Science.gov

Sample records for accomplish mission objectives

  1. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  2. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  3. A small spacecraft mission with large accomplishments

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Mason, Glenn M.; Mazur, Joseph E.

    2012-08-01

    A remarkable era of space research will end soon when, after 20 years of space-based observations, the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) spacecraft will reenter Earth's atmosphere. This will result from the resurgence of the Sun's activity and the related increase of atmospheric drag produced by increasing solar ultraviolet radiation. The best estimate is that SAMPEX will succumb to drag forces (and burn up on reentry) in late September 2012, but this could occur as early as August or as late as December 2012 [see Baker et al., 2012]. SAMPEX has been a pacesetting mission since its inception. It was selected in 1989 for flight as NASA's first spacecraft in the "Small Explorer" (SMEX) program [Baker et al., 1993]. The SMEX program was intended both to accomplish forefront science (at a very affordable cost) as well as to provide a training ground in the best space development practices for a new generation of scientists, engineers, and managers. As its full name suggests, SAMPEX was always intended to perform multiple duties and was geared toward making measurements in space of moderate to very high energy particles [see Baker et al., 1993]. A few of the key contributions made by the SAMPEX program are summarized below.

  4. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  5. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    SciTech Connect

    Allen, Todd Randall; Wright, Virginia Latta

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  6. Low Cost Multiple Near Earth Object Missions

    NASA Astrophysics Data System (ADS)

    Smith, D. B.; Klaus, K.; Kaplan, M.

    2009-12-01

    Commercial spacecraft are available with efficient high power solar arrays and hybrid propulsion systems (Chemical and Solar Electric) that make possible multiple Near Earth Object Missions within Discovery budget limits. Our analysis is based on the Geosynchronous Transfer Orbit Capability (GTOC-3) solution. GTOC-3 assumptions: - Escape from Earth, rendezvous with 3 asteroids, then rendezvous with Earth - Departure velocity below 0.5 km/s - Launch between 2016 and 2025 - Total trip time less than 10 years - Minimum stay time of 60 days at each asteroid - Initial spacecraft mass of 2,000 kg - Thrust of 0.15 N and Isp of 3,000 s - Only Earth GAMs allowed (Rmin = 6,871 km) Preliminary results indicate that for mission objectives we can visit Apophis and any other 2 asteroids on this list or any other 3 asteroids listed. We have considered two spacecraft approaches to accomplish mission objectives: - Case 1: Chemical engine burn to the 1st target, and then solar electric to the 2nd and 3rd targets, or - Case 2: Solar electric propulsion to all 3 targets For both Cases, we assumed an instrument mass of up to 100 kg, power up to 100 W, and s/c bus pointing as good as 12 arc sec.Multi-NEO Mission Candidates

  7. Mission Information and Test Systems Summary of Accomplishments, 2011

    NASA Technical Reports Server (NTRS)

    McMorrow, Sean E.; Sherrard, Roberta B.

    2013-01-01

    This annual report covers the activities of the NASA DRFC Mission Information and Test Systems, which includes the Western Aeronautical Test Range, the Simulation Engineering Branch, the Information Services and the Dryden Technical Laboratory (Flight Loads Lab). This report contains highlights, current projects and various awards achieved during in 2011

  8. Mission accomplished

    SciTech Connect

    Rhinelander, J.B.; Rubin, J.P.

    1987-09-01

    In October 1085, then Security Adviser Robert McFarlane revealed the Reagan administration's new interpretation of the 1972 ABM Treaty, namely: develop and test Star Wars up to the point of deployment. This announcement led to storms of protest from NATO allies, members of Congress, and the Soviet Union. Congressional debate over the last two years, led by Senator Sam Nunn, demonstrated conclusively that when the Senate, by a vote of 88-2, gave its advice and consent to ratification in 1972, it did so on the basis of the traditional interpretation. The Reagan administration rested their case for the new interpretation primarily on their review of the treaty's negotiating record. One of the authors of this article (Rhinelander) was a legal adviser to the SALT I delegation. He and Rubin recently examined declassified portions of the negotiating record. Their findings are explicated here, with the conclusion reinforcing what all negotiators except Paul Nitze have said, namely: the traditional interpretation is irrefutably the one negotiated and agreed upon by both parties in 1972. They find the administration position extremely puzzling since the reinterpretation is not even necessary to continue a robust SDI program, which Nunn and other congressional leaders support.

  9. Empowering Adult Learners. NIF Literacy Program Helps ABE Accomplish Human Development Mission.

    ERIC Educational Resources Information Center

    Hurley, Mary E.

    1991-01-01

    The National Issues Forum's Literacy Program uses study circles and group discussion to promote empowerment and enhance adult literacy through civic education. The program has helped the Westonka (Minnesota) Adult Basic Education project accomplish its mission and has expanded the staff's view of adult learning. (SK)

  10. A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions

    NASA Astrophysics Data System (ADS)

    Curiac, Daniel-Ioan; Volosencu, Constantin

    2014-10-01

    The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.

  11. Mission objectives and scientific rationale for the magnetometer mission.

    NASA Astrophysics Data System (ADS)

    Langel, R. A.

    1991-12-01

    Based on a review of the characteristics of the geomagnetic field, objectives for the magnetic portion of the ARISTOTELES mission are: (1) To derive a description of the main magnetic field and its secular variation. (2) To investigate the correlation between the geomagnetic field and variations in the length of day. (3) To study properties of the fluid core. (4) To study the conductivity of the mantle. (5) To model the state and evolution of the crust and upper lithosphere. (6) To measure and characterize field aligned currents and ionospheric currents and to understand their generation mechanisms and their role in energy coupling in the interplanetary-magnetospheric-ionospheric systems. Procedures for these investigations are outlined.

  12. Solar system object observations with Gaia Mission

    NASA Astrophysics Data System (ADS)

    Kudryashova, Maria; Tanga, Paolo; Mignard, Francois; CARRY, Benoit; Christophe, Ordenovic; DAVID, Pedro; Hestroffer, Daniel

    2016-05-01

    After a commissioning period, the astrometric mission Gaia of the European Space Agency (ESA) started its survey in July 2014. Throughout passed two years the Gaia Data Processing and Analysis Consortium (DPAC) has been treating the data. The current schedule anticipates the first Gaia Data Release (Gaia-DR1) toward the end of summer 2016. Nevertheless, it is not planned to include Solar System Objects (SSO) into the first release. This is due to a special treatment required by solar system objects, as well as by other peculiar sources (multiple and extended ones). In this presentation, we address issues and recent achivements in SSO processing, in particular validation of SSO-short term data processing chain, GAIA-SSO alerts, as well as the first runs of SSO-long term pipeline.

  13. Science Objectives and Mission Concepts for Europa Exploration

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Senske, D. A.; Johnson, T. V.; Oberto, R.; Zimmerman, W.; JPL's Team-X Team

    2000-10-01

    Since the arrival of the Galileo spacecraft to the Jovian system in 1995, evidence indicating a liquid water ocean beneath the icy Europan crust has become much stronger. This evidence combined with the fact that Europa is greater than 90 wt% water [1] makes it a candidate body to harbor extant or extinct life. The outstanding Europa science questions [2] are to determine whether or not there is or has been a liquid water layer under the ice and whether or not liquid water currently exists on the surface or has in the geologically recent past, what geological processes create the ice rafts and other ice-tectonic processes that affect the surface, the composition of the deep interior , geochemical sources of energy, the nature of the neutral atmosphere and ionosphere, and the nature of the radiation environment, especially with regard to its implications for organic and biotic chemistry. In addition, in situ studies of the surface of Europa would offer the opportunity to characterize the chemistry of the ice including organics, pH, salinity, and redox potential. In order to address these scientific objectives, a Europa program, involving multiple spacecraft, is envisioned. The JPL Outer Planets program has been helping to lay the groundwork for such a program. This effort is being conducted with particular emphasis on compiling and identifying science objectives which will flow down to a Europa mission architecture. This poster will show the tracability of observational methods from the science objectives. Also in support of developing a Europa mission architecture, JPL's Team-X has conducted a variety of Europa mission studies . A comparison of the studies done to date will be presented, highlighting science objectives accomplished, technological challenges, and cost. A more detailed presentation will be given on a Europa Lander concept study. First, the science objectives and instrumentation will be shown, including instrument mass, power usage, volume, and data

  14. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    NASA Technical Reports Server (NTRS)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  15. Small Body Landers for Near Earth Object Missions

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Cook, T. S.; Kaplan, M.

    2009-12-01

    Our studies have concluded that PI-class science small body missions are possible with telecommunications infrastructure solar powered spacecraft. These spacecraft are flight proven with more than 60 yrs of cumulative in-space operation and are equipped with highly efficient solar arrays capable of accessing a wide variety of small bodies. Coupled with this capability, we are developing a “small body lander product line that leverages the significant investments that have been made in the highly successful DARPA Orbital Express program. Orbital Express demonstrated autonomous rendezvous, close proximity and capture with a passive space object, both capabilities that can also support autonomous precision “landings” on small bodies. An OE based NEO exploration lander can provide up to 100kg of science payload and 200 W of power available to the science payload. Our studies indicate that some of these missions can be accomplished within Discovery class budget, and most within a New Frontiers-class budget. OE autonomous robotic technology enables equipment relocation, surface sampling, sample retrieval and stowage, spacecraft and/or science instrument reconfiguration and alternate means of lander recovery. OE’s capture system technology enables repeatable lander and probe deployment and capture including lander refueling, setting in motion the design of missions to multiple small bodies and multiple sites on target bodies. Enhancements have been made to the navigation algorithms to enable precision natural body navigation. For science measurements that only require very small mass and power, we are developing nanosats that offer “full spacecraft-like” capabilities, e.g., 3 axis stability and control and on-board propulsion.

  16. Objectives and results of the BIRD mission

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Briess, Klaus; Halle, Winfried; Oertel, Dieter; Skrbek, Wolfgang; Zhukov, Boris

    2003-11-01

    The DLR small satellite BIRD (Bi- spectral Infrared Detection) is successfully operating in space since October 2001. The main payload is dedicated to the observation of high temperature events and consists mainly of a Bi-Spectral Infrared Push Broom Scanner (3.4-4.2μm and 8.5-9.3μm), a Push Broom Imager for the Visible and Near Infrared and a neural network classification signal processor. The BIRD mission answers topical technological and scientific questions related to the operation of a compact infra-red push-broom sensor on board of a micro satellite. A powerful Payload Data Handling System (PDH) is responsible for all payload real time operation, control and on-board science data handling. The IR cameras are equipped with an advanced real time data processing allowing an autonomously adaptation of the dynamic range to different scenarios. The BIRD mission control, the data reception and the data processing is conducted by the DLR ground stations in Weilheim and Neustrelitz (Germany; is experimentally performed by a low cost ground station implemented at DLR Berlin-Adlershof. The BIRD on ground data processing chain delivers radiometric and geometric corrected data products, which will be also described in this paper. The BIRD mission is an exemplary demonstrator for small satellite projects dedicated to the hazard detection and monitoring.

  17. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  18. The Mission Accessible Near-Earth Object Survey (MANOS)

    NASA Astrophysics Data System (ADS)

    Moskovitz, N.; Manos Team

    2014-07-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v < 7 km/s), size (H > 20), and observability. Our telescope assets allow

  19. Mission Information and Test Systems Summary of Accomplishments, 2012-2013

    NASA Technical Reports Server (NTRS)

    McMorrow, Sean; Sherrard, Roberta; Gibbs, Yvonne

    2015-01-01

    This annual report covers the activities of the NASA Dryden Flight Research Center's Mission Information and Test Systems directorate, which include the Western Aeronautical Test Range (Range Engineering and Range Operations), the Simulation Engineering Branch, and Information Services. This report contains highlights, current projects, and various awards achieved throughout 2012 and 2013.

  20. The Lunar Reconnaissance Orbiter Mission: Seven Years at the Moon - Accomplishments, Data, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Petro, Noah; Keller, John

    2016-07-01

    The LRO Spacecraft has been orbiting the Moon for over 7 years (~91 lunations), and in that time data from the seven instruments has contributed to a revolution in our understanding of the Moon. Since launch the mission goals and instruments science questions have evolved, from the initial characterization of the lunar surface and its environment to studying the variability of surface hydration and measuring the flux of new craters that have formed during LRO's time in lunar orbit. The growing LRO dataset in the PDS presents a unique archive that allows for an unprecedented opportunity to study how an airless body changes over time. The LRO instrument suite [1] is performing nominally, with no significant performance issues since the mission entered the current extended mission. The Mini-RF instrument team is investigating new methods for collecting bistatic data using an Earth-based X-band transmitter [2] during a possible upcoming extended mission starting in September 2016, pending NASA approval. The LRO spacecraft has been in an elliptical, polar orbit with a low perilune over the South Pole since December 2011. This orbit minimizes annual fuel consumption, enabling LRO to use fuel to maximize opportunities for obtaining unique science (e.g., lunar eclipse measurements from Diviner, measuring spacecraft impacts by GRAIL and LADEE). The LRO instrument teams deliver data to the PDS every three months, data that includes raw, calibrated, and gridded/map products [3]. As of January, over 681TB has been archived. These higher-level data products include a number of resources that are useful for mission planners, in addition to planetary scientists. A focus of the mission has been on the South Pole, therefore a number of special products (e.g., illumination maps, high resolution topography, hydration maps) are available. Beyond the poles, high-resolution (~1-2 m spatial resolution) topographic products are available for select areas, as well as maps of rock abundance

  1. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  2. STRATCOM-8 scientific objectives and mission orginization

    NASA Technical Reports Server (NTRS)

    Reed, E. I. (Compiler)

    1977-01-01

    Stratospheric photochemistry was studied, with emphasis on the Ozone-NOx-ultraviolet flux interactions, but also including members of the chlorine, water vapor, and carbon-containing families. Secondary objectives include: (1) study of the balloon environment, (2) comparison of independent measurements of ozone and of NO, (3) development of new sensor systems; and (4) some measurements for exploratory purposes. Most, but not all, systems and instruments performed as planned, and it is believed that data are available to achieve most of the planned scientific and engineering objectives. The emphasis on photochemistry in the 35 to 40 km region is greater than anticipated, and observations are more complete for sunset than for sunrise. The planned instruments and a summary of the flight operations is discussed partly for the mutual information of those participating and partly for the wider scientific community.

  3. MARCO POLO: A Near Earth Object Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawaguchi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.; Boehnhardt, H.; Coradini, M.; Green, S. F.; Josset, J.-L.; Koschny, D.; Muinonen, M.; Oberst, J.; Marco Polo Scienc

    2008-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a near-Earth object. In late 2007 this mission was selected by ESA, in the framework of COSMIC VISION 2015-2025, for an assessment scheduled to last until mid 2009.

  4. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  5. Balancing Science Objectives and Operational Constraints: A Mission Planner's Challenge

    NASA Technical Reports Server (NTRS)

    Weldy, Michelle

    1996-01-01

    The Air Force minute sensor technology integration (MSTI-3) satellite's primary mission is to characterize Earth's atmospheric background clutter. MSTI-3 will use three cameras for data collection, a mid-wave infrared imager, a short wave infrared imager, and a visible imaging spectrometer. Mission science objectives call for the collection of over 2 million images within the one year mission life. In addition, operational constraints limit camera usage to four operations of twenty minutes per day, with no more than 10,000 data and calibrating images collected per day. To balance the operational constraints and science objectives, the mission planning team has designed a planning process to e event schedules and sensor operation timelines. Each set of constraints, including spacecraft performance capabilities, the camera filters, the geographical regions, and the spacecraft-Sun-Earth geometries of interest, and remote tracking station deconflictions has been accounted for in this methodology. To aid in this process, the mission planning team is building a series of tools from commercial off-the-shelf software. These include the mission manifest which builds a daily schedule of events, and the MSTI Scene Simulator which helps build geometrically correct scans. These tools provide an efficient, responsive, and highly flexible architecture that maximizes data collection while minimizing mission planning time.

  6. Accomplishments of Aquarius: NASA's first global Sea Surface Salinity Mission: a review of the technical findings to date

    NASA Astrophysics Data System (ADS)

    Sen, Amit

    2014-10-01

    Launched 10 June 2011, the NASA's Aquarius instrument onboard the Argentine built and managed Satélite de Aplicaciones Científicas (SAC-D) has been tirelessly observing the open oceans, confirming and adding new knowledge to the not so vast measured records of our Earth's global oceans. This paper reviews the data collected over the last 3 years, it's findings, challenges and future work that is at hand for the sleepless oceanographers, hydrologists and climate scientists. Although routine data is being collected, a snapshot is presented from almost 3-years of flawless operations showing new discoveries and possibilities of lot more in the future. Repetitive calibration and validation of measurements from Aquarius continue together with comparison of the data to the existing array of Argo temperature/salinity profiling floats, measurements from the recent Salinity Processes in the Upper Ocean Regional Study (SPURS) in-situ experiment and research, and to the data collected from the European Soil Moisture Ocean Salinity (SMOS) mission. This all aids in the optimization of computer model functions to improve the basic understanding of the water cycle over the oceans and its ties to climate. The Aquarius mission operations team also has been tweaking and optimizing algorithms, reprocessing data as needed, and producing salinity movies that has never been seen before. A brief overview of the accomplishments, technical findings to date will be covered in this paper.

  7. Mission objectives and comparison of strategies for Mars exploration

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Keaton, Paul W.; Weaver, David; Briggs, Geoffrey; Roberts, Barney

    1993-01-01

    Over the past several years, a number of candidate scenarios for the human exploration of Mars have been advanced. These have had a range of mission objectives, scope, scale, complexity and probable cost. The Exploration Programs Office (ExPO) has developed a reference Mars exploration program and a means of comparing it to other proposed Mars programs. The reference program was initiated in a workshop of Mars exploration advocates which defined two objectives of equal importance for early Mars exploration - understanding Mars and understanding the potential of Mars to support humans. These goals were used to define a set of transportation and surface elements that could carry out a robust exploration program. The approach to comparing alternate architectures has three principal parts: (1) Bringing the architectures into rough commonality in terms of surface mission objectives and hardware capabilities; (2) Providing a common level of human support for flights to and from Mars; and (3) Comparing the complexity of the elements needed to carry out the program and using partial redundancy to approximate the same statistical probability of mission success. This top-level approach has been applied to the ExPO reference program, the 'Mars Directs strategy (Zubrin, 1991) and the Stanford International Mars Mission (Lusignan, 1992).

  8. Marco Polo: Near-Earth Object Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Antonieta Barucci, Maria; Yoshikawa, M.; Koschny, D.; Boehnhardt, H.; Brucato, J. R.; Coradini, M.; Dotto, E.; Franchi, I. A.; Green, S. F.; Josset, J. L.; Kawagushi, J.; Michel, P.; Muinonen, K.; Oberst, J.; Yano, H.; Binzel, R. P.; Marco Polo Science Team

    2008-09-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object (NEO), selected by ESA in the framework of COSMIC VISION 2015-2025 for an assessment study scheduled to last until October 2009. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), such as C or D-type, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. NEOs are part of the small body population in the Solar System, which are leftover building blocks of the Solar System formation process. They offer important clues to the chemical mixture from which planets formed about 4.6 billion years ago. The scientific objectives of Marco Polo will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and the potential contribution of primitive material to the formation of Life. Marco Polo is based on a launch with a Soyuz Fregat and consists of a Mother Spacecraft (MSC), possibly carrying a lander. The MSC would approach the target asteroid and spend a few months for global characterization of the target to select a sampling site. Then, the MSC would then descend to retrieve several samples which will be transferred to a Sample Return Capsule (SRC). The MSC would return to Earth and release the SRC into the atmosphere for ground recovery. The sample of the NEO will then be available for detailed investigation in ground-based laboratories. In parallel to JAXA considering how to perform the mission, ESA has performed a Marco Polo study in their Concurrent Design Facility (CDF). Two parallel industrial studies will start in September 2008 to be conducted in Europe for one year. The scientific objectives addressed by the mission and the current status of the mission study (ESA-JAXA) will be presented and discussed.

  9. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Astrophysics Data System (ADS)

    Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.

    2016-04-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as

  10. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Astrophysics Data System (ADS)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as

  11. Possible LISA follow-on mission scientific objectives

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.; Begelman, Mitchell C.; Gair, Jonathan R.

    2013-08-01

    A major objective that has been suggested for a follow-on mission to a Laser Interferometer Space Antenna (LISA)-type mission is to investigate more completely how intermediate mass black holes were formed and grew in the early universe, before they evolved into the much more massive black holes at the centers of many galaxies today. The actual design of such a follow-on mission will of course depend on what is observed by a LISA-type mission, such as the recently modified proposal for an evolved LISA mission, with the interferometer arm lengths between spacecraft reduced from 5 million to 1 million km. However, the sensitivity goals of a follow-on mission are likely to be influenced strongly by the desire to be able to see mergers of 10 M⊙ black holes with roughly 3000 M⊙ or larger intermediate mass black holes out to as large redshifts as possible. Approximate calculations of the expected signal-to-noise have been made for a possible LISA follow-on mission that was suggested about eight years ago (Bender and Begelman 2005 Trends in Space Science and Cosmic Vision 2020 (Noordwijk: ESA Publications Division) pp 33-38), and was called the Advanced Laser Interferometer Antenna. Based on the calculations, it appears that detections out to a redshift of 10 would be possible for 10 M⊙ black holes spiraling into perhaps 5000 M⊙ or larger intermediate mass black holes if the extragalactic gravitational wave background due to close white dwarf binaries is in the currently estimated range.

  12. Objectives and Tasks of Lunar Mission BW1

    NASA Astrophysics Data System (ADS)

    Laufer, R.; Roeser, H.-P.

    2007-08-01

    Lunar Mission BW1 is the forth project of the "Stuttgart Small Satellite Program" initiated in 2002 at the Institute of Space Systems (IRS), Universitaet Stuttgart, Germany. The small Moon orbiter is a 1 m cube spacecraft of approx. 200 kg launch mass currently under development with participation of diploma/masters and Ph.D. students as well as academic and industrial partners. Demonstrating the ability of an academic institution to participate and contribute to space exploration by designing, building and operating a complete space probe Lunar Mission BW1 will be a test bed to perform technology demonstration and other experiments beyond Earth orbit in cis-lunar space and at the Moon. The satellite is planned to be launched end of the decade as a piggyback payload from a geostationary transfer orbit (GTO) and will reach lunar orbit using its own electric propulsion systems (thermal arcjet and iMPD thrusters). The paper will present objectives and tasks of Lunar Mission BW1 and the elements of this mission, i.e. spacecraft, ground segment, operations. It will give also an overview about the experience and heritage gained from the three other missions of the Stuttgart Small Satellite Program (Flying Laptop - technology demonstration/Earth observation, Perseus - electric propulsion test/UV astronomy, Cermit - re-entry vehicle/GNC experiment).

  13. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.

    2014-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often may thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  14. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  15. Mars Environmental Survey (MESUR): Science objectives and mission description

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; Wercinski, Paul F.; Sarver, George L.; Hanel, Robert P.; Ramos, Ruben

    1992-01-01

    In-situ observations and measurements of Mars are objectives of a feasibility study beginning at the Ames Research Center for a mission called the Mars Environmental SURvey (MESUR). The purpose of the MESUR mission is to emplace a pole-to-pole global distribution of landers on the Martian surface to make both short- and long-term observations of the atmosphere and surface. The basic concept is to deploy probes which would directly enter the Mars atmosphere, provide measurements of the upper atmospheric structure, image the local terrain before landing, and survive landing to perform meteorology, seismology, surface imaging, and soil chemistry measurements. MESUR is intended to be a relatively low-cost mission to advance both Mars science and human presence objectives. Mission philosophy is to: (1) 'grow' a network over a period of years using a series of launch opportunities, thereby minimizing the peak annual costs; (2) develop a level-of-effort which is flexible and responsive to a broad set of objectives; (3) focus on science while providing a solid basis for human exploration; and (4) minimize project cost and complexity wherever possible. In order to meet the diverse scientific objectives, each MESUR lander will carry the following strawman instrument payload consisting of: (1) Atmospheric structure experiment, (2) Descent and surface imagers, (3) Meteorology package, (4) Elemental composition instrument, (5) 3-axis seismometer, and (6) Thermal analyzer/evolved gas analyzer. The feasibility study is primarily to show a practical way to design an early capability for characterizing Mars' surface and atmospheric environment on a global scale. The goals are to answer some of the most urgent questions to advance significantly our scientific knowledge about Mars, and for planning eventual exploration of the planet by robots and humans.

  16. The scientific objectives of the ATLAS-1 shuttle mission

    SciTech Connect

    Torr, M.R. )

    1993-03-19

    During the 9-day ATLAS-1 mission (March 24-April 2, 1992), a significant database was acquired on the temperature, pressure, and composition of the atmosphere regions between approximately 15 km and 300 km, together with measurements of the total solar irradiance and the solar spectral irradiance between 1,200 [Angstrom] and 3.2 [mu]m. Six remote sensing atmospheric instruments covered a scope in altitude and species that has not been addressed before from a single mission. The atmospheric composition dataset should serve as an important reference for the determination of future global change in these regions. Both the solar and atmospheric instruments made observations that were coordinated with those made from other spacecraft, such as the UARS, the NOAA, and the ERB satellites. The objective of these correlative measurements was both to complement the measurements made by the other payloads and also to update the calibration of the instruments on the long-duration orbiting vehicles with recent, highly accurate calibrations. Experiments were conducted in space plasma physics. Most important of these was the generation of artificial auroras by firing a beam of energetic electrons into the atmosphere. The induced auroras were observed with a photometric imaging camera. In addition, measurements were made of the precipitation of energetic neutrals from the ring current. ATLAS-1 also carried an UV instrument to gather wide field observations of astronomical sources. A subset of these instruments is planned to fly once a year for the duration of a solar cycle. Both the ATLAS-1 mission and the ongoing series represent an important element of the Mission to Planet Earth and the Global Change Program. The papers in this special issue give a summary of the results obtained in the first 4 months following the mission. 1 refs., 2 figs., 1 tab.

  17. Scientific objectives for a 1996 Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Gooding, J. L.; Clanton, U. S.

    1985-01-01

    The Mars Sample Return Mission, designed to return a variety of surface and subsurface samples as well as atmospheric samples, is described. Primary information about the planet is essential to understanding its place in the evolution of the solar system. The most accurate landing techniques will be used to place the lander near geologically interesting features. A capable rover will be an essential element of the sample collection strategy to maximize the diversity of the samples. The sample collection and return systems will keep the samples at Mars ambient conditions or colder to preserve the abundances and distribution of volatile components. Planetary quarantine is an important consideration for both the Mars lander and the earth return vehicle. Quarantine procedures must be consistent with the primary objectives of the mission and must not compromise the investigations of the returned samples.

  18. Multi-objective optimization to support rapid air operations mission planning

    NASA Astrophysics Data System (ADS)

    Gonsalves, Paul G.; Burge, Janet E.

    2005-05-01

    Within the context of military air operations, Time-sensitive targets (TSTs) are targets where modifiers such, "emerging, perishable, high-payoff, short dwell, or highly mobile" can be used. Time-critical targets (TCTs) further the criticality of TSTs with respect to achievement of mission objectives and a limited window of opportunity for attack. The importance of TST/TCTs within military air operations has been met with a significant investment in advanced technologies and platforms to meet these challenges. Developments in ISR systems, manned and unmanned air platforms, precision guided munitions, and network-centric warfare have made significant strides for ensuring timely prosecution of TSTs/TCTs. However, additional investments are needed to further decrease the targeting decision cycle. Given the operational needs for decision support systems to enable time-sensitive/time-critical targeting, we present a tool for the rapid generation and analysis of mission plan solutions to address TSTs/TCTs. Our system employs a genetic algorithm-based multi-objective optimization scheme that is well suited to the rapid generation of approximate solutions in a dynamic environment. Genetic Algorithms (GAs) allow for the effective exploration of the search space for potentially novel solutions, while addressing the multiple conflicting objectives that characterize the prosecution of TSTs/TCTs (e.g. probability of target destruction, time to accomplish task, level of disruption to other mission priorities, level of risk to friendly assets, etc.).

  19. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  20. The Mission Accessible Near-Earth Objects Survey (MANOS)

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Moskovitz, Nicholas; DeMeo, Francesca; Endicott, Thomas; Busch, Michael; Roe, Henry; Trilling, David; Thomas, Cristina; Willman, Mark; Grundy, Will; Christensen, Eric; Person, Michael; Binzel, Richard; Polishook, David

    2013-01-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for sub-km NEOs does not exist. Here we present the Mission Accessible Near-Earth Objects Survey (MANOS), a multi-year survey of subkm NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100-fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 mission-accessible NEOs across the visible and near-infrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA's IRTF, and the Magellan 6.5m telescopes. Our focus on sub-km sizes and mission accessibility (dv < 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We intend

  1. The Mission Accessible Near-Earth Objects Survey (MANOS)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Moskovitz, N.; Trilling, D.; Thomas, C.; Willman, M.; Grundy, W.; Roe, H.; Christensen, E.; Person, M.; Binzel, R.; Polishook, D.; DeMeo, F.; Endicott, T.; Busch, M.

    2013-10-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for sub-km NEOs does not exist. Here we present the Mission Accessible Near-Earth Objects Survey (MANOS), a multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100-fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 mission-accessible NEOs across the visible and near-infrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA’s IRTF, and the Magellan 6.5m telescopes. Our focus on sub-km sizes and mission accessibility (dv < 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We

  2. MARCO POLO: near earth object sample return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.

    2009-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small

  3. The Mission Accessible Near-Earth Objects Survey (MANOS): spectroscopy results

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Moskovitz, Nicholas; Hinkle, Mary L.; Mommert, Michael; Polishook, David; Thirouin, Audrey; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca E.; Person, Michael J.; Trilling, David E.; Willman, Mark; Burt, Brian

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is an ongoing physical characterization survey to build a large, uniform catalog of physical properties including lightcurves and visible wavelength spectroscopy. We will use this catalog to investigate the global properties of the small NEO population and identify individual objects that can be targets of interest for future exploration. To accomplish our goals, MANOS uses a wide variety of telescopes (1-8m) in both the northern and southern hemispheres. We focus on targets that have been recently discovered and operate on a regular cadence of remote and queue observations to enable rapid characterization of small NEOs. Targets for MANOS are selected based on three criteria: mission accessibility, size, and observability. With our resources, we observe 5-10 newly discovered sub-km NEOs per month. MANOS has been operating for three years and we have observed over 500 near-Earth objects in that time.We will present results from the spectroscopy component of the MANOS program. Visible wavelength spectra are obtained using DeVeny on the Discovery Channel Telescope (DCT), Goodman on the Southern Astrophysical Research (SOAR) telescope, and GMOS on Gemini North and South. Over 300 NEO spectra have been obtained during our program. We will present preliminary results from our spectral sample. We will discuss the compositional diversity of the small NEO population and how the observed NEOs compare to the meteorite population.MANOS is funded by the NASA Near-Earth Object Observations program.

  4. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.

    2016-01-01

    Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.

  5. Science Objectives of the FOXSI Small Explorer Mission Concept

    NASA Astrophysics Data System (ADS)

    Shih, Albert Y.; Christe, Steven; Alaoui, Meriem; Allred, Joel C.; Antiochos, Spiro K.; Battaglia, Marina; Camilo Buitrago-Casas, Juan; Caspi, Amir; Dennis, Brian R.; Drake, James; Fleishman, Gregory D.; Gary, Dale E.; Glesener, Lindsay; Grefenstette, Brian; Hannah, Iain; Holman, Gordon D.; Hudson, Hugh S.; Inglis, Andrew R.; Ireland, Jack; Ishikawa, Shin-Nosuke; Jeffrey, Natasha; Klimchuk, James A.; Kontar, Eduard; Krucker, Sam; Longcope, Dana; Musset, Sophie; Nita, Gelu M.; Ramsey, Brian; Ryan, Daniel; Saint-Hilaire, Pascal; Schwartz, Richard A.; Vilmer, Nicole; White, Stephen M.; Wilson-Hodge, Colleen

    2016-05-01

    Impulsive particle acceleration and plasma heating at the Sun, from the largest solar eruptive events to the smallest flares, are related to fundamental processes throughout the Universe. While there have been significant advances in our understanding of impulsive energy release since the advent of RHESSI observations, there is a clear need for new X-ray observations that can capture the full range of emission in flares (e.g., faint coronal sources near bright chromospheric sources), follow the intricate evolution of energy release and changes in morphology, and search for the signatures of impulsive energy release in even the quiescent Sun. The FOXSI Small Explorer (SMEX) mission concept combines state-of-the-art grazing-incidence focusing optics with pixelated solid-state detectors to provide direct imaging of hard X-rays for the first time on a solar observatory. We present the science objectives of FOXSI and how its capabilities will address and resolve open questions regarding impulsive energy release at the Sun. These questions include: What are the time scales of the processes that accelerate electrons? How do flare-accelerated electrons escape into the heliosphere? What is the energy input of accelerated electrons into the chromosphere, and how is super-heated coronal plasma produced?

