and cost of the accommodation needed. (d) A recipient may not deny any...

  14. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Reasonable accommodation. 605.12 Section 605.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...; and (3) The nature and cost of the accommodation needed. (d) A recipient may not deny any...

  15. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Reasonable accommodation. 605.12 Section 605.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...; and (3) The nature and cost of the accommodation needed. (d) A recipient may not deny any...

  16. Accommodation Requests: Who Is Asking for What?

    ERIC Educational Resources Information Center

    Von Schrader, Sarah; Xu, Xu; Bruyère, Susanne M.

    2014-01-01

    Purpose: Workplace accommodations are central to improving employment outcomes for people with and without disabilities; this study presents national estimates comparing accommodation requests and receipt as reported by individuals with and without disabilities. Method: Estimates are developed from the May 2012 Current Population Survey Disability…

  17. Accommodations: Assisting Students with Disabilities. Third Edition

    ERIC Educational Resources Information Center

    Beech, Marty

    2010-01-01

    This document updates "Accommodations: Assisting Students with Disabilities. A Guide for Educators," published by the Florida Department of Education (FDOE) in 2003. This document is written to assist school district personnel and parents when making decisions about the use of accommodations by students with disabilities in instructional…

  18. Bearing-Mounting Concept Accommodates Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  19. 50 CFR 260.101 - Lavatory accommodations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facilities for cleaning and sanitizing utensils and hands, shall be provided. (a) Adequate lavatory and toilet accommodations, including, but not being limited to, running hot water (135 °F. or more) and cold water, soap, and single service towels, shall be provided. Such accommodations shall be in or...

  20. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  1. Improving Accommodations Outcomes: Monitoring Instructional and Assessment Accommodations for Students with Disabilities

    ERIC Educational Resources Information Center

    Christensen, Laurene L.; Thurlow, Martha L.; Wang, Ting

    2009-01-01

    This document presents a five-step process for schools, districts, and states to use in monitoring accommodations for instruction and assessment. This document was designed to be a companion to the "Council of Chief State School Officers' Accommodations Manual: How to Select, Administer, and Evaluate Use of Accommodations for Instruction and…

  2. Consequences of Using Testing Accommodations: Student, Teacher, and Parent Perceptions of and Reactions to Testing Accommodations

    ERIC Educational Resources Information Center

    Lang, Sylvia C.; Kumke, Patrick J.; Ray, Corey E.; Cowell, Erin L.; Elliott, Stephen N.; Kratochwill, Thomas R.; Bolt, Daniel M.

    2005-01-01

    This study examined student, parent, and teacher perceptions of the use of testing accommodations and the relationship between student perceptions of testing accommodations and their disability status and grade level. Students with and without disabilities completed math and reading achievement tests with and without accommodations. Students,…

  3. A sodium/beta-alumina/nickel chloride secondary cell

    NASA Astrophysics Data System (ADS)

    Galloway, R. C.

    1987-01-01

    Nickel chloride has been studied in a cell system, sodium/beta alumina/sodium tetrachloroaluminate/nickel chloride, which is analogous to two existing rechargeable high energy density cells based on iron chloride and sodium sulfur. The cell reaction can be written as: 2Na + NiCl2 yields on discharge Ni + 2NaCl. The positive electrode, conveniently assembled in the discharged state, was a nickel/sodium choride sinter. Molten sodium tetrachloroaluminate electrolyte (NaAlCl4) acted as intermediate between electrode and beta alumina tube. Encouraging results were obtained in terms of low resistances and rates of discharge for cells up to 20-Ah capacity. Cells were operated over the temperature range from 230 to 400 C where the OCV of the cell reaction varied from 2.60 V to 2.56 V.

  4. Investigation of optical properties of nickel oxide thin films deposited on different substrates

    NASA Astrophysics Data System (ADS)

    Nama Manjunatha, Krishna; Paul, Shashi

    2015-10-01

    Nickel oxide has been investigated for several potential applications, namely, ultraviolet detectors, electro chromic devices, displays, diodes for light emitting, transparent conductive electrode, and optoelectronic devices. These applications require an in depth analysis of nickel oxide prior to its exploration in aforementioned devices. Optical properties of materials were investigated by depositing thin film of nickel oxide on different substrates in order to understand if the choice of substrate can have effect on deducing various optical parameters and can lead to wrong conclusions. In view of this, we have investigated optical properties of nickel oxide deposited on different substrates (glass, transparent plastic, sapphire, potassium bromide, and calcium fluoride).

  5. Electrochromic counter electrode

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Jorgensen, Gary J.

    2005-02-22

    The present invention discloses an amorphous material comprising nickel oxide doped with tantalum that is an anodically coloring electrochromic material. The material of the present invention is prepared in the form of an electrode (200) having a thin film (202) of an electrochromic material of the present invention residing on a transparent conductive film (203). The material of the present invention is also incorporated into an electrochromic device (100) as a thin film (102) in conjunction with a cathodically coloring prior art electrochromic material layer (104) such that the devices contain both anodically coloring (102) and cathodically coloring (104) layers. The materials of the electrochromic layers in these devices exhibit broadband optical complimentary behavior, ionic species complimentary behavior, and coloration efficiency complimentary behavior in their operation.

  6. Effect of Phenylephrine on the Accommodative System

    PubMed Central

    Del Águila-Carrasco, Antonio J.; Bernal-Molina, Paula; Ferrer-Blasco, Teresa; López-Gil, Norberto; Montés-Micó, Robert

    2016-01-01

    Accommodation is controlled by the action of the ciliary muscle and mediated primarily by parasympathetic input through postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia. During accommodation the pupil constricts to increase the depth of focus of the eye and improve retinal image quality. Researchers have traditionally faced the challenge of measuring the accommodative properties of the eye through a small pupil and thus have relied on pharmacological agents to dilate the pupil. Achieving pupil dilation (mydriasis) without affecting the accommodative ability of the eye (cycloplegia) could be useful in many clinical and research contexts. Phenylephrine hydrochloride (PHCl) is a sympathomimetic agent that is used clinically to dilate the pupil. Nevertheless, first investigations suggested some loss of functional accommodation in the human eye after PHCl instillation. Subsequent studies, based on different measurement procedures, obtained contradictory conclusions, causing therefore an unexpected controversy that has been spread almost to the present days. This manuscript reviews and summarizes the main research studies that have been performed to analyze the effect of PHCl on the accommodative system and provides clear conclusions that could help clinicians know the real effects of PHCl on the accommodative system of the human eye. PMID:28053778

  7. Ageing of nickel used as sensitive material for early detection of sudomotor dysfunction

    NASA Astrophysics Data System (ADS)

    Ayoub, Hanna; Lair, Virginie; Griveau, Sophie; Galtayries, Anouk; Brunswick, Philippe; Bedioui, Fethi; Cassir, Michel

    2012-01-01

    The surface ageing of nickel electrodes was studied in the frame of the development of non-invasive biomedical devices, dedicated to the detection of sudomotor dysfunction manifested by an alteration of the ionic balance in human sweat. In this kind of technology, low voltage potentials with variable amplitudes are applied to nickel electrodes, placed on skin regions with a high density of sweat glands, and the electrical responses are measured. The trick is that nickel electrodes play alternately the role of anode and cathode, thus the analysis of the temporal evolution of the physico-chemical properties of nickel is of prime importance to ensure the good performance of the device. Electrochemical measurements coupled to surface chemical characterizations (X-ray photoelectron spectroscopy (XPS), Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS)) were performed on pure Ni samples, immersed in buffered chloride solutions mimicking human sweat. The shapes of voltammograms, recorded in a restricted anodic potential range, show that the nickel surface was gradually passivated as a function of the number of scans. This was confirmed by XPS data, with the formation of a 1 nm thick duplex layer composed by nickel hydroxide (outermost layer) and nickel oxide (inner layer). In a negative extended potential range, though the electrochemical behavior of electrodes was not modified upon cycling the potential, XPS data show that the inner layer was thickening, indicating a surface degradation of the nickel electrode. Below pitting potentials, adsorbed chloride was only hardly detected by XPS, and the surface composition of the nickel samples was similar after treatments in chloride or chloride-free buffered solutions. In a larger potential range enabling to reach the breakdown potential, the highly chemically sensitive ToF-SIMS characterization pointed out that the surface concentration of adsorbed chloride was higher in pits than elsewhere on the surface sample.

