Science.gov

Sample records for accommodate thermal expansion

  1. Seal accommodating thermal expansion between adjacent casings in gas turbine engine

    NASA Technical Reports Server (NTRS)

    Marra, John J. (Inventor)

    1992-01-01

    A casing around a turbine and a casing around discharge nozzles have a concentrically arranged shell portion. The seal contains internal pressure while accommodating eccentric, expansion and axial travel. Arcuate seal segments have one leg sealing against a radial surface extending from the inner shell and the other leg against the outer shell. A linkage guides travel of the segments.

  2. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  3. Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Ventura, Guglielmo; Perfetti, Mauro

    All solid materials, when cooled to low temperatures experience a change in physical dimensions which called "thermal contraction" and is typically lower than 1 % in volume in the 4-300 K temperature range. Although the effect is small, it can have a heavy impact on the design of cryogenic devices. The thermal contraction of different materials may vary by as much as an order of magnitude: since cryogenic devices are constructed at room temperature with a lot of different materials, one of the major concerns is the effect of the different thermal contraction and the resulting thermal stress that may occur when two dissimilar materials are bonded together. In this chapter, theory of thermal contraction is reported in Sect. 1.2 . Section 1.3 is devoted to the phenomenon of negative thermal expansion and its applications.

  4. Measurements of thermal accommodation coefficients.

    SciTech Connect

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  5. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  6. Thermal Expansion "Paradox."

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  7. Thermal expansion in nanoresonators

    NASA Astrophysics Data System (ADS)

    Mancardo Viotti, Agustín; Monastra, Alejandro G.; Moreno, Mariano F.; Florencia Carusela, M.

    2016-08-01

    Inspired by some recent experiments and numerical works related to nanoresonators, we perform classical molecular dynamics simulations to investigate the thermal expansion and the ability of the device to act as a strain sensor assisted by thermally-induced vibrations. The proposed model consists in a chain of atoms interacting anharmonically with both ends clamped to thermal reservoirs. We analyze the thermal expansion and resonant frequency shifts as a function of temperature and the applied strain. For the transversal modes the shift is approximately linear with strain. We also present analytical results from canonical calculations in the harmonic approximation showing that thermal expansion is uniform along the device. This prediction also works when the system operates in a nonlinear oscillation regime at moderate and high temperatures.

  8. Thermal expansion of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Tribaudino, M.; Angel, R. J.; Cámara, F.; Nestola, F.; Pasqual, D.; Margiolaki, I.

    2010-12-01

    The volume thermal expansion coefficient and the anisotropy of thermal expansion were determined for nine natural feldspars with compositions, in terms of albite (NaAlSi3O8, Ab) and anorthite (CaAl2Si2O8, An), of Ab100, An27Ab73, An35Ab65, An46Ab54, An60Ab40, An78Ab22, An89Ab11, An96Ab4 and An100 by high resolution powder diffraction with a synchrotron radiation source. Unit-cell parameters were determined from 124 powder patterns of each sample, collected over the temperature range 298-935 K. The volume thermal expansion coefficient of the samples determined by a linear fit of V/ V 0 = α( T - T 0) varies with composition ( X An in mol %) as: αV = 2.90left( 4 right) × 10^{ - 5} - 3.0left( 2 right) × 10^{ - 7} *X_{text{An}} + 1.8left( 2 right) × 10^{ - 9} *X_{text{An}}2 Two empirical models for the non-linear behaviour of volume with temperature give a better fit to the experimental data. The change with composition in the a° parameter of the non-linear Holland-Powell model V/ V 0 = 1 + a°( T - T 0) + 20a° (√ T - √ T 0) is: a^circ = 4.96left( 5 right) × 10^{ - 5} - 4.7left( 2 right) × 10^{ - 7} *X_{text{An}} + 2.2left( 2 right) × 10^{ - 9} *X_{text{An}}2 For the Berman model, V/ V 0 = a 1( T - T 0) + a 2*( T- T 0)2, the parameters change with composition as: begin{aligned}& a1 = 2.44left( {15} right) × 10^{ - 5} - 3.1left( 6 right) × 10^{ - 7} *X_{text{An}}\\& quad + 1.8left( 5 right) × 10^{ - 9} *X_{text{An}}2 \\& a2 = 9left( 1 right) × 10^{ - 9} - 4left( 2 right) × 10^{ - 11} *X_{text{An}} \\ The thermal expansion of all plagioclases is very anisotropic, with more than 70% of the volume expansion being accommodated by a direction fairly close to the (100) plane normal, whereas perpendicular directions exhibit smaller, and in some cases slightly negative or zero, thermal expansion.

  9. Lattice-structures and constructs with designed thermal expansion coefficients

    SciTech Connect

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  10. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052

  11. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  12. Low thermal expansion poreless ceramics

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Abe, Kozo; Mukai, Toshio

    2003-05-01

    Low thermal expansion ceramics have been required for ultra precision nanometer positioning stage in the semiconductor equipments. Especially pore-less advanced ceramics have been playng an important part as mirror materials in the optical equipments. Nippon Steel produces Sialon and NEXCERA as the solutions for these demands. Sialon based on silicon nitride shows a thermal expansion of 1.3 x 10-6/K with a high Young's modulus of 300 GPa. Newly-developed NEXCERA based on cordierite ceramics shows near-zero thermal expansion around the room temperature with a Young's modulus of 130 GPa. For these advanced ceramics, near-net shape sintering, direct bonding and mirror polishing are available. These technologies will provide us new design possibilities in precision engineering fields like optical system.

  13. Thermal Expansion of Hafnium Carbide

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  14. Clamshell Thermal-Expansion Bellows

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Moore, W. I.; Dipasquale, S. D.

    1993-01-01

    Improved bellows serves as thermal-expansion joint in vacuum-jacketed cyrogenic piping system. Made of Hastelloy C-22 and fabricated in field by welding two clam-shell-like half bellows. No protective paint or maintenance needed. Design modified to fit most thin-wall bellows.

  15. Spacecraft thermal energy accommodation from atomic recombination

    NASA Technical Reports Server (NTRS)

    Carleton, Karen L.; Marinelli, William J.

    1991-01-01

    Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.

  16. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  17. Mass and thermal accommodation during gas-liquid condensation of water.

    PubMed

    Winkler, Paul M; Vrtala, Aron; Wagner, Paul E; Kulmala, Markku; Lehtinen, Kari E J; Vesala, Timo

    2004-08-13

    In this Letter we report, for the first time, direct and simultaneous determinations of mass and thermal accommodation coefficients for water vapor condensation in air, based on the observation of droplet growth kinetics in an expansion cloud chamber. Our experiments exclude values below 0.85 for the thermal and below 0.4 for the mass accommodation coefficients at temperatures ranging from 250 to 290 K. Both coefficients are likely to be 1 for all studied conditions. Previously available experimental data on the mass accommodation coefficient for water span about 3 orders of magnitude. Our results provide new and firm insight to cloud microphysics and consequently to the global radiative balance. PMID:15324249

  18. Reducing Thermal Expansivity of Composite Panels

    NASA Technical Reports Server (NTRS)

    Smith, D. D.

    1985-01-01

    Coefficient of thermal expansion of laminated graphite/epoxy composite panels altered after panels cured by postcuring heat treatment. Postcure decreases coefficient of thermal expansion by increasing crosslinking between molecules. Treatment makes it possible to reprocess costly panels for requisite thermal expansivity instead of discarding them.

  19. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  20. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  1. High thermal expansion, sealing glass

    DOEpatents

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  2. High thermal expansion, sealing glass

    DOEpatents

    Brow, Richard K.; Kovacic, Larry

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  3. Thermal Accommodation Coefficients Based on Heat-Flux Measurements

    NASA Astrophysics Data System (ADS)

    Gallis, Michael A.; Trott, Wayne M.; Torczynski, John R.; Rader, Daniel J.

    2006-11-01

    A new method to determine the thermal accommodation coefficient of gases on solid surfaces based on heat-flux measurements is presented. An experimental chamber and supporting diagnostics have been developed that allow accurate heat-flux measurements between two parallel plates. The heat flux is inferred from temperature-difference measurements across the plates using precision thermistors, where the plate temperatures are set with two carefully controlled thermal baths. The resulting heat flux is used in a recently derived semi-empirical formula to determine the thermal accommodation coefficient. This formula has the advantage of eliminating the ˜8% discrepancy between molecular simulations and the predictions of the more approximate Sherman-Lees formula used in most studies. Nitrogen, argon, and helium on stainless steel with various finishes and on other silicon-based surfaces are examined. The thermal accommodation coefficients thus determined indicate that the Maxwell gas-surface interaction model can adequately represent all of the experimental observations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Pressurized electrolysis stack with thermal expansion capability

    DOEpatents

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  5. Low-thermal expansion infrared glass ceramics

    NASA Astrophysics Data System (ADS)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (<0.5 ppm/°C) and high thermal-shock resistance to be used as windows and domes for high speed flight. The material is an inorganic, non-porous glass ceramic, characterized by crystalline phases of evenly distributed nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  6. Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces.

    PubMed

    Giri, Ashutosh; Hopkins, Patrick E

    2016-02-28

    We develop an analytical model for the thermal boundary conductance between a solid and a gas. By considering the thermal fluxes in the solid and the gas, we describe the transmission of energy across the solid/gas interface with diffuse mismatch theory. From the predicted thermal boundary conductances across solid/gas interfaces, the equilibrium thermal accommodation coefficient is determined and compared to predictions from molecular dynamics simulations on the model solid-gas systems. We show that our model is applicable for modeling the thermal accommodation of gases on solid surfaces at non-cryogenic temperatures and relatively strong solid-gas interactions (εsf ≳ kBT). PMID:26931716

  7. EXAFS studies of local thermal expansion

    SciTech Connect

    Beccara, S.; Dalba, G.; Fornasini, P.; Grisenti, R.; Sanson, A.; Rocca, F.; Purans, J.; Diop, D.

    2003-01-24

    Original information on local thermal expansion can be obtained through a cumulant analysis of EXAFS. The difference between first and third EXAFS cumulants, and the comparison with Bragg diffraction results, can help in disentangling the contributions to thermal expansion of potential anharmonicity and geometrical effects. In germanium, the perpendicular Mean Square Relative Displacement has been obtained from EXAFS. In Ag2O, whose framework structure exhibits negative thermal expansion, a positive expansion of the Ag-O bond has been measured and the deformation of the Ag4O structural units monitored.

  8. An experimental assembly for precise measurement of thermal accommodation coefficients.

    PubMed

    Trott, Wayne M; Castañeda, Jaime N; Torczynski, John R; Gallis, Michael A; Rader, Daniel J

    2011-03-01

    An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations. PMID:21456801

  9. Thermal expansion: Metallic elements and alloys. [Handbook

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  10. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  11. Thermal expansion and thermal expansion anisotropy of SiC polytypes

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1987-01-01

    The principal axial coefficients of thermal expansion for the (3C), (4H), and (6H) polytypes of SiC are considered to identify the structural role of the stacking layer sequence as it affects the thermal expansion. A general equation based on the fractions of cubic and hexagonal layer stacking is developed that expresses the principal axial thermal expansion coefficients of all of the SiC polytypes. It is then applied to address the thermal expansion anisotropy of the noncubic SiC structures.

  12. Thermal expansion behaviour of thermoplastic composite materials

    SciTech Connect

    Barnes, J.A.; Simms, I.J.; Farrow, G.J.; Jackson, D.; Wostenholm, G. Salford Univ. )

    1990-01-01

    The thermal expansion behavior of a number of commercially available and experimental continuous fiber-reinforced PEEK composites is assessed. The thermal expansion characteristics of Hercules AS4 reinforced PEEK (APC-2/AS4, ICI Fiberite) are reported in some detail, and it is shown that behavior is both reasonable and predictable. Further, it is found that repeated thermal cycling between -160 C and +120 C has no effect on the behavior of unidirectional laminates, and that the inherent characteristics of the composite are likely to promote such insensitivity. 16 refs.

  13. Anomalous thermal expansion with infrared spectroscopy.

    PubMed

    Plendl, J N; Mansur, L C

    1972-05-01

    Anomalous thermal expansion is treated through an analytical approach, based on the anharmonic behavior of lattice vibrations of the solids CuCl and CuBr of which complete ir spectroscopic data were available for the low temperature region. In the two cases examined here, anomalous thermal expansion as well as change of anharmonic factor, as a function of temperature, show a mirrorlike proportionality. In addition, drastic changes of ir energy absorption take place within the temperature region of reexpansion, suggesting a substantial increase of the ionic fraction of binding, coupled with a corresponding decrease of the covalent fraction, within the re-expansion period. These striking events appear to be the basic reason for the re-expansion phenomenon, since the sum value of the ionic radii of the compounds in question is greater than the sum value of the covalent radii, thus enlarging the interatomic distance, instead of contracting it. PMID:20119115

  14. Mechanisms underlying accent accommodation in early word learning: evidence for general expansion.

    PubMed

    Schmale, Rachel; Seidl, Amanda; Cristia, Alejandrina

    2015-07-01

    Previous work reveals that toddlers can accommodate a novel accent after hearing it for only a brief period of time. A common assumption is that children, like adults, cope with nonstandard pronunciations by relying on words they know (e.g. 'this person pronounces sock as sack, therefore by black she meant block'). In this paper, we assess whether toddlers might additionally use a general expansion strategy, whereby they simply accept non-standard pronunciations when variability is expected. We exposed a group of 24-month-old English-learning toddlers to variability in indexical cues (very diverse voices from native English talkers), and another to variability in social cues (very diverse-looking silent actors); neither group was familiarized with the target novel accent. At test, both groups succeeded in recognizing a novel word when spoken in the novel accent. Thus, even when no lexical cues are available, variability can prepare young children for non-standard pronunciations. PMID:25443808

  15. Thermal Expansion of ScF3

    NASA Astrophysics Data System (ADS)

    Bhandia, R.; Grockowiak, A.; Siegrist, T.; Besara, T.; Tozer, S. W.; Schmiedeshoff, G. M.

    ScF3 is an insulator, has a cubic crystal structure, and exhibits negative thermal expansion over a very wide temperature range. We will present and discuss thermal expansion measurements made with capacitive and fiber-Bragg-grating dilatometers. Work at Occidental College is supported by the National Science Foundation under DMR- 1408598. A portion of this work was funded by the US Department of Energy NNSA SSAA DE-NA0001979, and performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

  16. Development of low thermal expansion superalloy

    NASA Astrophysics Data System (ADS)

    Sato, K.; Ohno, T.

    1993-08-01

    Alloy 903 and Alloy 909 are well-known Fe-Co-Ni-Al-Ti-Nb alloys with controlled low thermal expan-sion, but they have some properties that can be improved. To improve stress-accelerated grain boundary oxidation embrittlement of Alloy 903 and instability of the γ phase of alloy 909, two new alloys with good stress-rupture ductility, high creep-rupture strength, high tensile strength at high temperature, and good controlled thermal expansion were developed. These property improvements were accomplished by the combination of optimizing the Fe-Co-Ni ratio of the matrix and stabilizing the γ phase with the addition of aluminum.

  17. Thermal Expansion Anomaly Regulated by Entropy

    PubMed Central

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-01-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions. PMID:25391631

  18. Method of assembling a thermal expansion compensator

    NASA Technical Reports Server (NTRS)

    Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)

    2012-01-01

    A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.

  19. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1981-01-01

    Moire interferometry by reflection has been demonstrated using a real reference grating of 1200 lines/mm. The method is shown to be well adapted to thermal environments. Thermal expansion coefficients of graphite-epoxy composites have been measured with high precision over a wide range from nearly zero to 3300 microstrains in the temperature range 297-422 K. Random errors characterized by one standard deviation can be as small as one microstrain.

  20. Thermal expansion of Neapolitan Yellow Tuff

    NASA Astrophysics Data System (ADS)

    Aversa, S.; Evangelista, A.

    1993-10-01

    In saturated rocks and soils it is possible to define different coefficients of thermal expansion depending on the drainage conditions. This topic is first examined from the theoretical point of view with regard to an ideal isotropic thermo-elastic porous medium. Some special features of the behaviour of natural soils and rocks during thermal expansion tests are subsequently discussed. An experimental evaluation of some of these coefficients is presented in the second part of the paper. The material investigated is a pyroclastic rock, the so-called Neapolitan Yellow Tuff. Thermal expansion coefficient in drairend conditions has been evaluated, when this material is saturated with water. The e pressure increase induced by heating has been measured in undrained tes temperatures investigated range between room temperature up to 225°C. Different types of apparatus have been used and, when possible, a comparison between the results has been proposed. The results obtained in undrained thermal expansion tests are in agreement with theoretical predictions. This research is part of an on-going study of the complex phenomena known as Bradyseism, which is occurring in a volcanic area a few kilometers from Naples (Italy). Some considerations on this phenomenon are drawn in the last paragraph of the paper.

  1. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  2. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  3. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1982-01-01

    Moire interferometry by reflection is described and demonstrated for the case of a real reference grating of 1200 lines/mm. Extraneous beams can be displaced and stopped by using a wedge-shaped air gap between reference and specimen gratings. Double-order dominance, the use of diffraction sequences for reflection, the isolation of preferred sequences, and the use of two-beam interference are discussed. Experimental accuracy is enhanced significantly by using several data points to establish displacements along a line, and random errors characterized by one standard deviation can be as small as one microstrain. The method is well adapted to thermal environments, coefficients of thermal expansion of selected graphite-epoxy laminates being determined in the temperature range of 297-422 K. Very good precision was achieved for a wide range of thermal expansion coefficients, from approximately zero to 27 microstrains/K.

  4. Preliminary thermal expansion screening data for tuffs

    SciTech Connect

    Lappin, A.R.

    1980-03-01

    A major variable in evaluating the potential of silicic tuffs for use in geologic disposal of heat-producing nuclear wastes is thermal expansion. Results of ambient-pressure linear expansion measurements on a group of tuffs that vary treatly in porosity and mineralogy are presente here. Thermal expansion of devitrified welded tuffs is generally linear with increasing temperature and independent of both porosity and heating rate. Mineralogic factors affecting behavior of these tuffs are limited to the presence or absence of cristobalite and altered biotite. The presence of cristobalite results in markedly nonlinear expansion above 200{sup 0}C. If biotite in biotite-hearing rocks alters even slightly to expandable clays, the behavior of these tuffs near the boiling point of water can be dominated by contraction of the expandable phase. Expansion of both high- and low-porosity tuffs containing hydrated silicic glass and/or expandable clays is complex. The behavior of these rocks appears to be completely dominated by dehydration of hydrous phases and, hence, should be critically dependent on fluid pressure. Valid extrapolation of the ambient-pressure results presented here to depths of interest for construction of a nuclear-waste repository will depend on a good understanding of the interaction of dehydration rates and fluid pressures, and of the effects of both micro- and macrofractures on the response of tuff masss.

  5. Frostless heat pump having thermal expansion valves

    DOEpatents

    Chen, Fang C [Knoxville, TN; Mei, Viung C [Oak Ridge, TN

    2002-10-22

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  6. Low thermal expansion seal ring support

    DOEpatents

    Dewis, David W.; Glezer, Boris

    2000-01-01

    Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

  7. Thermal expansion measurements of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Dries, Gregory A.

    1988-01-01

    The laser-interferometric-dilatometer system currently operational at NASA-Langley is described. The system, designed to characterize metal matrix composites, features high precision, automated data acquisition, and the ability to test a wide variety of specimen geometries over temperature ranges within 80-422 K. The paper presents typical thermal-expansion measurement data for a Gr/Al rod; Gr/Al and Gr/Mg unidirectional laminates; and a Gr/Mg (+ or -8)s laminate.

  8. Thermal Expansion of Fe3S

    NASA Astrophysics Data System (ADS)

    Chen, B.; Li, J.

    2005-12-01

    We have investigated the thermal expansion of the iron-sulfur compound Fe3S at pressures up to 42.5 GPa and temperatures to 900 K by using synchrotron X-ray diffraction techniques. It has been well recognized that iron and sulfur are possible elements in the cores of the terrestrial planets. According to our present knowledge, Fe3S is the most iron-rich compound in the Fe-S system. The Earth's core probably has sulfur content between pure iron and Fe3S. Given higher sulfur content, Fe3S is a possible component of the Martian inner core. Hence, the equation-of-state of Fe3S is of fundamental importance for our understanding of the Earth's and planetary cores. The room temperature compression curve of Fe3S was determined by Fei et al. [1]. To date, no experimental data have been reported on the thermal expansion of Fe3S. In this study, we report in situ measurements of thermal expansion of Fe3S at high pressure by means of an externally-heated diamond-anvil cell and the energy-dispersive X-ray diffraction techniques at x17c beamline, the National Synchrotron Light Source, Brookhaven National Laboratory. The measured thermal expansion for Fe3S can be directly used for modeling the cores of the terrestrial planets and is important for interpreting current geophysical observations of the Earth's and planetary cores. [1]Fei, Y.-W. , Li, J., Bertka, C.M., and Prewitt, C.T. (2000) Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. American Mineralogist, 85, 1830-1833.

  9. Thermal expansion of compounds of zircon structure

    SciTech Connect

    Subbarao, E.C.; Agrawal, D.K.; McKinstry, H.A.; Sallese, C.W.; Roy, R. . Materials Research Lab.)

    1990-05-01

    The thermal expansion behavior of 13 members of ABO{sub 4} compounds of the zircon family is examined in terms of crystal chemical (size, charge, and mass of cations) and crystallographic (a and c) parameters. The systematic trend in the thermal expansion coefficients {alpha}{sub a} and {alpha}{sub c}, with the ionic radii, r{sub A} and R{sub B}, can be explained in terms of the unique arrangement of M-O polyhedra along a and c directions of this lattice. In the zircon structure, edge-sharing ZrO{sub 8} dodecahedra form a chain along the a direction while the chain along the c direction consists of alternate edge-sharing SiO{sub 4} tetrahedra and ZrO{sub 8} triangular dodecahedra. Substitution in the A sites affects a and {alpha}{sub a} more than c and {alpha}{sub c} and the reverse is true for replacements in the B sites. Unequal valencies on the A and B sites affect thermal expansion coefficients, particularly {alpha}{sub c}.

  10. Frequency dependent thermal expansion in binary viscoelasticcomposites

    SciTech Connect

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  11. Thermal expansion mismatch and oxidation in thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Chang, G. C.; Phucharoen, W.; Miller, R. A.

    1985-01-01

    Thermal barrier coatings (TBC) for advanced gas turbine blades have been under intensive development during the last several years. This investigation is intended to achieve a clearer understanding of the mechanical behavior of plasma sprayed zirconia-yttria TBCs, involving a nickle-chromium-aluminum bond coat. The near term objectives are to study the stress states in a relatively simple model TBC subjected to steady state thermal loading. The resulting thermal expansion mismatch and oxidation have been primary targets for the study. The finite element approach and the effects of thermal mismatch and oxidation are described. A proposed mechanism for oxidation induced coating failure is also presented.

  12. Elucidating Negative Thermal Expansion in MOF-5

    SciTech Connect

    Lock, Nina; Wu, Yue; Christensen, Mogens; Cameron, Lisa J.; Peterson, Vanessa K.; Bridgeman, Adam J.; Kepert, Cameron J.; Iversen, Bo B.

    2010-12-07

    Multi-temperature X-ray diffraction studies show that twisting, rotation, and libration cause negative thermal expansion (NTE) of the nanoporous metal-organic framework MOF-5, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}. The near-linear lattice contraction is quantified in the temperature range 80-500 K using synchrotron powder X-ray diffraction. Vibrational motions causing the abnormal expansion behavior are evidenced by shortening of certain interatomic distances with increasing temperature according to single-crystal X-ray diffraction on a guest-free crystal over a broad temperature range. Detailed analysis of the atomic positional and displacement parameters suggests two contributions to cause the effect: (1) local twisting and vibrational motion of the carboxylate groups and (2) concerted transverse vibration of the linear linkers. The vibrational mechanism is confirmed by calculations of the dynamics in a molecular fragment of the framework.

  13. Thermal expansion of composites using Moire interferometry

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Post, D.; Herakovich, C. T.; Tenny, D. R.

    1980-01-01

    An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed.

  14. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    PubMed

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-01

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials. PMID:25864730

  15. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  16. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  17. Determination of thermal accommodation coefficients from heat transfer measurements between parallel plates.

    SciTech Connect

    Gallis, Michail A.; Castaneda, Jaime N.; Rader, Daniel John; Torczynski, John Robert; Trott, Wayne Merle

    2010-10-01

    Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and

  18. Thermal expansion recovery microscopy: Practical design considerations

    SciTech Connect

    Mingolo, N. Martínez, O. E.

    2014-01-15

    A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

  19. Space nuclear thermal propulsion test facilities accommodation at INEL

    SciTech Connect

    Hill, T.J.; Reed, W.C.; Welland, H.J. )

    1993-01-15

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  20. Thermal expansion of Apollo lunar samples and Fairfax diabase.

    NASA Technical Reports Server (NTRS)

    Baldridge, W. S.; Miller, F.; Wang, H.; Simmons, G.

    1972-01-01

    Measured values of the thermal expansion of seven Apollo samples over the temperature range -100 C to +200 C are reported and compared to terrestrial Fairfax diabase. For most of the lunar rocks the measured expansion is significantly lower (30%) than the intrinsic value calculated from Turner's equation for the thermal expansion of an aggregate. The measured expansion of the Fairfax diabase was equal to the intrinsic but was higher for samples of Fairfax which had been previously cycled to high temperatures. The effect of microfractures on the thermal expansion of rocks is discussed.

  1. Relativistic effects on the thermal expansion of the actinide elements

    SciTech Connect

    Soederlind, P.; Nordstroem, L.; Lou Yongming; Johansson, B. )

    1990-09-01

    The room-temperature linear thermal-expansion coefficient is calculated for the light actinides thorium, protactinium, uranium, neptunium, and plutonium for the fcc crystal structure. The relativistic spin-orbit interaction is included in these calculations. We show that the spin-orbit splitting of the 5{ital f} band gives rise to a considerable increase of the thermal expansion and to a large extent explains the observed anomalously large thermal expansion for the neptunium and plutonium metals.

  2. Anisotropic thermal expansion of a 3D metal–organic framework with hydrophilic and hydrophobic pores

    SciTech Connect

    Kondo, Atsushi Maeda, Kazuyuki

    2015-01-15

    A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material are selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.

  3. Mechanisms Underlying Accent Accommodation in Early Word Learning: Evidence for General Expansion

    ERIC Educational Resources Information Center

    Schmale, Rachel; Seidl, Amanda; Cristia, Alejandrina

    2015-01-01

    Previous work reveals that toddlers can accommodate a novel accent after hearing it for only a brief period of time. A common assumption is that children, like adults, cope with nonstandard pronunciations by relying on words they know (e.g. "this person pronounces sock as 'sack', therefore by 'black' she meant 'block'"). In this paper,…

  4. Thermal expansion accompanying the glass-liquid transition and crystallization

    NASA Astrophysics Data System (ADS)

    Jiang, M. Q.; Naderi, M.; Wang, Y. J.; Peterlechner, M.; Liu, X. F.; Zeng, F.; Jiang, F.; Dai, L. H.; Wilde, G.

    2015-12-01

    We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1) bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  5. Probing the physical determinants of thermal expansion of folded proteins.

    PubMed

    Dellarole, Mariano; Kobayashi, Kei; Rouget, Jean-Baptiste; Caro, José Alfredo; Roche, Julien; Islam, Mohammad M; Garcia-Moreno E, Bertrand; Kuroda, Yutaka; Royer, Catherine A

    2013-10-24

    The magnitude and sign of the volume change upon protein unfolding are strongly dependent on temperature. This temperature dependence reflects differences in the thermal expansivity of the folded and unfolded states. The factors that determine protein molar expansivities and the large differences in thermal expansivity for proteins of similar molar volume are not well understood. Model compound studies have suggested that a major contribution is made by differences in the molar volume of water molecules as they transfer from the protein surface to the bulk upon heating. The expansion of internal solvent-excluded voids upon heating is another possible contributing factor. Here, the contribution from hydration density to the molar thermal expansivity of a protein was examined by comparing bovine pancreatic trypsin inhibitor and variants with alanine substitutions at or near the protein-water interface. Variants of two of these proteins with an additional mutation that unfolded them under native conditions were also examined. A modest decrease in thermal expansivity was observed in both the folded and unfolded states for the alanine variants compared with the parent protein, revealing that large changes can be made to the external polarity of a protein without causing large ensuing changes in thermal expansivity. This modest effect is not surprising, given the small molar volume of the alanine residue. Contributions of the expansion of the internal void volume were probed by measuring the thermal expansion for cavity-containing variants of a highly stable form of staphylococcal nuclease. Significantly larger (2-3-fold) molar expansivities were found for these cavity-containing proteins relative to the reference protein. Taken together, these results suggest that a key determinant of the thermal expansivities of folded proteins lies in the expansion of internal solvent-excluded voids. PMID:23646824

  6. Metal-Ion Additives Reduce Thermal Expansion Of Polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Emerson, Burt R., Jr.; Willis, George L.

    1994-01-01

    Polyimides widely used as high-performance polymers because of their excellent thermal stability and toughness. However, their coefficients of thermal expansion (CTE's) greater than those of metals, ceramics, and glasses. Decreasing CTE's of polyimides increase usefulness for aerospace and electronics applications in which dimensional stability required. Additives containing metal ions reduce coefficients of thermal expansion of polyimides. Reductions range from 11 to over 100 percent.

  7. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, Santosh Y.

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  8. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  9. Thermal expansion of several materials for superconducting magnets

    SciTech Connect

    Clark, A.F.; Fujii, G.; Ranney, M.A.

    1981-09-01

    The thermal expansion of several materials used in the consruction of high field superconducting magnets has been measured from 4 K to room temperature. The materials were a NbTi and two A15 multifilamentary conductors and several nonmetallic composites made from linen/phenolic, fiberglass/epoxy and superconducitng wire/epoxy. The conductor expansions are typical of metals and the composite expansions are highy anisotropic. Both graphic and tabular values are provided by a computer fitting of the experimental data. The importnce of thermal expansion differences in critical current measurement apparatus and superconducting magnet design are discussed. 12 refs.

  10. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, Tuyen D.; Steckel, Gary L.

    1993-01-01

    The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.

  11. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Hamada, T.; Kasugai, D.; Sugimoto, N.

    2012-10-01

    We controlled thermal expansion of metal matrix composites (MMCs) that had been blended using antiperovskite manganese nitrides with giant negative thermal expansion (NTE). The NTE of the manganese nitrides, which is isotopic, is greater than -30 ppm K-1 in α (coefficient of linear thermal expansion), which is several or ten times as large as that of conventional NTE materials. These advantages of nitrides are desirable for practical application as a thermal-expansion compensator, which can suppress thermal expansion of various materials including metals and even plastics. Powder metallurgy using pulsed electric current sintering enables us to reduce temperatures and times for fabrication of MMCs. Consequently, chemical reactions between matrix (Al, Ti, Cu) and filler can be controlled and even high-melting-point metals can be used as a matrix. Thermal expansion of these MMCs is tunable across widely various α values, even negative ones, with high reproducibility. These composites retain a certain amount of voids. Formation of rich and stable interfacial bonding, overcoming large mismatch in thermal expansion, remains as a problem that is expected to hinder better composite performance.

  12. Laboratory Procedures in Thermal Expansion and Viscosity of Liquids

    ERIC Educational Resources Information Center

    Dawson, Paul Dow

    1974-01-01

    Describes the laboratory procedures for the measurement of thermal expansion and viscosity of liquids. These experiments require inexpensive equipment and are suitable for secondary school physical science classes. (JR)

  13. Seal assembly for materials with different coefficients of thermal expansion

    SciTech Connect

    Minford, Eric

    2009-09-01

    Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.

  14. The current status of controlled thermal expansion superalloys

    NASA Astrophysics Data System (ADS)

    Wanner, E. A.; Deantonio, D. A.; Smith, D. F.; Smith, J. S.

    1991-03-01

    Controlled thermal expansion superalloys, used primarily in aerospace applications at temperatures up to 649°C, provide coefficients of thermal expansion approximately 40 percent less than those of conventional superalloys. Since their first introduction in the early 1970s, continued progress has increased the capability of these materials. Various alterations in alloying elements were found to have a profound effect on the properties of the materials; ongoing work is aimed at extending the progress.

  15. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  16. Thermal expansion uniformity of materials for large telescope mirrors

    NASA Technical Reports Server (NTRS)

    Jacobs, S. F.; Shough, D.; Connors, C.

    1984-01-01

    Uniformity of thermal expansion has been measured for fused quartz and borosilicate glass. The variation of expansion coefficient for three melts of TO8E was 5 x 10 to the -9th/K over a temperature range of 300 to 100 K and was found to vary linearly with position in the melt. This spatial gradient averaged 3.5 x 10 to the -11th/K-cm. The room-temperature thermal expansivity variation of Duran (Tempax) glass was about 27 x 10 to the -9th/K, while that of E6 glass was about 52 x 10 to the -9th/K.

  17. Development of low-thermal expansion mullite bodies

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.; Sibold, J. D.

    1982-01-01

    A series of ceramic compositions based on variations in the crystal-glass ratio of a mullite body were developed. The thermal expansion of these compositions varies from 3.7 to 5.0 x 10 to the -6th/deg C to 800 C. The materials are particularly useful for applications involving silicon, in that an identical thermal expansion is available. The high-temperature creep data for the lower-expansion compositions are inferior as a result of their higher glass contents. Raw material sources and fabrication procedures for specific compositions are given.

  18. Thermal-expansion hysteresis in graphite/glass composites

    SciTech Connect

    Janas, V.F.

    1988-07-01

    The thermal-expansion hysteresis phenomena in graphite/glass composites was studied. Neat (unfilled) glass and unidirectional composites showed no observable hysteresis, while (0/90) cross-ply composites showed significant residual thermal strain (approx. 20 PPM) after thermal cycling (25 ..-->.. 150 ..-->.. 25/sup 0/C). Multiple thermal cycling of the composite and the strengthening of the fiber/matrix bond were found to greatly reduce the magnitude of the residual thermal strain. Bond strengthening also weakened and embrittled the composite, supporting a fiber-slippage mechanism for hysteresis. Thermal precycling and interface modification are proposed as methods of diminishing the effects of thermal-expansion hysteresis. 11 references, 6 figures, 4 tables.

  19. Thermal expansion of solid solutions in apatite binary systems

    SciTech Connect

    Knyazev, Alexander V.; Bulanov, Evgeny N. Korokin, Vitaly Zh.

    2015-01-15

    Graphical abstract: Thermal dependencies of volume thermal expansion parameter for with thermal expansion diagrams for Pb{sub 5}(PO{sub 4}){sub 3}F{sub x}Cl{sub 1−x}. - Highlights: • Solid solutions in three apatitic binary systems were investigated via HT-XRD. • Thermal expansion coefficients of solid solutions in the systems were calculated. • Features of the thermal deformation of the apatites were described. • Termoroentgenography is a sensitive method for the investigation of isomorphism. - Abstract: High-temperature insitu X-ray diffraction was used to investigate isomorphism and the thermal expansion of apatite-structured compounds in three binary systems in the entire temperature range of the existence of its hexagonal modifications. Most of the studied compounds are highly expandable (α{sub l} > 8 × 10{sup 6} (K{sup −1})). In Pb{sub 5}(PO{sub 4}){sub 3}F–Pb{sub 5}(PO{sub 4}){sub 3}Cl system, volume thermal expansion coefficient is independence from the composition at 573 K. In Pb{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(VO{sub 4}){sub 3}Cl, the compound with equimolar ratio of substituted atoms has constant volume thermal expansion coefficient in temperature range 298–973 K. Ca{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(PO{sub 4}){sub 3}Cl system is characterized by the most thermal sensitive composition, in which there is an equal ratio of isomorphic substituted atoms.

  20. Ab-initio study of thermal expansion in pure graphene

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja; Kumar, Ranjan; Jindal, V. K.

    2016-05-01

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPTand the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to be strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of -1.44×10-6. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.

  1. Thermal expansion of composites: Methods and results. [large space structures

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.

    1981-01-01

    The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.

  2. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  3. Nonlinear acoustics and the thermal expansivity of glass

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1992-01-01

    The paper shows the intrinsic relationship between acoustical nonlinearity and the thermal expansivity of crystalline solids (a thermal measure of anharmonicity) from consideration of the 'static' radiation field generated by the vibrating lattice (atomic) sources of the crystal. A modification of the theory to account for long-range structural disorder in glass is proposed and applied to an explanation of the zero thermal expansivity at the cross-over temperature in silicate and titanium silicate glasses. Experimental evidence which validates the essential features of the theory is presented. An application of nonlinearity measurement, based on these results, to the processing of ULE glass, where the addition of titanium in various amounts is used to establish the temperature at which the zero thermal expansivity occurs, is suggested.

  4. Thermal expansivity of HCP iron based on seismic parameters

    NASA Astrophysics Data System (ADS)

    Vijay, A.

    2007-03-01

    The method for determining the thermal expansivity of hexagonal close-packed (HCP) iron at high pressure and high temperature developed by Isaak and Anderson [Physica B 328 (2003) 345] has been used taking the input parameters derived from the seismic data and the Stacey reciprocal K-primed equation of state [F.D. Stacey, and P.M. Davis, Phys. Earth Planet. Inter. 142 (2004) 137]. Values of thermal pressure have been obtained from the formulation presented by Shanker et al. [Phys. Earth Planet. Inter. 147 (2004) 333]. Pressure (P) volume (V) temperature (T) relationships and thermal expansivity for HCP iron at high P and high T are obtained. The results for thermal expansivity are found to compare well with the corresponding results derived by Isaak and Anderson using the laboratory data.

  5. Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Huang, Rui

    2014-05-01

    Thermomechanical properties of monolayer graphene with thermal fluctuation are studied by both statistical mechanics analysis and molecular dynamics (MD) simulations. While the statistical mechanics analysis in the present study is limited by a harmonic approximation, significant anharmonic effects are revealed by MD simulations. The amplitude of out-of-plane thermal fluctuation is calculated for graphene membranes under both zero stress and zero strain conditions. It is found that the fluctuation amplitude follows a power-law scaling with respect to the linear dimension of the membrane, but the roughness exponents are different for the two conditions due to anharmonic interactions between bending and stretching modes. Such thermal fluctuation or rippling is found to be responsible for the effectively negative in-plane thermal expansion of graphene at relatively low temperatures, while a transition to positive thermal expansion is predicted as the anharmonic interactions suppress the rippling effect at high temperatures. Subject to equi-biaxial tension, the amplitude of thermal rippling decreases nonlinearly, and the in-plane stress-strain relation of graphene becomes nonlinear even at infinitesimal strain, in contrast with classical theory of linear elasticity. It is found that the tangent biaxial modulus of graphene depends on strain non-monotonically, decreases with increasing temperature, and depends on membrane size. Both statistical mechanics and MD simulations suggest considerable entropic contribution to the thermomechanical properties of graphene, and as a result thermal rippling is intricately coupled with thermal expansion and thermoelasticity for monolayer graphene membranes.

  6. Glass ceramics for sealing to high-thermal-expansion metals

    SciTech Connect

    Wilder, Jr., J. A.

    1980-10-01

    Glass ceramics were studied, formulated in the Na/sub 2/O CaO.P/sub 2/O/sub 5/, Na/sub 2/O.BaOP/sub 2/O/sub 5/, Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/, and Li/sub 2/O.BaO.P/sub 2/O/sub 5/ systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na/sub 2/O.CaO.P/sub 2/O/sub 5/ and Na/sub 2/O.BaO.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion in the range 140 x 10/sup -1/ per /sup 0/C less than or equal to ..cap alpha.. less than or equal to 225 x 10/sup -7/ per /sup 0/C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo/sub 3/, (NaPO/sub 3/)/sub 3/, NaBa(PO/sub 3/)/sub 3/, and NaCa(PO/sub 3/)/sub 3/. Glass ceramics formed in the Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion greater than 240 x 10/sup -7/ per /sup 0/C, but they have extensive microcracking. Due to their low thermal expansion values (..cap alpha.. less than or equal to 120 x 10/sup -7/ per /sup 0/C), glass ceramics in the Li/sub 2/O.BaO.P/sub 2/O/sub 5/ system are unsuitable for sealing to high thermal expansion metals.

  7. Symmetry Switching of Negative Thermal Expansion by Chemical Control.

    PubMed

    Senn, Mark S; Murray, Claire A; Luo, Xuan; Wang, Lihai; Huang, Fei-Ting; Cheong, Sang-Wook; Bombardi, Alessandro; Ablitt, Chris; Mostofi, Arash A; Bristowe, Nicholas C

    2016-05-01

    The layered perovskite Ca3-xSrxMn2O7 is shown to exhibit a switching from a material exhibiting uniaxial negative to positive thermal expansion as a function of x. The switching is shown to be related to two closely competing phases with different symmetries. The negative thermal expansion (NTE) effect is maximized when the solid solution is tuned closest to this region of phase space but is switched off suddenly on passing though the transition. Our results show for the first time that, by understanding the symmetry of the competing phases alone, one may achieve unprecedented chemical control of this unusual property. PMID:26927232

  8. Analysis of Thermal Expansivity of Solids Under High Pressures

    NASA Astrophysics Data System (ADS)

    Sunil, K.; Singh, P. K.; Sharma, B. S.

    2012-08-01

    For investigating the thermal expansivity of solids under high pressures we have developed a formulation using the relationship between the reciprocal of pressure derivative of bulk modulus and the ratio of pressure and bulk modulus. The formulation presented here satisfies the boundary conditions both at zero-pressure and also in the limit of infinite pressure at extreme compression. A physically acceptable relationship has been obtained between the Anderson-Grüneisen parameter and the pressure derivatives of bulk modulus. The formulation has been applied to determine the pressure dependence of thermal expansivity of NaCl, MgO and the earth lower mantle minerals.

  9. Thermal expansion of rock-salt cubic AlN

    NASA Astrophysics Data System (ADS)

    Bartosik, M.; Todt, M.; Holec, D.; Todt, J.; Zhou, L.; Riedl, H.; Böhm, H. J.; Rammerstorfer, F. G.; Mayrhofer, P. H.

    2015-08-01

    We combine continuum mechanics modeling and wafer curvature experiments to characterize the thermal expansion coefficient of AlN in its metastable cubic rock-salt (B1) structure. The latter was stabilized as nm thin layers by coherency strains in CrN/AlN epitaxial multilayers deposited on Si (100) substrates using reactive magnetron sputtering. The extraction of the B1-AlN thermal expansion coefficient, from experimentally recorded temperature dependent wafer curvature data, is formulated as an inverse problem using continuum mechanics modeling. The results are cross-validated by density functional theory calculations.

  10. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements

    SciTech Connect

    Eash, D. T.

    2013-07-08

    Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.

  11. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  12. Thin films with ultra-low thermal expansion.

