Analysis of Conductor Impedances Accounting for Skin Effect and Nonlinear Permeability
Perkins, M P; Ong, M M; Brown, C G; Speer, R D
2011-07-20
It is often necessary to protect sensitive electrical equipment from pulsed electric and magnetic fields. To accomplish this electromagnetic shielding structures similar to Faraday Cages are often implemented. If the equipment is inside a facility that has been reinforced with rebar, the rebar can be used as part of a lighting protection system. Unfortunately, such shields are not perfect and allow electromagnetic fields to be created inside due to discontinuities in the structure, penetrations, and finite conductivity of the shield. In order to perform an analysis of such a structure it is important to first determine the effect of the finite impedance of the conductors used in the shield. In this paper we will discuss the impedances of different cylindrical conductors in the time domain. For a time varying pulse the currents created in the conductor will have different spectral components, which will affect the current density due to skin effects. Many construction materials use iron and different types of steels that have a nonlinear permeability. The nonlinear material can have an effect on the impedance of the conductor depending on the B-H curve. Although closed form solutions exist for the impedances of cylindrical conductors made of linear materials, computational techniques are needed for nonlinear materials. Simulations of such impedances are often technically challenging due to the need for a computational mesh to be able to resolve the skin depths for the different spectral components in the pulse. The results of such simulations in the time domain will be shown and used to determine the impedances of cylindrical conductors for lightning current pulses that have low frequency content.
Accounting For Nonlinearity In A Microwave Radiometer
NASA Technical Reports Server (NTRS)
Stelzried, Charles T.
1991-01-01
Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.
Nonlinear generalized master equations and accounting for initial correlations
NASA Astrophysics Data System (ADS)
Los, V. F.
2009-08-01
We develop a new method based on using a time-dependent operator (generally not a projection operator) converting a distribution function (statistical operator) of a total system into the relevant form that allows deriving new exact nonlinear generalized master equations (GMEs). The derived inhomogeneous nonlinear GME is a generalization of the linear Nakajima-Zwanzig GME and can be viewed as an alternative to the BBGKY chain. It is suitable for obtaining both nonlinear and linear evolution equations. As in the conventional linear GME, there is an inhomogeneous term comprising all multiparticle initial correlations. To include the initial correlations into consideration, we convert the obtained inhomogeneous nonlinear GME into the homogenous form by the previously suggested method. We use no conventional approximation like the random phase approximation (RPA) or the Bogoliubov principle of weakening of initial correlations. The obtained exact homogeneous nonlinear GME describes all evolution stages of the (sub)system of interest and treats initial correlations on an equal footing with collisions via the modified memory kernel. As an application, we obtain a new homogeneous nonlinear equation retaining initial correlations for a one-particle distribution function of the spatially inhomogeneous nonideal gas of classical particles. In contrast to existing approaches, this equation holds for all time scales and takes the influence of pair collisions and initial correlations on the dissipative and nondissipative characteristics of the system into account consistently with the adopted approximation (linear in the gas density). We show that on the kinetic time scale, the time-reversible terms resulting from the initial correlations vanish (if the particle dynamics are endowed with the mixing property) and this equation can be converted into the Vlasov-Landau and Boltzmann equations without any additional commonly used approximations. The entire process of transition can
Effect of nonlinear nonlinear coupling to a pure dephasing model
NASA Astrophysics Data System (ADS)
Ge, Li; Zhao, Nan
2015-03-01
We investigate the influence of the nonlinear coupling to the coherence of a pure dephasing model. The total system consists of a qubit and a Bosonic bath, which are coupled by an interaction HI =g1σz ⊗ x +g2σz ⊗x2 with x =1/√{ 2} (a +a†) . It's shown that no matter how small g2 is, the long time behavior of the coherence is significantly changed by the nonlinear coupling for free induction decay (FID), while the effect of g1 can be neglected as long as g1 is much smaller than the enegy splitting of the qubit. In the case that many-pulse dynamical decoupling control is exerted on the qubit, g2 also modulates the oscillation of the coherence. Our results indicate that the nonlinear coupling must be taken into account for long time dynamics.
NASA Astrophysics Data System (ADS)
Sharma, Arvind; Nagar, A. K.
2016-05-01
The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.
Nonlinear effects in Thomson backscattering
NASA Astrophysics Data System (ADS)
Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.
2013-03-01
We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.
Nonlinear polariton effects in naphthalene
Stevenson, S.H.