  8. Impedance analysis of bio-fuel cell electrodes.

    PubMed

    Ouitrakul, Sarinee; Sriyudthsak, Mana; Charojrochkul, Sumittra; Kakizono, Toshihide

    2007-12-15

    To determine the criteria for the selection of an electrode suitable for a bio-fuel cell (BFC), five electrodes, i.e. silver, aluminum, nickel, stainless steel and carbon fiber cloth were investigated. The performance of the BFC according to the electrode material, including the generated voltage, current density and power density was observed. These results show that the materials used for constructing the electrodes affect the performance of the BFC. An impedance analysis was used to describe the characteristics of the electrodes in the solution. Equivalent circuits of each component such as solution, electrodes-solution interface and electrode were determined from the impedance data. The constant-phase element (CPE) model was applied for data analyzing. It was found that stainless steel, nickel and aluminum behaved like a polarized electrode which has a high electrode-solution interfacial impedance, while carbon fiber cloth and silver had a low impedance like a non-polarized electrode. The impedance data indicated that a higher interfacial impedance will result in a higher loading effect. The results can be summarized that the carbon fiber cloth electrode offers a good electron transfer in the system and thus supplies higher power to the external load.

  9. [Techniques for measuring phakic and pseudophakic accommodation. Methodology for distinguishing between neurological and mechanical accommodative insufficiency].

    PubMed

    Roche, O; Roumes, C; Parsa, C

    2007-11-01

    The methods available for studying accommodation are evaluated: Donder's "push-up" method, dynamic retinoscopy, infrared optometry using the Scheiner principle, and wavefront analysis are each discussed with their inherent advantages and limitations. Based on the methodology described, one can also distinguish between causes of accommodative insufficiency. Dioptric insufficiency (accommodative lag) that remains equal at various testing distances from the subject indicates a sensory/neurologic (afferent), defect, whereas accommodative insufficiency changing with distance indicates a mechanical/restrictive (efferent) defect, such as in presbyopia. Determining accommodative insufficiency and the cause can be particularly useful when examining patients with a variety of diseases associated with reduced accommodative ability (e.g., Down syndrome and cerebral palsy) as well as in evaluating the effectiveness of various potentially accommodating intraocular lens designs.

  10. Nickel Curie Point Engine

    ERIC Educational Resources Information Center

    Chiaverina, Chris; Lisensky, George

    2014-01-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient…

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. The nickel problem.

    PubMed

    Blanco-Dalmau, L

    1982-07-01

    Clinical use of the new base-metal alloys in restorative dentistry involves a risk for both dentist and patient. It is the responsibility of the dentist to determine if a patient is allergic to nickel prior to treatment with a restoration containing a nickel alloy. A patch test is recommended for nickel sensitivity in every patient when such a restoration is planned. In addition, the dentist should include in the work authorization order to the dental laboratory the type of alloy he wants for a particular patient. The dentist should be prepared to check for the presence of nickel in a casting suspected of containing it using the dimethylglyoxime test. The evaluation record for nickel sensitivity should include the patient's name, age, history of allergies, medication, name of drug, dosage, and reaction. The record should be kept in the patient's chart.

  13. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  14. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  15. NASA Lewis advanced IPV nickel-hydrogen technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80

  16. Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing

    SciTech Connect

    Zeng, Aiping; Jin, Chunyan; Cho, Sang-Jin; Seo, Hyun Ook; Kim, Young Dok; Lim, Dong Chan; Kim, Doo Hwan; Hong, Byungyou; Boo, Jin-Hyo

    2012-10-15

    Electrochemical method has been employed in this work to modify nitrogen-doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel nano-particle-modified N-DLC electrodes. The electrochemical behavior of the nickel nano-particle-modified N-DLC electrodes has been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano-particles on the N-DLC surface have been investigated using micro-Raman spectroscopy and atomic force microscopy. The nickel nano-particle-modified N-DLC electrode exhibits a high catalytic activity and low background current. This result shows that the nickel nano-particle deposition on N-DLC surface could be a promising method to fabricate novel electrode materials for glucose sensing.

  17. 10 CFR 1040.67 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES... known physical or mental limitations of an otherwise qualified handicapped applicant or employee unless... of its program or activity. (b) Reasonable accommodation may include: (1) Making facilities used...

  18. 45 CFR 84.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices... physical or mental limitations of an otherwise qualified handicapped applicant or employee unless the... program or activity. (b) Reasonable accommodation may include: (1) Making facilities used by...

  19. Accommodation of workers with chronic neurologic disorders.

    PubMed

    Bleecker, Margit L; Barnes, Sheryl K

    2015-01-01

    The ability to work is important to those with chronic neurologic disorders (CND) and to the aging workforce. Many signs and symptoms are similar in those with CND and normal aging, but may interfere with the ability to work if not appropriately accommodated. This requires the healthcare provider to recognize the specific features of the CND that interferes with work and how it can be accommodated. Review of the American with Disabilities Act and the subsequent amendment informs the healthcare provider as to what is covered under the law and how the disability can be accommodated. Overall employers want to retain qualified employees and therefore accommodating workers is beneficial to both the employee with CND and the employer.

  20. 50 CFR 260.101 - Lavatory accommodations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fishery Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A... water, soap, and single service towels, shall be provided. Such accommodations shall be in or...

  1. 50 CFR 260.101 - Lavatory accommodations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Fishery Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A... water, soap, and single service towels, shall be provided. Such accommodations shall be in or...

  2. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.

  3. Modified method of accommodative facility evaluation

    NASA Astrophysics Data System (ADS)

    Kedzia, Boleslaw; Pieczyrak, Danuta; Tondel, Grazyna; Maples, Willis C.

    1998-10-01

    Background: Accommodative facility testing is a common test performed by optometrist to investigate an individuals skill at focusing objects at near and at far. The traditional test however harbors possible confounding variables including individual variance in reaction time, visual acuity, verbal skills and oculomotor function. We have designed a test procedure to control these variables. Methods: Children were evaluated with a traditional accommodative facility test, a test which evaluated reaction time and language skill but without accommodative (plano lenses) and a test which evaluated reaction time, language skill and accommodative facility (+/- 2.00 D lenses). Results: Speed of reaction time was 2.9 sec/cycle for the plano lenses (for dominant eye). Speed of reaction with +/- 2.00 D lenses was 6.6 sec/cycle for dominant eye and the monocular speed of accommodations was calculated to average 3.7 sec/cycle. Normative data reported in the literature was calculated to be 5.5 sec/cycle. Discussion: We found that both our method which controls for confounding variables the traditional method reveal similar findings but that individual subjects would pass one method and fail the other. This is attributed to variation in the reaction time and digit naming skill. Conclusions: Although both methods reap similar results, both methods should be employed to discover, in those who score below the expected finding, to tease out whether or not the fault falls within the reaction time/language area or whether it is a true accommodative facility dysfunction.

  4. Positive electrode processing for Hughes NiH2 cells

    NASA Technical Reports Server (NTRS)

    Bleser, C. A.

    1982-01-01

    The basic procedures were developed for the manufacture of nickel cadmium batteries. An electrochemical impregnation in an aqueous ethanol solution is used in this process. Several additional controls were instituted for production of flight electrodes, including a Hughes controlled MCD, a solution reserved exclusively for the impregnation of Hughes positive electrodes a system of complete traceability for individual electrodes, an electrical characterization test to provide information on weight and capacity at the plaque level, and a stress test to provide data on capacity, weight, and physical parameters at the electrode level.

  5. [Energy and memory efficient calculation of the accommodation demand in the artificial accommodation system].

    PubMed

    Nagel, J A; Beck, C; Harms, H; Stiller, P; Guth, H; Stachs, O; Bretthauer, G

    2010-12-01

    Presbyopia and cataract are gaining more and more importance in the ageing society. Both age-related complaints are accompanied with a loss of the eye's ability to accommodate. A new approach to restore accommodation is the Artificial Accommodation System, an autonomous micro system, which will be implanted into the capsular bag instead of a rigid intraocular lens. The Artificial Accommodation System will, depending on the actual demand for accommodation, autonomously adapt the refractive power of its integrated optical element. One possibility to measure the demand for accommodation non-intrusively is to analyse eye movements. We present an efficient algorithm, based on the CORDIC technique, to calculate the demand for accommodation from magnetic field sensor data. It can be shown that specialised algorithms significantly shorten calculation time without violating precision requirements. Additionally, a communication strategy for the wireless exchange of sensor data between the implants of the left and right eye is introduced. The strategy allows for a one-sided calculation of the demand for accommodation, resulting in an overall reduction of calculation time by 50 %. The presented methods enable autonomous microsystems, such as the Artificial Accommodation System, to save significant amounts of energy, leading to extended autonomous run-times.

  6. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  7. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  8. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect

    Paxton, Blaine Kermit

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  9. Overview for Attached Payload Accommodations and Environments

    NASA Technical Reports Server (NTRS)

    Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James

    2007-01-01

    External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.

  10. Nickel Curie point engine

    NASA Astrophysics Data System (ADS)

    Chiaverina, Chris; Lisensky, George

    2014-04-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient heat source. A simple but elegant device illustrates this phenomenon beautifully.