    PubMed

    Yamamoto, Namiko; Gdoutos, Eleftherios; Toda, Risaku; White, Victor; Manohara, Harish; Daraio, Chiara

    2014-05-21

    Ultra-low coefficient of thermal expansion (CTE) is an elusive property, and narrow temperature ranges of operation and poor mechanical properties limit the use of conventional materials with low CTE. We structured a periodic micro-array of bi-metallic cells to demonstrate ultra-low effective CTE with a wide temperature range. These engineered tunable CTE thin film can be applied to minimize thermal fatigue and failure of optics, semiconductors, biomedical sensors, and solar energy applications. PMID:24677188

  13. Thermal expansion of epoxy-fiberglass composite specimens

    SciTech Connect

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120/sup 0/C (70 to 250/sup 0/F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (..cap alpha..) values within +-2% of expected values from 20 to 200/sup 0/C.

  14. Thermal expansion of scanning tunneling microscopy tips under laser illumination

    NASA Astrophysics Data System (ADS)

    Grafström, S.; Schuller, P.; Kowalski, J.; Neumann, R.

    1998-04-01

    The periodic thermal expansion of scanning tunneling microscopy (STM) tips arising under irradiation with power-modulated laser light has been investigated. The expansion was determined by comparison with a calibrated piezomotion measured in an STM, which was operated in the constant-current mode, and instrumental effects were corrected for. The experimental data concerning the frequency response of the thermal expansion for various geometries of the tip and for different positions of the laser focus are compared with theoretical results which were derived from a numerical solution of the equation of heat conduction. A very good agreement is found. The results are also interpreted in terms of simplified analytical expressions. Furthermore, the theoretical data are used to derive the response of the tip to fast transients of the light power as in the case of pulsed irradiation.

  15. How to Measure the Thermal Expansion Coefficient at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Ventura, Guglielmo; Perfetti, Mauro

    Thermal expansion measurements in the high temperature range have been thoroughly explored, and various experimental methods are available even as commercial instrumentation, measurements at cryogenic temperatures have been confined to the field of high-precision laboratory experiments, needing large experimental efforts and expenses, and often also suffering from intrinsic limitations. All techniques used for the measurements of thermal expansion can be divided into two categories, namely: absolute methods and relative methods. While in the former the linear changes of dimension of the sample are directly measured at various temperature, in the latter the coefficient of thermal expansion is determined through comparison with a reference materials of known thermal expansion. A lot of experimental set-ups are described in Sect. 2.1 , while Sect. 2.2 some examples of measurements performed at very low temperatures are listed.

  16. Thermal expansion of several materials for superconducting magnets. Final report

    SciTech Connect

    Clark, A.F.; Fujii, G.; Ranney, M.A.

    1981-09-01

    The thermal expansion of several materials used in the construction of high field superconducting magnets has been measured from 4 K to room temperature. The materials were a NbTi and two A15 multifilamentary conductors and several nonmetallic composites made from linen/phenolic, fiberglass/epoxy and superconducting wire/epoxy.

  17. An extended soft-cube model for the thermal accommodation of gas atoms on solid surfaces

    NASA Technical Reports Server (NTRS)

    Burke, J. R.; Hollenbach, D. J.

    1980-01-01

    A numerical soft cube model was developed for calculating thermal accommodation coefficients alpha and trapping fractions f sub t for the interaction of gases incident upon solid surfaces. A semiempirical correction factor c which allows the calculation of alpha and f sub t when the collision times are long compared to the surface oscillator period were introduced. The processes of trapping, evaporation, and detailed balancing were discussed. The numerical method was designed to treat economically and with moderate (+ or - 20 percent) accuracy the dependence of alpha and f sub t on finite and different surface and gas temperatures for a large number of gas/surface combinations. Comparison was made with experiments of rare gases on tungsten and on alkalis, as well as one astrophysical case of H2 on graphite. The dependence of alpha on the soft cube dimensionless parameters is presented graphically.

  18. The effect of leucite crystallization and thermal history on thermal expansion measurement of dental porcelains

    NASA Astrophysics Data System (ADS)

    Khajotia, Sharukh Soli

    1997-12-01

    Objectives. Measurement of thermal expansion in glassy materials is complicated by thermal history effects. The purpose of this research was to determine whether the occurrence of structural relaxation in glassy materials, such as dental porcelains, and changes in porcelain leucite content could interfere with the accurate measurement of the coefficient of thermal expansion during the thermal expansion measurement itself. Methods. In a randomized design, thermal expansion specimens were fabricated using six commercial body porcelains and the leucite-containing Component No. 1 frit (Weinstein et al. patent, 1962), and subjected to one of the following heat treatments: a single heating run at 3sp°C/min in a conventional dilatometer followed by air quenching; three successive low-rate heating and cooling thermal expansion runs at 3sp°C/min in a conventional dilatometer; or three successive high-rate heating and cooling thermal expansion runs at 600sp°C/min in a laser dilatometer. The remaining specimens were left untreated and served as controls. Potential changes in porcelain leucite content were monitored via quantitative X-ray diffraction. Thermal expansion data for each run over a temperature range of 25-500sp°C and the leucite content of all specimens were subjected to repeated measures analysis of variance. Results. The thermal expansion coefficient measured on first slow heating was significantly lower than the values for succeeding low-rate heating and cooling runs in all materials (p $ 0.05). No significant effect of dilatometer thermal treatments on leucite content (p >$ 0.05) was shown for all materials studied using both dilatometers. Significance. The crystallization of additional amounts of leucite during thermal expansion runs can be ruled out as a possible interference in the determination of the thermal expansion coefficient of dental porcelain. Conventional dilatometer measurements exhibited structural relaxation during the first heating run, as

  19. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  20. Anisotropic thermal expansion in a metal-organic framework.

    PubMed

    Madsen, Solveig Røgild; Lock, Nina; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-06-01

    Ionothermal reaction between Mn(II)(acetate)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3BTC) in either of the two ionic liquids 1-ethyl-3-methylimidazolium bromide (EMIMBr) and 1-ethyl-3-methylimidazolium tosylate (EMIMOTs) resulted in the formation of the new metal-organic framework (MOF) EMIM[Mn(II)BTC] (BTC = 1,3,5-benzenetricarboxylate). The compound crystallizes in the orthorhombic space group Pbca with unit-cell parameters of a = 14.66658 (12), b = 12.39497 (9), c = 16.63509 (14) Å at 100 K. Multi-temperature single-crystal (15-340 K) and powder X-ray diffraction studies (100-400 K) reveal strongly anisotropic thermal expansion properties. The linear thermal expansion coefficients, αL(l), attain maximum values at 400 K along the a- and b-axis, with αL(a) = 115 × 10(-6) K(-1) and αL(b) = 75 × 10(-6) K(-1). At 400 K a negative thermal expansion coefficient of -40 × 10(-6) K(-1) is observed along the c-axis. The thermal expansion is coupled to a continuous deformation of the framework, which causes the structure to expand in two directions. Due to the rigidity of the linker, the expansion in the ab plane causes the network to contract along the c-axis. Hirshfeld surface analysis has been used to describe the interaction between the framework structure and the EMIM cation that resides within the channel. This reveals a number of rather weak interactions and one governing hydrogen-bonding interactions. PMID:24892606

  1. On the thermal expansion of nanohole free volume in perfluoropolyethers.

    PubMed

    Consolati, G

    2005-05-26

    To determine the free volume in polymers, positron annihilation lifetime spectroscopy data are transformed into nanohole volumes by modeling the cavities as spheres or, more generally, using geometries assuming an isotropic thermal expansion. However, this guess could be unrealistic owing to the irregular shape of nanoholes and constrained movements of the macromolecules. In this work, it is shown that a comparison of hole-lattice theory with positron and dilatometric data for a homologous series of perfluoropolyethers supplies information on the anisotropic expansion of nanoholes; the relation between volume and typical unconstrained size of the cavities can be expressed by a power law with noninteger exponents. PMID:16852223

  2. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.

    PubMed

    Firkowska, Izabela; Boden, André; Boerner, Benji; Reich, Stephanie

    2015-07-01

    We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management. PMID:26083322

  3. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  4. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  5. Negative thermal expansion above a quantum phase transition

    NASA Astrophysics Data System (ADS)

    Handunkanda, Sahan; Curry, Erin; Hancock, Jason

    Strong, thermally persistent, isotropic negative thermal expansion (NTE) is unusual and has been observed in only a handful of materials. Scandium trifluoride (ScF3) features large isotropic thermal expansion persistent over a 1000K range of temperature. More interestingly, no structural phase transition has been reported above 0.4K and it retains the simple cubic structure up to its high melting point of 1800K, which is unusual compared with other transition metal trifluorides. Here, we present a combined inelastic x-ray scattering (IXS) and x-ray diffraction study of ScF3, which reveals some exciting features of this material. The low-energy (~1 meV) vibrational modes corresponding to M and R points of simple cubic Brillouin zone could explain NTE in ScF3, and we find that the low temperature IXS data show a central peak which is especially strong at these points. In addition, the whole M-R branch undergoes unusual softening at low temperature. We determine that this mode softens nearly to zero energy as the temperature approaches to 0K. These signature portend an approach to a quantum phase transition of this insulating, nonmagnetic simple cubic perovskite material ScF3. The central peak, soft mode and thermal expansion could all be consequences of this incipient transition. The connections we have established in the phenomenology of ScF3 may be present in other perovskites as well as other materials that display strong NTE

  6. Landau Theory of Trifluoride Negative Thermal Expansion Materials

    NASA Astrophysics Data System (ADS)

    Guzman-Verri, Gian; Brierley, Richard; Littlewood, Peter

    Negative thermal expansion (NTE) is a desirable property in designing materials that are dimensionally stable and resistant to thermal shocks. Transition metal trifluorides (MF3, M=Al, Cr, Fe, Ga, In, Ti, V) are a class of materials with ReO3 structure that exhibit large, isotropic, and tunable NTE over a wide temperature range, which makes them attractive material candidates. They exhibit large coefficients of thermal expansion near their cubic-to-rhombohedral structural phase change, which can be thermally or pressure induced. Though they have recently been the subject of intense experimental research, little work has been done on the theory side and it has almost exclusively focused on zero temperature properties. In this talk, we construct a simple Landau theory of trifluorides and use it to calculate the temperature dependence of the elastic constants, soft phonon frequencies, and volume expansion near their structural transition. We compare our results to existing experimental data on trifluorides. Work at the U of Costa Rica is supported by the Vicerrectoria de Investigacion under Project No. B5220. Work at Argonne Natl Lab is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  7. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  8. Thermal expansion mismatch and plasticity in thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Chang, George C.; Phucharoen, Woraphat; Miller, Robert A.

    1987-01-01

    The basic objective of this investigation is the quantitative determination of stress states in a model thermal barrier coating (TBC) as it cools in the air to 600 C from an assumed stress-free state at 700 C. This model is intended to represent a thin plasma-sprayed zirconia-yttria ceramic layer with a nickel chromium-aluminum-yttrium bond coat on a cylindrical substrate made of nickel-based superalloys typically found in gas turbines.

  9. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  10. On thermal expansion over the last hundred years

    SciTech Connect

    De Wolde, J.R.; Bintanja, R.; Oerlemans, J.

    1995-11-01

    Estimates of sea level rise during the period 1856-1991 due to thermal expansion are presented. The estimates are based on an ocean model that consists of three zonally averaged ocean basins representing the Atlantic, Pacific, and Indian Oceans. These basins are connected by a circumpolar basin that represents the Southern Ocean. The ocean circulation in the model was prescribed. Surface ocean forcing was calculated from observed sea surface temperatures. Global mean forcing and regionally varying forcing were distinguished. Different parameterizations of ocean heat mixing were incorporated. According to the model presented, global mean sea level rise caused by thermal expansion over the last hundred years ranged from 2.2 to 5.1 cm, a best estimate being 3.5 cm. 34 refs., 5 figs.

  11. Anomalous thermal expansion of Sb2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Bhoi, D.; Midya, A.; Khan, N.; Mandal, P.; Shanmukharao Samatham, S.; Ganesan, V.

    2012-06-01

    We have investigated the temperature dependence of the linear thermal expansion along the hexagonal c axis (ΔL), in-plane resistivity (ρ), and specific heat (Cp) of the topological insulator Sb2Te3 single crystal. ΔL exhibits a clear anomaly in the temperature region 204-236 K. The coefficient of linear thermal expansion α decreases rapidly above 204 K, passes through a deep minimum at around 225 K, and then increases abruptly in the region 225-236 K. α is negative in the interval 221-228 K. The temperature dependence of both α and Cp can be described well by the Debye model from 2 to 290 K, excluding the region around the anomaly in α.

  12. Negative thermal expansion in Y 2Mo 3O 12

    NASA Astrophysics Data System (ADS)

    Marinkovic, B. A.; Jardim, P. M.; de Avillez, R. R.; Rizzo, F.

    2005-11-01

    The crystal structure of Y 2Mo 3O 12 was refined by the Rietveld method for 130 °C as orthorhombic with space group Pbcn (No. 60). It is isostructural to Fe 2Mo 3O 12 and consists of vertex sharing YO 6 and MoO 4 building polyhedra. Y 2Mo 3O 12 has very high negative thermal expansion along all three crystallographic directions in the 130-900 °C temperature range. The overall linear coefficient of thermal expansion ( α=α/3) is -1.26×10 °C. Water molecules enter freely in Y 2Mo 3O 12 microchannels and seem to have a role in partial amorphization of this compound at room temperature.

  13. On the thermal expansion hysteresis of a UK PBX

    NASA Astrophysics Data System (ADS)

    Williamson, David; Palmer, Stewart; Govier, Rebecca

    2011-06-01

    The thermal expansion coefficient of a UK PBX has been measured over the temperature range -40 to +80 C. A subtle but measurable hysteresis in length as a function of temperature was observed. This is attributed to a miss-match between the thermal expansion coefficients of its solid-fill and binder constituents. On heating or cooling this induces mechanical stresses within the binder system, which being viscous it can flow to relieve. A change in sample temperature results in an asymptotic relaxation to a mechanical equilibrium length, which is described by an exponential dependence on time. This is analogous to the type of stress relaxation and creep behaviour normally associated with the bulk response of viscoelastic materials when more conventional stresses are applied.

  14. The coefficient of thermal expansion of highly enriched 28Si

    NASA Astrophysics Data System (ADS)

    Bartl, Guido; Nicolaus, Arnold; Kessler, Ernest; Schödel, René; Becker, Peter

    2009-10-01

    For the new definition of the SI unit of mass based on a fundamental constant, a redetermination of Avogadro's constant is the goal of an international collaboration of numerous national laboratories and universities. Since a relative uncertainty of about 2 × 10-8 is aimed at, the macroscopic density, the isotopic composition and the volume of the unit cell of a silicon single crystal have to be measured with high precision. One step to improve the precision was the production of a silicon crystal of highly enriched 28Si. This paper addresses the effect of thermal expansion of that material in order to account for a possible discrepancy between the coefficient of thermal expansion (CTE) of natural silicon and that of 28Si. The results of two independent CTE measuring methods are presented and compared in this paper.

  15. The Elusive Coefficients of Thermal Expansion in PBX 9502

    SciTech Connect

    C.B. Skidmore; T.A. Butler; C.W. Sandoval

    2003-05-01

    PBX 9502 has been in war reserve service for over two decades. Ninety-five percent of the solid phase of this insensitive high explosive is composed of energetic crystallites designated as TATB (1,3,5-triamino-2,4,6-trinitrobenzene), held together by the remaining solid fraction--an inert, polymeric binder named Kel-F 800. The unusual combination of extreme insensitivity and adequate performance characteristics is not the only enigmatic feature of such TATB-based materials. In this report, we describe the difficulty and progress to date in reliably determining the coefficients of thermal expansion for consolidated components of PBX 9502. We provide bulk linear coefficient of thermal expansion (CTE) values for PBX 9502 consolidated to a density of approximately 1.890 g/cm{sup 3} and offer a simple set of equations for calculating dimensional changes for temperatures from 218 to 347 K (-55 C to 74 C).

  16. Thermal expansion of noble metals using improved lattice dynamical model

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2013-06-01

    Isothermal bulk modulus and volume thermal expansion for noble metals have been studied on the basis of improved lattice dynamical model proposed by Pandya et al [Physica B 307, 138-149 (2001)]. The present study shows that for all three noble metals the approach gives satisfactory results, when they are compared with experimental findings. The present study thus confirms the use of improved model to study anharmonic property, and can be extended to study temperature dependent properties in high temperature range.

  17. Harnessing thermal expansion mismatch to form hollow nanoparticles.

    PubMed

    Jen-La Plante, Ilan; Mokari, Taleb

    2013-01-14

    Nano popcorn: a new formation mechanism for the synthesis of hollow metal oxide nanoparticles through a melt fracture mechanism. The hollow nanoparticles are formed via brittle fracture following the generation of tensile stresses arising due to liquid-phase thermal expansion of a low melting point core metal. The progress of this physical process can be monitored using in situ transmission electron microscopy for a model system of indium/indium oxide. PMID:23125049

  18. The current status of controlled thermal expansion superalloys

    SciTech Connect

    Wanner, E.A.; Deantonio, D.A.; Smith, D.F.; Smith, J.S. Inco Alloys International, Inc., Huntington, WV )

    1991-03-01

    Controlled-thermal-expansion superalloys being developed for aerospace applications are briefly surveyed. Consideration is given to precipitation-strengthened (PS) alloys containing Nb, Ti, and Al and their susceptibilty to oxidation and oxygen embrittlement; PS alloys containing Nb and Ti (development and physical metallurgy); PS alloys containing Nb, Ti, and Si; and processing sensitivities in Alloy 909. Graphs, micrographs, and tables of numerical data are provided. 24 refs.

  19. Welding low thermal expansion alloys for aircraft composite tooling

    SciTech Connect

    Otte, W.H.; O`Donnell, D.B.; Kiser, S.D.; Cox, C.W.

    1996-07-01

    To save weight in commercial aircraft and help military jets evade radar detection, aircraft designers specify the use of composite materials. These new designs have resulted in the use of low-expansion materials for aircraft composite tooling because they keep their dimensions during curing. However, the Fe-Ni low-expansion alloys have long presented problems during welding. When matching composition filler metals were used to match the coefficient of thermal expansion (CTE), cracking problems occurred. Filler metal compositional changes to eliminate cracking disturbed the CTE match of the weld with the base metal. A recently developed welding consumable appears to eliminate those problems. With the development of this new filler metal, high-quality crack-free welds can now be obtained with high deposition rates. Since there is a more closely-matched CTE, weldments and tools should provide longer service because of minimal effects from thermal fatigue. There have been reports of vacuum leaks in tools using the Mn-Ti filler metal, which could be directly attributable to the mismatching CTE. Using Nilo filler metal CF36 eliminates weld hot-cracking problems and provides good thermal fatigue resistance due to its excellent CTE match with the base metal, Nilo alloy 36.

  20. Thermal Expansion of Carbon Nanofiber-Reinforced Multiscale Polymer Composites

    NASA Astrophysics Data System (ADS)

    Poveda, Ronald L.; Achar, Sriniket; Gupta, Nikhil

    2012-10-01

    Improved dimensional stability of composites is desired in applications where they are exposed to varying temperature conditions. The current study aims at analyzing the effect of vapor-grown carbon nanofibers (CNFs) on the thermal expansion behavior of epoxy matrix composites and hollow particle-filled composites (syntactic foams). CNFs have a lower coefficient of thermal expansion (CTE) than epoxy resin, which results in composites with increased dimensional stability as the CNF content is increased. The experimental measurements show that with 10 wt.% CNF, the composite has about 11.6% lower CTE than the matrix resin. In CNF-reinforced syntactic foams, the CTE of the composite decreases with increasing wall thickness and volume fraction of hollow particle inclusions. With respect to neat epoxy resin, a maximum decrease of 38.4% is also observed in the CNF/syntactic foams with microballoon inclusions that range from 15 vol.% to 50 vol.% in all composite mixtures. The experimental results for CNF/syntactic foam are in agreement with a modified version of Kerner's model. A combination of hollow microparticles and nanofibers has resulted in the ability to tailor the thermal expansion of the composite over a wide range.

  1. Phonon anharmonicity and negative thermal expansion in SnSe

    DOE PAGESBeta

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-09

    In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less

  2. Phonon anharmonicity and negative thermal expansion in SnSe

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-01

    The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.

  3. Volume thermal expansion along the jadeite-diopside join

    NASA Astrophysics Data System (ADS)

    Pandolfo, Francesco; Cámara, Fernando; Domeneghetti, M. Chiara; Alvaro, Matteo; Nestola, Fabrizio; Karato, Shun-Ichiro; Amulele, George

    2015-01-01

    An in situ single-crystal high-temperature X-ray diffraction study was performed on clinopyroxene crystals along the jadeite, (NaAlSi2O6 Jd)-diopside (CaMgSi2O6 Di) join. In particular, natural samples of jadeite, diopside, P2/ n omphacite and three C2/ c synthetic samples with intermediate composition (i.e., Jd80, Jd60, Jd40) were investigated. In order to determine the unit-cell volume thermal expansion coefficient ( α V), the unit-cell parameters for all these compositions have been measured up to c.a. 1,073 K. The evolution of the unit-cell volume thermal expansion coefficient ( α V) along the Jd-Di join at different temperatures has been calculated by using a modified version of the equation proposed by Holland and Powell (J Metamorph Geol 16(3):309-343, 1998). The equation obtained from the α V at room- T (i.e., α V303K,1bar) allows us to predict the room- T volume thermal expansion for Fe-free C2/ c clinopyroxenes with intermediate composition along the binary join Jd-Di. The observed α V value for P2/ n omphacite α V(303K,1bar) = 2.58(5) × 10-5 K-1 was compared with that recalculated for disordered C2/ c omphacite published by Pandolfo et al. (Phys Chem Miner 1-10, 2012) [ α V(303K,1bar) = 2.4(5) × 10-5 K-1]. Despite the large e.s.d.'s for the latter, the difference of both values at room- T is small, indicating that convergent ordering has practically no influence on the room- T thermal expansion. However, at high- T, the smaller thermal expansion coefficient for the C2/c sample with respect to the P2/n one with identical composition could provide further evidence for its reduced stability relative to the ordered one.

  4. Widespread range expansions shape latitudinal variation in insect thermal limits

    NASA Astrophysics Data System (ADS)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  5. Technique for predicting the thermal expansion coefficients of cryogenic metallic alloys

    NASA Technical Reports Server (NTRS)

    Clark, A. F.

    1969-01-01

    Series of measurements on the thermal expansion coefficients of several aerospace alloys and standard materials establish relationships between related alloys that would aid in predicting their thermal expansion reliability. Thermal expansion data are also necessary for the reduction of electrical resistivity measurements of those same materials.

  6. WPH-6112A thermal expansion test of PRESS tubulation

    SciTech Connect

    Kautz, D.D.; Sites, R.L.; Cobb, W.R.

    1994-05-26

    We recently performed the WPH-6112A thermal expansion test of the lower portion of the PRESS program tubulation. The objective of the test was to determine whether the tubulation welds could withstand typical stresses from a 1200 C thermal cycle. Test components failed in two areas: (1) the friction welded Monel to Vanadium tube fitting at the dissimilar metal interface and fell against the outer vanadium tube wall causing it to fail and (2) the thin-walled, outer stainless steel tubing failed by cracking at the weld. Both failures were due to irregular occurences for this system. We feel that the strength of all weldments is adequate to withstand the normal thermal stresses from a 1200 C cycle without failing prematurely.

  7. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    SciTech Connect

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  8. WPH-6112A thermal expansion test of PRESS tubulation

    NASA Astrophysics Data System (ADS)

    Kautz, D. D.; Sites, R. L.; Cobb, W. R.

    1994-05-01

    We recently performed the WPH-6112A thermal expansion test of the lower portion of the PRESS program tubulation. The objective of the test was to determine whether the tubulation welds could withstand typical stresses from a 1200 C thermal cycle. Test components failed in two areas: (1) the friction welded Monel to Vanadium tube fitting at the dissimilar metal interface and fell against the outer vanadium tube wall causing it to fail, and (2) the thin-walled, outer stainless steel tubing failed by cracking at the weld. Both failures were due to irregular occurrences for this system. We feel that the strength of all weldments is adequate to withstand the normal thermal stresses from a 1200 C cycle without failing prematurely.

  9. Low-thermal expansion material for telescope mirror substrate application

    NASA Astrophysics Data System (ADS)

    Nakajima, Kousuke; Kawasaki, Nobuo; Nakajima, Toshihide

    2004-09-01

    The material property and processability of the low thermal expansion glass-ceramics product by Ohara Inc. called CLEARCERAM-Z were studied for telescope mirror substrate application. For material property, numbers of the key properties for the application, such as Coefficient of Thermal Expansion (CTE) characteristic in wide temperature range, Stress Birefringence and Mechanical strengths were intensively investigated focusing on the blank uniformity. The mean CTE of +0.15x10-7/degree C in wide temperature range (-50 to +150degree C) with the standard deviation (Std.) of 0.03x10-7/degree C and Young"s Modulus & Poisson Ratio data with the coefficient of variation less than 1% were obtained for the blanks with the size up to Dia.670mm. The maximum Stress Birefringence was 3nm/cm within a 400mm square blank. For processability, the surface finish data of AFM Rms 0.15nm, the Power Spectral Density profile in the same level of low expansion amorphous glass and three dimensional structured samples were demonstrated. The comparison of the obtained data with known blanks specification for past and future telescope projects revealed that CLEARCERAM-Z has capability to meet material property requirements for telescope mirror substrate application in the size up to Dia.670mm. Also for the precision metrology to support the material technology, CTE measurement system developed at OHARA was described.

  10. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  11. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-05-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  12. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.

    PubMed

    Mathew, John P; Patel, Raj; Borah, Abhinandan; Maliakkal, Carina B; Abhilash, T S; Deshmukh, Mandar M

    2015-11-11

    We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure. PMID:26479952

  13. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    NASA Technical Reports Server (NTRS)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  14. Low coefficient of thermal expansion polyimides containing metal ion additives

    SciTech Connect

    Stoakley, D.M.; St.Clair, A.K. )

    1992-07-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The CTE's of conventional polyimides range from 30 to 60 ppm/C. Approaches that have been reported to lower their CTE's include linearizing the polymer molecular structure and orienting the polyimide film. This current study involves the incorporation of metal ion-containing additives into polyimides and has resulted in significantly lowered CTE's. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12% to over 100% depending on the choice of additive and its concentration.

  15. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  16. Thermal expansion investigation of tourmaline-group minerals

    NASA Astrophysics Data System (ADS)

    Hovis, G.; Scott, B.; Altomare, C.; Tomaino, G.

    2012-04-01

    In recent years one aim of this laboratory has been the characterization of thermal expansion in various mineral groups with an eye toward evaluation of the extent to which chemical composition affects expansion behaviour. We have undertaken studies on various mineral series including alkali feldspar, plagioclase, Ba/K-feldspar, Rb/K feldspar, nepheline/kalsilite minerals of various excess Si contents, and F/Cl/OH apatite. We turn our attention now to the tourmaline mineral system, which is of interest because of its wide variation in chemical composition, as well as its structural complexity. We have obtained multiple chemically-characterized tourmaline specimens from the U.S. National Museum of Natural History and also from George Rossman. Six specimens have been investigated so far, including elbaite, rossmanite, uvite, buergerite, schorl, and foitite. High-temperature X-ray powder diffraction measurements have been made from room temperature to 1000 °C at 75° intervals. X-ray peak positions were corrected utilizing NIST SRM 640a silicon as an internal standard. Peaks were indexed manually based on data in the literature; unit-cell dimensions were computed utilizing the software of Holland and Redfern (1997, Mineralogical Magazine). V-T relationships are generally linear, or close to it, up to the breakdown temperatures of all specimens. Coefficients of thermal expansion have been computed as (ΔV/ΔT)*(1/V0C), where V0C is the extrapolated volume intercept at 0 °C based on the various linear V-T relationships. Among the six specimens, all except foitite give thermal expansion coefficients between 23 and 26 x 10-6 deg-1. Foitite has a flatter V-T slope and thus expands less, giving a thermal expansion coefficient of 18 x 10-6. Based on the initial data, the relative uniformity of expansion behaviour in this system implies that any volumes of mixing in this system will be essentially constant with temperature, recognizing that this conclusion is based on the

  17. Computer Simulations of Thermal Expansion in Lanthanum-Based Perovskites

    SciTech Connect

    Williford, Ralph E.; Stevenson, Jeffry W.; Chou, Y. S.; Pederson, Larry R.

    2001-02-01

    Differential thermal expansion is important when two strongly bonded ceramics are subjected to high temperatures, as in solid oxide fuel cells. This paper presents free energy minimization (EM) and moleccular dynamics (MD) simulations of the coefficient of thermal expansion (CTE) for LaCaCrO3 and LaSrCoFeO3 using partial charge models to represent the partially covalent bonding in these perovskites. The EM simulations treated polarization using shell models, but significantly underpredicted the CTE due to approximations in the technique employed. The MD simulations that neglected polarization predicted the CTE to within 10% of experimental data for LaCaCrO3: corrections due to polarization result in excellent agreement. MD predictions of the CTE for LaSrCoFeO3 were significatly lower than the experimental data due to the approimate nature of the Co4 and Fe4 interatomic potentials. Improvements in these results can be expected if more extensive data bases become available for refining the potentials and effective charges.

  18. The thermal expansion of anhydrite to 1000° C

    USGS Publications Warehouse

    Evans, Howard T., Jr.

    1979-01-01

    The thermal expansion of anhydrite, CaSO4, has been measured from 22° to 1,000° C by X-ray diffraction, using the Guinier-Lenné heating powder camera. The heating patterns were calibrated with Guinier-Hägg patterns at 25° C, using quartz as internal standard. Heating experiments were run on natural anhydrite (Bancroft, Ontario), which at room temperature has lattice constants in close agreement with those of synthetic material. The orthorhombic unit cell at 22° C (space groupAmma) has a=7.003 (1) Å, b=6.996 (2) Å and c=6.242 (1) Å, V=305.9 (2) Å3. At room temperature, the thermal expansion coefficients α and β (α in °C−1×104, β in °C−2×108) are for a, 0.10, −0.69; forb, 0.08, 0.19; for c, 0.18, 1.60; for V, 0.37, 1.14. Second-order coefficients provide an excellent fit over the whole range to 1,000° C.

  19. Lattice thermal expansion for normal tetrahedral compound semiconductors

    SciTech Connect

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-02-15

    The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.

  20. High-pressure compressibility and thermal expansion of aragonite

    NASA Astrophysics Data System (ADS)

    Palaich, S.; Heffern, R. A.; Kavner, A.; Manning, C. E.; Merlini, M.; Hanfland, M.

    2015-12-01

    An important component of Earth's deep carbon cycle is the return of surficial carbon to the planet's interior. Most recycled carbon is bound in CaCO3 minerals, of which aragonite is the most significant at upper mantle pressures. It is therefore essential to understand the phase stability and compressibility of aragonite at high pressures and temperatures. Aragonite has an orthorhombic 2/m 2/m 2/m structure and a Z of 4. The high-pressure behavior of aragonite has been studied under dynamic and static compression using both X-ray diffraction and spectroscopic techniques, but these results have been contradictory and inconclusive. To address these issues, a single-crystal synchrotron X-ray diffraction study of aragonite under hydrostatic compression was performed to 40 GPa in a diamond anvil cell at ambient temperature. To supplement the compressional experiment, thermal expansion was also measured via powder X-ray diffraction at ambient pressure between 298-673 K. Ambient-pressure single-crystal measurements confirm the orthorhombic 2/m 2/m 2/m structure and yield a unit cell volume of 226.932(5) Å3. At room temperature, aragonite is stable in the orthorhombic structure to 40 GPa, with an isothermal bulk modulus of 66.5(7) GPa and K' = 5.0(1). The a-axis is most compressible and the c-axis is the least compressible. The b-axis is intermediate, but starts to decrease in compressibility at ~15 GPa. Between 25-30 GPa the aragonite unit cell distorts due to the stiffening of the b-axis, which is controlled by the orientation and distortion of the carbonate groups, layered in the aragonite structure parallel to the a-axis. The carbonate groups elongate and deform from equilateral to isosceles between 15 and 30 GPa, thus influencing the compressibility of the b-axis. The thermal expansion measurements yield expansion coefficients a0 = 4.9(2) x 10-5 and a1 =3.7(5) x 10-8, in agreement with previous data. The combination of the isothermal and isobaric studies allows the

  1. Thermal Expansion of Fluorapatite-Chlorapatite Solid Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Abraham, Tony; Hudacek, William; Wildermuth, Sarah; Scott, Brian; Altomare, Caitlin; Medford, Aaron; Conlon, Maricate; Morris, Matthew; Leaman, Amanda; Almer, Christine; Tomaino, Gary; Harlov, Daniel

    2015-04-01

    X-ray powder diffraction experiments have been performed on fifteen fluorapatite-chlorapatite solid solutions synthesized and chemically characterized at the GeoForschungsZentrum - Potsdam (Hovis and Harlov, 2010; Schettler, Gottschalk, and Harlov, 2011), as well as two natural near-end-member samples, from room temperature to ~900 °C at 50 to 75 °C intervals. NIST 640a Si was employed as an internal standard; data from Parrish (1953) were used to determine Si peak positions at elevated temperatures. Unit-cell parameters calculated using the software of Holland and Redfern (1997) result in volume-temperature (V-T) plots that are linear or slightly concave up (V plotted as the vertical axis) over the T range investigated. Relations for the "a" and "c" unit-cell dimensions with T for these hexagonal minerals are nearly linear, but as with V, commonly improved by quadratic fits to the data. Coefficients of thermal expansion for volume (αV ), calculated as (1/V0°C) x (ΔV/ΔT) based on linear V-T relationships, mostly fall within the range 42 ± 2 x 10-6 deg-1 and show no obvious dependence on composition. Thermal expansion coefficients for individual unit-cell axes, however, do show clear relationships to composition, αa increasing from ~9.5 to ~13.5 x 10-6 deg-1 and αc decreasing from ~19.5 to ~13 x 10-6 deg-1 from the Cl to the F end member. Clearly, a compensating structural relationship accounts for the observed relationships. Such compositional dependence was not seen in the thermal expansion data for F-OH apatite solid solutions (Hovis, Scott, Altomare, Leaman, Morris, and Tomaino, American Mineralogist, in press). This difference can be explained by the similar sizes of F- and (OH)- versus the much greater size contrast between F- and Cl-. Sincere thanks to the National Science Foundation for support of this work, which has provided numerous research experiences for Lafayette College undergraduates. Thanks also to the Earth Sciences Department, University

  2. Thermal Expansion of Fluorapatite-Chlorapatite Solid Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Abraham, T.; Hudacek, W.; Wildermuth, S.; Scott, B.; Altomare, C.; Medford, A.; Conlon, M.; Morris, M.; Leaman, A.; Almer, C.; Tomaino, G.; Harlov, D. E.

    2014-12-01

    X-ray powder diffraction experiments have been performed on fifteen fluorapatite-chlorapatite solid solutions synthesized and chemically characterized at the GeoForschungsZentrum - Potsdam (Hovis and Harlov, 2010; Schettler, Gottschalk, and Harlov, 2011), as well as two natural near-end-member samples, from room temperature to ~900 °C at 50 to 75 °C intervals. NIST 640a Si was employed as an internal standard; data from Parrish (1953) were used to determine Si peak positions at elevated temperatures. Unit-cell parameters calculated using the software of Holland and Redfern (1997) result in volume-temperature (V-T) plots that are linear or slightly concave up (V plotted as the vertical axis) over the T range investigated. Relations for the "a" and "c" unit-cell dimensions with T for these hexagonal minerals are nearly linear but, as with V, commonly improved by quadratic fits to the data. Coefficients of thermal expansion for volume (αV), calculated as (1/V0°C) x (ΔV/ΔT) based on linear V-T relationships, mostly fall within the range 42 ± 2 x 10-6 deg-1 and show no obvious dependence on composition. Thermal expansion coefficients for individual unit-cell axes, however, do show clear relationships to composition, αa increasing from ~9.5 to ~13.5 x 10-6 deg-1 and αc decreasing from ~19.5 to ~13 x 10-6 deg-1 from the Cl to the F end member. Clearly, a compensating structural relationship accounts for the observed relationships. Such compositional dependence was not seen in the thermal expansion data for F-OH apatite solid solutions (Hovis, Scott, Altomare, Leaman, Morris, and Tomaino, American Mineralogist, in press). This difference can be explained by the similar sizes of F- and (OH)- versus the much greater size contrast between F- and Cl-. Sincere thanks to the National Science Foundation for support of this work, which has provided numerous research experiences for Lafayette College undergraduates. Thanks also to the Earth Sciences Department, University

  3. Non-adiabatic effects within a single thermally averaged potential energy surface: thermal expansion and reaction rates of small molecules.

    PubMed

    Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D

    2012-12-14

    At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction. PMID:23249070

  4. Thermal stresses from large volumetric expansion during freezing of biomaterials.

    PubMed

    Shi, X; Datta, A K; Mukherjee, Y

    1998-12-01

    Thermal stresses were studied in freezing of biomaterials containing significant amounts of water. An apparent specific heat formulation of the energy equation and a viscoelastic model for the mechanics problem were used to analyze the transient axi-symmetric freezing of a long cylinder. Viscoelastic properties were measured in an Instron machine. Results show that, before phase change occurs at any location, both radial and circumferential stresses are tensile and keep increasing until phase change begins. The maximum principal tensile stress during phase change increases with a decrease in boundary temperature (faster cooling). This is consistent with experimentally observed fractures at a lower boundary temperature. Large volumetric expansion during water to ice transformation was shown to be the primary contributor to large stress development. For very rapid freezing, relaxation may not be significant, and an elastic model may be sufficient. PMID:10412455

  5. Differential pressure corrections calculated for a tank thermal expansion experiment

    SciTech Connect

    Jones, F.E.

    1993-12-31

    The data from a tank thermal expansion experiment were treated by applying corrections to bubbler tube differential pressure measurements at the initial temperature. The tank had a capacity of 3.55 m{sup 3} and an internal height of 8.70 m. Water was used as the experimental fluid and the masses of water for the 4 experimental runs were 911.1, 1497.3, 876.98, and 2048.3 kg. Initial temperature ranged from 13.5 to 37.6 C; maximum temperatures ranged from 54.7 to 70.4 C. Four corrections were calculated for each temperature to obtain the correction to calculate the differential pressure for each successive temperature. The calculated differential pressure was compared to the measured differential pressure. The agreement between calculated and measured differential pressure was excellent.

  6. Coefficient of thermal expansion of Fluorinert FC-86

    SciTech Connect

    Pane, A.J.

    1982-05-01

    The cubical coefficient of thermal expansion (CTE) pf Fluorinert Fluid, FC-86 was measured before and after degassing. The CTE for the FC-86 before degassing is: ..beta.. = 9.282 x 10/sup -6/T + 1.6115 x 10/sup -3/ with T = -30 to + 75/sup 0/C. The CTE for the FC-86 (degassed) is: ..beta.. = 6.133 x 10/sup -6/T + 1.7643 x 10/sup -3/ with T = -30 to + 75/sup 0/C. Measurements were also made of the pressures required to prevent cavitation in the degassed FC-86 and in FC-86 containing 2.4 volume percent of air. At 71.0/sup 0/C the cavitational pressure of degassed FC-86 is 1285 torr and at 73.8/sup 0/C the cavitational pressure of the FC-86 containing 2.4 volume percent of air is 1229 torr.

  7. Prediction of coefficients of thermal expansion for unidirectional composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Tompkins, Stephen S.

    1989-01-01

    Several analyses for predicting the longitudinal, alpha(1), and transverse, alpha(2), coefficients of thermal expansion of unidirectional composites were compared with each other, and with experimental data on different graphite fiber reinforced resin, metal, and ceramic matrix composites. Analytical and numerical analyses that accurately accounted for Poisson restraining effects in the transverse direction were in consistently better agreement with experimental data for alpha(2), than the less rigorous analyses. All of the analyses predicted similar values of alpha(1), and were in good agreement with the experimental data. A sensitivity analysis was conducted to determine the relative influence of constituent properties on the predicted values of alpha(1), and alpha(2). As would be expected, the prediction of alpha(1) was most sensitive to longitudinal fiber properties and the prediction of alpha(2) was most sensitive to matrix properties.

  8. Thermal expansion and lattice misfit in two-phase superalloys

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.; Kontsevoi, O. Yu.; Freeman, A. J.; Khromov, K. Yu.; Maksyutov, A. F.; Trefilov, A. V.; Katsnelson, M. I.; Lichtenstein, A. I.

    2004-03-01

    The magnitude of the lattice misfit between the γ and γ' phases is one of the key parameters determining the mechanical behavior, microstructure morphology and stability of γ/γ' high temperature superalloys. For the first time, the γ and γ' thermal expansion coefficients α(T) and the temperature dependence of the unconstrained lattice misfit parameter δ (T) for Ni-, Ir-, and Pt-based superalloys is obtained by means of ab initio full-potential electron and phonon spectrum calculations. We demonstrate that, in contrast with traditional beliefs, the electronic contribution to the misfit parameter dominates due to the strong compensation of the phonon contributions to α(T) from γ and γ'. The calculated results are in a good agreement with available experimental data for temperatures up to 0.8T_melt; at higher temperatures the effect of the redistribution of alloying elements between the γ, and γ' phases on δ (T) becomes essential.

  9. Glass-ceramic hermetic seals to high thermal expansion metals

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  10. Thermal expansion behavior of fluor-chlorapatite crystalline solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.

    2009-04-01

    Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across

  11. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate.

    PubMed

    Fortes, A Dominic; Wood, Ian G; Alfè, Dario; Hernández, Eduardo R; Gutmann, Matthias J; Sparkes, Hazel A

    2014-12-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å(3) [ρcalc = 1281.8 (7) kg m(-3)] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (EHB ≃ 30-40 kJ mol(-1)), on the basis of H...O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol(-1). The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal. PMID:25449618

  12. Thermal Expansion Studies of Selected High-Temperature Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; van der Walde, Keith; Maricic, Lina; Sayir, Ali

    2009-07-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power ≤5.1 W/kg. A higher specific power would result in more onboard power for the same RTG mass, or less RTG mass for the same onboard power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermomechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  13. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  14. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate

    PubMed Central

    Fortes, A. Dominic; Wood, Ian G.; Alfè, Dario; Hernández, Eduardo R.; Gutmann, Matthias J.; Sparkes, Hazel A.

    2014-01-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å3 [ρcalc = 1281.8 (7) kg m−3] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (E HB ≃ 30–40 kJ mol−1), on the basis of H⋯O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol−1. The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal. PMID:25449618

  15. Thermal expansion coefficient of steels used in LWR vessels

    NASA Astrophysics Data System (ADS)

    Daw, J. E.; Rempe, J. L.; Knudson, D. L.; Crepeau, J. C.