  6. Plans and objectives of the remaining Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1972-01-01

    The three remaining Apollo missions will have significantly increased scientific capabilities. These result from increased payload, more time on the surface, improved range, and more sophisticated experiments on the surface and in orbit. Landing sites for the last three missions will be carefully selected to maximize the total scientific return.

  7. NEP for a Kuiper Belt Object Rendezvous Mission

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID I.; WRIGHT,STEVEN A.

    1999-11-03

    Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present

  8. Low cost missions to explore the diversity of near Earth objects

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Delamere, Alan

    1992-01-01

    We propose a series of low-cost flyby missions to perform a reconnaissance of near-Earth cometary nuclei and asteroids. The primary scientific goal is to study the physical and chemical diversity in these objects. The mission concept is based on the Pegasus launch vehicle. Mission costs, inclusive of launch, development, mission operations, and analysis are expected to be near $50 M per mission. Launch opportunities occur in all years. The benefits of this reconnaissance to society are stressed.

  9. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    1998-01-01

    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  10. Performance as Promised: How the Chandra X-ray Observatory Accomplished One of Nasa's Most Challenging Missions for Billions of Dollars Less than Originally Planned

    NASA Technical Reports Server (NTRS)

    Davidson, Greg; Hefner, Keith

    2004-01-01

    As the nation looks toward bold new ventures in space, the Chandra X-ray Observatory program offers an example of how billion-dollar missions can be successfully developed within tightening fiscal constraints. Chandra experienced many of challenges facing bold space programs (state-of-the-art technical requirements and budget-induced slips and restructurings), and yet the Chandra team achieved nearly all the originally envisioned performance for dramatically lower cost. This was accomplished by a combination of team- work, systems engineering, advanced technology insertion, and effective approaches for program implementation. A thorough tradeoff of science utility vs. cost led to the selection of a highly elliptical orbit with uncrewed robotic delivery, deployment, and maintenance. Progressive, focused technology demonstrations were accomplished prior to commitment of major resources to critical elements of the system design, such as the high resolution mirror assembly (HRMA). Pathfinder hardware was developed to reduce risks. A variety of schedule risk reduction measures were implemented and resulted in the X-ray calibration taking place exactly within five days of its originally planned date after after five years of development. The team worked together in an effective manner to contain requirements creep. reductions such as the ACIS-2 chip device. It is estimated that the above combination of measures achieved the avoidance of over $4B in costs, while enabling a highly successful mission.

  11. Objectives and Model Payload Definition for NEO Human Mission Studies

    NASA Astrophysics Data System (ADS)

    Carnelli, I.; Galvez, A.; Carpenter, J.

    2011-10-01

    ESA has supported studies on NEO threat assessment systems and deflection concepts in the context of the General Studies Programme and in close cooperation with the directorates of Technical and Quality Management and of the Scientific Programme. This work has made it possible to identify a project for Europe to make a significant - yet realistic - contribution to the international efforts in this field: the Don Quijote NEO technology demonstration mission. This paper describes what such a small mission can do to prepare future human exploration and what is the in-situ data that can be obtained through such a project.

  12. THE MISSION AND ACCOMPLISHMENTS FROM DOE’S FUEL CYCLE RESEARCH AND DEVELOPMENT (FCRD) ADVANCED FUELS CAMPAIGN

    SciTech Connect

    J. Carmack; L. Braase; F. Goldner

    2015-09-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.

  13. The geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives, requirements and mission concept

    NASA Astrophysics Data System (ADS)

    Burrows, J. P.; Bovensmann, H.; Bergametti, G.; Flaud, J. M.; Orphal, J.; Noël, S.; Monks, P. S.; Corlett, G. K.; Goede, A. P.; von Clarmann, T.; Steck, T.; Fischer, H.; Friedl-Vallon, F.

    2004-01-01

    One of the major challenges facing atmospheric sciences is to assess, understand and quantify the impact of natural and anthropogenic pollution on the quality of life on Earth on a local, regional and continental scale. It has become apparent that pollution originating from local/regional events can have serious effects on the composition of the lower atmosphere on a continental scale. However, to understand the effects of regional pollution on a continental scale there is a requirement to transcend traditional atmospheric spatial and temporal scales and attempt to monitor the entire atmosphere at the same time. In the troposphere the variability of chemical processes, of source strength and the dynamics induce important short term, i.e., sub-hourly, variations and significant horizontal and vertical variability of constituents and geophysical parameters relevant to a range of contemporary issues such as air quality. To study tropospheric composition, it is therefore required to link diurnal with seasonal and annual timescales, as well as local and regional with continental spatial scales, by performing sub-hourly measurements at appropriate horizontal and vertical resolution. Tropospheric observations from low-Earth orbit (LEO) platforms have already demonstrated the potential of detecting constituents relevant for air quality but they are limited, for example by the daily revisit time and local cloud cover statistics. The net result of this is that the troposphere is currently significantly under sampled. Measurements from Geostationary Orbit (GEO) offer the only practical approach to the observation of diurnal variation from space with the pertinent horizontal resolution. The Geostationary Tropospheric Pollution Explorer (GeoTROPE) is an attempt to determine tropospheric constituents with high temporal and spatial resolution. The paper will summarise the needs for geostationary observations of tropospheric composition and will give the mission objectives and the

  14. Planetary objectives of Odyssey2 Mission: Neptune and Triton

    NASA Astrophysics Data System (ADS)

    Lenoir, Benjamin; Lenoir, B.; Christophe, B.; Foulon, B.; Touboul, P.; Lévy, A.; Léon-Hirtz, S.; Biancale, R.; Sohl, F.; Dittus, H.; van Zoest, T.; Courty, J.-M.; Reynaud, S.; Lamine, B.; Métris, G.; Wolf, P.; Lümmerzahl, C.; Selig, H.

    Odyssey2 Mission will be proposed for the next call of M3 missions for Cosmic Vision 2015-2025. It will aim at Neptune and Triton and the interplanetary cruise will be used for testing General Relativity, and in particular its scale dependence. To do so, the satellite will carry on board the following instruments: • a high-precision 3 axis electrostatic accelerometer, with bias calibration system, which will measure the non-gravitational forces acting on the spacecraft; • a radio-science instrument, for a precise range and Doppler measurement, with additional VLBI equipment; • a one-way laser ranging, which will improve the range and Doppler measurement made by radio-science; • an Ultra Stable Oscillator (USO), used for laser and radio-science measurement. During the encounters with Neptune and Triton, these instruments will be use in order to increase the scientific return on the gravity field and atmosphere of these two bodies. Indeed, the atmospheric drag for example, which will be measured by the accelerometer, has a non-negligible impact on the trajectory of the spacecraft and therefore on the Doppler signature of the trajectory. If no data are available on the non-gravitational forces, the retrieval of the gravity potential coefficients can be put in jeopardy. Concerning the knowledge of the atmosphere, the direct measurement of atmospheric drag can be used, with the outputs of other instruments, to enhance our knowledge of the atmosphere of these two bodies. Moreover, the radio-link and the USO can be used together to measure the time delay of the radio beam and infer some characteristics of the atmosphere. Several instruments dedicated to planetology are under study. The choice between them will be an output of the Phase 0 study performed by CNES for this mission: • a magnetometer to measure intrinsic fields on Neptune and induced fields on Triton; • an infrared mapping capability, which was not available during the Voyager flyby, to determine

  15. The OCO-3 Mission : Overview of Science Objectives and Status

    NASA Astrophysics Data System (ADS)

    Eldering, Annmarie; Bennett, Matthew; Basilio, Ralph

    2016-04-01

    The Orbiting Carbon Observatory 3 (OCO-3) is a space instrument that will investigate important questions about the distribution of carbon dioxide on Earth as it relates to growing urban populations and changing patterns of fossil fuel combustion. OCO-3 will explore, for the first time, daily variations in the release and uptake of carbon dioxide by plants and trees in the major tropical rainforests of South America, Africa, and Southeast Asia, the largest stores of aboveground carbon on our planet. NASA will develop and assemble the instrument using spare materials from OCO-2 and host the instrument on the International Space Station (ISS) (earliest launch readiness in early 2018.) The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52°). At the same time, OCO-3 will also collect measurements of solar-induced chlorophyll fluorescence (SIF) over these areas. The combination of these dense CO2 (expected to have a precision of 1 parts per mission) and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot

  16. The OCO-3 Mission : Overview of Science Objectives and Status

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2015-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) is a space instrument that will investigate important questions about the distribution of carbon dioxide on Earth as it relates to growing urban populations and changing patterns of fossil fuel combustion. OCO-3 will explore, for the first time, daily variations in the release and uptake of carbon dioxide by plants and trees in the major tropical rainforests of South America, Africa, and Southeast Asia, the largest stores of aboveground carbon on our planet. NASA will develop and assemble the instrument using spare materials from OCO-2 and host the instrument on the International Space Station (ISS) (earliest launch readiness in early 2018.) The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). At the same time, OCO-3 will also collect measurements of solar-induced chlorophyll fluorescence (SIF) over these areas. The combination of these dense CO2 (expected to have a precision of 1 parts per mission) and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot

  17. Aalto-1 nanosatellite - technical description and mission objectives

    NASA Astrophysics Data System (ADS)

    Kestilä, A.; Tikka, T.; Peitso, P.; Rantanen, J.; Näsilä, A.; Nordling, K.; Saari, H.; Vainio, R.; Janhunen, P.; Praks, J.; Hallikainen, M.

    2012-11-01

    This work presents the outline and so far completed design of the Aalto-1 science mission. Aalto-1 is a multi-payload remote sensing nanosatellite, built almost entirely by students. The satellite aims for a 500-900 km sun-synchronous orbit, and includes an accurate attitude dynamics and control unit, a UHF/VHF housekeeping and S-band data links, and a GPS unit for positioning (radio positioning and NORAD TLE's are planned to be used as backups). It has three specific payloads: a spectral imager based on piezo-actuated Fabry-Perot interferometry, designed and built by The Technical Research Center of Finland (VTT); a miniaturized radiation monitor (RADMON) jointly designed and built by Universities of Helsinki and Turku ; and an electrostatic plasma brake designed and built by the Finnish Meteorological Institute (FMI), derived from the concept of the e-sail, also originating from FMI. Two phases are important for the payloads, the technology demonstration and the science phase. Emphasis is placed on technological demonstration of the spectral imager and RADMON, and suitable targets have already been chosen to be completed during that phase, while the plasma brake will start operation in the latter part of the science phase. The technology demonstration will be over in relatively short time, while the science phase is planned to last two years. The science phase is divided into two smaller phases: the science observations phase, during which only the spectral imager and RADMON will be operated for 6-12 months, and the plasma brake demonstration phase, which is dedicated to the plasma brake experiment for at least a year. These smaller phases are necessary due to the drastically different power, communication and attitude requirements of the payloads. The spectral imager will be by far the most demanding instrument on board, as it requires most of the downlink bandwidth, has a high peak power and attitude performance. It will acquire images in a series up to at

  18. Aalto-1 nanosatellite - technical description and mission objectives

    NASA Astrophysics Data System (ADS)

    Kestilä, A.; Tikka, T.; Peitso, P.; Rantanen, J.; Näsilä, A.; Nordling, K.; Saari, H.; Vainio, R.; Janhunen, P.; Praks, J.; Hallikainen, M.

    2013-02-01

    This work presents the outline and so far completed design of the Aalto-1 science mission. Aalto-1 is a multi-payload remote-sensing nanosatellite, built almost entirely by students. The satellite aims for a 500-900 km sun-synchronous orbit and includes an accurate attitude dynamics and control unit, a UHF/VHF housekeeping and S-band data links, and a GPS unit for positioning (radio positioning and NORAD TLE's are planned to be used as backup). It has three specific payloads: a spectral imager based on piezo-actuated Fabry-Perot interferometry, designed and built by The Technical Research Centre of Finland (VTT); a miniaturised radiation monitor (RADMON) jointly designed and built by Universities of Helsinki and Turku; and an electrostatic plasma brake designed and built by the Finnish Meteorological Institute (FMI), derived from the concept of the e-sail, also originating from FMI. Two phases are important for the payloads, the technology demonstration and the science phase. The emphasis is placed on technological demonstration of the spectral imager and RADMON, and suitable targets have already been chosen to be completed during that phase, while the plasma brake will start operation in the latter part of the science phase. The technology demonstration will be over in a relatively short time, while the science phase is planned to last two years. The science phase is divided into two smaller phases: the science observations phase, during which only the spectral imager and RADMON will be operated for 6-12 months and the plasma brake demonstration phase, which is dedicated to the plasma brake experiment for at least a year. These smaller phases are necessary due to the drastically different power, communication and attitude requirements of the payloads. The spectral imager will be by far the most demanding instrument on board, as it requires most of the downlink bandwidth, has a high peak power and attitude performance. It will acquire images in a series up to at

  19. Accomplishments '70.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Stanford Center for Research and Development in Teaching.

    This annual report examines the accomplishments during 1970 of three programs. The first program was to improve the organizational and administrative environment for teaching. Its subsidiary projects were 1) the organizational context of teaching; 2) professional socialization of the teacher; 3) attitudes of teachers toward their occupation; 4)…

  20. Gravitational experiments on a solar probe mission: Scientific objectives and technology considerations

    NASA Technical Reports Server (NTRS)

    Anderson, John D.

    1989-01-01

    The concept of a solar impact probe (either solar plunger or sun grazer) led to the initiation of a NASA study at JPL in 1978 on the engineering and scientific feasibility of a Solar Probe Mission, named Starprobe, in which a spacecraft is placed in a high eccentricity orbit with a perihelion near 4 solar radii. The Starprobe study showed that the concept was feasible and in fact preliminary mission and spacecraft designs were developed. In the early stages of the Solar Probe studies the emphasis was placed on gravitational science, but by the time of a workshop at Caltech in May 1978 (Neugebauer and Davies, 1978) there was about an equal division of interest between heliospheric physics and gravitation. The last of the gravitational studies for Solar Probe was conducted at JPL in 1983. Since that time, the Committee on Solar and Space Physics (CSSP) of the National Academy of Sciences has recommended the pursuit of a focused mission, featuring fields and particles instrumentation and emphasizing studies of the solar wind source region. Such a solar probe mission is currently listed as the 1994 Major New Star candidate. In the remainder of this review, the unique gravitational science that can be accomplished with a solar probe mission is reviewed. In addition the technology issues that were identified in 1980 by the ad hoc working group for Gravity and Relativity Science are addressed.

  1. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  2. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew

    2015-01-01

    The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.

  3. Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Getchius, Joel; Tracy, William H.

    2011-01-01

    A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.

  4. Proving Ground Potential Mission and Flight Test Objectives and Near Term Architectures

    NASA Technical Reports Server (NTRS)

    Smith, R. Marshall; Craig, Douglas A.; Lopez, Pedro Jr.

    2016-01-01

    NASA is developing a Pioneering Space Strategy to expand human and robotic presence further into the solar system, not just to explore and visit, but to stay. NASA's strategy is designed to meet technical and non-technical challenges, leverage current and near-term activities, and lead to a future where humans can work, learn, operate, and thrive safely in space for an extended, and eventually indefinite, period of time. An important aspect of this strategy is the implementation of proving ground activities needed to ensure confidence in both Mars systems and deep space operations prior to embarking on the journey to the Mars. As part of the proving ground development, NASA is assessing potential mission concepts that could validate the required capabilities needed to expand human presence into the solar system. The first step identified in the proving ground is to establish human presence in the cis-lunar vicinity to enable development and testing of systems and operations required to land humans on Mars and to reach other deep space destinations. These capabilities may also be leveraged to support potential commercial and international objectives for Lunar Surface missions. This paper will discuss a series of potential proving ground mission and flight test objectives that support NASA's journey to Mars and can be leveraged for commercial and international goals. The paper will discuss how early missions will begin to satisfy these objectives, including extensibility and applicability to Mars. The initial capability provided by the launch vehicle will be described as well as planned upgrades required to support longer and more complex missions. Potential architectures and mission concepts will be examined as options to satisfy proving ground objectives. In addition, these architectures will be assessed on commercial and international participation opportunities and on how well they develop capabilities and operations applicable to Mars vicinity missions.

  5. Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

    NASA Technical Reports Server (NTRS)

    Mauk, B.H.; Fox, Nicola J.; Kanekal, S. G.; Kessel, R. L.; Sibek, D. G.; Ukhorskiy, A.

    2012-01-01

    The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populationsof high energy charged particles are created, vary, and evolve in space environments,and specifically within Earths magnetically trapped radiation belts. RBSP, with a nominallaunch date of August 2012, comprises two spacecraft making in situ measurements for atleast 2 years in nearly the same highly elliptical, low inclination orbits (1.1 5.8 RE, 10).The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every2.5 months, allowing separation of spatial from temporal effects over spatial scales rangingfrom 0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the twospacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B),and wave distributions (dE and dB) that are needed to resolve the most critical science questions.Here we summarize the high level science objectives for the RBSP mission, providehistorical background on studies of Earth and planetary radiation belts, present examples ofthe most compelling scientific mysteries of the radiation belts, present the mission design ofthe RBSP mission that targets these mysteries and objectives, present the observation andmeasurement requirements for the mission, and introduce the instrumentation that will deliverthese measurements. This paper references and is followed by a number of companionpapers that describe the details of the RBSP mission, spacecraft, and instruments.

  6. Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Fox, N. J.; Kanekal, S. G.; Kessel, R. L.; Sibeck, D. G.; Ukhorskiy, A.

    2013-11-01

    The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth's magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ˜0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields ( E and B), and wave distributions ( d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.

  7. The Mission Accessible Near-Earth Objects Survey (MANOS): photometric results

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Moskovitz, Nicholas; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca; Person, Michael J.; Polishook, David; Thomas, Cristina; Trilling, David E.; Willman, Mark; Hinkle, Mary L.; Burt, Brian; Avner, Dan

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near-Earth Objects (NEOs) to provide physical data for several hundred mission accessible NEOs across visible and near-infrared wavelengths. Using a variety of 1-m to 8-m class telescopes, we observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties and taxonomic class.Rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present results of the MANOS photometric survey for more than 200 NEOs. We report lightcurves from our first three years of observing and show objects with rotational periods from a couple of hours down to a few seconds. MANOS found the three fastest rotators known to date with rotational periods below 20s. A physical interpretation of these ultra-rapid rotators is that they are bound through a combination of cohesive and/or tensile strength rather than gravity. Therefore, these objects are important to understand the internal structure of NEOs. Rotational properties are used for statistical study to constrain overall properties of the NEO population. We also study rotational properties according to size, and dynamical class. Finally, we report a sample of NEOs that are fully characterized (lightcurve and visible spectra) as the most suitable candidates for a future robotic or human mission. Viable mission targets are objects with a rotational period >1h, and a delta-v lower than 12 km/s. Assuming the MANOS rate of object characterization, and the current NEO population estimates by Tricarico (2016), and by Harris and D'Abramo (2015), 10,000 to 1,000,000 NEOs with diameters between 10m and 1km are expected to be mission accessible. We acknowledge funding support from NASA NEOO grant number NNX14AN82G, and NOAO survey program.

  8. The High Energy Solar Physics mission (HESP): Scientific objectives and technical description

    NASA Technical Reports Server (NTRS)

    Crannell, Carol; Dennis, Brian; Davis, John; Emslie, Gordon; Haerendel, Gerhard; Hudson, High; Hurford, Gordon; Lin, Robert; Ling, James; Pick, Monique

    1991-01-01

    The High Energy Solar Physics mission offers the opportunity for major breakthroughs in the understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. The following subject areas are covered: the scientific objectives of HESP; what we can expect from the HESP observations; the high energy imaging spectrometer (HEISPEC); the HESP spacecraft; and budget and schedule.

  9. Objectives for Mars Orbital Missions in the 2020s: Report from a MEPAG Science Analysis Group

    NASA Astrophysics Data System (ADS)

    Zurek, R. W.; Campbell, B. A.; Diniega, S.; Lock, R. E.

    2015-12-01

    NASA Headquarters is looking at possible missions to Mars to follow the proposed 2020 Mars rover mission currently in development. One option being considered is a multi-functional orbiter, launched in the early 2020's, whose capabilities could address objectives in the following areas: • Replenishment of the telecommunications and reconnaissance infrastructure presently provided by the aging Mars Odyssey and Mars Reconnaissance Orbiters; • Scientific and technical progress on the NRC Planetary Science Decadal Survey priorities, updated MEPAG Goals, and/or follow-up of new discoveries; • Location and quantification of in situ resources for utilization by future robotic and human surface-based missions; and • Data needed to address Strategic Knowledge Gaps (SKGs), again for possible human missions. The Mars Exploration Program Analysis Group (MEPAG) was asked to prepare an analysis of possible science objectives and remote sensing capabilities that could be implemented by such a multi-purpose Mars orbiter launched in the 2022/24 timeframe. MEPAG conducted this analysis through formation of a Next Orbiter Science Analysis Group (NEX-SAG), which was chartered jointly by the NASA Science and Human Exploration Directorates. The SAG was asked to conduct this study within a range of mission capabilities, including the possible first use of Solar Electric Propulsion (SEP) in the Mars system. SEP could provide additional power enabling new payload components and possible changes in orbit (e.g., orbital inclination change) that permit different mission observational campaigns (e.g., polar and non-polar). Special attention was paid towards identifying synergies between science investigations, reconnaissance, and resource/SKG needs. We will present the findings and conclusions of this NEX-SAG regarding possible objectives for the next NASA Orbiter to Mars.

  10. The Stratospheric Aerosol and Gas Experiment III/International Space Station Mission: Science Objectives and Mission Status

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M. S.; Flittner, D. E.; McCormick, M. P.; Gasbarre, J. F.; Damadeo, R. P.; Hill, C. A.

    2015-12-01

    The Stratospheric Aerosol and Gas Experiment III/International Space Station (SAGE III/ISS) is a strategic climate continuity mission which was included in NASA's 2010 plan, "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space." SAGE III/ISS continues the long-term, global measurements of trace gases and aerosols begun in 1979 by SAGE I and continued by SAGE II and SAGE III on Meteor 3M. Using a well characterized occultation technique, the SAGE III instrument's spectrometer will measure vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases relevant to ozone chemistry. The mission will launch in 2016 aboard a Falcon 9 spacecraft.The primary objective of SAGE III/ISS is to monitor the vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere to enhance our understanding of ozone recovery and climate change processes in the stratosphere and upper troposphere. SAGE III/ISS will provide data necessary to assess the state of the recovery in the distribution of ozone, extend the SAGE III aerosol measurement record that is needed by both climate models and ozone models, and gain further insight into key processes contributing to ozone and aerosol variability. The multi-decadal SAGE ozone and aerosol data sets have undergone intense community scrutiny for accuracy and stability. SAGE ozone data have been used to monitor the effectiveness of the Montreal Protocol.The ISS inclined orbit of 51.6 degrees is ideal for SAGE III measurements because the orbit permits solar occultation measurement coverage to approximately +/- 70 degrees of latitude. SAGE III/ISS will make measurements using the solar occultation measurement technique, lunar occultation measurement technique, and the limb scattering measurement technique. In this presentation, we describe the SAGE III/ISS mission, its

  11. How Many Ultra-Low Delta-v Near Earth Objects Remain Undiscovered? Implications for missions.

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ranjan, Sukrit; Galache, Jose Luis; Murphy, Max

    2015-08-01

    The past decade has witnessed considerable growth of interest in missions to Near-Earth Objects (NEOs). NEOs are considered prime targets for manned and robotic missions, for both scientific objectives as well as in-situ resource utilization including harvesting of water for propellant and life support and mining of high-value elements for sale on Earth. Appropriate targets are crucial to such missions. Hence, ultra-low delta-v mission targets are strongly favored. Some mission architectures rely on the discovery of more ultra-low delta-v NEOs. In fact the approved and executed NEO missions have all targeted asteroids with ultra-low LEO to asteroid rendezvous delta-v <5.5 km/s.In this paper, we estimate the total NEO population as a function of delta-v, and how many remain to be discovered in various size ranges down to ~100m. We couple the NEOSSat-1 model (Greenstreet et al., 2012) to the NEO size distribution derived from the NEOWISE survey (Mainzer et al., 2011b) to compute an absolute NEO population model. We compare the Minor Planet Center (MPC) catalog of known NEOs to this NEO population model. We compute the delta-v from LEO to asteroid rendezvous orbits using a modified Shoemaker-Helin (S-H) formalism that empirically removes biases found comparing S-H with the results from NHATS. The median delta-v of the known NEOs is 7.3 km/s, the median delta-v predicted by our NEO model is 9.8 km/s, suggesting that undiscovered objects are biased to higher delta-v. The survey of delta-v <10.3 km/s NEOs is essentially complete for objects with diameter D >300 m. However, there are tens of thousands of objects with delta-v <10.3 km/s to be discovered in the D = 50 - 300 m size class (H = 20.4 - 24.3). Our work suggests that there are 100 yet-undiscovered NEOs with delta-v < 5:8 km/s, and 1000 undiscovered NEOs with v < 6.3 km/s. We conclude that, even with complete NEO surveys, the selection of good (i.e. ultra-low delta-v) mission targets is limited given current

  12. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.

  13. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Neefs, E.; Drummond, R.; Thomas, I. R.; Daerden, F.; Lopez-Moreno, J.-J.; Rodriguez, J.; Patel, M. R.; Bellucci, G.; Allen, M.; Altieri, F.; Bolsée, D.; Clancy, T.; Delanoye, S.; Depiesse, C.; Cloutis, E.; Fedorova, A.; Formisano, V.; Funke, B.; Fussen, D.; Geminale, A.; Gérard, J.-C.; Giuranna, M.; Ignatiev, N.; Kaminski, J.; Karatekin, O.; Lefèvre, F.; López-Puertas, M.; López-Valverde, M.; Mahieux, A.; McConnell, J.; Mumma, M.; Neary, L.; Renotte, E.; Ristic, B.; Robert, S.; Smith, M.; Trokhimovsky, S.; Vander Auwera, J.; Villanueva, G.; Whiteway, J.; Wilquet, V.; Wolff, M.

    2015-12-01

    The NOMAD spectrometer suite on the ExoMars Trace Gas Orbiter will map the composition and distribution of Mars' atmospheric trace species in unprecedented detail, fulfilling many of the scientific objectives of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument is a combination of three channels, covering a spectral range from the UV to the IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and how these objectives have influenced the design of the channels. We also discuss the expected performance of the instrument in terms of coverage and detection sensitivity.

  14. Multi-Objective Multi-User Scheduling for Space Science Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2010-01-01

    We have developed an architecture called MUSE (Multi-User Scheduling Environment) to enable the integration of multi-objective evolutionary algorithms with existing domain planning and scheduling tools. Our approach is intended to make it possible to re-use existing software, while obtaining the advantages of multi-objective optimization algorithms. This approach enables multiple participants to actively engage in the optimization process, each representing one or more objectives in the optimization problem. As initial applications, we apply our approach to scheduling the James Webb Space Telescope, where three objectives are modeled: minimizing wasted time, minimizing the number of observations that miss their last planning opportunity in a year, and minimizing the (vector) build up of angular momentum that would necessitate the use of mission critical propellant to dump the momentum. As a second application area, we model aspects of the Cassini science planning process, including the trade-off between collecting data (subject to onboard recorder capacity) and transmitting saved data to Earth. A third mission application is that of scheduling the Cluster 4-spacecraft constellation plasma experiment. In this paper we describe our overall architecture and our adaptations for these different application domains. We also describe our plans for applying this approach to other science mission planning and scheduling problems in the future.

  15. Science objectives and the Mariner Jupiter/Saturn 1977 mission design

    NASA Technical Reports Server (NTRS)

    Penzo, P. A.

    1974-01-01

    The two Mariner spacecraft to be launched in 1977 to fly by Jupiter and Saturn require a mission design which is heavily dependent on science objectives. These science objectives translate into trajectory requirements imposed by one or more of the eleven instruments aboard Mariner such as distance of closest approach, inclination, occultation, lighting, etc., at the bodies of interest. Also, Jupiter and Saturn cannot be considered as individual targets but as miniature solar systems, where the mission design must apply to the Jovian and Saturnian satellites, and to Saturn's rings. The major objective of this analysis is to translate the science desires into the mission possibilities. Each object, be it a Galilean satellite, Titan, or the ring of Saturn, provides a unique region suitable for scientific investigation for the on-board instruments. Some of these trajectory regions overlap, others do not. Thus, critical choices must be made in selecting the trajectories to be flown by the two Mariner spacecraft. Such a choice, though preliminary, has been made by the Mariner Jupiter/Saturn 1977 (MJS'77) science teams, and a brief discussion of the selection process and the pair of trajectories chosen is presented in this paper.

  16. The Gamma-Ray Observatory mission objectives and its significance for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.

    1984-01-01

    The Gamma Ray Observatory (GRO) is an approved NASA mission, programmed for launch in 1988. Its complement of four detectors has established goals: (1) to study the nature of compact gamma-ray sources such as neutron stars and black holes, or objects whose nature is yet to be understood; (2) to search for evidence of nucleosynthesis especially in the regions of supernovae; (3) to study structural features and dynamical properties of the Galaxy; (4) to explore other galaxies, especially the extraordinary types such as radio, Seyferts, and quasars; and (5) to study cosmological effects by examining the diffuse radiation in detail. This paper discusses the design, objectives, and expected scientific results of each of the GRO instruments in view of the GRO mission goals.

  17. Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.

    2015-01-01

    This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.

  18. NASA space biology accomplishments, 1982

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Pleasant, L. G.

    1983-01-01

    Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.

  19. Science of Marco Polo : Near-Earth Object Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, Makoto; Koschny, Detlef; Boehnhardt, Hermann; Brucato, J. Robert; Coradini, Marcello; Dotto, Elisabetta; Franchi, Ian A.; Green, Simon F.; Josset, Jean-Luc; Michel, Patrick; Kawagushi, Jun; Muinonen, Karri; Oberst, Juergen; Yano, Hajime; Binzel, Richard P.

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object (NEO), selected by ESA in the framework of COSMIC VISION for an assessment study. This Euro-Asian mission will go to a primitive NEO, such as C or D type, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. NEOs are part of the small body population in the solar system, which are leftover building blocks of the solar system formation process. They offer important clues to the chemical mixture from which planets formed about 4.6 billion years ago. The scientific objectives of Marco Polo will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Marco Polo is based on a launch with a Soyuz Fregat and consists of a Mother Spacecraft (MSC), possibly carrying a lander. The MSC would approach the target asteroid and spend a few months for global characterization of the target to select a sampling site. Then, the MSC would then descend to retrieve, using a "touch and go" manoeuvre, several samples which will be transferred to a Sample Return Capsule (SRC). The MSC would return to Earth and release the SRC into the atmosphere for ground recovery. The sample of the NEO will then be available for detailed investigation in ground-based laboratories. The scientific objectives addressed by the mission and the current status of the mission study (ESA-JAXA) will be presented and discussed.

  20. Living Our Mission, Building on Our Accomplishments: A Plan for Continued Change. 1994 Update. Five Year Strategic Plan, FY 1992-1996.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Institutions, Denver. Div. of Developmental Disabilities.

    This report presents the 1994 update for a 5-year plan developed in 1992 which emphasizes changes resulting from restructuring Colorado state government and its departments. The first section presents the mission statement of the Division for Developmental Disabilities, a statement of the Division's operating principles, and a statement of desired…

  1. Special issue editorial - Plasma interactions with Solar System Objects: Anticipating Rosetta, Maven and Mars Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Wellbrock, A.; Yamauchi, M.

    2015-12-01

    Within our solar system, the planets, moons, comets and asteroids all have plasma interactions. The interaction depends on the nature of the object, particularly the presence of an atmosphere and a magnetic field. Even the size of the object matters through the finite gyroradius effect and the scale height of cold ions of exospheric origin. It also depends on the upstream conditions, including position within the solar wind or the presence within a planetary magnetosphere. Soon after ESA's Rosetta reached comet Churyumov-Gerasimenko, NASA's Maven and ISRO's Mars Orbiter Mission (MOM) reached Mars, and ESA's Venus Express mission was completed, this issue explores our understanding of plasma interactions with comets, Mars, Venus, and moons in the solar system. We explore the processes which characterise the interactions, such as ion pickup and field draping, and their effects such as plasma escape. Papers are based on data from current and recent space missions, modelling and theory, as we explore our local part of the 'plasma universe'.

  2. Lunar polar ice deposits: scientific and utilization objectives of the lunar ice discovery mission proposal

    NASA Astrophysics Data System (ADS)

    B. Duke, Michael

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10 16 g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice.