  11. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  12. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  13. Bio-inspired accommodating fluidic intraocular lens.

    PubMed

    Qiao, Wen; Johnson, Daniel; Tsai, Frank S; Cho, Sung Hwan; Lo, Yu-Hwa

    2009-10-15

    The invention of intraocular lens (IOL), a substitute for crystalline lens, represents a major advancement in cataract surgery. After about sixty years of IOL development, one key remaining problem is its limited accommodation range compared with natural eyes. To overcome this performance limit, we explore bio-inspired fluidic IOL. By mimicking the working principle of natural eyes, a fluidic intraocular lens can achieve an exceedingly large accommodation range. An experiment on fluidic IOL demonstrated a very high tuning range of 12 D. This accommodation range was achieved with a modest amount of force (0.06 N) and equatorial radius change (0.286 mm), in conditions matching well with the characteristics of aged eyes.

  14. Prediction of anthropometric accommodation in aircraft cockpits

    NASA Astrophysics Data System (ADS)

    Zehner, Gregory Franklin

    Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.

  15. Experimental investigations of pupil accommodation factors.

    PubMed

    Lee, Eui Chul; Lee, Ji Woo; Park, Kang Ryoung

    2011-08-17

    PURPOSE. The contraction and dilation of the iris muscle that controls the amount of light entering the retina causes pupil accommodation. In this study, experiments were performed and two of the three factors that influence pupil accommodation were analyzed: lighting conditions and depth fixations. The psychological benefits were not examined, because they could not be quantified. METHODS. A head-wearable eyeglasses-based, eye-capturing device was designed to measure pupil size. It included a near-infrared (NIR) camera and an NIR light-emitting diode. Twenty-four subjects watched two-dimensional (2D) and three-dimensional (3D) stereoscopic videos of the same content, and the changes in pupil size were measured by using the eye-capturing device and image-processing methods: RESULTS. The pupil size changed with the intensity of the videos and the disparities between the left and right images of a 3D stereoscopic video. There was correlation between the pupil size and average intensity. The pupil diameter could be estimated as being contracted from approximately 5.96 to 4.25 mm as the intensity varied from 0 to 255. Further, from the changes in the depth fixation for the pupil accommodation, it was confirmed that the depth fixation also affected accommodation of pupil size. CONCLUSIONS. It was confirmed that the lighting condition was an even more significant factor in pupil accommodation than was depth fixation (significance ratio: approximately 3.2:1) when watching 3D stereoscopic video. Pupil accommodation was more affected by depth fixation in the real world than was the binocular convergence in the 3D stereoscopic display.

  16. Aerobrake assembly with minimum Space Station accommodation

    NASA Technical Reports Server (NTRS)

    Katzberg, Steven J.; Butler, David H.; Doggett, William R.; Russell, James W.; Hurban, Theresa

    1991-01-01

    The minimum Space Station Freedom accommodations required for initial assembly, repair, and refurbishment of the Lunar aerobrake were investigated. Baseline Space Station Freedom support services were assumed, as well as reasonable earth-to-orbit possibilities. A set of three aerobrake configurations representative of the major themes in aerobraking were developed. Structural assembly concepts, along with on-orbit assembly and refurbishment scenarios were created. The scenarios were exercised to identify required Space Station Freedom accommodations. Finally, important areas for follow-on study were also identified.

  17. Soil, nickel and low nickel food

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Mimiola, Giancarlo; Miano, Teodoro

    2013-04-01

    Nickel is an ubiquitous trace element and occurs in soil, water, air and in the biosphere. Ni is an essential element for several plants, microorganisms and vertebrates. Human requirement for Ni has not been conclusively demonstrated. Nickel is normally present in human tissues at low concentration and, under conditions of high exposure, these levels may increase significantly. Food is the major source of Ni exposure. Nickel is present in many food products, especially vegetables. The amount of Ni present in vegetables is increasing because of environmental contamination and cultural practices. It has been demonstrated that the consumption of a Ni-rich diet can cause an increase of immunological disorders including Systemic Ni Allergy Syndrome (SNAS). The SNAS patients are currently treated with a diet that is closely Ni-free. Therefore, there is a need to produce certified and guaranteed vegetables with a low Ni concentration in the market. The proposed research aims to develop new methods for vegetable production and innovative cultural practices through a suitable choice of agricultural soil, cultivar, amendments and fertilizers as well as good agricultural practices in order to reduce Ni plant uptake and its translocation to the edible plant parts and therefore to produce Ni-free food products for SNAS patients.

  18. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  19. Microvoltammetric Electrodes.

    DTIC Science & Technology

    1985-09-25

    Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M

  20. Vertically porous nickel thin film supported Mn3O4 for enhanced energy storage performance.

    PubMed

    Li, Xiao-Jun; Song, Zhi-Wei; Zhao, Yong; Wang, Yue; Zhao, Xiu-Chen; Liang, Minghui; Chu, Wei-Guo; Jiang, Peng; Liu, Ying

    2016-12-01

    Three-dimensionally porous metal materials are often used as the current collectors and support for the active materials of supercapacitors. However, the applications of vertically porous metal materials in supercapacitors are rarely reported, and the effect of vertically porous metal materials on the energy storage performance of supported metal oxides is not explored. To this end, the Mn3O4-vertically porous nickel (VPN) electrodes are fabricated via a template-free method. The Mn3O4-VPN electrode shows much higher volumetric specific capacitances than that of flat nickel film supported Mn3O4 with the same loading under the same measurement conditions. The volumetric specific capacitance of the vertically porous nickel supported Mn3O4 electrode can reach 533Fcm(-3) at the scan rate of 2mVs(-1). The fabricated flexible all-solid microsupercapacitor based on the interdigital Mn3O4-VPN electrode has a volumetric specific capacitance of 110Fcm(-3) at the current density of 20μAcm(-2). The capacitance retention rate of this microsupercapacitor reaches 95% after 5000 cycles under the current density of 20μAcm(-2). The vertical pores in the nickel electrode not only fit the micro/nanofabrication process of the Mn3O4-VPN electrode, but also play an important role in enhancing the capacitive performances of supported Mn3O4 particles.

  1. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Sleeping accommodations. 92.20-20 Section 92.20-20... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer must be provided with a separate stateroom. (b) Sleeping accommodations...

  2. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Sleeping accommodations. 92.20-20 Section 92.20-20... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer must be provided with a separate stateroom. (b) Sleeping accommodations...

  3. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Sleeping accommodations. 72.20-20 Section 72.20-20... ARRANGEMENT Accommodations for Officers and Crew § 72.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer shall be provided with a separate stateroom. (b) Sleeping accommodations for...

  4. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Sleeping accommodations. 72.20-20 Section 72.20-20... ARRANGEMENT Accommodations for Officers and Crew § 72.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer shall be provided with a separate stateroom. (b) Sleeping accommodations for...

  5. 28 CFR 36.310 - Transportation provided by public accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accommodations. 36.310 Section 36.310 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.310 Transportation provided by public accommodations. (a) General. (1) A public accommodation that...

  6. 46 CFR 108.195 - Location of accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a...

  7. 46 CFR 108.195 - Location of accommodation spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a...

  8. 46 CFR 108.195 - Location of accommodation spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a...

  9. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Sleeping accommodations. 92.20-20 Section 92.20-20... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer must be provided with a separate stateroom. (b) Sleeping accommodations...

  10. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Sleeping accommodations. 72.20-20 Section 72.20-20... ARRANGEMENT Accommodations for Officers and Crew § 72.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer shall be provided with a separate stateroom. (b) Sleeping accommodations for...

  11. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Sleeping accommodations. 72.20-20 Section 72.20-20... ARRANGEMENT Accommodations for Officers and Crew § 72.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer shall be provided with a separate stateroom. (b) Sleeping accommodations for...

  12. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Sleeping accommodations. 72.20-20 Section 72.20-20... ARRANGEMENT Accommodations for Officers and Crew § 72.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer shall be provided with a separate stateroom. (b) Sleeping accommodations for...

  13. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Sleeping accommodations. 92.20-20 Section 92.20-20... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer must be provided with a separate stateroom. (b) Sleeping accommodations...

  14. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Sleeping accommodations. 92.20-20 Section 92.20-20... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-20 Sleeping accommodations. (a) Where practicable, each licensed officer must be provided with a separate stateroom. (b) Sleeping accommodations...

  15. 46 CFR 108.195 - Location of accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a...

  16. 46 CFR 108.195 - Location of accommodation spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a...

  17. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing.

    PubMed

    Sivasakthi, P; Ramesh Bapu, G N K; Chandrasekaran, Maruthai

    2016-01-01

    Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications.