    2008-05-01

    Because of the impact that melt relocation and vessel failure have on subsequent progression and associated consequences of a light water reactor (LWR) accident, it is important to accurately predict the heat-up and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 700 °C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, new thermal expansion data were obtained using pushrod dilatometry techniques for two steels used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 stainless steel (SS304), which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data and compares it to existing, lower temperature data in the literature.

  16. Accommodative Esotropia

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Accommodative Esotropia En Español Read in Chinese What is accommodative esotropia? Accommodative esotropia, or refractive ...

  17. Thermal conductivity and thermal expansion of stainless steels D9 and HT9

    SciTech Connect

    Leibowitz, L.; Blomquist, R.A.

    1988-01-01

    Renewed interest in the use of metallic fuels in liquid-metal fast breeder reactors has prompted study of the thermodynamic and transport properties of its materials. Two stainless steels are of particular interest because of their good performance under irradiation. These are D9, an austenitic steel, and HT9, a ferritic steel. Thermal conductivity and thermal expansion data for these alloys are of particular interest in assessing in-reactor behavior. Because literature data were inadequate, measurements of these two properties for the two steels were performed and are reported to 1200 K. Of particular interest is the influence on these properties of a phase transition in HT9.

  18. Temperature-dependent thermal expansivities of silicate melts: The system anorthite-diopside

    SciTech Connect

    Knoche, R.; Dingwell, D.B.; Webb, S.L. )

    1992-02-01

    The temperature-dependent thermal expansivities of melts along the join anorthite-diopside have been determined on glassy and liquid samples using a combination of calorimetry, dilatometry, and Pt double bob Archimedean densitometry. Supercooled liquid volumes and molar thermal expansivities were determined using scanning calorimetric and dilatometric measurements of properties in the glass region and their behavior at the glass transition. The extraction of low-temperature liquid molar expansivities from dilatometry/calorimetry is based on an assumed equivalence of the relaxation of volume and enthalpy at the glass transition using a method developed and tested by Webb et al. (1992). This method corrects for transient effects at the glass transition which can lead to serious overestimates of liquid thermal expansivity from peak' values. Superliquidus volumes were determined using double Pt bob Archimedean densitometry at temperatures up to 1,650C. The resulting data for liquid volumes near glass transition temperatures (810-920C) and at superliquidus temperatures (1,400-1,650C) are combined to yield thermal expansivities over the entire supercooled and stable liquid range. The molar expansivities are, in general, temperature dependent. The temperature-dependence of thermal expansivity increases from anorthite to diopside composition. The thermal expansivity of anorthite is essentially temperature independent, whereas that of diopside decreases by {congruent} 50% between 800 and 1,500C, with the consequence that the thermal expansivities of the liquids in the anorthite-diopside system converge at high temperature.

  19. Thermal expansion and phase transitions of α-AlF{sub 3}

    SciTech Connect

    Morelock, Cody R.; Hancock, Justin C.; Wilkinson, Angus P.

    2014-11-15

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppm K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.

  20. Thermal expansion measurements on Fe substituted URu2Si2

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Wolowiec, Christian; Jeon, Inho; Pouse, Naveen; Kanchanavatee, Noravee; Huang, Kevin; Maple, M. Brian; Dapron, Tyler; Williamsen, Mark; Snow, David; Martien, Dinesh; Spagna, Stefano

    The search for the order parameter of the hidden order (HO) phase in URu2Si2 has attracted an enormous amount of attention for the past three decades. The small antiferromagnetic moment of only ~0.03 μB/U found in the HO phase is too small to account for the entropy of ~0.2Rln(2) derived from the second order mean field BCS-like specific heat anomaly associated with the HO transition that occurs below To = 17.5 K. A first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phase occurs under pressure. We have recently demonstrated that tuning URu2Si2B>by substitution of Fe for Ru reproduces the temperature vs applied pressure phase diagram.and offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. Motivated by this observation, we performed thermal expansion measurements on URu2-xFexSi2 single crystals for various values of x in both the HO and LMAFM regions of the phase diagram. Interesting preliminary results have emerged from these studies that shed light on the LMAFM phase and its relationship with the elusive HO phase. Research in UCSD is supported by US DOE BES under Grant No. DE-FG02-04-ER46105 (materials synthesis and characterization) and US NSF under Grant No. DMR-1206553 (low temperature measurements).

  1. Hydration-dependent anomalous thermal expansion behaviour in a coordination polymer.

    PubMed

    Lama, Prem; Alimi, Lukman O; Das, Raj Kumar; Barbour, Leonard J

    2016-02-21

    A coordination polymer is shown to possess anomalous anisotropic thermal expansion. Guest water molecules present in the as-synthesised material can be removed upon activation without loss of crystal singularity. The fully dehydrated form shows considerably different thermal expansion behaviour as compared to the hydrate. PMID:26810007

  2. Thermal Expansion and Thermophysical Properties of Materials and Minerals at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    1995-11-01

    The knowledge of thermal expansion at high temperature and high pressure is necessary for modeling the equation of the state in the Earth's interior. It is an important parameter for materials science and is critical for understanding the nature of the residual stress in materials. Also, thermal expansion is a factor in the equations that describe many thermoelastic parameters. Errors in thermal expansion will propagate in thermodynamic calculations. This dissertation is based on a semi-empirical, quasi-harmonic, lattice dynamic thermal expansion model, its extension to high temperatures and high pressures and the role of defects on thermal expansion. A modified quasi -harmonic model is proposed to calculate high temperature thermal expansion of alkali halides. An empirical parabolic relationship is found at high temperatures. The contributions of thermal defects at high temperatures are employed to explain the differences between experimental data and the perfect quasi-harmonic crystal model. Expressions for defect contributions on thermal expansion and expansivity are given and applied to obtain the formation energies of thermal defects. Defect ordering is proposed for ionic crystals at high temperatures. A simplified model is derived for predicting high pressure thermal expansion. A detailed expression for defect contributions at high temperatures and high pressures is provided. Thermal expansion of MgO is predicted for pressures as high as at the core-mantle boundary. This model is also applied to alkali halides, and the thermophysical properties of NaCl are given as an example. Then a general model is proposed for evaluating and predicting high temperature thermal expansion. The product of thermal expansion, bulk modulus, and volume, alpha_{V}K_{T }V, or the partial temperature derivative of the work done by thermal pressure, resembles a specific heat curve. A modified Einstein model is applied to express the alpha_{V}K_{T }V data. After assuming a linear

  3. Difference in the heat capacity and the coefficient of thermal expansion responses during thermal cycling

    NASA Astrophysics Data System (ADS)

    Medvedev, Grigori; Lee, Eun-Woong; Caruthers, James

    2011-03-01

    An observation that different experimental methods give different values of Tg is part of the lore of the field of the glassy polymers. We report on a careful study of a series of polymeric systems both thermoplastic and thermoset, including PMMA, PC, PS, and 3,3' DDS Epon 825, conducted using DSC and TMA techniques. We found that for the same thermal history the heat capacity and the coefficient of thermal expansion (both measured upon heating) as functions of temperature transition from the glassy asymptote to the equilibrium asymptote at significantly different temperatures; this difference was in the range from 8 to 17 degrees, depending on the system. We argue that such a large difference in the enthalpy and volume responses during the same thermal history is inconsistent with the commonly used material clock models, but is consistent with the view of the glassy materials as containing dynamically heterogeneous regions.

  4. Suppression of temperature hysteresis in negative thermal expansion compound BiNi1-xFexO3 and zero-thermal expansion composite

    NASA Astrophysics Data System (ADS)

    Nabetani, K.; Muramatsu, Y.; Oka, K.; Nakano, K.; Hojo, H.; Mizumaki, M.; Agui, A.; Higo, Y.; Hayashi, N.; Takano, M.; Azuma, M.

    2015-02-01

    Negative thermal expansion (NTE) of BiNi1-xFexO3 is investigated. All x = 0.05, 0.075, 0.10, and 0.15 samples shows large NTE with the coefficient of linear thermal expansion (CTE) αL exceeding -150 ppm K-1 induced by charge transfer between Bi5+ and Ni2+ in the controlled temperature range near room temperature. Compared with Bi1-xLnxNiO3 (Ln: rare-earth elements), the thermal hysteresis that causes a problem for practical application is suppressed because random distribution of Fe in the Ni site changes the first order transition to second order-like transition. The CTE of BiNi0.85Fe0.15O3 reaches -187 ppm K-1 and it is demonstrated that 18 vol. % addition of the present compound compensates for the thermal expansion of epoxy resin.

  5. Thermal expansion of CaFe2As2: Effect of cobalt doping and postgrowth thermal treatment

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ran, Sheng; Canfield, Paul C.

    2013-08-01

    We report thermal expansion measurements on Ca(Fe1-xCox)2As2 single crystals with different thermal treatment, with samples chosen to represent four different ground states observed in this family. For all samples, thermal expansion is anisotropic with different signs of the in-plane and c-axis thermal expansion coefficients in the high temperature, tetragonal phase. The features in thermal expansion associated with the phase transitions are of opposite signs as well, pointing to a different response of transition temperatures to the in-plane and the c-axis stress. These features, and consequently the inferred pressure derivatives, are very large, clearly and substantially exceeding those in the Ba(Fe1-xCox)2As2 family. For all transitions the c-axis response is dominant.

  6. Phase transformation, thermal expansion and electrical conductivity of lanthanum chromite

    SciTech Connect

    Gupta, Sapna; Mahapatra, Manoj K.; Singh, Prabhakar

    2013-09-01

    Graphical abstract: - Highlights: • Orthorhombic and rhombohedral phases co-exist at ≥260 °C and cubic above 1000 °C. • Polymorphic changes with temperature in air and Ar–3%H{sub 2} are observed. • Lattice volume change in Ar–3%H{sub 2} atmosphere corresponds to Cr{sup 4+} → Cr{sup 3+} transition. • Change in valence state of Cr{sup 4+} to Cr{sup 3+} results in lower electrical conductivity. • Experimental evidence is provided for poor densification of LaCrO{sub 3} in air. - Abstract: This paper addresses discrepancies pertaining to structural, thermal and electrical properties of lanthanum chromite. Experimental evidence is provided to support the hypothesis for poor densification in air as well as reduction in electrical conductivity in reducing atmosphere. Sintering condition for the synthesis of LaCrO{sub 3} was optimized to 1450 °C and 10 h. Thermo-analytical (differential scanning calorimetry – DSC) and high temperature X-ray diffraction (HT-XRD) studies show that orthorhombic lanthanum chromite transforms into rhombohedral structure at ∼260 °C and cubic structure above 1000 °C. Co-existence of the structural phases and the variation in each polymorph with temperature in both air and 3%H{sub 2}–Ar atmosphere is reported. Presence and absence of Cr-rich phase at inter-particle neck are observed in oxidizing and reducing atmospheres respectively. The linear thermal expansion co-efficient was calculated to be 10.8 ± 0.2 × 10{sup −6} °C{sup −1} in the temperature range of RT–1400 °C. Electrical conductivity of lanthanum chromite was found to be 0.11 S/cm in air. A decrease in electrical conductivity (0.02 S/cm at 800 °C) of LaCrO{sub 3}, as observed in reducing atmosphere (3%H{sub 2}–Ar), corresponds to lattice volume change as indicated by peak shift in HT-XRD results.

  7. Investigation on the Thermal Expansion of Four Polymorphs of Crystalline CL-20

    NASA Astrophysics Data System (ADS)

    Pu, Liu; Xu, Jin-Jiang; Liu, Xiao-Feng; Sun, Jie

    2016-04-01

    The thermal expansion behaviors of α-CL-20 . 1/2H2O, anhydrous α-, β-, ε-, and γ-CL-20 crystals have been investigated by means of variable-temperature X-ray powder diffraction (XRD) together with Rietveld refinement. The results show that hexanitrohexaazaisowurtane (CL-20) with four polymorphs exhibits linear thermal expansion. The ε phase performs approximately isotropic expansion in the temperature range of 30 to 130°C, but α, β, and γ phases exhibit anisotropic expansion in the temperature ranges of 30 to 130°C, 30 to 120°C, and 30 to 180°C, respectively. The different expansion behaviors are due to the different structures of the four polymorphs. The different thermal expansion behaviors of α-CL-20 . 1/2H2O and anhydrous α are revealed in this work. The a-axis expansion of α-CL-20 . 1/2H2O exhibits a switch from positive thermal expansion (PTE) to negative thermal expansion (NTE) at 90°C, whereas the a-axis of anhydrous α is resilient to PTE. The cause is the loss of the structural water. Moreover, it is easily found that the b-axis of the γ phase shows a constriction that may be attributed to the distortion of the six-membered ring.

  8. Thermal expansion of PBX 9501 and PBX 9502 plastic-bonded explosives

    SciTech Connect

    Thompson, Darla Graff; Brown, Geoff W; Deluca, Racci; Giambra, Anna; Sandstrom, Mary

    2009-01-01

    Two applications of thermal expansion measurements on plastic-bonded explosive (PBX) composites are described. In the first dilatometer application, thermal expansion properties of HMX-based PBX 9501 are measured over a broad thermal range that includes glass and domain-restructuring transitions in the polymeric binder. Results are consistent with other thermal measurements and analyses performed on the composite, as well as on the binder itself. The second application used the dilatometer to distinguish the reversible and irreversible components of thermal expansion in PBX 9502, a TATB-based explosive. Irreversible expansion of the composite is believed to derive from the highly-anisotropic coefficient of thermal expansion (CTE) values measured on single T A TB crystals, although the mechanism is not well understood. Effects of specimen density, thermal ramp rate, and thermal range variation (warm first or cold first) were explored, and the results are presented and discussed. Dilatometer measurements are ongoing towards gaining insight into the mechanism(s) responsible for PBX 9502 irreversible thermal expansion.

  9. Thermal expansion of selected graphite reinforced polyimide-, epoxy-, and glass-matrix composite

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.

    1985-01-01

    The thermal expansion of three epoxy-matrix composites, a polyimide-matrix composite and a borosilicate glass-matrix composite, each reinforced with continuous carbon fibers, has been measured and compared. The expansion of a composite with a rubber toughened epoxy-matrix and P75S carbon fibers was very different from the expansion of two different single phase epoxy-matrix composites with P75S fibers although all three had the same stacking sequence. Reasonable agreement was obtained between measured thermal-expansion data and results from classical laminate theory. The thermal expansion of a material may change markedly as a result of thermal cycling. Microdamage, induced by 250 cycles between -156 C and 121 C in the graphite/polyimide laminate, caused a 53 percent decrease in the coefficient of thermal expansion. The thermal expansion of the graphite/glass laminate was not changed by 100 thermal cycles from -129 C to 38 C; however, a residual strain of about 10 x 10 to the minus 6 power was measured for the laminate tested.

  10. Controllable rectification of the axial expansion in the thermally driven artificial muscle

    NASA Astrophysics Data System (ADS)

    Yue, Donghua; Zhang, Xingyi; Yong, Huadong; Zhou, Jun; Zhou, You-He

    2015-09-01

    At present, the concept of artificial muscle twisted by polymers or fibers has become a hot issue in the field of intelligent material research according to its distinguishing advantages, e.g., high energy density, large-stroke, non-hysteresis, and inexpensive. The axial thermal expansion coefficient is an important parameter which can affect its demanding applications. In this letter, a device with high accuracy capacitive sensor is constructed to measure the axial thermal expansion coefficient of the twisted carbon fibers and yarns of Kevlar, and a theoretical model based on the thermal elasticity and the geometrical features of the twisted structure are also presented to predict the axial expansion coefficient. It is found that the calculated results take good agreements with the experimental data. According to the present experiment and analyses, a method to control the axial thermal expansion coefficient of artificial muscle is proposed. Moreover, the mechanism of this kind of thermally driven artificial muscle is discussed.

  11. Thermal expansion behavior of graphite/glass and graphite/magnesium

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Ard, K. E.; Sharp, G. Richard

    1986-01-01

    The thermal expansion behavior of n (+/- 8)s graphite fiber reinforced magnesium laminate and four graphite reinforced glass-matrix laminates (a unidirectional laminate, a quasi-isotropic laminate, a symmetric low angle-ply laminate, and a random chopped-fiber mat laminate) was determined, and was found, in all cases, to not be significantly affected by thermal cycling. Specimens were cycled up to 100 times between -200 F and 100 F, and the thermal expansion coefficients determined for each material as a function of temperature were found to be low. Some dimensional changes as a function of thermal cycling, and some thermal-strain hysteresis, were observed.

  12. Thermal expansion compatibility of ceramic chip capacitors mounted on alumina substrates.

    NASA Technical Reports Server (NTRS)

    Allen, R. V.; Caruso, S. V.; Wilson, L. K.; Kinser, D. L.

    1972-01-01

    The thermal expansion coefficients of a representative sample of BaTiO3 and TiO2 ceramic chip capacitors and alumina substrates have been examined. These data have revealed large potential mechanical stresses under thermal cycling. A mathematical analysis of a composite model of the capacitor to predict the thermal expansion and modulus of elasticity and an analysis of the capacitor-substrate system to predict the magnitude of thermally induced stresses have been conducted. In all cases studied, thermally induced stresses great enough to cause capacitor body rupture or termination failure was predicted.

  13. Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites

    PubMed Central

    2013-01-01

    In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc. PMID:23294669

  14. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  15. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.

    1992-04-07

    Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.

  16. Thermal expansion in small metal clusters and its impact on the electric polarizability

    PubMed

    Kummel; Akola; Manninen

    2000-04-24

    The thermal expansion coefficients of Na(N) clusters with 8Thermal expansion of small metal clusters is considerably larger than that in the bulk and is size dependent. We demonstrate that the average static electric dipole polarizability of Na clusters depends linearly on the mean interatomic distance and only to a minor extent on the detailed ionic configuration when the overall shape of the electron density is enforced by electronic shell effects. Taking thermal expansion into account brings theoretical and experimental polarizabilities into quantitative agreement. PMID:11019216

  17. Effects of static tensile load on the thermal expansion of Gr/PI composite material

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1981-01-01

    The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.

  18. Thermal Expansion and Magnetostriction of Heavy Fermion CeRu2Si2 at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Inoue, Daiki; Kaido, Daisuke; Yoshikawa, Yuta; Minegishi, Mitsuyuki; Matsumoto, Koichi; Abe, Satoshi; Murayama, Shigeyuki

    We have measured linear thermal expansion and magnetostriction of single crystal CeRu2Si2 that is well known as a heavy fermion metamagnetic compound. Thermal expansion and magnetostriction along the a-axis (B || a) and the c-axis (B || c) were measured by the capacitive dilatometer at temperatures down to 12 mK and in magnetic fields up to 9 T. We observed a strong anisotropy between a and c axis. In addition, negative deviations from Landau-Fermi liquid behavior for thermal expansion and magnetostriction coefficients were found below 50 mK and 0.4 T indicating non Fermi liquid behavior.

  19. Finite element simulation on thermal mechanical expansion of the automobile rear axle housing

    NASA Astrophysics Data System (ADS)

    Liu, Hua-min; Zhao, Yufeng; Zhi, Fuxin

    2013-05-01

    Mechanical thermal expansion is a new metal processing method, which improved not only the properties of materials and the production efficiency, but also achieves better processing surface quality and comprehensive mechanical properties. Axle housing mechanical thermal expansion is simulated by DEFORM-3D, then by metal flow analysis, explored the deformation characteristics through stress-strain distribution and velocity, predicted possible forming defects types and locations and propose appropriate solutions. Through analysis of the influence of different process parameters on the axle housing mechanical thermal expansion, theoretical guidance for actual production is provided.

  20. Highly Anisotropic Thermal Expansion in Molecular Films of Dicarboxylic Fatty Acids

    SciTech Connect

    Tamam L.; Ocko B.; Kraack, H.; Sloutskin, E.; Deutsch, M.

    2012-05-25

    Angstrom-resolution x-ray measurements reveal the existence of two-dimensional (2D) crystalline order in molecularly thin films of surface-parallel-oriented fatty diacid molecules supported on a liquid mercury surface. The thermal expansion coefficients along the two unit cell vectors are found to differ 17-fold. The high anisotropy of the 2D thermal expansion and the crystalline coherence length are traced to the different bonding in the two directions: van der Waals normal to, and covalent plus hydrogen bonding along the molecular backbone axis. Similarities with, and differences from, negative thermal expansion materials are discussed.

  1. Calculations of dynamical properties of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-square displacement

    SciTech Connect

    Bernstein, N.; Feldman, J. L.; Singh, David J.

    2010-04-05

    While the thermal conductivity of the filled skutterudites has been of great interest it had not been calculated within a microscopic theory. Here a central force, Guggenheim-McGlashen, model with parameters largely extracted from first-principles calculations and from spectroscopic data, specific to LaFe{sub 4} Sb{sub 12} or CoSb{sub 3} , is employed in a Green-Kubo/molecular dynamics calculation of thermal conductivity as a function of temperature. We find that the thermal conductivity of a filled solid is more than a factor of two lower than that of an unfilled solid, assuming the “framework” interatomic force parameters are the same between filled and unfilled solids, and that this decrease is almost entirely due to the cubic anharmonic interaction between filling and framework atoms. In addition, partially as a test of our models, we calculate thermal expansivity and isotropic atomic mean-square displacements using both molecular dynamics and lattice dynamics methods. These quantities are in reasonable agreement with experiment, increasing our confidence in the anharmonic parameters of our models. We also find an anomalously large filling-atom mode Gruneisen parameter that is apparently observed for a filled skutterudite and is observed in a clathrate.

  2. Corrections for Thermal Expansion in Thermal Conductivity Measurement of Insulations Using the High-Temperature Guarded Hot-Plate Method

    NASA Astrophysics Data System (ADS)

    Wu, Jiyu; Morrell, Roger

    2012-02-01

    The anticipation of recently published European product standards for industrial thermal insulation has driven improvements in high-temperature thermal conductivity measurements in an attempt to obtain overall measurement uncertainties better than 5 % ( k = 2). The two measurement issues that are focused on in this article are the effect of thermal expansion on in situ thickness measurement and on determining the metering area at high temperatures. When implementing in situ thickness measurements, it is vital to correct the thermal expansion of components in a high-temperature guarded hot plate (HTGHP). For example, in the NPL HTGHP this could cause 3.2 % measurement error for a 50 mm thick specimen at 800 °C. The thermal expansion data for nickel 201 measured by NPL are presented, and the effect of this on the metering area of NPL's heater plate (nickel 201) is discussed.

  3. Thermal Expansion Anomaly in TTB Ferroelectrics: The Interplay between Framework Structure and Electric Polarization.

    PubMed

    Lin, Kun; You, Li; Li, Qiang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-15

    Tetragonal tungsten bronze (TTB) makes up a large family of functional materials with fascinating dielectric, piezoelectric, or ferroelectric properties. Understanding the thermal expansion mechanisms associated with their physical properties is important for their practical applications as well as theoretical investigations. Fortunately, the appearance of anomalous thermal expansion in functional materials offers a chance to capture the physics behind them. Herein, we report an investigation of the thermal expansion anomalies in TTBs that are related to ferroelectric transitions and summarize recent progress in this field. The special role of Pb(2+) cation is elucidated. The interplay between the thermal expansion anomaly, electric polarization, and framework structure provides new insight into the structure-property relationships in functional materials. PMID:27487395

  4. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOEpatents

    Kramer, Daniel P.

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  5. Using a Michelson Interferometer to Measure Coefficient of Thermal Expansion of Copper

    ERIC Educational Resources Information Center

    Scholl, Ryan; Liby, Bruce W.

    2009-01-01

    When most materials are heated they expand. This concept is usually demonstrated using some type of mechanical measurement of the linear expansion of a metal rod. We have developed an alternative laboratory method for measuring thermal expansion by using a Michelson interferometer. Using the method presented, interference, interferometry, and the…

  6. Thermal expansion data for eight optical materials from 60 K to 300 K.

    PubMed

    Browder, J S; Ballard, S S

    1977-12-01

    Coefficients of linear thermal expansion are reported, in the range 60 K to room temperature, for eight optical materials: Polytran potassium chloride and Polytran calcium fluoride-Harshaw; chemical-vapor-deposited (CVD) zinc sulfide and zinc selenide-Raytheon; germanium (single-crystal and polycrystal); crystalline magnesium fluoride, potassium dihydrogen phosphate (KDP), and lithium niobate-Harshaw. The last three are anisotropic crystals; thermal expansion was measured both parallel and perpendicular to the c axis. PMID:20174331

  7. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  8. Cellular Membrane Accommodation to Thermal Oscillations in the Coral Seriatopora caliendrum

    PubMed Central

    Tang, Chuan-Ho; Fang, Lee-Shing; Fan, Tung-Yung; Wang, Li-Hsueh; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2014-01-01

    In the present study, the membrane lipid composition of corals from a region with tidally induced upwelling was investigated. The coral community is subject to strong temperature oscillations yet flourishes as a result of adaptation. Glycerophosphocholine profiling of the dominant pocilloporid coral, Seriatopora caliendrum, was performed using a validated method. The coral inhabiting the upwelling region shows a definite shift in the ratio of lipid molecular species, covering several subclasses. Mainly, the coral possesses a higher percentage of saturated, monounsaturated and polyunsaturated plasmanylcholines and a lower percentage of polyunsaturated phosphatidylcholines. Higher levels of lyso–plasmanylcholines containing saturated or monounsaturated fatty acid chains were also revealed in coral tissue at the distal portion of the branch. Based on the physicochemical properties of these lipids, we proposed mechanisms for handling cellular membrane perturbations, such as tension, induced by thermal oscillation to determine how coral cells are able to spontaneously maintain their physiological functions, in both molecular and physical terms. Interestingly, the biochemical and biophysical properties of these lipids also have beneficial effects on the resistance, maintenance, and growth of the corals. The results of this study suggest that lipid metabolic adjustment is a major factor in the adaption of S. caliendrum in upwelling regions. PMID:25140803

  9. Thermal expansion of a Au-Al-Yb intermediate valence quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Kashimoto, S.; Ishimasa, T.; Machida, A.; Yamamoto, S.; Tanaka, Y.; Mizumaki, M.; Kawamura, N.; Watanabe, S.

    2015-06-01

    The thermal expansion of a Au-Al-Yb intermediate-valence quasicrystal has been studied. X-ray diffraction measurements showed zero thermal expansion below 50 K. By comparison with an isostructural Au-Al-Tm quasicrystal, the contribution of the Yb valence variation was extracted, and it was shown that its negative thermal expansion component compensated for the positive thermal expansion of the original lattice. On cooling, the Yb contribution grew steeply below approximately 155 K down to the lowest experimental temperature of 5 K, due to enlargement of the Yb atomic radius, which was caused by the valence shift toward the divalent state. Additionally, a larger Yb contribution to the thermal expansion was demonstrated in a crystalline approximant to this quasicrystal. The magnitude of this contribution was approximately 1.4 times larger than in the case of the quasicrystal itself, resulting in a slight negative thermal expansion below 50 K. A heterogeneous valence model for the quasicrystal that we proposed previously accounts for this magnitude difference.

  10. Measurements of the thermal expansion of six optical materials, from room temperature to 250 degrees C.

    PubMed

    Ballard, S S; Brown, S E; Browder, J S

    1978-04-01

    Coefficients of linear thermal expansion are reported in the range from room temperature to 250 degrees C for six optical materials: Polytran potassium chloride and Polytran calcium fluoride-Harshaw; chemical-vapordeposited (CVD) zinc selenide and zinc sulfide-Raytheon; single-crystal germanium-Eagle-Picher; and lithium niobate-Harshaw. For the last named, an anisotropic crystal, thermal expansion was measured both parallel and perpendicular to the c axis. Curves are given to illustrate the expansion behavior of the materials over the 60-500-K range. PMID:20197949

  11. Metamagnetic quantum criticality in Sr3Ru2O7 studied by thermal expansion.

    PubMed

    Gegenwart, P; Weickert, F; Garst, M; Perry, R S; Maeno, Y

    2006-04-01

    We report low-temperature thermal expansion measurements on the bilayer ruthenate Sr3Ru2O7 as a function of magnetic field applied perpendicular to the ruthenium-oxide planes. The field dependence of the c-axis expansion coefficient indicates the accumulation of entropy close to 8 T, related to an underlying quantum critical point. The latter is masked by two first-order metamagnetic transitions which bound a regime of enhanced entropy. Outside this region the singular thermal expansion behavior is compatible with the predictions of the itinerant theory for a two-dimensional metamagnetic quantum critical end point. PMID:16712009

  12. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C.; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  13. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    PubMed

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications. PMID:24424396

  14. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    PubMed

    Cai, Weizhao; Katrusiak, Andrzej

    2014-01-01

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices. PMID:24993679

  15. Determination of the thermal expansion and thermo-optic coefficients of a bacteriorhodopsin film

    NASA Astrophysics Data System (ADS)

    Wang Song, Q.; Zhang, Chunping; Ku, Chin-Yu; Huang, Ming-Chieh; Gross, Richard B.; Birge, Robert R.

    1995-02-01

    The linear expansion and thermo-optic coefficients of a bacteriorhodopsin film were measured by using an interferometric method. The experimental results confirm the previous suspicions that the large refractive nonlinearity which occurs at high illumination intensities arises form a thermal effect. The results also suggest a possible way to increase the usable thermal nonlinearity by four times.

  16. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    PubMed

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  17. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru

    2015-07-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.

  18. The effects of microcracking on the thermal expansion of graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.

    1982-01-01

    A study of the effects of thermal environment and microcracking in graphite epoxy composites was made. Research indicates that microcracking does affect the thermal expansion of composite laminates. The amount of reduction in thermal expansion was a function of the crack density. A maximum reduction of approximately 25% occurred in a quasi-isotropic specimen with a crack density of 2.05 mm 1 in the 90 deg plies. Laminate analysis with appropriate reductions in E sub 2 and Alpha sub 2 of the damaged plies appears to be capable of modeling the observed

  19. The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures

    SciTech Connect

    Shyam, Amit; Lara-Curzio, Edgar; Pandey, Amit; Watkins, Thomas R; More, Karren

    2012-01-01

    The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

  20. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Bradt, Richard C.

    1990-01-01

    Thermal expansions of three two-dimensional laminate, continuous fiber/chemical-vapor-infiltrated silicon carbide matrix composites reinforced with either FP-Alumina (alumina), Nextel (mullite), or Nicalon (Si-C-O-N) fibers are reported. Experimental thermal expansion coefficients parallel to a primary fiber orientation were comparable to values calculated by the conventional rule-of-mixtures formula, except for the alumina fiber composite. Hysteresis effects were also observed during repeated thermal cycling of that composite. Those features were attributed to reoccurring fiber/matrix separation related to the micromechanical stresses generated during temperature changes and caused by the large thermal expansion mismatch between the alumina fibers and the silicon carbide matrix.

  1. Thermal stability and thermal expansion studies of cubic fluorite-type MgF{sub 2} up to 135 GPa

    SciTech Connect

    Sun, X.W.; Song, T.; Wei, X.P.; Quan, W.L.; Liu, X.B.; Su, W.F.

    2014-04-01

    Highlights: • The thermal expansion of MgF{sub 2} with a fluorite-type structure has been investigated. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • Particular attention is paid to the prediction of thermal expansion for the first time. - Abstract: The thermal expansion of MgF{sub 2} with a fluorite structure has been investigated at high pressures using plane-wave pseudopotential scheme within the local density approximation correction in the frame of density functional theory based on the analysis of thermal stability using classical molecular dynamics simulations up to 6500 K. To investigate the thermodynamic properties like as the P–V–T equation of state and volumetric thermal expansion coefficient α{sub V} of cubic fluorite-type MgF{sub 2} at extended pressure and temperature ranges, we apply the quasi-harmonic Debye model in which the phononic effects are considered. The P–V relationship and α{sub V} dependence of the pressure up to 135 GPa at different temperatures, and the V–T relationship and α{sub V} dependence of the temperature up to the melting temperature 1500 K at different pressures have been obtained.

  2. Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Romao, Carl P.; Miller, Kimberly J.; Johnson, Michel B.; Zwanziger, J. W.; Marinkovic, Bojan A.; White, Mary Anne

    2014-07-01

    Y2Mo3O12, a material that exhibits negative thermal expansion (NTE) from 10 to 1173 K, offers an excellent opportunity to examine relationships between NTE and other physical properties over a wide temperature range. We report experimental heat capacity, thermal conductivity, and elastic properties of Y2Mo3O12, as well as results of an ab initio study of the lattice dynamics, and show how the anomalously high heat capacity and low thermal conductivity are correlated with NTE. We also report the ab initio elastic tensor and experimental velocity of sound of Y2Mo3O12 and use it to calculate the thermal stresses in a simulated polycrystal using finite-element analysis, showing that elastic anisotropy and thermal expansion anisotropy couple to influence the properties of the bulk solid.

  3. Thermal conductivity and expansion of cross-ply composites with matrix cracks

    NASA Astrophysics Data System (ADS)

    Lu, T. J.; Hutchinson, J. W.

    1995-08-01

    Theoretical models are developed for heat conduction and thermal expansion in a fiber-reinforced ceramic cross-ply laminate containing an array of parallel transverse matrix cracks. Two stages of the transverse matrix cracks are considered: Stage-I with tunnel cracks in the 90 ° plies aligned parallel to the fibers, and Stage-II with cracks extended across both the 90 and 0 ° plies with intact fibers bridging the matrix in the 0 ° plies. The effect of debonded fiber-matrix interfaces in the 0 ° plies is also considered in Stage-II. Approximate closed form solutions for the overall in-plane thermal conductivities and coefficients of thermal expansion (CTEs) as functions of matrix crack spacing and constituent properties are obtained using an approach which combines an analysis akin to a shear-lag analysis with finite element results. Emphasis is placed on the important class of composites whose fiber expansivity is smaller than that of the matrix. For this class, matrix cracking and interfacial debonding results in reduced thermal expansivity. Interfacial debonding has a significant effect on both longitudinal conductivity and thermal expansivity, especially the latter. Comparisons between the present model predictions and numerical and experimental results are provided where these are available.

  4. Dynamics of surface thermal expansion and diffusivity using two-color reflection transient gratings

    SciTech Connect

    Pennington, D.M.; Harris, C.B.

    1993-02-01

    We report ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples at several temperatures. Using a 75 fs ultraviolet probe with visible excitation beams, the electronic effects that dominate single color experiments become negligible; thus surface expansion due to heating and the subsequent contraction caused by cooling provide the dominant influence on the diffracted probe. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, allowing the determination of the rate of expansion as well as the surface thermal diffusivity. At room temperature a signal rise due to thermal expansion was observed, corresponding to a maximum average displacement of {approx} 1 {angstrom} at 32 ps. Large fringe spacings were used, thus the dominant contributions to the signal were expansion and diffusion perpendicular to the surface. Values for the surface thermal diffusivity of GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, the diffusivity at the surface was more than an order of magnitude slower than in the bulk due to increased phonon boundary scattering. Comparison of the results with a straightforward thermal model yields good agreement over a range of temperatures (12--300{degrees}K). The applicability and advantages of the transient grating technique for studying photothermal and photoacoustic phenomena are discussed.

  5. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

    SciTech Connect

    Luscher, Darby J.

    2014-05-08

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of

  6. Non-contact measurement of linear thermal expansion coefficients of solid materials by infrared image correlation

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Freni, F.

    2014-01-01

    A new non-contact optical method (IIC, infrared image correlation) for the determination of the coefficients of thermal expansion of solid materials is presented. The proposed method is based on performing a digital image correlation between thermal images recorded at different temperatures by means of an infrared camera. It allows the coefficient of thermal expansion of both isotropic and anisotropic solid materials to be determined by measuring simultaneously the fractional increase in length and the actual thermal field over a small region of interest in which a dual-emissivity stochastic speckle pattern has been created. The results reported in this paper prove the effectiveness of the proposed method that can be applied either to carry out reference measurements in laboratory or to evaluate thermal stresses and strains on structural components in-field.

  7. Coefficient of thermal expansion dependent thermal stress analysis of thermal barrier coatings (TBCs) using finite element model

    NASA Astrophysics Data System (ADS)

    Coker, Omotola

    Thermal barrier coatings (TBCs) are highly sophisticated micro scale ceramic insulation applied on high temperature components such as gas turbine blades. TBCs create a large temperature drop between the gas turbine environment and the underlying metal blades. TBC lifetime is finite and influenced by several factors such as: Bond Coat (BC) oxidation, BC roughness, Coefficient of thermal expansion (CTE) mismatch between the layers, and creep properties of the TBC system. However, there is a lack of reliable methods of TBC life prediction which result in under utilization of these coatings. This research study focuses on modeling the steady state thermal stresses in TBC systems of various oxide thicknesses, and BC roughness, using Finite Element Analysis (FEA). The model factors into it the temperature dependent thermo mechanical properties of each layer, as well as the creep properties. The steady state model results show similar results to the existing transient models: an increase in tensile stresses as the oxide thickness increases, an increase in tensile stresses with BC roughness and stress relaxation in the ceramic BC interface due to creep. It also shows in each model, initially compressive stresses in the BC - Top Coat (TC) interface, and its evolution into higher tensile stresses which lead to crack formation and ultimately failure of the TBC by spallation.

  8. Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Sadovnikov, S. I.; Chukin, A. V.; Rempel, A. A.

    2016-02-01

    In situ studies of the thermal expansion of polymorphic phases of coarse-crystalline and nanocrystalline silver sulfide, namely, monoclinic acanthite α-Ag2S and cubic argentite β-Ag2S, have been performed for the first time by high-temperature X-ray diffraction. The temperature dependences of the unit cell parameters of acanthite and argentite have been measured from temperatures in the range of 300-623 K, and the thermal expansion coefficients of acanthite and argentite have been determined. The observed difference between the thermal expansion coefficients of nano- and coarse-crystalline acanthite is shown to be due to a small size of nanocrystalline silver sulfide particles, which leads to an increase in the anharmonicity of atomic vibrations.

  9. Size and shape dependent melting temperature and thermal expansivity of metallic and semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, Ghanshyam R.; Thakar, Nilesh A.; Pandya, Tushar C.

    2016-05-01

    Liquid drop model is used to predict the size dependent melting temperature of low dimensional systems. In the present work we have modified liquid drop model for predicting shape and size dependent melting temperature of nanoparticles of Pb and Si. The new modified liquid drop model gives good agreement between calculated and experimental data which demonstrate the validity of the present work. It is found that the particle shape can affect the melting temperature of nanoparticles and this effect on the melting temperature becomes larger with decreasing of particle size. In the present study relationship for size and shape dependent of thermal expansivity is deduced for metallic and semiconductor nanoparticles. The present relationship for thermal expansivity may be used to predict the coefficient of thermal expansion for nanoparticles.

  10. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2016-02-01

    In the present study, the chemical and mechanical properties and the thermal expansion of a carbon nanotube (CNT)-based crystalline nano-aluminum (nano Al) composite were reported. The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method. The elastic moduli and the coefficient of thermal expansion (CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix. Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix. The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion. The hardness and elastic modulus of the nanocomposite increase by 21% and 20%, respectively, upon CNT addition. The CTE of CNT/Al nanocomposite decreases to 70% compared with that of nano Al.

  11. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12.

    PubMed

    Rimmer, Leila H N; Dove, Martin T

    2015-05-13

    A simulation study of negative thermal expansion in Y2W3O12 was carried out using calculations of phonon dispersion curves through the application of density functional perturbation theory. The mode eigenvectors were mapped onto flexibility models and results compared with calculations of the mode Grüneisen parameters. It was found that many lower-frequency phonons contribute to negative thermal expansion in Y2W3O12, all of which can be described in terms of rotations of effectively rigid WO4 tetrahedra and Y-O rods. The results are strikingly different from previous phonon studies of higher-symmetry materials that show negative thermal expansion. PMID:25880236

  12. A compact capacitive dilatometer for thermal expansion and magnetostriction measurements at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Abe, Satoshi; Sasaki, Fumishi; Oonishi, Takanobu; Inoue, Daiki; Yoshida, Jun; Takahashi, Daisuke; Tsujii, Hiroyuki; Suzuki, Haruhiko; Matsumoto, Koichi

    2012-10-01

    We describe a compact capacitive dilatometer for measuring thermal expansion and magnetostriction below 1 K using a home-made capacitance bridge with long-term stability of ΔC/C ˜ 1.6 × 10-7. We measured the thermal expansion and magnetostriction of a heavy-Fermion compound CeRu2Si2 and those of a standard copper sample to clarify the dilatometer cell effect. The temperature-dependent cell effect of our dilatometer, ΔL/L, was less than 10-8 below 0.2 K. The magnetic-field-dependent cell effect was not observed below 52.6 mT at 85 mK, and was less than -2 × 10-9 up to 10 T at 4.2 K. Our dilatometer provides precise thermal expansion and magnetostriction measurements at millikelvin temperatures.

  13. Thermal expansion and magnetostriction measurements using a high sensitive capacitive dilatometer at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Inoue, Daiki; Kaido, Daisuke; Yoshikawa, Yuta; Minegishi, Mitsuyuki; Matsumoto, Koichi; Abe, Satoshi

    2014-12-01

    We have developed a dilatometric measuring system for thermal expansion and magnetostriction, those are more singular than specific heat in approaching to a quantum critical point. With decreasing temperature, thermal expansion becomes small in proportional to the square of temperature, thus, high sensitivity and reproducibility are necessary for the dilatometric measurements in millikelvin temperatures. Our dilatometer composed of the sample and the reference capacitor provides the extremely high resolution of ΔL/L ~ 10-10 using the ratio-transformer-based capacitance bridge. The dilatometer was installed on the 3He-4He dilution refrigerator with the 9 T superconducting magnet, and temperature was measured by the 3He melting curve thermometer. We have measured thermal expansion and magnetostriction of the typical heavy fermion compound CeRu2Si2 along a-axis at temperature down to 10 mK in magnetic fields up to 9 T.

  14. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Wang, Wei; Li, Laifeng

    2015-12-14

    Recently, La(Fe,Si)13-based compounds have attracted much attention due to their isotropic and tunable abnormal thermal expansion (ATE) properties as well as bright prospects for practical applications. In this research, we have prepared cubic NaZn13-type carbon-doped La(Fe,Si)13 compounds by the arc-melting method, and their ATE and magnetic properties were investigated by means of variable-temperature X-ray diffraction, strain gauge and the physical property measurement system (PPMS). The experimental results indicate that both micro and macro negative thermal expansion (NTE) behaviors gradually weaken with the increase of interstitial carbon atoms. Moreover, the temperature region with the most remarkable NTE properties has been broadened and near zero thermal expansion (NZTE) behavior occurs in the bulk carbon-doped La(Fe,Si)13 compounds. PMID:26549525

  15. Thermal expansivity of Ge{sub 1-y}Sn{sub y} alloys

    SciTech Connect

    Roucka, R.; Fang, Y.-Y.; Kouvetakis, J.; Chizmeshya, A. V. G.; Menendez, J.