  3. The Mission Accessible Near-Earth Object Survey (MANOS): Project Overview

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Polishook, David; Thomas, Cristina; Willman, Mark; DeMeo, Francesca; Mommert, Michael; Endicott, Thomas; Trilling, David; Binzel, Richard; Hinkle, Mary; Siu, Hosea; Neugent, Kathryn; Christensen, Eric; Person, Michael; Burt, Brian; Grundy, Will; Roe, Henry; Abell, Paul; Busch, Michael

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, for which little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Accessing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy is specifically designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits. MANOS will provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present an overview of the survey, progress to date, and early science highlights including: (1) an estimate of the taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied objects, (3) models for the dynamical evolution of the overall NEO population over the past 0.5 Myr, and (4) progress in developing a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data while providing a portal to facilitate coordination efforts within the small body observer community.MANOS is supported through telescope allocations from NOAO and Lowell Observatory. We acknowledge funding support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship to N. Moskovitz and NASA NEOO grant

  4. The Mission Accessible Near-Earth Object Survey (MANOS) — First Results

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Avner, Louis; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Schottland, Robert; Siu, Hosea; Thirouin, Audrey; Thomas, Cristina; Trilling, David; Wasserman, Lawrence; Willman, Mark

    2015-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO and has since expanded operations to include facilities at Lowell Observatory and the University of Hawaii. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, where little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Observing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy enables the characterization of roughly 10% of newly discovered NEOs before they fade beyond observational limits.To date MANOS has obtained data on over 200 sub-km NEOs and will ultimately provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present first results from the survey including: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for small objects with high Earth-encounter probabilities, (3) progress in developing a new set of online tools at asteroid.lowell.edu that will help to facilitate observational planning for the small body observer community, and (4) physical properties derived from rotational light curves.MANOS is supported through telescope allocations from NOAO, Lowell Observatory and the University of Hawaii. We acknowledge funding support from NASA NEOO grant number NNX14AN82G and an NSF Astronomy and

  5. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; Bury, Kristen M.; Tracy, William H.

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  6. Mission feasibility analysis on deflecting Earth-crossing objects using a power limited laser ablating spacecraft

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2010-01-01

    This paper analyzes several mission capabilities to deflect Earth-crossing objects (ECOs) using a conceptual future spacecraft with a power limited laser ablating tool. A constrained optimization problem is formulated based on nonlinear programming with a three-dimensional patched conic method. System dynamics are also established, considering the target ECO’s orbit as being continuously perturbed by limited laser power. The required optimal operating duration and operating angle history of the laser ablating tool are computed for various types of ECOs to avoid an Earth impact. The available final warning time is also determined with a given limited laser power. As a result, detailed laser operating behaviors are presented and discussed, which include characteristics of operating duration and angle variation histories in relation to the operation’s start time and target object’s properties. The calculated durations of the optimal laser operation are also compared to those estimated with first-order approximations previous studies. It is discovered that the duration of the laser operation estimated with first-order approximations could result in up to about 50% error if the operation is started at the final warning time. The laser operation should be started as early as possible because an early start requires a short operating duration with a small operating angle variation. The mission feasibility demonstrated in the present study will give various insights into preparing future deflection missions using power limited spacecraft with a laser ablation tool.

  7. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on several real-world problems. Two assumptions are frequently made to simplify the modeling of an interplanetary high-thrust trajectory during the preliminary design phase. The first assumption is that because the available thrust is high, any maneuvers performed by the spacecraft can be modeled as discrete changes in velocity. This assumption removes the need to integrate the equations of motion governing the motion of a spacecraft under thrust and allows the change in velocity to be modeled as an impulse and the expenditure of propellant to be modeled using the time-independent solution to Tsiolkovsky's rocket equation [1]. The second assumption is that the spacecraft moves primarily under the influence of the central body, i.e. the sun, and all other perturbing forces may be neglected in preliminary design. The path of the spacecraft may then be modeled as a series of conic sections. When a spacecraft performs a close

  8. EFRC CMSNF Major Accomplishments

    SciTech Connect

    D. Hurley; Todd R. Allen

    2014-09-01

    The mission of the Center for Material Science of Nuclear Fuels (CMSNF) has been to develop a first-principles-based understanding of thermal transport in the most widely used nuclear fuel, UO2, in the presence of defect microstructure associated with radiation environments. The overarching goal within this mission was to develop an experimentally validated multiscale modeling capability directed toward a predictive understanding of the impact of radiation and fission-product induced defects and microstructure on thermal transport in nuclear fuel. Implementation of the mission was accomplished by integrating the physics of thermal transport in crystalline solids with microstructure science under irradiation through multi institutional experimental and computational materials theory teams from Idaho National Laboratory, Oak Ridge National Laboratory, Purdue University, the University of Florida, the University of Wisconsin, and the Colorado School of Mines. The Center’s research focused on five major areas: (i) The fundamental aspects of anharmonicity in UO2 crystals and its impact on thermal transport; (ii) The effects of radiation microstructure on thermal transport in UO2; (iii) The mechanisms of defect clustering in UO2 under irradiation; (iv) The effect of temperature and oxygen environment on the stoichiometry of UO2; and (v) The mechanisms of growth of dislocation loops and voids under irradiation. The Center has made important progress in each of these areas, as summarized below.

  9. The Bias-Corrected Taxonomic Distribution of Mission-Accessible Small Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Hinkle, Mary L.; Moskovitz, Nicholas; Trilling, David; Binzel, Richard P.; Thomas, Cristina; Christensen, Eric; DeMeo, Francesca; Person, Michael J.; Polishook, David; Willman, Mark

    2015-11-01

    Although they are thought to compose the majority of the Near-Earth object (NEO) population, the small (d < 1 km) near-Earth asteroids (NEAs) have not yet been studied as thoroughly as their larger cousins. Sub-kilometer objects are amongst the most abundant newly discovered NEOs and are often targets of opportunity, observable for only a few days to weeks after their discovery. Even at their brightest (V ~ 18), these asteroids are faint enough that they must be observed with large ground-based telescopes.The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra).Fifty-seven small, mission-accessible NEAs were observed between mid 2013 and mid 2015 using GMOS at Gemini North & South observatories as well as the DeVeny spectrograph at Lowell Observatory's Discovery Channel Telescope. Archival data of 43 objects from the MIT-UH-IRTF Joint Campaign for NEO Spectral Reconnaissance (PI R. Binzel) were also used. Taxonomic classifications were obtained by fitting our spectra to the mean reflectance spectra of the Bus asteroid taxonomy (Bus & Binzel 2002). Small NEAs are the likely progenitors of meteorites; an improved understanding of the abundance of meteorite parent body types in the NEO population improves understanding of how the two populations are related as well as the biases Earth's atmosphere imposes upon the meteorite collection.We present classifications for these objects as well as results for the debiased distribution of taxa(as a proxy for composition) as a function of object size and compare to the observed fractions of ordinary chondritemeteorites and asteroids with d > 1 km. Amongst the smallest NEOs we find an unexpected distribution of

  10. The Bias-Corrected Taxonomic Distribution of Mission-Accessible Small Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Hinkle, Mary Louise; Moskovitz, Nicholas; Trilling, David; Binzel, Richard; DeMeo, Francesca; Thomas, Cristina; Polishook, David; Person, Michael; Willman, Mark; Christensen, Eric

    2015-08-01

    As relics of the inner solar system's formation, asteroids trace the origins of solar system material. Near-Earth asteroids (NEAs) are the intermediaries between material that falls to Earth as meteorites and the source regions of those meteorites in the main belt. A better understanding of the physical parameters of NEAs, in particular their compositions, provides a more complete picture of the processes that shaped the inner solar system and that deliver material from the main belt to near-Earth space.Across the entire NEA population, the smallest (d < 1 km) objects have not been well-studied. These very small objects are often targets of opportunity, observable for only a few days to weeks after their discovery. Even at their brightest (V ~ 18), these asteroids are faint enough that they must be observed with large ground-based telescopes.The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Seventy small, mission-accessible NEAs were observed between mid 2013 and mid 2015 using the Gemini Multi-Object Spectrograph at Gemini North & South observatories. Taxonomic classifications were obtained by fitting our spectra to the mean reflectance spectra of the Bus asteroid taxonomy (Bus & Binzel 2002). The smallest near-Earth asteroids are the likely progenitors of meteorites; we expect the observed fraction of ordinary chondrite meteorites to match that of their parent bodies, S-type asteroids. The distribution of the population of small NEAs should also resemble that of their parent bodies, the larger asteroids (d > 1 km). We present classifications for these objects as well as preliminary results for the debiased distribution of taxa (as a proxy for

  11. Multi-Mission Space Exploration Vehicle Concept Simulation of Operations in Proximity to a Near Earth Object

    NASA Technical Reports Server (NTRS)

    Kline, Heather

    2011-01-01

    This paper details a project to simulate the dynamics of a proposed Multi-Mission Space Exploration Vehicle (MMSEV), and modeling the control of this spacecraft. A potential mission of the MMSEV would be to collect samples from a Near-Earth Object (NEO), a mission which would require the spacecraft to be able to navigate to an orbit keeping it stationary over an area of a spinning asteroid while a robotic arm interacts with the surface.

  12. Science Objectives and Site Selection Criteria for a Human Mission to Mars

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Beaty, D. W.; Hays, L. E.; Bass, D.; Bell, M. S.; Bleacher, J. E.; Cabrol, N. A.; Conrad, P. G.; Eppler, D. B.; Hamilton, V. E.; Head, J. W., III; Kahre, M. A.; Levy, J. S.; Lyons, T. W.; Rafkin, S. C.; Rice, M. S.; Rice, J.

    2015-12-01

    NASA recently requested that MEPAG evaluate the scientific objectives and the science-related landing site criteria that could be used to support preliminary landing site evaluation for a human mission to Mars in the late 2030's. These requests were addressed by the Human Science Objectives Science Analysis Group, or HSO-SAG 2015, consisting of members of the Mars science and human exploration communities. A set of candidate scientific objectives was identified by the SAG considering intrinsic scientific merit, magnitude of the benefit of a proximal human, opportunities to make simultaneous observations from different vantage points, and opportunities to deliver scientific payloads of higher mass/complexity. These science objectives were then used to construct a set of landing site criteria that can be used to identify potential human landing sites on Mars with high potential for substantial scientific discovery. A future human landing site will lie in the center of a 100 km radius 'exploration zone' and scientific regions of interest within this exploration zone can be considered candidate sites for human exploration. HSO-SAG determined that potential landing sites on Mars should have access to the following: 1) deposits with a high preservation potential for evidence of past habitability and/or sites that are promising for present habitability; 2) Noachian and/or Hesperian rocks that can be used to understand past atmospheres; 3) exposures of at least two crustal units that are suitable for radiometric dating; 4) access to outcrops with signatures indicative of aqueous processes; 5) identifiable stratigraphic contacts and cross-cutting relationships from which relative ages can be determined. These criteria will be used along with other criteria developed from engineering and exploration objectives to help prioritize candidate landing sites for future human missions to Mars. The first landing site workshop will occur on October 27-30, 2015 in Houston, TX. Please

  13. Aspects of Solar System Objects Dynamics with the Gaia Mission and in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel J. G. J.; David, Pedro; Hees, Aurélien; Kovalenko, Irina; Kudryashova, Maria; Thuillot, William; Berthier, Jerome; Carry, Benoit; Emelynaov, Nikolai; Fouchard, Marc; Lainey, Valery; Le Poncin-Lafitte, Christophe; Stoica, Radu; Tanga, Paolo

    2015-05-01

    After its successful launch in December 2013, and commissioning period, ESA's astrometric space mission Gaia has now started its scientific operations. In addition to the 3D census of our Milky Way with high precision parallax, proper motion, and other parameters derived for a billion of stars, Gaia will also provide a scientific harvest for Solar System Objects (SSO) science. The high precision astrometry and photometry that will be regularly collected for about 300,000 asteroids - during the 5years nominal mission time - will enable significant improvements on fundamental observational data for a very large number of objects.I will describe the current status of the satellite and observations, the Gaia-FUN-SSO follow-up network, data releases policy, and data validations. We will also present the expected results on the dynamics of asteroids and comets, asteroid masses and binary asteroids, tests of GR, and prospects of SSO science (satellites, stellar occultations, etc.) with the Gaia stellar catalogue.Acknowledgements: Thanks to the Gaia DPAC CU4 consortium, and the Labex ESEP (No 2011-LABX-030) & Initiative d'excellence PSL* (convention No ANR-10-IDEX-0001-02)

  14. Operational space human factors - Methodology for a DSO. [Detailed Supplementary Objective for manned Shuttle Orbiter missions

    NASA Technical Reports Server (NTRS)

    Callaghan, Thomas F.; Gosbee, John W.; Adam, Susan C.

    1992-01-01

    The Human Factors Assessment of Orbiter Missions (Detailed Supplementary Objective 904) was conducted on STS-40 (Spacelab Life Sciences 1) in order to bring human factors into the operational world of manned space flight. This paper describes some of its methods. Included are explanations of general and space human factors, and a description of DSO 904 study objectives and results. The methods described include ways to collect background information for studies and also different in-flight data collection techniques. Several lessons for the space human factors engineer are reflected in this paper. First, method development is just as important as standards generation. Second, results of investigations should always have applicability to design. Third, cooperation with other NASA groups is essential. Finally, the human is the most important component of the space exploration system, and often the most difficult to study.

  15. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  16. The Mission Accessible Near-Earth Object Survey Public Database Development Effort

    NASA Astrophysics Data System (ADS)

    Burt, Brian; Moskovitz, Nicholas; Putnam, Lowell

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded large survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). The MANOS project will provide a resource that not only helps to manage our survey in a fully transparent, publicly accessible forum, but will also help to coordinate minor planet characterization efforts and target prioritization across multiple research groups. Working towards that goal, we are developing a portal for rapid, up to date, public dissemination of our data. Migrating the Lowell Astorb dataset to a SQL framework is a major step towards the modernization of the system and will make capable up-to-date deployment of data. This will further allow us to develop utilities of various complexity, such as a deltaV calculator, minor planet finder charts, and sophisticated ephemeri generation functions. We present the state of this effort and a preliminary timeline for functionality.

  17. The Mission Accessible Near-Earth Object Survey (MANOS): first photometric results.

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Moskovitz, N.; Binzel, R.; Christensen, E.; DeMeo, F.; Person, M.; Polishook, D.; Thomas, C.; Trilling, D.; Willman, M.; Burt, B.; Hinkle, M.; Mommert, Michael

    2015-08-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near Earth Objects (NEOs) that was originally awarded multi-year survey status by NOAO and recently has employed additional facilities available to Lowell Observatory and the University of Hawaii. Our main goal is to provide physical data, such as rotational properties and composition, for several hundred mission accessible NEOs across visible and near-infrared wavelengths.As of February 2015, 12,287 NEOs have been discovered. Despite this impressive number, physical information for the majority of these objects remains limited. Typical NEOs fade in a matter of days or weeks after their discovery, thus their characterization requires a challenging set of rapid response observations.Using a variety of 1-m to 4-m class telescopes, we aim to observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties. Such rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present early results of the MANOS photometric survey for more than 50 NEOs. One of the goals of this survey is to increase the number of sub-km NEOs whose short-term variability has been studied and to compile a high quality homogeneous database which may be used to perform statistical analyses.We report light curves from our first two years of observing and show objects with rotational periods from a couple of hours down to few seconds. We consider the spin rate distributions of several sub-samples according to their size and other physical parameters. Our results were merged with rotational parameters of other asteroids in the literature to build a larger sample. This allows us to identify correlations of rotational properties with orbital parameters. In particular, we want to study MOID vs. rotation period/morphology/elongation/amplitude, rotation

  18. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Davila, A.; Sanders, G.; Glass, Brian; Gonzales, A.; Heldmann, Jennifer; Karcz, J.; Lemke, L.; Sanders, G.

    2012-01-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  19. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Astrophysics Data System (ADS)

    Stoker, C.; Davilla, A.; Davis, S.; Glass, B.; Gonzales, A.; Heldmann, J.; Karcz, J.; Lemke, L.; Sanders, G.

    2012-06-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  20. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  1. Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object

    NASA Astrophysics Data System (ADS)

    Shupe, Nathan C.

    Based on the recommendations of the Augustine Commission, President Obama has proposed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and predicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population. The objective of this thesis is to pick up where the previous Constellation study left off by considering what orbit options are available for an Orion-class spacecraft upon arrival at a NEO. A model including multiple perturbations (solar radiation pressure, solar gravity, non-spherical mass distribution of the central body) to two-body dynamics is constructed to numerically integrate the motion of a satellite in close proximity to a small body in an elliptical orbit about the Sun. Analytical limits derived elsewhere in the literature for the thresholds on the size of the satellite orbit required to maintain stability in the presence of these perturbing forces are verified by the numerical model. Simulations about NEOs possessing various physical parameters (size, shape, rotation period) are then used to empirically develop general guidelines for establishing orbits of an Orion-class spacecraft about a NEO. It is found that an Orion-class spacecraft can orbit NEOs at any distance greater than the NEO surface height and less than the maximum semi-major axis allowed by the solar radiation pressure perturbation, provided that the ellipticity perturbation is sufficiently weak (this condition is met if the NEO is relatively round and/or has a long rotation

  2. High Performance Ultra-light Nuclear Rockets for NEO (Near Earth Objects) Interaction Missions

    SciTech Connect

    Powell, J.; Maise, G.; Ludewig, H.; Todosow, M.

    1996-12-31

    The performance capabilities and technology features of ultra compact nuclear thermal rockets based on very high power density ({approximately} 30 Megawatts per liter) fuel elements are described. Nuclear rockets appear particularly attractive for carrying out missions to investigate or intercept Near Earth Objects (NEOS) that potentially could impact on the Earth. Many of these NEO threats, whether asteroids or comets, have extremely high closing velocities, i.e., tens of kilometers per second relative to the Earth. Nuclear rockets using hydrogen propellant enable flight velocities 2 to 3 times those achievable with chemical rockets, allowing interaction with a potential NEO threat at a much shorter time, and at much greater range. Two versions of an ultra compact nuclear rocket based on very high heat transfer rates are described: the PBR (Particle Bed Reactor), which has undergone substantial hardware development effort, and MITEE (Miniature Reactor Engine) which is a design derivative of the PBR. Nominal performance capabilities for the PBR are: thermal power - 1000 MW thrust - 45,000 lbsf, and weight - 500 kg. For MITEE, nominal capabilities are: thermal power - 100 MW; thrust {approx} 4500 lbsf, and weight - 50 kg. Development of operational PBR/MITEE systems would enable spacecraft launched from LEO (Low Earth Orbit) to investigate intercept NEO`s at a range of {approximately} 100 million kilometers in times of {approximately} 30 days.

  3. Spectral studies of asteroids 21 lutetia and 4 vesta as objects of space missions

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.

    2010-12-01

    Asteroid 21 Lutetia is one of the objects of the Rosetta mission carried out by the European Space Agency (ESA). The Rosetta spacecraft launched in 2004 is to approach Lutetia in July 2010, and then it will be directed to the comet Churyumov-Gerasimenko. Asteroid 4 Vesta is planned to be investigated in 2011 from the Dawn spacecraft launched by the National Aeronautics and Space Administration (NASA) in 2007 (its second object is the largest asteroid, 1 Ceres). The observed characteristics of Lutetia and Vesta are different and even contradictory. In spite of the intense and versatile ground-based studies, the origin and evolution of these minor planets remain obscure or not completely clear. The types of Lutetia and Vesta (M and V, respectively) determined from their spectra correspond to the high-temperature mineralogy, which agrees with their albedo estimated from the Infrared Astronomical Satellite (IRAS) observations. However, according to the opinion of some researchers, Lutetia is of the C type, and, therefore, its mineralogy is of the lowtemperature type. In turn, hydrosilicate formations have been found in some places on the surface of Vesta. Our observations also testify that at some relative phases of rotation (RP), the reflectance spectra of Lutetia and Vesta demonstrate features confirming the presence of hydrosilicates in the surface material. However, this fact can be reconciled with the magmatic nature of Lutetia and Vesta if the hydrated material was delivered to their surfaces by falling primitive bodies. Such small bodies are probably present everywhere in the main asteroid belt and can be the relicts of silicate-icy planetesimals from Jupiter's formation zone or the fragments of primitive-type asteroids. When interpreting the reflectance spectra of Lutetia and Vesta, we discuss the spectral classification by Tholen (1984) from the standpoint of its general importance for the estimation of the mineralogical type of the asteroids and the study of

  4. The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)

    NASA Astrophysics Data System (ADS)

    Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick

    2016-10-01

    We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of ~4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.

  5. The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark

    2015-08-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while

  6. The Geostationary Tropospheric Pollution Explorer (GeoTROPE) mission: Objectives and Requirements

    NASA Astrophysics Data System (ADS)

    Burrows, J.; Bergametti, G.; Bovensmann, H.; Flaud, J.; Orphal, J.; Noel, S.; Monks, P.; Corlett, G.; Goede, A.; von Clarmann, T.; Steck, T.; Fischer, H.; Friedl-Vallon, F.

    One of the major challenges facing atmospheric sciences is to assess, understand and quantify the impact of natural and anthropogenic pollution on the quality of life on Earth on a local, regional and continental scale. It has become apparent that pollution originating from local/regional events can have serious effects on the composition of the lower atmosphere on a continental scale. However, to understand the effects of regional pollution on a continental scale there is a requirement to transcend traditional atmospheric spatial and temporal scales and attempt to monitor the entire atmosphere at the same time. In the troposphere the variability of chemical processes, of source strength and the dynamics induce important short term, i.e. sub-hourly, variations and significant horizontal and vertical variability of constituents and geophysical parameters relevant to a range of contemporary issues such as air quality. To study tropospheric composition, it is therefore required to link diurnal with seasonal and annual timescales, as well as local and regional with continental spatial scales, by performing sub-hourly measurements at appropriate horizontal and vertical resolution. Tropospheric observations from low-Earth orbit (LEO) platforms have already demonstrated the potential of detecting constituents relevant for air quality but they are limited, for example by the daily revisit time and local cloud cover statistics. The net result of this is is that the troposphere is currently significantly under sampled. Measurements from Geostationary Orbit (GEO) offer the only practical approach to the observation of diurnal variation from space with the pertinent horizontal resolution. The Geostationary Tropospheric Pollution Explorer (GeoTROPE) is an attempt to determine tropospheric constituents with high temporal and spatial resolution. The talk will summarise the needs for geostationary observations of tropospheric composition and will give the mission objectives and

  7. JUICE: complementarity of the payload in adressing the mission science objectives

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Wahlund, Jan-Erik

    2014-05-01

    radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful particle environment package (PEP), a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The instruments will work together to achieve mission science objectives that otherwise cannot be achieved by a single experiment. For instance, joint J-MAG, 3GM, GALA and JANUS observations would constrain thickness of the ice shell, ocean depth and conductivity. SWI, 3GM and UVS would complement each other in the temperature sounding of the Jupiter atmosphere. The complex coupling between magnetosphere and atmosphere of Jupiter will be jointly studied by combination of aurora imaging (UVS, MAJIS, JANUS) and plasma and fields measurements (J-MAG, RPWI, PEP). The talk will give an overview of the JUICE payload focusing on complementarity and synergy between the experiments.

  8. Low delta-V Near Earth Objects: a survey of suitable targets for space missions

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Dotto, E.; Perna, D.; Barucci, M. A.; Bernardi, F.; Fornasier, S.; De Luise, F.; Perozzi, E.; Rossi, A.; Brucato, J. R.

    2013-09-01

    Near-Earth asteroids (NEAs) are attracting nowadays more and more attention from the scientific community, because of their constant threat to human civilization, their increasing feasibility for future space missions and the opportunity to investigate pristine material. Unfortunately only 10% of discovered NEAs have been physically characterized. So, to help design future rendez-vous space missions we perform spectroscopic observations of 13 NEAs without a taxonomic classification and high accessibility from Earth, based upon their minimal change in the spacecraft's speed to shuttle to the asteroid's orbit. The obtained data are also important to settle the ground truth for all those asteroids who will never be visited by a spacecraft.

  9. Solar-Terrestrial Physics in the 1990s: Key Science Objectives for the IACG Mission Set

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The International Solar-Terrestrial Physics (ISTP) program is an internationally coordinated multi-spacecraft mission that will study the production of the supersonic magnetized solar wind, its interaction with the Earth's magnetosphere, and the resulting transport of plasma, momentum and energy through the magnetosphere and into the ionosphere and upper atmosphere. The mission will involve l4spacecraft to be launched between 1992 and 1996, along with complementary ground-based observations and theoretical programs. A list of the spacecraft, their nominal orbits, and responsible agencies is shown.

  10. The HYSPIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-Spectral Thermal Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert

    2012-01-01

    The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling

  11. Fault Management in an Objectives-Based/Risk-Informed View of Safety and Mission Success

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2012-01-01

    Theme of this talk: (1) Net-benefit of activities and decisions derives from objectives (and their priority) -- similarly: need for integration, value of technology/capability. (2) Risk is a lack of confidence that objectives will be met. (2a) Risk-informed decision making requires objectives. (3) Consideration of objectives is central to recent guidance.

  12. Wind Program Accomplishments

    SciTech Connect

    Wind Program

    2012-05-24

    This fact sheet describes some of the accomplishments of DOE's Wind Program through its investments in technology development and market barrier reduction, and how those accomplishments are supporting the advancement of renewable energy generated using the United States' abundant wind resources.

  13. Mission Objectives Of The Atmospheric Composition Related Sentinels S5p, S4, And S5

    NASA Astrophysics Data System (ADS)

    Ingmann, Paul; Veihelmann, Ben; Langen, Jorg; Meijer, Yasjka

    2013-12-01

    Atmospheric chemistry observations from space have been made for over 30 years, in the beginning mainly by US missions. These missions have always been motivated by the concern about a number of environmental issues. At present European instruments like GOME-2 on MetOp/EPS-A and -B and OMI on NASA's Aura are in space and, despite being designed for research purposes, perform routine observations. The space instruments have helped improving our understanding of processes that govern stratospheric ozone depletion, climate change and the transport of pollutants. However, long-term continuous time series of atmospheric trace gas data have been limited to stratospheric ozone and a few related species. According to current planning, meteorological satellites will maintain these observations over the next decade. They will also add some measurements of tropospheric trace gases critical for climate forcing. However, as their measurements have been motivated by meteorology, vertical sensitivities and accuracies are marginal for atmospheric chemistry applications. With the exception of stratospheric ozone, reliable long-term space-based monitoring of atmospheric constituents with quality attributes sufficient to serve atmospheric chemistry applications still need to be established. The need for a GMES atmospheric service (GAS), its scope and high level requirements were laid down in an orientation papers organised by the European Commission and then updated by an Implementation Group (IG) [1], backed by four working groups, advising the Commission on scope, architecture, in situ and space requirements. The goal of GAS is to provide coherent information on atmospheric variables in support of European policies and for the benefit of European citizens. Services cover air quality, climate change/forcing, stratospheric ozone and solar radiation. To meet the needs of the user community atmospheric composition mission concepts for GEO and LEO have been defined usually referred to

  14. Habitability constraints/objectives for a mars manned mission: Internal architecture considerations

    NASA Astrophysics Data System (ADS)

    Winisdoerffer, F.; Soulez-Larivière, C.

    1992-08-01

    It is generally accepted that high quality internal environment shall strongly support crew's adaptation and acceptance to situation of long isolation and confinement. Thus, this paper is an attempt to determine to which extent the resulting stress corresponding to the anticipated duration of a trip to Mars (1 and a half years to 2 and a half years) could be decreased when internal architecture of the spacecraft is properly designed. It is assumed that artificial gravity shall be available on board the Mars spacecraft. This will of course have a strong impact on internal architecture as far as a 1-g oriented design will become mandatory, at least in certain inhabited parts of the spacecraft. The review of usual Habitability functions is performed according to the peculiarities of such an extremely long mission. A particular attention is paid to communications issues and the need for privacy. The second step of the paper addresses internal architecture issues through zoning analyses. Common, Service and Personal zones need to be adapted to the constraints associated with the extremely long duration of the mission. Furthermore, due to the nature of the mission itself (relative autonomy, communication problems, monotony) and the type of selected crew (personalities, group structure) the implementation of a ``fourth zone'', so-called ``recreational'' zone, seems to be needed. This zoning analysis is then translated into some internal architecture proposals, which are discussed and illustrated. This paper is concluded by a reflection on habitability and recommendations on volumetric requirements. Some ideas to validate proposed habitability items through simulation are also discussed.

  15. Habitability constraints/objectives for a Mars manned mission: internal architecture considerations.

    PubMed

    Winisdoerffer, F; Soulez-Larivière, C

    1992-01-01

    It is generally accepted that high quality internal environment shall strongly support crew's adaptation and acceptance to situation of long isolation and confinement. Thus, this paper is an attempt to determine to which extent the resulting stress corresponding to the anticipated duration of a trip to Mars (1 and a half years to 2 and a half years) could be decreased when internal architecture of the spacecraft is properly designed. It is assumed that artificial gravity shall be available on board the Mars spacecraft. This will of course have a strong impact on internal architecture as far as a 1-g oriented design will become mandatory, at least in certain inhabited parts of the spacecraft. The review of usual Habitability functions is performed according to the peculiarities of such an extremely long mission. A particular attention is paid to communications issues and the need for privacy. The second step of the paper addresses internal architecture issues through zoning analyses. Common, Service and Personal zones need to be adapted to the constraints associated with the extremely long duration of the mission. Furthermore, due to the nature of the mission itself (relative autonomy, communication problems, monotony) and the type of selected crew (personalities, group structure) the implementation of a "fourth zone", so-called "recreational" zone, seems to be needed. This zoning analysis is then translated into some internal architecture proposals, which are discussed and illustrated. This paper is concluded by a reflection on habitability and recommendations on volumetric requirements. Some ideas to validate proposed habitability items through simulation are also discussed.

  16. Next space solar observatory SOLAR-C: mission instruments and science objectives

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Watanabe, T.; Hara, H.; Ichimoto, K.; Kubo, M.; Kusano, K.; Sakao, T.; Shimizu, T.; Suematsu, Y.; Tsuneta, S.

    2012-12-01

    SOLAR-C, the fourth space solar mission in Japan, is under study with a launch target of fiscal year 2018. A key concept of the mission is to view the photosphere, chromosphere, and corona as one system coupled by magnetic fields along with resolving the size scale of fundamental physical processes connecting these atmospheric layers. It is especially important to study magnetic structure in the chromosphere as an interface layer between the photosphere and the corona. The SOLAR-C satellite is equipped with three telescopes, the Solar UV-Visible-IR Telescope (SUVIT), the EUV/FUV High Throughput Spectroscopic Telescope (EUVS/LEMUR), and the X-ray Imaging Telescope (XIT). Observations with SUVIT of photospheric and chromospheric magnetic fields make it possible to infer three dimensional magnetic structure extending from the photosphere to the chromosphere and corona.This helps to identify magnetic structures causing magnetic reconnection, and clarify how waves are propagated, reflected, and dissipated. Phenomena indicative of or byproducts of magnetic reconnection, such as flows and shocks, are to be captured by SUVIT and by spectroscopic observations using EUVS/LEMUR, while XIT observes rapid changes in temperature distribution of plasma heated by shock waves.

  17. Investigation of Archean microfossil preservation for defining science objectives for Mars sample return missions

    NASA Astrophysics Data System (ADS)

    Lorber, K.; Czaja, A. D.