1985-01-01
Resonant second harmonic generation (SHG) and two-photon excited emission (TPE) were studied in pure, strain-free crystals of naphthalene at frequencies near that of the (0,0) a-exciton in order to probe the relationship between the two signals and to investigate the effect of polariton states on second order nonlinearities in molecular crystals. The strong coupling of the 31473 cm/sup -1/ exciton in naphthalene to the photon field dictates the second-order nonlinear behavior of naphthalene crystals at frequencies near half-resonance. The dynamics of polaritons produced coherently via nonlinear interactions is shown to deviate in a controllable way from the dynamics of the one-photon polaritons produced in a linear experiment. The nature of the excitation remains principally that of an exciton. The necessity of using a strong coupling model to explain orientational dispersion and intensity and lineshape behavior is established. The experimental angular frequency dispersion of the SHG and TPE signals are fit to theoretical polariton dispersion curves. The orientation of the naphthalene optical indicatrix at 31475 cm/sup -1/ is shown to be very nearly the same as that reported for visible light. The temperature dependences of the SHG and TPE signal intensities are successfully predicted from the polariton fusion model by inclusion of temporal damping in the fusion rate expression. The shapes of the SHG and TPE profiles are compared to shapes predicted from the semi-classical theory.
Loizou, Philipos C.; Ma, Jianfen
2011-01-01
The conventional articulation index (AI) measure cannot be applied in situations where non-linear operations are involved and additive noise is present. This is because the definitions of the target and masker signals become vague following non-linear processing, as both the target and masker signals are affected. The aim of the present work is to modify the basic form of the AI measure to account for non-linear processing. This was done using a new definition of the output or effective SNR obtained following non-linear processing. The proposed output SNR definition for a specific band was designed to handle cases where the non-linear processing affects predominantly the target signal rather than the masker signal. The proposed measure also takes into consideration the fact that the input SNR in a specific band cannot be improved following any form of non-linear processing. Overall, the proposed measure quantifies the proportion of input band SNR preserved or transmitted in each band after non-linear processing. High correlation (r = 0.9) was obtained with the proposed measure when evaluated with intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted in four different real-world maskers. PMID:21877811
Higher-order nonlinear effects in a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
Nonlinear response and crowding effects in microrheology
NASA Astrophysics Data System (ADS)
Ladadwa, I.; Heuer, A.
2013-01-01
The mobility of tagged particles in a microrheological setup has been investigated via molecular dynamics simulations of a three-dimensional Lennard-Jones binary mixture. After coupling a small number of particles to a constant external driving force, the drift velocity and other observables of the dragged probe particles are reported in the linear and nonlinear response regime. In the nonlinear regime significant crowding effects are observed, thereby creating stringlike structures. Formation of the strings further enhances the nonlinear effects. A systematic study of these effects' dependence on temperature and total number of driven probe atoms is presented.
An enhanced nonlinear damping approach accounting for system constraints in active mass dampers
NASA Astrophysics Data System (ADS)
Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo
2015-11-01
Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.
Impact of nonlinear and polarization effects in coherent systems.
Xie, Chongjin
2011-12-12
Coherent detection with digital signal processing (DSP) significantly changes the ways impairments are managed in optical communication systems. In this paper, we review the recent advances in understanding the impact of fiber nonlinearities, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) in coherent optical communication systems. We first discuss nonlinear transmission performance of three coherent optical communication systems, homogeneous polarization-division-multiplexed (PDM) quadrature-phase-shift-keying (QPSK), hybrid PDM-QPSK and on/off keying (OOK), and PDM 16-ary quadrature-amplitude modulation (QAM) systems. We show that while the dominant nonlinear effects in coherent optical communication systems without optical dispersion compensators (ODCs) are intra-channel nonlinearities, the dominant nonlinear effects in dispersion-managed (DM) systems with inline dispersion compensation fiber (DCF) are different when different modulation formats are used. In DM coherent optical communication systems using modulation formats of constant amplitude, the dominant nonlinear effect is nonlinear polarization scattering induced by cross-polarization modulation (XPolM), whereas when modulation formats of non-constant amplitude are used, the impact of inter-channel cross-phase modulation (XPM) is much larger than XPolM. We then describe the effects of PMD and PDL in coherent systems. We show that although in principle PMD can be completely compensated in a coherent optical receiver, a real coherent receiver has limited tolerance to PMD due to hardware limitations. Two PDL models used to evaluate PDL impairments are discussed. We find that a simple lumped model significantly over-estimates PDL impairments and show that a distributed model has to be used in order to accurately evaluate PDL impairments. Finally, we apply system outage considerations to coherent systems, taking into account the statistics of polarization effects in fiber. PMID
Nonlinear optical effects during femtosecond photodisruption
NASA Astrophysics Data System (ADS)
Poudel, Milan P.; Chen, Jinhai
2009-11-01
Several nonlinear effects (i.e., continuum generation, self-focusing, and material damage) were studied during femtosecond photodisruption. Numerical aperture dependence of white-light continuum generation and material damage were determined and a relation between the two effects was shown. We showed the possibility of reducing nonlinear side effects and at the same time ensuring precise cut by using lenses of a suitable numerical aperture for refractive surgery, cell surgery, and tissue dissection. Other side effects associated with optical breakdown in model substance were also discussed.