    2010-06-15

    The temperature dependence of the lattice parameter of Ge{sub 1-y}Sn{sub y} alloys deposited on Si substrates has been determined from an analysis of their x-ray reciprocal-space maps. It is found that over the range 0thermal expansivity increases by up to 20% as a function of y. This implies a strong deviation from a linear interpolation between the end compounds since the thermal expansivities of pure Ge and {alpha}-Sn are nearly the same. Alternative interpolation formulas based on a Debye model and a mixed Debye-Einstein model of the phonon structure are tested and it is found that they also fail to explain the observed increase in thermal expansivity.

  16. Modeling of Thermal Expansion Coefficients of Ni-Based Superalloys Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Bano, Nafisa; Nganbe, Michel

    2013-04-01

    The objective of this work is to model the thermal expansion coefficients of various Ni-based superalloys used in gas turbine components. The thermal expansion coefficient is described as a function of temperature, chemical composition including Ni, Cr, Co, Mo, W, Ta, Nb, Al, Ti, B, Zr, and C contents as well as heat treatment including solutionizing and aging. Experimental values are well described and their relative changes well correlated by the model. Because gas turbine engine components operate under severe loading conditions and at high and varying temperatures, the prediction of their thermal expansion coefficient is crucial. The model developed in this work can be useful for design optimizations for minimizing thermo-mechanical stresses between the base alloys and potential protective coatings or adjacent components. It can substantially contribute to improve the performance and service life of gas turbine components.

  17. Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides

    NASA Astrophysics Data System (ADS)

    Geenen, F. A.; Knaepen, W.; Moens, F.; Brondeel, L.; Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2016-07-01

    Silicon or germanium-based transistors are nowadays used in direct contact with silicide or germanide crystalline alloys for semiconductor device applications. Since these compounds are formed at elevated temperatures, accurate knowledge of the thermal expansion of both substrate and the contact is important to address temperature depending effects such as thermal stress. Here we report the linear coefficients of thermal expansion of Ni-, Pd- and Pt-based mono-germanides, mono-silicides and di-metal-silicides as determined by powder-based x-ray diffraction between 300 and 1225 K. The investigated mono-metallic compounds, all sharing the MnP crystal structure, as well as Pd2Si and Pt2Si exhibit anisotropic expansion. By consequence, this anisotropic behaviour should be taken into account for evaluating the crystal unit’s cell at elevated temperatures.

  18. Negative thermal expansibility change for dissociation of lysozyme variant amyloid protofibril.

    PubMed

    Ishiguro, Ryo; Matsuo, Hiroshi; Kameyama, Keiichi; Tachibana, Hideki; Fujisawa, Tetsuro

    2015-03-01

    A disulfide-deficient variant of hen lysozyme, 0SS, is known to form an amyloid protofibril spontaneously, and to dissociate into monomers at high hydrostatic pressure. We carried out native PAGE at various temperatures (20-35°C) and pressures (0.1-200 MPa), to characterize the dissociation equilibrium of disulfide-deficient variant of hen lysozyme amyloid protofibril. Based on the density profiles, the partial molar volume and thermal expansibility changes for dissociation, ΔvD and ΔeD , were obtained to be -74 cm(3) /mol at 25°C and -2.3 cm(3) mol(-1) K(-1) , respectively. The dissociation of amyloid fibril destroys the cross β-structure, and such conformational destruction in native protein fold rarely accompanies negative thermal expansibility change. We discussed the negative thermal expansibility change in terms of hydration and structural packing of the amyloid protofibril. PMID:25665167

  19. Classical model of negative thermal expansion in solids with expanding bonds

    NASA Astrophysics Data System (ADS)

    Schick, Joseph T.; Rappe, Andrew M.

    2016-06-01

    We study negative thermal expansion (NTE) in model lattices with multiple atoms per cell and first- and second-nearest neighbor interactions using the (anharmonic) Morse potential. By exploring the phase space of neighbor distances and thermal expansion rates of the bonds, we determine the conditions under which NTE emerges. By permitting all bond lengths to expand at different rates, we find that NTE is possible without appealing to fully rigid units. Nearly constant, large-amplitude, isotropic NTE is observed up to the melting temperature in a classical molecular dynamics model of a ReO3-like structure when the rigidity of octahedral units is almost completely eliminated. Only weak NTE, changing over to positive expansion, is observed when the corner-linked octahedra are rigid, with flexible second-neighbor bonds between neighboring octahedra permitting easy rotation. We observe similar changes to thermal expansion behavior for the diamond lattice: NTE when second-neighbor interactions are weak to positive thermal expansion when second-neighbor interactions are strong. From these observations, we suggest that the only essential local conditions for NTE are atoms with low coordination numbers along with very low energies for changing bond angles relative to bond-stretching energies.

  20. Thermal expansion and free volume behavior in glassy state of crystalline polymers

    NASA Astrophysics Data System (ADS)

    Ougizawa, Toshiaki

    2002-03-01

    It is generally understood that the thermal expansivity (dVsp/dT) does not change between crystal and glass and that of the crystalline polymers is independent of crystallinity below the glass transition temperature since the thermal expansion of both glass and crystal occurs due to the anharmonic oscillation of molecules. However, recently, it was found that the free volume played an important role for expansion of amorphous polymer even in the glassy state. Therefore the value of dVsp/dT should depend on crystallinity. In this study the temperature dependence of specific volume in poly(ethylene terephthalate) with different degrees of crystallinity was measured in detail and it was confirmed that the value of dVsp/dT depended on crustallinity. In order to investigate the mechanism of thermal expansion, the free volume behavior was measured by Positron Annihilation Lifetime Spectroscopy. The free volume size increased with temperature in glassy state but the behavior did not depend on crystallinity. Only number of free volume decreased with increasing crystallinity. It was concluded that amorphous region of crystalline polymer was not affected by crystalline region in glassification and the free volume of amorphous region played a very important role for thermal expansion even in crystalline polymer.

  1. Thermal expansion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems to 1200 degrees C

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Garlick, R. G.; Henry, B.

    1975-01-01

    Thermal expansion data were obtained on 12 Ni-Cr-Al and 9 Co-Cr-Al alloys by high temperature X-ray diffraction. The data were computer fit to an empirical thermal expansion equation developed in the study. It is shown that the fit is excellent to good, and that the expansion constants depend on phase but not on composition. Phases for the Ni-Cr-Al system and Co-Cr-Al system are given. Results indicate that only alpha Cr has an expansion constant low enough to minimize oxide spalling or coating cracking induced by thermal expansion mismatch.

  2. A solar engine using the thermal expansion of metals.

    NASA Technical Reports Server (NTRS)

    Beam, R.; Jedlicka, J.

    1973-01-01

    A thermal engine which uses solid metal as the single-phase working substance to convert solar energy into small amounts of mechanical energy is described. Test data are given for an engine whose working substance was annealed 304-type steel welded into a thin-walled tube that was mounted in a bearing at each end (making it free to rotate about its axis) with a flywheel mass at its midpoint. When heated on its upper surface, the tube rotates producing steady power. The theory of the engine is outlined.

  3. Thermal expansion study of a "Direct Chill Casting" AlMgSi alloy

    NASA Astrophysics Data System (ADS)

    Guemini, R.; Boubertakh, A.; Hamamda, S.

    2001-03-01

    This work is concerned with the study of thermal expansion coefficient of Al-0.59 wt.% Mg- 0.88 wt.% Si-0.30 wt.% Fe-0.44 wt.% Mn alloy. The presence of the anisotropy was concluded on the basis of the thermal expansion coefficient α(T) which depends up on the two directions: radial (1) and axial (2). However α(T) measured along the axial direction (2) appeared to be inferior to the measured one along the radial direction (1) in both as-cast and homogenised alloy.

  4. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect

    Sharma, Manjula Sharma, Vimal; Pal, Hemant

    2014-04-24

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  5. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  6. Tunable blue laser compensates for thermal expansion of the medium in holographic data storage.

    PubMed

    Tanaka, Tomiji; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro

    2007-09-01

    A tunable laser optical source equipped with wavelength and mode-hop monitors was developed to compensate for thermal expansion of the medium in holographic data storage. The laser's tunable range is 402-409 nm, and supplying 90 mA of laser diode current provides an output power greater than 40 mW. The aberration of output light is less than 0.05 lambdarms. The temperature range within which the laser can compensate for thermal expansion of the medium is estimated based on the tunable range, which is +/-13.5 degrees C for glass substrates and +/-17.5 degrees C for amorphous polyolefin substrates. PMID:17805360

  7. Anomalous thermal expansion of InSe layered semiconductors in the low-temperature region

    SciTech Connect

    Krynetskii, I. B.; Kulbachinskii, V. A.; Shabanova, N. P. Tsikunov, A. V.; Kovalenko, R. I.; Rodin, V. V.; Gavrilkin, S. Yu.

    2013-05-15

    The temperature dependence of the linear thermal expansion coefficient (TEC) of an InSe single crystal in the (001) plane is measured in the temperature range 7-50 K. A peak in the thermal expansion is detected near T = 10 K, after which the sample shrinks upon heating. The effect of an external magnetic field of up to 6 T, which is parallel to the (001) plane, on the TEC is investigated. The observed partial suppression of the peak and crystal compression by the field indicates the relation of these anomalies to possible electron ordering in InSe layers.

  8. Thermal expansion and lattice dynamics of RB66 compounds at low temperatures

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Mitroshenkov, N V; Matovnikov, A V; Budko, Serguei L

    2014-10-01

    Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.

  9. Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.; Norton, M. A.

    1976-01-01

    A method is developed for testing the long-term dimensional stability of an iodine-stabilized He-Ne laser, using a technique whereby thermal expansion coefficients are measured by forming a Fabry-Perot etalon from the sample and monitoring the optical resonant frequencies with tunable sidebands impressed on a laser beam from a frequency-stabilized He-Ne laser. A change of 1 ppm over a 3-yr period on the part of fused silica dimensions and the differential thermal expansion of Invar LR-35 and Super Invar materials are noted. The method is of interest for the metrology of extremely stable structures such as telescopes and optical resonators.

  10. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  11. Thermal Expansion Behaviour of Silver Examined by Extended X-Ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Dubiel, M.; Chasse, A.; Haug, J.; Schneider, R.; Kruth, H.

    2007-02-02

    EXAFS (extended X-ray absorption fine structure) investigations are reported concerning the thermal expansion behaviour of silver in an extended range of temperature from 10 K to about 950 K measured in transmission mode. Both the ratio method and an EXAFS fitting procedure were applied to reveal the temperature dependence of EXAFS parameters. Models based on quantum and classical thermodynamic perturbation theory have been used to interpret experimental data and compared to XRD (X-ray diffraction) results of bulk silver material. The description of thermodynamic data of thermal expansion of silver in the complete range of temperature by EXAFS Spectroscopy was successful by first calculations using third order quantum perturbation theory.

  12. The effect of water on the thermal expansion behavior of FM5055 carbon phenolic

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1995-01-01

    The effect of water on the thermal expansion behavior of FM5055 carbon phenolic is studied using a theory of mixtures approach. A partial pressure expression for the water constituent was obtained based upon certain assumptions regarding the thermodynamic state of water as it resides in the free volumes of the polymer. A simple constitutive model is used to simulate the polymer strain due to the application of the partial pressure of water. The resulting theory is applied to model the effect of moisture on the thermal expansion of FM5055 carbon phenolic specimens. The application of the theory results in calculated strains which were in close agreement with the measured strains.

  13. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-08-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  14. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    PubMed Central

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238

  15. First-principles study of negative thermal expansion in zinc oxide

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyu; Wang, Fei; Wang, Lei; Jia, Yu; Sun, Qiang

    2013-08-01

    We present the first-principles calculations of vibrational and thermal properties for wurtzite and zinc-blende zinc oxide (ZnO) within DFT and quasi-harmonic approximation, especially for their negative thermal expansion (NTE) behavior. For the wurtzite and zinc-blende phases, negative thermal expansions are obtained at T < 95 K and T < 84 K, respectively. For the wurtzite structure, calculated phonon frequencies and mode Grüneisen parameters of low-energy modes are in good agreement with that determined experimentally. And the thermal expansion coefficient is found to be in good agreement with the experimental results. Like many other NTE semiconductors, detailed study of both phases shows that maximum contribution to NTE comes from low-frequency transverse acoustic modes, while for the wurtzite structure the contribution of longitudinal acoustic and lowest-energy optical modes is not ignorable. From the specific analysis of the vibration modes, we found that the negative thermal expansion in ZnO is dominated by the tension effect.

  16. Pronounced negative thermal expansion from a simple structure : Cubic ScF{sub 3}.

    SciTech Connect

    Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P.; X-Ray Science Division; Georgia Inst. of Tech.

    2010-10-19

    Scandium trifluoride maintains a cubic ReO{sub 3} type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at {approx}300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, {alpha}{sub l} {approx} -14 ppm K{sup -1}). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW{sub 2}O{sub 8} and positive thermal expansion above {approx}1100 K. While the cubic ReO{sub 3} structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF{sub 3} is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.

  17. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2014-01-01

    Thermal expansion measurements were conducted on hot-pressed CrSi(sub 2), TiSi(sub 2), W Si(sub 2) and a two-phase Cr-Mo-Si intermetallic alloy between 293 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (L/L(sub 0)(sub thermal), varied with the absolute temperature, T, as (deltaL/L(sub 0)(sub thermal) = A(T-293)(sup 3) + B(T-293)(sup 2) + C(T-293) + D, where A, B, C and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from the first heatup cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  18. Computational investigation on thermal expansivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Mohan Krishna, S. A.; Shridhar, T. N.; Krishnamurthy, L.

    2015-08-01

    Metal matrix composites (MMCs) have been regarded as one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has been increasingly important in a wide range of applications. The coefficient of thermal expansion is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of coefficient of thermal expansion (CTE) as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of thermal expansivity has been accomplished for Al 6061, silicon carbide (SiC) and Graphite (Gr) hybrid MMCs from room temperature to 300°C. Aluminum (Al)-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity of composites. Using the experimental values namely modulus of elasticity, Poisson's ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters namely thermal displacement, thermal strain and thermal stress.

  19. Thermal expansion compensator having an elastic conductive element bonded to two facing surfaces

    NASA Technical Reports Server (NTRS)

    Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)

    2012-01-01

    A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.

  20. Zero Thermal Expansion in a Nanostructured Inorganic-Organic Hybrid Crystal

    SciTech Connect

    Zhang, Y.; Parilla, P. A.; Ahrenkiel, S. P.; Mascarenhas, A.; Islam, Z.; Ren, Y.; Lee, P. L.; McNevin, M. J.; Naumov, I.; Fu, H.-X.; Huang, X.-Y.; Li, J.

    2007-11-23

    There are very few materials that exhibit zero thermal expansion (ZTE), and of these even fewer are appropriate for electronic and optoelectronic applications. We find that a multifunctional crystalline hybrid inorganic-organic semiconductor, {beta}-ZnTe(en){sub 0.5} (en denotes ethylenediamine), shows uniaxial ZTE in a very broad temperature range of 4-400 K, and concurrently possesses superior electronic and optical properties. The ZTE behavior is a result of compensation of contraction and expansion of different segments along the inorganic-organic stacking axis. This work suggests an alternative route to designing materials in a nanoscopic scale with ZTE or any desired positive or negative thermal expansion (PTE or NTE), which is supported by preliminary data for ZnTe(pda){sub 0.5} (pda denotes 1,3-propanediamine) with a larger molecule.

  1. Critical linear thermal expansion in the smectic- A phase near the nematic-smectic phase transition

    NASA Astrophysics Data System (ADS)

    Anesta, E.; Iannacchione, G. S.; Garland, C. W.

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient α‖ parallel to the director. Combining such data with available volume thermal expansion αV data yields the in-plane linear expansion coefficient α⊥ . The critical behaviors of α‖ and α⊥ are the same as those for αV and the heat capacity Cp . However, for any given liquid crystal, α‖(crit) and α⊥(crit) differ in sign. Furthermore, the quantity α‖(crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  2. Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2016-02-01

    Carbon nanotube (CNT) reinforced nanocrystalline aluminum matrix composites are fabricated by a simple and effective physical mixing method with sonication. In this study, the microstructural characterisations and property evaluations of the nanocomposites were performed. The structural characterisations revealed that CNTs were dispersed, embedded, and anchored within the metal matrix. A strong interfacial adhesion appeared between CNTs and nanocrystalline aluminum as a result of the fabrication process. Raman and Fourier transform infrared spectroscopic studies also confirmed the surface adherence of CNTs with nanocrystalline aluminum matrix during the fabrication process. Thermal expansion behaviour of CNT-reinforced aluminum matrix composites was investigated up to 240°C using a dilatometer. The coefficient of thermal expansion of the nanocomposites decreased continuously with the increasing content of CNTs. The maximum reduction of 82% was found for 4 wt% CNTs in the nanocomposite. The coefficient of thermal expansion variation with CNTs was also compared with the predictions from the thermoelastic models. The expansion behaviour of the nanocomposites was correlated to the microstructure, internal stresses, and phase segregations. The electrical and thermal conductivity was also studied and was observed to decrease for all reinforced CNT weight fractions.

  3. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.

    PubMed

    Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

    2014-06-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  4. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    PubMed Central

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  5. Thermal Expansion and Electrical Resistivity Studies of Nickel and ARMCO Iron at High Temperatures

    NASA Astrophysics Data System (ADS)

    Palchaev, D. K.; Murlieva, Zh. Kh.; Gadzhimagomedov, S. H.; Iskhakov, M. E.; Rabadanov, M. Kh.; Abdulagatov, I. M.

    2015-11-01

    The electrical resistance, ρ (T), and thermal expansion coefficient, β (T), of nickel and ARMCO iron have been simultaneously measured over a wide temperature range from (300 to 1100) K. The well-known standard four-probe potentiometric method was used for measurements of the electrical resistance. The thermal expansion coefficient was measured using the quartz dilatometer technique. Both techniques were combined in the same apparatus for simultaneous measurements of the electrical resistance and TEC for the same specimen. The combined expanded uncertainty of the electrical resistance and thermal expansion coefficient measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 0.5 % and (1.5 to 4.0) %, respectively. The distinct ρ (T) scattering contribution (phonon ρ _{ph}, magnetic ρ m, and residual ρ S) terms were separated and extracted from the measured total resistivity. The physical nature and details of the temperature dependence of the electrical resistance of solid materials and correct estimations of the contributions of various scattering mechanisms to the measured total resistivity were discussed in terms of the anharmonic effect. We experimentally found simple, universal, physically based, semiempirical linear correlations between the kinetic coefficient (electrical resistance) and a thermodynamic (equilibrium) property, the thermal expansion coefficient, of solid materials. The developed, physically based, correlation model has been successfully applied for nanoscale materials (ferromagnetic nickel nanowire). A new s-d-exchange interaction energy determination technique has been proposed.

  6. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  7. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour

    PubMed Central

    Zhou, Hao-Long; Zhang, Yue-Biao; Zhang, Jie-Peng; Chen, Xiao-Ming

    2015-01-01

    The dynamic behaviours of host frameworks and guest molecules have received much attention for their great relevance with smart materials, but little has been developed to control or understand the host–guest interplay. Here we show that the confined guest can utilize not only molecular static effects but also bulk dynamic properties to control the host dynamics. By virtue of the three-dimensional hinge-like framework and quasi-discrete ultramicropores, a flexible porous coordination polymer exhibits not only drastic guest-modulation effect of the thermal expansion magnitude (up to 422 × 10−6 K−1) and even the anisotropy but also records positive/negative thermal expansion coefficients of +482/−218 × 10−6 K−1. Moreover, single-crystal X-ray diffraction analyses demonstrate that the jack-like motion of the guest supramolecular dimers, being analogous to the anisotropic thermal expansion of bulk van der Waals solids, is crucial for changing the flexibility mode and thermal expansion behaviour of the crystal. PMID:25898347

  8. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    NASA Astrophysics Data System (ADS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  9. Thermal expansion of gallium arsenide layers grown by molecular beam epitaxy at low temperatures

    NASA Astrophysics Data System (ADS)

    Leszczynski, M.; Walker, J. F.

    1993-03-01

    The thermal expansion of low-temperature (190-220 °C) MBE grown gallium arsenide (LT GaAs) was measured using x-ray diffraction methods. The experiment was performed in order to observe the influence of high nonstoichiometric excess (about 1%) of arsenic on the thermal expansion of gallium arsenide. The diffraction measurements enabled the simultaneous monitoring of the lattice constants of the LT GaAs layers and their semi-insulating GaAs substrates. Their lattice mismatch was only slightly temperature dependent and decreased by about 5% with a temperature rise from 77 K (in dark) up to 550 K. This means that the value of the thermal expansion coefficient of as-grown LT GaAs was lower only by about 0.05×10-6 K-1 than that of the semi-insulating GaAs substrate. Reduction of arsenic excess by air annealing at 420 °C resulted in the decrease of lattice mismatch and the difference in the thermal expansion. This means that both are related to such point defects as arsenic antisites and interstitials. The experimental results are compared with the previously published data for variously doped gallium arsenide samples.

  10. Influence of silane treatment and filler fraction on thermal expansion of composite resins.

    PubMed

    Söderholm, K J

    1984-11-01

    The coefficient of thermal expansion of experimental composite materials containing either silane-treated or untreated fillers in a triethylene glycol dimethacrylate (TEGDMA) matrix was investigated. The results show that an inverse linear relationship existed between volume fraction filler and coefficient of thermal expansion. No differences were seen between silane-treated and untreated composites, while it was found that repeated heating (aging) caused the thermal expansion to decrease for all material combinations. Reduction in the coefficient of thermal expansion with increased filler fraction of unbonded filler indicates that the polymerization shrinkage of the matrix induces hoop stresses around the fillers. By use of a simplified theoretical model (Appendix), these stresses could be estimated. These estimates revealed that the induced stresses were remarkably high, and that increased filler fraction increased the tensile stress level surrounding the filler particles. Since these tensile stresses could facilitate crazing and crack growth in the matrix, these estimates may explain why filled resins containing low fractions of microfilled particles seem to possess remarkably good clinical wear resistance when compared with composites containing higher filler concentrations, at least during the first years in service. PMID:6389635

  11. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Long; Zhang, Yue-Biao; Zhang, Jie-Peng; Chen, Xiao-Ming

    2015-04-01

    The dynamic behaviours of host frameworks and guest molecules have received much attention for their great relevance with smart materials, but little has been developed to control or understand the host-guest interplay. Here we show that the confined guest can utilize not only molecular static effects but also bulk dynamic properties to control the host dynamics. By virtue of the three-dimensional hinge-like framework and quasi-discrete ultramicropores, a flexible porous coordination polymer exhibits not only drastic guest-modulation effect of the thermal expansion magnitude (up to 422 × 10-6 K-1) and even the anisotropy but also records positive/negative thermal expansion coefficients of +482/-218 × 10-6 K-1. Moreover, single-crystal X-ray diffraction analyses demonstrate that the jack-like motion of the guest supramolecular dimers, being analogous to the anisotropic thermal expansion of bulk van der Waals solids, is crucial for changing the flexibility mode and thermal expansion behaviour of the crystal.

  12. Structure and thermal expansion of the tungsten bronze Pb₂KNb₅O₁₅.

    PubMed

    Lin, Kun; Wu, Hui; Wang, Fangfang; Rong, Yangchun; Chen, Jun; Deng, Jinxia; Yu, Ranbo; Fang, Liang; Huang, Qingzhen; Xing, Xianran

    2014-05-21

    The structure and thermal expansion behavior of the tetragonal tungsten bronze oxide Pb2KNb5O15 were investigated by neutron powder diffraction and high-temperature X-ray diffraction. Below the Curie temperature, T(C) (orthorhombic phase, T(C) ≈ 460 °C), the cell parameters a and c increase with temperature, while b decreases. The thermal expansion coefficients are α(a) = 1.29 × 10(-5) °C(-1), α(b) = -1.56 × 10(-5) °C(-1), and α(c) = 1.62 × 10(-5) °C(-1). Temperature-dependent second harmonic generation (SHG), dielectric, and polarization-electrical field (P-E) hysteresis loop measurements were performed to study the symmetry and electric properties. We show that the distortion and cooperative rotation of NbO6 octahedrons are directly responsible for the negative thermal expansion coefficient along the polar b axis. It is suggested that Pb-O covalency, especially in the large and asymmetric pentagonal prisms, may be related to orthorhombic distortion and abnormal spontaneous polarization along the b axis. This study shows that tungsten bronze families are possible candidates for exploring negative thermal expansion materials. PMID:24622650

  13. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour.

    PubMed

    Zhou, Hao-Long; Zhang, Yue-Biao; Zhang, Jie-Peng; Chen, Xiao-Ming

    2015-01-01

    The dynamic behaviours of host frameworks and guest molecules have received much attention for their great relevance with smart materials, but little has been developed to control or understand the host-guest interplay. Here we show that the confined guest can utilize not only molecular static effects but also bulk dynamic properties to control the host dynamics. By virtue of the three-dimensional hinge-like framework and quasi-discrete ultramicropores, a flexible porous coordination polymer exhibits not only drastic guest-modulation effect of the thermal expansion magnitude (up to 422 × 10(-6) K(-1)) and even the anisotropy but also records positive/negative thermal expansion coefficients of +482/-218 × 10(-6) K(-1). Moreover, single-crystal X-ray diffraction analyses demonstrate that the jack-like motion of the guest supramolecular dimers, being analogous to the anisotropic thermal expansion of bulk van der Waals solids, is crucial for changing the flexibility mode and thermal expansion behaviour of the crystal. PMID:25898347

  14. Calculation of Thermal Expansion Coefficients of Pure Elements and their Alloys

    NASA Technical Reports Server (NTRS)

    Abel, Phillip; Bozzolo, Guillermo; Huff, Dennis (Technical Monitor)

    2002-01-01

    A simple algorithm for computing the coefficient of thermal expansion of pure elements and their alloys, based on features of the binding energy curve, is introduced. The BFS method for alloys is used to determine the binding energy curves of intermetallic alloys and Ni-base superalloys.

  15. Scaling relations in the equation of state, thermal expansion, and melting of metals

    NASA Technical Reports Server (NTRS)

    Guinea, F.; Rose, J. H.; Smith, J. R.; Ferrante, J.

    1984-01-01

    A simple and yet quite accurate prediction of volume as a function of pressure for metals and alloys is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions and results compare favorably with experiment for a broad range of metals. All of these predictions are made possible by the discovery of universality in binding energy relations for metals.

  16. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  17. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?

    PubMed

    Heit, Yonaton N; Beran, Gregory J O

    2016-08-01

    Molecular crystals expand appreciably upon heating due to both zero-point and thermal vibrational motion, yet this expansion is often neglected in molecular crystal modeling studies. Here, a quasi-harmonic approximation is coupled with fragment-based hybrid many-body interaction calculations to predict thermal expansion and finite-temperature thermochemical properties in crystalline carbon dioxide, ice Ih, acetic acid and imidazole. Fragment-based second-order Möller-Plesset perturbation theory (MP2) and coupled cluster theory with singles, doubles and perturbative triples [CCSD(T)] predict the thermal expansion and the temperature dependence of the enthalpies, entropies and Gibbs free energies of sublimation in good agreement with experiment. The errors introduced by neglecting thermal expansion in the enthalpy and entropy cancel somewhat in the Gibbs free energy. The resulting ∼ 1-2 kJ mol(-1) errors in the free energy near room temperature are comparable to or smaller than the errors expected from the electronic structure treatment, but they may be sufficiently large to affect free-energy rankings among energetically close polymorphs. PMID:27484373

  18. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  19. Waste Package Outer Barrier Stress Due to Thermal Expansion with Various Barrier Gap Sizes

    SciTech Connect

    M. M. Lewis

    2001-11-27

    The objective of this activity is to determine the tangential stresses of the outer shell, due to uneven thermal expansion of the inner and outer shells of the current waste package (WP) designs. Based on the results of the calculation ''Waste Package Barrier Stresses Due to Thermal Expansion'', CAL-EBS-ME-000008 (ref. 10), only tangential stresses are considered for this calculation. The tangential stresses are significantly larger than the radial stresses associated with thermal expansion, and at the WP outer surface the radial stresses are equal to zero. The scope of this activity is limited to determining the tangential stresses the waste package outer shell is subject to due to the interference fit, produced by having two different shell coefficients of thermal expansions. The inner shell has a greater coefficient of thermal expansion than the outer shell, producing a pressure between the two shells. This calculation is associated with Waste Package Project. The calculations are performed for the 21-PWR (pressurized water reactor), 44-BWR (boiling water reactor), 24-BWR, 12-PWR Long, 5 DHLW/DOE SNF - Short (defense high-level waste/Department of Energy spent nuclear fuel), 2-MCO/2-DHLW (multi-canister overpack), and Naval SNF Long WP designs. The information provided by the sketches attached to this calculation is that of the potential design for the types of WPs considered in this calculation. This calculation is performed in accordance with the ''Technical Work Plan for: Waste Package Design Description for SR (Ref.7). The calculation is documented, reviewed, and approved in accordance with AP-3.12Q, Calculations (Ref.1).

  20. Carbon-based torsional and tensile artificial muscles driven by thermal expansion (presentation video)

    NASA Astrophysics Data System (ADS)

    Haines, Carter S.; Lima, Márcio D.; Li, Na; Spinks, Geoffrey M.; Foroughi, Javad; Madden, John D. W.; Kim, Shi-Hyeong; Fang, Shaoli; Jung de Andrade, Monica; Göktepe, Fatma; Göktepe, Ozer; Mirvakili, Seyed M.; Naficy, Sina; Lepró, Xavier; Oh, Jiyoung; Kozlov, Mikhail E.; Kim, Seon Jeong; Xu, Xiuru; Swedlove, Benjamin J.; Wallace, Gordon G.; Baughman, Ray H.

    2014-03-01

    High-performance artificial muscles have been produced from fibers having highly anisotropic thermal expansion. Inserting twist into these precursor fibers enables thermally-driven torsional actuation and can cause the formation of helical coils. Such coiled structures provide giant-stroke tensile actuation exceeding the 20% in-vivo contraction of natural muscles. This contraction is highly reversible, with over one million cycles demonstrated, and can occur without the hysteresis that plagues competing shape-memory and piezoelectric muscles. Several materials and composites are investigated, including low-cost, commercially-available muscle precursors, potentially facilitating thermally-responsive textiles that change porosity to provide wearer comfort.

  1. EUVL printing results of a low-thermal expansion material (LTEM) mask

    NASA Astrophysics Data System (ADS)

    Tong, William M.; Taylor, John S.; Hector, Scott D.; Shell, Melissa K.; Zhang, Guojing; Kearney, Patrick A.; Walton, Christopher C.; Larson, Cindy C.; Wasson, James R.; Mangat, Pawitter J. S.; O'Connell, Donna J.; Folk, Daniel R.

    2000-07-01

    Minimizing image placement errors due to thermal distortion of the mask is a key requirement for qualifying EUV Lithography as a Next Generation Lithography (NGL). Employing Low Thermal Expansion Materials (LTEMs) for mask substrates is a viable solution for controlling mask thermal distortion and is being investigated by a wide array of researchers, tool makers, photomask suppliers, and material manufacturers. Finite element modeling has shown that an EUVL mask with a Coefficient of Thermal Expansion (CTE) of less than 20 ppb/K will meet overlay error budgets for Thermal Expansion Material (LTEM) EUVL masks by fabricating a wafer-shaped LTEM mask substrate using the same manufacturing steps as for fabricating Si wafers. The LTEM substrate was then coated with Mo/Si multilayers, patterned, and printed using the 10X Microstepper. The images were essentially indistinguishable from those images acquired from masks fabricated from high quality silicon wafers as substrates. Our observations lend further evidence that an LTEM can be used as the EUVL mask substrate material.

  2. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    SciTech Connect

    Song, T.; Ma, Q.; Tian, J.H.; Liu, X.B.; Ouyang, Y.H.; Zhang, C.L.; Su, W.F.

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  3. Magnetization reversal and negative volume thermal expansion in Fe doped Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Qi, T. F.; Yuan, S. J.; Ye, F.; Chi, S.; Terzic, J.; Zhang, H.; Zhao, Z.; Liu, X.; Parkin, S.; Mao, W. L.; Cao, G.

    We report structural, magnetic, transport and thermal properties of single-crystal Ca2Ru1-xFexO4 (0 <= x <= 0.2) as functions of pressure, magnetic field and temperature. The central findings of this work are a pronounced magnetization reversal and a negative thermal expansion that are induced by Fe doping. Our results including neutron diffraction data suggest that the magnetization reversal is primarily a result of different temperature dependences of two antiparallel, competing Ru and Fe sublattices and that the negative thermal expansion is achieved via magnetic and metal-insulator transitions. We will present and discuss our results with comparison drawn with relevant systems. This work was supported by the NSF via Grant No. DMR-1265162.

  4. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2015-03-01

    Thermal expansion measurements were conducted on hot-pressed CrSi2, TiSi2, WSi2 and a two-phase Cr-Mo-Si intermetallic alloy between 303 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (Δ L/ L 0)thermal, varied with the absolute temperature, T, as where, A, B, C, and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from first heat-up cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  5. Degradation Of Environmental Barrier Coatings (EBC) Due To Chemical and Thermal Expansion Incompatibility

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; King, Deboran (Technical Monitor)

    2001-01-01

    Current environmental barrier coatings (EBCs) consist of multiple layers, with each layer having unique properties to meet the various requirements for successful EBCs. As a result, chemical and thermal expansion compatibility between layers becomes an important issue to maintaining durability. Key constituents in current EBCs are mullite (3Al2O3-2SiO2), BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2), and YSZ (ZrO2-8 wt.% Y2O3). The mullite-BSAS combination appears benign although significant diffusion occurs. Mullite-YSZ and BSAS-YSZ combinations do not react up to 1500 C. Thermally grown SiO2- BSAS and mullite-BSAS-YSZ combinations are most detrimental, forming low melting glasses. Thermal expansion mismatch between YSZ and mullite or BSAS causes severe cracking and delamination.

  6. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.

    PubMed

    Li, Wen; Huang, Rongjin; Wang, Wei; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-02-28

    The cubic NaZn13-type La(Fe,Al)13 compounds were synthesized, and their linear thermal expansion properties were investigated in the temperature range of 4.2-300 K. It was found that these compounds exhibit abnormal thermal expansion behavior, i.e., pronounced negative thermal expansion (NTE) or zero thermal expansion (ZTE) behavior, below the Curie temperature due to the magnetovolume effect (MVE). Moreover, in the La(Fe,Al)13 compounds, the modification of the coefficient of thermal expansion (CTE) as well as the abnormal thermal expansion (ATE) temperature-window is achieved through optimizing the proportion of Fe and Al. Typically, the average CTE of the LaFe13-xAlx compounds with x = 1.8 reaches as large as -10.47 × 10(-6) K(-1) between 100 and 225 K (ΔT = 125 K). Also, the ZTE temperature-window of the LaFe13-xAlx compounds with x = 2.5 and x = 2.7 could be broadened to 245 K (from 5 to 250 K). Besides, the magnetic properties of these compounds were measured and correlated with the abnormal thermal expansion behavior. The present results highlight the potential application of such La(Fe,Al)13 compounds with abnormal thermal expansion properties in cryogenic engineering. PMID:25642468

  7. Thermal expansion and self-irradiation damage in curium nitride lattice

    NASA Astrophysics Data System (ADS)

    Takano, Masahide; Hayashi, Hirokazu; Minato, Kazuo

    2014-05-01

    A powder sample of curium nitride (CmN) containing 0.35%-Pu and 3.59%-Am as actinide impurities was prepared by carbothermic nitridation of the oxide. The lattice expansion induced by self-irradiation damage at room temperature was measured as a function of time. The saturated Δa/ao value was 0.43%, which is greater than those for transuranium dioxides available in literature. The undamaged lattice parameter at 297 ± 1 K was determined to be 0.50261 ± 0.00006 nm. Temperature dependence of the lattice parameter was measured by a high temperature X-ray diffractometer in the temperature range up to 1375 K. The linear thermal expansion from 293 to 1273 K was 0.964% and the corresponding thermal expansion coefficient was 9.84 × 10-6 K-1. Comparing with the other actinide nitrides, it was found that CmN lies between the higher expansion nitrides (PuN and AmN) and the lower expansion nitrides (UN and NpN).

  8. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals

    PubMed Central

    Panda, Manas K.; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-01-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10−6 K−1, αb = 238.8 × 10−6 K−1 and αc = −290.0 × 10−6 K−1, the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously. PMID:27403616

  9. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions.

    PubMed

    Shaina, P R; George, Lijin; Yadav, Vani; Jaiswal, Manu

    2016-03-01

    The temperature-dependent thermal expansion coefficient of graphene is estimated for as-grown chemical vapor deposited graphene using temperature-dependent Raman spectroscopy. For as-grown graphene on copper, the extent of thermal expansion mismatch between substrate and the graphene layer is significant across the entire measured temperature interval, T  =  90-300 K. This mismatch induces lattice strain in graphene. However, graphene grown on copper substrates has a unique morphology in the form of quasi-periodic nanoripples. This crucially influences the profile of the strain in the graphene membrane, which is uniaxial. An estimate of the thermal expansion coefficient of grapheme α(T) is obtained after consideration of this strain profile and after incorporating temperature-dependent Grüneisen parameter corrections. The value of α(T), is found to be negative (average value, -3.75  ×  10(-6) K(-1)) for the entire temperature range and it approaches close to zero for T  <  150 K. For graphene wet-transferred to three kinds of substrates: copper, poly-dimethylsiloxane, and SiO2/Si, the Raman shifts can largely be modeled with lattice expansion and anharmonic contributions, and the data suggests limited interfacial interaction with the substrate. PMID:26823443

  10. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions

    NASA Astrophysics Data System (ADS)

    Shaina, P. R.; George, Lijin; Yadav, Vani; Jaiswal, Manu

    2016-03-01

    The temperature-dependent thermal expansion coefficient of graphene is estimated for as-grown chemical vapor deposited graphene using temperature-dependent Raman spectroscopy. For as-grown graphene on copper, the extent of thermal expansion mismatch between substrate and the graphene layer is significant across the entire measured temperature interval, T  =  90-300 K. This mismatch induces lattice strain in graphene. However, graphene grown on copper substrates has a unique morphology in the form of quasi-periodic nanoripples. This crucially influences the profile of the strain in the graphene membrane, which is uniaxial. An estimate of the thermal expansion coefficient of graphene α (T) is obtained after consideration of this strain profile and after incorporating temperature-dependent Grüneisen parameter corrections. The value of α (T) , is found to be negative (average value, -3.75  ×  10-6 K-1) for the entire temperature range and it approaches close to zero for T  <  150 K. For graphene wet-transferred to three kinds of substrates: copper, poly-dimethylsiloxane, and SiO2/Si, the Raman shifts can largely be modeled with lattice expansion and anharmonic contributions, and the data suggests limited interfacial interaction with the substrate.

  11. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals.

    PubMed

    Panda, Manas K; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-01-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10(-6) K(-1), αb = 238.8 × 10(-6) K(-1) and αc = -290.0 × 10(-6) K(-1), the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously. PMID:27403616

  12. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Panda, Manas K.; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-07-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10‑6 K‑1, αb = 238.8 × 10‑6 K‑1 and αc = ‑290.0 × 10‑6 K‑1, the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously.

  13. Thermal expansion in 3d-metal Prussian Blue Analogs-A survey study

    SciTech Connect

    Adak, Sourav; Daemen, Luke L.; Hartl, Monika; Williams, Darrick; Summerhill, Jennifer; Nakotte, Heinz

    2011-11-15

    We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions M{sup II}{sub 3}[(M'){sup III}(CN){sub 6}]{sub 2}.nH{sub 2}O and M{sup II}{sub 2}[Fe{sup II}(CN){sub 6}].nH{sub 2}O, where M{sup II}=Mn, Fe, Co, Ni, Cu and Zn, (M'){sup III}=Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between -150 deg. C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm3-bar m, F4-bar 3m and Pm3-bar m. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7x{sup 1}0{sup -6} K{sup -1} for Co{sub 3}[Co(CN){sub 6}]{sub 2}.12H{sub 2}O. All of the M{sup II}{sub 3}[Co{sup III}(CN){sub 6}]{sub 2}.nH{sub 2}O compounds show negative thermal expansion behavior, which correlates with the Irving-Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the M{sup II}{sub 3}[Fe{sup III}(CN){sub 6}]{sub 2}.nH{sub 2}O family are found to switch between positive (for M=Mn, Co, Ni) and negative (M=Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the M{sup II}{sub 2}[Fe{sup II}(CN){sub 6}].nH{sub 2}O compounds show positive thermal expansion behavior. - Graphical Abstract: The structure of Prussian Blue analogs (PBAs) consists of two types of metal centered octahedral units connected by cyanide ligand. Lattice and interstitial water molecules are present in these framework structures. All the PBAs of the M{sub 3

  14. Effect of irradiation on thermal expansion of SiC{sub f}/SiC composites

    SciTech Connect

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC{sub f}/SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) {beta}-SiC at all temperatures.

  15. Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide

    NASA Astrophysics Data System (ADS)

    Gan, Chee Kwan; Soh, Jian Rui; Liu, Yun

    2015-12-01

    We derive a compact matrix expression for the linear thermal expansion coefficients (TECs) for a general orthorhombic system which relates elastic properties and integrated quantities based on deformation and mode dependent Grüneisen parameters and mode dependent heat capacities. The density of Grüneisen parameters Γ (ν ) as a function of frequency ν , weighted by the number of phonon modes, is introduced and found to be illuminating in interpreting the TEC results. Using density functional perturbation theory and Grüneisen formalism for thermal expansion, we illustrate the general usefulness of this method by calculating the linear and volumetric TECs of a low-symmetry orthorhombic compound antimony sulfide (Sb2S3 ), which belongs to a large class of technologically and fundamentally important materials. Even though negative Grüneisen parameters are found for deformations in all three crystal directions, the Γ (ν ) data rule out the occurrences of negative TECs at all temperatures. Sb2S3 exhibits a large thermal expansion anisotropy where the TEC in the b direction can reach as high as 13 ×10-6 K-1 at high temperatures, about two and seven times larger than the TECs in the c and a direction, respectively. Our work suggests a general and practical first-principles approach to calculate the thermal properties of other complicated low-symmetry systems.