    2014-12-01

    Recent studies suggest that Mars contains more potentially life-supporting habitats (either in the present or past), than once thought. The key to finding life on Mars, whether extinct or extant, is to first understand which biomarkers and biosignatures are strictly biogenic in origin. Studying ancient habitats and fossil organisms of the early Earth can help to characterize potential Martian habitats and preserved life. This study, which focuses on the preservation of fossil microorganisms from the Archean Eon, aims to help define in part the science methods needed for a Mars sample return mission, of which, the Mars 2020 rover mission is the first step.Here is reported variations in the geochemical and morphological preservation of filamentous fossil microorganisms (microfossils) collected from the 2.5-billion-year-old Gamohaan Formation of the Kaapvaal Craton of South Africa. Samples of carbonaceous chert were collected from outcrop and drill core within ~1 km of each other. Specimens from each location were located within thin sections and their biologic morphologies were confirmed using confocal laser scanning microscopy. Raman spectroscopic analyses documented the carbonaceous nature of the specimens and also revealed variations in the level of geochemical preservation of the kerogen that comprises the fossils. The geochemical preservation of kerogen is principally thought to be a function of thermal alteration, but the regional geology indicates all of the specimens experienced the same thermal history. It is hypothesized that the fossils contained within the outcrop samples were altered by surface weathering, whereas the drill core samples, buried to a depth of ~250 m, were not. This differential weathering is unusual for cherts that have extremely low porosities. Through morphological and geochemical characterization of the earliest known forms of fossilized life on the earth, a greater understanding of the origin of evolution of life on Earth is gained

  18. STS-111 Mission Insignia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  19. The NASA Orbiting Carbon Observatory (OCO) Mission: Objectives, Approach, and Status

    NASA Technical Reports Server (NTRS)

    Livermore, Thomas R.; Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) is a NASA Earth System Science Pathfinder (ESSP) mission that is currently under development at the Jet Propulsion Laboratory (JPL). OCO will make global, space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to characterize regional-scale sources and sinks of this important greenhouse gas. The observatory consists of a dedicated spacecraft bus that carries a single instrument. The bus employs single-string version of Orbital Sciences Corporation (OSC) LEOStar-2 architecture. This 3-axis stabilized bus includes a propulsion system for orbit insertion and maintenance, provides power, points the instrument, receives and processes commands from the ground, and records, stores, and downlinks science and engineering data. The OCO instrument incorporates 3 oboresighted, high resolution grating spectrometers that will make coincident measurements of reflected sunlight in near-infrared CO2 and molecular oxygen (O2) bands. The instrument was designed and manufactured by Hamilton Sundstrand (Pomona, CA), and then integrated, flight qualified, and calibrated by JPL. It is scheduled for delivery to OSC (Dulles, VA) for integration with the spacecraft bus in the spring of 2008. OCO will be launched from the Vandenberg Air Force Base on a dedicated OSC Taurus XL launch vehicle in December 2008. It will fly in formation with the Earth Observing System Afternoon Constellation, a group of satellites that files in a 98.8 minute, 705 km altitude, sun-synchronous orbit. This orbit provides coverage of the sunlit hemisphere with a 16-day ground track repeat cycle. OCO will fly approx.4 minutes ahead of the EOS Aqua platform, with an ascending nodal crossing time of approx.1:26 PM. The OCO science data will be transmitted to the NASA Ground Network Stations in Alaska and Virginia, and then transferred to the OCO Ground Data System at JPL. There, the CO2 and O2 spectra will be analyzed by the

  20. Hayabusa2 mission target asteroid (162173) 1999 JU_3: Searching for the object's spin-axis orientation

    NASA Astrophysics Data System (ADS)

    Müller, T.; Durech, J.; Mueller, M.; Kiss, C.; Vilenius, E.; Ishiguro, M.

    2014-07-01

    The JAXA Hayabusa2 mission was approved in 2011 with launch planned for late 2014. Arriving at the asteroid (162173) 1999 JU_3 in 2018, it will survey it, land, and obtain surface material, then depart in late 2019, and return to the Earth in December 2020. We observed the near-Earth asteroid 1999 JU_3 with the Herschel Space Observatory in April 2012 at thermal far-infrared wavelengths, supported by several ground-based observations to obtain optical lightcurves. We re-analyzed previously published Subaru-COMICS observations and merged them with existing data sets from Akari-IRC and Spitzer-IRS. In addition, we used the object's near-IR flux increase from February to May 2013 as observed by Spitzer. The almost spherical shape and the insufficient quality of lightcurve observations forced us to combine radiometric techniques and lightcurve inversion in a new way to find the object's spin-axis orientation, its shape, and to improve the quality of the key physical and thermal parameters of 1999 JU_3. We will present our best pre-launch solution for this C-class asteroid, including the sense of rotation, the spin-axis orientation, the effective diameter, the geometric albedo, and thermal inertia. The finely constrained values for this asteroid serve as an important input for the preparation of this exciting mission.

  1. Science Objectives of the JEM EUSO Mission on International Space Station

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    2007-01-01

    JEM-EUSO space observatory is planned with a very large exposure factor which will exceed the critical exposure factor required for observing the most of the sources within the propagational horizon of about one hundred Mpc. The main science objective of JEM-EUSO is the source-identifying astronomy in particle channel with extremey-high-energy particles. Quasi-linear tracking of the source objects through galactic magnetic field should become feasible at energy > 10(exp 20) eV for all-sky. The individual GZK profile in high statistics experiments should differ from source to source due to different distance unless Lorentz invariance is somehow limited. hi addition, JEM-EUSO has three exploratory test observations: (i), extremely high energy neutrinos beginning at E > 10(exp 19) eV: neutrinos as being expected to have a slowly increasing cross section in the Standard Model, and in particular, hundreds of times more in the extra-dimension models. (ii). fundamental physics at extreme Super LHC (Large Hadronic Collider) energies with the hierarchical unified energy much below the GUT scale, and (iii). global atmospheric observation, including large-scale and local plasma discharges, night-glow, meteorites, and others..

  2. The Spacelab Accomplishments Forum

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennett, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler)

    2000-01-01

    This document is a record of the Spacelab Accomplishments Forum held in March 1999. Presentations made at the Forum covered the design, engineering, utilization, and science associated with Spacelab, as well as the international associations and impact of Spacelab and its use in the design and utilization of the International Space Station. Topics included Earth observations, space science, life science, commercial uses, microgravity science, and international participation.

  3. Potential scientific objectives for a 2018 2-rover mission to Mars and implications for the landing site and landed operations

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Westall, F.; Beaty, D.; Cady, S. L.; Carr, M. H.; Ciarletti, V.; Coradini, A.; Elfving, A.; Glavin, D.; Goesmann, F.; Hurowitz, J. A.; Ori, G. G.; Phillips, R. J.; Salvo, C.; Sephton, M.; Syvertson, M.; Vago, J. L.

    2010-12-01

    A study sponsored by MEPAG has defined the possibilities for cooperative science using two rovers under consideration for launch to Mars in 2018 (ESA’s ExoMars, and a NASA-sourced rover concept for which we use the working name of MAX-C). The group considered collaborative science opportunities both without change to either proposed rover, as well as with some change allowed. Planning focused on analysis of shared and separate objectives, with concurrence on two high priority shared objectives that could form the basis of highly significant collaborative exploration activity. The first shared objective relates to sending the proposed rovers to a site interpreted to contain evidence of past environments with high habitability potential, and with high preservation potential for physical and chemical biosignatures where they would evaluate paleoenvironmental conditions, assess the potential for preservation of biotic and/or prebiotic signatures, and search for possible evidence of past life and prebiotic chemistry. The second shared objective relates to the collection, documentation, and suitable packaging of a set of samples by the rovers that would be sufficient to achieve the scientific objectives of a possible future sample return mission. Achieving cooperative science with the two proposed rovers implies certain compromises that might include less time available for pursuing each rover’s independent objectives, implementation of some hardware modifications, and the need to share a landing site that may not be optimized for either rover. Sharing a landing site has multiple implications, including accepting a common latitude restriction, accepting the geological attributes of the common landing site, and creation of a potential telecommunications bottleneck. Moreover, ensuring a safe landing with the sky crane and pallet system envisioned for the mission would likely result in landing terrain engineering requirements more constraining than those for MSL

  4. The Near Earth Object Surveillance Satellite: Mission status and CCD evolution after 18 months on-orbit

    NASA Astrophysics Data System (ADS)

    Wallace, B.; Scott, R.; Sale, M.

    2014-09-01

    The Near Earth Object Surveillance Satellite (NEOSSat) is a small telescope equipped microsatellite designed to perform both Space Situational Awareness (SSA) experiments and asteroid detection. NEOSSat was launched on 25 February 2013, however, due to time pressures, NEOSSat was launched with only the minimal software required to keep the spacecraft safe. The time pressure also resulted in the spacecraft undergoing reduced system and environmental testing on the ground. The full software suite, required to obtain imagery and maintain stable pointing, has since been uploaded to the spacecraft. NEOSSat has obtained imagery since June 2013, with the shutter both open and closed, but as of March 2014 has not achieved the fine pointing required to obtain scientifically useful data. The collected imagery is being used to characterize the on-board CCD camera. While gain and dark current values agree with pre-launch values, unexpected artefacts have appeared in the images. Methods for mitigating the artefacts through image processing have been developed, and spacecraft-level fixes are currently being investigated. In addition, damage from high energy particles impacting the CCD has produced hot pixels in imagery. We have been able to measure the evolution of these hot pixels over several months, both in terms of numbers and characteristics; these results will be presented. In addition, early results from the mission (image quality issues and evolution, early imagery examples), as well as the mission status (including fine pointing), will be discussed.

  5. Planned flight test of a mercury ion auxiliary propulsion system. 1: Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. C.

    1978-01-01

    A planned flight test of an 8 cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN (1 mlb.) thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the shuttle-launched Air Force space test program P80-1 satellite in 1981. The spacecraft will be 3- axis stabilized in its final 740 km circular orbit, which will have an inclination of approximately greater than 73 degrees. The spacecraft design lifetime is three years.

  6. Aero-gravity Assisted Manoeuvers within Preliminary Interplanetary Mission Design: a Multi-objective Evolutive Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Povoleri, A.; Lavagna, M.; Finzi, A. E.

    The paper presents a new approach to deal with the preliminary space mission analysis design of particularly complex trajectories focused on interplanetary targets. According to an optimisation approach, a multi-objective strategy is selected on a mixed continuous and discrete state variables domain in order to deal with possible multi-gravity assist manoeuvres (GAM) as further degrees of freedom of the problem, in terms of both number and planets sequence selection to minimize both the ?v expense and the time trip time span. A further added value to the proposed algorithm stays in that, according to planets having an atmosphere, aero-gravity assist manoeuvres (AGAM) are considered too within the overall mission design optimisation, and the consequent optimal control problem related to the aerodynamic angles history, is solved. According to the target planet different capture strategies are managed by the algorithm, the aerocapture manoeuvre too, whenever possible (e.g. Venus, Mars target planets). In order not to be trapped in local solution the Evolutionary Algorithms (EAs) have been selected to solve such a complex problem. Simulations and comparison with already designed space missions showed the ability of the proposed architecture in correctly selecting both the sequences and the planets type of either GAMs or AGAMs to optimise the selected criteria vector, in a multidisciplinary environment, switching on the optimal control problem whenever the atmospheric interaction is involved in the optimisation by the search process. Symbols δ = semi-angular deviation for GAM between the v∞ -, v∞ + inoutcoming vectors [rad] φ = Angular deviation for AGAM between the v∞ -, v∞ + inoutcoming vectors [rad] ρ = Atmospheric density [kgm-3 ] γ = Flight path angle [rad] µ = Bank angle [rad] δ?ttransf j = j-th heliocentric transfer time variation with respect to the linked conics solution ?|v∞| = Relative velocity losses because of drag [ms-1 ] ωI = i

  7. Life sciences accomplishments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.

  8. Significant Accomplishments in Science and Technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a symposium on significant accomplishments in science and technology are presented. The symposium was held at the Goddard Space Flight Center in December 1973. The subjects discussed are as follows: (1) cometary physics, (2) X-ray and gamma ray astronomy, (3) solar and terrestrial physics, (4) spacecraft technology, (5) Earth Resources Technology Satellite, (6) earth and ocean physics, (6) communications and navigation, (7) mission operations and data systems, and (8) networks systems and operations.

  9. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  10. Assessment of Alternative Europa Mission Architectures

    NASA Technical Reports Server (NTRS)

    Langmaier, Jerry; Elliott, John; Clark, Karla; Pappalardo, Robert; Reh, Kim; Spilker, Tom

    2008-01-01

    The purpose of this study was to assess the science merit, technical risk and qualitative assessment of relative cost of alternative architectural implementations as applied to a first dedicated mission to Europa. The objective was accomplished through an examination of mission concepts resulting from previous and ongoing studies. Key architectural elements that were considered include moon orbiters, flybys (single flybys like New Horizons and multiple flybys similar to the ongoing Jupiter System Observer study), sample return and in situ landers and penetrators.

  11. Asteroid Redirect Mission: EVA and Sample Collection

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Stich, Steve

    2015-01-01

    Asteroid Redirect Mission (ARM) Overview (1) Notional Development Schedule, (2) ARV Crewed Mission Accommodations; Asteroid Redirect Crewed Mission (ARCM) Mission Summary; ARCM Accomplishments; Sample collection/curation plan (1) CAPTEM Requirements; SBAG Engagement Plan

  12. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    SciTech Connect

    1998-08-01

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enable rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed

  13. Activities and Accomplishments of ICAM

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1997-01-01

    A brief historical background on establishing the Institute for Computational and Applied Mechanics (ICAM) is presented and basic goals and objectives are discussed. It is emphasized that the goal of the ICAM has been to develop and maintain a self-sustaining center of excellence in computational methods at Old Dominion University (ODU). Information is provided on funding sources and budget disposition, recent activities and accomplishments, list of graduate students supported on the program, and number of students who received graduate degrees (M.S. as well as Ph.D.). Information is also provided on research coordination with various scientists and engineers, and on different reports specifically written for ICAM. ICAM has been supported, in part, by NASA Langley Research Center through Grant NAG-1-363. This report constitutes the final report for ICAM for the period ending December 1996. The grant has been monitored by the University Affairs Officers at NASA Langley.

  14. 'One mission accomplished, more important ones remain': commentary on Every-Palmer, S., Howick, J. (2014) How evidence-based medicine is failing due to biased trials and selective publication. Journal of Evaluation in Clinical Practice, 20 (6), 908-914.

    PubMed

    Wyer, Peter; da Silva, Suzana Alves

    2015-06-01

    Every-Palmer and Howick suggest that evidence-based medicine (EBM) is failing in its mission because of contamination of research by manufacturer and researcher-motivated bias and self-interest. They fail to define that mission and to distinguish between the EBM movement and the research enterprise it was developed to critique. An educational movement, EBM accomplished its mission to simplify and package clinical epidemiological concepts in a form accessible to clinical learners. Its wide adoption within educational circles fostered critical literacy among several generations of practitioners. Illumination of bias, subterfuge and incomplete reporting of research has been a strength of EBM. Increased uptake and use of clinical research within the health care system properly defines the failing mission that eludes Every-Palmer and Howick. Responsibility for failure to make progress towards its achievement is shared by virtually all relevant streams within the system, including policy, clinical guideline development, educational movements and the development of approaches to evidence synthesis. Discordance between the epistemological premises pervading today's research and health care community and the complex social processes that ultimately determine research use constitutes an important factor that must be addressed as part of a remedy. Enhanced emphasis on and demonstration of alternative approaches to research such as realism and realist synthesis and the momentum towards development of a learning health care system hold promise as guideposts for the rapidly evolving health care environment.

  15. Examination of a Deep Subsurface Mars Polar Cap Mission to Address Climate History

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Nock, K.; Bearman, G.; Kossakovski, D.; Wilcox, B.

    2000-01-01

    We have examined the technological readiness of a mission to the Mars north polar area for the science objective of developing a climate history. We argue that the polar regions are scientifically extremely important mission sites from the perspectives of both climate history and astrobiology and that a polar deep subsurface mission would constitute a serious challenge and significant accomplishment. Thus a key question is: What is the technical readiness status of such a mission? Additional information is contained in original extended abstract.

  16. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  17. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  18. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  19. Advanced Fuels Campaign FY 2015 Accomplishments Report

    SciTech Connect

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  20. Sandia technology engineering and science accomplishments

    SciTech Connect

    Not Available

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  1. Joint Winter Runway Friction Program Accomplishments

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew

    2002-01-01

    The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.

  2. Development of the coastal zone color scanner for NIMBUS 7. Volume 1: Mission objectives and instrument description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An Earth scanning six channel (detector) radiometer using a classical Cassegrain telescope and a Wadsworth type grating spectrometer was launched aboard Nimbus 7 in order to determine the abundance or density of chlorophyll at or near the sea surface in coastal waters. The instrument also measures the sediment or gelbstroffe (yellow stuff) in coastal waters, detects surface vegetation, and measures sea surface temperature. Block diagrams and schematics are presented, design features are discussed and each subsystem of the instrument is described. A mission overview is included.

  3. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  4. Mars landing exploration mission

    NASA Astrophysics Data System (ADS)

    Suzaki, Megumi

    1991-07-01

    The overall concept for Mars observation missions and the systems to implement the missions are reviewed. Reviews are conducted on the following items: (1) profiles of the candidate missions; (2) aerodynamic capture deceleration estimates; (3) prospective Mars orbit decisions; (4) landing methods as the prerequisites for mission accomplishment; and (5) explorer systems to accomplish the missions. The major processes involved in the mission, from the launch to the beginning of observation of the surface, are outlined. Reviews of possible orbits taken by the explorer from Mars transfer orbit (Hohmann orbit) to Mars revolving orbit are presented. Additionally, the possible orbits for the landing vehicle from departing from the revolving orbit through landing are presented. Transportation and landing module design concepts concerning the structure, weight, and electric power balances of the explorer system are presented. Critical Mars mission technologies are cited as follows: (1) inter-planet navigation; (2) aerodynamic capture; (3) automatic and autonomous operation; and (4) landing technology.

  5. Minor Body Surveyor: A Multi-Object, High Speed, Spectro-Photometer Space Mission System Employing Wide-Area Intelligent Change Detection

    NASA Astrophysics Data System (ADS)

    Kaplan, M. L.; van Cleve, J. E.; Alcock, C.

    2003-12-01

    Detection and characterization of the small bodies of the outer solar system presents unique challenges to terrestrial based sensing systems, principally the inverse 4th power decrease of reflected and thermal signals with target distance from the Sun. These limits are surpassed by new techniques [1,2,3] employing star-object occultation event sensing, which are capable of detecting sub-kilometer objects in the Kuiper Belt and Oort cloud. This poster will present an instrument and space mission concept based on adaptations of the NASA Discovery Kepler program currently in development at Ball Aerospace and Technologies Corp. Instrument technologies to enable this space science mission are being pursued and will be described. In particular, key attributes of an optimized payload include the ability to provide: 1) Coarse spectral resolution (using an objective spectrometer approach) 2) Wide FOV, simultaneous object monitoring (up to 150,000 stars employing select data regions within a large focal plane mosaic) 3) Fast temporal frame integration and readout architectures (10 to 50 msec for each monitored object) 4) Real-time, intelligent change detection processing (to limit raw data volumes) The Minor Body Surveyor combines the focal plane and processing technology elements into a densely packaged format to support general space mission issues of mass and power consumption, as well as telemetry resources. Mode flexibility is incorporated into the real-time processing elements to allow for either temporal (Occultations) or spatial (Moving targets) change detection. In addition, a basic image capture mode is provided for general pointing and field reference measurements. The overall space mission architecture is described as well. [1] M. E. Bailey. Can 'Invisible' Bodies be Observed in the Solar System. Nature, 259:290-+, January 1976. [2] T. S. Axelrod, C. Alcock, K. H. Cook, and H.-S. Park. A Direct Census of the Oort Cloud with a Robotic Telescope. In ASP Conf. Ser

  6. Capture of cosmic dusts and exposure of organics on the International Space Station: Objectives of the Tanpopo Mission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei

    Finding of a wide variety of organic compounds contained in extraterrestrial bodies such as carbonaceous chondrites and comets suggested that they were important materials for the first life on the Earth. Cosmic dusts (interplanetary dust particles; IDPs) were believed to have been important carriers of extraterrestrial organics, since IDPs could deliver organics to the primitive Earth more safely than asteroids and comets. Since most IDPs have been collected in such terrestrial environments as ocean sediments, Antarctic ices, and air in stratosphere, it is difficult to judge whether biooranics found in IDPs were extraterrestrial origins or not. Thus it would be of importance to collect IDPs out of the terrestrial biosphere. We are planning the Tanpopo Mission by utilizing the Exposed Facility of Japan Experimental Module (JEM/EF) of the International Space Station (ISS). Two types of experiments will be done in the Tanpopo Mission: Capture experiments and exposure experiments. In order to collect cosmic dusts (including IDPs) on the ISS, we are going to use extra-low density aerogel, since both cosmic dusts and ISS are moving at 8 km s-1 or over. We have developed novel aerogel whose density is 0.01 g cm-3. After the return of the aerogel blocks after 1 to a few years’ stay on JEM/EF, organic compounds in the captured dusts will be characterized by a wide variety of analytical techniques including FT-IR, XANES, and MS. Amino acid enantiomers will be determined after HF digestion and acid hydrolysis. A number of amino acids were detected in water extract of carbonaceous chondrites. It is controversial whether meteorites contain free amino acids or amino acid precursors. When dusts are formed from meteorites or comets in interplanetary space, they are exposed to high-energy particles and photons. In order to evaluate stability and possible alteration of amino acid-related compounds, we chose amino acids (glycine and isovaline) and hydantoins (precursors of amino

  7. Matrix evaluation of science objectives

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.

    1994-01-01

    The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.

  8. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  9. Infant Mortality: 1989 Research Accomplishments.

    ERIC Educational Resources Information Center

    National Inst. of Child Health and Human Development (NIH), Bethesda, MD.

    Collected in this document are reports of the National Institutes of Health's 1989 accomplishments in research on the problem of infant mortality. Reports are provided by the: (1) National Institute of Child Health and Human Development; (2) National Cancer Institute; (3) National Heart, Lung, and Blood Institute; (4) National Institute of…

  10. The Joint Accomplishment of Identity

    ERIC Educational Resources Information Center

    Hand, Victoria; Gresalfi, Melissa

    2015-01-01

    Identity has become a central concept in the analysis of learning from social perspectives. In this article, we draw on a situative perspective to conceptualize identity as a "joint accomplishment" between individuals and their interactions with norms, practices, cultural tools, relationships, and institutional and cultural contexts.…

  11. Abundance of unusual objects on the planet venus according to the data of missions of 1975-1982

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2014-11-01

    The results of processing the archival data of the television experiment performed on the surface of the planet by the VENERA spacecraft in 1975 and 1982 are presented. In previously published papers, the author tried to show all diverse objects found by that time and their properties. In 2012-2014, new groups of objects have been found. This paper focuses on only one type of new finding (the conventional name is "hesperos") and their morphological features. It is shown that similar objects with dimensions from 13 to 25 cm, having the forms of a large fallen leaf or a spindle, are met in the regions of the planet Venus separated by distances of 900 and 4400 km.

  12. Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.

  13. Health and Environmental Research. Summary of Accomplishments

    DOE R&D Accomplishments Database

    1984-04-01

    This is a short account of a 40-year-old health and environmental research program performed in national laboratories, universities, and research institutes. Under the sponsorship of the federal agencies that were consecutively responsible for the national energy mission, this research program has contributed to the understanding of the human health and environmental effects of emergining energy technologies. In so doing, it has also evolved several nuclear techniques for the diagnosis and treatment of human ills. The form of this presentation is through examples of significant, tangible accomplishments in each of these areas at certain times to illustrate the role and impact of the research program. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.

  14. Health and environmental research. Summary of accomplishments

    SciTech Connect

    Not Available

    1984-04-01

    This is a short account of a 40-year-old health and environmental research program performed in national laboratories, universities, and research institutes. Under the sponsorship of the federal agencies that were consecutively responsible for the national energy mission, this research program has contributed to the understanding of the human health and environmental effects of emergining energy technologies. In so doing, it has also evolved several nuclear techniques for the diagnosis and treatment of human ills. The form of this presentation is through examples of significant, tangible accomplishments in each of these areas at certain times to illustrate the role and impact of the research program. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.

  15. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  16. Mission operations systems for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.; Wolff, Donna M.

    1988-01-01

    The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.

  17. Investigations of the First Objects to Light Up the Universe: The Dark Ages Radio Explorer (DARE) Mission Concept

    NASA Astrophysics Data System (ADS)

    Burns, Jack; Lazio, Joseph; Bowman, Judd; Bradley, Richard; Datta, Abhirup; Furlanetto, Steven; Jones, Dayton; Kasper, Justin; Loeb, Abraham

    2015-08-01

    The Dark Ages Radio Explorer (DARE) is designed to probe the epoch of formation of the first stars, black holes, and galaxies, never before observed, using the redshifted hyperfine 21-cm transition from neutral hydrogen. These first objects to illuminate the Universe (redshifts 35 to 11) will be studied via their heating and ionization of the intergalactic medium. Over its lifetime of 2 years, DARE observes at low radio astronomy frequencies (VHF), 40 - 120 MHz, in a 125 km altitude lunar orbit. The Moon occults both Earth and the Sun as DARE makes observations on the lunar farside, shielding it from the corrupting effects of radio interference, Earth’s ionosphere, and solar emissions. Bi-conical dipole antennas, pseudo-correlation receivers used in differential mode to stabilize the radiometer, and a digital spectrometer achieve the sensitivity required to observe the cosmic signal. The unique frequency structure of the 21-cm signal and its uniformity over large angular scales are unlike the spectrally featureless, spatially varying characteristics of the Galactic foreground, allowing the signal to be cleanly separated from the foreground. In the talk, the DARE science objectives, the science instrument, foreground removal strategy, and design of an engineering prototype will be described.

  18. The NASA X-Ray Mission Concepts Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; Murray, S.; Plucinsky, P.; Ramsey, B.; Remillard, R.; Wilson-Hodge, C.; Daelemans, G.; Karpati, G.; Nicoletti, A.; Reid, P.

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  19. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  20. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  1. Stardust-next : Lessons Learned from a Comet Flyby Mission

    NASA Technical Reports Server (NTRS)

    Wolf, Aron A.; Larson, Timothy; Thompson, Paul; McElrath, Timothy; Bhaskaran, Shyam; Chesley, Steven; Klaasen, Kenneth P.; Cheuvront, Allan

    2012-01-01

    The Stardust-NExT (New Exploration of Tempel) mission, a follow-on to the Stardust prime mission, successfully completed a flyby of comet Tempel-1 on 2/14/11. However there were many challenges along the way, most significantly low propellant margin and detection of the comet in imagery later than antici-pated. These challenges and their ramifications forced the project to respond with flexibility and ingenuity. As a result, the flyby at an altitude of 178 km was nearly flawless, accomplishing all its science objectives. Lessons learned on Stardust-NExT may have relevance to other spacecraft missions.

  2. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  3. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  4. Advanced planetary analyses. [for planetary mission planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.

  5. Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1974-01-01

    The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.

  6. CAPS and INMS Major Accomplishments

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter

    2014-05-01

    The Cassini-Huygens Ion Neutral Mass Spectrometer (Cassini INMS) and the Cassini Plasma Spectrometer (CAPS) have provided "discovery" science at Titan, Enceladus, Rhea/Dione, and throughout the magnetosphere of Saturn during the course of the mission. In this talk we will review some of the major scientific achievements: 1) the discovery of an extremely complex ion neutral organic chemistry in Titan's upper atmosphere that forms the building blocks for aerosol processes below, 2) the discovery of gases and grains emanating from Enceladus' cryo-geysers that tell us about chemical processes in an interior sea, 3) the first direct compositional measurements of sputtered icy moon surfaces, 4) the clearest example to date of the complex plasma interchange processes that occur in rapidly rotating magnetospheres of gas giants, initiating global dynamic processes that enable Saturn to shed the plasma from Enceladus' plume, and complete with a myriad of longitudinal and solar local-time variations, and 5) the dominance of Enceladus water outgassing as a source of magnetospheric plasma that stretches out to Titan and provides oxygen that can convert Titan's rich nitrile populations into amino acids.

  7. Space Biophysics: Accomplishments, Trends, Challenges

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.

    2015-01-01

    the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.

  8. Buried Waste Integrated Demonstration test objectives

    SciTech Connect

    Morrison, J.L.; Heard, R.E.

    1993-05-01

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the US Department of Energy complex. To accomplish this mission of identifying technology solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY) 1991. This document provides the test objectives against which the demonstrations will be tested during FY-93.

  9. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  10. Cassini Mission Sequence Subsystem (MSS)

    NASA Technical Reports Server (NTRS)

    Alland, Robert

    2011-01-01

    This paper describes my work with the Cassini Mission Sequence Subsystem (MSS) team during the summer of 2011. It gives some background on the motivation for this project and describes the expected benefit to the Cassini program. It then introduces the two tasks that I worked on - an automatic system auditing tool and a series of corrections to the Cassini Sequence Generator (SEQ_GEN) - and the specific objectives these tasks were to accomplish. Next, it details the approach I took to meet these objectives and the results of this approach, followed by a discussion of how the outcome of the project compares with my initial expectations. The paper concludes with a summary of my experience working on this project, lists what the next steps are, and acknowledges the help of my Cassini colleagues.

  11. Shared mission operations concept

    NASA Technical Reports Server (NTRS)

    Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.

    1994-01-01

    Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.

  12. Postrefurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.; Wen, Zheng

    1994-01-01

    We report on observations of M42 made with the Hubble Space Telescope (HST) immediately after the successful repair and refurbishment mission. Images were made in the strongest optical emission lines of H I, (N II), and (O III) and in a bandpass close to V. In a previous paper, the term proplyd was introduced to describe young stars surrounded by circumstellar material rendered visible by being in an H II region. We confirm the proplyd nature of 17 of 18 objects found earlier with the HST, incorporate 13 previously known sources into the class on the basis of their emission-line appearance, and find 26 additional members not seen previously in other wavelengths. Half of the 110 stars brighter than V = 21 show proplyd structure, which implies that more than half of the stars have circumstellar material since nebular structures are more difficult to detect than stars. The highly variable forms of the proplyds can be explained on the basis of balance of ambient stellar gas pressure and radial pressure arising from the stellar wind and radiation pressure of the dominant stars in the region. Arguments are presented explaining the proplyds as disks or flattened envelopes surrounding young stars, hence they are possible planetary disks. The characteristic mass of ionized material is 2 x 10(exp 28) g, which becomes a lower limit to the total mass of the proplyds. A new, coordinate-based, designation scheme for compact sources and stars in the vicinity of M42 is proposed and applied. Evidence is presented that one of the previously known bright Herbig-Haro objects (HH 203) may be the result of a stream of material coming from a proplyd shocking against the neutral lid that covers M42. One object, 183-405, is a proplyd seen only in silhouette against the bright nebular background. It is elliptical, with dimensions 0.9 sec by 1.2 sec and surrounds a pre-main-sequence star of at least 0.2 solar mass. The outer parts of this stellar disk are optically thin and allow column mass

  13. Mission Accomplished? Which Mission? The "Bologna Process"--A View from Germany

    ERIC Educational Resources Information Center

    de Rudder, Helmut

    2010-01-01

    This article does not follow the widespread assumption or even conviction that the Bologna process is the most important reform of higher education in Europe in modern times. Instead it analyses the Bologna process in the context of previous and ongoing programmes, measures and activities by European bodies and national governments aiming at…

  14. Mission Accomplished? School Mission Statements in NZ and Japan: What They Reveal and Conceal

    ERIC Educational Resources Information Center

    Chapple, Julian

    2015-01-01

    Primary schooling, where the majority of students start learning formally about social interaction and civic expectations, reflects much about a nations' approach to education and the goals for their citizens. After a brief comparison of the purpose of education in both New Zealand and Japan, through the use of textual and content analysis,…

  15. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM

  16. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    , with the Reconnaissance goal: Characterize safe and scientifically compelling sites for a future lander mission to Europa. To accomplish these reconnaissance objectives and the investigations that flow from them, principally to address issues of landing site safety, two additional instruments would be included in the notional payload: a Reconnaissance Camera (for high-resolution imaging) and a Thermal Imager (to characterize the surface through its thermal properties). These instruments, in tandem with the notional payload for science, could assess the science value of potential landing sites. This notional payload serves as a proof-of-concept for the Europa Clipper during its formulation stage. The actual payload would be chosen through a NASA Announcement of Opportunity. If NASA were to proceed with the mission, it could be possible to launch early in the coming decade, on an Atlas V or the Space Launch System (SLS).

  17. Fort Collins Science Center-Fiscal year 2011 science accomplishments

    USGS Publications Warehouse

    Wilson, Juliette T.

    2012-01-01

    The Fort Collins Science Center (FORT) is a multi-disciplinary research and development center of the U.S. Geological Survey located in Fort Collins, Colorado. FORT research focuses on the needs of land- and water-management bureaus within the U.S. Department of the Interior, other Federal agencies, and State, Tribal, and non-government organizations. We emphasize a multi-disciplinary science approach to provide information for natural resource management decisionmaking. Our vision is to maintain and continuously improve the integrated, collaborative, world-class research needed to inform effective, science-based land management. The 2011 science accomplishments report provides an executive summary highlighting key achievements, an appendix of 68 one-page accomplishment descriptions organized by U.S. Geological Survey Mission Area, and a complete list of publications and other products generated in FY2011. The executive summary includes a table cross-referencing all major FY11 accomplishments with the various Mission Areas each supports.

  18. Health and Environmental Research: Summary of Accomplishments. Volume 2

    DOE R&D Accomplishments Database

    1986-08-01

    This is an account of some of the accomplishments of the health and environmental research program performed in national laboratories, universities, and research institutes. Both direct and indirect societal benefits emerged from the new knowledge provided by the health and environmental research program. In many cases, the private sector took this knowledge and applied it well beyond the mission of supporting the defense and energy needs of the Nation. Industrial and medical applications, for example, have in several instances provided annual savings to society of $100 million or more. The form of this presentation is, in fact, through "snapshots" - examples of significant, tangible accomplishments in each of the areas at certain times to illustrate the role and impact of the research program. The program's worth is not necessarily confined to such accomplishments; it extends, rather, to its ability to identify and help solve potential health and environmental problems before they become critical. This anticipatory mission has been pursued with an approach that combines applied problem solving with a commitment to fundamental research that is long-term and high-risk. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.