  18. 15 CFR 8b.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... physical or metal limitations of an otherwise qualified handicapped applicant or employee unless the... program or activity. (b) Reasonable accommodation may include: (1) Making the facilities used by the employees in the area where the program or activity is conducted, including common areas used by...

  19. Payload accommodations: Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technology issues/trade studies; candidate programs; key contacts/facilities: milestones; accomplishments; and major objectives of the payload accommodation are outlined. Topics covered include: avionics payload support architecture; satellite serving; P/L deploy systems and advanced manipulators; advanced telemetry systems; and on-board abort planning. This presentation is represented by viewgraphs only.

  20. Accommodating Workers with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Dowler, Denetta; Batiste, Linda; Whidden, Eddie

    1998-01-01

    Examination of over 1,000 calls to the Job Accommodation Network involving workers with spinal cord injury identified the nature of the industry, job, career progression, and accessibility solutions. The number of calls increased dramatically after passage of the Americans with Disabilities Act. (SK)

  1. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  2. 34 CFR 104.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Reasonable accommodation. 104.12 Section 104.12 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL...

  3. Accommodating Presuppositions Is Inappropriate in Implausible Contexts

    ERIC Educational Resources Information Center

    Singh, Raj; Fedorenko, Evelina; Mahowald, Kyle; Gibson, Edward

    2016-01-01

    According to one view of linguistic information (Karttunen, 1974; Stalnaker, 1974), a speaker can convey contextually new information in one of two ways: (a) by "asserting" the content as new information; or (b) by "presupposing" the content as given information which would then have to be "accommodated." This…

  4. 24 CFR 8.11 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Reasonable accommodation. 8.11 Section 8.11 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND ACTIVITIES OF...

  5. 24 CFR 8.11 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Reasonable accommodation. 8.11 Section 8.11 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND ACTIVITIES OF...

  6. 24 CFR 8.11 - Reasonable accommodation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Reasonable accommodation. 8.11 Section 8.11 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND ACTIVITIES OF...

  7. 24 CFR 8.11 - Reasonable accommodation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Reasonable accommodation. 8.11 Section 8.11 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND ACTIVITIES OF...

  8. 22 CFR 217.12 - Reasonable accommodation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Reasonable accommodation. 217.12 Section 217.12 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT NONDISCRIMINATION ON THE BASIS OF HANDICAP IN..., acquisition or modification of equipment or devices, the provision of readers or interpreters, and...

  9. 24 CFR 8.11 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Reasonable accommodation. 8.11 Section 8.11 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND ACTIVITIES OF...

  10. 22 CFR 217.12 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Reasonable accommodation. 217.12 Section 217.12 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT NONDISCRIMINATION ON THE BASIS OF HANDICAP IN..., acquisition or modification of equipment or devices, the provision of readers or interpreters, and...

  11. 22 CFR 217.12 - Reasonable accommodation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Reasonable accommodation. 217.12 Section 217.12 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT NONDISCRIMINATION ON THE BASIS OF HANDICAP IN..., acquisition or modification of equipment or devices, the provision of readers or interpreters, and...

  12. ISS truss attached payload accommodations overview

    NASA Astrophysics Data System (ADS)

    Youmans, Janella S.; Olson, Michael F.; Foster, Mark A.; Watkins, Barbara S.

    1999-01-01

    One of the defining features of the International Space Station (ISS) is its capacity to accommodate long-term science in the external environment of space. The large truss structure spanning the vehicle is designed to support core system equipment such as solar arrays, thermal radiators, and the pressurized module structures. In addition to supporting core systems, the truss structure also accommodates four attached payload facilities and two logistics carriers. This paper focuses on the capabilities of the ISS in accommodating externally attached science payloads, defines the locations where experiments can be conducted, explains the environment wherein typical experiments will be performed, and identifies the payload interfaces and access to resources such as power and data. The paper will also summarize the robotic accommodations which will support attached payloads and describes typical procedures for installation of the payloads onto the sites. Finally, the paper will provide a summary description of the attach sites on the NASDA Exposed Facility and the potential for use of alternative attach sites on the ISS.

  13. College Students' Preferences for Test Accommodations

    ERIC Educational Resources Information Center

    Lewandowski, Lawrence; Lambert, Tonya L.; Lovett, Benjamin J.; Panahon, Carlos J.; Sytsma, Marcia R.

    2014-01-01

    College students with (n = 137) and without disabilities (n = 475) were surveyed about their perceptions of using various types of test accommodations. Results indicated that extended time was perceived as having a positive effect by the most students (>87% of both groups), followed by separate room testing and extra breaks (>60% of both…

  14. 46 CFR 169.317 - Accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Accommodations. 169.317 Section 169.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction... and noise. (d) Each person on board must have a separate berth which is of sufficient size...

  15. 46 CFR 169.317 - Accommodations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Accommodations. 169.317 Section 169.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction... and noise. (d) Each person on board must have a separate berth which is of sufficient size...

  16. 46 CFR 169.317 - Accommodations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Accommodations. 169.317 Section 169.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction... and noise. (d) Each person on board must have a separate berth which is of sufficient size...

  17. 46 CFR 169.317 - Accommodations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Accommodations. 169.317 Section 169.317 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction... and noise. (d) Each person on board must have a separate berth which is of sufficient size...

  18. Cultural Accommodation as Method and Metaphor

    ERIC Educational Resources Information Center

    Leong, Frederick T. L.

    2007-01-01

    The author summarizes the cultural accommodation model (CAM) of cross-cultural psychotherapy (F. T. L. Leong & S. H. Lee, 2006). This summary is divided into 2 parts, with the 1st part describing the theoretical development of the CAM as a method of psychotherapy and the research approach underlying it. This section includes a description of the…

  19. Examination Accommodations for Students with Sensory Defensiveness

    ERIC Educational Resources Information Center

    Lewis, Kieran; Nolan, Clodagh

    2013-01-01

    Traditional examination accommodations include extra time, scribes, and/or separate venues for students with disabilities, which have been proven to be successful for the majority of students. For students with non-apparent disabilities such as sensory defensiveness, where sensitivity to a range of sensory information from the environment can…

  20. 10 CFR 4.123 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reasonable accommodation. 4.123 Section 4.123 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES RECEIVING... composition and structure of the recipient's workforce; and (3) The nature and cost of the...

  1. 50 CFR 260.101 - Lavatory accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Lavatory accommodations. 260.101 Section 260.101 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... Fishery Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on...

  2. Accommodating Student Diversity in Remote Sensing Instruction.

    ERIC Educational Resources Information Center

    Hammen, John L., III.

    1992-01-01

    Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…

  3. Accommodating Faculty Members Who Have Disabilities. Report

    ERIC Educational Resources Information Center

    American Association of University Professors, 2012

    2012-01-01

    In recent years the rights and responsibilities of students who have disabilities have received considerable attention. Professors routinely accommodate students with a front-row seat in class or extended time on an examination. Faculty members who have disabilities have received far less attention. This report from a subcommittee of Committee A…

  4. 9 CFR 354.225 - Lavatory accommodations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for cleaning utensils and hands shall be provided. (a) Adequate lavatory and toilet accommodations, including, but not being limited to, running hot water and cold water, soap, and towels, shall be provided... water for washing hands. (d) Durable signs shall be posted conspicuously in each toilet room and...

  5. 9 CFR 354.225 - Lavatory accommodations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for cleaning utensils and hands shall be provided. (a) Adequate lavatory and toilet accommodations, including, but not being limited to, running hot water and cold water, soap, and towels, shall be provided... water for washing hands. (d) Durable signs shall be posted conspicuously in each toilet room and...

  6. Accommodating Band Students with Visual Impairments

    ERIC Educational Resources Information Center

    Coates, Rick Lee

    2012-01-01

    This article offers a discussion about some of the accommodations and modifications used in music instruction. The focus here is on the musical tasks and challenges faced by band students with visual impairments. Research and literature reveal an interest in the topic but a lack of accessible materials for immediate use in the classroom and…

  7. Unflagged SATs: Who Benefits from Special Accommodations?

    ERIC Educational Resources Information Center

    Abrams, Samuel J.

    2005-01-01

    When the College Board announced, in the summer of 2002, that it would stop "flagging" the test scores of students who were given special accommodations for the SAT, the gold standard exam for college admission, disability advocates were thrilled. "A triumphant day for millions of people with dyslexia and other disabilities,"…

  8. 29 CFR 32.13 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RECEIVING FEDERAL FINANCIAL ASSISTANCE Employment Practices and Employment Related Training Participation... physical or mental limitations of an otherwise qualified handicapped applicant, employee or participant... workforce, and duration and type of training; and (3) The nature and cost of the accommodation needed. (c)...

  9. Current distribution and current efficiency in pulsed current plating of nickel

    SciTech Connect

    Kwak, S.I.; Jeong, K.M.; Kim, S.K.; Sohn, H.J.