  16. Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry–Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2016-07-01

    Application of the Fabry–Perot (FP) interference method for determining the coefficient of thermal expansion (CTE) of a graphene diaphragm is investigated in this paper. A miniature extrinsic FP interferometric (EFPI) sensor was fabricated by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μm, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse FP interferometer with a cavity length of 36.13 μm. Double reference FP cavities using two cleaved optical fibers as reflectors were also constructed to differentially cancel the thermal expansion effects of the trapped gas and adhesive material. A temperature test demonstrated an approximate cavity length change of 166.1 nm °C‑1 caused by film thermal expansion in the range of 20–60 °C. Then along with the established thermal deformation model of the suspended circular diaphragm, the calculated CTE ranging from  ‑9.98  ×  10‑6 K‑1 to  ‑2.09  ×  10‑6 K‑1 conformed well to the previously measured results. The proposed method would be applicable in other types of elastic materials as the sensitive diaphragm of an EFPI sensor over a wide temperature range.

  17. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    DOE PAGESBeta

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the summore » of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less

  18. Thermal expansion and structural complexity of Ba silicates with tetrahedrally coordinated Si atoms

    NASA Astrophysics Data System (ADS)

    Gorelova, Liudmila A.; Bubnova, Rimma S.; Krivovichev, Sergey V.; Krzhizhanovskaya, Maria G.; Filatov, Stanislav K.

    2016-03-01

    Thermal expansion of Ba silicates with tetrahedrally coordinated Si atoms in the temperature range of 25-1100 °C had been studied by high-temperature X-ray powder diffraction. The volume thermal expansion coefficients (TECs) are in the range 41-50×10-6 °C-1 with an average value of <αV > = 45 ×10-6 °C-1. In the structures with chain and layered silicate anions, thermal expansion is anisotropic: the direction of maximal TEC is parallel to the extension of the zweier chains of silicate tetrahedra, which are strained owing to the interactions with Ba2+. The strain is released during thermal expansion due to the increasing effective size of Ba2+ induced by thermal vibrations. Information-theoretic analysis of the structural and topological complexities of Ba silicates indicates that their structural complexity is a function of the topological complexity of their silicate anions. The latter displays a non-linear behaviour with increasing SiO2 content (=the increasing degree of polymerization and increasing dimensionality): it starts from simple topologies, reaches a maximum at topologies of intermediate complexity, and ends up at simple topologies again. The specificity of the interactions of Ba2+ with the silicate anions results in higher complexity of high-temperature α-BaSi2O5 compared to that of low-temperature β-BaSi2O5. This uncommon behaviour may be explained by the vibrational advantages provided by flatter and more complex silicate layers in the α-phase, which overcome negative differences in configurational entropies of the two modifications apparent in the differences of their structural Shannon information.

  19. Effect of local stress induced by thermal expansion of underfill in three-dimensional stacked IC

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Hashiguchi, Hideto; Tanikawa, Seiya; Sugawara, Youhei; Ikegaya, Shunsuke; Fukushima, Takafumi; Koyanagi, Mitsumasa; Tanaka, Tetsu

    2016-04-01

    A three-dimensional stacked IC (3D IC) is a one of the promising structures for enhancing IC performances. A 3D IC consists of several materials such as a Si substrate, metal for through Si via (TSV) and microbump, organic adhesive called the underfill, and so on. These materials generate a coefficient of thermal expansion (CTE) mismatch. On the other hand, heat is generated in the Si substrate during circuit operation and in the environment outside 3D IC, for example. Both the CTE mismatch and heat generation induce local stress caused by expansion of the underfill injected around metal microbumps. In this paper, we report our investigation results of the effects of adhesive expansion on transistor performances by finite element method (FEM) simulation and measurement of transistor characteristics.

  20. Mechanism of negative thermal expansion in LaC2 from first-principles prediction

    NASA Astrophysics Data System (ADS)

    Liu, Yaming; Jia, Yu; Sun, Qiang; Liang, Erjun

    2015-01-01

    Based on density functional theory and quasiharmonic approximation, the coefficients of thermal expansion (CTE) and negative thermal expansion (NTE) mechanism of tetragonal LaC2 are studied. Numerical results show that there is an obvious NTE parallel to c-axis, and the CTE is approximately αc = - 1.67 ×10-6K-1, which coincides with the experimental data - 1.0 ×10-6K-1. In particular, a tiny NTE phenomenon along a-axis below 10 K has been predicted. The vibrational modes Eu and Eg at Γ (0 , 0 , 0), and other three modes at M (0.5 , 0.5 , 0) and Z (0 , 0 , 0.5), give rise to negative Grüneisen parameters and therefore contribute to the NTE along a- and c-axis. Additionally, the bulk CTE was calculated to be positive, our CTE values and temperature intervals agree well with the presented experiments.

  1. State-of-the-art cryogenic CTE measurements of ultra-low thermal expansion materials

    NASA Astrophysics Data System (ADS)

    Middelmann, Thomas; Walkov, Alexander; Schödel, René

    2015-09-01

    The accurate characterization of material properties as thermal expansion, temporal length drift and relaxation is essential for semiconductor industry or for aerospace applications. PTB's absolute length measuring Ultra Precision Interferometer enables investigation of these properties with high accuracy in the temperature range from 7 K to about 300 K. The Coefficient of Thermal Expansion (CTE) can be measured with uncertainties mainly below 3 × 10-9/K. In this paper we give an overview about the latest state of our experimental setup and evaluation methods. Recent measurement results on silicon carbide ceramics (SiC-100, HB-Cesic), silicon nitride ceramics (SN-PG and SN-Pu) and single crystal silicon (SCS), the latter being the reference material of choice in this regime, are presented.

  2. Volume thermal expansivity for lower mantle region of earth under adiabatic condition

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.

    2013-06-01

    A reciprocal equation for the volume dependence of Anderson-Grüneisen parameter has been proposed. This equation has been found to fit the seismic data for the lower mantle region of the Earth. We have developed a new expression for predicting the values of density (volume) dependence of volume thermal expansivity under adiabatic conditions based on the reciprocal equation for the volume dependence of Anderson-Grüneisen parameter. It is found that our relationship fits well the seismic data on volume thermal expansivity for lower mantle corresponding to a wide range of pressures (0-135.75 GPa). These equations thus proposed are found to be consistent with the thermodynamic constraints.

  3. Zero thermal expansion in a flexible, stable framework : tetramethylammonium copper(I) zinc(II) cyanide.

    SciTech Connect

    Phillips, A. E.; Halder, G. J.; Chapman, K. W.; Goodwin, A. L.; Kepert, C. J.; Univ. Sydney; Univ. Cambridge

    2010-01-13

    Tetramethylammonium copper(I) zinc(II) cyanide, which consists of N(CH{sub 3}){sub 4}{sup +} ions trapped within a cristobalite-like metal cyanide framework, has been studied by variable-temperature powder and single-crystal X-ray diffraction. Its coefficient of thermal expansion is approximately zero over the temperature range 200-400 K and comparable with the best commercial zero thermal expansion materials. The atomic displacement parameters, apparent bond lengths, and structure of a low-temperature, low-symmetry phase reveal that the low-energy vibrational modes responsible for this behavior maintain approximately rigid Zn coordination tetrahedra but involve significant distortion of their Cu counterparts.

  4. Magnetic phase transitions in heavy-fermion compounds studied by thermal-expansion measurements

    NASA Astrophysics Data System (ADS)

    de Visser, A.; Lacerda, A.; Franse, J. J. M.; Flouquet, J.

    1990-12-01

    On alloying the heavy-fermion compounds CeRu 2Si 2 and UPt 3 with small amounts of La and Pd, respectively, long-range antiferromagnetic order develops with Néel temperatures in the order of a few kelvin. In order to study the volume effects that are involved with the evolution into the long-range ordered state, we have performed thermal-expansion measurements on the pure and doped systems. The results are compared with data on antiferromagnetic URu 2Si 2. Subsequently, we discuss thermal-expansion measurements in high-magnetic fields, in particular on CeRu 2Si 2, where a metamagnetic-like transition occurs as the intersite-correlations collapse in a field of 7.8 T. Most of the measurements have been performed on single-crystalline samples, revealing a pronounced anisotropy.

  5. Very low thermally induced tip expansion by vacuum ultraviolet irradiation in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Riedel, D.; Delacour, C.; Mayne, A. J.; Dujardin, G.

    2009-10-01

    The thermal and photoelectronic processes induced when a vacuum ultraviolet (VUV) laser irradiates the junction of a scanning tunneling microscope (STM) are studied. This is performed by synchronizing the VUV laser shots with the STM scan signal. Compared to other wavelengths, the photoinduced thermal STM-tip expansion is not observed when the VUV radiation is freed from spurious emissions. Furthermore, we demonstrate that the purified VUV photoinduced transient signal detected in the tunnel current is entirely due to photoelectronic emission and not combined with thermionic processes. The ensuing photoelectron emission is shown to be independent of the tip-surface distance while varying linearly with the pure VUV laser intensity. These results illustrate a strong decoupling between phonons and photoelectrons which allows a very weak STM-tip expansion.

  6. Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Maniwa, Yutaka; Fujiwara, Ryuji; Kira, Hiroshi; Tou, Hideki; Kataura, Hiromichi; Suzuki, Shinzo; Achiba, Yohji; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Fujiwara, Akihiko; Suematsu, Hiroyoshi

    2001-12-01

    Thermal expansion coefficient in single-walled carbon nanotube bundles was determined as (-0.15+/-0.20)×10-5 (1/K) for the tube diameter and (0.75+/-0.25)×10-5 (1/K) for the triangular lattice constant by means of x-ray scattering between 300 K to 950 K. The value for the intertube gap was (4.2+/-1.4)×10-5 (1/K), which is larger than 2.6×10-5 (1/K) for the c-axis thermal expansion in graphite. The results reveal the presence of a remarkably larger lattice anharmonicity in nanotube bundles than that of graphite. The small value for the tube diameter is consistent with the seamless tube structure formed by a strong covalent bond between carbon atoms comparable to that in graphite.

  7. Measurement of the thermal expansion of melt-textured YBCO using optical fibre grating sensors

    NASA Astrophysics Data System (ADS)

    Zeisberger, M.; Latka, I.; Ecke, W.; Habisreuther, T.; Litzkendorf, D.; Gawalek, W.

    2005-02-01

    In this paper we present measurements of the thermal expansion of melt-textured YBaCuO in the temperature range 30-300 K by means of optical fibre sensors. The sample, which had a size of 38 × 38 × 18 mm3, was prepared by our standard melt-texturing process using SmBaCuO seeds. One fibre containing three Bragg gratings which act as strain sensors was glued to the sample surface with two sensors parallel to the ab-plane and one sensor parallel to the c-axis. The sample was cooled down to a minimum temperature of 30 K in a vacuum chamber using a closed cycle refrigerator. In the temperature range we used, the thermal expansion coefficients are in the range of (3-9) × 10-6 K-1 (ab-direction) and (5-13) × 10-6 K-1 (c-direction).

  8. Buckling Behavior of Long Anisotropic Plates Subjected to Elastically Restrained Thermal Expansion and Contraction

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2004-01-01

    An approach for synthesizing buckling results for thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexural anisotropic plates that are subjected to combined mechanical loads. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. Many results are presented for some common laminates that are intended to facilitate a structural designer s transition to the use of the generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of the generic design curves.

  9. Thermal expansion of CaFe2As2: effect of annealing and cobalt doping

    NASA Astrophysics Data System (ADS)

    Bud'Ko, Sergey L.; Ran, Sheng; Canfield, Paul C.

    2013-03-01

    Careful choice of Co concentration and annealing/quenching temperature in the Ca(Fe1-xCox)2As2 series allows for tuning the ground state of the from orthorhombic-antiferromagnetic to superconducting to collapsed tetragonal.In this talk temperature-dependent, c-axis, thermal expansion measurements on several sets of Co-doped CaFe2As2 single crystals that were subjected to a variety of annealing conditions will be presented. These samples were chosen to cover all salient regions of the 3D x -Tanneal - T phase diagram. The thermal expansion signatures of different types of phase transitions observed in these series will be discussed and comparison with the other measurements will be made. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract No. DE-AC02-07CH11358.

  10. Size and Temperature Effect on Thermal Expansion Coefficient and Lattice Parameter of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Kumar, Raghuvesh; Sharma, Geeta; Kumar, Munish

    2013-10-01

    A simple theoretical model is developed to study the effect of size and temperature on the coefficient of thermal expansion and lattice parameter of nanomaterials. We have studied the size dependence of thermal expansion coefficient of Pb, Ag and Zn in different shape viz. spherical, nanowire and nanofilm. A good agreement between theory and available experimental data confirmed the model predictions. We have used these results to study the temperature dependence of lattice parameter for different size and also included the results of bulk materials. The temperature dependence of lattice parameter of Zn nanowire and Ag nanowire are found to present a good agreement with the experimental data. We have also computed the temperature and size dependence of lattice parameter of Se and Pb for different shape viz. spherical, nanowire and nanofilm. The results are discussed in the light of recent research on nanomaterials.

  11. Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Lakes, R. S.

    2001-12-01

    Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have higher thermal expansion than that of either constituent and exceeding conventional bounds. It is also shown theoretically that other extreme linear coupled field properties including piezoelectricity and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the composite as a whole. A block of negative stiffness material is unstable, but negative stiffness inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are required in the present analysis.

  12. Negative thermal expansion in Th{sub 2}O(PO{sub 4}){sub 2}

    SciTech Connect

    Wallez, Gilles; Clavier, Nicolas; Dacheux, Nicolas

    2011-11-15

    Highlights: {yields} Dithorium oxide phosphate shows a continuous negative thermal expansion over a 600 {sup o}C range. {yields} Negative expansion arises from oxygen rocking and cations repulsions. {yields} Big and high-charge thorium IV appears ideal for generating negative expansion. -- Abstract: High temperature X ray diffraction performed on recently discovered orthorhombic Th{sub 2}O(PO{sub 4}){sub 2} shows a continuous linear thermal contraction (-1.6 x 10{sup -6} {sup o}C{sup -1}) in 20-600 {sup o}C range and a near-zero expansion at higher temperatures resulting from a dual structural deformation involving oxygen oscillations and inter-cations repulsions. Although similar mechanisms were observed in isotypic Zr{sub 2}O(PO{sub 4}){sub 2} (+1.5 x 10{sup -6} {sup o}C{sup -1}) and U{sub 2}O(PO{sub 4}){sub 2} (-1.4 x 10{sup -6} {sup o}C{sup -1}), those observed in Th{sub 2}O(PO{sub 4}){sub 2} are particularly intense because of the high ionic radius of tetravalent thorium.

  13. Heat capacity and thermal expansion of icosahedral lutetium boride LuB66

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Matovnikov, A V; Mitroshenkov, N V; Bud’ko, S L

    2014-01-07

    The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2-300 K were analysed in the Debye-Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.

  14. Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhang, Q. M.; Liu, Q.; Zhang, Z. Y.; Ding, Y. Y.; Zhou, L.; Cao, J.

    2015-05-01

    We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed.

  15. History-dependent thermal expansion in NbO{sub 2}F

    SciTech Connect

    Wilkinson, Angus P.; Josefsberg, Ryan E.; Gallington, Leighanne C.; Morelock, Cody R.; Monaco, Christopher M.

    2014-05-01

    Materials with cubic ReO{sub 3}-type structures are of interest for their low or negative thermal expansion characteristics. TaO{sub 2}F is known to display almost zero thermal expansion over a wide temperature range. On heating NbO{sub 2}F, its volume coefficient of thermal expansion decreases from ∼+45 ppm K{sup −1} at 100 K to almost zero at 400 K. NbO{sub 2}F is cubic between 100 and 500 K. Samples of “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying contain hydroxyl defects and metal vacancies. On heating, they can undergo irreversible chemical changes while maintaining a cubic ReO{sub 3}-type structure. The possibility of hydroxyl defect incorporation should be considered when preparing oxyfluorides for evaluation as battery materials. - Graphical abstract: “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in HF contains cation vacancies and hydroxyl groups. It undergoes irreversible changes on heating to low temperatures, unlike NbO{sub 2}F prepared by the solid state reaction of Nb{sub 2}O{sub 5} and NbF{sub 5}. - Highlights: • The digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying does not produce NbO{sub 2}F. • The ReO{sub 3}-type product from the HF digestion of Nb{sub 2}O{sub 5} contains metal vacancies and hydroxyl. • The thermal expansion coefficient of NbO{sub 2}F decreases on heating and approaches zero at ∼400 K.

  16. Measurement of the thermal expansion coefficient of Guadua angustifolia-Kunth using the photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Bedoya, A.; Gordillo Delgado, F.; Marin, E.

    2016-02-01

    In this paper, the Linear Thermal Expansion Coefficient of Guadua angustifolia- Kunth samples was measured using the Photoacoustic (PA) technique in a heat transmission configuration and considering the thermoelastic bending as a PA signal generation mechanism in addition to the thermodiffusion ones. The obtained value of (27±7)x10-6K-1 is a reasonable value compared with that reported for similar materials such as wood.

  17. Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.

    PubMed

    Zhao, Peng; Zhao, Ji-Cheng; Weaver, Richard

    2013-05-01

    The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement. PMID:23654371

  18. Sound velocity of high-strength polymer with negative thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Ueno, M.; Okuda, Y.; Burmistrov, S.; Yamanaka, A.

    2003-05-01

    Sound velocities of fiber reinforced plastics (FRPs) were measured along the fiber axis at temperatures between 360 and 77 K. We used two kinds of the high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which have negative thermal expansion coefficients. They also have high thermal conductivities and high resistances for flash over voltage, and are expected as new materials for coil bobbins or spacers at cryogenic temperatures. They have very large sound velocities of about 9000 (m/s) at 77 K, which are 4.5 times larger than that of the ordinary polyethylene fiber.

  19. Thermal Expansion, Specific Heat and Magnetostriction Measurements on R-Copper

    NASA Astrophysics Data System (ADS)

    Chien, Teh-Shih

    The RCu (R = Gd, Tb, Dy and Ho) and R _2In (R = Gd and Tb) alloys have been systematically studied by thermal expansion, specific heat and magnetostriction measurements in order to investigate their magnetic and physical behaviors. GdCu and TbCu alloys undergo martensitic transformations at high and low temperatures. The Neel temperature of the GdCu alloy is 141.3 K from thermal expansion measurements. The Neel temperature T_{rm N} and martensitic transformation temperature M _{rm s} are 113.6 K and 116 K, respectively, for TbCu alloy. This is the first study to distinguish T_{rm N} from M_{rm s} using thermal expansion and specific heat measurements as well as a large thermal hysteresis. Both GdCu and TbCu alloys have a first-order structural transformation and a second-order magnetic phase transition. DyCu alloy has T_{rm N} = 60.5 K. The magnetic specific heat, C_{ rm m}, is a function of T^3 which obeys spin wave theory. HoCu alloy has T _{rm N} = 26 K and a spin reorientation at 14.1 K. YCu alloy has a Debye temperature of 230 K and C_{rm e} = 0.002T J/moleK. The Debye temperature is 160 K for all RCu alloys except for the DyCu alloy which has theta = 150 K. Gd_2In alloy has T _{rm N} = 97 K and T _{rm c} = 190.3 K which are associated with the antiferromagnetic and ferromagnetic transitions, respectively, from thermal expansion and magnetostriction measurements. Gd_2In alloy is a metamagnet with a critical magnetic field H = 8 kOe. Volume magnetostriction, omega_{rm V} is a function of H^{2 over3} in the ferromagnetic state. omega_{rm v} is a function of H^2, as expected, in the antiferromagnetic and paramagnetic states. The Curie temperature is 167.5 K for Tb_2In, as given by the thermal expansion and specific heat measurements. omega_{rm v} is a function of H in the ferromagnetic state. omega_{rm v} is a function of H^2, as expected, in the paramagnetic state.

  20. Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2003-01-01

    An approach for synthesizing buckling results and behavior for thin, balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and which are fully-restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived and used to determine critical temperature changes in terms of physically intuitive mechanical buckling coefficients. The effects of membrane orthotropy and anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into buckling response and provide useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general, unifying manner.

  1. First-principles study on negative thermal expansion of PbTiO3

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Xie, Ying; Chen, Jun; Fu, Honggang; Xing, Xianran

    2013-11-01

    It is well known that perovskite-type PbTiO3 behaves negative thermal expansion in a wide temperature range from room temperature to Curie temperature (763 K). The present study reports the first-principles study of the anisotropic thermal expansion of PbTiO3, in the framework of the density-functional theory and the density-functional perturbation theory. The curve of temperature dependence of the unit cell volume is presented from 20 to 520 K through the calculation of the minimum of total free energy at each temperature point. The negative thermal expansion of PbTiO3 is calculated without empirical parameters. Furthermore, the distinctive thermodynamic act of PbTiO3 from expanding to contracting at tetragonal phase is reproduced. The ab-initio calculations reveal that this unique appearance depends on the phonon vibration. The dynamical contributions of various atoms are also calculated to account for the disparate role of Pb-O and Ti-O bond.

  2. First-principles study on negative thermal expansion of PbTiO{sub 3}

    SciTech Connect

    Wang, Fangfang; Chen, Jun; Xing, Xianran; Xie, Ying; Fu, Honggang

    2013-11-25

    It is well known that perovskite-type PbTiO{sub 3} behaves negative thermal expansion in a wide temperature range from room temperature to Curie temperature (763 K). The present study reports the first-principles study of the anisotropic thermal expansion of PbTiO{sub 3}, in the framework of the density-functional theory and the density-functional perturbation theory. The curve of temperature dependence of the unit cell volume is presented from 20 to 520 K through the calculation of the minimum of total free energy at each temperature point. The negative thermal expansion of PbTiO{sub 3} is calculated without empirical parameters. Furthermore, the distinctive thermodynamic act of PbTiO{sub 3} from expanding to contracting at tetragonal phase is reproduced. The ab-initio calculations reveal that this unique appearance depends on the phonon vibration. The dynamical contributions of various atoms are also calculated to account for the disparate role of Pb-O and Ti-O bond.

  3. Modeling of the thermal expansion behaviour of ZERODUR at arbitrary temperature profiles

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Johansson, Thoralf; Westerhoff, Thomas

    2010-07-01

    Modeling of the thermal expansion behavior of ZERODUR® for the site conditions of the upcoming Extremely Large Telescope's (ELT's) allows an optimized material selection to yield the best performing ZERODUR® for the mirror substrates. The thermal expansion of glass ceramics is a function of temperature and a function of time, due to the structural relaxation behavior of the materials. The application temperature range of the upcoming ELT projects varies depending on the possible construction site between -13°C and +27°C. Typical temperature change rates during the night are in the range between 0.1°C/h and 0.3°C/h. Such temperature change rates are much smaller than the typical economic laboratory measurement rate, therefore the material behavior under these conditions can not be measured directly. SCHOTT developed a model approach to describe the structural relaxation behavior of ZERODUR®. With this model it is possible to precisely predict the thermal expansion behavior of the individual ZERODUR® material batches at any application temperature profile T(t). This paper presents results of the modeling and shows ZERODUR® material behavior at typical temperature profiles of different applications.

  4. Thermal expansion of nickel-zirconia anodes in solid oxide fuel cells during fabrication and operation

    SciTech Connect

    Mori, Masashi; Yamamoto, Tohru; Itoh, Hibiki; Inaba, Hideaki; Tagawa, Hiroaki

    1998-04-01

    The thermal expansion of NiO-8 mol % Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} (YSZ) composites and Ni-YSZ cermets in air and hydrogen have been investigated in the temperature range from 50 to 1,000 C. The average linear thermal expansion coefficient (TEC) of NiO-YSZ composites in air increased with NiO content over the entire composition range. While NiO in the composites was changed to Ni in the H{sub 2} stream, their expansions were governed by the reduction of NiO. For reduced, Ni-YSZ cermets, the TEC increases significantly with Ni content in the composition range > 60 vol% Ni. The TEC increased gradually during repeated thermal cycles between room temperature and 1,000 C. When cermets were measured in air, the Ni particles were fully oxidized to NiO above 900 C, and many cracks appeared in the samples.

  5. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu

    1996-01-01

    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  6. Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2001-01-01

    An approach for synthesizing buckling results and behavior for thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and fully restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived that are used to determine critical temperatures in terms of physically intuitive mechanical buckling coefficients, and the effects of membrane orthotropy and membrane anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of the generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general and unifying manner.

  7. Buckling Behavior of Long Anisotropic Plates Subjected to Elastically Restrained Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2002-01-01

    An approach for synthesizing buckling results for, and behavior of, thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. The effects of membrane orthotropy and membrane anisotropy are included in the general formulation. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of elastically restrained laminate thermal expansion or contraction, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general and unifying manner.

  8. Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks.

    PubMed

    Shang, Ran; Xu, Guan-Cheng; Wang, Zhe-Ming; Gao, Song

    2014-01-20

    We present three Mg-formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] (1), [CH3CH2NH3][Mg(HCOO)3] (2) and [NH3(CH2)4NH3][Mg2(HCOO)6] (3). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature-dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure-property relationships are established. Compound 1 is a chiral Mg-formate framework with the NH4(+) cations located in the channels. Above 255 K, the NH4(+) cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non-compensated antipolarization. These lead to significant negative thermal expansion and a relaxor-like dielectric response. In perovskite 2, the orthorhombic phase below 374 K possesses ordered CH3CH2NH3(+) cations in the cubic cavities of the Mg-formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two-fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order-disorder transition of CH3CH2NH3(+). For niccolite 3, the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3](2+) in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations

  9. The Study on Thermal Expansion of Ceramic Composites with Addition of ZrW2O8

    NASA Astrophysics Data System (ADS)

    Dedova, E. S.; Shadrin, V. S.; Petrushina, M. Y.; Kulkov, S. N.

    2016-02-01

    The studies on structure, phase composition and thermal properties of (Al2O3 - 20 wt% ZrO2) - ZrW2O8 ceramic composites obtained using nanosized, initial powders were conducted. Homogeneously distributed white particles on the polished surface of composites were observed. Phase composition of the composites was represented with corundum, monoclinic ZrO2 and two modifications of ZrW2O8 (tetragonal and cubic). Linear thermal expansion coefficient values of the composites were determined. The difference in experimental and calculated coefficient of thermal expansion values for composites obtained may be attributed to phase transformations, features of the structure, internal stresses due to thermal expansion mismatch, which contribute significantly to thermal expansion of the ceramic composites.

  10. Thermal expansion measurement of (U,Pu)O2-x in oxygen partial pressure-controlled atmosphere

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Ikusawa, Yoshihisa; Sunaoshi, Takeo; Nelson, Andrew T.; McClellan, Kenneth J.

    2016-02-01

    Thermal expansion of U0.7Pu0.3O2-x (x = 0, 0.01, 0.02, 0.03) and U0.52Pu0.48O2.00 was investigated by a unique dilatometry which measured in an oxygen partial pressure-controlled atmosphere. The oxygen partial pressure was controlled to hold a constant oxygen-to-metal ratio in the (U,Pu)O2-x during the measurement. Thermal expansion slightly increased with the decrease in oxygen-to-metal ratio. We proposed a relationship to describe thermal expansion as a function of temperature, O/M and Pu content.

  11. Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1994-01-01

    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical

  12. Gene expression under thermal stress varies across a geographical range expansion front.

    PubMed

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. PMID:26821170

  13. Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Härkönen, Ville J.; Karttunen, Antti J.

    2014-01-01

    The thermal and lattice dynamical properties of seven silicon clathrate framework structures are investigated with ab initio density functional methods (frameworks I, II, IV, V, VII, VIII, and H). The negative thermal expansion (NTE) phenomenon is investigated by means of quasiharmonic approximation and applying it to equal time displacement correlation functions. The thermal properties of the studied clathrate frameworks, excluding the VII framework, resemble those of the crystalline silicon diamond structure. The clathrate framework VII was found to have an anomalous NTE temperature range up to 300 K and it is suitable for further studies of the mechanisms of NTE. Investigation of the displacement correlation functions revealed that in NTE, the volume derivatives of the mean square displacements and mean square relative displacements of atoms behave similarly to the vibrational entropy volume derivatives and consequently to the coefficients of thermal expansion as a function of temperature. All studied clathrate frameworks, excluding the VII framework, possess a phonon band gap or even two in the case of framework V.

  14. Thermal Effects in Jaynes-Cummings Model Derived with Low-Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Azuma, Hiroo; Ban, Masashi

    In this paper, we investigate thermal effects of the Jaynes-Cummings model (JCM) at finite temperature with a perturbative approach. We assume a single two-level atom and a single cavity mode to be initially in the thermal equilibrium state and the thermal coherent state, respectively, at a certain finite low temperature. Describing this system with Thermo Field Dynamics formalism, we obtain a low-temperature expansion of the atomic population inversion in a systematic manner. Letting the system evolve in time with the JCM Hamiltonian, we examine thermal effects of the collapse and the revival of the Rabi oscillations by means of the third-order perturbation theory under the low-temperature limit, that is to say, using the low-temperature expansion up to the third-order terms. From an intuitive discussion, we can expect that the period of the revival of the Rabi oscillations becomes longer as the temperature rises. Numerical results obtained with the perturbation theory reproduce well this temperature dependence of the period.

  15. CP: AN INVESTIGATION OF COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO VARIOUS STIMULI

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-23

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  16. Hafnium silicate: a new microwave dielectric ceramic with low thermal expansivity.

    PubMed

    Varghese, Jobin; Joseph, Tony; Surendran, K P; Rajan, T P D; Sebastian, M T

    2015-03-21

    A HfSiO4 ceramic was prepared by a conventional solid state synthesis method by sintering at 1600 °C. The morphology of the sintered surface was characterized using scanning electron microscopy and atomic force microscopy and the average surface roughness was about 118 nm. The sintered HfSiO4 ceramic has εr = 7.0, Qu × f = 25 000 and τf = -44 ppm °C(-1) at 10 GHz. It exhibits promising thermal properties such as a low linear thermal expansivity (CTE) of -1.8 ppm °C(-1) (dilatometer) in the temperature range of 30-800 °C and a room temperature thermal conductivity of 11 W m(-1) K(-1). PMID:25677202

  17. Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films.

    PubMed

    Diaz, Jairo A; Wu, Xiawa; Martini, Ashlie; Youngblood, Jeffrey P; Moon, Robert J

    2013-08-12

    The coefficient of thermal expansion (CTE) of cellulose nanocrystal (CNC) films was characterized using novel experimental techniques complemented by molecular simulations. The characteristic birefringence exhibited by CNC films was utilized to calculate the in-plane CTE of self-organized and shear-oriented self-standing CNC films from room temperature to 100 °C using polarized light image correlation. CNC alignment was estimated via Hermans order parameter (S) from 2D X-ray diffraction measurements. We found that films with no preferential CNC orientation through the thickness (S: ∼ 0.0) exhibited an isotropic CTE (∼25 ppm/K). In contrast, films with aligned CNC orientations (S: ∼0.4 to 0.8) had an anisotropic CTE response: For the highest CNC alignment (S: 0.8), the CTE parallel to CNC alignment was ∼9 ppm/K, while that perpendicular to CNC alignment was ∼158 ppm/K. CNC film thermal expansion was proposed to be due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intracrystal responses to heating were explored using molecular dynamics simulations. PMID:23841850

  18. Elucidating the mechanism responsible for anomalous thermal expansion in a metal-organic framework.

    PubMed

    van Heerden, Dewald P; Esterhuysen, Catharine; Barbour, Leonard J

    2016-03-14

    The previously reported anisotropic thermal expansion of a three-dimensional metal-organic framework (MOF) is examined by means of theoretical calculations. Inspection of the 100, 190, 280 and 370 K single crystal X-ray diffraction (SCD) structures indicated a concerted change in the coordination sphere of the zinc centre leading to elongation of the coordination helix in the crystallographic c direction (the Zn-O(H)-Zn angle expands), while the largely unaltered ligands (the ZnLZn distance remains constant) are pulled closer together in the ab plane. This study develops and evaluates a mechanistic model at the DFT level of theory that reproduces the convergent expansion of the coordination helix of the material. The linear increase in energy calculated for extension of a model consisting of six zinc centres and truncated ligands compares favourably with results obtained from a periodic DFT evaluation of the SCD structures. It was also found that the anisotropic thermal expansion trend could be reproduced qualitatively by Molecular Dynamics (MD) simulations in the NPT ensemble. PMID:26171815

  19. Anisotropic thermal expansion in Sr2RhO4 - A variable temperature Synchrotron X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Ranjbar, Ben; Kennedy, Brendan J.

    2015-11-01

    Synchrotron X-ray diffraction studies of Sr2RhO4, between 100 and 1273 K, demonstrate the presence of anisotropic thermal expansion that is significantly impacted by the progressive reduction in the size of the cooperative tilting of the corner sharing RhO6 octahedra. The tilting results in negative thermal expansion along the c-axis, demonstrating the importance of soft phonon modes. This anisotropy in thermal expansion is reflected in the changes in the individual Rh-O bond distances. Near 850 K Sr2RhO4 undergoes an apparently continuous transition from I41/acd to I4/mmm and above this temperature the material displays typical positive thermal expansion.

  20. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (A0138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1992-01-01

    Assessments of the behavior of the carbon/epoxy composites in space conditions are described. After an exposure of five years, the mechanical characteristics and the coefficient of thermal expansion are measured and compared to reference values.

  1. Hwange thermal power plant expansion: Appendices, Volume 2. Export trade information

    SciTech Connect

    1996-01-30

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report shows the results of a feasibility study done to investigate the expansion of Hwange Coal Fired Thermal Power Station Stage III as an option to meet the future electric power requirements of ZESA. The study contains the objectives and approach, study basis and summary of conclusions and recommendations for power, least-cost capacity, as well as project description and implementation. This is Volume 2 of a two-volume study. It is divided into the following sections: (1) Report on Site Visit and Data Collection; (2) ZESA System Development Plan Review; (3) ZESA Load Survey and Forecast; (4) Detailed Capacity Expansion Strategies; (5) Meteorological Data; (5) Equipment Specification Addendum.

  2. Crystallographic Observation of Dynamic Gas Adsorption Sites and Thermal Expansion in a Breathable Fluorous Metal?Organic Framework

    SciTech Connect

    Yang, Chi; Wang, Xiaoping; Omary, Mohammad A

    2009-01-01

    Playing accordion: Cooling a single crystal of a microporous fluorous metal-organic framework under ambient atmosphere leads to very large breathing upon gas adsorption, during which multiple N2 molecules are filled into channels and cages (see picture). While the framework exhibits remarkable positive thermal expansion under vacuum, a gigantic apparent negative thermal expansion takes place when the crystal is exposed to N2 at ambient pressure.

  3. Nonstoichiometric control of tunnel-filling order, thermal expansion, and dielectric relaxation in tetragonal tungsten Bronzes Ba0.5-xTaO3-x.

    PubMed

    Pan, Fengjuan; Li, Xiaohui; Lu, Fengqi; Wang, Xiaoming; Cao, Jiang; Kuang, Xiaojun; Véron, Emmanuel; Porcher, Florence; Suchomel, Matthew R; Wang, Jing; Allix, Mathieu

    2015-09-21

    Ordering of interpolated Ba(2+) chains and alternate Ta-O rows (TaO)(3+) in the pentagonal tunnels of tetragonal tungsten bronzes (TTB) is controlled by the nonstoichiometry in the highly nonstoichiometric Ba0.5-xTaO3-x system. In Ba0.22TaO2.72, the filling of Ba(2+) and (TaO)(3+) groups is partially ordered along the ab-plane of the simple TTB structure, resulting in a √2-type TTB superstructure (Pbmm), while in Ba0.175TaO2.675, the pentagonal tunnel filling is completely ordered along the b-axis of the simple TTB structure, leading to a triple TTB superstructure (P21212). Both superstructures show completely empty square tunnels favoring Ba(2+) conduction and feature unusual accommodation of Ta(5+) cations in the small triangular tunnels. In contrast with stoichiometric Ba6GaTa9O30, which shows linear thermal expansion of the cell parameters and monotonic decrease of permittivity with temperature within 100-800 K, these TTB superstructures and slightly nonstoichiometric simple TTB Ba0.4TaO2.9 display abnormally broad and frequency-dependent extrinsic dielectric relaxations in 10(3)-10(5) Hz above room temperature, a linear deviation of the c-axis thermal expansion around 600 K, and high dielectric permittivity ∼60-95 at 1 MHz at room temperature. PMID:26347025

  4. Parallel calculations of vibrational properties in complex materials: negative thermal expansion and elastic inhomogeneity

    NASA Astrophysics Data System (ADS)

    Vila, F. D.; Rehr, J. J.

    Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.

  5. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    PubMed

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-01

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry. PMID:24070222

  6. Thermal expansion behaviors of LAST and LASTT thermoelectric materials as a function of temperature

    SciTech Connect

    Trejo, Rosa M; Case, Eldon D; Lara-Curzio, Edgar; Ren, Fei; Timm, Edward J; Hall, Bradley D.

    2008-01-01

    LAST (Pb-Sb-Ag-Te) and LASTT (Pb-Sb-Ag-Te-Sn) materials exhibit good thermoelectric (TE) properties, which can be potentially applied in waste heat recovery. Thermal expansion behavior of TE materials is critical to the fabrication and performance of TE devices, which are subject to temperature gradients and/or thermal cycling under in-service conditions. In this study, the coefficient of thermal expansion (CTE) of LAST and LASTT fabricated by both casting and hot pressing were determined via thermomechanical analysis between room temperature (RT) and 673 K. In addition, the lattice parameters of LAST materials were calculated from high temperature X-ray diffraction patterns obtained between RT and 623 K. The mean CTE values ranged between 20 x 10-6 K-1 and 23 x 10-6 K-1. While the temperature dependent CTE of Ag0.43Pb18Sb1.2Te20 composition increased with increasing temperature, a peak between RT and 450 K in the CTE versus temperature curve was observed for the Ag0.86Pb19SbTe20 concentration.

  7. Determination of the coefficient of thermal expansion with embedded long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Sun, Changsen; Zhang, Xiaotan; Ansari, Farhad

    2010-06-01

    A novel methodology for the determination of the coefficient of thermal expansion (CTE) is proposed by using long-gauge fiber optic sensors. Current approaches either neglect the shear-lag effects or do not compensate for the thermo-optic effects in optical fibers leading to precision errors. The embedded long-gauge sensor measures not only the thermo-optic effect due to temperature fluctuations, but also the strain-optic effect created by thermal stresses. However, it is difficult to directly separate these two effects in the measurements. Given that only the strain-optic effect correlates to the CTE of a host material, it is necessary to compensate for the thermo-optic effect. An additional error is attributed to the fact that the shear-lag effect is ignored, i.e. assumption is made that the strain distribution in the optical fiber is the same as that in the host material. This study reports on the development of a methodology for the computation of the coefficient of thermal expansion in structural materials using long-gauge fiber optic sensors. The proposed formulations account for both the shear-lag and thermo-optic effects.

  8. Thermal Lattice Expansion in Epitaxial SrTiO3(100) on Si(100)

    SciTech Connect

    McCready, David E.; Liang, Yong; Shutthanandan, V.; Wang, Chong M.; Thevuthasan, Suntharampillai

    2006-10-01

    Thermal lattice expansion in epitaxial SrTiO3(100) grown on Si(100) by molecular beam epitaxy was examined by in situ x-ray diffraction (XRD) at temperatures ranging from 25 C to 1000 C. The SrTiO3 layer thickness ({approx}400 ?) was determined a priori by ex situ x-ray reflectivity (XRR). In addition, the SrTiO3(100) film was further characterized before and after thermal treatment by Rutherford backscattering spectroscopy in channeling geometry (RBS/C) and transmission electron microscopy (TEM). The XRD results showed that the rate of thermal expansion in epitaxial SrTiO3 in the out-of-plane direction is approximately 1.5-2.0 times the bulk value. In addition, the SrTiO3 film was seen to relax after heating. RBS/C and TEM also revealed the formation of a thick ({approx}1000 ?), amorphous silica layer at the SrTiO3/Si interface. Interestingly, the SrTiO3 film retained its epitaxial form atop this non-templating surface while its crystalline quality improved with annealing. These results will be further discussed in the context of their potential application toward silicon-on-insulator (SOI) semiconductor architecture.

  9. Thermal expansion measurements by x-ray scattering and breakdown of Ehrenfest's relation in alloy liquids

    SciTech Connect

    Gangopadhyay, A. K.; Blodgett, M. E.; Johnson, M. L.; Vogt, A. J.; Mauro, N. A.; Kelton, K. F.

    2014-05-12

    Measurements of sharp diffraction peaks as a function of temperature are routinely used to obtain precise linear expansion coefficients of crystalline solids. In this case, the relation between temperature dependent changes in peak position in momentum transfer (q{sub 1}) and volume expansion is straightforward (Ehrenfest's relation: q{sub 1} = K(2π/d), where K is a constant and d is the interatomic spacing) and the data obtained are usually in close agreement with more direct measurements. With high intensity synchrotron x-ray and spallation neutron sources, it is also possible to accurately measure the positions of the much broader peaks for liquids and glasses. This has led to a debate on whether linear expansion coefficients derived from these data are an accurate representation of the volume expansion coefficients. We present here volume thermal expansion and x-ray diffraction data for a large number of glass-forming alloy liquids acquired in a containerless environment using the beamline electrostatic levitation technique. The data show a large difference in the values obtained from the two different techniques. Moreover, the position of the first peak (q{sub 1}) in the scattered intensity in the structure factor (S(q)) and the atomic volume v for all liquids follow a simple relationship, v∝(q{sub 1}){sup −ε}. The exponent, ε = 2.28 (±0.11), is much different from the expected value of 3 from Ehrenfest's relation and shows no temperature dependence over the temperature range of the data collected.

  10. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect

    Omar, M.S.

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  11. CO2 laser debonding of a ceramic bracket bonded with orthodontic adhesive containing thermal expansion microcapsules.

    PubMed

    Saito, Ayano; Namura, Yasuhiro; Isokawa, Keitaro; Shimizu, Noriyoshi

    2015-02-01

    We have been studying an easy bracket debonding method using heating of an orthodontic adhesive containing thermal expansion microcapsules. However, heating with a high-temperature heater brings obvious risks of burns around the oral cavity. Thus, we examined safer and more effective bracket debonding methods. The purpose of this in vitro study was to examine the reduction in debonding strength and the time taken using a bracket bonded with an orthodontic adhesive containing thermal expansion microcapsules and a CO2 laser as the heating method while maintaining safety. Ceramic brackets were bonded to bovine permanent mandibular incisors using bonding materials containing various microcapsule contents (0, 30, and 40 wt%), and the bond strengths were measured after laser irradiation for 4, 5, and 6 s and compared with nonlaser-treated groups. Subsequently, the temperature in the pulp chamber during laser irradiation was measured. After laser irradiation for 5 or 6 s, the bond strengths of the adhesive containing 40 wt% microcapsules were significantly decreased to ∼0.40 - 0.48-fold (4.6-5.5 MPa) compared with the nonlaser groups. The mean temperature rise of the pulp chamber was 4.3 °C with laser irradiation for 6 s, which was less than that required to induce pulp damage. Based on these results, we conclude that the combined use of a CO2 laser and an orthodontic adhesive containing thermal expansion microcapsules can be effective and safe for debonding ceramic brackets with less enamel damage or tooth pain. PMID:24220847

  12. Anharmonic phonon quasiparticle theory of zero-point and thermal shifts in insulators: Heat capacity, bulk modulus, and thermal expansion

    NASA Astrophysics Data System (ADS)

    Allen, Philip B.