  19. Health and Environmental Research: summary of accomplishments. Volume 2

    SciTech Connect

    Not Available

    1986-08-01

    This is an account of some of the accomplishments of the health and environmental research program performed in national laboratories, universities, and research institutes. Both direct and indirect societal benefits emerged from the new knowledge provided by the health and environmental research program. In many cases, the private sector took this knowledge and applied it well beyond the mission of supporting the defense and energy needs of the Nation. Industrial and medical applications, for example, have in several instances provided annual savings to society of $100 million or more. The form of this presentation is, in fact, through ''snapshots'' - examples of significant, tangible accomplishments in each of the areas at certain times to illustrate the role and impact of the research program. The program's worth is not necessarily confined to such accomplishments; it extends, rather, to its ability to identify and help solve potential health and environmental problems before they become critical. This anticipatory mission has been pursued with an approach that combines applied problem solving with a commitment to fundamental research that is long-term and high-risk. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.

  20. Budget estimates, fiscal year 1995. Volume 2: Mission support and Inspector General

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The mission support appropriations provides funding for NASA's civil service work force, space communication services, safety and quality assurance activities, and for maintenance activities for the NASA institution. These objectives are accomplished through the following elements: safety, reliability, and quality assurance; space communication services; research and program management; and construction of facilities.

  1. Buoyant station mission comcepts for titan exploration

    NASA Astrophysics Data System (ADS)

    Friedlander, A. L.

    1985-10-01

    An advanced mission to this unique satellite of Saturn appropriate to the turn-of-the-century time period is described. The mission concept evolves about one or more buoyant stations (balloons and/or airship) operating at varying altitudes in Titan's atmosphere. An orbiter of Titan provides communications link support and accomplishes remote sensing science objectives. Use of buoyant stations are favored over a fixed site lander for two reasons: (1) adaptable to several possible surface physical states and topographies; and (2) capable of exploring both the atmosphere and surface with regional and possibly global mobility. Auxiliary payload concepts investigated include tethered packages and sounding rockets deployed from the buoyant station, and haze probes and surface penetrators deployed from the orbiter. The paper describes science objectives and payloads, propulsion system/mass delivery trades, balloon design requirements and deployment/motion characteristics, and communications link geometry and data characteristics.

  2. FY 1995 research highlights: PNL accomplishments in OER programs

    SciTech Connect

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  3. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  4. Lessons Learned from the Clementine Mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    According to BMDO, the Clementine mission achieved many of its technology objectives during its flight to the Moon in early 1994 but, because of a software error, was unable to test the autonomous tracking of a cold target. The preliminary analyses of the returned lunar data suggest that valuable scientific measurements were made on several important topics but that COMPLEX's highest-priority objectives for lunar science were not achieved. This is not surprising given that the rationale for Clementine was technological rather than scientific. COMPLEX lists below a few of the lessons that may be learned from Clementine. Although the Clementine mission was not conceived as a NASA science mission exactly like those planned for the Discovery program, many operational aspects of the two are similar. It is therefore worthwhile to understand the strengths and faults of the Clementine approach. Some elements of the Clementine operation that led to the mission's success include the following: (1) The mission's achievements were the responsibility of a single organization and its manager, which made that organization and that individual accountable for the final outcome; (2) The sponsor adopted a hands-off approach and set a minimum number of reviews (three); (3) The sponsor accepted a reasonable amount of risk and allowed the project team to make the trade-offs necessary to minimize the mission's risks while still accomplishing all its primary objectives; and (4) The development schedule was brief and the agreed-on funding (and funding profile) was adhered to. Among the operational shortcomings of Clementine were the following: (1) An overly ambitious schedule and a slightly lean budget (meaning insufficient time for software development and testing, and leading ultimately to human exhaustion); and (2) No support for data calibration, reduction, and analysis. The principal lesson to be learned in this category is that any benefits from the constructive application of higher

  5. Climate Benchmark Missions: CLARREO

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  6. 2008 Accomplishments for CEV Parachute Assembly System (CPAS)

    NASA Technical Reports Server (NTRS)

    Martin, Ricardo

    2009-01-01

    The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is responsible for the design, development, fabrication, qualification and delivery of the CEV parachute system to support the Orion pad/ascent flight tests and the first three orbital flight tests (including the first human mission). This article will discuss the technical and research achievements accomplished in calendar year 2008, broken into three key categories: prototype testing and analysis (also referred to as the Generation 1 design), system requirements definition and design of the flight engineering development unit, and support for the Orion vehicle flight testing (primarily Pad-Abort 1).

  7. Transmutation Fuels Campaign FY-09 Accomplishments Report

    SciTech Connect

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  8. Lunabotics Mining Competition: Inspiration Through Accomplishment

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2011-01-01

    NASA's Lunabotics Mining Competition is designed to promote the development of interest in space activities and STEM (Science, Technology, Engineering, and Mathematics) fields. The competition uses excavation, a necessary first step towards extracting resources from the regolith and building bases on the moon. The unique physical properties of lunar regolith and the reduced 1/6th gravity, vacuum environment make excavation a difficult technical challenge. Advances in lunar regolith mining have the potential to significantly contribute to our nation's space vision and NASA space exploration operations. The competition is conducted annually by NASA at the Kennedy Space Center Visitor Complex. The teams that can use telerobotic or autonomous operation to excavate a lunar regolith geotechnical simulant, herein after referred to as Black Point-1 (or BP-1) and score the most points (calculated as an average of two separate 10-minute timed competition attempts) will eam points towards the Joe Kosmo Award for Excellence and the scores will reflect ranking in the on-site mining category of the competition. The minimum excavation requirement is 10.0 kg during each competition attempt and the robotic excavator, referred to as the "Lunabot", must meet all specifications. This paper will review the achievements of the Lunabotics Mining Competition in 2010 and 2011, and present the new rules for 2012. By providing a framework for robotic design and fabrication, which culminates in a live competition event, university students have been able to produce sophisticated lunabots which are tele-operated. Multi-disciplinary teams are encouraged and the extreme sense of accomplishment provides a unique source of inspiration to the participating students, which has been shown to translate into increased interest in STEM careers. Our industrial sponsors (Caterpillar, Newmont Mining, Harris, Honeybee Robotics) have all stated that there is a strong need for skills in the workforce related

  9. Instituto para la Promocion de la Cultura Civica, A.C.: Mission; Philosophy; Goals and Objectives; Challenge and Commitment; Activities; Publications and Essays; Presence in the Mass Media.

    ERIC Educational Resources Information Center

    Instituto para la Promocion de la Cultura Civica. Mexico City (Mexico).

    The report discusses the activities of the Instituto para la Promocion de la Culture Civica (ICC), a non-partisan, not-for-profit Mexican nongovernmental organization (NGO) that has as its mission: to promote the advancement of a civic culture understood as a system of values, ideas, traits of character, dispositions, inclinations, attitudes,…

  10. Definition of technology development missions for early space stations: Large space structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  11. AXSIO and the NASA X-ray Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) focuses on the IXO science objectives ranked highly by the Decadal Survey: tracing orbits near 5MBH event horizons, measuring BH spin, characterizing outflows and the environment of AGN, observing 5MBH to z=6, mapping gas motion in clusters, finding the missing baryons, and observing cosmic feedback. AXSIO's streamlining of IXO includes reduction in the instrument complement to a calorimeter and a grating spectrometer, and relaxation of the angular resolution to 10". With 0.9 m2 effective area at 1.25 keV, AXSIO delivers a 30-fold performance increase over current missions for high-resolution spectroscopy and spectroscopic timing. NASA has also undertaken a study of notional missions to determine lower cost approaches to accomplishing IXO objectives over the next decade. Three concepts were studied; which as a group encompass the full range of IXO science. The capabilities and architecture of these missions are summarized.

  12. Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

  13. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  14. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  15. NASA's Gravitational-Wave Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-07-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.

  16. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  17. Wind Energy Program: Top 10 Program Accomplishments

    SciTech Connect

    2009-01-18

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  18. Accomplishments of Science by the Year 2000

    NASA Technical Reports Server (NTRS)

    Bergman, J.

    1985-01-01

    Current and projected accomplishments in science and technology are examined from a social and political perspective. It is observed that the present level of research and development in the United States is inadequate for many possible advancements to occur.

  19. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  20. Future NASA Missions and Technology Needs Results to Date

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1999-01-01

    An overview of future NASA missions, technologies needed for mission success, accomplishments in space mechanisms to date, a government/industry survey and survey responses, significant programmatic and technology issues, and technology implementation needs are presented.

  1. Mission requirements: Second Skylab mission SL-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.

  2. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: Objectives, Approach, and Results of a Simulated Mission to Search for Life in the Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Cannon, Howard N.; Dunagan, Stephen E.; Lemke, Lawrence G.; Glass, Brian J.; Miller, David; Gomez-Elvira, Javier; Davis, Kiel; Zavaleta, Jhony; Winterholler, Alois; Roman, Matt; Rodriguez-Manfredi, Jose Antonio; Bonaccorsi, Rosalba; Bell, Mary Sue; Brown, Adrian; Battler, Melissa; Chen, Bin; Cooper, George; Davidson, Mark; Fernández-Remolar, David; Gonzales-Pastor, Eduardo; Heldmann, Jennifer L.; Martínez-Frías, Jesus; Parro, Victor; Prieto-Ballesteros, Olga; Sutter, Brad; Schuerger, Andrew C.; Schutt, John; Rull, Fernando

    2008-10-01

    The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding.

  3. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface.

    PubMed

    Stoker, Carol R; Cannon, Howard N; Dunagan, Stephen E; Lemke, Lawrence G; Glass, Brian J; Miller, David; Gomez-Elvira, Javier; Davis, Kiel; Zavaleta, Jhony; Winterholler, Alois; Roman, Matt; Rodriguez-Manfredi, Jose Antonio; Bonaccorsi, Rosalba; Bell, Mary Sue; Brown, Adrian; Battler, Melissa; Chen, Bin; Cooper, George; Davidson, Mark; Fernández-Remolar, David; Gonzales-Pastor, Eduardo; Heldmann, Jennifer L; Martínez-Frías, Jesus; Parro, Victor; Prieto-Ballesteros, Olga; Sutter, Brad; Schuerger, Andrew C; Schutt, John; Rull, Fernando

    2008-10-01

    The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible-near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding.

  4. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface.

    PubMed

    Stoker, Carol R; Cannon, Howard N; Dunagan, Stephen E; Lemke, Lawrence G; Glass, Brian J; Miller, David; Gomez-Elvira, Javier; Davis, Kiel; Zavaleta, Jhony; Winterholler, Alois; Roman, Matt; Rodriguez-Manfredi, Jose Antonio; Bonaccorsi, Rosalba; Bell, Mary Sue; Brown, Adrian; Battler, Melissa; Chen, Bin; Cooper, George; Davidson, Mark; Fernández-Remolar, David; Gonzales-Pastor, Eduardo; Heldmann, Jennifer L; Martínez-Frías, Jesus; Parro, Victor; Prieto-Ballesteros, Olga; Sutter, Brad; Schuerger, Andrew C; Schutt, John; Rull, Fernando

    2008-10-01

    The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible-near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding. PMID:19032053

  5. Engineering Accomplishments in the Construction of NCSX

    SciTech Connect

    G. H. Neilson; P.J. Heitzenroeder; B.E. Nelson; W.T. Reiersen; A. Brooks; T.G. Brown; J.H. Chrzanowski; M.J. Cole; F. Dahlgren; T. Dodson; L.E. Dudek; R.A. Ellis; H.M. Fan; P.J. Fogarty; K.D. Freudenberg; P.L. Goranson; J.H. Harris; M.R. Kalish; G. Labik; J.F. Lyon; N. Pomphrey; C.D. Priniski; S. Raftopoulos; D.J. Rej; W.R. Sands; R.T. Simmons; B.E. Stratton; R.L. Strykowsky; M.E. Viola; D.E. Williamson; M.C. Zarnstorff

    2008-09-01

    The National Compact Stellarator Experiment (NCSX) was designed to test a compact, quasiaxisymmetric stellarator configuration. Flexibility and accurate realization of its complex 3D geometry were key requirements affecting the design and construction. While the project was terminated before completing construction, there were significant engineering accomplishments in design, fabrication, and assembly. The design of the stellarator core device was completed. All of the modular coils, toroidal field coils, and vacuum vessel sectors were fabricated. Critical assembly steps were demonstrated. Engineering advances were made in the application of CAD modeling, structural analysis, and accurate fabrication of complex-shaped components and subassemblies. The engineering accomplishments of the project are summarized

  6. Spacelab life sciences 2 post mission report

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  7. Some History and Accomplishments of the IUSS

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Hartemink, Alfred E.

    2013-04-01

    The International Society of Soil Science (ISSS) was founded in 1924 in Rome, Italy, by European agro-geologists who were interested in establishing standardized methods of soil analysis and soil classification. It was admitted as a Union member of the International Council for Science (ICSU) in 1993 and was restructured into the International Union of Soil Sciences (IUSS) in 1998. The objectives of the IUSS are to promote all branches of soil science, and to support all soil scientists across the world in the pursuit of their activities. The IUSS has encouraged international exchanges of ideas and collaborations through the organization of international congresses, known as the World Congress of Soil Science. A total of 19 international congresses have been organized, with eight of these congresses held in Europe, five in the Americas, three in Asia, two in Australia, and one in Africa. The 20th congress will be held in Korea in 2014. The IUSS maintains a website (www.iuss.org) since 2001 with a variety of information about soils, publishes twice per year a Bulletin (since 1952) and publishes a monthly electronic newsletter (IUSS Alert) since 2005. The IUSS initiated the Soil Map of the World, which was prepared in the 1960s and 1970s and a whole range of other scientific initiatives, publications and cooperating journals. Divisions, commissions, working groups and standing committees have been established to deal with all aspects of soil science and its applications. There are four divisions (Division 1 - Soil in Space and Time, Division 2 - Soil properties and processes, Division 3 - Soil Use and Management, and Division 4 - The Role of Soils in Sustaining Society and the Environment). Each division is further divided into five or six commissions. In addition, there are eight active working groups (Acid Sulphate Soils, Cryosols, Digital Soil Mapping, International Actions for the Sustainable Use of Soils, Land Degradation, World Reference Base, Forest soils, and

  8. The First Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Craft, H.

    1984-01-01

    The role of the mission manager in coordinating the payload with the space transportation system is studied. The establishment of the investigators working group to assist in achieving the mission objectives is examined. Analysis of the scientific requirements to assure compatibility with available resources, and analysis of the payload in order to define orbital flight requirements are described. The training of payload specialists, launch site integration, and defining the requirements for the operation of the integrated payload and the payload operations control center are functions of the mission manager. The experiences gained from the management of the Spacelab One Mission, which can be implemented in future missions, are discussed. Examples of material processing, earth observations, and life sciences advances from the First Spacelab Mission are presented.

  9. Manned Mars mission cost estimate

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph; Smith, Keith

    1986-01-01

    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  10. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  11. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    SciTech Connect

    JOHNSON, A.L.

    2000-04-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time.

  12. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, Michael; Clifford, S.; Lawrence, S.; Klaus, K.; Smith, D.

    2013-10-01

    Introduction: The time has come to leverage technology advances to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes. Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Mission Concept: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Our concept involves using a Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power 5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both

  13. Impact of flying qualities on mission effectiveness for helicopter air combat, volume 1

    NASA Technical Reports Server (NTRS)

    Harris, T. M.; Beerman, D. A.

    1983-01-01

    A computer simulation to investigate the impact of flying qualities on mission effectiveness is described. The objective of the study was to relate the effects of flying qualities, such as precision of flight path control and pilot workload, to the ability of a single Scout helicopter, or helicopter team, to accomplish a specified anti-armor mission successfully. The model of the actual engagement is a Monte Carlo simulation that has the capability to assess the effects of helicopter characteristics, numbers, tactics and weaponization on the force's ability to accomplish a specific mission against a specified threat as a function of realistic tactical factors. A key feature of this program is a simulation of micro-terrain features and their effects on detection, exposure, and masking for nap-of-the-earth (NOE) flight.

  14. Accomplished Teachers Implementation of Quality Teaching Practices

    ERIC Educational Resources Information Center

    Chen, Weiyun; Hammond-Bennett, Austin; Upton, Ashely; Mason, Steve

    2014-01-01

    The purpose of this study was to describe how accomplished teachers implement the quality of teaching practices in their daily lessons. The participants were four elementary physical education teachers (one male, three female). The data sources consisted of videotape of the teachers teaching 12 lessons, transcription of the taped lessons,…

  15. Acoustics Division recent accomplishments and research plans

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Morgan, H. G.

    1986-01-01

    The research program currently being implemented by the Acoustics Division of NASA Langley Research Center is described. The scope, focus, and thrusts of the research are discussed and illustrated for each technical area by examples of recent technical accomplishments. Included is a list of publications for the last two calendar years. The organization, staff, and facilities are also briefly described.

  16. Biomass Program 2007 Accomplishments - Report Introduction

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  17. Biomass Program 2007 Accomplishments - Full Report

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  18. Accomplishing Multiple Goals through Community Connections

    ERIC Educational Resources Information Center

    Stone, Jody

    2007-01-01

    With schools being asked to accomplish more and more, it is increasingly important to, whenever possible, address multiple goals in teaching. Educating the whole child dictates that we find ways to ensure our graduates are well-rounded, independent thinkers capable of becoming well-adjusted, contributing adults. Thus community service has become a…

  19. Autonomous mission management for UAVs using soar intelligent agents

    NASA Astrophysics Data System (ADS)

    Gunetti, Paolo; Thompson, Haydn; Dodd, Tony

    2013-05-01

    State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.

  20. Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2004-01-01

    NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.

  1. Voyager Interstellar Mission (VIM)

    NASA Technical Reports Server (NTRS)

    Rudd, R.; Textor, G.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for the Voyager Interstellar Mission (VIM) are summarized. The general objectives of the VIM are to investigate the interplanetary and interstellar media and to continue the Voyager program of ultraviolet astronomy. The VIM will utilize both Voyager spacecraft for the period from January 1990 through December 2019. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, control and support systems; and tracking support responsibility.

  2. NASA's Asteroid Redirect Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    A major element of the National Aeronautics and Space Administration’s (NASA) new Asteroid Initiative is the Asteroid Redirect Mission (ARM). This concept was first proposed in 2011 during a feasibility study at the Keck Institute for Space Studies (KISS)[1] and is under consideration for implementation by NASA. The ARM involves sending a high-efficiency (ISP 3000 s), high-power (40 kW) solar electric propulsion (SEP) robotic vehicle that leverages technology developed by NASA’s Space Technology Mission Directorate (STMD) to rendezvous with a near-Earth asteroid (NEA) and return asteroidal material to a stable lunar distant retrograde orbit (LDRO)[2]. There are two mission concepts currently under study, one that captures an entire 7 - 10 meter mean diameter NEA[3], and another that retrieves a 1 - 10 meter mean diameter boulder from a 100+ meter class NEA[4]. Once the retrieved asteroidal material is placed into the LDRO, a two person crew would launch aboard an Orion capsule to rendezvous and dock with the robotic SEP vehicle. After docking, the crew would conduct two extra-vehicular activities (EVA) to collect asteroid samples and deploy instruments prior to Earth return. The crewed portion of the mission is expected to last approximately 25 days and would represent the first human exploration mission beyond low-Earth orbit (LEO) since the Apollo program. The ARM concept leverages NASA’s activities in Human Exploration, Space Technology, and Planetary Defense to accomplish three primary objectives and several secondary objectives. The primary objective relevant to Human Exploration is to gain operational experience with vehicles, systems, and components that will be utilized for future deep space exploration. In regard to Space Technology, the ARM utilizes advanced SEP technology that has high power and long duration capabilities that enable future missions to deep space destinations, such as the Martian system. With respect to Planetary Defense, the ARM

  3. Formation, Alteration and Delivery of Exogenous High Molecular Weight Organic Compounds: Objectives of the Tanpopo Mission from the Point of View of Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; K. Sarker, Palash; Ono, Keisuke; Kawamoto, Yukinori; Obayashi, Yumiko; Kaneko, Takeo; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Yamagishi, Akihiko

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. Amino acids have been confirmed in extracts from carbonaceous chondrites and cometary dusts. It was suggested that these organics were formed in quite cold environments. We irradiated possible interstellar media, such as a frozen mixture of methanol, ammonia and water, with high-energy particles. Amino acid precursors with high molecular weights were detected in the irradiated products. Such complex amino acid precursors are much more stable than free amino acids against radiation, and heat. It is suggested that interplanetary dust particles (IDPs) brought much more organics than meteorites and comets. However, characteristics of organic compounds in IDPs are little known, since they have been collected only in terrestrial biosphere. We are planning the Tanpopo Mission, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes.

  4. Fort Collins Science Center fiscal year 2010 science accomplishments

    USGS Publications Warehouse

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  5. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  6. Manned Mars mission psychological issues

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    The research on isolated environments over the last thirty years suggests that psychological factors associated with such environments will lead to negative changes in individual and group performance. A mission to Mars will be the greatest undertaking ever devised by the human species. The members of such a mission will be in an environment whose potential dangers are not even completely known at this time. The psychological factors generated by such an environment, and which might adversely affect accomplishment of mission goals, can be minimized or planned for in advance. It is hoped that these issues will not be ignored in planning for this great adventure.

  7. Advanced Fuels Campaign FY 2011 Accomplishments Report

    SciTech Connect

    Not Listed

    2011-11-01

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  8. Enhanced surveillance program FY1998 accomplishments

    SciTech Connect

    Kass, J

    1998-10-01

    This report highlights the accomplishments of the Enhanced Surveillance Program (ESP), the highest-priority research and development effort in stockpile management today. This is volume one of eleven, the unclassified summary of selected program highlights. These highlights fall into the following focus areas: pits, high explosives, organics, dynamics, diagnostics, systems, secondaries, materials-aging models, non-nuclear components, and routine surveillance testing system upgrades. Principal investigators from around the DOE complex contributed to this report.

  9. NASA total quality management 1990 accomplishments report

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's efforts in Total Quality Management are based on continuous improvement and serve as a foundation for NASA's present and future endeavors. Given here are numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. These accomplishment benefit our Agency and help to achieve our primary goal, keeping American in the forefront of the aerospace industry.

  10. FY005 Accomplishments for Colony Project

    SciTech Connect

    Jones, T; Kale, L; Moreira, J; Mendes, C; Chakravorty, S; Inglett, T; Tauferner, A

    2005-07-05

    The Colony Project is developing operating system and runtime system technology to enable efficient general purpose environments on tens of thousands of processors. To accomplish this, we are investigating memory management techniques, fault management strategies, and parallel resource management schemes. Recent results show promising findings for scalable strategies based on processor virtualization, in-memory checkpointing, and parallel aware modifications to full featured operating systems.

  11. NASA total quality management 1989 accomplishments report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Described here are the accomplishments of NASA as a result of the use of Total Quality Management (TQM). The principles in practice which led to these process refinements are important cultural elements to any organization's productivity and quality efforts. The categories of TQM discussed here are top management leadership and support, strategic planning, focus on the customer, employee training and recognition, employee empowerment and teamwork, measurement and analysis, and quality assurance.

  12. Abstract and research accomplishments of University Coal Research Projects

    SciTech Connect

    1995-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

  13. The Europa Clipper mission concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Lopes, Rosaly

    within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite’s induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander, with the Reconnaissance goal: Characterize safe and scientifically compelling sites for a future lander mission to Europa. To accomplish these reconnaissance objectives and the investigations that flow from them, principally to address issues of landing site safety, two additional instruments would be included in the notional payload: a Reconnaissance Camera (for high-resolution imaging) and a Thermal Imager (to characterize the surface through its thermal properties). These instruments, in tandem with the notional payload for science, could assess the science value of potential landing sites. This notional payload serves as a proof-of-concept for the Europa Clipper during its formulation stage. The actual payload would be chosen through a NASA Announcement of Opportunity. If NASA were to proceed with the mission, it could be possible to launch early in the coming decade, on an Atlas V or the Space Launch System (SLS).

  14. The Mixed Waste Focus Area: Status and accomplishments

    SciTech Connect

    Conner, J.E.; Williams, R.E.

    1997-08-01

    The Mixed Waste Focus Area began operations in February of 1995. Its mission is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments, and regulators. The MWFA will develop, demonstrate, and deliver implementable technologies for treatment of mixed waste within the DOE complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation, and disposal. The MWFA`s mission arises from the Resources Conservation and Recovery Act (RCRA) as amended by the Federal Facility Compliance Act. Each DOE site facility that generates or stores mixed waste prepared a plan, the Site Treatment Plan, for developing treatment capacities and treating that waste. Agreements for each site were concluded with state regulators, resulting in Consent Orders providing enforceable milestones for achieving treatment of the waste. The paper discusses the implementation of the program, its status, accomplishments and goals for FY1996, and plans for 1997.

  15. Tank waste remediation system mission analysis report

    SciTech Connect

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  16. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  17. (abstract) Mars Global Surveyor: A Global Mapping Mission

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.; Palluconi, Frank D.

    1995-01-01

    The Mars Global Surveyor Mission will launch a single spacecraft to Mars in November 1996. After arrival at the planet in September 1997 aerobraking will be used to lower the spacecraft into a low, sun-synchronous, polar-mapping orbit over several months. Early in 1998 mapping observations will begin and continue for a Mars year (687 days). Following completion of this first Mars year of mapping the spacecraft will continue to act as a relay orbiter for an additional three Earth years. The five instruments carried involve magnetometry, surface and atmosphere imaging, atmospheric sounding, laser altimetry, gravity and thermal emission spectroscopy. In addition, the spacecraft carries a Mars relay receiver/transmitter which will operate over the entire five year orbital mission ending in January of 2003. The Mars Global Surveyor mission is intended to accomplish a portion of the scientific objectives of the Mars Observer mission which was lost in 1993 three days before entering Mars orbit. The instrumentation to be used for the magnetometers, cameras, laser altimeter, emission spectrometer and radio science are very nearly the same as those carried by Mars Observer. The spacecraft design will be new but will use spare equipment from Mars Observer and has a mass about two and one-half time smaller. All experiments will be controlled remotely from their investigators home installation. The long planned period of observation supports the mission's global and seasonal objectives.

  18. STS-69 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  19. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the

  20. Small to intermediate satellites for future space science missions

    NASA Astrophysics Data System (ADS)

    De Sanctis, Carmine E.

    1993-09-01

    Spacecraft capable of carrying modest to intermediate size science payloads into Earth orbit at relatively low cost are being investigated by the Marshall Space Flight Center at the request of the Astrophysics and Space Physics Division of OSSA. Intermediate-class space science missions, such as the Lunar Ultraviolet Transit Experiment (LUTE), Inner Magnetosphere Imager (IMI), the Solar Ultraviolet Radiation and Correlative Emissions (SOURCE) experiment, and the Long Duration Exposure Facility (LDEF-II) are expected to have a progressively larger role in NASA's space science program into the next century. These and other space science missions have been examined to define the systems, subsystems, and interface requirements needed to accomplish their stated objectives. This paper discusses the science objectives, technical requirements and major issues posed by IMI, LUTE, SOURCE, and LDEF-II and will address MSFC's new ways of doing business.

  1. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  2. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  3. Component Verification and Certification in NASA Missions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)

    2001-01-01

    Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.

  4. New ESA Earth Explorer Missions

    NASA Astrophysics Data System (ADS)

    Herland, E.

    2006-12-01

    The European Space Agency has recently selected a set of six mission candidates for its next Earth Explorer Core mission. This mission will be launched in the beginning of the next decade, and will contribute significantly to Earth science in addition to the already approved six missions in the programme. The scientific priorities for the call for proposals were the global water cycle, the global carbon cycle, atmospheric chemistry and the human element in the Earth system. The presentation will outline the scientific objectives of each of the six mission proposals, and in particular address the potential contribution to the water and energy cycle research and CEOP. The six mission proposals are: BIOMASS global measurements of forest biomass. The measurement is accomplished by a space-borne P-band synthetic aperture polarimetric radar. The technique is mainly based on the measurement of the cross- polar backscattering coefficient, from which forest biomass is directly retrieved. Also uses multipolarization measurements and interferometry. The studies for this mission will include comparative studies to measure terrestrial biomass using P- or L-band and consideration of alternative implementations using L-band. TRAQ TRopospheric composition and Air Quality: Monitoring of air quality and long-range transport of air pollutants. A new synergistic sensor concept for process studies, particularly with respect to aerosol-cloud interactions. Focus on the rate of air quality change on regional and global scales, the strength and distribution of sources and sinks of tropospheric trace gases and aerosols influencing air quality, and the role of tropospheric composition in global change. Carries imaging spectrometers in the range from ultraviolet to short-wave infrared. PREMIER PRocess Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation: Aims at understanding processes that link trace gases, radiation, chemistry and climate in the atmosphere

  5. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  6. (abstract) Telecommunications for Mars Rovers and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert

    1997-01-01

    Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.

  7. Mars Global Surveyor Mission: Environmental Assessment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This environmental assessment addresses the proposed action to complete the integration and launch the Mars Global Surveyor (MGS) spacecraft from Cape Canaveral Air Station (CCAS), Florida, during the launch window in November 1996. Mars Global Surveyor is part of the Solar System Exploration Program to the inner planets designed to maintain a sufficient level of scientific investigation and accomplishment so that the United States retains a leading position in solar system exploration through the end of the century. The Program consists of a specific sequence of missions, based on technological readiness, launch opportunities, rapidity of data return, and a balance of scientific disciplines. The purpose of the MGS mission would be to deliver a spacecraft platform to a low-altitude polar orbit around Mars where it would collect global observations of basic geological, geophysical, and climatological processes of the planet. To satisfy this purpose, the MGS mission would support a scientific set of objectives. Detailed global maps of surface topography, the distribution of minerals, the planet's mass, size, and shape, the characterization of Mars gravitational and magnetic fields, and the monitoring of global weather, collected over the period of one Martian year (about two Earth years), would help answer some of the questions about the evolution of Mars. Such an investigation would help scientists better understand the current state of water on Mars, the evolution of the planet's atmosphere, and the factors that led to major changes in the Martian climate. It would also provide much needed information on the magnetic field of Mars. Data collected from this mission would provide insight into the evolution of both Earth and the solar system, as well as demonstrate technological approaches that could be applicable to future Mars missions.

  8. Structures and Dynamics Division research and technology plans for FY 1894 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1984-01-01

    The Objectives, Expected Results, Approach, and Fiscal Year FY 1984 Milestones for the Structures and Dynamics Division's research programs are examined. The FY 1983 Accomplishments are presented where applicable.

  9. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  10. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    SciTech Connect

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-20

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power ({>=}330 We at beginning of life) during the 10-year cruise and 1-year science mission ({approx}11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  11. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-01

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to ``hop'' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power (>=330 We at beginning of life) during the 10-year cruise and 1-year science mission (~11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  12. Space station support of manned Mars missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1986-01-01

    The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.

  13. Toxicological safeguards in the manned Mars missions

    NASA Technical Reports Server (NTRS)

    Coleman, Martin E.

    1986-01-01

    Safeguards against toxic chemical exposures during manned Mars missions (MMMs) will be important for the maintenance of crew health and the accomplishment of mission objectives. Potential sources include offgassing, thermodegradation or combustion of materials, metabolic products of crew members, and escape of chemical from containment. Spacecraft maximum allowable concentration (SMAC) limits will have to be established for potential contaminants during the MMMs. The following factors will be used in establishing these limits: duration of mission, simultaneous exposure to other contaminants, deconditioning of crew members after long periods of reduced gravity, and simultaneous exposure to ionizing radiation. Atmospheric contaminant levels in all compartments of the transit spacecraft and Manned Mars Station (MMS) will be monitored at frequent intervals with a real time analyzer. This analyzer will be highly automated, requiring minimal crew time and expertise. The atmospheric analyzer will find other usages during the MMMs such as analyzing Martian atmospheres and soils, exhaled breath and body fluids of crew members, and reaction products in chemical processing facilities.

  14. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  15. Structural mechanics division research and technology accomplishments for CY 1992 and plans for CY 1993

    NASA Technical Reports Server (NTRS)

    Malone, John B.

    1993-01-01

    The purpose of this report is to present the Structural Mechanics Division's research accomplishments for C.Y. 1992 and plans for C.Y. 1993. The technical mission and goals of the division and its constituent research branches are described. The work under each branch is described in terms of highlights of accomplishments during the past year and plans for the current year as they relate to branch long range goals. This information is useful in program coordination with other government organizations, universities, and industry in areas of mutual interest.

  16. GRAIL project management: Launching on cost, schedule, and spec and achieving full mission success

    NASA Astrophysics Data System (ADS)

    Taylor, R. L.; Zuber, M. T.; Lehman, D. H.; Hoffman, T. L.