    1996-09-01

    A mathematical model is presented to obtain the current distribution and current efficiency on a rotating disk electrode under controlled current condition. The calculated results compare well with experiments performed using a nickel/nickel sulfate system in the presence of boric acid. The current density is highly nonuniform due to the ohmic drop in the electrolyte. The current efficiency was decreased with the increase of hydrogen concentration as well as applied pulse current density.

  10. Combining electrospinning and sputtering to improve rechargeable lithium battery cathodes: coating carbon fibre felt with nickel sulfide

    NASA Astrophysics Data System (ADS)

    Lee, Dong Kyu; Ryu, Ho Suk; Ahn, Chi Won; Jeon, Hwan-Jin

    2016-11-01

    Various nickel sulfide nanostructures have been developed for the fabrication of high surface area electrodes for rechargeable lithium batteries. In this study, we fabricated a nickel sulfide covered carbon fibre felt with high uniformity, high density, and large area for cathode materials for use in rechargeable lithium batteries, by using a combined electrospinning and sputtering deposition technique. In particular, the nickel sulfide/carbon fibre felt is a multi-functional material that can act as a conducting electrode itself without the use of binders and conductive materials owing to the high conductivity of the interlinked carbon fibre structures. A Li/nickel sulfide cell with current density of 100 mA g-1 exhibits good cycle performance and high first discharge capacity (970.46 mAh g-1) and good coulombic efficiency of 99% at 20 cycles. This electrode has good structural and electrochemical properties and has a potential to be commercialized when the properties are matured.

  11. Water Accommodation on Bare and Coated Ice

    NASA Astrophysics Data System (ADS)

    Kong, Xiangrui

    2015-04-01

    A good understanding of water accommodation on ice surfaces is essential for quantitatively predicting the evolution of clouds, and therefore influences the effectiveness of climate models. However, the accommodation coefficient is poorly constrained within the literature where reported values vary by up to three orders of magnitude. In addition, the complexity of the chemical composition of the atmosphere plays an important role in ice phase behavior and dynamics. We employ an environmental molecular beam (EMB) technique to investigate molecular water interactions with bare and impurity coated ice at temperatures from 170 K to 200 K. In this work, we summarize results of water accommodation experiments on bare ice (Kong et al., 2014) and on ice coated by methanol (Thomson et al., 2013), butanol (Thomson et al., 2013) and acetic acid (Papagiannakopoulos et al., 2014), and compare those results with analogous experiments using hexanol and nitric acid coatings. Hexanol is chosen as a complementary chain alcohol to methanol and butanol, while nitric acid is a common inorganic compound in the atmosphere. The results show a strong negative temperature dependence of water accommodation on bare ice, which can be quantitatively described by a precursor model. Acidic adlayers tend to enhance water uptake indicating that the system kinetics are thoroughly changed compared to bare ice. Adsorbed alcohols influence the temperature dependence of the accommodation coefficient and water molecules generally spend less time on the surfaces before desorbing, although the measured accommodation coefficients remain high and comparable to bare ice for the investigated systems. We conclude that impurities can either enhance or restrict water uptake in ways that are influenced by several factors including temperature and type of adsorbant, with potential implications for the description of ice particle growth in the atmosphere. This work was supported by the Swedish Research Council and

  12. Nickel ferrule applicators: a source of nickel exposure in children.

    PubMed

    Jacob, Sharon E; Silverberg, Jonathan I; Rizk, Christopher; Silverberg, Nanette

    2015-01-01

    Eye makeup has been investigated for nickel content and found to have no direct association with nickel allergy and cosmetic dermatitis. However, the tools used (e.g., eyelash curlers, hairdressing scissors, hair curlers, and eye shadow and makeup applicators) may be sources. Nickel is ubiquitous and a wide range of sources have been reported, and makeup applicators (ferrules) now join the list.

  13. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect

    Not Available

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  14. Electron emission from nickel-alloy surfaces in cesium vapor

    NASA Technical Reports Server (NTRS)

    Manda, M.; Jacobson, D.

    1978-01-01

    The cesiated electron emission was measured for three candidate electrodes for use as collectors in thermionic converters. Nickel, Inconel 600 and Hastelloy were tested with a 412 K cesium reservoir. Peak emission from the alloys was found to be comparable to that from pure nickel. Both the Inconel and the Hastelloy samples had work functions of 1.64 eV at peak emission. The minimum work functions were estimated to be 1.37 eV at a probe temperature of 750 K for Inconel and 1.40 eV for Hastelloy at 665 K. The bare work function for both alloys is estimated to be approximately the same as for pure nickel, 4.8 eV.

  15. Metallic sulfide additives for positive electrode material within a secondary electrochemical cell

    DOEpatents

    Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki

    1976-01-01

    An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.

  16. Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces.

    PubMed

    Li, Xiaxi; Blinn, Kevin; Fang, Yingcui; Liu, Mingfei; Mahmoud, Mahmoud A; Cheng, Shuang; Bottomley, Lawrence A; El-Sayed, Mostafa; Liu, Meilin

    2012-05-07

    SERS provided by sputtered silver was employed to detect trace amounts of chemical species on SOFC electrodes. Considerable enhancement of Raman signal and lowered detection threshold were shown for coked nickel surfaces, CeO(2) coatings, and cathode materials (LSM and LSCF), suggesting a viable approach to probing electrode degradation and surface catalytic mechanism.

  17. Nickel/metal hydride batteries using rate-earth hydrogen storage alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhang, Y. S.

    1994-07-01

    Fine particles of a hydrogen storage alloy (LaNi3.8Co0.5Mn0.4Al0.3) were microencapsulated with a thin film of nickel of about 0.6 micron thickness. The microencapsulated alloy powders were used as an anode material in a sealed nickel/metal hydride battery. The battery characteristics were compared with those of a battery with a bare (uncoated) alloy anode. The battery using the bare alloy was less stable compared to the coated alloy due to the role of the coated nickel as an oxygen barrier for protecting the alloy surface from oxidation. In addition, charge- discharge characteristics were improved greatly by the nickel coating, especially at high rates and at low temperatures due to the role of nickel as a microcurrent collector. So the microencapsulation of the alloy powders improves the performances of the alloy electrode.

  18. Nanoporous nickel microspheres: synthesis and application for the electrocatalytic oxidation and determination of acyclovir.

    PubMed

    Heli, Hossein; Pourbahman, Fatemeh; Sattarahmady, Naghmeh

    2012-01-01

    Nickel microspheres were synthesized via a water-in-oil reverse nanoemulsion system using nickel nitrate as the nickel precursor and hydrazine hydrate as the reducing agent. The nanoemulsion was a triton X-100/cyclohexane/water ternary system. The surface morphology of the nickel microspheres was studied by scanning electron microscopy, which indicated that the microspheres had a nanoporous structure. The electrochemical behavior of the nanoporous nickel microspheres were studied in alkaline solution and were then employed to fabricate a modified carbon paste electrode in order to investigate the electrocatalytic oxidation of the drug acyclovir. The oxidation process involved, and its kinetics were investigated using cyclic voltammetry and chronoamperometry. The rate constant of the catalytic oxidation of acyclovir and the electron-transfer coefficient are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of acyclovir. The proposed amperometric method was also applied to determine acyclovir in tablets and topical cream.

  19. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.

    PubMed

    Salimi, Abdollah; Sharifi, Ensiyeh; Noorbakhsh, Abdollah; Soltanian, Saied

    2007-02-01

    Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.

  20. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOEpatents

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  1. Progress in nickel toxicology

    SciTech Connect

    Brown, S.S.; Sunderman, F.W.

    1985-01-01

    The Third International Conference on Nickel Metabolism and Toxicology was held at the PLM St Jacques Hotel in Paris in September 1984, under the joint sponsorship of the International Union of Pure and Applied Chemistry (IUPAC), the Association of Clinical Scientists, and the Nickel Producers Environmental Research Association (NiPERA). The Paris Conference was attended by 150 participants from 19 countries, including many of the world's authorities on nickel in the areas of trace analysis, biochemistry, radiochemistry, pharmacology, toxicology, pathology, immunology, industrial hygiene, epidemiology, occupational health and clinical medicine. The text of the Richard T. Barton memorial lecture and synopses of the scientific papers that were presented at the Conference are published in this volume.

  2. Bipolar Nickel-Metal Hydride Battery Development Project

    NASA Technical Reports Server (NTRS)

    Cole, John H.

    1999-01-01

    This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.