    2015-08-01

    The quasiharmonic (QH) approximation uses harmonic vibrational frequencies ωQ ,H(V ) computed at volumes V near V0 where the Born-Oppenheimer (BO) energy Eel(V ) is minimum. When this is used in the harmonic free energy, QH approximation gives a good zeroth order theory of thermal expansion and first-order theory of bulk modulus, where nth-order means smaller than the leading term by ɛn, where ɛ =ℏ ωvib/Eel or kBT /Eel , and Eel is an electronic energy scale, typically 2 to 10 eV. Experiment often shows evidence for next-order corrections. When such corrections are needed, anharmonic interactions must be included. The most accessible measure of anharmonicity is the quasiparticle (QP) energy ωQ(V ,T ) seen experimentally by vibrational spectroscopy. However, this cannot just be inserted into the harmonic free energy FH. In this paper, a free energy is found that corrects the double-counting of anharmonic interactions that is made when F is approximated by FH( ωQ(V ,T ) ) . The term "QP thermodynamics" is used for this way of treating anharmonicity. It enables (n +1 ) -order corrections if QH theory is accurate to order n . This procedure is used to give corrections to the specific heat and volume thermal expansion. The QH formulas for isothermal (BT) and adiabatic (BS) bulk moduli are clarified, and the route to higher-order corrections is indicated.

  13. A study on thermal barrier coatings including thermal expansion mismatch and bond coat oxidation

    NASA Technical Reports Server (NTRS)

    Chang, George C.; Phucharoen, Woraphat; Miller, Robert A.

    1986-01-01

    The present investigation deals with a plasma-sprayed thermal barrier coating (TBC) intended for high temperature applications to advanced gas turbine blades. Typically, this type of coating system consists of a zirconia-yttria ceramic layer with a nickel-chromium-aluminum bond coat on a superalloy substrate. The problem on hand is a complex one due to the fact that bond coat oxidation and thermal mismatch occur in the TBC. Cracking in the TBC has also been experimentally illustrated. A clearer understanding of the mechanical behavior of the TBC is investigated. The stress states in a model thermal barrier coating as it cools down in air is studied. The powerful finite element method was utilized to model a coating cylindrical specimen. Four successively refined finite element models were developed. Some results obtained using the first two models have been reported previously. The major accomplishment is the successful development of an elastic TBC finite element model known as TBCG with interface geometry between the ceramic layer and the bond coat. An equally important milestone is the near-completion of the new elastic-plastic TBC finite element model called TBCGEP which yielded initial results. Representative results are presented.

  14. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.

    1993-01-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA.

  15. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  16. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    NASA Astrophysics Data System (ADS)

    Collier, Craig S.

    1993-04-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA.

  17. Method of preloading superconducting coils by using materials with different thermal expansion coefficients

    DOEpatents

    Heim, Joseph R.

    1993-01-01

    The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700.degree. C. to obtain the desired compression. The embodiment of the invention uses Nb.sub.3 Sn as the conducting wire, since Nb.sub.3 Sn must be heated to 700.degree. C. to cause a reaction which makes Nb.sub.3 Sn superconducting.

  18. Thermal expansion characteristics of Al2O3 nanofluids: More to understand than understood

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.; Singh, R. K.; Kulkarni, P. P.

    2009-03-01

    In this paper, the thermal expansion characteristics of Al2O3 nanofluids have been studied and compared with the base fluid, i.e., water. The nanoparticles used were in the range of 40-80 nm, which were dispersed in water by sonication. Interestingly, it was found that the volumetric rise of the metallic oxide nanofluids is much larger than water for the corresponding temperature rise, which is opposite to what has been interpreted so far. This is one of the wonderful properties of nanofluids that would find tremendous application in many heat extraction systems using natural convection as mode of heat removal.

  19. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang; Lin, Zheshuai; Hu, Bing; Li, Wei

    2016-01-01

    The fundamental mechanical properties of a dense metal-organic framework material, [NH2CHNH2][Er(HCOO)4] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02-1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge-strut structural motif.

  20. Influence of Single-Walled Carbon Nanotubes on Thermal Expansion of Water

    NASA Astrophysics Data System (ADS)

    Korolovych, V. F.; Bulavin, L. A.; Prylutskyy, Yu. I.; Khrapatiy, S. V.; Tsierkezos, N. G.; Ritter, U.

    2014-01-01

    This article reports the results of an investigation of the influence of single-walled carbon nanotubes (SWCNTs) functionalized with carboxyl groups on PVT data of water. Specifically, the impact of an aqueous suspension of SWCNTs (maximum concentration of 3.0 mg mL) on the isobaric thermal expansion of water in the temperature and pressure ranges of 293 K to 342 K and 0.1 MPa to 152.3 MPa, respectively, was investigated. The obtained results are discussed in terms of different structures of water confined inside and outside SWCNTs.

  1. Accurate thermal expansivity measurements in the range 1500 2000 K are needed for minerals

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1991-07-01

    It is shown that the future high-temperature thermodynamic computations for minerals now hinge on the extension of the measurement of the volume thermal expansivity, β up to 2000 K. At present many measurements of β end at about 1200 1500 K, but the extrapolations to 2000 K are fraught with large errors. A few years ago, the missing thermodynamic parameter at high temperatures was the bulk modulus (or its reciprocal compressibility). Now that measurements of the bulk modulus are being accurately measured at 1800 K, attention is focused on improving measurements of β at higher temperatures.

  2. Method of preloading superconducting coils by using materials with different thermal expansion coefficients

    DOEpatents

    Heim, J.R.

    1993-02-23

    The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700 C to obtain the desired compression. The embodiment of the invention uses Nb[sub 3]Sn as the conducting wire, since Nb[sub 3]Sn must be heated to 700 C to cause a reaction which makes Nb[sub 3]Sn superconducting.

  3. Thermal expansion and elastic anisotropies of SiC as related to polytype structure

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1989-01-01

    The concept of the fraction of hexagonal stacking is used to describe the anisotropic thermal expansion coefficients of polytypes of SiC. The single crystal elastic anisotropy for the SiC polytype structures and the temperature dependencies of the anisotropies are examined. The anisotropic thermoelastic stress index for the 3C and 6H SiC polytypes are illustrated graphically. It is shown that this index is useful for predicting the most desirable crystal growth orientations for SiC whisker incorporation into composite matrices.

  4. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    DOE PAGESBeta

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier A.

    2016-07-20

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemore » well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.« less

  5. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements.

    PubMed

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier

    2016-09-28

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound [Formula: see text] over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials. PMID:27438881

  6. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier

    2016-09-01

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound \\text{FeSi} over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.

  7. High-resolution measurements of the thermal expansion of superconducting Co-doped BaFe2As2

    SciTech Connect

    Luz, M. S.; Neumeier, J. J.; Bollinger, R. K.; Sefat, A. S.; McGuire, Michael A; Jin, R.; Sales, Brian C; Mandrus, David

    2009-01-01

    High-resolution thermal expansion measurements of single crystalline BaFe{sub 1.84}Co{sub 0.16}As{sub 2} and BaFe{sub 1.77}Co{sub 0.23}As{sub 2} in the temperature range 5 < T < 300 K are reported. The thermal expansion is highly anisotropic, with the largest expansion along the c axis. Distinct anomalies are present at the normal-to-superconducting phase-transition temperature T{sub c}; the phase transition appears to be continuous. No structural transitions are observed over the temperature range of our measurements. The thermal expansion data and heat-capacity data acquired on the same specimens are used to estimate the volumetric pressure derivative of T{sub c} using the Ehrenfest relation.

  8. The effect of contained fluids during rocksalt heating: insights from thermal expansion experiments on halite single crystals.

    NASA Astrophysics Data System (ADS)

    Speranza, Giulio; Vona, Alessandro; Di Genova, Danilo; Romano, Claudia

    2015-04-01

    Rocksalt overall characteristics and peculiarity are well known and have made rocksalt bodies one of the most favorable choice for nuclear waste storage purposes. Low to medium temperature effects related to nuclear waste heat generation have been studied by several authors. However, high temperature related salt behavior has been poorly investigated as well as studies focused on the effect of temperature increase on fluids contained in halite. Here we present the results of thermal expansion experiments in the range 50 - 700°C made on halite single crystals with different fluid contents. Our results show that thermally unaltered halite is subjected, upon heating, to thermal instability around 300 - 450°C, with sudden increase in expansivity, sample cracking and fluids emission. Moreover, thermal expansion results higher for fluid-rich salts. In contrast, thermally altered halite, lacks the instability occurrence, showing a constant linear thermal expansion regardless its fluid contents. Rocksalt thermal instability, that is likely to be due to fluids overpressure development upon heating, lead also to a bulk density reduction. Thus, unaltered salt heated to temperature around 300°C or more could cause damage, fluids emission and density drop, increasing the salt mobility. For this reason, a detailed and quantitative study of fluid type, abundance and arrangement within crystals, as well as their response to stress and thermal changes is fundamental for both scientific and applicative purposes regarding halite.

  9. First principles calculations of vacancy-vacancy interactions in nickel: thermal expansion effects.

    PubMed

    Megchiche, E H; Mijoule, C; Amarouche, M

    2010-12-01

    The energetic properties of the divacancy defect in fcc nickel are studied by ab initio calculations based on density functional theory. The formation and binding enthalpies of the divacancy in the first (1nn), second (2nn) and third (3nn) nearest-neighbor configurations are presented. Results show that the 1nn divacancy configuration is the most stable with a formation enthalpy H(2v)(f) of 2.71 eV and a small binding energy H(2v)(b) of 0.03 eV. In the 2nn configuration, the monovacancy-monovacancy interaction is repulsive, and it vanishes in the 3nn configuration. The migration process of the divacancy in its stable configuration is studied. We find that the divacancy migrates in the (111) plane by successive rotational steps of 60°. The corresponding migration enthalpy H(2v)(m) is predicted to be 0.59 eV, about half of that found for the monovacancy. For a better comparison of our results with high temperature experimental data, we have analyzed the effects of thermal expansion. Our results show that the inclusion of thermal expansion allows us to reproduce satisfactorily the experimental predictions. PMID:21406748

  10. Impact of thermal expansion of substrates on phase transition temperature of VO2 films

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Zaghrioui, Mustapha; Matsushima, Masaaki; Funakubo, Hiroshi; Okimura, Kunio

    2014-09-01

    Non-epitaxial, (010)M1-oriented VO2 thin films were grown on various substrates [amorphous SiO2, Si (001), Al2O3 (0001), and CaF2 (001)] with Pt (111)/SiO2 buffer layers. Phase transition from MoO2-type monoclinic to rutile-type tetragonal structures of these VO2 layers was investigated with temperature-controlled micro-Raman spectroscopy. It was confirmed that substrates with larger thermal expansion coefficient cause larger out-of-plane lattice spacings of both Pt and VO2, and thus lower transition temperatures of VO2 films, as a result of higher in-plane shrinkage during cooling from the deposition temperature. The transition temperatures and aM1/2 lengths, estimated from bM1 lengths, of present samples were compared with previous reports in a strain—temperature phase diagram. The present results fit with previous reports better by assuming that in-plane lattice aspect ratio of VO2 films is not clamped by the substrates but is flexible during the temperature change. Thermal expansion of substrates is an essential parameter to be taken into account when one considers device application of the phase transition properties of VO2 films, especially thick or non-epitaxial.

  11. Crystal structure and thermal expansion of a CsCe2Cl7 scintillator

    DOE PAGESBeta

    Zhuravleva, M.; Lindsey, A.; Chakoumakos, B. C.; Custelcean, R.; Meilleur, F.; Hughes, R. W.; Kriven, W. M.; Melcher, C. L.

    2015-04-06

    Here we used single-crystal X-ray diffraction data to determine crystal structure of CsCe2Cl7. It crystallizes in a P1121/b space group with a = 19.352(1) Å, b = 19.352(1) Å, c = 14.838(1) Å, γ = 119.87(2) ° , and V = 4818.6(5) Å3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe2Cl7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 10-6/ °C) with respect to the b and c axesmore » (27.0 10-6/ °C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. Lastly, these findings suggest that the reported cracking behavior during melt growth of CsCe2Cl7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.« less

  12. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1-xAlxF3

    NASA Astrophysics Data System (ADS)

    Morelock, Cody R.; Gallington, Leighanne C.; Wilkinson, Angus P.

    2015-02-01

    With the goal of thermal expansion control, the synthesis and properties of Sc1-xAlxF3 were investigated. The solubility limit of AlF3 in ScF3 at ~1340 K is ~50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al3+ content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al3+ content. The slope of the pressure-temperature phase boundary is ~0.5 K MPa-1, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ~600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al3+ substitution causes softening at a given temperature.

  13. Cryogenic coefficient of thermal expansion measurements of type 440 and 630 stainless steel

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Flaugher, B.; Montes, J.

    2014-01-01

    The Dark Energy Camera is now installed on the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is cooled to 170K using a closed loop two-phase liquid nitrogen system. A submerged centrifugal pump is used to circulate the liquid from the base of the telescope to the camera in the prime focus cage. As part of the pump maintenance schedule, the rotor shaft bearings are periodically replaced. Common bearing and shaft materials are type 440 and 630 (17-4 PH) stainless steel. The coefficient of thermal expansion of the materials used is needed to predict the shaft and bearing housing dimensional changes at the 77K pump operating temperature. The thermal expansion from room temperature to 77K of type 440 and 630 stainless steel is presented . Measurements are performed using the ASTM E228 standard with a quartz push-rod dilatometer test stand. Aluminum 6061-T6 is used to calibrate the test stand.

  14. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  15. Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study

    SciTech Connect

    Xu, Hongwu; Zhao, Yusheng; Vogel, Sven C; Hickmott, Donald D; Daemen, Luke L; Hartl, Monika A

    2009-01-01

    The structure of deuterated jarosite, KFe{sub 3}(SO{sub 4}){sub 2}(OD){sub 6}, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate {approx}10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH){sub 6}] octahedra and [SO{sub 4}] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, a = a{sub 0} + a{sub 1} T, where a{sub 0} = 1.01 x 10{sup -4} K{sup -1} and a{sub 1} = -1.15 x 10{sup -7} K{sup -2}. On heating, the hydrogen bonds, O1{hor_ellipsis}D-O3, through which the (001) octahedral-tetrahedral sheets are held together, become weakened, as reflected by an increase in the D{hor_ellipsis}O1 distance and a concomitant decrease in the O3-D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.

  16. Thermal expansion in Cr:LiSrGaF{sub 6}

    SciTech Connect

    Grzechnik, Andrzej . E-mail: andrzej@wm.lc.ehu.es; Azcona, Zunbeltz Izaola; Bereciartua, Pablo; Friese, Karen; Doyle, Stephen

    2005-11-03

    High-temperature behaviour of LiSrGaF{sub 6} doped with 1.5 at.% of Cr{sup 3+} was studied with high-resolution synchrotron angle-dispersive X-ray powder diffraction in the temperature range 298-539 K. No phase transitions were detected. The origin of negative thermal expansion along the c axis is discussed based on the temperature dependencies of structural parameters and octahedral distortions obtained with the Rietveld method. The SrF{sub 6} slab contracts with increasing temperatures because of the diminishing F-Sr-F octahedral angles without any changes in the F-F octahedral edges not only around strontium but also around lithium and gallium. At the same time, the angular distortions of the SrF{sub 6} octahedra are largely diminished. Such a behaviour is discussed in comparison with the thermal expansion of LiCaAlF{sub 6} and LiSrAlF{sub 6}.

  17. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  18. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Chen, Haosen; Pei, Yongmao; Fang, Daining

    2016-01-01

    The unexpected thermal distortions and failures in engineering raise the big concern about thermal expansion controlling. Thus, design of tailorable coefficient of thermal expansion (CTE) is urgently needed for the materials used in large temperature variation circumstance. Here, inspired by multi-fold rotational symmetry in crystallography, we have devised six kinds of periodic planar lattices, which incorporate tailorable CTE and high specific biaxial stiffness. Fabrication process, which overcame shortcomings of welding or adhesion connection, was developed for the dual-material planar lattices. The analytical predictions agreed well with the CTE measurements. It is shown that the planar lattices fabricated from positive CTE constituents, can give large positive, near zero and even negative CTEs. Furthermore, a generalized stationary node method was proposed for aperiodic lattices and even arbitrary structures with desirable thermal expansion. As an example, aperiodic quasicrystal lattices were designed and exhibited zero thermal expansion property. The proposed method for the lattices of lightweight, robust stiffness, strength and tailorable thermal expansion is useful in the engineering applications.

  19. Glass-Transition Temperature Profile Measured in a Wood Cell Wall Using Scanning Thermal Expansion Microscope (SThEM)

    NASA Astrophysics Data System (ADS)

    Antoniow, J. S.; Maigret, J.-E.; Jensen, C.; Trannoy, N.; Chirtoc, M.; Beaugrand, J.

    2012-11-01

    This study aims to assess the in situ spatial distribution of glass-transition temperatures ( T g) of the main lignocellulosic biopolymers of plant cell walls. Studies are conducted using scanning thermal expansion microscopy to analyze the cross-section of the cell wall of poplar. The surface topography is mapped over a range of probe-tip temperatures to capture the change of thermal expansion on the sample surface versus temperature. For different temperature values chosen between 20 °C and 250 °C, several quantitative mappings were made to show the spatial variation of the thermal expansion. As the glass transition affects the thermal expansion coefficient and elastic modulus considerably, the same data line of each topography image was extracted to identify specific thermal events in their topographic evolution as a function of temperature. In particular, it is shown that the thermal expansion of the contact surface is not uniform across the cell wall and a profile of the glass-transition temperature could thus be evidenced and quantified corresponding to the mobility of lignocellulosic polymers having a role in the organization of the cell wall structures.

  20. Thermodynamic Predictions of Thermal Expansivity and Elastic Compliances at High Temperatures and Pressures Applied to Perovskite Crystals

    NASA Astrophysics Data System (ADS)

    Burns, S. J.

    2016-01-01

    The possibility of near zero thermal expansion coefficients at very high pressures is explored for application to the Earth's core materials and mantle dynamics. The pressures in the Earth are large enough to effectively reduce thermal expansion coefficients to values which will decouple heat from mechanical work. It is shown that at pressures below the bulk modulus the thermal expansion coefficient will approach zero in all simple linear-elastic crystalline models. Advanced models of crystalline elastic solids based on interatomic potentials and density functional theory are shown to violate Gibb's potential for a solid, crystalline material described by three elastic matrix compliance entries; it is established that the temperature dependence of S 11 and S 12 are thermodynamically identical; it is also established that the pressure dependence of S 11 and S 12 are thermodynamically identical. The basis for thermal energy in materials is the phonon energy in solids. However, it is noted that heat capacity measurements which are obtained from constant pressure heat capacity conditions converted to constant volume values on isobars are not in the correct state when compared to theoretical models; at atmospheric pressure there may be very little difference between these states but at very high pressures the effect may be major. Very large pressures always reduce thermal expansion coefficients; the importance of very small thermal expansion coefficients is discussed in relation to physical processes deep in the core and mantle of the Earth.

  1. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?

    PubMed Central

    Winwood-Smith, Hugh S.; Alton, Lesley A.; Franklin, Craig E.; White, Craig R.

    2015-01-01

    Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures. PMID:27293695

  2. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    NASA Astrophysics Data System (ADS)

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-01

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix-filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  3. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    SciTech Connect

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  4. Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD)

    NASA Astrophysics Data System (ADS)

    Kerstan, Marita; Rüssel, Christian

    Gas-tight seals between metals and ceramics in solid-oxide fuel cells can be fabricated from glasses which enable the crystallization of phases with high thermal expansion coefficients (mostly barium silicates). This article mainly reports on high-temperature X-ray diffraction studies on these silicates. It is shown that all barium silicates exhibit thermal expansion coefficients in the range from 10.5 to 15.4 × 10 -6 K -1 (100-800 °C). The expansions are strongly dependent on the respective crystallographic axis. The ortho- and metasilicates exhibit the largest thermal expansion coefficients. The coefficient of thermal expansion of a sealing glass is attributed to the thermal expansion of the crystalline phases and the residual glassy phase. The phase formation should carefully be controlled also with respect to aging. Crystalline phases with high coefficients of thermal expansion, such as the barium silicates, are advantageous as components in such sealing glasses.

  5. Effects of thermal loading on foil and sheet composites with constituents of differing thermal expansivities.

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.

    1973-01-01

    A study was made to estimate the magnitudes of elastic stresses and elastic-plastic stresses and strains in sheet or foil laminar composites. Using a model tungsten/80Ni + 20Cr laminar composite and assuming cooling or heating through a temperature range of 80-2000 deg F (26.5-1093.5 deg C), calculated elastic stresses exceeded published or estimated strengths of the constituents. Elastic-plastic stress-strain solutions resulted in lower estimated stress levels but with the concomitant occurrence of sufficiently large strain ranges to suggest possible thermal fatigue problems. Limited experimental studies using tungsten/80Ni + 20Cr foil and sheet laminar composites, slowly cycled between 80 and 2000 deg F (26.5-1093.5 deg C) or rapidly cycled between 80 and 1600 deg F (26.5-871 deg C) produced varying degrees of observable structural damage in from 1 to 11 cycles depending upon temperature transition rate and laminae thickness; these particular results might not occur with other combinations of materials.

  6. Thermal expansion of Fe3C at high pressure and carbon in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Gao, L.; Chen, B.; Wang, Y.; Li, J.

    2008-12-01

    Carbon is one of the major candidates for the principal light element in the Earth's core. Wood [1993] proposed that Fe3C, rather than iron-nickel alloy, is the dominant phase in the Earth's solid inner core. Testing the model of Fe3C-rich inner core requires knowledge on the thermal equation-of-state (EoS) of Fe3C under core conditions. To date, EoS data of Fe3C are only available at high pressure and 0 or 300 K [Scott et al., 2001, Li et al., 2002, Vocadlo et al., 2002] or at high temperature and 1 bar [Wood et al., 2004]. Wood et al. [2004] found that the thermal expansion coefficient is significantly affected by the ferromagnetic to paramagnetic transition above the Curie temperature. In this study, we have determined the thermal expansion coefficient of Fe3C up to 20 GPa and 1273 K, using a T-cup device and synchrotron x-ray diffraction techniques at beamline 13-ID of the Advanced Photon Source. Our results place constraints on the abundance of carbon the Earth's inner core. This work is supported by NSF EAR 06-09639. References: Gao et al. (2008), Geophys. Res. Lett., doi:10.1029/2008GL034817. Li, J. et al. (2002), Phys. Chem. Miner., 29(3), 166-169. Scott, H. P. et al. (2001), Geophys. Res. Lett., 28, 1875-1878 Vocadlo, L., et al. (2002), Earth Planet. Sci. Lett., 203(1), 567-575. 347. Wood, B. J. (1993), Earth Planet. Sci. Lett., 117(3-4), 593-607. Wood, I. G. et al. (2004), J. Appl. Crystallogr., 37, 82-90.

  7. Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework.

    PubMed

    Cliffe, Matthew J; Hill, Joshua A; Murray, Claire A; Coudert, François-Xavier; Goodwin, Andrew L

    2015-05-01

    Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal-organic framework (MOF). Incorporation of correlated vacancy defects within the framework affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF. PMID:25866163

  8. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds.

    PubMed

    Chen, Jun; Nittala, Krishna; Forrester, Jennifer S; Jones, Jacob L; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2011-07-27

    PbTiO(3)-based compounds are well-known ferroelectrics that exhibit a negative thermal expansion more or less in the tetragonal phase. The mechanism of negative thermal expansion has been studied by high-temperature neutron powder diffraction performed on two representative compounds, 0.7PbTiO(3)-0.3BiFeO(3) and 0.7PbTiO(3)-0.3Bi(Zn(1/2)Ti(1/2))O(3), whose negative thermal expansion is contrarily enhanced and weakened, respectively. With increasing temperature up to the Curie temperature, the spontaneous polarization displacement of Pb/Bi (δz(Pb/Bi)) is weakened in 0.7PbTiO(3)-0.3BiFeO(3) but well-maintained in 0.7PbTiO(3)-0.3Bi(Zn(1/2)Ti(1/2))O(3). There is an apparent correlation between tetragonality (c/a) and spontaneous polarization. Direct experimental evidence indicates that the spontaneous polarization originating from Pb/Bi-O hybridization is strongly associated with the negative thermal expansion. This mechanism can be used as a guide for the future design of negative thermal expansion of phase-transforming oxides. PMID:21696173

  9. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

    NASA Astrophysics Data System (ADS)

    Toropova, Marina M.; Steeves, Craig A.

    2015-08-01

    Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.

  10. Assessment of bulk modulus, thermal expansion and heat capacity of minerals

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.

    1989-04-01

    Since the heat capacity of a solid at constant pressure ( CP) is related to the isothermal bulk modulus ( KT) and isobaric thermal expansion ( αP), an assessment of the experimental data on these properties is necessary to establish the internal consistency of a thermodynamic data set. Through suitable formulations of the temperature dependence of bulk modulus, thermal expansion and heat capacity at constant volume ( CV) and the application of non-linear programming techniques, it is possible to assess the internal consistency of these data and the measured heat capacity at constant pressure. Such optimization of the data on periclase has been performed with the following results: αP = 0.3754 × 10 -4 + 0.791 × 10 -8T - 0.784 T-2 + 0.9148 T-3 (11) KT = 1.684 × 10 6-241 T - 0.056 T2 + 0.167 × 10 -4T3( bar) (12) CV = 48.02 - 0.572 × 10 6T(13) -2 - 0.4876 × 10 11T-4 - 0.1502 × 10 12T-6 + 0.9836 × 10 20T-8V (1, 298) = 11.245 (cm 3/mol). (14) If appropriate CP data are available, it is possible to estimate the temperature dependence of αP and KT for any solid. In suitable cases, the method may be used through a combination of the data on CP and phase equilibrium to calculate Kt, its pressure derivative and thermal expansion. Such optimized data for brucite are: H0f(1, 298.15) = -924620, S0(1, 298.15) = 64.08 αP = 0.1002 E - 4 + 0.1468 E - 7 T + 1.8606 T-2 (18) kt = 0.5712 Mb, ( ∂K T/∂P) = 4.712Cv= 118.58 - 0.639 E + 7 T-2 + 0.34574 E + 12 T-4 - 0.10538 E + 17 T-6. (19)

  11. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    NASA Technical Reports Server (NTRS)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D

  12. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  13. Second-order many-body perturbation study on thermal expansion of solid carbon dioxide.

    PubMed

    Li, Jinjin; Sode, Olaseni; Hirata, So

    2015-01-13

    An embedded-fragment ab initio second-order many-body perturbation (MP2) method is applied to an infinite three-dimensional crystal of carbon dioxide phase I (CO2-I), using the aug-cc-pVDZ and aug-cc-pVTZ basis sets, the latter in conjunction with a counterpoise correction for the basis-set superposition error. The equation of state, phonon frequencies, bulk modulus, heat capacity, Grüneisen parameter (including mode Grüneisen parameters for acoustic modes), thermal expansion coefficient (α), and thermal pressure coefficient (β) are computed. Of the factors that enter the expression of α, MP2 reproduces the experimental values of the heat capacity, Grüneisen parameter, and molar volume accurately. However, it proves to be exceedingly difficult to determine the remaining factor, the bulk modulus (B0), the computed value of which deviates from the observed value by 50-100%. As a result, α calculated by MP2 is systematically too low, while having the correct temperature dependence. The thermal pressure coefficient, β = αB0, which is independent of B0, is more accurately reproduced by theory up to 100 K. PMID:26574220

  14. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  15. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    SciTech Connect

    Dubey, P. K. Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-15

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  16. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    PubMed

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique. PMID:24880401

  17. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    NASA Astrophysics Data System (ADS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  18. Burning Rate of Energetic Materials with Thermal Expansion and Interface Curvature

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Igor; Stewart, D. Scott

    2003-11-01

    We present a study of the flame structure of combusting solid propellants that focuses on the effects that can be attributed to the thermal properties in the solid, as well as on those of the gas/solid interface curvature. A nonlinear heat equation for a burning thermo-elastic solid with temperature-dependent specific heat, thermal expansion and thermal conductivity coefficients is solved with different model assumptions, analytically and numerically. Explicit expressions are derived for the regression rate of the propellant surface as a function of surface temperature. The structure of propellant flame is studied to identify the influence of temperature dependent material properties on the regression rate, surface temperature and flame stand-off distance. Results are displayed for HMX and AP and compared to experimental data and direct numerical simulation. The model is extended to two dimensions to study surface curvature effects in a limit of small curvature and analytical formula for the combusting surface regression rate as function of the curvature are obtained.

  19. Noise coupling between accommodation and accommodative vergence

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1973-01-01

    For monocular viewing, the fluctuations in accommodative lens power in the frequency range from 0.5 to 3 Hz were found to be considerably greater than those in accommodative vergence movements of the covered eye. Considering the close synkinesis between these motor responses for step changes or slow variations in accommodative stimulus, this finding is unexpected. This apparent lack of synkinesis is found to result mainly from the fact that the decrease in small-signal linear gain with increasing frequency is more rapid in the case of the accommodative vergence system than in the case of the accommodation system, rather than from some nonlinear phenomenon.

  20. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  1. The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating

    SciTech Connect

    Ni, Jennifer E.; Case, Eldon D; Schmidt, Robert; Wu, Chun-I; Hogan, Timothy; Trejo, Rosa M; Kirkham, Melanie J; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-01-01

    The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe PbS-based TE material (Pb 0.95 Sn 0.05 Te) 0.92(PbS) 0.08 0.055 % PbI 2 over the temperature ranges of 293 543 and 293 773 K, a CTE, alpha avg , of 21.4 0.3 x 10-6 K-1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures [603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a pos- sible mechanism for inhibiting bloating in powder processed specimens.

  2. Framework flexibility and the negative thermal expansion mechanism of copper(I) oxide Cu2O

    NASA Astrophysics Data System (ADS)

    Rimmer, Leila H. N.; Dove, Martin T.; Winkler, Björn; Wilson, Dan J.; Refson, Keith; Goodwin, Andrew L.

    2014-06-01

    The negative thermal expansion (NTE) mechanism in Cu2O has been characterized via mapping of different Cu2O structural flexibility models onto phonons obtained using ab initio lattice dynamics. Low-frequency acoustic modes that are responsible for the NTE in this material correspond to vibrations of rigid O-Cu-O rods. There is also some small contribution from higher-frequency optic modes that correspond to rotations of rigid and near-rigid OCu4 tetrahedra as well as of near-rigid O-Cu-O rods. The primary NTE mode also drives a ferroelastic phase transition at high pressure; our calculations predict this to be an orthorhombic structure with space group Pnnn.

  3. Vendor Capability for Low Thermal Expansion Mask Substrates for EUV Lithography

    SciTech Connect

    Blaedel, K L; Taylor, J S; Hector, S D; Yan, P Y; Ramamoorthy, A; Brooker, P D

    2002-04-12

    Development of manufacturing infrastructure is required to ensure a commercial source of mask substrates for the timely introduction of EUVL. Improvements to the low thermal expansion materials that compose the substrate have been made, but need to be scaled to production quantities. We have been evaluating three challenging substrate characteristics to determine the state of the infrastructure for the finishing of substrates. First, surface roughness is on track and little risk is associated with achieving the roughness requirement as an independent specification. Second, with new flatness-measuring equipment just coming on line, the vendors are poised for improvement toward the SEMI P37 flatness specification. Third, significant acceleration is needed in the reduction of defect levels on substrates. The lack of high-sensitivity defect metrology at the vendors' sites is limiting progress in developing substrates for EWL.

  4. Design and testing of thermal-expansion-molded graphite-epoxy hat-stiffened sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1989-01-01

    Minimum weight configurations for two types of graphite-epoxy hat-stiffened compression-loaded panels fabricated by the thermal-expansion-molding (TEM) manufacturing process were evaluated analytically and experimentally for designs with load index Nx/L values ranging from 100 to 800. The two types of panels contain graphite-epoxy face sheets with a foam core and hat stiffeners which are either open or filled with foam. Constraints on the extensional and shear stiffnesses are imposed on the design so that the panels will satisfy typical constraints for aircraft wing structures. Optimal structurally efficient TEM panels are compared to commercially available aluminum aircraft structures. Predicted load-strain relationships agree well with experimental results. Significant impact damage to the unstiffened face sheet and foam core does not noticeably reduce the load carrying ability of the panels, but damage to the stiffened face sheet reduces the failure load by 20 percent compared to unimpacted panels.

  5. Negative Thermal Expansion in Hybrid Improper Ferroelectric Ruddlesden-Popper Perovskites by Symmetry Trapping

    NASA Astrophysics Data System (ADS)

    Senn, M. S.; Bombardi, A.; Murray, C. A.; Vecchini, C.; Scherillo, A.; Luo, X.; Cheong, S. W.

    2015-01-01

    We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3Mn2O7 and Ca3Ti2O7 . To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6 ×10-6 K-1 ) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients.

  6. Economical processing of fiber-reinforced components with thermal expansion molding

    NASA Technical Reports Server (NTRS)

    Schneider, K.

    1979-01-01

    The concept of economical fabrication of fiber-reinforced structural components is illustrated with an example of a typical control surface (aileron). The concept provides for fabricating struts, ribs, and a cover plate as an integral structure in a hardening device and then joining the closure cover plate mechanically. Fabrication of the integral structure is achieved by the 'thermal expansion molding' technique. The hardening pressure is produced by silicone rubber cores which expand under the influence of temperature. Test results are presented for several rubber materials as well as for various structural pieces. The technique is demonstrated extensively for an aileron, consisting of five ribs, struts, and a cover plate. Economically, for a large scale technical production of an aileron, cost savings of twenty-five percent can be realized compared to those for a sheet metal structure.

  7. Compositional dependence of anomalous thermal expansion in perovskite-like ABX3 formates.

    PubMed

    Collings, Ines E; Hill, Joshua A; Cairns, Andrew B; Cooper, Richard I; Thompson, Amber L; Parker, Julia E; Tang, Chiu C; Goodwin, Andrew L

    2016-03-14

    The compositional dependence of thermal expansion behaviour in 19 different perovskite-like metal-organic frameworks (MOFs) of composition [A(I)][M(II)(HCOO)3] (A = alkylammonium cation; M = octahedrally-coordinated divalent metal) is studied using variable-temperature X-ray powder diffraction measurements. While all systems show essentially the same type of thermomechanical response-irrespective of their particular structural details-the magnitude of this response is shown to be a function of A(I) and M(II) cation radii, as well as the molecular anisotropy of A(I). Flexibility is maximised for large M(II) and small A(I), while the shape of A(I) has implications for the direction of framework hingeing. PMID:26477747

  8. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  9. Influence of microstructural features on thermal expansion coefficient in graphene/epoxy composites.

    PubMed

    Shi, Zhan; Li, Xiao-Fei; Bai, Hua; Xu, Wei-Wei; Yang, Shui-Yuan; Lu, Yong; Han, Jia-Jia; Wang, Cui-Ping; Liu, Xing-Jun; Li, Wei-Bin

    2016-03-01

    In this paper, theoretical calculations were conducted to determine the coefficient of thermal expansion (CTE) based on the effective medium approach using Green's function method. The influences of microstructural features were investigated, including volume fraction, aspect ratio, and the orientation of graphene fillers. Calculated results demonstrated strong anisotropy of CTE when all graphene sheets in the composite were aligned in the in-plane direction due to the large difference between the elastic moduli of the graphene and epoxy. The in-plane CTE in the graphene/epoxy composite can be effectively reduced with small additions of graphene additive. Orientation dispersion among the graphene fillers significantly decreases the anisotropy of CTE. Accounting for the influences of all microstructural features, simulation results closely align with current experimental results. This work will provide a general guideline and a solid foundation for the optimal design and preparation of graphene/polymer composites. PMID:27441268

  10. Unglue bonding of glass/ceramic parts with ultralow coefficient of thermal expansion

    NASA Astrophysics Data System (ADS)

    Maslov, Vladimir P.; Sizov, Fiodor F.

    2004-09-01

    From the analysis of the known data and the results of investigations carried out, advantages and limitations of different methods of unglue bonding of glass-ceramic parts like Zerodur with ultra low coefficient of thermal expansion (CTE), are presented. It seems that by (quality-cost) criterion the solid-phase bonding of polished parts (SBPP) with the use of thin layer aluminum or its alloys to bond the ceramic optical parts is favorable. In optimal case the metal coatings for glass-ceramics bonding should be multilayer. The examples of SBPP bonding of glass-ceramic parts are presented which are close to strength characteristics of a monolith. It is shown that for bonding quality control the optical methods, including thermo-vision, can be applied.

  11. Young's modulus and thermal expansion of ceramic samples made from kaolin and zeolite

    NASA Astrophysics Data System (ADS)

    Sunitrová, Ivana; Trník, Anton

    2016-07-01

    In this study we investigate the dependence of Young's modulus, mass change, and thermal expansion of ceramic samples made from a varying amount of kaolin (100 - 50 %) and zeolite (0 - 50 %) on the firing temperature. The samples are fired in a furnace at different temperatures from room temperature up to 1100 °C with a heating rate of 5°C.min-1 and 5 min soaking time at the highest temperature. Afterwards, the samples are freely cooled down and their mass, dimensions and resonant frequency are measured at room temperature. The resonant frequency (from which Young's modulus is calculated) is measured using an apparatus based on the impulse excitation technique (IET). Young's modulus of green samples is the highest for the sample containing 10 mass% of zeolite (3.2 GPa). After sintering the sample with 50 mass% of zeolite has the highest value (11.3 GPa).

  12. A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions.

    PubMed

    Küchler, R; Stingl, C; Gegenwart, P

    2016-07-01

    Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm)(2). We describe design and performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system. PMID:27475567

  13. A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions

    NASA Astrophysics Data System (ADS)

    Küchler, R.; Stingl, C.; Gegenwart, P.

    2016-07-01

    Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm)2. We describe design and performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.

  14. Large isotropic negative thermal expansion above a structural quantum phase transition

    SciTech Connect

    Handunkanda, Sahan Uddika; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzman-Verri, Gian G.; Brierley, Richard; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes these systems interesting. Here we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3 and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic X-ray scattering as well as X-ray diffraction reveal that soft mode, central peak and thermal expansion phenomena are all strongly influenced by the transition.

  15. Large isotropic negative thermal expansion above a structural quantum phase transition

    NASA Astrophysics Data System (ADS)

    Handunkanda, Sahan U.; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzmán-Verri, Gian G.; Brierley, Richard T.; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom, which makes these systems interesting. Here, we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3, and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic x-ray scattering as well as x-ray diffraction reveal that soft mode, central peak, and thermal expansion phenomena are all strongly influenced by the transition.

  16. Dynamics of the negative thermal expansion in tellurium based liquid alloys.

    PubMed

    Otjacques, Céline; Raty, Jean-Yves; Coulet, Marie-Vanessa; Johnson, Mark; Schober, Helmut; Bichara, Christophe; Gaspard, Jean-Pierre

    2009-12-11

    Negative thermal expansion (NTE) in tellurium based liquid alloys (GeTe6 and GeTe12) is analyzed through the atomic vibrational properties. Using neutron inelastic scattering, we show that the structural evolution resulting in the NTE is due to a gain of vibrational entropy that cancels out the Peierls distortion. In the NTE temperature range, these competing effects give rise to noticeable changes in the vibrational density of states spectra. Additional first principles molecular dynamics simulations emphasize the role of the temperature dependance of the Ge atomic environment in this mechanism. For comparison, we extended our study to Ge2Sb2Te5 and Ge1Sb2Te4 phase-change materials. PMID:20366211

  17. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  18. Measurement of thermal expansion coefficients of materials based on Nd:YVO4 laser feedback systems

    NASA Astrophysics Data System (ADS)

    Ding, Yingchun; Zheng, Fasong; Lin, Jing; Tan, Yidong

    2015-07-01

    The noncooperative and high sensitivity optical displacement measurement technology is very relevant to the study and the determination of high-precision thermal expansion coefficients (TECs) of materials. This paper describes a measurement technology based on Nd:YVO4 laser feedback systems, which can realize fully non- contact measurement of many kinds of materials with surface reflectivity greater than 10-5. A muffle furnace is designed with two coaxial holes opened on the opposite furnace walls. This length determination technique is based on the frequency-shifted optical feedback effects and the heterodyne phase measurement technique. For validation, the samples are determined in the temperature range 298 to 748K, confirming high sensitivity non- contact measurement of the materials and demonstrating TEC-measurement capabilities with uncertainties in the range of 10-7 or less.

  19. Solid solubility and thermal expansion studies of uranium-europium mixed oxides

    NASA Astrophysics Data System (ADS)

    Venkata Krishnan, R.; Jogeswararao, G.; Panneerselvam, G.; Antony, M. P.; Ananthasivan, K.

    2015-10-01

    Uranium-europium mixed oxides (U1-yEuy)O2-x (y = 0.2, 0.4, 0.6, 0.65, 0.7, 0.75, 0.8) were prepared by citrate gel-combustion synthesis and characterized by using X-ray diffraction (XRD). The terminal solid solubility of EuO1.5 in UO2 is in the composition range 60-65 mol% EuO1.5. The coefficients of thermal expansions at 1973 K for (U1-yEuy)O2-x (y = 0.2, 0.4, 0.6) measured by using high-temperature X-ray diffraction (HTXRD) were found to be 15.80, 14.81 and 14.30 × 10-6 K-1 respectively.

  20. High thermal expansion sealing glass for use in radio frequency applications

    DOEpatents

    Kilgo, Riley D.; Brow, Richard K.; Kovacic, Larry

    1999-01-01

    The present invention provides a glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, and copper alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 4 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5, B.sub.2 O.sub.3 in a concentration not exceeding 10 mole percent, and MXO in a concentration not exceeding 12 mole percent, wherein MXO is a metal oxide selected from the group consisting of PbO, BaO, CaO and MgO or a mixture thereof. This composition is suitable to hermetically seal to components for use in RF-interconnection applications.

  1. Transverse Coefficient of Thermal Expansion Measurements of Carbon Fibers Using ESEM at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ochoa, O.; Jiang, J.; Putnam, D.; Lo, Z.; Ellis, A.; Effinger, Michael

    2003-01-01

    The transverse coefficient of thermal expansion (CTE) of single IM7, T1000, and P55 carbon fibers are measured at elevated temperatures. The specimens are prepared by press-fitting fiber tows into 0.7mm-diameter cavity in a graphite disk of 5mm in diameter and 3mm high. The specimens are placed on a crucible in an ESEM, and images of the fiber cross section are taken as the fibers are heated up to 800 C. Holding time, heating and cool down cycles are also introduced. The geometrical changes are measured using a graphics tablet. The change in area/perimeter is calculated to determine the strain and transverse CTE for each fiber. In a complimentary computational effort, displacements and stresses are calculated with finite element models.