    The Gravity Recovery And Interior Laboratory (GRAIL) project, a NASA Discovery Program mission with a cost cap, was launched September 10, 2011, on spec, on time and under budget. Led by Principal Investigator (PI) Dr. Maria T. Zuber of MIT and managed by the Jet Propulsion Laboratory, with Lockheed Martin as spacecraft contractor and the late Sally Ride as Education and Public Outreach Lead, GRAIL completed its Prime Mission in May 2012, successfully meeting its objectives-to precisely map the gravitational field of the Moon to reveal its internal structure “ from crust to core,” determine its thermal evolution, and extend this knowledge to other planets. This paper updates last year's IEEE Aerospace Conference paper [1], summarizing key development challenges and accomplishments through completion of the Primary Mission, and reporting progress in the Extended Mission.

  17. Lunar Science for Future Missions

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.

    2006-12-01

    NASA's Vision for Space Exploration (VSE) will return humans to the Moon and will include robotic precursor missions in its early phases, including the Lunar Reconnaissance Orbiter, now in development. Many opportunities for scientific investigations will arise from this program of exploration. Such opportunities will span across disciplines of planetary science, astrophysics, heliophysics, and Earth science via remote observation and monitoring. This abstract focuses on some of the key lunar science objectives that can be addressed with robotic and human missions. Even after 35+ years of study of Apollo samples and data, and global remote sensing missions of the 1990's, key lunar science questions remain. Apollo provided ground truth for the central nearside, but ground truth is lacking for the lunar farside and poles. Lunar meteorites provide knowledge about areas potentially far distant from the central nearside, but ground truth in key areas such as the farside South Pole-Aitken Basin, which provides access to the lower crust and possibly the upper mantle, will enable more direct correlations between the lunar meteorites and global remotely sensed data. Extending and improving knowledge of surface compositions, including partially buried basalt deposits, globally, is needed to better understand the composition of the Moon's crust as a function of depth and of the mantle, and to provide new tests of the Moon's origin and early surface and internal evolution. These issues can be addressed in part with robotic measurements on the surface; however, samples cached for return to Earth are needed for detailed chemical, lithologic, and geochronologic investigations. Apollo experience has shown that regolith samples and/or rock fragments sieved from regolith provide a wealth of information that can be interpreted within the context of regional geology. Targeted sampling by humans and human/robotic teams can optimize sampling strategies. Detailed knowledge of specific

  18. Low Cost Methods to Accomplish Aeronomy Science

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.

    2013-12-01

    Accomplishment of aeronomy science using low cost methods involves a number of innovative considerations. These methods will be discussed. They include making broad use of internet to control and operate distributed sensors. Sensor controls should be simple and most important reliable. Imagers are a common sensor for optical systems and include common computer interfaces and menu driven operations which often don't require special software or engineering development. Small, inexpensive but reliable satellite systems are evolving in the Cubesat community. Effective use of students is invaluable, giving them responsibility to operate instrumentation and to routinely archive the data. Management of students is especially important in the early phase of their training to insure quality performance. These ideas will be elaborated on, and most importantly, the science motive is the most important driver for what is done.

  19. NASA total quality management 1989 accomplishments report

    NASA Technical Reports Server (NTRS)

    Tai, Betty P. (Editor); Stewart, Lynne M. (Editor)

    1990-01-01

    NASA and contractor employees achieved many notable improvements in 1989. The highlights of those improvements, described in this seventh annual Accomplishments Report, demonstrate that the people who support NASA's activities are getting more involved in quality and continuous improvement efforts. Their gains solidly support NASA's and this Nation's goal to remain a leader in space exploration and in world-wide market competition, and, when communicated to others through avenues such as this report, foster improvement efforts across government and industry. The principles in practice which led to these process refinements are important cultural elements to any organization's productivity and quality efforts. The categories in this report reflect NASA principles set forth in the 1980's and are more commonly known today as Total Quality Management (TQM): top management leadership and support; strategic planning; focus on the customer; employee training and recognition; employee empowerment and teamwork; measurement and analysis; and quality assurance.

  20. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of

  1. EarthScope Education and Outreach: Accomplishments and Emerging Opportunities

    NASA Astrophysics Data System (ADS)

    Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.

    2014-12-01

    EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through

  2. Renewing Solar Science. The Solar Maximum Repair Mission.

    ERIC Educational Resources Information Center

    Neal, Valerie

    This publication describes the Solar Maximum Repair Mission for restoring the operational capability of the solar observatory in space by using the Space Shuttle. Major sections include: (1) "The Solar Maximum Mission" (describing the duties of the mission); (2) "Studying Solar Flares" (summarizing the major scientific accomplishments of the…

  3. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  4. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  5. The Voyager Interstellar Mission

    NASA Technical Reports Server (NTRS)

    Rudd, R. P.; Hall, J. C.; Spradlin, G. L.

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  6. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed. PMID:11540770

  7. The neutron star interior composition explorer (NICER): mission definition

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K.-C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.; Foster, R.; Prigozhin, G.; Remillard, R.; Doty, J.

    2014-07-01

    Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars—objects that compress up to two Solar masses into a volume the size of a city—accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014.

  8. Asteroid Return Mission Feasibility Study

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Gershman, Robert; Landau, Damon; Polk, James; Porter, Chris; Yeomans, Don; Allen, Carlton; Williams, Willie; Asphaug, Erik

    2011-01-01

    This paper describes an investigation into the technological feasibility of finding, characterizing, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the International Space Station (ISS) for scientific investigation, evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities, and to serve as a testbed for human operations in the vicinity of an asteroid. Reasonable projections suggest that several dozen candidates NEAs in the size range of interest (approximately 2-m diameter) will be known before the end of the decade from which a suitable target could be selected. The conceptual mission objective is to return an approximately 10,000-kg asteroid to the ISS in a total flight time of approximately 5 years using a single Evolved Expendable Launch Vehicle. Preliminary calculations indicate that this could be accomplished using a solar electric propulsion (SEP) system with high-power Hall thrusters and a maximum power into the propulsion system of approximately 40 kW. The SEP system would be used to provide all of the post-launch delta V. The asteroid would have an unrestricted Earth return Planetary Protection categorization, and would be curated at the ISS where numerous scientific and resource utilization experiments would be conducted. Asteroid material brought to the ground would be curated at the NASA Johnson Space Center. This preliminary study identified several areas where additional work is required, but no show stoppers were identified for the approach that would return an entire 10,000-kg asteroid to the ISS in a mission that could be launched by the end of this decade.

  9. The Mars Observer Mission

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1985-01-01

    The Mars Observer Mission is to be the first in a series of modest-cost inner-planet missions. Launch is planned for the August/September 1990 Mars opportunity with arrival at Mars one year later. The geoscience/climatology objectives are to be met during a mapping mission over the course of one Mars year (687 days). The mapping orbit will be near-polar (93 degree orbital inclination), sun-synchronous (2 PM sunward equator crossing), and near-circular (350 km orbit altitude, 116 minute period). The spacecraft, to be selected in late 1985, will be a modified version of an existing commercial design which, in the mapping orbit, will maintain a nadir orientation. Experiments and instruments will be selected through an Announcement of Opportunity (AO) process with release of the AO in April 1985, and selection in early 1986. A description of current planning for this mission, with emphasis on climatology, is presented here.

  10. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  11. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  12. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  13. Gas Research Institute 1995-1999 research and development plan and 1995-1996 research and development program: Objectives, strategy, and budgets

    SciTech Connect

    Not Available

    1994-06-01

    This report contains Gas Research Institute's vision and mission statements, the 1995-1999 budget, and the research and development (R D) program. The program objectives are discussed in terms of background, market impact, strategy, goals, accomplishments, and planned deliverables. The appendix describes other publications containing information about the R D plan and program.

  14. Providing relay communications support for the Mars Environmental Survey (MESUR) mission

    NASA Technical Reports Server (NTRS)

    Swenson, Byron L.; Friedlander, Alan L.

    1992-01-01

    The purpose of the Mars Environmental Survey (MESUR) mission is to put in place, over several launch opportunities, a constellation of Mars landers to make long-term surface observations of the circulation of the atmosphere and changes in climate, and to record the seismic activity of the planetary crust. Short-term objectives will also be addressed. An orbital communications infrastructure capable of providing regular high-rate data transfer to earth from the landers, which are scattered globally from pole to pole, is key to accomplishing the mission goals. A study is thereby presented of the orbit selection for the orbiter spacecraft, which will provide this support, and the relay communications operation. It is concluded that adequate communications support for the objectives of the MESUR mission can be provided by a single orbiter, provided care is taken in the selection of the size and orientation (i.e., inclination and apse line alignment) of the spacecraft orbit.

  15. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  16. Exomars mission description and architecture

    NASA Astrophysics Data System (ADS)

    Giorgio, Vincenzo; Cassi, Carlo; Santoro, Pasquale

    Msftedit 5.41.15.1507; INTRODUCTION ExoMars is the first mission of the ESA Exploration Programme. It will demonstrate flight and in-situ verification of key exploration enabling technologies to support the European ambitions for future human exploration missions. The main technology demonstration objectives are: Entry, Descent and Landing (EDL) of a large payload on the surface of Mars, Surface mobility via a Rover having several kilometres of mobility range, Access to sub-surface via a Drill to acquire samples down to 2 meters, Automatic sample preparation and distribution for analyses of scientific experiments. In parallel, important scientific objectives will be accomplished through a state-of-the art scientific payload. The ExoMars scientific objectives, in order of priority, are: The search for traces of past and present life, To characterise the water/geochemical environment as a function of depth in the shallow subsurface; To study the surface environment and identify hazards to future human missions; To investigate the planet's subsurface and deep interior to better understand the evolution and habitability of Mars. mission scenario The combinations of the above constraints and other considerations have recently led to a re-definition of the baseline mission that can be summarised as follows: Launch date: Dec 2013 Spacecraft Composite: Carrier + Descent Module Launcher: Ariane 5 from Kourou (back-up Proton from Baikonur) Descent Module released from Mars orbit Courier Module expendable (crash on Mars) Landing between 5° South and 34 ° North Descent Module landing configuration with vented airbags Data relay function provided by a NASA spacecraft. This scenario has been named enhanced baseline, as it basically responds to the need of increasing the payload mass (larger DM mass) and improving the landing accuracy to meet a semi-major axis of the landing error ellipse, downrange of the nominal landing site, of 50 km (3σ) which proved to be unfeasible with

  17. Rendezvous missions to temporarily captured near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Brelsford, S.; Chyba, M.; Haberkorn, T.; Patterson, G.

    2016-04-01

    Missions to rendezvous with or capture an asteroid present significant interest both from a geophysical and safety point of view. They are key to the understanding of our solar system and are stepping stones for interplanetary human flight. In this paper, we focus on a rendezvous mission with 2006 RH120, an asteroid classified as a Temporarily Captured Orbiter (TCO). TCOs form a new population of near Earth objects presenting many advantages toward that goal. Prior to the mission, we consider the spacecraft hibernating on a Halo orbit around the Earth-Moon's L2 libration point. The objective is to design a transfer for the spacecraft from the parking orbit to rendezvous with 2006 RH120 while minimizing the fuel consumption. Our transfers use indirect methods, based on the Pontryagin Maximum Principle, combined with continuation techniques and a direct method to address the sensitivity of the initialization. We demonstrate that a rendezvous mission with 2006 RH120 can be accomplished with low delta-v. This exploratory work can be seen as a first step to identify good candidates for a rendezvous on a given TCO trajectory.

  18. Fort Collins Science Center: 2006 Accomplishments

    USGS Publications Warehouse

    Wilson, Juliette T.

    2007-01-01

    In Fiscal Year 2006 (FY06), the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) continued research vital to U.S. Department of the Interior (DOI) science and management needs and associated USGS programmatic goals. FORT work also supported the science needs of other governmental departments and agencies as well as private cooperators. Specifically, FORT scientific research and technical assistance focused on client and partner agency needs and goals in the areas of biological information management, fisheries and aquatic systems, invasive species, status and trends of biological resources, terrestrial ecosystems, and wildlife resources. Highlights of FORT project accomplishments are described below under the USGS science program area with which each task is most closely associated.2 The work of FORT’s five branches (in 2006: Aquatic Systems and Technology Applications, Ecosystem Dynamics, Invasive Species Science, Policy Analysis and Science Assistance, and Species and Habitats of Federal Interest) often involves major partnerships with other agencies or cooperation with other USGS disciplines (Geology, Geography, Water Resources).

  19. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  20. SEPAC: Spacelab Mission 1 report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The SEPAC Spacelab Mission 1 activities relevant to software operations are reported. Spacelab events and problems that did not directly affect SEPAC but are of interest to experimenters are included. Spacelab Mission 1 was launched from KSC on 28 November 1983 at 10:10 Huntsville time. The Spacelab Mission met its objectives. There were two major problems associated with SEPAC: the loss of the EBA gun and the RAU 21.

  1. Spacelab Mission 3 experiment descriptions

    NASA Technical Reports Server (NTRS)

    Hill, C. K. (Editor)

    1982-01-01

    The Spacelab 3 mission is the first operational flight of Spacelab aboard the shuttle transportation system. The primary objectives of this mission are to conduct application, science, and technology experimentation that requires the low gravity environment of Earth orbit and an extended duration, stable vehicle attitude with emphasis on materials processing. This document provides descriptions of the experiments to be performed during the Spacelab 3 mission.

  2. Mission planning for autonomous systems

    NASA Technical Reports Server (NTRS)

    Pearson, G.

    1987-01-01

    Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.

  3. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  4. Aero-Assisted Spacecraft Missions Using Hypersonic Waverider Aeroshells

    NASA Astrophysics Data System (ADS)

    Knittel, Jeremy

    This work examines the use of high-lift, low drag vehicles which perform orbital transfers within a planet's atmosphere to reduce propulsive requirements. For the foreseeable future, spacecraft mission design will include the objective of limiting the mass of fuel required. One means of accomplishing this is using aerodynamics as a supplemental force, with what is termed an aero-assist maneuver. Further, the use of a lifting body enables a mission designer to explore candidate trajectory types wholly unavailable to non-lifting analogs. Examples include missions to outer planets by way of an aero-gravity assist, aero-assisted plane change, aero-capture, and steady atmospheric periapsis probing missions. Engineering level models are created in order to simulate both atmospheric and extra-atmospheric space flight. Each mission is parameterized using discrete variables which control multiple areas of design. This work combines the areas of hypersonic aerodynamics, re-entry aerothermodynamics, spacecraft orbital mechanics, and vehicle shape optimization. In particular, emphasis is given to the parametric design of vehicles known as "waveriders" which are inversely designed from known shock flowfields. An entirely novel means of generating a class of waveriders known as "starbodies" is presented. A complete analysis is performed of asymmetric starbody forms and compared to a better understood parameterization, "osculating cone" waveriders. This analysis includes characterization of stability behavior, a critical discipline within hypersonic flight. It is shown that asymmetric starbodies have significant stability improvement with only a 10% reduction in the lift-to-drag ratio. By combining the optimization of both the shape of the vehicle and the trajectory it flies, much is learned about the benefit that can be expected from lifting aero-assist missions. While previous studies have conceptually proven the viability, this work provides thorough quantification of the

  5. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  6. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  7. Mission analyses for manned flight experiments

    NASA Technical Reports Server (NTRS)

    Orth, J. E.

    1973-01-01

    The investigations to develop a high altitude aircraft program plan are reported along with an analysis of manned comet and asteroid missions, the development of shuttle sortie mission objectives, and an analysis of major management issues facing the shuttle sortie.

  8. The International Lunar Network (ILN) and the US Anchor Nodes Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bessler, J. A.; Harris, D. W.; Hill, L.; Hammond, M. S.; McDougal, J. M.; Morse, B. J.; Red, C. L. B.; Kirby, K. W.

    2009-01-01

    This presentation reviews the International Lunar Network (ILN) mission, a cooperative effort designed to coordinate individual lunar landers in a geophysical network on the lunar surface. The presentation also includes information on the geophysical network, mission operations, and recent accomplishments.

  9. Research Progress and Accomplishments on ISS

    NASA Technical Reports Server (NTRS)

    Roe, Lesa B.; Uri, John J.

    2002-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. The first research payloads arrived at ISS more than two years ago, and continuous science has been ongoing for more than one and a half years. During this time, the research capabilities have been tremendously increased, even as assembly of the overall platform continues. Despite significant challenges along the way, ISS continues to successfully support a large number of investigations in a variety of research disciplines. The results of some of the early investigations are reaching the publication stage. The near future looms with new challenges, but experience to date and dedicated efforts give reason to be optimistic that the challenges will be overcome and that new and greater successes will be added to past ones.

  10. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  11. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  12. The REAACT Multiple Asteroid Rendezvous Mission

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Bell, J. F.

    1993-07-01

    The REAACT (Rendezvous with Earth Approaching Asteroids) mission was a proposal to last year's Discovery Program Workshop. This mission is designed to address the major question in asteroid science, the link between the spectral diversity of the asteroids and their geochemistry. Spectral diversity is perhaps the overriding feature of the asteroids. There are currently 17 different asteroid spectral types with at least 5 spectral types having no established meteoritical analogs and several more types having dubious or poorly defined analogs. The best way to link the large body of meteorite geochemical data with the groundbased remote sensing spectral data is asteroid rendezvous that yield imaging, IR-spectroscopy, and high-precision geochemical data. However, part of the scientific landscape are the severe programmatic and budgetary constraints that are imposed by limited NASA resources. The Discovery program was conceived as a way of maximizing those limited resources by emphasizing small, short missions with highly focused scientific objectives. Even with the lowcost Discovery-type missions, we cannot expect more than one or two asteroid rendezvous/sample return missions per decade. But missions that only target a single asteroids for rendezvous cannot provide a statistically meaningful sample of the wide diversity within the asteroids. It will take decades under the current budget constraints to build up an accurate picture of asteroidal geochemistry from single missions. The only way to address the diversity of the asteroids is with multiple rendezvous and REAACT proposes to do exactly that by buying at least four high-quality rendezvous spacecraft under a single Discovery cost cap. This is accomplished by adherence to four cost-saving principals: Maximum Use of Existing Commercial Equipment: REAACT uses the TRW Eagle-class lightsats for the spacecraft bus and a commercial space-qualified CCD camera for the imager. Scientific Instruments of Simple Design and

  13. RADWASTE SOLUTIONS MISSION ACCOMPLISHED AT HANFORD SPENT NUCLEAR FUEL (SNF) REMOVAL CONCLUDES IN HUGE VICTORY

    SciTech Connect

    GERBER, M.S.

    2004-10-06

    Removing the largest collection of radioactive materials bordering the Columbia River at the Department of Energy's (DOE's) Hanford Site in southeast Washington state was successfully completed on a glorious autumn morning in 2004. The Spent Nuclear Fuel (SNF) Project, managed for DOE by prime contractor Fluor Hanford, removed more than 2,300 tons (2,100 metric tons [MT]) of irradiated uranium fuel--just over 4.65-million pounds--from a historic reactor area along the river's shore, called the ''Hanford Reach.'' The Project also dried the fuel and placed all of it in safe, dry, interim storage in central Hanford, nine miles from the Columbia and hundreds of feet above the groundwater table, effectively neutralizing the risks formerly posed by the decaying fuel. Removing the nearly 105,000 irradiated, solid metal uranium fuel assemblies--stored for decades underwater in the aging K Basins--marked a cornerstone event in Hanford's long farewell to arms. It was the third major triumph in a ''trifecta'' year at the old site, during which a Fluor Hanford-managed project completed stabilizing and safely packaging nearly 20 tons of plutonium-bearing materials, and another project finished pumping all liquids out of degrading, underground waste tanks. All three successful projects give traction to the vision and promise of DOE's Richland Operations Office (RL), to move wastes and special nuclear material away from the river and into Hanford's Central plateau.

  14. Global Health: The Fogarty International Center, National Institutes of Health: Vision and Mission, Programs, and Accomplishments

    PubMed Central

    Breman, Joel G.; Bridbord, Kenneth; Kupfer, Linda E.; Glass, Roger I.

    2011-01-01

    Summary The Fogarty International Center (FIC) of the U.S. National Institutes of Health has supported long-term (>6 months) basic, clinical and applied research training and research for over 3,600 future leaders in science and public health from low- and middle-income countries (LMICs); tens of thousands more persons have received short-term training. FIC started these programs in 1988 with the flagship HIV/AIDS International Training and Research Program (AITRP) in response to the global pandemic. More than 23 extramural training and research programs plus an intramural program are now operating – all in collaboration with other Institutes and Centers at NIH, U.S. government agencies, foundations, and partner institutions in LMICs and the U.S. While infectious diseases still reign mightily in Sub-Saharan African and South East Asian countries, non-communicable diseases are emerging globally, including in LMICs. Newer FIC training programs are addressing chronic, non-communicable diseases and strengthening the quality of medical schools and health care provider training, in addition to expanding expertise in infectious diseases. The model for successful training is based on long-term commitments, institutional strengthening, “twinning” of research centers, focus on local problems, and active mentoring. Trainees from Africa, Asia, and Latin America have made notable scientific contributions to global health, attained leadership positions, and received special recognition nationally and internationally. As the FIC programs are institutional-strengthening partnerships and candidates are carefully selected and mentored, close to 90% of FIC trainees return to their countries of origin. After returning home the FIC-trained leaders have continued to mentor and train thousands of individuals in their home countries. PMID:21896356

  15. Using today's Strategic Defense Initiative (SDI) technologies to accomplish tomorrow's low cost space missions

    NASA Astrophysics Data System (ADS)

    Farmer, Dean A.

    1992-08-01

    The various core technologies developed from the SDI programs are described and the cost and weight reductions that have resulted from the systematic exploitation of today's aerospace expertise are characterized. Avionics, sensors, and on-orbit propulsion systems can be utilized in developing small, low-cost devices for space exploration with significant performance capabilities. It is shown how the resulting core technologies can be employed in constructing three specific types of miniaturized spacecraft: a 16 kg planetary rover, a 200 kg lunar lander, and a 45 kg space vehicle repair and rescue craft.

  16. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  17. Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2010-01-01

    The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. While lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. This paper will outline the role of ISRU in future lunar missions, and define the approach and possible experiments to increase confidence in ISRU applications for future human lunar exploration

  18. Aquarius Mission Technical Overview

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.

    2007-01-01

    Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  19. The Euromir missions.

    PubMed

    Andresen, R D; Domesle, R

    1996-11-01

    The 179-day flight of ESA Astronaut Thomas Reiter onboard the Russian Space Station Mir drew to a successful conclusion on 29 February 1996 with the safe landing of the Soyuz TM-22 capsule near Arkalyk in Kazakhstan. This mission, known as Euromir 95, was part of ESA's precursor flight programme for the International Space Station, and followed the equally successful Euromir 94 mission by ESA Astronaut Ulf Merbold (3 October-4 November 1994). This article discusses the objectives of the two flights and presents an overview of the experiment programme, a preliminary assessment of its results and achievements, and reviews some of the lessons learnt for future Space Station operations.

  20. Lunabotics Mining Competition: Inspiration through Accomplishment

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2012-01-01

    estimated 653 university students. In 2012 more students and the public will be engaged via internet broadcasting and social networking media. The various designs will be cataloged and categorized to provide information to future Lunabotics mining robot designers and competitors. It is also expected to be of value for actual future space missions, as knowledge is gained from testing many innovative prototypes in simulated lunar regolith.

  1. Group dynamics training for manned spaceflight and the CAPSULS mission: prophylactic against incompatibility and its consequences?

    PubMed

    Kass, R; Kass, J

    1995-01-01

    On February 7, 1994, four Canadian Astronauts were sealed off in a hyperbaric chamber at the Canadian Government's Defense and Civil Institute for Environmental Medicine in Toronto, Canada. This space lab training mission lasted seven days and was the first to be conducted with astronauts outside of Russia. The objective of this mission was to give Canadian astronauts, space scientists and the staff of the Canadian Space Agency (CSA), the opportunity to gain first hand experience on preparational and operational aspects of a typical space mission. Twenty-one scientific experiments involving six countries from several disciplines were involved in this mission. This paper describes the goals and preliminary results of a psychological experiment/training program that used the CAPSULS mission as a test bed for its application in the manned space flight environment. The objective of this project was to enhance the understanding of small group behaviour with a view to maximizing team effectiveness and task accomplishment in teams living and working in isolation under difficult and confined conditions. The application of this model in the light of future missions is a key thesis in this paper.

  2. Group dynamics training for manned spaceflight and the CAPSULS mission: prophylactic against incompatibility and its consequences?

    PubMed

    Kass, R; Kass, J

    1995-01-01

    On February 7, 1994, four Canadian Astronauts were sealed off in a hyperbaric chamber at the Canadian Government's Defense and Civil Institute for Environmental Medicine in Toronto, Canada. This space lab training mission lasted seven days and was the first to be conducted with astronauts outside of Russia. The objective of this mission was to give Canadian astronauts, space scientists and the staff of the Canadian Space Agency (CSA), the opportunity to gain first hand experience on preparational and operational aspects of a typical space mission. Twenty-one scientific experiments involving six countries from several disciplines were involved in this mission. This paper describes the goals and preliminary results of a psychological experiment/training program that used the CAPSULS mission as a test bed for its application in the manned space flight environment. The objective of this project was to enhance the understanding of small group behaviour with a view to maximizing team effectiveness and task accomplishment in teams living and working in isolation under difficult and confined conditions. The application of this model in the light of future missions is a key thesis in this paper. PMID:11540989

  3. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  4. EVAL mission requirements, phase 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aspects of NASA's applications mission were enhanced by utilization of shuttle/spacelab, and payload groupings which optimize the cost of achieving the mission goals were defined. Preliminary Earth Viewing Application Laboratory (EVAL) missions, experiments, sensors, and sensor groupings were developed. The major technological EVAL themes and objectives which NASA will be addressing during the 1980 to 2,000 time period were investigated. Missions/experiments which addressed technique development, sensor development, application development, and/or operational data collection were considered as valid roles for EVAL flights.

  5. Object Oriented Learning Objects

    ERIC Educational Resources Information Center

    Morris, Ed

    2005-01-01

    We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…

  6. Fort Collins Science Center: science accomplishments for fiscal years 2012 and 2013

    USGS Publications Warehouse

    Wilson, Juliette T.; Hamilton, David B.

    2014-01-01

    The Fort Collins Science Center (FORT) is a multi-disciplinary research and development center of the U.S. Geological Survey (USGS) located in Fort Collins, Colorado. Organizationally, FORT is within the USGS Southwest Region, although our work extends across the Nation and into several other countries. FORT research focuses on needs of the land- and water-management bureaus within the U.S. Department of the Interior (DOI), other Federal agencies, and those of State and non-government organizations. As a Science Center, we emphasize a multi-disciplinary science approach to provide information for resource-management decisionmaking. FORT’s vision is to maintain and continuously improve the integrated, collaborative, world-class research needed to inform effective, science-based land and resource management. Our science and technological development activities and unique capabilities support all USGS scientific Mission Areas and contribute to successful, collaborative science efforts across the USGS and DOI. We organized our report into an Executive Summary, a cross-reference table, and an appendix. The executive summary provides brief highlights of some key FORT accomplishments for each Mission Area. The table cross-references all major FY2012 and FY2013 science accomplishments with the various Mission Areas that each supports. The one-page accomplishment descriptions in the appendix are organized by USGS Mission Area and describe the many and diverse ways in which our science is applied to resource issues. As in prior years, lists of all FY2012 and FY2013 publications and other product types also are appended.

  7. The PROBA-3 Mission

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  8. STS-95 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  9. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  10. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  11. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  12. Asteroid Rescue Mission

    NASA Astrophysics Data System (ADS)

    Izon, S.; Kokan, T.; Lee, S.; Miller, J.; Morrell, R.; Richie, D.; Rohrschneider, R.; Rostan, S.; Staton, E.; Olds, J.

    2001-01-01

    This paper is in response to a request for papers from the Lunar and Planetary Institute in Houston, Texas as part of a National University Competition. A human rescue mission to the asteroid 16 Psyche was designed based around a failed Mars mission scenario. The scenario assumed the second human Mars mission, based on the Mars Design Reference Mission 3.0, failed to propulsively capture into Mars orbit, resulting in a higher energy trajectory headed towards the asteroid belt on an intercept trajectory with 16 Psyche. The task was to design a mission that could rescue the astronauts using existing Mars mission hardware prior to the failure of their life support system. Analysis tools were created in the following six disciplines for the design of the mission: trajectory, propulsion, habitat and life support, space rescue vehicle and earth reentry vehicle, space transfer vehicle, and operations. The disciplinary analysis tools were integrated into a computational framework in order to aid the design process. The problem was solved using a traditional fixed-point iteration method with user controlled design variables. Additionally, two other methods of optimization were implemented: design of experiments and collaborative optimization. These were looked at in order to evaluate their ease of implementation and use at solving a complex, multidisciplinary problem. The design of experiments methodology was used to create a central composite design array and a non-linear response surface equation. The response surface equation allows rapid system level optimization. Collaborative optimization is a true multidisciplinary optimization technique which benefits from disciplinary level optimization in conjunction with system level optimization. By reformatting the objective functions of the disciplinary optimizers, collaborative optimization guides the discipline optimizers toward the system optimum.

  13. A CubeSat Asteroid Mission: Design Study and Trade-Offs

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa; Hepp, Aloysius; Stegeman, James; Bur, Mike; Burke, Laura; Martini, Michael; Fittje, James E.; Kohout, Lisa; Fincannon, James; Packard, Tom

    2014-01-01

    There is considerable interest in expanding the applicability of cubesat spacecraft into lightweight, low cost missions beyond Low Earth Orbit. A conceptual design was done for a 6-U cubesat for a technology demonstration to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective was a mission to be launched on the SLS test launch EM-1 to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0. Targeting asteroids that fly close to earth minimizes the propulsion required for fly-by/rendezvous. Due to mass constraints, high specific impulse is required, and volume constraints mean the propellant density was also of great importance to the ability to achieve the required deltaV. This improves the relative usefulness of the electrospray salt, with higher propellant density. In order to minimize high pressure tanks and volatiles, the salt electrospray and iodine ion propulsion systems were the optimum designs for the fly-by and rendezvous missions respectively combined with a thruster gimbal and wheel system For the candidate fly-by mission, with a mission deltaV of about 400 m/s, the mission objectives could be accomplished with a 800s electrospray propulsion system, incorporating a propellant-less cathode and a bellows salt tank. This propulsion system is planned for demonstration on 2015 LEO and 2016 GEO DARPA flights. For the rendezvous mission, at a ?V of 2000 m/s, the mission could be accomplished with a 50W miniature ion propulsion system running iodine propellant. This propulsion system is not yet demonstrated in space. The conceptual design shows that an asteroid mission is possible using a cubesat

  14. What can recycling in thermal reactors accomplish?

    SciTech Connect

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  15. What can Recycling in Thermal Reactors Accomplish?

    SciTech Connect

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-09-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

  16. Accessing Information on the Mars Exploration Rovers Mission

    NASA Astrophysics Data System (ADS)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  17. The Surface Composition Investigation for Pluto and Its Moons from the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Olkin, C.; Grundy, W. M.; Stern, S. A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Binzel, R. P.; Cruikshank, D. P.; Jennings, D. E.; Parker, J. W.; Reuter, D.; Spencer, J. R.

    2014-12-01

    One of the main scientific goals of the New Horizons mission is to map the surface composition of Pluto and Charon. The mission will also investigate the composition of Pluto's smaller moons: Nix, Hydra, Kerberos and Styx. These objectives will primarily be accomplished using the Ralph instrument (Reuter et al. 2008) using the MVIC color channels (Red, Blue, Methane and Near-Infrared) and the LEISA infrared spectral imager. The planned compositional observations of Pluto, Charon and the small satellites will be described and compared to the current knowledge from Earth-based observations. Reuter, D. C., et al., 2008. Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission. Space Science Reviews. 140, 129-154.

  18. Flight path design issues for the TOPEX mission. [Ocean Topography Experiment

    NASA Technical Reports Server (NTRS)

    Frautnick, J. C.; Cutting, E.

    1983-01-01

    The proposed Ocean Topography Experiment (TOPEX) is an earth satellite mission currently under consideration by NASA. The primary purpose of the experiment is to determine the general circulation of the oceans and its variability. High precision, space based altimeter measurements will be combined with surface measurements and ocean models to accomplish the mission objectives. The paper will discuss mission requirements on orbit design, orbit selection space, derived requirements on navigation and satellite design issues which impact orbit selection. Unique aspects of the TOPEX orbit design are highlighted, such as high precision repeating orbits, 'frozen orbit' values of eccentricity and periapses, precise maneuver and orbit determination requirements and insuring crossing arcs over a calibration-site.

  19. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    SciTech Connect

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S.

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  20. JPL space robotics: Present accomplishments and future thrusts

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-01-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  1. STS-66 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

  2. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  3. Technology demonstration by the BIRD-mission

    NASA Astrophysics Data System (ADS)

    Brieß, K.; Bärwald, W.; Gill, E.; Kayal, H.; Montenbruck, O.; Montenegro, S.; Halle, W.; Skrbek, W.; Studemund, H.; Terzibaschian, T.; Venus, H.