  3. Methods and systems for in-situ electroplating of electrodes

    DOEpatents

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  4. Raman spectroscopy for in-situ monitoring of electrode processes

    SciTech Connect

    Varma, R; Cook, G M; Yao, N P

    1982-04-01

    The theoretical and experimental applications of Raman spectroscopic techniques to the study of battery electrode processes are described. In particular, the potential of Raman spectroscopy as an in-situ analytical tool for the characterization of the structure and composition of electrode surface layers at electrode-electrolyte interfaces during electrolysis is examined. It is anticipated that this understanding of the battery electrode processes will be helpful in designing battery active material with improved performance. The applications of Raman spectroscopy to the in-situ study of electrode processes has been demonstrated in a few selected areas, including: (1) the anodic corrosion of lead in sulfuric acid and (2) the anodization and sulfation of tetrabasicleadsulfate in sulfuric acid. Preliminary results on the anodization of iron and on the electrochemical behavior of nickel positive-electrode active material in potassium hydroxide electrolytes are presented in the Appendix.

  5. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  6. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys.

    PubMed

    Ostrin, Lisa A; Glasser, Adrian

    2007-02-01

    During accommodation, the refractive changes occur when the ciliary muscle contracts, releasing resting zonular tension and allowing the lens capsule to mold the lens into an accommodated form. This results in centripetal movement of the ciliary processes and lens edge. The goal of this study was to understand the relationship between accommodative refractive changes, ciliary process movements and lens edge movements during Edinger-Westphal (EW) and pharmacologically stimulated accommodation in adolescent rhesus monkeys. Experiments were performed on one eye each of three rhesus monkeys with permanent indwelling electrodes in the EW nucleus of the midbrain. EW stimulated accommodative refractive changes were measured with infrared photorefraction, and ciliary process and lens edge movements were measured with slit-lamp goniovideography on the temporal aspect of the eye. Images were recorded on the nasal aspect for one eye during EW stimulation. Image analysis was performed off-line at 30 Hz to determine refractive changes and ciliary body and lens edge movements during EW stimulated accommodation and after carbachol iontophoresis to determine drug induced accommodative movements. Maximum EW stimulated accommodation was 7.36+/-0.49 D and pharmacologically stimulated accommodation was 14.44+/-1.21 D. During EW stimulated accommodation, the ciliary processes and lens edge moved centripetally linearly by 0.030+/-0.001 mm/D and 0.027+/-0.001 mm/D, with a total movement of 0.219+/-0.034 mm and 0.189+/-0.023 mm, respectively. There was no significant nasal/temporal difference in ciliary process or lens edge movements. 30-40 min after pharmacologically stimulated accommodation, the ciliary processes moved centripetally a total of 0.411+/-0.048 mm, or 0.030+/-0.005 mm/D, and the lens edge moved centripetally 0.258+/-0.014 mm, or 0.019+/-0.003 mm/D. The peaks and valleys of the ciliary processes moved by similar amounts during both supramaximal EW and pharmacologically

  7. Electrochemical reduction of an anion for ionic-liquid molecules on a lithium electrode studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ando, Yasunobu; Kawamura, Yoshiumi; Ikeshoji, Tamio; Otani, Minoru

    2014-09-01

    We report ab initio molecular dynamics studies with electric field that reveal chemical stability of room temperature ionic liquid for charge transfer from lithium and nickel electrodes. Bis(trifluoromethanesulfonyl)imide (TFSI) is oxidized on the nickel electrode under a high positive bias condition as expected. However, TFSI is reduced on the lithium electrode under both positive and negative bias conditions, because the lithium electrode acts as a strong reductant. The decomposition of TFSI anion might induce the formation of LiF as a solid electrolyte interphase, which could restrain the TFSI reduction. The stability of an cation under reductant conditions is presented.

  8. Convoluted accommodation structures in folded rocks

    NASA Astrophysics Data System (ADS)

    Dodwell, T. J.; Hunt, G. W.

    2012-10-01

    A simplified variational model for the formation of convoluted accommodation structures, as seen in the hinge zones of larger-scale geological folds, is presented. The model encapsulates some important and intriguing nonlinear features, notably: infinite critical loads, formation of plastic hinges, and buckling on different length-scales. An inextensible elastic beam is forced by uniform overburden pressure and axial load into a V-shaped geometry dictated by formation of a plastic hinge. Using variational methods developed by Dodwell et al., upon which this paper leans heavily, energy minimisation leads to representation as a fourth-order nonlinear differential equation with free boundary conditions. Equilibrium solutions are found using numerical shooting techniques. Under the Maxwell stability criterion, it is recognised that global energy minimisers can exist with convoluted physical shapes. For such solutions, parallels can be drawn with some of the accommodation structures seen in exposed escarpments of real geological folds.

  9. Shear accommodation in dirty grain boundaries

    NASA Astrophysics Data System (ADS)

    Wang, C.; Upmanyu, M.

    2014-04-01

    The effect of solutes (dirt) on the mechanics of crystalline interfaces remains unexplored. Here, we perform atomic-scale simulations to study the effect of carbon segregation on the shear accommodation at select grain boundaries in the classical α-Fe/C system. For shear velocities larger than the solute diffusion rate, we observe a transition from coupled motion to sliding. Below a critical solute excess, the boundaries break away from the solute cloud and exhibit in a coupled motion. At smaller shear velocities, the extrinsic coupled motion is jerky, occurs at relatively small shear stresses, and is aided by fast convective solute diffusion along the boundary. Our studies underscore the combined effect of energetics and kinetics of solutes in modifying the bicrystallography, temperature and rate dependence of shear accommodation at grain boundaries.

  10. Design Principles to Accommodate Older Adults

    PubMed Central

    Farage, Miranda A.; Miller, Kenneth W.; Ajayi, Funmi; Hutchins, Deborah

    2012-01-01

    The global population is aging. In many industrial countries, almost one in five people are over age 65. As people age, gradual changes ensue in vision, hearing, balance, coordination, and memory. Products, communication materials, and the physical environment must be thoughtfully designed to meet the needs of people of all ages. This article summarizes normal changes in sensory function, mobility, balance, memory, and attention that occur with age. It presents practical guidelines that allow design professionals to accommodate these changes and better meet the needs of older adults. Designing for older adults is inclusive design: it accommodates a range of physical and cognitive abilities and promotes simplicity, flexibility, and ease of use for people of any age. PMID:22980147

  11. Design principles to accommodate older adults.

    PubMed

    Farage, Miranda A; Miller, Kenneth W; Ajayi, Funmi; Hutchins, Deborah

    2012-02-29

    The global population is aging. In many industrial countries, almost one in five people are over age 65. As people age, gradual changes ensue in vision, hearing, balance, coordination, and memory. Products, communication materials, and the physical environment must be thoughtfully designed to meet the needs of people of all ages. This article summarizes normal changes in sensory function, mobility, balance, memory, and attention that occur with age. It presents practical guidelines that allow design professionals to accommodate these changes and better meet the needs of older adults. Designing for older adults is inclusive design: it accommodates a range of physical and cognitive abilities and promotes simplicity, flexibility, and ease of use for people of any age.

  12. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  13. Quantitative analysis of electroplated nickel coating on hard metal.

    PubMed

    Wahab, Hassan A; Noordin, M Y; Izman, S; Kurniawan, Denni

    2013-01-01

    Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt's solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5) constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models.

  14. Nickel and Epigenetic Gene Silencing

    PubMed Central

    Sun, Hong; Shamy, Magdy; Costa, Max

    2013-01-01

    Insoluble nickel compounds are well-established human carcinogens. Occupational exposure to these compounds leads to increased incidence of lung and nasal cancer in nickel refinery workers. Apart from its weak mutagenic activity and hypoxia mimicking effect there is mounting experimental evidence indicating that epigenetic alteration plays an important role in nickel-induced carcinogenesis. Multiple epigenetic mechanisms have been identified to mediate nickel-induced gene silencing. Nickel ion is able to induce heterochromatinization by binding to DNA-histone complexes and initiating chromatin condensation. The enzymes required for establishing or removing epigenetic marks can be targeted by nickel, leading to altered DNA methylation and histone modification landscapes. The current review will focus on the epigenetic changes that contribute to nickel-induced gene silencing. PMID:24705264

  15. Iron induced nickel deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  16. Nickel refinery dust

    Integrated Risk Information System (IRIS)

    Nickel refinery dust ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  17. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  19. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  20. Complexation of Nickel Ions by Boric Acid or (Poly)borates.

    PubMed

    Graff, Anais; Barrez, Etienne; Baranek, Philippe; Bachet, Martin; Bénézeth, Pascale

    2017-01-01

    An experiment based on electrochemical reactions and pH monitoring was performed in which nickel ions were gradually formed by oxidation of a nickel metal electrode in a solution of boric acid. Based on the experimental results and aqueous speciation modeling, the evolution of pH showed the existence of significant nickel-boron complexation. A triborate nickel complex was postulated at high boric acid concentrations when polyborates are present, and the equilibrium constants were determined at 25, 50 and 70 °C. The calculated enthalpy and entropy at 25 °C for the formation of the complex from boric acid and Ni(2+) ions are respectively equal to (65.6 ± 3.1) kJ·mol(-1) and (0.5 ± 11.1) J·K(-1)·mol(-1). The results of this study suggest that complexation of nickel ions by borates can significantly enhance the solubility of nickel metal and nickel oxide depending on the concentration of boric acid and pH. First principles calculations were investigated and tend to show that the complex is thermodynamically stable and the nickel cation in solution should interact more strongly with the [Formula: see text] than with boric acid.