  2. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping.

    PubMed

    Senn, M S; Bombardi, A; Murray, C A; Vecchini, C; Scherillo, A; Luo, X; Cheong, S W

    2015-01-23

    We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3 Mn2O7 and Ca3Ti2O7. To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6×10^(-6)  K^{-1}) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients. PMID:25659007

  3. Hwange thermal power plant expansion: Project document, Volume 1. Export trade information

    SciTech Connect

    1996-01-30

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report shows the results of a feasibility study done to investigate the expansion of Hwange Coal Fired Thermal Power Station Stage III as an option to meet the future electric power requirements of ZESA. The study contains the objectives and approach, study basis and summary of conclusions and recommendations for power, least-cost capacity, as well as project description and implementation. This is Volume 1 of a two-volume report. It is divided into the following sections: (1) Executive Summary; (2) System Development Plan; (3) Preliminary Design; (4) Environmental Assessment; (5) Cost Estimate and Schedule Update; (6) Financial Analysis and Plan; (7) Reference Documents.

  4. The Coefficients of Thermal Expansion of Boron Arsenide (B12As2) Between 25 C and 850 C

    SciTech Connect

    Whiteley, Clinton E.; Kirkham, Melanie J; Edgar, J H

    2013-01-01

    The semiconductor boron arsenide has a high 10B density, a wide bandgap, and a high melting temperature, all of which make it an interesting candidate for high-temperature electronic devices and radiation detectors. The present investigation was undertaken to determine the coefficients of thermal expansion for boron arsenide. B12As2 powder was synthesized from boron and arsenic heated in a sealed quartz ampoule at 1100 C for 72 hrs with excess boron. Using high temperature X-ray diffraction (HTXRD) between 25 C and 850 C, the average lattice coefficients of thermal expansion were measured perpendicular and parallel to the <111> axis in the rhombohedral setting (equivalent to the a and c axes in the hexagonal setting): 4.9x10-6 K-1 and 5.3x10-6 K-1, respectively. The average unit cell volumetric coefficient of thermal expansion was determined to be 1.5x10-5 K-1.

  5. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14).

    PubMed

    Wu, Yue; Peterson, Vanessa K; Luks, Emily; Darwish, Tamim A; Kepert, Cameron J

    2014-05-12

    Metal-organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single-crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF-14) and find that it exhibits an anomalously large NTE effect. Temperature-dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF-14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low-energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE. PMID:24692065

  6. Size- and temperature-dependent Young's modulus and size-dependent thermal expansion coefficient of thin films.

    PubMed

    Zhou, Xiao-Ye; Huang, Bao-Ling; Zhang, Tong-Yi

    2016-08-21

    Nanomaterials possess a high surface/volume ratio and surfaces play an essential role in size-dependent material properties. In the present study, nanometer-thick thin films were taken as an ideal system to investigate the surface-induced size- and temperature-dependent Young's modulus and size-dependent thermal expansion coefficient. The surface eigenstress model was further developed with the consideration of thermal expansion, leading to analytic formulas of size- and temperature-dependent Young's modulus, and size-dependent thermal expansion coefficient of thin films. Molecular dynamics (MD) simulations on face-centered cubic (fcc) Ag, Cu, and Ni(001) thin films were conducted at temperatures ranging from 300 K to 600 K. The MD simulation results are perfectly consistent with the theoretical predictions, thereby verifying the theoretical approach. The newly developed surface eigenstress model will be able to attack similar problems in other types of nanomaterials. PMID:27426852

  7. Phonon and thermal expansion properties in Weyl semimetals MX (M = Nb, Ta; X = P, As): ab initio studies.

    PubMed

    Chang, Dahu; Liu, Yaming; Rao, Fengfei; Wang, Fei; Sun, Qiang; Jia, Yu

    2016-06-01

    Weyl semimetal (WSM) is a new type of topological quantum material for future spintronic devices. Using the first-principles density functional theory, we systematically investigated the thermal expansion properties, and the temperature dependence of isovolume heat capacity and bulk modulus in WSMs MX (M = Nb, Ta; X = P, As). We also presented the phonon dispersion curves and its variation under stress in MX and the anisotropic thermal expansion properties due to the anisotropic crystal structure in WSMs have been predicted in our calculations. Intriguing, we found that the heat capacities increase more rapidly with increasing temperature in the low temperature region for all MX. Furthermore, our results showed that the thermal expansion properties are determined mainly by the isovolume heat capacity at low temperatures, while the bulk modulus has the major effect at high temperatures. These results are useful for applications of WSMs in electronic and spintronic devices. PMID:27174542

  8. Anisotropic thermal expansion effects in plasma-sprayed ZrO2-8 percent Y2O3 coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Herman, H.

    1983-01-01

    The thermal expansion properties of plasma-sprayed ZrO2-8-wt pct Y2O3 coatings, detached from the substrate, have been examined. Coatings were heat-treated in air or in argon. Anisotropic effects in the longitudinal (planar to the substrate surface) and transverse (perpendicular to the substrate surface) directions were measured and related to the coating structure. The thermal expansion coefficient of the coating is discussed in terms of the material's properties, such as the crack network and interlamellar boundary distribution. A precise model for the expansion behavior of coatings still needs attention, since no description of all of the contributing variables exists. A quantitative analysis of thermal properties of coatings will aid in future design and modeling of coating systems.

  9. The Effect of Compositional Tailoring on the Thermal Expansion and Tribological Properties of PS300: A Solid Lubricant Composite Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Fellenstein, J. A.

    1996-01-01

    This paper describes a research program in which the goal is to alter the thermal expansion coefficient of a composite solid lubricant coating, PS300, by compositional tailoring. PS300 is a plasma sprayed coating consisting of chrome oxide, silver and barium fluoride/calcium fluoride eutectic in NiCr binder. By adjusting the composition, the thermal expansion coefficient can be altered, and hence chosen, to more closely match a selected substrate preventing coating spallation at extreme temperatures. Thermal expansion coefficients (CTE) for a variety of compositions were measured from 25 to 800 C using a commercial dilatometer. The CTE's ranged from 7.0 to 13 x lO(exp -6)/deg C depending on the binder content. Subsequent tribological testing of a modified composition indicated that friction and wear properties were relatively insensitive to compositional tailoring.

  10. Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.

    1994-01-01

    In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.

  11. Polymorphism, phase transitions, and thermal expansion of K3Lu(PO4)2

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A; Chakoumakos, Bryan C; Rawn, Claudia J.; Mandrus, D.; Bryan, Jeff C.

    2014-01-01

    Alkali rare-earth double phosphates have been studied for use as long-wavelength scintillators for -ray detection using Si photodiodes. Single-crystal and powder x-ray diffraction (XRD) and powder neutron diffraction have been used to study the structure as a function of temperature. K3Lu(PO4)2 crystallizes with a hexagonal unit cell at room temperature, space group P 3. The Lu ion is six-coordinated to the oxygen atoms of the phosphate groups. Two lower-temperature phases were characterized using single-crystal XRD and powder neutron diffraction. The first transition occurs at 230 K with a transformation to a monoclinic P21/m space group symmetry, and the Lu retains six coordination. The second phase transition occurs at 130 K, with a large change in the cell volume, keeping the same P21/m space group symmetry; however, one of the phosphate groups rotates to increase the coordination of the Lu ion to seven. This is an unusual example of an isosymmetric phase transition with a coordination change, driven by temperature. High-temperature powder neutron diffraction and high-temperature powder XRD have been used to study the thermal expansion of K3Lu(PO4)2 and indicate a large thermal expansion anisotropy. The crystallographic axes with largest changes account for the structural collapse, which rotates the phosphate group to increase the Lu coordination. The lowest temperature form of K3Lu(PO4)2 is the same as the room temperature form for all the lighter RE compounds of the same type, which is not surprising, given the lighter (larger) RE ions would prefer a higher coordination number.

  12. Thermal expansion of iron-rich alloys and implications for the Earth's core

    PubMed Central

    Chen, Bin; Gao, Lili; Funakoshi, Ken-ichi; Li, Jie

    2007-01-01

    Understanding the thermal–chemical state of the Earth's core requires knowledge of the thermal expansion of iron-rich alloys at megabar pressures and high temperatures. Our survey of literature revealed a significant lack of such data. We have determined the unit-cell parameters of the iron–sulfur compound Fe3S by using synchrotron x-ray diffraction techniques and externally heated diamond–anvil cells at pressures up to 42.5 GPa and temperatures up to 900 K. The zero-pressure thermal expansivity of Fe3S is determined in the form α = a1 + a2T, where a1 = 3.0 ± 1.3 × 10−5 K−1 and a2 = 2.8 ± 1.5 × 10−8 K−2. The temperature dependence of isothermal bulk modulus (∂KT,0/∂T)P is estimated at −3.75 ± 1.80 × 10−2 GPa K−1. Our data at 42.5 GPa and 900 K suggest that ≈2.1 at. % (1.2 wt. %) sulfur produces 1% density deficit in iron. We have also carried out energy-dispersive x-ray diffraction measurements on pure iron and Fe0.864Si0.136 alloy samples that were placed symmetrically in the same multianvil cell assemblies, using the SPring-8 synchrotron facility in Japan. Based on direct comparison of unit cell volumes under presumably identical pressures and temperatures, our data suggest that at most 3.2 at. % (1.6 wt. %) silicon is needed to produce 1% density deficit with respect to pure iron. PMID:17446274

  13. Thermal expansion characteristics of light-cured dental resins and resin composites.

    PubMed

    Sideridou, Irini; Achilias, Dimitris S; Kyrikou, Eleni

    2004-07-01

    The thermal expansion characteristics of dental resins prepared by light-curing of Bis-GMA, TEGDMA, UDMA, Bis-EMA(4) or PCDMA dimethacrylate monomers and of commercial light-cured resin composites (Z-100 MP, Filtek Z-250, Sculpt-It and Alert), the organic matrix resin of which is based on different combinations of the above monomers, were studied by thermomechanical analysis (TMA). This study showed the existence of a glass transition temperature at around 35-47 degrees C for the resins and 40-45 degrees C for the composites; then the coefficient of linear thermal expansion (CLTE) was calculated at the temperature intervals 0-60 degrees C, 0-T(g) and T(g)-60 degrees C. The CLTE values of Bis-GMA, TEGDMA and UDMA resins are similar and lower than those of Bis-EMA (4) and PCDMA resins. The CLTE values of the composites indicated that the major factor that affects the CLTE of a composite is the filler content, but it also seems to be affected by the chemical structure of the matrix resin. TMA on water-saturated samples showed that water desorption takes place during the measurement and that the residual water acts as a plasticizer decreasing the T(g) and increasing the CLTE values. Furthermore, TMA on post-heated samples for 1, 3 or 6h showed, only for the resins, an initial decrease of CLTE and increase of the T(g) after 1h that was not significantly changed after 6h of heating. PMID:14967543

  14. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  15. Role of acoustic phonons in the negative thermal expansion of layered structures and nanotubes based on them

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Sirenko, A. F.; Sirenko, V. A.; Dolbin, A. V.; Gospodarev, I. A.; Syrkin, E. S.; Feodosyev, S. B.; Bondar, I. S.; Minakova, K. A.

    2016-05-01

    Calculations on a microscopic level are used to explain the experimentally observed negative linear thermal expansion along some directions in a number of crystalline compounds with complicated lattices and anisotropic interactions between atoms. Anomalies in the temperature dependence of the coefficient of linear thermal expansion are analyzed in layered crystals made up of monatomic layers (graphite and graphene nanofilms) and multilayer "sandwiches" (transition metal dichalcogenides), in multilayered crystal structures such as high-temperature superconductors where the anisotropy of the interatomic interactions is not conserved in the long-range order, and in graphene nanotubes. The theoretical calculations are compared with data from x-ray, neutron diffraction, and dilatometric measurements.

  16. Diverging thermal expansion of the spin-ladder system (C5H12N)2CuBr4.

    PubMed

    Lorenz, T; Heyer, O; Garst, M; Anfuso, F; Rosch, A; Rüegg, Ch; Krämer, K

    2008-02-15

    We present high-resolution measurements of the c(*)-axis thermal expansion and magnetostriction of piperidinium copper bromide (C5H12N)2CuBr4. The experimental data at low temperatures are well accounted for by a two-leg spin-ladder Hamiltonian. The thermal expansion shows a complex behavior with various sign changes and approaches a 1/square root T divergence at the critical fields. All low-temperature features are semiquantitatively explained within a free-fermion model; full quantitative agreement is obtained with quantum Monte Carlo simulations. PMID:18352512

  17. Thermal expansion of the Paintbrush tuff recovered from borehole USW SD-12 at pressures 30 MPa: Data report

    SciTech Connect

    Martin, R.J.; Noel, J.S.; Boyd, P.J.; Riggins, M.; Price, R.H.

    1997-09-01

    Experimental results are presented for 24 thermal expansion experiments performed on 5 welded specimens of the Paintbrush tuff recovered from borehole USW SD-12 at Yucca Mountain, Nevada. The thermal expansion experiments were performed at constant confining pressures between 1 and 30 MPa. On three specimens, the highest confining pressure measurements were performed first to inhibit thermally induced damage which might occur at lower confining pressures. At each confining pressure two complete thermal cycles were performed. The specimens were heated (to a nominal temperature of 250 C) and cooled at the nominal rate of 0.319 C per minute. The change in specimen length as a function of temperature was measured with two linear variable displacement transducers mounted on endcaps secured to the specimen. The strain increases with increasing temperature and the strain vs temperature curves are concave upward. On cooling, there is hysteresis at the higher temperatures at all confining pressures. The first heating/cooling cycle is anomalous; hysteresis is pronounced, and a permanent shortening of the specimen is observed at the termination of the cycle. The magnitude of the effect was similar for all five specimens regardless of whether the first cycle was carried out at the highest or lowest confining pressure. For subsequent cycles at all confining pressures, no permanent strain develops, and the strain versus temperature curves re very similar. The mean coefficients of thermal expansion ({alpha}) range from 7.9 to 10.8{sup {minus}6} C{sup {minus}1} at temperatures below 100 C, to 14.2 to 20.6 x 10{sup {minus}6} C{sup {minus}1} at temperatures approaching 250 C. The effect of confining pressure on thermal expansion is small. For temperatures above 175 C, the mean coefficients of thermal expansion decreases by 10--12% as the pressure increases from 1 to 30 MPa.

  18. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    NASA Astrophysics Data System (ADS)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  19. Thermal expansion of NaTi/sub 2/(PO/sub 4/)/sub 3/ studied by Rietveld method from x-ray diffraction data

    SciTech Connect

    Rodrigo, J.L.; Carrasco, P.; Alamo, J. )

    1989-05-01

    Previous disagreement about the thermal expansion of the rhombohedral compound, NZP-type, NaTi/sub 2/(PO/sub 4/)/sub 3/ is clarified. It is shown that thermal stresses affect the thermal expansion, but they relax after some time of storage. Its anisotropic thermal expansion, has been calculate from high temperature X-ray diffraction, and it is linear in the range from room temperature up to 800{sup 0}C. The predictability of thermal expansion and the tailoring of the composition of NZP ceramics require checking whether the thermal effect on the rotations and distortions of the atomic polyhedra in this structure is the responsible for the high anisotropy in the thermal expansion. This effect has been determined experimentally by solving the chemical structure at five different temperatures, applying the Rietveld method to deconvolute the powder X-ray diffraction profiles.

  20. Development of new nickel alloys with low coefficient of thermal expansion

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2004-10-01

    The present research is aimed at formulating low CTE nickel-base superalloys for use in the SOFC temperature range of 700 to 800C. Alloys based on the composition Ni-(12-22wt%)Cr were modified with W and Mo to lower CTE to on the order of 12 x 10-6 C-1. Mn was added to impart the formation of an outer Cr-Mn spinel, to minimize chrome vaporization. The reactive element Y was added in small amounts to enhance scale adhesion. Ingots were produced by Vacuum Induction Melting and Vacuum Arc Melting. The ingots were reduced to sheet by conventional thermal-mechanical processing. Linear variable differential transducer (LVDT) based dilatometer measurements were used to determine the thermal expansion of the alloys in accordance with ASTM standard E-228-85. Oxidation tests (in dry and wet air) were conducted at 750 and 800C to evaluate the corrosion resistance of the alloys. The results were compared to the behavior of Crofer 22APU and Haynes 230. Several of the custom alloys had CTEs in the useful range for interconnect application. Further, several compositions proved to be significantly more oxidation resistance than Crofer 22APU.

  1. Thermal Expansion of NANOPERM-type Alloys from In-situ X-ray Diffraction

    SciTech Connect

    Bednarcik, J.; Franz, H.; Miglierini, M.; Curfs, C.

    2010-07-13

    NANOPERM-type alloys with nominal compositions of (Fe{sub 1-x}Co{sub x}){sub 76}Mo{sub 8}Cu{sub 1}B{sub 15}(x = 0 and 0.5) were prepared by a single-roller melt-spinning technique. Temperature evolution of the as-quenched ribbons during constant-rate heating (10 degree sign C/min) was continuously followed using a high-energy (88 keV) X-ray diffraction (XRD), performed on the ID11 undulator beamline at the ESRF (Grenoble, France). Moessbauer spectroscopy and XRD confirm an amorphous nature of the melt-spun ribbons. Furthermore, Moessbauer spectroscopy reveals a significant change of magnetic state of the as-quenched precursors when substituting Fe by Co (x 0.5). Analyzing a series of XRD patterns in a reciprocal space yields a thermal expansion of the amorphous alloys providing an insight about the thermally activated effects such as relaxation and crystallization.

  2. Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques

    NASA Astrophysics Data System (ADS)

    De Strycker, M.; Schueremans, L.; Van Paepegem, W.; Debruyne, D.

    2010-10-01

    In this contribution it is investigated whether it is possible to measure the coefficient of thermal expansion (CTE) of steel with the aid of the digital image correlation (DIC) technique. DIC is first used to obtain reference values of the CTE of well-known steels (S235 and SS304) on simple geometries (rectangular blocks) within a low temperature interval (up to 120 °C). Although the strains that occur in this process are small, the CTE can be determined with good accuracy if enough images are available. The influence of the different parameters that control the correlation process showed no influence on the results. The values for the CTE are compared to available literature references and strain gauge measurements. The technique is extended to measure within a higher temperature interval (up to 600 °C), three-dimensional geometries (tubular samples), and a third material (SS409). It is shown that also in these cases, the results obtained are reliable. This contribution is part of a larger research effort predicting the residual stress in tubes coming from the welding process with finite element (FE) simulation. The goal of this research is therefore twofold: firstly obtaining the CTE in function of temperature, which can be used as input for the FE simulations; and secondly exploring the possibilities of measuring small thermal strains with DIC.

  3. Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Leviton, Douglas; Content, David

    2013-01-01

    Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta < 0.5 micrometers, the index of refraction decrease with a decrease in temperature (positive dn/dT). However, the situation was reversed for delta larger than 0.63 micrometers, where the index will increase with a decrease in temperature (negative dn/dT). We also measured the coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.

  4. Supramolecular interactions induced hinge-like motion of a metal-organic framework accompanied by anisotropic thermal expansion.

    PubMed

    Zhang, Lei; Kuang, Xiaofei; Wu, Xiaoyuan; Yang, Wenbin; Lu, Canzhong

    2014-05-21

    A novel three-dimensional metal-organic framework (MOF), Ag4(tpt)4{δ-[Mo8O26]}·1.5H2O (A) (tpt = 2,4,6-tris(4-pyridyl)-1,3,5-triazine), possesses a ths-type topology with the hinge deformation mode. The single-crystal X-ray diffraction study shows that A and the dehydrated phase Ag4(tpt)4{δ-[Mo8O26]} (B) display distinct anisotropic thermal expansion with expansion in the b direction but contraction in the ac plane. This rare area negative thermal expansion (NTE) behavior is attributed to the hinged structure model and the supramolecular interactions (argentophilic interaction, π-π interaction) that act as the microscopic driving forces. In addition, supramolecular interactions also play a key role in thermochromic behavior of compound A. PMID:24671278

  5. Real-time measuring system design and application of thermal expansion displacement during resistance spot welding process

    NASA Astrophysics Data System (ADS)

    Li, YongBing; Xu, Jun; Chen, GuanLong; Lin, ZhongQin

    2005-12-01

    Resistance spot welding (RSW) technology is the most important joining method in auto-body manufacturing. Quality of spot weld not only determines reliability and safety of cars, but also has an important influence on assembly variation of auto-body. Many welding quality parameters, such as welding current, electric resistance, electrode pressure, and thermal expansion displacement, had been proposed to monitoring and controlling spot weld quality, in which thermal expansion displacement was thought as a very promising method. But the measurement of dynamic displacement encounters many difficulties in measuring precision, measuring speed and sensor installation, which limit the usage of this method. This paper introduced a kind of laser displacement sensor made in OMRON to overcome the limitations of displacement measuring precision and measuring speed, and at the same time designed an ingenious fixture to mount the sensor to welding gun. Calibration experiments showed that the fixture reduced vibration introduced by pneumatic welding gun and interference between sensor and welding gun, and have a good linearity with standard clearance gauge. Based on this measuring system, dynamic thermal expansion displacement during RSW process was real-time monitored. Analysis found thermal expansion displacement can be used to real-time distinguish weld quality, such as small nugget, splash.

  6. Thermal Expansion of ZrO2-ZrW2O8 Composites Prepared Using Co-Precipitation Route

    NASA Astrophysics Data System (ADS)

    Liu, Hongfei; Zhang, Zhiping; Cheng, Xiaonong; Yang, Juan

    In this work, a series of ZrO2/ZrW2O8 ceramic composites with different amounts of ZrW2O8 were successfully prepared by calcining the precursors synthesized using co-precipitation route at 1150°C for 3 h. The X-ray diffraction (XRD) data confirmed that the composites only consisted of α-ZrW2O8 phase and m-ZrO2 phase. The scanning electron microscopy (SEM) analysis of the synthesized ZrO2/ZrW2O8 composites showed that the specimens had good mixed-uniformities. In addition, the thermal expansion coefficients of the composites decreased with increased amounts of negative thermal expansion ZrW2O8, specimen with 26wt% ZrW2O8 shows almost zero thermal expansion and its average thermal expansion coefficient is -0.5897×10-6K-1 in the temperature range from 30°C to 600°C.

  7. Thermal expansion of Ti{sub 5}Si{sub 3} with Ge, B, C, N, or O additions

    SciTech Connect

    Williams, J. J.; Kramer, M. J.; Akinc, M.

    2000-08-01

    The crystallographic thermal expansion coefficients of Ti{sub 5}Si{sub 3} from 20 to 1000 degree sign C as a function of B, C, N, O, or Ge content were measured by high-temperature x-ray diffraction using synchrotron sources at Cornell University (Cornell High Energy Synchrotron Source; CHESS) and Argonne National Laboratory (Advanced Photon Source; APS). Whereas the ratio of the thermal expansion coefficients along the c and a axes was approximately 3 for pure Ti{sub 5}Si{sub 3}, this ratio decreased to about 2 when B, C, or N atoms were added. Additions of O and Ge were less efficient at reducing this thermal expansion anisotropy. The extent by which the thermal expansion was changed when B, C, N, or O atoms were added to Ti{sub 5}Si{sub 3} correlated with their expected effect on bonding in Ti{sub 5}Si{sub 3}. (c) 2000 Materials Research Society.

  8. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    DOEpatents

    Anderson, Robert C.; Jones, Jack M.; Kollie, Thomas G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  9. A MODEL TO ESTIMATE VOLUME CHANGE DUE TO RADIOLYTIC GAS BUBBLES AND THERMAL EXPANSION IN SOLUTION REACTORS

    SciTech Connect

    F. SOUTO; A HEGER

    2001-02-01

    Aqueous homogeneous solution reactors have been proposed for the production of medical isotopes. However, the reactivity effects of fuel solution volume change, due to formation of radiolytic gas bubbles and thermal expansion, have to be mitigated to allow steady-state operation of solution reactors. The results of the free run experiments analyzed indicate that the proposed model to estimate the void volume due to radiolytic gas bubbles and thermal expansion in solution reactors can accurately describe the observed behavior during the experiments. This void volume due to radiolytic gas bubbles and fuel solution thermal expansion can then be used in the investigation of reactivity effects in fissile solutions. In addition, these experiments confirm that the radiolytic gas bubbles are formed at a higher temperature than the fuel solution temperature. These experiments also indicate that the mole-weighted average for the radiolytic gas bubbles in uranyl fluoride solutions is about 1 {micro}m. Finally, it should be noted that another model, currently under development, would simulate the power behavior during the transient given the initial fuel solution level and density. The model is based on Monte Carlo simulation with the MCNP computer code [Briesmeister, 1997] to obtain the reactor reactivity as a function of the fuel solution density, which, in turn, changes due to thermal expansion and radiolytic gas bubble formation.

  10. Akermanite: phase transitions in heat capacity and thermal expansion, and revised thermodynamic data.

    USGS Publications Warehouse

    Hemingway, B.S.; Evans, H.T., Jr.; Nord, G.L., Jr.; Haselton, H.T., Jr.; Robie, R.A.; McGee, J.J.

    1986-01-01

    A small but sharp anomaly in the heat capacity of akermanite at 357.9 K, and a discontinuity in its thermal expansion at 693 K, as determined by XRD, have been found. The enthalpy and entropy assigned to the heat-capacity anomaly, for the purpose of tabulation, are 679 J/mol and 1.9 J/(mol.K), respectively. They were determined from the difference between the measured values of the heat capacity in the T interval 320-365 K and that obtained from an equation which fits the heat-capacity and heat-content data for akermanite from 290 to 1731 K. Heat-capacity measurements are reported for the T range from 9 to 995 K. The entropy and enthalpy of formation of akermanite at 298.15 K and 1 bar are 212.5 + or - 0.4 J/(mol.K) and -3864.5 + or - 4.0 kJ/mol, respectively. Weak satellite reflections have been observed in hk0 single-crystal X-ray precession photographs and electron-diffraction patterns of this material at room T. With in situ heating by TEM, the satellite reflections decreased significantly in intensity above 358 K and disappeared at about 580 K and, on cooling, reappeared. These observations suggest that the anomalies in the thermal behaviour of akermanite are associated with local displacements of Ca ions from the mirror plane (space group P421m) and accompanying distortion of the MgSi2O7 framework.-L.C.C.

  11. Rigid unit modes in s p -s p2 hybridized carbon systems: Origin of negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woon; Kang, Seoung-Hun; Kwon, Young-Kyun

    2015-12-01

    Using density functional theory combined with quasiharmonic approximation, we investigate the thermal expansion behaviors of three different types (α ,β , and γ ) of graphyne, which is a two-dimensional carbon allotrope composed of s p and s p2 bonds. For each type of graphyne, we obtain the temperature dependent area variation by minimizing its free energy calculated by considering all the phonon modes in the whole Brillouin zone. We find that all three types of graphyne exhibit negative in-plane thermal expansion up to T ≲1000 K. The observed in-plane thermal contraction can be attributed partially to the ripple effect, similarly in graphene. The ripple effect itself, however, is not sufficient to explain the anomalously larger thermal contraction found in graphyne than in graphene. Our deliberate analysis on the phonon modes observed in graphyne enables us to reveal another source causing such thermal expansion anomaly. We find that there are particular phonon modes with frequencies of around a few hundreds of cm-1 existing exclusively in graphyne that may fill empty spaces resulting in area reduction. These modes are identified as "rigid unit modes" corresponding to the libration of each rigid unit composed of s p2 bonds.

  12. Cs3W3PO13: A Tungsten Phosphate with One-Dimensional Zigzag Tunnels Exhibiting Strongly Anisotropic Thermal Expansion.

    PubMed

    Gong, Pifu; Jiang, Xingxing; Yang, Yi; Luo, Siyang; Huang, Rongjin; Li, Laifeng; Chen, Chuangtian; Lin, Zheshuai

    2016-06-01

    A new tungsten phosphate, Cs3W3PO13, is synthesized using the high-temperature flux method. Cs3W3PO13 crystallizes in the space group Pnma and contains one-dimensional zigzag tunnels, which are found for the first time in tungsten phosphate. This highly anisotropic structural feature results in a very strong anisotropic thermal expansion, with thermal expansion coefficients of 14.15 ± 1.11 and 0.72 ± 0.22 M K(-1) along the a and b axes, respectively, over the temperature range from 13 to 270 K. In addition, thermal analysis, UV-vis-near-IR diffuse reflectance, and first-principles electronic structure calculations on Cs3W3PO13 are performed. PMID:27182930

  13. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    NASA Astrophysics Data System (ADS)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  14. Low thermal expansion material (LTEM) cleaning and optimization for extreme ultraviolet (EUV) blank deposition

    NASA Astrophysics Data System (ADS)

    Kadaksham, Arun J.; Teki, Ranganath; Godwin, Milton; House, Matt; Goodwin, Frank

    2013-04-01

    With the insertion of extreme ultraviolet lithography (EUVL) for high volume manufacturing (HVM) expected in the next few years, it is necessary to examine the performance of low thermal expansion materials (LTEMs) and assess industry readiness of EUV substrates. Owing to the high cost of LTEM, most of the development work so far has been done on fused silica substrates. Especially in developing cleaning technology prior to multilayer deposition, fused silica substrates have been used extensively, and defect trends and champion blank data have been reported using multilayer deposition data on fused silica substrates. In this paper, the response of LTEMs to cleaning processes prior to multilayer deposition is discussed. Cleaning processes discussed in this paper are developed using fused silica substrates and applied on LTEM substrates. The defectivity and properties of LTEM to fused silica are compared. Using the dense scan feature of the substrate inspection tool capable of detecting defects down to 35 nm SiO2 equivalent size and appropriate defect decoration techniques to decorate small defects on substrates to make them detectable, cleaning technologies that have the potential to meet high demands on LTEM for EUVL are developed and optimized.

  15. Frequency-Based Investigation of Charge Neutralization Processes and Thermal Cavity Expansion in Gyrotrons

    NASA Astrophysics Data System (ADS)

    Schlaich, Andreas; Wu, Chuanren; Pagonakis, Ioannis; Avramidis, Konstantinos; Illy, Stefan; Gantenbein, Gerd; Jelonnek, John; Thumm, Manfred

    2015-09-01

    During the first hundred milliseconds, the frequency and RF output power of long pulse operating gyrotrons undergo deterministic variation. This well-known behavior is caused by the thermal expansion of the cavity and internal electrostatic processes related to the ionization of residual gas. A macroscopic analytical investigation of the gas conditions in modern gyrotrons indicates that ionization processes are unlikely to influence the overall internal gas pressure. In combination with electrostatic potential considerations, it was found that the beam depression voltage is not fully neutralized; in the case of W7-X gyrotrons, a maximum value of about 60 % neutralization is expected, in conflict with the common assumption of full neutralization in steady state. Using experimentally measured frequency shifts and the Evridiki gyrotron interaction simulation code, a fitting process was employed to further investigate these effects. The results are in very good agreement with the theoretical predictions and allow a separation of the time constants of the two processes causing the frequency tuning.

  16. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure.

    PubMed

    Luo, Qiang; Garbarino, Gaston; Sun, Baoan; Fan, Dawei; Zhang, Yue; Wang, Zhi; Sun, Yajuan; Jiao, Jin; Li, Xiaodong; Li, Pengshan; Mattern, Norbert; Eckert, Jürgen; Shen, Jun

    2015-01-01

    The polyamorphsim in amorphous materials is one of the most fascinating topics in condensed matter physics. In amorphous metals, the nature of polyamorphic transformation is poorly understood. Here we investigate the structural evolution of a Ce-based metallic glass (MG) with pressure at room temperature (RT) and near the glass transition temperature by synchrotron X-ray diffraction, uncovering novel behaviours. The MG shows hierarchical densification processes at both temperatures, arising from the hierarchy of interatomic interactions. In contrast with a continuous and smooth process for the low- to medium-density amorphous state transformation at RT, a relatively abrupt and discontinuous transformation around 5.5 GPa is observed at 390 K, suggesting a possible weak first-order nature. Furthermore, both positive and abnormal-negative thermal expansion behaviours on medium-range order are observed in different pressure windows, which could be related to the low-energy vibrational motions and relaxation of the weakly linked solute-centred clusters. PMID:25641091

  17. Comparison of Low Coefficient of Thermal Expansion (CTE) Nickel Alloys Containing 12.5% Chromium

    SciTech Connect

    Alman, David E.; Jablonski, Paul D.

    2005-02-01

    Research aimed at formulating low CTE nickel-base superalloys for intermediate-temperature solid oxide fuel cells (SOFCs) is reported. Alloys based on the composition Ni-12.5wt % Cr were modified with either W or Mo to lower CTE to on the order of 12.5 x 10-6 C-1. Mn was added to impart the formation of an outer Cr-Mn spinel and thus minimize chromium vaporization in moist environments. Linear variable differential transducer (LVDT) based dilatometer measurements were used to determine the thermal expansion of the alloys in accordance with ASTM standard E-228-85. Characterisation was performed by XRD and EDS and the results compared to thermodynamic predictions. Oxidation tests (in dry and wet air) were conducted at 750 and 800°C. The results were compared to the behavior of a commercial Fe-22Cr (Crofer 22APU) and Ni-22Cr (Haynes 230) alloys. The oxidation resistance of the low CTE-alloys was intermediate between Crofer 22APU and Haynes 230.

  18. Melting and thermal expansion in the Fe-FeO system at high pressure

    SciTech Connect

    Seagle, C. T.; Heinz, D. L.; Campbell, A. J.; Prakapenka, V. B.; Wanless, S. T.

    2015-02-26

    Melting in the Fe–FeO system was investigated at pressures up to 93 GPa using synchrotron X-ray diffraction (XRD) and a laser heated diamond anvil cell (DAC). The criteria for melting were the disappearance of reflections associated with one of the end-member phases upon raising the temperature above the eutectic and the reappearance of those reflections on dropping the temperature below the eutectic. The Fe–FeO system is a simple eutectic at 50 GPa and remains eutectic to at least 93 GPa. The eutectic temperature was bound at several pressure points between 19 and 93 GPa, and in some cases the liquidus temperature was also determined. The eutectic temperature rises rapidly with pressure closely following the melting curve of pure Fe. A detailed phase diagram at 50 GPa is presented; the eutectic temperature is 2500 ± 150 K and the eutectic composition is bound between 7.6 ± 1.0 and 9.5 ± 1.0 wt.% O. The coefficient of thermal expansion of FeO is a strong function of volume and decreases with pressure according to a simple power law.

  19. Experimental Investigations of the Thermal Expansion of Solid SF6 and CHCl3

    NASA Astrophysics Data System (ADS)

    Sarwar, Ivan

    2001-10-01

    The absolute dilatometric study of the thermal expansion is carried out for the high temperature phase of solid SF6 and CHCl3 in the temperature range 85 - 170 K by the laser Michelson interferometric dilatometer. Experimental technique is described. From the comparison of results for the investigated samples and the solid xenon the quality analysis was carried out to investigate the influence of the phonon-rotational interaction in molecular crystals with different spherical symmetry to check performance of low corresponding states. Received results are in the good agreement with existing structure analysis X-ray data for SF6 [1]. It is found that with the temperature increase due to the growth of liberation amplitudes the additional effect has take place in comparison with solidified rare gases. Grunisen's constants for the solid SF6 were calculated. It is shown that these constants are the same as for solidified rare gases and weakly raise with the temperature in accordance to Max Born theory.

  20. Size effects on negative thermal expansion in cubic ScF3

    NASA Astrophysics Data System (ADS)

    Yang, C.; Tong, P.; Lin, J. C.; Guo, X. G.; Zhang, K.; Wang, M.; Wu, Y.; Lin, S.; Huang, P. C.; Xu, W.; Song, W. H.; Sun, Y. P.

    2016-07-01

    Scandium trifluoride (ScF3), adopting a cubic ReO3-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K-1100 K). Here, we report the size effects on the NTE properties of ScF3. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead, the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO3-type and other open-framework materials can be effectively adjusted by controlling the crystal size.

  1. Coefficient of Thermal Expansion of the Beta and Delta Polymorphs of HMX

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-01-11

    Dimensional changes related to temperature cycling of the {beta} and {delta} polymorphs of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are important for a variety of applications. The coefficient of thermal expansion (CTE) of the {beta} and {delta} phases are measured over a temperature range of -20 C to 215 C by thermo-mechanical analysis (TMA). Dimensional changes associated with the phase transition were also measured, and the time-temperature dependence of the dimensional change is consistent with phase transition kinetics measured earlier by differential scanning calorimetry (DSC). One HMX sample measured by TMA during its initial heating and again three days later during a second heating showed the {beta}-to-{delta} phase transition a second time, thereby indicating back conversion from {delta}-to-{beta} phase HMX during those three days. DSC was used to measure kinetics of the {delta}-to-{beta} back conversion. The most successful approach was to first heat the material to create the {delta} phase, then after a given period at room temperature, measure the heat absorbed during a second pass through the {beta}-to-{delta} phase transition. Back conversion at room temperature follows nucleation-growth kinetics.

  2. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction

    SciTech Connect

    Kuechler, R.; Bauer, T.; Brando, M.; Steglich, F.

    2012-09-15

    We describe the design, construction, calibration, and two different applications of a miniature capacitance dilatometer. The device is suitable for thermal expansion and magnetostriction measurements from 300 K down to about 25 mK, with a resolution of 0.02 A at low temperatures. The main body of the dilatometer is fabricated from a single block of a Be-Cu alloy by electrical discharge milling. This creates an extremely compact high-resolution measuring cell. We have successfully tested and operated dilatometers of this new type with the commonly used physical property measurement system by quantum design, as well as with several other cryogenic refrigeration systems down to 25 mK and in magnetic fields up to 20 T. Here, the capacitance is measured with a commercially available capacitance bridge. Using a piezoelectric rotator from Attocube Systems, the cell can be rotated at T= 25 mK inside of an inner vacuum chamber of 40 mm diameter. The miniaturized design for the one-axis rotation setup allows a rotation of 360 Degree-Sign .

  3. Effects of changes in composite lamina properties on laminate coefficient of thermal expansion

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.

    1992-01-01

    An analytical study of the effects of changes in composite lamina properties on the laminate coefficient of thermal expansion, CTE, has been made. Low modulus graphite/epoxy (T300/934) and high modulus graphite/epoxy (P75/934, P100/934, P120/934), graphite/aluminum (P100/Al), and graphite/glass (HMS/Gl) composite materials were considered in quasi-isotropic and near-zero CTE laminate configurations. The effects of changes in lamina properties on the laminate CTE strongly depend upon the type of composite material as well as the laminate configuration. A 10 percent change in the lamina transverse CTE resulted in changes as large as 0.22 ppm/C in the laminate CTE of a quasi-isotropic Gr/934 laminates. No significant differences were observed in the sensitivities of the laminate CTEs of the P100/934 and P120/934 composite materials due to identical changes in lamina properties. Large changes in laminate CTE can also result from measured temperature and radiation effects on lamina properties.

  4. Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Terrones, M.; Endo, M; Munoz-Sandoval, Emilio; Kim, Y A; Morelos-Bomez, Aaron; Vega-Diaz, Sofia

    2012-01-01

    We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N2 gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N2 molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS2, WS2, etc.

  5. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.

    PubMed

    Morelos-Gómez, Aarón; Vega-Díaz, Sofia Magdalena; González, Viviana Jehová; Tristán-López, Ferdinando; Cruz-Silva, Rodolfo; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Mi, Xi; Shi, Yunfeng; Sakamoto, Hirotoshi; Khoerunnisa, Fitri; Kaneko, Katsumi; Sumpter, Bobby G; Kim, Yoong Ahm; Meunier, Vincent; Endo, Morinobu; Muñoz-Sandoval, Emilio; Terrones, Mauricio

    2012-03-27

    We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N(2) gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN(x)-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N(2) molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS(2), WS(2), etc. PMID:22360783

  6. Dimensional errors in LIGA-produced metal structures due to thermal expansion and swelling of PMMA.

    SciTech Connect

    Kistler, Bruce L.; Dryden, Andrew S.; Crowell, Jeffrey A.W.; Griffiths, Stewart K.

    2004-04-01

    Numerical methods are used to examine dimensional errors in metal structures microfabricated by the LIGA process. These errors result from elastic displacements of the PMMA mold during electrodeposition and arise from thermal expansion of the PMMA when electroforming is performed at elevated temperatures and from PMMA swelling due to absorption of water from aqueous electrolytes. Both numerical solutions and simple analytical approximations describing PMMA displacements for idealized linear and axisymmetric geometries are presented and discussed. We find that such displacements result in tapered metal structures having sidewall slopes up to 14 {micro}m per millimeter of height for linear structures bounded by large areas of PMMA. Tapers for curved structures are of similar magnitude, but these structures are additionally skewed from the vertical. Potential remedies for reducing dimensional errors are also discussed. Here we find that auxiliary moat-like features patterned into the PMMA surrounding mold cavities can reduce taper by an order of magnitude or more. Such moats dramatically reduce tapers for all structures, but increase skew for curved structures when the radius of curvature is comparable to the structure height.

  7. Thermal expansion coefficients of a 30% glass fiber filled PEEK pyrotechnic charge holder

    SciTech Connect

    Donnelly, M.W.; Walters, R.R.; Miller, G.D.

    1985-01-01

    Pyrotechnic actuators use hollow cylindrical ceramic or plastic charge holders to electrically isolate the pyrotechnic charge from the actuator case. In a newly developed actuator, 30% glass fiber filled polyetheretherketone (PEEK) was selected as the charge holder material both for its strength and its forming properties. Because the actuators are exposed to significant temperature variations during storage and flight, a determination of the coefficient of thermal expansion, ..cap alpha.., of the charge holders was required to assure success in this, the first electroexplosive device application of PEEK. Of special interest in this project were the questions of whether ..cap alpha.. depends on the direction (with respect to flow in the mold) or on injection pressure. From the test results, the conclusions are: (1) ..cap alpha.. does depend on direction. Its value in the thickness direction is approximately twice that in either the height or circumferential direction. This is probably because the wall thickness, 0.015'', is less than the average fiber length, 0.100'', and the PEEK is, therefore, not acting as a composite in the t direction. (2) Varying the injection pressure over the range of this study has no detectable effect on ..cap alpha... This charge holder is molded into an Inconel actuator case with ..cap alpha.. = 11.4 ..mu..m/m.C. This relatively close match of ..cap alpha..'s between adjacent materials has resulted in no dimensional problems during manufacturing and environmental testing. 1 fig., 1 tab.