    2005-01-01

    Small satellites have to meet a big challenge: to answer high-performance requirements by means of small equipment and especially of small budgets. Out of all aspects the cost aspect is one of the most important driver for small satellite missions. To keep the costs within the low-budget frame (in comparison to big missions) the demonstration of new and not space-qualified technologies for the spacecraft is one key point in fulfilling high-performance mission requirements. Taking this into account the German DLR micro-satellite mission BIRD (Bi-spectral Infra-Red Detection) has to demonstrate a high-performance capability of spacecraft bus by using and testing new technologies basing on a mixed parts and components qualification level. The basic approach for accomplishing high-performance capability for scientific mission objectives under low-budget constraints is characterized by using state-of-the-art technologies, a mixed strategy in the definition of the quality level of the EEE parts and components, a tailored quality management system according to ISO 9000 and ECSS, a risk management system, extensive redundancy strategies, extensive tests especially on system level, large designs margins (over-design), robust design principles. The BIRD-mission is dedicated to the remote sensing of hot spot events like vegetation fires, coal seam fires or active volcanoes from space and to the space demonstration of new technologies. For these objectives a lot of new small satellite technologies and a new generation of cooled infrared array sensors suitable for small satellite missions are developed to fulfil the high scientific requirements of the mission. Some basic features of the BIRD spacecraft bus are compact micro satellite structure with high mechanical stability and stiffness, envelope qualification for several launchers, cubic shape in launch configuration with dimensions of about 620×620×550mm3 and variable launcher interface, mass ratio bus:payload = 62 kg:30

  4. In This Decade, Mission to the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The development and accomplishments of the National Aeronautics and Space Administration (NASA) from its inception in 1958 to the final preparations for the Apollo 11 mission in 1969 are traced in this brochure. A brief account of the successes of projects Mercury, Gemini, and Apollo is presented and many color photographs and drawings of the…

  5. Applying Technology to Your Core Mission.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses how colleges and universities can best apply new information technology (IT) tools to the core mission and offers some examples to illustrate how IT managers and staff are accomplishing it. IT manager's approaches in defining a school's competitive positioning and technology's role in classroom learning are discussed as is solving…

  6. A Mars 1984 mission

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  7. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  8. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  9. Hitchhiker mission operations: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Anderson, Kathryn

    1995-01-01

    What is mission operations? Mission operations is an iterative process aimed at achieving the greatest possible mission success with the resources available. The process involves understanding of the science objectives, investigation of which system capabilities can best meet these objectives, integration of the objectives and resources into a cohesive mission operations plan, evaluation of the plan through simulations, and implementation of the plan in real-time. In this paper, the authors present a comprehensive description of what the Hitchhiker mission operations approach is and why it is crucial to mission success. The authors describe the significance of operational considerations from the beginning and throughout the experiment ground and flight systems development. The authors also address the necessity of training and simulations. Finally, the authors cite several examples illustrating the benefits of understanding and utilizing the mission operations process.

  10. Los Alamos RAGE Simulations of the HAIV Mission Concept

    NASA Technical Reports Server (NTRS)

    Weaver, Robert P.; Barbee, Brent W.; Wie, Bong; Zimmerman, Ben

    2015-01-01

    The mitigation of potentially hazardous objects (PHOs) can be accomplished by a variety of methods including kinetic impactors, gravity tractors and several nuclear explosion options. Depending on the available lead time prior to Earth impact, non- nuclear options can be very effective at altering a PHOs orbit. However if the warning time is short nuclear options are generally deemed most effective at mitigating the hazard. The NIAC mission concept for a nuclear mission has been presented at several meetings, including the last PDC (2013).We use the adaptive mesh hydrocode RAGE to perform detailed simulations of this Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept. We use the RAGE code to simulate the crater formation by the kinetic impactor as well as the explosion and energy coupling from the follower nuclear explosive device (NED) timed to detonate below the original surface to enhance the energy coupling. The RAGE code has been well validated for a wide variety of applications. A parametric study will be shown of the energy and momentum transfer to the target 100 m diameter object: 1) the HAIV mission as planned; 2) a surface explosion and 3) a subsurface (contained) explosion; both 2) and 3) use the same source energy as 1).Preliminary RAGE simulations show that the kinetic impactor will carve out a surface crater on the object and the subsequent NED explosion at the bottom of the crater transfers energy and momentum to the target effectively moving it off its Earth crossing orbit. Figure 1 shows the initial (simplified) RAGE 2D setup geometry for this study. Figure 2 shows the crater created by the kinetic impactor and Figure 3 shows the time sequence of the energy transfer to the target by the NED.

  11. Space directorate research and technology accomplishments for FY 1988

    NASA Technical Reports Server (NTRS)

    Avery, Don E. (Compiler)

    1989-01-01

    The major accomplishments and test highlights for FY 1988 that occurred in the Space Dirctorate are given. Accomplishments and test highlights are presented by Division and Branch. The presented information will be useful in program coordination with government organizations, universities, and industry in areas of mutual interest.

  12. Gender-Role Orientation, Creative Accomplishments and Cognitive Styles.

    ERIC Educational Resources Information Center

    Hittner, James B.; Daniels, Jennifer R.

    2002-01-01

    This study examined the association of gender-role orientation to creative accomplishments and cognitive styles in 127 college students. Results indicated that the gender role orientation of instrumentality was positively associated with creative accomplishments in the business venture domain and that androgynous, versus non-androgynous,…

  13. Use of Information Systems to Acknowledge Instructional Accomplishments of Schools.

    ERIC Educational Resources Information Center

    Moncrief, Michael H.

    This paper describes the components of an Instructional Accomplishment Information (IAI) system, discusses general procedures for using the information reports to communicate instructional accomplishments to appropriate audiences, compares IAI information and standardized tests in a public relations context, and notes the role of educational…

  14. Space directorate research and technology accomplishments for fiscal year 1987

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1988-01-01

    The major accomplishments and test highlights of the Space Directorate of NASA Langley Research Center for FY87 are presented. Accomplishments and test highlights are listed by Division and Branch. This information should be useful in coordinating programs with government organizations, universities, and industry in areas of mutual interest.

  15. Pioneer Mars 1979 mission options

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Hartmann, W. K.; Niehoff, J. C.

    1974-01-01

    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers.

  16. Mission Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura

    2007-01-01

    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.

  17. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  18. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  19. STS-51 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by the crewmembers, the STS-51 crew patch honors all who have contributed to mission success. It symbolizes NASA's continuing quest to increase mankind's knowledge and use of space through this multi-faceted mission. The gold star represents the U.S. Advanced Communications Technology Satellite (ACTS) boosted by the Transfer Orbit Stage (TOS). The rays below the ACTTOS represent the innovative communication technologies to be tested by this experiment. The stylized Shuttle Pallet Satellite (SPAS) represents the German-sponsored ASTROSPAS mission. The constellation Orion below SPAS is representative of the types of stellar objects to be studied by its experimenters. The stars in Orion also commemorate the astronauts who have sacrificed their lives for the space program. The ascending spiral, symbolizing America's continuing commitment to leadership in space exploration and development, originates with the thousands of persons who ensure the success of each Shuttle flight. The five large white stars, representing the five crewmembers, along with the single gold star, fomm the mission's numerical designation.

  20. Research and technology plans for FY 1989 and accomplishments for FY 1988. [Structural Mechanics Division

    SciTech Connect

    Bales, K.S.

    1989-04-01

    The Objectives, FY 1989 Plans, Approach, and FY 1989 Milestones for the Structural Mechanics Division's research programs are presented. Fiscal year 1988 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  1. Research and technology plans for FY 1989 and accomplishments for FY 1988. [Structural Mechanics Division

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1989-01-01

    The Objectives, FY 1989 Plans, Approach, and FY 1989 Milestones for the Structural Mechanics Division's research programs are presented. Fiscal year 1988 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  2. Structures and Dynamics Division research and technology plans for FY 1988 and accomplishments for FY 1987

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1988-01-01

    Presented are the Objectives, FY 1988 Plans, Approach, and FY 1988 Milestones for the Structures and Dynamics Division (Langley Research Center) research programs. FY 1987 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  3. Structural Mechanics Division research and technology plans for FY 1990 and accomplishments for FY 1989

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1990-01-01

    The Objectives, FY 1990 Plans, Approach, and FY 1990 Milestones for the Structural Mechanics Division's research programs are presented. FY 1989 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  4. Structures and Dynamics Division research and technology plans for FY 1985 and accomplishments for FY 1984

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1985-01-01

    The objectives, FY 1985 plans, approach, and FY 1985 milestones for the Structures and Dynamics Division's research programs are presented. The FY 1984 accomplishments are presented where applicable. This information is useful in program coordination with other government organizations in areas of mutual interest.

  5. Structures and Dynamics Division research and technology plans for FY 1986 and accomplishments for FY 1985

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1986-01-01

    Presented are the Objectives, FY 1986 Plans, Approach, and FY 1986 Milestones for the Structures and Dynamics Division's research programs. FY 1985 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  6. Loads and aeroelasticity division research and technology accomplishments for FY 1982 and plans for FY 1983

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.

    1983-01-01

    Accomplishments of the past year and plans for the coming year are highlighted as they relate to five year plans and the objectives of the following technical areas: aerothermal loads; multidisciplinary analysis and optimization; unsteady aerodynamics; and configuration aeroelasticity. Areas of interest include thermal protection system concepts, active control, nonlinear aeroelastic analysis, aircraft aeroelasticity, and rotorcraft aeroelasticity and vibrations.

  7. Structures and Dynamics Division research and technology plans for FY 1987 and accomplishments for FY 1986

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1987-01-01

    This paper presents the Objectives, FY 1987 Plans, Approach, and FY 1987 Milestones for the Structures and Dynamics Division's research programs. FY 1986 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  8. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  9. Objectives, accomplishments, and future plans of IGCP project 143, remote sensing and mineral exploration

    USGS Publications Warehouse

    Carter, W.D.; Rowan, L.C.

    1981-01-01

    The International Geological Correlation Programme (IGCP) is a worldwide cooperative research programme that began in 1974 under the auspices of the International Union of Geological Sciences. Because of the global availability of Earth resources data collected by satellites and the great interest among geologists in taking advantage of these new sources of information, a project was begun in 1976 to improve the rate of technology transfer in the field of remote-sensing exploration for energy and mineral resources. Conducting joint workshops in cooperation with COSPAR has been an important part of this project. It is to be hoped the project will improve our capability to explore, identify, and develop new resources to meet the burgeoning demands of society. ?? 1981.

  10. Project ALERT Accomplishments by Objectives. Final Performance Report. Three-Year Results.

    ERIC Educational Resources Information Center

    Wayne State Univ., Detroit, MI. Coll. of Education.

    Project ALERT (Adult Literacy Enhanced & Redefined through Training) was a 3-year effort to develop and deploy a number of innovative approaches to delivering workplace literacy programs to business partners, including manufacturers and unions. The project designed, developed, and implemented workplace literacy programs tailored to the…

  11. The Lunar Prospector Discovery mission: Mission and measurement description

    SciTech Connect

    Hubbard, G.S.; Binder, A.B.; Feldman, W.

    1998-06-01

    Lunar Prospector, the first competitively selected planetary mission in NASA`s Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon`s composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon`s gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  12. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward

    2011-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  13. STS-103 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Designed by the crew members, the STS-103 emblem depicts the Space Shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission was to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that had been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the Telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability was one of the primary objectives of the mission. After the flight, the Telescope resumed its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the Sun, providing a striking contrast with the blackness of space and the night side of Earth.

  14. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  15. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    yet been developed. Looking ahead, it is recognized that these planetary protection policies will apply to both governmental and non-governmental entities for the more than 100 countries that are signatories to the Outer SpaceTreaty. Fortunately, planetary protection controls for human missions are supportive of many other important mission needs, such as maximizing closed-loop and recycling capabilities to minimize mass required, minimizing exposure of humans to planetary materials for multiple health reasons, and minimizing contamination of planetary samples and environments during exploration and science activities. Currently, there is progress on a number of fronts in translating the basic COSPAR PP Principles and Implementation Guidelines into information that links with early engineering and process considerations. For example, an IAA Study Group on Planetary Protection and Human Missions is engaging robotic and human mission developers and scientists in exploring detailed technical, engineering and operational approaches by which planetary protection objectives can be accomplished for human missions in synergism with robotic exploration and in view of other constraints. This on-going study aims to highlight important information for the early stages of planning, and identify key research and technology development (R&TD) areas for further consideration and work. Such R&TD challenges provide opportunities for individuals, institutions and agencies of emerging countries to be involved in international exploration efforts. In January 2014, the study group presented an Interim Report to the IAA Heads of Agencies Summit in Washington DC. Subsequently, the group has continued to work on expanding the initial technical recommendations and findings, focusing especially on information useful to mission architects and designers as they integrate PP considerations in their varied plans-- scientific, commercial and otherwise. Already the findings and recommendations

  16. The Final Skylab Mission: Man at Home and at Work in Space

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of the Skylab 4 mission are discussed. The medical experiments and dietary aspects of the mission are reported. The observation of the Comet Kohoutek is described. The remote sensing of earth resources is examined to show the areas of coverage. The repair of the space station and the accomplishment of unscheduled requirements are discussed. Statistical data of all the Skylab missions are tabulated.

  17. The Prospector mission

    SciTech Connect

    Edwards, B. ); Pieters, C. ); Ulmer, M. . Dept. of Physics and Astronomy); Henrikson, C. )

    1992-09-07

    The Prospector mission combines high resolution visual/near-infrared(IR) imaging spectroscopy with moderately high resolution K- and L-line X-ray fluorescence mapping. These combined capabilities can be used to map the composition of virtually all solar-system objects, ranging from those that lack atmospheres (Mercury, the Earth's Moon, asteroids, and Martian satellites) to the upper atmosphere of Venus. For the purpose of mission definition and development, we have focused here on a mapping, mission to the moons of Mars-specifically Phobos, which is an easily accessible small body of the Solar System and has long been an object of intense speculation. Phobos is variously interpreted as a captured asteroid, a captured but disrupted basaltic achondrite body with anomalously low density, a comet nucleus, a body of reassembled Mars material ejected into orbit during a large impact event, a body of unknown origin but covered by an accumulation of cosmic dust and/or material ejected from Deimos, or none of the above. Multispectral observations of Phobos by instruments on the Phobos 2 spacecraft indicate that the surface of the moon is spectrally heterogeneous, with at least four units based on extended visible color. Distribution of color ratio units are most likely caused by compositional heterogeneity and surficial processes. The composition and structure of Phobos remains a stimulating scientific question, but Phobos is much more than a cipher among planetary phenomena. The low [Delta]V requirements for missions to Phobos make it readily accessible-much more so than the Martian surface. The low orbital height of Phobos make it an attractive platform for staging Mars observation and exploration. Furthermore, the possible chondritic nature of Phobos may provide a valuable reservoir of extractable H, C, N, 0, and S.

  18. The Prospector mission

    SciTech Connect

    Edwards, B.; Pieters, C.; Ulmer, M.; Henrikson, C.

    1992-09-07

    The Prospector mission combines high resolution visual/near-infrared(IR) imaging spectroscopy with moderately high resolution K- and L-line X-ray fluorescence mapping. These combined capabilities can be used to map the composition of virtually all solar-system objects, ranging from those that lack atmospheres (Mercury, the Earth`s Moon, asteroids, and Martian satellites) to the upper atmosphere of Venus. For the purpose of mission definition and development, we have focused here on a mapping, mission to the moons of Mars-specifically Phobos, which is an easily accessible small body of the Solar System and has long been an object of intense speculation. Phobos is variously interpreted as a captured asteroid, a captured but disrupted basaltic achondrite body with anomalously low density, a comet nucleus, a body of reassembled Mars material ejected into orbit during a large impact event, a body of unknown origin but covered by an accumulation of cosmic dust and/or material ejected from Deimos, or none of the above. Multispectral observations of Phobos by instruments on the Phobos 2 spacecraft indicate that the surface of the moon is spectrally heterogeneous, with at least four units based on extended visible color. Distribution of color ratio units are most likely caused by compositional heterogeneity and surficial processes. The composition and structure of Phobos remains a stimulating scientific question, but Phobos is much more than a cipher among planetary phenomena. The low {Delta}V requirements for missions to Phobos make it readily accessible-much more so than the Martian surface. The low orbital height of Phobos make it an attractive platform for staging Mars observation and exploration. Furthermore, the possible chondritic nature of Phobos may provide a valuable reservoir of extractable H, C, N, 0, and S.

  19. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.

  20. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. PMID:16010756

  1. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.

    2012-04-01

    . Each of the three mission options would address this goal in different and complementary ways, and each has high science value of its own, independent of the others. Each mission concept traces geophysical, compositional, and/or geological investigations that are best addressed by that specific platform. Investigations best addressed through near-continuous global data sets that are obtained under relatively uniform conditions could be undertaken by the orbiter; investigations that are more focused on characterization of local regions could be accomplished by a spacecraft making multiple flybys from Jupiter orbit; and measurements that are most effective from the surface could be addressed by a lander. Although there is overlap in the science objectives of these three mission concepts, each stands alone as a viable Europa mission concept.

  2. Space Mission Operations Ground Systems Integration Customer Service

    NASA Technical Reports Server (NTRS)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  3. Vehicle management and mission planning in support of shuttle operations.

    NASA Technical Reports Server (NTRS)

    Pruett, W. R.; Bell, J. A.

    1973-01-01

    An operational approach to shuttle mission planning during high flight frequency years (20 or more flights per year) is described wherein diverse mission planning functions interface via an interactive computer system and common data base. The Vehicle Management and Mission Planning System (VMMPS) is proposed as a means of helping to accomplish the mission planning function. The VMMPS will link together into an interactive system the major mission planning areas such as trajectory, crew, vehicle performance, and launch operations. A common data base will be an integral part of the system and the concept of standard mission types and phases will be used to minimize mission to mission uniqueness. The use of this system will eliminate much redundancy and replanning, shorten interface times between functions, and provide a means to evaluate unplanned events and modify schedules.

  4. Mission-Based Reporting in Academic Psychiatry

    ERIC Educational Resources Information Center

    Anders, Thomas F.; Hales, Robert E.; Shahrokh, Narriman C.; Howell, Lydia P.

    2004-01-01

    Objective: This article describes a data entry and analysis system called Mission-Based Reporting (MBR) that is used to measure faculty and department activities related to specific academic missions and objectives. The purpose of MBR is to provide a reporting tool useful in evaluating faculty effort and in helping chairs 1) to better assess their…

  5. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  6. Analytical study of electrical disconnect system for use on manned and unmanned missions

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Lenda, J. A.; Trummer, R. O.

    1976-01-01

    The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs.

  7. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  8. Enhanced surveillance program FY97 accomplishments. Progress report

    SciTech Connect

    Mauzy, A.; Laake, B.

    1997-10-01

    This annual report is one volume of the Enhanced Surveillance Program (ESP) FY97 Accomplishments. The complete accomplishments report consists of 11 volumes. Volume 1 includes an ESP overview and a summary of selected unclassified FY97 program highlights. Volume 1 specifically targets a general audience, reflecting about half of the tasks conducted in FY97 and emphasizing key program accomplishments and contributions. The remaining volumes of the accomplishments report are classified, organized by program focus area, and present in technical detail the progress achieved in each of the 104 FY97 program tasks. Focus areas are as follows: pits; high explosives; organics; dynamics; diagnostics; systems; secondaries; nonnuclear materials; nonnuclear components; and Surveillance Test Program upgrades.

  9. The extreme ultraviolet explorer mission

    NASA Astrophysics Data System (ADS)

    Bowyer, S.; Malina, R. F.

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled for launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation. The survey will be accomplished with the use of three EUV telescopes, each sensitive to a different segment of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey will be carried out in the first six months of the mission and will be made in four bands, or colors, λλ70-180 Å, 170-250 Å, 400-600 Å, and 500-700 Å. The second phase of the mission, conducted entirely by Guest Observers selected by NASA, will be devoted to spectroscopic observations of EUV sources. The performance of the instrument components is described. The mirrors meet the requirements of the mission, with the best mirror having a full width half energy spread of 4'' and a surface finish of 20 Å. Prototype thin film bandpass filters have been flown on the Space Shuttle and their performance optimized. Prototype detectors have been developed which have 1680 × 1680 pixel imaging capability (RMS) and up to 80% quantum efficiency. A newly invented, high efficiency grazing incidence spectrometer using variable line-space gratings will provide spectral data with ~1 Å resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, has been constructed. Hypothetical data from astronomical sources have been processed through this model and are shown.

  10. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  11. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  12. Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2010-01-01

    The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. The concept of lunar ISRU has been considered and studied for decades, and scientists and engineers were theorizing and even testing concepts for how to extract oxygen from lunar soil even before the Apollo 11 mission to the Moon. There are four main areas where ISRU can significantly impact how human missions to the Moon will be performed: mission consumable production, civil engineering and construction, energy production, storage, and transfer, and manufacturing and repair. The area that has the greatest impact on mission mass, hardware design and selection, and mission architecture is mission consumable production, in particular, the ability to make propellants, life support consumables, and fuel cell reagents. Mission consumable production allows for refueling and reuse of spacecraft, increasing power production and storage, and increased capabilities and failure tolerance for crew life support. The other three areas allow for decreased mission risk due to radiation and plume damage, alternative power systems, and failure recover capabilities while also enabling infrastructure growth over Earth delivered assets. However, while lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission

  13. Science Planning for the TROPIX Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.

  14. The International Lunar Network (ILN) Anchor Nodes Mission Update

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; McDougal, J. M.; Harris, D. W.; Hill, L.; Hammond, M. S.; Morse, B. J.; Reed, C. L. B.; Kirby, K. W.; Morgan, T. H.

    2009-01-01

    NASA s Science Mission Directorate (SMD) established the Lunar Quest Program (LQP) to accomplish lunar science objectives embodied in the National Academies report The Scientific Context for Exploration of the Moon (2007) and the NASA Advisory Council-sponsored Workshop on Science Associated with the Lunar Exploration Architecture (2007). A major element of LQP's lunar flight projects is the International Lunar Network (ILN), a network of small geophysical nodes on the lunar surface. NASA plans to provide the first two stations around 2014 and a second pair in the 2016-2017 timeframe. International involvement to provide additional stations will build up the network so that 8-10 nodes could be simultaneously operating. This flight project complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the moon.

  15. STS-99 / Endeavour Mission Overview

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  16. NEO Sample Return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Neo-Sr Team

    The NEOs are representative of the population of asteroids and dead comets thought to be the remnants of the ancient planetesimals that accreted to form the planets. The chemical investigation of NEOs having primitive characteristics is thus essential in the understanding the planet formation and evolution. They carry records of the solar system's birth/early phases and the geological evolution of small bodies in the interplanetary regions. Moreover, collisions of NEOs with Earth represent a serious hazard to life. For all these reasons the exploration and characterization of these objects are particularly interesting and urgent. NEOs are interesting and highly accessible targets for scientific research and robotic exploration. Within this framework, the mission LEONARD including an orbiter and a lander to the primitive double object (1996 FG3) has been studied by CNES, in collaboration with a number of European planetologists (France, Italy, Germany and United Kingdom) and related Space Agencies. A new Sample Return mission is under study within a large European community and possible collaboration with the Japanese Space Agency JAXA to reply to the ESA Cosmic Vision AO. The principal objectives are to investigate on 1) the properties of the building blocks of the terrestrial planets; 2) the major events (e.g. agglomeration, heating, ... . . ) which ruled the history of planetesimals; 3) the primitive asteroids which could contain presolar material unknown in meteoritic samples; 4) the organics in primitive materials; 5) the initial conditions and evolution history of the solar nebula; and 6) how they can shed light on the origin of molecules necessary for life. This type of mission appears clearly to have the potential to revolutionize our understanding of primitive materials.

  17. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2007-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.

  18. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  19. Progress on the Cluster Mission

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret; Khurana, Krishan; Acuna, Mario (Technical Monitor)

    2002-01-01

    Prof M. G. Kivelson and Dr. K. K. Khurana (UCLA (University of California, Los Angeles)) are co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA will also participate in the analysis and interpretation of the data. The UCLA group here reports its excellent progress in developing fully intra-calibrated data for large portions of the mission and an excellent start in developing inter-calibrated data for selected time intervals, especially extended intervals in August, 2001 on which a workshop held at ESTEC in March, 2002 focused. In addition, some scientific investigations were initiated and results were reported at meetings.

  20. Fusion energy for space missions in the 21st Century

    SciTech Connect

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

  1. Fusion energy for space missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1991-01-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

  2. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  3. A study of system requirements for Phobos/Deimos missions. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical feasibility of accomplishing a variety of cost-effective missions to the satellites of Mars were investigated. Three mission options were studied: a basic satellite rendezvous and landing mission, a satellite sample return mission, and a combination Mars landing and Phobos/Deimos exploration mission. Nominal science payloads and supporting subsystems were defined for each mission design. Configuration layouts, program schedules, and cost estimates were also developed for each option. Environmental criteria unique to the mission were developed. Supporting studies, research, and technology requirements were identified.

  4. How mission requirements affect observations: case of the PICARD mission

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Hauchecorne, A.; Damé, L.; Djafer, D.

    2016-07-01

    The scientific objectives of a space mission result into instrumental developments and specific satellite operations to observe astronomical objects of interest. The payload in its space environment is however subject to important thermal variations that affect observations. This is well observed when images of the Sun are recorded with the constraint of keeping the solar rotational axis in a constant direction relatively to the camera reference frame. Consequences are clearly observed on image positions that follow the thermal variations induced by the satellite orbit. This is, in particular, the case for the space mission PICARD. This phenomenon is similar to defocus and motions of images recorded with ground-based telescopes. We first present some simulations showing these effects. We then compare our results with real data obtained from the space mission PICARD.

  5. Exploration mission enhancements possible with power beaming

    SciTech Connect

    Bamberger, J.A.; Coomes, E.P. ); Segna, D.R. )

    1991-01-01

    A key factor in the exploration and development of the space frontier is the availability of energy where and when it is needed. Currently all space satellites and platforms include self-contained power systems that supply the energy necessary to accomplish mission objectives. An alternative approach is to couple advanced high power systems with energy beam transmitters and energy receivers to form an infrastructure of a space power utility where a central power system provides power to multiple users. Major space activities, such as low Earth orbit space commercialization and the colonization of the Moon or Mars, would benefit significantly from a central power generation and transmission system. This paper describes the power-beaming concept and system components as applied to space power generation and distribution in support of the Space Exploration Initiative. Beam-power scenarios are discussed including commonality of systems and hardware with cargo transport vehicles, power beaming from orbit to stationary and mobile users on the Lunar and Mars surfaces, and other surface applications.

  6. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  7. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  8. Application of State Analysis and Goal-Based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, J. Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the behavior of states and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  9. Techniques for Assuring NASA Mission Success Using Redundancy and Multi-Functionality Designs

    NASA Technical Reports Server (NTRS)

    Shivers, Herb

    2010-01-01

    Topics include NASA centers around the country; 2009 highlights of significant successes in space transportation, exploration, and science; significant accomplishments; places to explore include Lagrange points, near-Earth objects, Mars and the Moon, and International Space Station research; Marshall's missions include propulsion and transportation systems, life support systems, and earth and space science spacecraft, systems, and operations; project lifecycle management model; motivation of avionics fault-tolerance, redundancy needs and concerns, redundancy versus reliability; parallel-series configurations; effect of adding redundancy on mission success; example of rules-based approach where reliability and safety interaction impacts design; impact of common cause failure; approach ot bottom-up reliability analysis; three factors that lead to redundant system failure; Apollo 13 multi-functional reliability and example; and mitigating the risk of single string spacecraft architecture;.

  10. Structural dynamics division research and technology accomplishments for fiscal year 1990 and plans for fiscal year 1991

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1991-01-01

    The research accomplishments of the Structural Dynamics Division for F.Y. 1991 are presented. The work is discussed in terms of highlights of accomplishments during the past year and plans for the current year as they relate to 5-year plans and the objectives of each technical area. Included is research on unsteady aerodynamics, helicopter rotors, computational fluid dynamics, oscillations of leading edge flaps of a delta wing, and aircraft wing loads.

  11. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The major activities and accomplishments of this first Spacelab mission using Orbiter vehicle 102. The significant configuration differences incorporated prior to STS-9 include the first use of the 3 substack fuel cells, the use of 5 cryo tanks sets and the addition of a galley and crew sleep stations. These differences combined with the Spacelab payload resulted in the heaviest landing weight yet flown. The problems that occurred are cited and a problem tracking list of all significant anomalies tht occurred during the mission is included. Scientific results of experiments conducted are highlighted.

  12. Mission design of a Pioneer Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.; Nunamaker, R. R.

    1975-01-01

    The Mission analysis and design work performed in order to define a Pioneer mission to orbit Jupiter is described. This work arose from the interaction with a science advisory 'Mission Definition' team and led to the present mission concept. Building on the previous Jupiter Orbiter-Satellite Tour development at JPL a magnetospheric survey mission concept is developed. The geometric control of orbits which then provide extensive local time coverage of the Jovian system is analyzed and merged with the various science and program objectives. The result is a 'flower-orbit' mission design, yielding three large apoapse excursions at various local times and many interior orbits whose shape and orientation is under continual modification. This orbit design, together with a first orbit defined by delivery of an atmospheric probe, yields a mission of high scientific interest.

  13. Plutonium Finishing Plant Transition Project mission analysis report

    SciTech Connect

    Courson, D.B.

    1994-09-21

    This report defines the mission for the Plutonium Finishing Plant Transition Project (PFPTP) using a systems engineering approach. This mission analysis will be the basis for the functional analysis which will further define and break down the mission statement into all of the detailed functions required to accomplish the mission. The functional analysis is then used to develop requirements, allocate those requirements to functions, and eventually be used to design the system. This report: presents the problem which will be addressed, defines PFP Transition Project, defines the overall mission statement, describes the existing, initial conditions, defines the desired, final conditions, identifies the mission boundaries and external interfaces, identifies the resources required to carry out the mission, describes the uncertainties and risks, and discusses the measures which will be used to determine success.

  14. Study of multiple asteroid flyby missions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The feasibility, scientific objectives, mission profile characteristics, and implementation of an asteroid belt exploration mission by a spacecraft guided to intercept three or more asteroids at close range are discussed. A principal consideration in planning a multiasteroid mission is to cut cost by adapting an available and flight-proven spacecraft design such as Pioneer F and G, augmenting its propulsion and guidance capabilities and revising the scientific payload complement in accordance with required mission characteristics. Spacecraft modification necessary to meet the objectives and requirements of the mission were studied. A ground rule of the study was to hold design changes to a minimum and to utilize available technology as much as possible. However, with mission dates not projected before the end of this decade, a reasonable technology growth in payload instrument design and some subsystem components is anticipated that can be incorporated in the spacecraft adaptation.

  15. Mars geoscience/climatology orbiter low cost mission operations

    NASA Technical Reports Server (NTRS)

    Erickson, K. D.

    1984-01-01

    It will not be possible to support the multiple planetary missions of the magnitude and order of previous missions on the basis of foreseeable NASA funding. It is, therefore, necessary to seek innovative means for accomplishing the goals of planetary exploration with modestly allocated resources. In this connection, a Core Program set of planetary exploration missions has been recommended. Attention is given to a Mission Operations design overview which is based on the Mars Geoscience/Climatology Orbiter Phase-A study performed during spring of 1983.

  16. Reducing Mission Costs by Leveraging Previous Investments in Space

    NASA Technical Reports Server (NTRS)

    Miller, Ron; Adams, W. James

    1999-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center has been charged with the responsibility to reduce mission cost by allowing access to previous developments on government and commercial space missions. RSDO accomplishes this responsibility by implementing two revolutionary contract vehicles, the Rapid Spacecraft Acquisition (RSA) and Quick Ride. This paper will describe the concept behind these contracts, the current capabilities available to missions, analysis of pricing trends to date using the RSDO processes, and future plans to increase flexibility and capabilities available to mission planners.

  17. The 1987-1988 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1988-01-01

    Individual technical summaries of research projects of the NASA Space/Gravitational Biology Program, for research conducted during the period January 1987 to April 1988 are presented. This Program is concerned with using the characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  18. The 1985-86 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Individual Technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. This Program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a listing of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  19. The 1986-87 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1987-01-01

    This report consists of individual technical summaries of research projects of NASA's Space/Gravitational Biology program, for research conducted during the period January 1986 to April 1987. This program utilizes the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  20. The 1989-1990 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1991-01-01

    Individual technical summaries of research projects on NASA's Space Biology Program for research conducted during the period May 1989 to April 1990 are presented. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance the following: (1) knowledge in the biological sciences; (2) understanding of how gravity has shaped and affected life on the Earth; and (3) understanding of how the space environment affects both plants and animals. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  1. The 1988-1989 NASA Space/Gravitational Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1990-01-01

    This report consists of individual technical summaries of research projects of NASA's space/gravitational biology program, for research conducted during the period May 1988 to April 1989. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  2. A Look Inside the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Grammier, Richard S.