  1. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  2. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  3. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  4. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  5. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  6. 28 CFR 36.310 - Transportation provided by public accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... public accommodation, customer shuttle bus services operated by private companies and shopping centers, student transportation systems, and transportation provided within recreational facilities such as... readily achievable. (c) Requirements for vehicles and systems. A public accommodation subject to...

  7. 28 CFR 36.310 - Transportation provided by public accommodations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... public accommodation, customer shuttle bus services operated by private companies and shopping centers, student transportation systems, and transportation provided within recreational facilities such as... readily achievable. (c) Requirements for vehicles and systems. A public accommodation subject to...

  8. 28 CFR 36.310 - Transportation provided by public accommodations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... public accommodation, customer shuttle bus services operated by private companies and shopping centers, student transportation systems, and transportation provided within recreational facilities such as... readily achievable. (c) Requirements for vehicles and systems. A public accommodation subject to...

  9. Crystalline lens MTF measurement during simulated accommodation

    NASA Astrophysics Data System (ADS)

    Borja, David; Takeuchi, Gaku; Ziebarth, Noel; Acosta, Ana C.; Manns, Fabrice; Parel, Jean-Marie

    2005-04-01

    Purpose: To design and test an optical system to measure the optical quality of post mortem lenses during simulated accommodation. Methods: An optical bench top system was designed to measure the point spread function and calculate the modulation transfer function (MTF) of monkey and human ex-vivo crystalline lenses. The system consists of a super luminescent diode emitting at 850nm, collimated into a 3mm beam which is focused by the ex-vivo lens under test. The intensity distribution at the focus (point spread function) is re-imaged and magnified onto a beam profiler CCD camera. The optical quality in terms of spatial frequency response (modulation transfer function) is calculated by Fourier transform of the point spread function. The system was used on ex-vivo lenses with attached zonules, ciliary body and sclera. The sclera was glued to 8 separate PMMA segments and stretched radial by 5mm on an accommodation simulating lens stretching device. The point spread function was measured for each lens in the relaxed and stretched state for 5 human (ages 38-86 years) and 5 cynomolgus monkey (ages 53 - 67 months) fresh post mortem crystalline lenses. Results: Stretching induced measurable changes in the MTF. The cutoff frequency increased from 54.4+/-13.6 lp/mm unstretched to 59.5+/-21.4 lp/mm stretched in the post-presbyopic human and from 51.9+/-24.7 lp/mm unstretched to 57.7+/-18.5 lp/mm stretched cynomolgus monkey lenses. Conclusion: The results demonstrate the feasibility of measuring the optical quality of ex-vivo human and cynomolgus monkey lenses during simulated accommodation. Additional experiments are underway to quantify changes in optical quality induced by stretching.

  10. Skylab Workshop experience in experiment accommodation

    NASA Technical Reports Server (NTRS)

    Hanlon, W. H.; Hassel, R. R.

    1974-01-01

    This paper examines the experiment support facilities available from the Orbital Workshop (OWS) module of the Skylab. Experiments and associated support provisions have been selected and described to illustrate the various accommodations and degree of complexities involved in the integration of these experiments into the Workshop. The interfaces described start with the simple and proceed to the complex. On the basis of the experience gained in integrating the experiments into the Workshop, conclusions are drawn and suggestions are made on ways to facilitate future experiment operations and at the same time simplify and reduce the cost of integration efforts.

  11. Strain accommodation in inelastic deformation of glasses

    SciTech Connect

    Murali, P.; Ramamurty, U.; Shenoy, Vijay B.

    2007-01-01

    Motivated by recent experiments on metallic glasses, we examine the micromechanisms of strain accommodation including crystallization and void formation during inelastic deformation of glasses by employing molecular statics simulations. Our atomistic simulations with Lennard-Jones-like potentials suggests that a softer short range interaction between atoms favors crystallization. Compressive hydrostatic strain in the presence of a shear strain promotes crystallization whereas a tensile hydrostatic strain is found to induce voids. The deformation subsequent to the onset of crystallization includes partial reamorphization and recrystallization, suggesting important atomistic mechanisms of plastic dissipation in glasses.

  12. Measurement of Gas-Surface Accommodation

    NASA Astrophysics Data System (ADS)

    Trott, W. M.; Rader, D. J.; Castañeda, J. N.; Torczynski, J. R.; Gallis, M. A.

    2008-12-01

    Thermal accommodation coefficients have been determined for a variety of gas-surface combinations using an experimental apparatus developed to measure both the pressure dependence of the conductive heat flux and the variation of gas density between parallel plates separated by a gas-filled gap. Effects of gas composition, surface roughness and surface contamination have been examined with this system, and the behavior of gas mixtures has also been explored. Results are discussed in comparison with previous parallel-plate experimental studies as well as numerical simulations.

  13. Evolution of a polyphenism by genetic accommodation.

    PubMed

    Suzuki, Yuichiro; Nijhout, H Frederik

    2006-02-03

    Polyphenisms are adaptations in which a genome is associated with discrete alternative phenotypes in different environments. Little is known about the mechanism by which polyphenisms originate. We show that a mutation in the juvenile hormone-regulatory pathway in Manduca sexta enables heat stress to reveal a hidden reaction norm of larval coloration. Selection for increased color change in response to heat stress resulted in the evolution of a larval color polyphenism and a corresponding change in hormonal titers through genetic accommodation. Evidently, mechanisms that regulate developmental hormones can mask genetic variation and act as evolutionary capacitors, facilitating the origin of novel adaptive phenotypes.

  14. Assessment of launch site accommodations versus Spacelab payload requirements

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Kennedy launch site capability for accommodating spacelab payload operations was assessed. Anomalies between facility accommodations and requirements for the Spacelab III (Strawman), OA Mission 83-2, Dedicated Life Sciences, and Combined Astronomy missions are noted. Recommendations for revision of the accommodations handbook are summarized.

  15. 46 CFR 154.325 - Accommodation, service, and control spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Accommodation, service, and control spaces. 154.325... Equipment Ship Arrangements § 154.325 Accommodation, service, and control spaces. (a) Accommodation, service, and control spaces must be outside the cargo area. (b) If a hold space having a cargo...

  16. 46 CFR 108.211 - Miscellaneous accommodation spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Miscellaneous accommodation spaces. 108.211 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.211 Miscellaneous accommodation spaces. (a) Each unit must have enough facilities for personnel to wash their own...

  17. 46 CFR 108.197 - Construction of accommodation spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Construction of accommodation spaces. 108.197 Section... UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.197 Construction of accommodation spaces. (a) Each sleeping, mess, recreational, or hospital space that is adjacent to...

  18. 46 CFR 108.211 - Miscellaneous accommodation spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Miscellaneous accommodation spaces. 108.211 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.211 Miscellaneous accommodation spaces. (a) Each unit must have enough facilities for personnel to wash their own...

  19. 46 CFR 108.197 - Construction of accommodation spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Construction of accommodation spaces. 108.197 Section... UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.197 Construction of accommodation spaces. (a) Each sleeping, mess, recreational, or hospital space that is adjacent to...

  20. 46 CFR 108.197 - Construction of accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Construction of accommodation spaces. 108.197 Section... UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.197 Construction of accommodation spaces. (a) Each sleeping, mess, recreational, or hospital space that is adjacent to...

  1. 46 CFR 108.211 - Miscellaneous accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Miscellaneous accommodation spaces. 108.211 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.211 Miscellaneous accommodation spaces. (a) Each unit must have enough facilities for personnel to wash their own...

  2. 28 CFR 36.310 - Transportation provided by public accommodations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Transportation provided by public... BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.310 Transportation provided by public accommodations. (a) General. (1) A public accommodation that...

  3. Quick and Easy Adaptations and Accommodations for Early Childhood Students

    ERIC Educational Resources Information Center

    Breitfelder, Leisa M.