  8. Thermal Expansion of Three Closed Cell Polymeric Foams at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stokes, Eric

    2006-01-01

    The Space Shuttle External Tank (ET) contains the liquid H2 fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines (SSME) in the orbiter during lift-off and ascent. The ET thermal protection system consists of sprayed-on foam insulation and pre-molded ablator materials. The closed-cell foams are the external coating on the ET and are responsible for minimizing the amount of moisture that condenses out and freezes on the tank from the humid air in Florida while it is on the pad with cryogenic propellant awaiting launch. This effort was part of the overall drive to understand the behavior of these materials under use-conditions. There are four specially-engineered closed-cell foams used on the tank. The thermal expansion (contraction) of three of the polyurethane and polyisocyanurate foams were measured from -423 F (the temperature of liquid hydrogen) to 125 F under atmospheric conditions and under vacuum. One of them, NCFI 24-124, is a mechanically-applied material and covers the main acreage of the tank, accounting for 77 percent of the total foam used. Another, BX-265, is also a mechanically-applied and hand-sprayed material used on the tank's "closeout" areas. PDL 1034 is a hand-poured foam used for filling odd-shaped cavities in the tank, Measurements were made in triplicate in the three primary material directions in the case of the first two materials and the two primary material directions in the case of the last. Task 1 was developing the techniques for getting a uniform heating rate and minimizing axial and radial thermal gradients in the specimens. Temperature measurements were made at four locations in the specimens during this initial development phase of testing. Major challenges that were overcome include developing techniques for transferring the coolant, liquid helium (-452 F), from its storage container to the test facility with a minimal transfer of heat to the coolant and control of the heating

  9. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.

    PubMed

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-01-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420

  10. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    SciTech Connect

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.

  11. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    NASA Astrophysics Data System (ADS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X. G.

    2016-05-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices.

  12. Crystal structure and thermal expansion of a CsCe{sub 2}Cl{sub 7} scintillator

    SciTech Connect

    Zhuravleva, M.; Lindsey, A.; Chakoumakos, B.C.; Custelcean, R.; Meilleur, F.; Hughes, R.W.; Kriven, W.M.; Melcher, C.L.

    2015-07-15

    We used single-crystal X-ray diffraction data to determine crystal structure of CsCe{sub 2}Cl{sub 7}. It crystallizes in a P112{sub 1}/b space group with a=19.352(1) Å, b=19.352(1) Å, c=14.838(1) Å, γ=119.87(2)°, and V=4818.6(5) Å{sup 3}. Differential scanning calorimetry measurements combined with the structural evolution of CsCe{sub 2}Cl{sub 7} via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid–solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3×10{sup –6}/°C) with respect to the b and c axes (27.0×10{sup –6}/°C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe{sub 2}Cl{sub 7} bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion. - Graphical abstract: Three-dimensional quadric surface of thermal expansion coefficient of CsCe{sub 2}Cl{sub 7} at room temperature (sphere – isotropic) and near melting point (ellipsoid – anisotropic). - Highlights: • Crystal structure of CsCe{sub 2}Cl{sub 7} was solved through X-ray diffraction. • Linear coefficients of thermal expansion were determined from in-situ XRD in 25–650 °C. • Anisotropy of the a axis with respect to b and c axes (21.3 vs 27.0×10{sup –6}/°C) was found. • No solid–solid phase transitions were observed via XRD and thermal analysis.

  13. Effect of dynamic and thermal prehistory on aerodynamic characteristics and heat transfer behind a sudden expansion in a round tube

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Bogatko, T. V.

    2016-06-01

    The results of a numerical study of the influence of the thicknesses of dynamic and thermal boundary layers on turbulent separation and heat transfer in a tube with sudden expansion are presented. The first part of this work studies the influence of the thickness of the dynamic boundary layer, which was varied by changing the length of the stabilization area within the maximal extent possible: from zero to half of the tube diameter. In the second part of the study, the flow before separation was hydrodynamically stabilized and the thermal layer before the expansion could simultaneously change its thickness from 0 to D1/2. The Reynolds number was varied in the range of {Re}_{{{{D}}1 }} = 6.7 \\cdot 103 {{to}} 1.33 \\cdot 105 , and the degree of tube expansion remained constant at ER = (D 2/D 1)2 = 1.78. A significant effect of the thickness of the separated boundary layer on both dynamic and thermal characteristics of the flow is shown. In particular, it was found out that with an increase in the thickness of the boundary layer the recirculation zone increases and the maximal Nusselt number decreases. It was determined that the growth of the heat layer thickness does not affect the hydrodynamic characteristics of the flow after separation but does lead to a reduction of heat transfer intensity in the separation area and removal of the coordinates of maximal heat transfer from the point of tube expansion. The generalizing dependence for the maximal Nusselt number at various thermal layer thicknesses is given. Comparison with experimental data confirmed the main trends in the behavior of heat and mass transfer processes in separated flows behind a step with different thermal prehistories.

  14. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    PubMed

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-01

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  15. Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Huber, R.; Koch, M.; Feldmann, J.

    1998-10-01

    We investigate the transient thermal expansion of a scanning tunneling microscope tip after excitation with intense femtosecond laser pulses. The expansion dynamics are measured electrically by monitoring the time-resolved tunneling current and mechanically by use of an atomic force microscope. The tip expansion reaches values as high as 15 nm and exceeds the typical working distance of a scanning tunneling microscope by far. This results in a mechanical contact between tunneling tip and surface leading to surface modifications on a nanometer scale. Our findings clarify the mechanism of the recently proposed focusing of laser radiation in the near field of a tip technique [J. Jersch and K. Dickmann, Appl. Phys. Lett. 68, 868 (1996)] for nanostructuring.

  16. Jupiter's Thermal Structure on the Eve of Juno's Arrival and an NEB Expansion Event

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Orton, Glenn S.; Greathouse, Thomas K.; Sinclair, James; Giles, Rohini; Irwin, Patrick; Rogers, John; Encrenaz, Therese

    2016-04-01

    regular stratospheric wave pattern in stratospheric temperatures between 20 and 30°N (i.e., above the North Tropical Zone and Temperate Belt, NTropZ and NTB, respectively), possibly associated with the northward expansion of the broad North Equatorial Belt (NEB); (ii) tropospheric thermal variability along the NEB itself with correlations between aerosol variability in the 600-mbar region (sensed at 8.6 μm) and the 2-3 bar region (sensed at 5 μm). This appears to coincide with similar NEB and NTropZ wave structure observed in reflected sunlight near 2 μm, based on images from the SpeX instrument on the IRTF. Zonal mean distributions of temperature, phosphine, ammonia, aerosols and hydrocarbons will be compared to those derived by the Cassini Composite Infrared Spectrometer (CIRS) 15 years earlier. High-resolution VLT images of the Great Red Spot will be compared between 2008 and 2016 to understand the thermochemical changes associated with its recent shrinkage. All images and maps of retrieved properties will be assembled as a database (JCliD) to aid in the interpretation of Juno data during 2016-2017.

  17. Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations.

    PubMed

    Lock, Nina; Christensen, Mogens; Wu, Yue; Peterson, Vanessa K; Thomsen, Maja K; Piltz, Ross O; Ramirez-Cuesta, Anibal J; McIntyre, Garry J; Norén, Katarina; Kutteh, Ramzi; Kepert, Cameron J; Kearley, Gordon J; Iversen, Bo B

    2013-02-14

    Complementary experimental techniques and ab initio calculations were used to determine the origin and nature of negative thermal expansion (NTE) in the archetype metal-organic framework MOF-5 (Zn(4)O(1,4-benzenedicarboxylate)(3)). The organic linker was probed by inelastic neutron scattering under vacuum and at a gas pressure of 175 bar to distinguish between the pressure and temperature responses of the framework motions, and the local structure of the metal centers was studied by X-ray absorption spectroscopy. Multi-temperature powder- and single-crystal X-ray and neutron diffraction was used to characterize the polymeric nature of the sample and to quantify NTE over the large temperature range 4-400 K. Ab initio calculations complement the experimental data with detailed information on vibrational motions in the framework and their correlations. A uniform and comprehensive picture of NTE in MOF-5 has been drawn, and we provide direct evidence that the main contributor to NTE is translational transverse motion of the aromatic ring, which can be dampened by applying a gas pressure to the sample. The linker motion is highly correlated rather than local in nature. The relative energies of different framework vibrations populated in MOF-5 are suggested by analysis of neutron diffraction data. We note that the lowest-energy motion is a librational motion of the aromatic ring which does not contribute to NTE. The libration is followed by transverse motion of the linker and the carboxylate group. These motions result in unit-cell contraction with increasing temperature. PMID:23044752

  18. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation

    NASA Astrophysics Data System (ADS)

    Dove, Martin T.; Fang, Hong

    2016-06-01

    Negative thermal expansion (NTE) is the phenomenon in which materials shrink rather than expand on heating. Although NTE had been previously observed in a few simple materials at low temperature, it was the realisation in 1996 that some materials have NTE over very wide ranges of temperature that kick-started current interest in this phenomenon. Now, nearly two decades later, a number of families of ceramic NTE materials have been identified. Increasingly quantitative studies focus on the mechanism of NTE, through techniques such as high-pressure diffraction, local structure probes, inelastic neutron scattering and atomistic simulation. In this paper we review our understanding of vibrational mechanisms of NTE for a range of materials. We identify a number of different cases, some of which involve a small number of phonons that can be described as involving rotations of rigid polyhedral groups of atoms, others where there are large bands of phonons involved, and some where the transverse acoustic modes provide the main contribution to NTE. In a few cases the elasticity of NTE materials has been studied under pressure, identifying an elastic softening under pressure. We propose that this property, called pressure-induced softening, is closely linked to NTE, which we can demonstrate using a simple model to describe NTE materials. There has also been recent interest in the role of intrinsic anharmonic interactions on NTE, particularly guided by calculations of the potential energy wells for relevant phonons. We review these effects, and show how anhamonicity affects the response of the properties of NTE materials to pressure.

  19. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    SciTech Connect

    Yan, Fei; Wang, Chunming Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu

    2013-04-15

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ► It is a new process for the forming of GH909 alloy via laser welding. ► The forming mechanism of laser welding defects in GH909 has been studied. ► It may be a means to improve the efficiency of aircraft engine production.

  20. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.

    PubMed

    Tallentire, Sarah E; Child, Felicity; Fall, Ian; Vella-Zarb, Liana; Evans, Ivana Radosavljević; Tucker, Matthew G; Keen, David A; Wilson, Claire; Evans, John S O

    2013-08-28

    We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 < x < 1), whose isotropic thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material. PMID:23895493

  1. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated thermal expansion measurements could not be determined.

  2. Thermal lattice expansion effect on reactive scattering of H2 from Cu(111) at T(s) = 925 K.

    PubMed

    Mondal, Arobendo; Wijzenbroek, Mark; Bonfanti, Matteo; Díaz, Cristina; Kroes, Geert-Jan

    2013-09-12

    Surface phonons and surface temperature may have important effects on reactions of molecules at surfaces, and at present much remains unknown about these effects. A question addressed here, which has received little attention so far, is how reaction at elevated temperature is affected by thermal lattice expansion. To answer this question for the benchmark reaction of H2 and D2 with Cu(111), we have performed quantum and quasi-classical dynamics calculations. The specific reaction parameter (SRP) approach to density functional theory (DFT) has been used to compute the required six-dimensional potential energy surfaces (PES). Computed reaction probabilities and rotational quadrupole alignment parameters have been compared for surface temperatures Ts = 0 and 925 K. Surface thermal expansion of the lattice leads to a considerable decrease of reaction barrier heights and thereby to increased reaction probabilities as well as decreased rotational quadrupole alignment parameter values in associative desorption. PMID:23763274

  3. Competing orbital ordering in RVO{sub 3} compounds: High-resolution x-ray diffraction and thermal expansion

    SciTech Connect

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-11-15

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO{sub 3} compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO{sub 6} octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains.

  4. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (AO 138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1991-01-01

    The experiment objectives are: to detect a variation of the coefficient of thermal expansion (CTE) of composite samples; to detect an evolution of mechanical properties; to compare the behavior of two epoxy resins. The CTE is measured by interferometric method in a vacuum chamber. The following mechanical tests are achieved on the samples: interlaminar shear strength; flexural strength; flatwise tensile strength. The results are reported.

  5. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.

    PubMed

    Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L

    2012-12-19

    Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes. PMID:23174851

  6. Temperature-dependent thermal expansion of cast and hot-pressed LAST (Pb-Sb-Ag-Te) thermoelectric materials

    SciTech Connect

    Ren, Fei; Hall, Bradley D.; Case, Eldon D; Timm, Edward J; Trejo, Rosa M; Meisner, Roberta Ann; Lara-Curzio, Edgar

    2009-01-01

    The thermal expansion for two compositions of cast and hot-pressed LAST (Pb Sb Ag Te) n-type thermoelectric materials has been measured between room temperature and 673K via thermomechanical analysis (TMA). In addition, using high-temperature X-ray diffraction (HT-XRD), the thermal expansion for both cast and hot-pressed LAST materials was determined from the temperature-dependent lattice parameters measured between room temperature and 623 K. The TMA and HT-XRD determined values of the coefficient of thermal expansion (CTE) for the LAST compositions ranged between 20106K1 and 24106K1, which is comparable to the CTE values for other thermoelectric materials including PbTe and Bi2Te3. The CTE of the LAST specimens with a higher Ag content (Ag0.86Pb19Sb1.0Te20) exhibited a higher CTE value than that of the LAST material with a lower Ag content (Ag0.43Pb18Sb1.2Te20). In addition, a peak in the temperature-dependent CTE was observed between room temperature and approximately 450K for both the cast and hot-pressed LAST with the Ag0.86Pb19Sb1.0Te20 composition, whereas the CTE of the Ag0.43Pb18Sb1.2Te20 specimen increased monotonically with temperature.

  7. Phonons, nature of bonding, and their relation to anomalous thermal expansion behavior of M2O (M = Au, Ag, Cu)

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.; Rols, S.

    2014-03-01

    We report a comparative study of the dynamics of Cu2O, Ag2O, and Au2O (i.e., M2O with M = Au, Ag, and Cu) using first principle calculations based on the density functional theory. Here, for the first time, we show that the nature of chemical bonding and open space in the unit cell are directly related to the magnitude of thermal expansion coefficient. A good match between the calculated phonon density of states and that derived from inelastic neutron scattering measurements is obtained for Cu2O and Ag2O. The calculated thermal expansions of Ag2O and Cu2O are negative, in agreement with available experimental data, while it is found to be positive for Au2O. We identify the low energy phonon modes responsible for this anomalous thermal expansion. We further calculate the charge density in the three compounds and find that the magnitude of the ionic character of the Ag2O, Cu2O, and Au2O crystals is in decreasing order, with an Au-O bond of covalent nature strongly rigidifying the Au4O tetrahedral units. The nature of the chemical bonding is also found to be an important ingredient to understand the large shift of the phonon frequencies of these solids with pressure and temperature. In particular, the quartic component of the anharmonic term in the crystal potential is able to account for the temperature dependence of the phonon modes.

  8. Structure and negative thermal expansion in the PbTiO3-BiFeO3 system

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xing, X. R.; Liu, G. R.; Li, J. H.; Liu, Y. T.

    2006-09-01

    The structures of (1-x)PbTiO3-xBiFeO3 (x =0.3 and 0.6) were investigated by means of the neutron powder diffraction. A splitting shift between Fe and Ti atoms was found along the c axis in 0.7PbTiO3-0.3BiFeO3; however, this splitting does not appear in 0.4PbTiO3-0.6BiFeO3. The tetragonal phase of PbTiO3-BiFeO3 exhibits a large spontaneous polarization. The negative thermal expansion of PbTiO3 is significantly enhanced in a wide temperature range by the BiFeO3 substitution. The average bulk thermal expansion coefficient of 0.4PbTiO3-0.6BiFeO3 is a¯v=-3.92×10-5°C-1, which is much strong in the known negative thermal expansion oxides.

  9. Thermal expansion measurements of high-temperature carbon/carbon materials from room temperature to 3,000 K

    SciTech Connect

    Eldridge, E.A.

    1988-03-01

    The thermal expansion of carbon/carbon material has been measured in 3,000 K using a variety of methods. Coupon samples have been measured in a direct-view dilatometer and an automatic recording dilatometer. Cylindrical or hoop samples, 5 to 50 cm in diameter, have been measured by a fiber-wrap technique. The direct-view or, as it sometimes referred to, the twintelemicroscope method is generally used when good accuracy is required for measurements to elevated temperatures. The change in length is observed with the use of telemicroscopes aligned on fiducial marks machined on opposite ends of the specimen. An Apple IIe computer controls the automatic recording dilatometer and also provides an output to an X-Y recorder, giving a continuous curve of thermal expansion percentage versus temperature through the range from RT to 300 K. Circumferential thermal expansion is defined as the change in the circumference per unit of initial circumference. The change in the circumference of the hoop is measured by wrapping the hoop with a graphite yarn and measuring the change in length with a linear variable different transformer.

  10. Thermal Expansion of Sintered Glass Ceramics in the System BaO-SrO-ZnO-SiO2 and Its Dependence on Particle Size.

    PubMed

    Thieme, Christian; Schlesier, Martin; Bocker, Christian; Buzatto de Souza, Gabriel; Rüssel, Christian

    2016-08-10

    The thermal expansion behavior of sintered glass-ceramics containing high concentrations of Ba1-xSrxZn2Si2O7, a phase with very low and highly anisotropic thermal expansion behavior, was investigated. The observed phase has the crystal structure of the high-temperature phase of BaZn2Si2O7, which can be stabilized by the introduction of Sr(2+) into this phase. The high anisotropy leads to microcracking within the volume of the samples, which strongly affects the dilatometric thermal expansion. However, these cracks also have an influence on the nominal thermal expansion of the as-mentioned phase, which decreases if the cracks appear. Below a grain size of approximately 80 μm, the sintered glass-ceramics have almost no cracks and show positive thermal expansion. Hence, coefficients of thermal expansion between -5.6 and 6.5 × 10(-6) K(-1) were measured. In addition to dilatometric studies, the effect of the microstructure on the thermal expansion was also measured using in situ X-ray diffraction at temperatures up to 1000 °C. PMID:27433854

  11. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics

    NASA Astrophysics Data System (ADS)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-02-01

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (~300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m-1 K-1) and a low, silicon-like CTE (5.0 ppm K-1). The thermal conductivity was identical to that of Cu (400 W m-1 K-1) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ~10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described `matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low thermal

  12. The Holocene Thermal Maximum as a Time of Rapid Peat Accumulation and Peatland Expansion in Alaska

    NASA Astrophysics Data System (ADS)

    Jones, M. C.; Yu, Z.; Peteet, D. M.

    2009-05-01

    High latitudes are particularly sensitive to climate warming resulting from a number of important positive feedbacks, including increasing albedo from changing sea ice extent, snow and vegetation cover, and feedbacks to the carbon cycle. The fate of high latitude ecosystems and associated climate feedbacks in response to warming remains uncertain, particularly in boreal peatlands, which store roughly one-third of the global carbon pool. In order to understand how peatlands respond to climate warming, we examined Holocene carbon accumulation rates from four peatlands on the Kenai Peninsula, Alaska, focusing on the early Holocene (~11,000-9000 cal yr BP), a time when the climate was warmer than today. Basal dates from over 200 peat cores across Alaska were compiled to examine the timing and spatial distribution of peatland initiation across Alaska, and available pollen data from the North American Pollen Database (NAPD) and the Paleoenvironmental Arctic Sciences (PARCS) databases were used to examine associated vegetation distribution patterns. Our study reveals that the highest rates of carbon accumulation on the Kenai Peninsula occurred during the early Holocene Thermal Maximum (HTM), which also corresponds to the highest number of peat basal dates both on the Kenai and across Alaska, indicating that not only vertical peat growth but also lateral peatland expansion was high. We suggest that the warm summers and longer growing season during the early Holocene in Alaska resulted in high net primary productivity (NPP), rapid peat burial, and the greatest carbon accumulation rates. Rapid rates of accumulation and burial may have minimized the effects of aerobic decomposition. In addition, a change in the seasonal timing of precipitation and moisture availability and an increase in summer precipitation may have decreased drought stress, promoting peatland initiation and peat growth. We also speculate that the dominance of broad-leafed deciduous forests and abundant

  13. Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite.

    PubMed

    Panda, Manas K; Runčevski, Tomče; Sahoo, Subash Chandra; Belik, Alexei A; Nath, Naba K; Dinnebier, Robert E; Naumov, Panče

    2014-01-01

    The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α-ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10(-6)  K(-1)) with volumetric expansion coefficients (≈250 × 10(-6)  K(-1)) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10(4) times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. PMID:25185949

  14. Anisotropic thermal expansion and anharmonic phonon behavior of mullite-type Bi{sub 2}Ga{sub 4}O{sub 9}

    SciTech Connect

    Murshed, M. Mangir Gesing, Thorsten M.

    2013-09-01

    Graphical abstract: - Highlights: • Anisotropic lattice thermal expansion of Bi{sub 2}Ga{sub 4}O{sub 9} was modeled using extended Grüneisen first-order approximation. • The model includes harmonic, quasi-harmonic and intrinsic anharmonic contributions to the internal energy. • Temperature dependent Raman frequency shift and line-width was analyzed using symmetric phonon decay channel. - Abstract: We report the lattice thermal expansion and the temperature-dependent phonon behavior of the mullite-type Bi{sub 2}Ga{sub 4}O{sub 9} complex oxide. The thermal expansion was studied using composite data collected from powder and single crystal X-ray diffraction between 100 K and 1273 K. The lattice expansion occurred in the order of a < c < b. The anisotropic expansion behavior was monitored with respect to thermal expansion coefficients and the anisotropy factor. The volume thermal expansion was expressed using an extended Grüneisen first-order approximation to the zero-pressure equation of state; the model includes harmonic, quasi-harmonic and intrinsic anharmonic contributions to the internal energy as a function of temperature. The temperature dependent Raman spectra were collected from a single crystal between 78 K and 1273 K. The shift of the frequencies and the broadening of the line-widths with increasing temperature helped to analyze the anharmonicity and the thermal behavior of some phonons.

  15. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6.

    PubMed

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Jin, Shifeng; Chen, Xiaolong

    2015-01-01

    Borates are among a class of compounds that exhibit rich structural diversity and find wide applications. The formation of edge-sharing (es-) BO4 tetrahedra is extremely unfavored according to Pauling's third and fourth rules. However, as the first and the only es-borate obtained under ambient pressure, es-KZnB3O6 shows an unexpected high thermal stability up to its melting point. The origin of this extraordinary stability is still unclear. Here, we report a novel property in KZnB3O6: unidirectional thermal expansion, which plays a role in preserving es-BO4 from disassociation at elevated temperatures. It is found that this unusual thermal behavior originates from cooperative rotations of rigid groups B6O12 and Zn2O6, driven by anharmonic thermal vibrations of K atoms. Furthermore, a detailed calculation of phonon dispersion in association with this unidirectional expansion predicts the melting initiates with the breakage of the link between BO3 and es-BO4. These findings will broaden our knowledge of the relationship between structure and property and may find applications in future. PMID:26047175

  16. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6

    PubMed Central

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Jin, Shifeng; Chen, Xiaolong

    2015-01-01

    Borates are among a class of compounds that exhibit rich structural diversity and find wide applications. The formation of edge-sharing (es-) BO4 tetrahedra is extremely unfavored according to Pauling’s third and fourth rules. However, as the first and the only es-borate obtained under ambient pressure, es-KZnB3O6 shows an unexpected high thermal stability up to its melting point. The origin of this extraordinary stability is still unclear. Here, we report a novel property in KZnB3O6: unidirectional thermal expansion, which plays a role in preserving es-BO4 from disassociation at elevated temperatures. It is found that this unusual thermal behavior originates from cooperative rotations of rigid groups B6O12 and Zn2O6, driven by anharmonic thermal vibrations of K atoms. Furthermore, a detailed calculation of phonon dispersion in association with this unidirectional expansion predicts the melting initiates with the breakage of the link between BO3 and es-BO4. These findings will broaden our knowledge of the relationship between structure and property and may find applications in future. PMID:26047175

  17. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6

    NASA Astrophysics Data System (ADS)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Jin, Shifeng; Chen, Xiaolong

    2015-06-01

    Borates are among a class of compounds that exhibit rich structural diversity and find wide applications. The formation of edge-sharing (es-) BO4 tetrahedra is extremely unfavored according to Pauling’s third and fourth rules. However, as the first and the only es-borate obtained under ambient pressure, es-KZnB3O6 shows an unexpected high thermal stability up to its melting point. The origin of this extraordinary stability is still unclear. Here, we report a novel property in KZnB3O6: unidirectional thermal expansion, which plays a role in preserving es-BO4 from disassociation at elevated temperatures. It is found that this unusual thermal behavior originates from cooperative rotations of rigid groups B6O12 and Zn2O6, driven by anharmonic thermal vibrations of K atoms. Furthermore, a detailed calculation of phonon dispersion in association with this unidirectional expansion predicts the melting initiates with the breakage of the link between BO3 and es-BO4. These findings will broaden our knowledge of the relationship between structure and property and may find applications in future.

  18. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  19. Structure, phase transition, and controllable thermal expansion behaviors of Sc(2-x)Fe(x)Mo₃O₁₂.

    PubMed

    Wu, Meimei; Liu, Xinzhi; Chen, Dongfeng; Huang, Qingzhen; Wu, Hui; Liu, Yuntao

    2014-09-01

    The crystal structures, phase transition, and thermal expansion behaviors of solid solutions of Sc(2-x)Fe(x)Mo3O12 (0 ≤ x ≤ 2) have been examined using X-ray diffraction (XRD), neutron powder diffraction (NPD), and differential scanning calorimetry (DSC). At room temperature, samples crystallize in a single orthorhombic structure for the compositions of x < 0.6 and monoclinic for x ≥ 0.6, respectively. DSC results indicate that the phase transition temperature from monoclinic to orthorhombic structure is enhanced by increasing the Fe(3+) content. High-temperature XRD and NPD results show that Sc(1.3)Fe(0.7)Mo3O12 exhibits near zero thermal expansion, and the volumetric coefficients of thermal expansion derived from XRD and NPD are 0.28 × 10(-6) °C(-1) (250-800 °C) and 0.65 × 10(-6) °C(-1) (227-427 °C), respectively. NPD results of Sc2Mo3O12 (x = 0) and Sc(1.3)Fe(0.7)Mo3O12 (x = 0.7) indicate that Fe substitution for Sc induces reduction of the mean Sc(Fe)-Mo nonbond distance and the different thermal variations of Sc(Fe)-O5-Mo2 and Sc(Fe)-O3-Mo2 bond angles. The correlation between the displacements of oxygen atoms and the variation of unit cell parameters was investigated in detail for Sc2Mo3O12. PMID:25140828

  20. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  1. Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry.

    PubMed

    Pandharipande, Pranav P; Makhatadze, George I

    2015-04-01

    The main goal of this work was to provide direct experimental evidence that the expansivity of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry (PPC), can serve as a proxy to characterize relative compactness of proteins, especially the denatured state ensemble. This is very important as currently only small angle X-ray scattering (SAXS), intrinsic viscosity and, to a lesser degree, fluorescence resonance transfer (FRET) experiments are capable of reporting on the compactness of denatured state ensembles. We combined the expansivity measurements with other biophysical methods (far-UV circular dichroism spectroscopy, differential scanning calorimetry, and small angle X-ray scattering). Three case studies of the effects of conformational changes on the expansivity of polypeptides in solution are presented. We have shown that expansivity appears to be insensitive to the helix-coil transition, and appears to reflect the changes in hydration of the side-chains. We also observed that the expansivity is sensitive to the global conformation of the polypeptide chain and thus can be potentially used to probe hydration of different collapsed states of denatured or even intrinsically disordered proteins. PMID:25602591

  2. Habitability sleep accommodations

    NASA Technical Reports Server (NTRS)

    Fisher, H. T.

    1985-01-01

    Schematic outlines are presented with various design requirements for the accommodation of the spacecrew of Space Stations. The primary concern is for sleeping accommodations. Some other general requirements given are for a rest place, entertainment, dressing area, personal item stowage, body restraint, total privacy, external viewing, and grooming provisions. Several plans are given for sleep quarters concepts.

  3. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    SciTech Connect

    Zheng, Fasong; Tan, Yidong; Zhang, Shulian; Lin, Jing; Ding, Yingchun

    2015-04-15

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10{sup −6}(K{sup −1}) at the range of 298 K–598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K–748 K.

  4. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Zheng, Fasong; Tan, Yidong; Lin, Jing; Ding, Yingchun; Zhang, Shulian

    2015-04-01

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10-6(K-1) at the range of 298 K-598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K-748 K.

  5. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry.

    PubMed

    Zheng, Fasong; Tan, Yidong; Lin, Jing; Ding, Yingchun; Zhang, Shulian

    2015-04-01

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10(-6)(K(-1)) at the range of 298 K-598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K-748 K. PMID:25933843

  6. Sensitivity of the coefficients of thermal expansion of selected graphite reinforced composite laminates to lamina thermoelastic properties

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Funk, J. G.

    1992-01-01

    An analytical study of the sensitivity of the laminate coefficient of thermal expansion, CTE, to changes in lamina elastic properties has been made. High modulus graphite/epoxy (P75/934, P100/934, P120/934), graphite/aluminum (P100/Al), and graphite/glass (HMS/Gl) composite materials were considered in quasi-isotropic, low thermal stress, and 'near-zero' thermal expansion laminate configurations. The effects of a positive or negative 10 percent change in lamina properties on laminate CTE is strongly dependent upon both the composite material and the laminate configuration. A 10 percent change in all of the lamina properties had very little effect on the laminate CTE of the HMS/Gl composite laminates investigated. The sensitivity and direction of change in the laminate CTE of Gr/934 depended very strongly on the fiber properties. A 10 percent change in the lamina transverse CTE resulted in changes as large as 0.216 ppm/C in the laminate CTE of a quasi-isotropic Gr/934 laminate. No significant difference was observed in the sensitivity of the laminate CTE of the P100/934 and P120/934 composite materials due to changes in lamina properties. Large changes in laminate CTE can result from measured temperature and radiation effects on lamina properties.

  7. Lattice dynamics and thermal expansion behavior in the metal cyanides M CN (M =Cu , Ag, Au): Neutron inelastic scattering and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Singh, Baltej; Mittal, R.; Rols, S.; Chaplot, S. L.

    2016-04-01

    We report measurement of temperature dependence of phonon spectra in quasi-one-dimensional metal cyanides M CN (M =Cu , Ag, Au). Ab initio lattice dynamics calculations have been performed to interpret the phonon spectra as well as to understand the anomalous anisotropic thermal expansion behavior in these compounds. We bring out the differences in the phonon mode behavior to explain the differences in the thermal expansion behavior among the three compounds. The chain-sliding modes are found to contribute maximum to the negative thermal expansion along the "c " axis in the Cu and Ag compounds, while the same modes contribute to positive thermal expansion in the Au compound. Several low-energy transverse modes lead to positive thermal expansion in the a -b plane in all the compounds. The calculated Born-effective charges show that AuCN has a covalent nature of bonding, which results in least distortion as well as the least number of unstable modes among the three cyanides. This result is well correlated with the fact that the coefficient of negative thermal expansion along the c axis in AuCN is the smallest.

  8. Thermal Conductivities and Thermal Expansion Coefficients of (Sm0.5Gd0.5)2(Ce1- x Zr x )2O7 Ceramics

    NASA Astrophysics Data System (ADS)

    Hongsong, Zhang; Lei, Shi; Yongde, Zhao; Gang, Li; Zhenjun, Li

    2015-09-01

    The (Sm0.5Gd0.5)2(Ce1- x Zr x )2O7 oxides were prepared by solid-state reaction, and their phase compositions, microstructures, and thermophysical properties were investigated. Results of x-ray diffraction reveal that pure (Sm0.5Gd0.5)2(Ce1- x Zr x )2O7 oxides with fluorite structure are successfully synthesized in the current study. The thermal expansion coefficient decreases with increasing content of ZrO2, which is higher than that of 7 wt.% yttria-stabilized zirconia (YSZ). The substitution of Zr4+ for Ce4+ reduces the thermal conductivity of Sm2Ce2O7 oxide. The thermal conductivity decreases from 1.69 W/m K ( x = 0) to 1.22 W/m K ( x = 0.3) at 1000 °C. The composition with x = 0.3 exhibits the lowest thermal conductivity at all temperatures, and the thermal conductivity of (Sm0.5Gd0.5)2 (Ce1- x Zr x )2O7 ceramics was obviously lower than those of fully dense 7 wt.% YSZ. These results suggested promising potential applications of the (Sm0.5Gd0.5)2 (Ce1- x Zr x )2O7 ceramics for high-temperature thermal barrier coatings.

  9. Powder Neutron Diffraction Study of the Thermal Expansion of Mirabilite, Na2SO4.10H2O

    NASA Astrophysics Data System (ADS)

    Brand, H. E.; Fortes, A. D.; Wood, I. G.; Knight, K. S.; Vocadlo, L.

    2006-12-01

    The presence of salts such as MgSO4 and Na2SO4 in chondritic meteorites has led to the suggestion that the water-rich icy moons of the Gas Giant planets are likely to be dominated by multiply hydrated salts such as Fritzsche's salt (MgSO4.11H2O), epsomite (MgSO4.7H2O) and mirabilite (Na2SO4.10H2O). Moreover, hydrated sulfates are likely to be important rock-forming minerals and water storage reservoirs on Mars. When constructing models of icy moons to explore their structure and evolution, it is therefore extremely important to know the phase behaviour and physical properties of the constituent materials under the appropriate pressure and temperature regimes (0 < P < 5 GPa, and 100 < T < 300 K). We are therefore engaged in a programme of study to measure the physical characteristics of candidate materials using a combination of neutron diffraction and computational chemistry. Neutrons are powerful probes of low molecular-weight solids, hydrogen-bearing species in particular, and their penetrative power allows one to study materials even in complex sample environments, such as pressure cells and cryostats. In practice, we measure the variation in molar volume of a solid as a function of pressure and temperature; this leads to derivatives in P and T, such as thermal expansivity and compressibility. Furthermore, we can observe phase transitions in situ, and collect diffraction data which may lead to a successful solution of the new polymorph's structure. In this contribution, we present the results of work to investigate the structure and thermoelastic properties of mirabilite. We have determined the ambient pressure thermal expansion tensor and investigated the low- temperature structural disorder of deuterated mirabilite from 4 - 300K. The volume expansion is positive and this is echoed by the expansion of the a and c axes. However, the b axis shows a small negative thermal expansion below 50K. Very similar behaviour is seen in MgSO4.7H2O and MgSO4.11H2O (Fortes et

  10. Residual stresses and clamped thermal expansion in LiNbO3 and LiTaO3 thin films

    NASA Astrophysics Data System (ADS)

    Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Murauskas, T.; Boulet, P.; Margueron, S.; Gleize, J.; Robert, S.; Kubilius, V.; Saltyte, Z.

    2012-09-01

    Residual stresses in LiNbO3 and LiTaO3 epitaxial thin films were evaluated taking into account Li nonstoichiometry by means of Raman spectroscopy and x-ray diffraction. The epitaxial films were grown on C-cut sapphire substrates by pulsed injection metal organic chemical vapour deposition. Clamping of the epitaxial films by the substrate induced a transfer from the in plane thermal expansion to the out of plane component. The temperature of the phase transition of clamped LiTaO3 films was close to that expected for a bulk sample.

  11. Prediction of the Effective Coefficient of Thermal Expansion of Heterogeneous Media using Two-point Correlation Functions

    SciTech Connect

    Milhans, Jacqueline; Li, Dongsheng; Khaleel, Mohammad A.; Sun, Xin; Garmestani, Hamid

    2011-04-20

    Statistical continuum mechanics is used to predict the coefficient of thermal expansion (CTE) for solid oxide fuel cell glass-ceramic seal materials with different morphology and crystallinity. Two-point correlation functions are utilized to represent the microstructure morphology and phase distribution. The model uses two-point correlation function representing microstructure, along with local properties, to predict the effective CTE. Prediction results agree well with experimental results. The advantage of the statistical continuum mechanics model in predicting the effective properties of anisotropic media is to take into consideration of microstructure.

  12. Thermal expansion coefficients of ultralow-k dielectric films by cube corner indentation tests at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Vanstreels, Kris; Zahedmanesh, Houman; Hangen, Ude

    2015-12-01

    This paper demonstrates the use of cube corner indentation tests performed at elevated temperatures to measure the coefficient of thermal expansion (CTE) of ultralow-k dielectric films. Using this approach, the CTE of organo-silicate glass low-k films with different intrinsic film stresses is estimated to vary between 8.2 ± 0.8 ppm/ °C and 10.9 ± 1.1 ppm/ °C. The advantages and limitations of the proposed test methodology are discussed.

  13. High-resolution thermal expansion of isovalently substituted BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Burger, P.; Hardy, F.; Wolf, T.; Schweiss, P.; Fromknecht, R.; von Löhneysen, H.; Meingast, C.; Kasahara, S.; Terashima, T.; Shibauchi, T.; Matsuda, Y.

    2012-12-01

    We have investigated the isovalently substituted system BaFe2(As1-xPx)2 by high-resolution thermal expansion using a home-built capacitive dilatometer. Accurate measurements succeeded despite the very small size of the available single crystals (~ 500 × 500 × 100μm3). Information on the uniaxial pressure derivatives of the transition temperatures is obtained using thermodynamic relations. In-plane and out-of-plane pressure derivatives have opposite sign, which demonstrates the sensitivity of the compound to uniaxial pressure. The structural and the superconducting transition always respond oppositely to uniaxial pressure, which signals their coupling and competition.

  14. Thermal expansion of UO2+x nuclear fuel rods from a model coupling heat transfer and oxygen diffusion

    SciTech Connect

    Mihaila, Bogden; Zubelewicz, Aleksander; Stan, Marius; Ramirez, Juan

    2008-01-01

    We study the thermal expansion of UO{sub 2+x} nuclear fuel rod in the context of a model coupling heat transfer and oxygen diffusion discussed previously by J.C. Ramirez, M. Stan and P. Cristea [J. Nucl. Mat. 359 (2006) 174]. We report results of simulations performed for steady-state and time-dependent regimes in one-dimensional configurations. A variety of initial- and boundary-value scenarios are considered. We use material properties obtained from previously published correlations or from analysis of previously published data. All simulations were performed using the commercial code COMSOL Multiphysics{sup TM} and are readily extendable to include multidimensional effects.

  15. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    NASA Astrophysics Data System (ADS)

    Medvid', A.; Mychko, A.; Dauksta, E.; Kosyak, V.; Grase, L.

    2016-06-01

    The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm2 for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  16. The effect of bromination of carbon fibers on the coefficient of thermal expansion of graphite fiber-epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Maciag, C.

    1987-01-01

    To examine the effect of bromination of carbon fibers on the coefficient of thermal expansion (CTE) of carbon fiber epoxy composites, several pristine and brominated carbon fiber-epoxy composite samples were subjected to thermomechanical analysis. The CTE's of these samples were measured in the uniaxial and transverse directions. The CTE was dominated by the fibers in the uniaxial direction, while it was dominated by the matrix in the transverse directions. Bromination had no effect on the CTE of any of the composites. In addition, the CTE of fiber tow was measured in the absence of a polymer matrix, using an extension probe. The results from this technique were inconclusive.

  17. Thermal expansion, diffusion and melting of Li2O using a compact forcefield derived from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Asahi, Ryoji; Freeman, Clive M.; Saxe, Paul; Wimmer, Erich

    2014-10-01

    This work shows a straightforward procedure to derive forcefields (FFs) which are able to describe the structural, thermal and transport properties of condensed phases. The approach is based on ab initio molecular dynamics trajectories and an empirical calibration such as the melting point. This is demonstrated for lithium oxide using a Buckingham-type potential and optimized effective atomic charges. The present FF reproduces the density and thermal expansion of Li2O very well, including an anomaly related to the known superionic behaviour, i.e. a pre-melting of the Li sublattice at a critical temperature of Tc = 1200 K. Calculations of the diffusion coefficient as a function of temperature show a strong dependence on vacancy concentration for temperatures below Tc, consistent with previous simulations. Extensions to other ionic systems and compositions are made straightforward by the compact form of the FF and the present methodology employed in the parameter fitting.

  18. Analytical and experimental results of the coefficient of thermal expansion of high-modulus graphite-epoxy materials

    SciTech Connect

    Romeo, G.; Frulla, G.

    1995-09-01

    The coefficient of thermal expansion (CTE) as determined by the Classical Laminate Theory is very sensitive to some orthotropic elastic constants and to the laminate layup. In particular, the non-Hookean behavior of a unidirectional lamina in the fiber direction have to be taken into account to exactly predict the CTE. To verify the theoretical analysis, a new test facility has been designed to carefully measure the CTE in advanced composite materials having a quasi zero value of CTE. Measurement error in the CTE was minimized by a careful choice of displacement sensors and the high control of their thermal stability. The results show that a variation of +/- 1 deg in the lamina orientation can change the CTE of the quasi-isotropic laminate up to -/+ 50.5% of the theoretical value. A variation of +/- 5% in the physical and mechanical properties can change the CTE up to -/+ 48%. 14 refs.

  19. Thermal expansion behavior of A- and B-type amylose crystals in the low-temperature region.

    PubMed

    Kobayashi, Kayoko; Kimura, Satoshi; Naito, Philip-Kunio; Togawa, Eiji; Wada, Masahisa

    2015-10-20

    The thermal expansion behaviors of A-type and B-type amylose crystals, which were prepared by recrystallization of short amylose chains synthesized by phosphorylase, were investigated using synchrotron X-ray powder diffraction between 100 and 300K. For both types of crystals, the room-temperature phase (RT phase), which is the usually observed phase, transitioned to a low-temperature phase (LT phase), on cooling. The phase transitions took place reversibly with rapid changes in the unit-cell parameters around 200-270K. The differences between the RT and LT phase were investigated using solid-state (13)C NMR spectroscopy, which revealed there were changes in molecular chain conformations. These results suggest that the phase transition of water molecules on the crystalline surfaces affects the thermal behavior and structure of polysaccharide crystals. PMID:26256200

  20. Thermoacoustic Effects at a Solid-Fluid Boundary: The Role of a Second-Order Thermal Expansion Coefficient

    NASA Technical Reports Server (NTRS)

    Gopinath, Ashok

    1996-01-01

    Analytical and numerical studies are to be carried out to examine time-averaged thermal effects which are induced by the interaction of strong acoustic fields with a rigid boundary (thermoacoustic streaming). Also of interest is the significance of a second-order thermal expansion coefficient that emerges from this analysis. The model problem to be considered is that of a sphere that is acoustically levitated such that it is effectively isolated in a high-intensity standing acoustic field. The solution technique involves matched asymptotic analysis along with numerical solution of the boundary layer equations. The objective of this study is to predict the thermoacoustic streaming behavior and fully understand the role of the associated second-order thermodynamic modulus.