    2008-01-01

    Juno, the second mission within the New Frontiers Program, is a Jupiter polar orbiter mission designed to return high-priority science data that spans across multiple divisions within NASA's Science Mission Directorate. Juno's science objectives, coupled with the natural constraints of a cost-capped, PI-led mission and the harsh environment of Jupiter, have led to a very unique mission and spacecraft design.

  3. Introductory remarks to the mission and system aspects session

    NASA Astrophysics Data System (ADS)

    Bonnefoy, Rene; Schuyer, M.

    1991-12-01

    A brief history of the measurement of Earth potential fields is presented. The scientific objectives of the Aristoteles mission are summarized. Cooperation between NASA and ESA in developing the Aristoteles mission constraints are presented in tabular form. Correspondence between major mission and technical constraints is discussed. Program status of the Aristoteles mission and the mission baseline are described. The planned configuration of the Aristoteles satellite is shown in diagrammatic form.

  4. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  5. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  6. Missions and Moral Judgement.

    ERIC Educational Resources Information Center

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  7. Working Together: California Indians and the Forest Service. Accomplishment Report.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Berkeley, CA. Pacific Southwest Forest and Range Experiment Station.

    This report describes accomplishments of the Forest Services's Tribal Relations Program in California, highlighting coordinated efforts with tribal governments and Native American communities throughout California's national forests. The regional office provided intensive training on federal-tribal relations to key staff throughout the region, and…

  8. Final report on technical work accomplished under contract NASw-2953

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.

    1977-01-01

    A report is given on the technical work accomplished in the area of plasma physics. The subjects covered are: (1) oblique whistler instabilities, (2) current-limited electron beam injection, (3) three-dimensional ion sound turbulence, (4) theoretical aspects of sounder antenna operation and (5) whistler modes in bow shock structures.

  9. Women in History--Abigail Adams: Life, Accomplishments, and Ideas

    ERIC Educational Resources Information Center

    Kenan, Sharon K.

    2008-01-01

    This article profiles the life, accomplishments, and ideas of Abigail Adams. Born in 1944, Adams lacked a formal education, but she more than made up for that shortcoming with her love of reading, especially literature, and her interests in politics and events surrounding the young colonies. Adams was supportive of the advancement of women. She…

  10. 2014 Survey of States: Initiatives, Trends, and Accomplishments

    ERIC Educational Resources Information Center

    Shyyan, Vitaliy; Lazarus, Sheryl S.; Thurlow, Martha L.

    2015-01-01

    This report summarizes the fourteenth survey of states by the National Center on Educational Outcomes (NCEO) at the University of Minnesota. Results are presented for the 50 regular states and eight of the 11 unique states. The purpose of this report is to provide a snapshot of the new initiatives, trends, accomplishments, and emerging issues…

  11. 38 CFR 39.120 - Documentation of grant accomplishments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Documentation of grant accomplishments. 39.120 Section 39.120 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) AID FOR THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF...

  12. 38 CFR 39.120 - Documentation of grant accomplishments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Documentation of grant accomplishments. 39.120 Section 39.120 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) AID FOR THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF...

  13. 38 CFR 39.120 - Documentation of grant accomplishments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Documentation of grant accomplishments. 39.120 Section 39.120 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) AID TO STATES FOR ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE,...

  14. 38 CFR 39.120 - Documentation of grant accomplishments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Documentation of grant accomplishments. 39.120 Section 39.120 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) AID FOR THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF...

  15. Human Mars Missions: Cost Driven Architecture Assessments

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin

    1998-01-01

    This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.

  16. Rosetta mission operations for landing

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  17. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the

  18. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (<10 m depth) subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes (in particular, the identification of accessible ice deposits and quantification of Martian regolith properties). Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also

  19. The Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  20. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  1. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    yet been developed. Looking ahead, it is recognized that these planetary protection policies will apply to both governmental and non-governmental entities for the more than 100 countries that are signatories to the Outer SpaceTreaty. Fortunately, planetary protection controls for human missions are supportive of many other important mission needs, such as maximizing closed-loop and recycling capabilities to minimize mass required, minimizing exposure of humans to planetary materials for multiple health reasons, and minimizing contamination of planetary samples and environments during exploration and science activities. Currently, there is progress on a number of fronts in translating the basic COSPAR PP Principles and Implementation Guidelines into information that links with early engineering and process considerations. For example, an IAA Study Group on Planetary Protection and Human Missions is engaging robotic and human mission developers and scientists in exploring detailed technical, engineering and operational approaches by which planetary protection objectives can be accomplished for human missions in synergism with robotic exploration and in view of other constraints. This on-going study aims to highlight important information for the early stages of planning, and identify key research and technology development (R&TD) areas for further consideration and work. Such R&TD challenges provide opportunities for individuals, institutions and agencies of emerging countries to be involved in international exploration efforts. In January 2014, the study group presented an Interim Report to the IAA Heads of Agencies Summit in Washington DC. Subsequently, the group has continued to work on expanding the initial technical recommendations and findings, focusing especially on information useful to mission architects and designers as they integrate PP considerations in their varied plans-- scientific, commercial and otherwise. Already the findings and recommendations

  2. Technology for Future Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Lawson, Peter; Devirian, Michael; van Zyl, Jakob

    2011-01-01

    A central theme in NASA's and ESA's vision for future missions is the search for habitable worlds and life beyond our Solar System. This presentation will review the current state of the art in planet-finding technology, with an emphasis on methods of starlight suppression. At optical wavelengths, Earth-like planets are about 10 billion times fainter than their host stars. Starlight suppression is therefore necessary to enable measurements of biosignatures in the atmospheres of faint Earth-like planets. Mission concepts based on coronagraph, starshade, and interferometers will be described along with their science objectives and technology requirements.

  3. Mission Design Overview for the Phoenix Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Mark D.; Fujii, Kenneth K.

    2007-01-01

    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  4. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  5. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  6. The Euclid mission design

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe D.; Laureijs, René; Stagnaro, Luca; Salvignol, Jean-Christophe; Lorenzo Alvarez, José; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis; Short, Alex; Strada, Paolo; Bönke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jérôme; Berthé, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha

    2016-07-01

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.

  7. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  8. The OHMIC Mission

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Burch, J. L.; Lotko, W.; Frey, H. U.; Chaston, C. C.

    2013-12-01

    The Observatory for Heteroscale Magnetosphere-Ionosphere Coupling (OHMIC) investigates the coupling of Earth's magnetosphere and ionosphere (MI) focusing on the conversion of electromagnetic energy into particle energy in auroral acceleration regions. Energy conversion and acceleration are universal processes that are a critical part of MI coupling and govern the energy deposition into Earth's upper atmosphere. These same processes are known to occur in planetary magnetospheres and in the magnetized plasmas of stars. Energy conversion and acceleration in the auroral regions are known to occur on small spatial scales through dispersive Alfvén waves and nonlinear plasma structures such as double layers. OHMIC advances our understanding of MI coupling over previous missions using two spacecraft equipped with high-time resolution measurements of electron distributions, ion distributions, and vector electric and magnetic fields. One of the spacecraft will carry two high-time and high-spatial resolution imagers and a wide-angle imager in the far ultraviolet. The mission has two phases. The first phase investigates meridional phenomena by using the combination of two-point measurements and high-resolution to distinguishing spatial and temporal phenomena. The second phase investigates field-aligned phenomena with spacecraft separations between 10 and 1100 km. Primary science objectives include (1) determining how energy conversion and transport vary along the magnetic field, (2) determining how ionospheric outflow is mediated by ion heating, convection and field-aligned transport, and (3) determining how charged-particle acceleration and injection vary in time and space.

  9. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  10. Mission design options for human Mars missions

    NASA Astrophysics Data System (ADS)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  11. The 1992-1993 NASA Space Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1994-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  12. The 1990-1991 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1993-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  13. The CHEOPS Mission

    NASA Astrophysics Data System (ADS)

    Broeg, Christopher; benz, willy; fortier, andrea; Ehrenreich, David; beck, Thomas; cessa, Virginie; Alibert, Yann; Heng, Kevin

    2015-12-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry. It is expected to be launch-ready at the end of 2017.CHEOPS will be the first space observatory dedicated to search for transits on bright stars already known to host planets. It will have access to more than 70% of the sky. This will provide the unique capability of determining accurate radii for planets for which the mass has already been estimated from ground-based radial velocity surveys and for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The measurement of the radius of a planet from its transit combined with the determination of its mass through radial velocity techniques gives the bulk density of the planet, which provides direct insights into the structure and/or composition of the body. In order to meet the scientific objectives, a number of requirements have been derived that drive the design of CHEOPS. For the detection of Earth and super-Earth planets orbiting G5 dwarf stars with V-band magnitudes in the range 6 ≤ V ≤ 9 mag, a photometric precision of 20 ppm in 6 hours of integration time must be reached. This time corresponds to the transit duration of a planet with a revolution period of 50 days. In the case of Neptune-size planets orbiting K-type dwarf with magnitudes as faint as V=12 mag, a photometric precision of 85 ppm in 3 hours of integration time must be reached. To achieve this performance, the CHEOPS mission payload consists of only one instrument, a space telescope of 30 cm clear aperture, which has a single CCD focal plane detector. CHEOPS will be inserted in a low Earth orbit and the total duration of the CHEOPS mission is 3.5 years (goal: 5 years).The presentation will describe the current payload and mission design of CHEOPS, give the development status, and show the expected performances.

  14. Chemical Research Projects Office: Functions, accomplishments, and programs

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1972-01-01

    The purpose, technical accomplishments, and related activities of the Chemical Research Project Group are outlined. Data cover efforts made to: (1) identify chemical research and technology required for solutions to problems of national urgency, synchronous with aeronautics and space effort; (2) conduct basic and applied interdisciplinary research on chemical problems in the areas of macromolecular science and fire research, and (3) provide productive liason with the engineering community and effective transfer of technology to other agencies and industry.

  15. The eighth NASA total quality management accomplishments report, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The eighth annual accomplishments report provides numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. NASA's continuous improvement efforts can provide insight for others to succeed in their own endeavors. The report covers: top management leadership and support, strategic planning, focus on the customer, employee training and recognition, employee empowerment and teamwork, measurement and analysis, and quality assurance.

  16. Abstracts and research accomplishments of university coal research projects

    SciTech Connect

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  17. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  18. Psychotherapy reflections: what I seek to accomplish in psychotherapy sessions.

    PubMed

    Tryon, Georgiana Shick

    2013-09-01

    I discuss the three things that I want to accomplish in each psychotherapy session from the theoretical orientation of a cognitive-behavioral psychotherapist. They are to establish collaboration, goal consensus, and engagement with the patient. I indicate my approach to these therapy elements in the beginning, middle, and end of sessions, and provide background information and theory, fabricated case examples, and research results for each element.

  19. Spacelab 3 Mission Science Review

    NASA Technical Reports Server (NTRS)

    Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)

    1987-01-01

    Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.

  20. Deep Space 1 Mission Overview

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.

    1999-09-01

    Deep Space 1 (DS1), launched on October 24, 1998, is the first mission of NASA's New Millennium program. This program is chartered to flight validate high-risk, advanced technologies important for future space and Earth science programs. Twelve advanced technologies were chosen for validation on DS1. These include solar electric propulsion, high-power solar concentrator arrays, autonomous on-board optical navigation, two low-mass science instrument packages, and several telecommunications and microelectronics devices. The encounter of the DS1 spacecraft with the asteroid Braille on July 29,1999 represented the conclusion of the technology validation phase of the mission and the first encounter of the spacecraft with a deep space target. The validation of technologies has been completed. The presentation will describe the mission, science and technology objectives and results to date, and future plans for the project.

  1. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  2. Agile: From Software to Mission System

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves

    2016-01-01

    The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.

  3. Overview of the Cassini Extended Mission Trajectory

    NASA Technical Reports Server (NTRS)

    Buffington, Brent; Strange, Nathan; Smith, John

    2008-01-01

    Due to the highly successful execution of the Cassini-Huygens prime mission and the estimated propellant remaining at the conclusion of the prime mission, NASA Headquarters allocated funding for the development of a 2-year long Cassini extended mission. The resultant extended mission, stemming from 1.5 years of development, includes an additional 26 targeted Titan flybys, 9 close flybys of icy satellites, and 60 orbits about Saturn. This paper describes, in detail, the different phases of the Cassini extended mission and the associated design methodology, which attempted to maximize the number and quality of high-priority scientific objectives while minimizing the total delta v expenditure and adhering to mission-imposed constraints.

  4. Architecting a mission plan for Lunar Observer

    NASA Technical Reports Server (NTRS)

    Ridenoure, Rex W.

    1991-01-01

    The present status of NASA's Lunar Observer study effort at JPL is discussed in the context of an ongoing 20-year series of studies focused on defining a robotic, low-altitude, polar-orbiting mission to the moon. The primary emphasis of the discussion is a review of the various systems-level factors that drive the overall architecture of the mission plan. Selected top-level project and science requirements are summarized and the current mission and science objectives are presented. A brief description of the candidate science instrument complement is included. Several significant orbital effects caused by the lunar gravity field are explained and the variety of trajectory and maneuver options considered for both getting to the moon and orbiting there are described. Several candidate mission architectures are outlined and the mission plans chosen for future study are described. Two mission options result: a single-spacecraft, single-launch scenario, and a multiple-spacecraft, multiple-launch concept.

  5. The first Spacelab mission. [payload management functions

    NASA Technical Reports Server (NTRS)

    Pace, R. E., Jr.

    1976-01-01

    The purpose of Spacelab, an Orbiter-mounted NASA/ESA laboratory, is to include in the Space Transportation System (STS) a payload carrier with maximum flexibility to accommodate multidisciplinary scientific payloads. The major Spacelab configurations obtained by combination of two basic elements, the module and pallet, are described along with the anticipated program of experiments and payloads, and mission management general concept. The first Spacelab 7-day mission is scheduled for flight in the second half of 1980, with the primary objective being to verify system performance capabilities. Detailed attention is given to the payload mission management responsibilities for the first flight, including program control, science management, payload interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload integration, launch site integration, payload flight/mission operations, and postmission activities. The Spacelab configuration (including the long module and one pallet) and the overall schedule for this mission are presented.

  6. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  7. Evolution of a Mars Airplane Concept for the ARES Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Guynn, Mark D.; Smith, Stephen C.; Parks, Robert W.; Gelhausen, Paul A.

    2004-01-01

    ARES (Aerial Regional-scale Environmental Survey of Mars) is a proposed Mars Scout mission using an airplane to provide high-value science measurements in the areas of atmospheric chemistry, surface geology and mineralogy, and crustal magnetism. The use of an airplane for robotic exploration of Mars has been studied for over 25 years. There are, however, significant challenges associated with getting an airplane to Mars and flying through the thin, carbon dioxide Martian atmosphere. The traditional wisdom for aircraft design does not always apply for this type of vehicle and geometric, aerodynamic, and mission constraints result in a limited feasible design space. The ARES airplane design is the result of a concept exploration and evolution involving a number of trade studies, downselects, and design refinements. Industry, university, and NASA partners initially proposed a number of different concepts, drawing heavily on past Mars airplane design experience. Concept downselects were conducted with qualitative evaluation and high level analyses, focused on the most important parameters for the ARES mission. Following a successful high altitude test flight of the basic configuration, additional design refinement led to the current design. The resulting Mars airplane concept enables the high-value science objectives of the ARES mission to be accomplished while also fulfilling the desire for a simple, low-risk design.

  8. Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Perozzi, Ettore; Rossi, Alessandro; Valsecchi, Giovanni B.

    2001-01-01

    Missions to asteroids and comets are becoming increasingly feasible both from a technical and a financial point of view. In particular, those directed towards the Near-Earth Asteroids have proven suitable for a low-cost approach, thus attracting the major space agencies as well as private companies. The choice of a suitable target involves both scientific relevance and mission design considerations, being often a difficult task to accomplish due to the limited energy budget at disposal. The aim of this paper is to provide an approach to basic trajectory design which allows to account for both aspects of the problem, taking into account scientific and technical information. A global characterization of the Near-Earth Asteroids population carried out on the basis of their dynamics, physical properties and flight dynamics considerations, allows to identify a group of candidates which satisfy both, the scientific and engineering requirements. The feasibility of rendezvous and flyby missions towards them is then discussed and the possibility of repeated encounters with the same object is investigated, as an intermediate scenario. Within this framework, the capability of present and near future launch and propulsion systems for interplanetary missions is also addressed.

  9. The geophysical impact of the Aristoteles mission

    NASA Astrophysics Data System (ADS)

    Anderson, Allen Joel; Klingele, E.; Sabadini, R.; Tinti, S.; Zerbini, Suzanna

    1991-12-01

    The importance of a precise, high resolution gradiometric and magnetometric mission in some topics of geophysical interest is stressed. Ways in which the planned Aristoteles mission can allow the geophysical community to improve the knowledge and the physical understanding of several important geodynamical processes involving the coupled system consisting of the lithosphere, asthenosphere and upper mantle are discussed. Particular attention is devoted to the inversion of anomalous density structures in collision and subduction zones by means of the joint use of gradiometric and seismic tomographic data. Some modeling efforts accomplished to study the capability of the mission to invert the rheological parameters of the lithosphere and upper mantle through the gravimetric signals of internal and surface density anomalies are described.

  10. Stennis engineer part of LCROSS moon mission

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  11. When Lightning Strikes Twice: Profoundly Gifted, Profoundly Accomplished.

    PubMed

    Makel, Matthew C; Kell, Harrison J; Lubinski, David; Putallaz, Martha; Benbow, Camilla P

    2016-07-01

    The educational, occupational, and creative accomplishments of the profoundly gifted participants (IQs ⩾ 160) in the Study of Mathematically Precocious Youth (SMPY) are astounding, but are they representative of equally able 12-year-olds? Duke University's Talent Identification Program (TIP) identified 259 young adolescents who were equally gifted. By age 40, their life accomplishments also were extraordinary: Thirty-seven percent had earned doctorates, 7.5% had achieved academic tenure (4.3% at research-intensive universities), and 9% held patents; many were high-level leaders in major organizations. As was the case for the SMPY sample before them, differential ability strengths predicted their contrasting and eventual developmental trajectories-even though essentially all participants possessed both mathematical and verbal reasoning abilities far superior to those of typical Ph.D. recipients. Individuals, even profoundly gifted ones, primarily do what they are best at. Differences in ability patterns, like differences in interests, guide development along different paths, but ability level, coupled with commitment, determines whether and the extent to which noteworthy accomplishments are reached if opportunity presents itself. PMID:27225220

  12. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  13. When Lightning Strikes Twice: Profoundly Gifted, Profoundly Accomplished.

    PubMed

    Makel, Matthew C; Kell, Harrison J; Lubinski, David; Putallaz, Martha; Benbow, Camilla P

    2016-07-01

    The educational, occupational, and creative accomplishments of the profoundly gifted participants (IQs ⩾ 160) in the Study of Mathematically Precocious Youth (SMPY) are astounding, but are they representative of equally able 12-year-olds? Duke University's Talent Identification Program (TIP) identified 259 young adolescents who were equally gifted. By age 40, their life accomplishments also were extraordinary: Thirty-seven percent had earned doctorates, 7.5% had achieved academic tenure (4.3% at research-intensive universities), and 9% held patents; many were high-level leaders in major organizations. As was the case for the SMPY sample before them, differential ability strengths predicted their contrasting and eventual developmental trajectories-even though essentially all participants possessed both mathematical and verbal reasoning abilities far superior to those of typical Ph.D. recipients. Individuals, even profoundly gifted ones, primarily do what they are best at. Differences in ability patterns, like differences in interests, guide development along different paths, but ability level, coupled with commitment, determines whether and the extent to which noteworthy accomplishments are reached if opportunity presents itself.

  14. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  15. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  16. Chandrayaan-1: India's first planetary science mission

    NASA Astrophysics Data System (ADS)

    Nath Goswami, Jitendra

    A new initiative of the Indian Space Research Organization to have dedicated Space Science Missions led to two major missions that are currently in progress: Astrosat and Chandrayaan-1, the latter being the first planetary science mission of the country. The spadework for this mission started about ten years back and culminated in late 2003 with the official endorsement for the mission. This remote sensing mission, to be launched in early next year, is expected to further our understanding of the origin and evolution of the Moon based on a chemical, mineralogical and topographic study of the lunar surface at spatial and spectral resolutions much better than those for previous and other currently planned lunar missions. The Chandrayaan-1 mission is also international in character and will have an array of Indian instruments as well as several instruments from abroad some of which will have very strong Indian collaboration. This talk will provide a brief overview of our present understanding of the Moon, the science objectives of the Chandrayaan-1 mission and how we hope to achieve these from the data to be obtained by the various instruments on board the mission. A possible road map for Indian planetary exploration programme in the context of the International scenario will be presented at the end.

  17. STS-73 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The crew patch of STS-73, the second flight of the United States Microgravity Laboratory (USML-2), depicts the Space Shuttle Columbia in the vastness of space. In the foreground are the classic regular polyhedrons that were investigated by Plato and later Euclid. The Pythagoreans were also fascinated by the symmetrical three-dimensional objects whose sides are the same regular polygon. The tetrahedron, the cube, the octahedron, and the icosahedron were each associated with the Natural Elements of that time: fire (on this mission represented as combustion science); Earth (crystallography), air and water (fluid physics). An additional icon shown as the infinity symbol was added to further convey the discipline of fluid mechanics. The shape of the emblem represents a fifth polyhedron, a dodecahedron, which the Pythagoreans thought corresponded to a fifth element that represented the cosmos.

  18. Objectives and Outcomes

    SciTech Connect

    Segalman, D.J.

    1998-11-30

    I have recently become involved in the ABET certification process under the new system - ABET 2000. This system relies heavily on concepts of Total Quality Management (TQM). It encourages each institution to define its objectives in terms of its own mission and then create a coherent program based on it. The prescribed steps in setting up the new system at an engineering institution are: o identification of constituencies G definition of mission. It is expected that the department's mission will be consistent with that of the overall institution, but containing some higher resolution language appropriate to that particular discipline of the engineering profession. o statement of objectives consistent with the mission 3G~~\\vED " enumeration of desired, and preferably measurable, outcomes of the process that would ~ `=. verify satisfaction of the objectives. ~~~ 07 !398 o establish performance standards for each outcome. o creation of appropriate feedback loops to assure that the objectives are still consistent with Q$YT1 the mission, that the outcomes remain consistent with the objectives, and that the curriculum and the teaching result in those outcomes. It is my assertion that once the institution verbalizes a mission, enumerated objectives naturally flow from that mission. (We shall try to demonstrate by example.) Further, if the mission uses the word "engineer", one would expect that word also to appear in at least one of the objectives. The objective of producing engineers of any sort must -by decree - involve the presence of the ABET criteria in the outcomes list. In other words, successful satisfaction of the ABET items a-k are a necessary subset of the measure of success in producing engineers. o We shall produce bachelor level engineers whose training in the core topics of chemical (or electrical, or mechanical) engineering is recognized to be among the best in the nation. o We shall provide an opportunity for our students to gain a

  19. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  20. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

    2011-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

  1. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  2. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  3. Use of Nuclear Electric Power and Propulsion for a Neptune Mission

    NASA Astrophysics Data System (ADS)

    Bienstock, B.; Atkinson, D.; Baines, K.; Mahaffy, P.; Atreya, S.; Stern, A.; Steffes, P.; Wright, M.

    2005-12-01

    Over one year ago, our response to a NASA Research Announcement (NRA) for Space Science Vision Missions resulted in the award of a NASA Vision Mission contract to study a Neptune Orbiter with Probes mission using nuclear electric propulsion (NEP). Our national team of engineers and scientists from aerospace, academia, NASA centers and the Southwest Research Institute has developed a mission concept that satisfies the goals of our scientists. Our poster describes the science and highlights the numerous engineering challenges that must be resolved in order to accomplish our ambitious mission. The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, primarily comprising hydrogen and helium; and the ice giants Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, by extension, extrasolar systems. Recognizing the tremendous spacecraft resources made available by nuclear electric power, our science team specified that Neptune's fascinating moon, Triton, be included as another target for in situ science. Although our overall plan is a Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to a depth of 100 bars, the science goals and objectives pertain to any detailed study of the Neptune system. For our mission, power and propulsion would be provided using nuclear electric technologies. Such a grand mission requires that a number of technical issues be investigated and resolved, including: (1) developing a realizable mission design that allows proper targeting and timing of the entry probes while

  4. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  5. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  6. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  7. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  8. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  9. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  10. Significant effects due to rephrasing the Maslach Burnout Inventory's personal accomplishment items.

    PubMed

    Bouman, Anne Marthe; Te Brake, Hans; Hoogstraten, Johan

    2002-12-01

    Subjects, 292 Dutch psychology students answering negatively phrased Personal Accomplishment items, reported a more personally competent feeling than subjects answering positively phrased personal accomplishment items. The way of phrasing personal accomplishment items significantly affects the answers given.

  11. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  12. 29 CFR 1960.87 - Objectives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Objectives. 1960.87 Section 1960.87 Labor Regulations... Field Federal Safety and Health Councils § 1960.87 Objectives. The basic objective of field councils is... expertise to aid agencies with inadequate or limited resources. These objectives can be accomplished in...

  13. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  14. Space robotics: Recent accomplishments and opportunities for future research

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Buttrill, Carey S.; Dorsey, John T.; Juang, Jer-Nan; Lallman, Frederick J.; Moerder, Daniel D.; Scott, Michael A.; Troutman, Patrick; Williams, Robert L., II

    1992-01-01

    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.)

  15. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  16. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    SciTech Connect

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  17. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    SciTech Connect

    Not Available

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the ''Seed Money'' program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  18. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    DOE R&D Accomplishments Database

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  19. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Mission

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Vondrak, Richard; Chin, Gordon; Petro, Noah; Gavin, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, this phase of the mission began on September 15, 2009, completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission is scheduled for 2 years and will be completed in 2012 with an opportunity for an extended mission beyond 2012. Under SMD, the mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having marked the two year anniversary will review here the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including a proposed 2-year extended mission. These objectives include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.

  20. An Empirical Model for Formulating Operational Missions for Community Colleges.

    ERIC Educational Resources Information Center

    Richardson, Richard C., Jr.; Doucette, Donald S.

    A research project was conducted to develop and implement a model for community college missions. The new model would depart from existing models, which utilize a hierarchy of decreasing levels of generality beginning with institutional missions and culminating in objectives. In contrast, this research defined institutional mission in terms of…

  1. Deep space 1 mission and observation of comet Borrellly

    USGS Publications Warehouse

    Lee, M.; Weidner, R.J.; Soderblom, L.A.

    2002-01-01

    The NASA's new millennium program (NMP) focuses on testing high-risk, advanced technologies in space with low-cost flights. The objective of the NMP technology validation missions is to enable future science missions. The NMP missions are technology-driven, with the principal requirements coming from the needs of the advanced technologies that form the 'payload'.

  2. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  3. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  4. Simulation of Mission Phases

    NASA Technical Reports Server (NTRS)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  5. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    well as using analogue missions to meet agency programmatic needs, the Canadian Space Agency encourages scientists and engineers to make use of opportunities presented by analogue missions to further their own research objectives. Specific objectives of Analogue Missions are to (1) foster a multidisciplinary approach to planning, data acquisition, processing and interpretation, calibration of instruments, and telemetry during mission operations; (2) integrate new science with emerging technologies; and (3) develop an expertise on exploration architecture design from projects carried out at terrestrial analogue sites. Within Analogue Missions, teams develop planning tools, use mission-specific software and technology, and communicate results as well as lessons learned during tactical operations. The expertise gained through Analogue Missions will contribute to inform on all aspects of exploration architectures, including planetary mobility requirements and astronaut training.

  6. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    SciTech Connect

    Todd, Terry Allen; Braase, Lori Ann

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  7. Accomplishing Transformative Research in a Challenging Fiscal Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, E. J.; Paxton, L. J.; Bust, G.

    2014-12-01

    The shift in funding is forcing scientists to promise transformative research for a pittance. To accomplish this, researchers need to transform their methodology to include societal buy-in, use of commercial off-the-shelf (COTS) technology, and cross-discipline platform usage. As the cutting edge of research expands to view the system on the global scale with extremely fine resolution, fiscally reasonable budgets present a challenge to be met. Consider how do we measure a specific variable over 45-degrees of latitude in an isolated and hostile region of Earth - the total electron count over the South Pole? This work examines this transformative research using hosted payloads on buoys, balloons, and unmanned aerial vehicles (UAVs). We will show cutting edge research occurring simultaneous with education and public outreach, offering societal buy-in through interactive websites and student-built hosted payloads. These interactions provide a vision to the public and a new database to the scientists. The use of COTS technology and cross-discipline (oceanography and space) platforms keep the cost low. We will discuss a general methodology for accomplishing transformative research in a challenging fiscal environment through integration of COTS technology, assimilative and first principle models, and observing systems simulation experiments (OSSEs).

  8. TERRA FIRMA. Threshold of Educational Reform Restructuring Agriculture for Inner City Related Motivation and Accomplishments. Final Report.

    ERIC Educational Resources Information Center

    Fulmer, John L.

    The report describes the first year (1974-75) activities and accomplishments of a project to provide a cooperative-based vocational agriculture program for secondary students in Anniston, Alabama. The overall objectives were to provide instruction in livestock production and horticulture, leadership training, participatory experience on a real…

  9. Low Cost Mission to Deimos

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik; Püsler, H.; Braukhane, A.; Gülzow, P.; Bauer, W.; Vollhardt, A.; Romberg, O.; Scheibe, K.; Hoffmann, H.; Bürner, A.

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully de-signed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind. In co-operation with the DLR-Institute of Space Systems in Bremen, Germany, two studies on systems level for a first P5 satellite towards Moon and a following one towards Mars have been performed. By using the DLR's Concurrent Engineering Facility (CEF) two consistent satellite concepts were designed including mission analysis, configuration, propulsion, subsystem dimensioning, payload selection, budgeting and cost. The present paper gives an insight in the accomplished design process and the results of the performed study towards Mars. The developed Mars orbiter is designed to carry the following four main instruments besides flexible communication abilities: • multispectral line scanner for Martian cloud investigations and Deimos (and Phobos) stereo pictures during close flybys • Deimos framing camera for high resolution pictures of Deimos (and Phobos) including video mode • sensor imaging infrared spectrometer for mineralogy of Martian (also Deimos and Phobos) silicates and surface temperature measurements • radio science for research of Deimos ( Phobos) gravity, profiling of Mars ionosphere, occurrence of third meteoritic ionosphere layer; sounding of neutral atmosphere; solar corona activity This study presents a non-industrial satellite concept that could be launched as piggyback load on Ariane 5 into GTO. It promises a low cost mission into a Mars orbit that allows close approaches to Deimos and Phobos.

  10. Developing Model Mission Statements for Urban-Located Departments.

    ERIC Educational Resources Information Center

    MacDonald, Donald; Doolittle, Robert J.

    At the 1972 annual meeting of the Speech Communication Association, a group of communication students and scholars met to discuss what their departments are designed to accomplish. The purpose of this Action Caucus was to develop a model mission statement for communication departments located in urban settings. Three conclusions are warranted from…

  11. STS-34: Mission Overview Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows Milt Heflin, the Lead Flight Director participating in the STS-34 Mission Briefing. He addresses the primary objective, and answered questions from the audience and other NASA Centers. Heflin also mentions the Shuttle Solar Backscatter Ultraviolet secondary payload, and several experiments. These experiments include Growth Hormone Crystal Distribution (Plants), Polymer Morphology, Sensor Technology Experiment, Mesoscale Lightning Experiment, Shuttle Student Involvement Program "Ice Crystals", and the Air Force Maui Optical Site.

  12. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency

  13. Phobos Sample Return mission

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  14. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  15. The Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Golombek, Matthew P.

    1997-01-01

    Mars Pathfinder, one of the first Discovery-class missions (quick, low-cost projects with focused science objectives), will land a single spacecraft with a microrover and several instruments on the surface of Mars in 1997. Pathfinder will be the first mission to use a rover, carrying a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. In addition to the rover, which also performs a number of technology experiments, Pathfinder carries three science instruments: a stereoscopic imager with spectral filters on an extendable mast, an alpha proton X ray spectrometer, and an atmospheric structure instrument/meteorology package. The instruments, the rover technology experiments, and the telemetry system will allow investigations of the surface morphology and geology at submeter to a hundred meters scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations, and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis at 19.5 deg N, 32.8 deg W, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains, and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products, and tile early environments and conditions on Mars.

  16. A magnetic shield/dual purpose mission

    NASA Technical Reports Server (NTRS)

    Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick

    1994-01-01

    The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.

  17. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  18. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2012-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given.

  19. The Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  20. Mars Sample Return mission: Two alternate scenarios

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.