    2008-01-01

    Research-based information is used to support the idea of the use of adaptations and accommodations for early childhood students who have varying disabilities. Multiple adaptations and accommodations are outlined. A step-by-step plan is provided on how to make specific adaptations and accommodations to fit the specific needs of early childhood…

  4. An Analysis and Rejection of Arguments for Religious Accommodation

    ERIC Educational Resources Information Center

    Kline, Lisa Anne

    2009-01-01

    This dissertation provides a comprehensive critical analysis of six main arguments for religious accommodation, with a specific focus on fundamentalist religious groups and the accommodation of their practices within liberal democratic societies. This analysis reveals that the types of practices that these arguments aim to accommodate primarily…

  5. 46 CFR 154.325 - Accommodation, service, and control spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Accommodation, service, and control spaces. 154.325... Equipment Ship Arrangements § 154.325 Accommodation, service, and control spaces. (a) Accommodation, service, and control spaces must be outside the cargo area. (b) If a hold space having a cargo...

  6. 46 CFR 108.197 - Construction of accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Construction of accommodation spaces. 108.197 Section... UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.197 Construction of accommodation spaces. (a) Each sleeping, mess, recreational, or hospital space that is adjacent to...

  7. 46 CFR 108.211 - Miscellaneous accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Miscellaneous accommodation spaces. 108.211 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.211 Miscellaneous accommodation spaces. (a) Each unit must have enough facilities for personnel to wash their own...

  8. 46 CFR 154.325 - Accommodation, service, and control spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Accommodation, service, and control spaces. 154.325... Equipment Ship Arrangements § 154.325 Accommodation, service, and control spaces. (a) Accommodation, service, and control spaces must be outside the cargo area. (b) If a hold space having a cargo...

  9. 46 CFR 108.211 - Miscellaneous accommodation spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Miscellaneous accommodation spaces. 108.211 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.211 Miscellaneous accommodation spaces. (a) Each unit must have enough facilities for personnel to wash their own...

  10. 46 CFR 108.197 - Construction of accommodation spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Construction of accommodation spaces. 108.197 Section... UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.197 Construction of accommodation spaces. (a) Each sleeping, mess, recreational, or hospital space that is adjacent to...

  11. NICKEL ALLERGY: Surgeons Beware.

    PubMed

    Axe, Jeremie M; Sinz, Nathan J; Axe, Michael J

    2015-06-01

    When performing an orthopaedic device implantation, it should be routine practice for the surgeon to ask the patient if he or she has a metal allergy, and more specifically a nickel allergy. Ask the patient about costume jewelry or button reactions. If it is an elective surgery, obtain a confirmatory test with the aid of a dermatologist or allergist. It is recommended to use a non-nickel implant if the surgery is urgent, the patient has a confirmed allergy, or the patient does not want to undergo testing, as these implants are readily available in 2015. Finally, if the patient has a painful joint arthroplasty and all other causes have been ruled out, order a metal allergy test to aid in diagnosis.

  12. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode.

    PubMed

    Li, Lei; Qin, Jia; Bi, Huiting; Gai, Shili; He, Fei; Gao, Peng; Dai, Yunlu; Zhang, Xitian; Yang, Dan; Yang, Piaoping

    2017-03-13

    A porous hybrid g-C3N4/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH)2 nanosheets under an easy precipitation process. It was found that the g-C3N4 flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchical structure. It is worth noting that the introduction of the g-C3N4 can effectively achieve the high dispersion and avoid the agglomeration of the nickel hydroxide, and significantly enhance the synthetically capacitive performance. Owning to this unique combination and structure, the CNRG/Ni(OH)2 composite possesses large surface area with suitable pore size distribution, which can effectively accommodate the electrolyte ions migration and accelerate efficient electron transport. When used as electrode for supercapacitor, the hybrid material exhibits high supercapacitive performance, such as an admirable specific capacitance (1785 F/g at a current density of 2 A/g), desirable rate stability (retain 910 F/g at 20 A/g) and favorable cycling durability (maintaining 71.3% capacity after 5000 cycles at 3 A/g). Such desirable properties signify that the CNRG/Ni(OH)2 composites can be a promising electrode material in the application of the supercapacitor.

  13. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode

    PubMed Central

    Li, Lei; Qin, Jia; Bi, Huiting; Gai, Shili; He, Fei; Gao, Peng; Dai, Yunlu; Zhang, Xitian; Yang, Dan; Yang, Piaoping

    2017-01-01

    A porous hybrid g-C3N4/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH)2 nanosheets under an easy precipitation process. It was found that the g-C3N4 flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchical structure. It is worth noting that the introduction of the g-C3N4 can effectively achieve the high dispersion and avoid the agglomeration of the nickel hydroxide, and significantly enhance the synthetically capacitive performance. Owning to this unique combination and structure, the CNRG/Ni(OH)2 composite possesses large surface area with suitable pore size distribution, which can effectively accommodate the electrolyte ions migration and accelerate efficient electron transport. When used as electrode for supercapacitor, the hybrid material exhibits high supercapacitive performance, such as an admirable specific capacitance (1785 F/g at a current density of 2 A/g), desirable rate stability (retain 910 F/g at 20 A/g) and favorable cycling durability (maintaining 71.3% capacity after 5000 cycles at 3 A/g). Such desirable properties signify that the CNRG/Ni(OH)2 composites can be a promising electrode material in the application of the supercapacitor. PMID:28287119

  14. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Li, Lei; Qin, Jia; Bi, Huiting; Gai, Shili; He, Fei; Gao, Peng; Dai, Yunlu; Zhang, Xitian; Yang, Dan; Yang, Piaoping

    2017-03-01

    A porous hybrid g-C3N4/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH)2 nanosheets under an easy precipitation process. It was found that the g-C3N4 flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchical structure. It is worth noting that the introduction of the g-C3N4 can effectively achieve the high dispersion and avoid the agglomeration of the nickel hydroxide, and significantly enhance the synthetically capacitive performance. Owning to this unique combination and structure, the CNRG/Ni(OH)2 composite possesses large surface area with suitable pore size distribution, which can effectively accommodate the electrolyte ions migration and accelerate efficient electron transport. When used as electrode for supercapacitor, the hybrid material exhibits high supercapacitive performance, such as an admirable specific capacitance (1785 F/g at a current density of 2 A/g), desirable rate stability (retain 910 F/g at 20 A/g) and favorable cycling durability (maintaining 71.3% capacity after 5000 cycles at 3 A/g). Such desirable properties signify that the CNRG/Ni(OH)2 composites can be a promising electrode material in the application of the supercapacitor.

  15. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  16. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    Researchers summarize previous Raman spectroscopic results and discuss important structural differences in the various phases of active mass and active mass precursors. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to x rays (i.e., does not scatter x rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging are discussed. The oxidation states and dopant contents are explained in terms of the nonstoichiometric structures.

  17. [Dissociated near reflex and accommodative convergence excess].

    PubMed

    Gräf, M; Becker, R; Kloss, S

    2004-10-01

    We report on an 8-year-old boy whose near reflex could be elicited exclusively when the left eye was fixing (LF) but not when the right eye was fixing (RF). With RE +1.25/-1.25/169 degrees and LE +1.0/-0.75/24 degrees, the visual acuity was 1.0 OU at 5 m and RE 0.5, LE 1.0 at 0.3 m improving to 1.0 OU by a near addition of 3.0 D. Stereopsis was 100 degrees (Titmus test). The prism and cover test revealed an esophoria of 4 degrees at 5 m. At 3 m there was an esophoria of 6 degrees (RF) and an esotropia of 28 degrees (LF), compensating to an esophoria of 3 degrees (RF/LF) with a near addition of 3.0 D. Accommodation and the pupillary near reaction (OU) were hardly elicitable during RF. During LF, retinoscopy revealed an accommodation of 8 D (OU) and the pupils constricted normally. Correction by bifocal glasses yielded orthotropia with random dot stereopsis at near.

  18. The OEOP Duties of Reasonable Accommodation

    NASA Technical Reports Server (NTRS)

    Coppedge, Angela

    1995-01-01

    I was fortunate enough to be assigned two assignments during my ten weeks here at NASA's Langley Research Center, in the Office of Equal Opportunity Programs (OEOP). One of my projects gave me the chance to gain experience in developing calculation formulas for the EXCEL computer system, while my second project gave me the chance to put my research skills and legal knowledge to use. The function of the OEOP is to ensure the adherence to personnel policy and practices in the employment, development, advancement and treatment of Federal employees and applicants for employment. This includes veterans and disabled as well. My initial project involved the research of hiring and promotion among the different minorities and females employed here at Langley. The objective of my first project was to develop graphs that showed the number of promotions during the past five years for each minority group here on the Center. I also had to show the average number of years it took for each promotion. The objective of my second and main research project was to find and research cases regarding the reasonable accommodation of disabled workers. The research of these cases is to ensure that individuals with disabilities are provided the necessary accommodations that are essential to the function of their job.

  19. Manned Mars mission accommodation: Sprint mission

    NASA Astrophysics Data System (ADS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-04-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hanger, and a heavy lift launch vehicle to support the large launch requirements.

  20. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.