NASA Astrophysics Data System (ADS)
Vaziri, Zahra; Moeini, Omid; McElroy, Tom; Savastiouk, Vladimir; Barton, David
2014-05-01
It is now known that Single-Monochromator Brewer Spectrophotometer ozone and sulphur dioxide measurements suffer from non-linearity due to the presence of instrumental stray light caused by scattering from the optics of the instrument. Because of the large gradient in the ozone absorption spectrum in the ultraviolet, the atmospheric spectra measured by the instrument possess a very large gradient in intensity in the 300 to 325 nm wavelength region. This results in a significant sensitivity to stray light when there is more than 1000 Dobson Units (D.U.) of ozone in the light path. As the light path (airmass) increases, the stray light effect on the measurements also increases. The measurements can be on the order of 8% low for an ozone column of 600 D.U. and an airmass factor of 3 (1800 D.U.) causing an underestimation of the ozone column amount. Primary calibrations for the Brewer instrument are carried out at Mauna Loa Observatory in Hawaii. They are done using the Langley plot method to extrapolate a set of measurements made under a constant ozone value to an extraterrestrial measurement. Since the effects of a small non-linearity at lower ozone paths may still be important, a better calibration procedure should account for the non-linearity of the instrument response. Previous methods involve scanning a laser beam with known wavelength with the Brewer spectrophotometer and observing the out of band signals. This paper presents a much more practical method to correct for stray light effects that includes a mathematical model of the instrument response and a non-linear retrieval approach that calculates the best values for the model parameters. The parameterization used was validated using an instrument physical model simulation. The model can then be used in reverse to provide correct ozone values up to a defined maximum ozone slant path.
Nonlinear acoustic effects in multilayer ceramic capacitors
NASA Astrophysics Data System (ADS)
Johnson, W. L.; Kim, S. A.; Quinn, T. P.; White, G. S.
2013-01-01
Nonlinear resonant acoustics was explored as an approach for nondestructively evaluating the susceptibility of BaTiO3-based multilayer ceramic capacitors to electrical failure during service. The acoustic nonlinearity was characterized through measurements of the dependence of the frequency of a selected dominant mode near 1.16 MHz on driving amplitude, employing direct ferroelectric tone-burst transduction, time-domain signal acquisition, and frequency-domain spectral analysis. Finite-element modeling and consideration of the symmetry of the excitation led to identification of the selected mode as the lowest-order extensional mode. Measurements as a function of the number of thermal treatments (of two types) provided evidence for increases in acoustic nonlinearity arising from thermal-stress-induced material damage. No evidence for further systematic changes in nonlinearity was found after nine heat treatments. Signals and analysis for some samples were complicated by the emergence of a second resonance in the waveforms and an apparent reduction in acoustic nonlinearity as a function of time under DC bias. The second of these effects is suggested as being associated with changes in nonlinear elements of the material (presumably, microcracks) that arise from interactions of internal stresses during domain reorientation.
Nonlinear magnetoelectric effect in composite multiferroics
NASA Astrophysics Data System (ADS)
Filippov, D. A.; Laletin, V. M.; Firsova, T. O.
2014-05-01
The theoretical and experimental studies of the nonlinear magnetoelectric effect in composite multiferroics in the low-frequency spectral region and in the electromechanical resonance region have been performed. It has been shown that such structures demonstrate a nonlinear magnetoelectric effect, which is quadratic in ac magnetic field strength at weak magnetic fields. In the region of the electromechanical resonance, the resonance excitation of an electric field occurs by means of ac magnetic field at a frequency lower than the resonance frequency by a factor of two. In the low-frequency spectral region, there is a difference of amplitude values of two neighboring voltage maxima due to the superposition of signals from the linear and nonlinear effects, and the difference is proportional to the dc magnetic field strength in weak fields. The results of the experimental study of the two-layer permendur-lead zirconate titanate structure are presented.
NASA Astrophysics Data System (ADS)
Haddad, Z. S.; Steward, J. L.; Tseng, H.-C.; Vukicevic, T.; Chen, S.-H.; Hristova-Veleva, S.
2015-06-01
Satellite microwave observations of rain, whether from radar or passive radiometers, depend in a very crucial way on the vertical distribution of the condensed water mass and on the types and sizes of the hydrometeors in the volume resolved by the instrument. This crucial dependence is nonlinear, with different types and orders of nonlinearity that are due to differences in the absorption/emission and scattering signatures at the different instrument frequencies. Because it is not monotone as a function of the underlying condensed water mass, the nonlinearity requires great care in its representation in the observation operator, as the inevitable uncertainties in the numerous precipitation variables are not directly convertible into an additive white uncertainty in the forward calculated observations. In particular, when attempting to assimilate such data into a cloud-permitting model, special care needs to be applied to describe and quantify the expected uncertainty in the observations operator in order not to turn the implicit white additive uncertainty on the input values into complicated biases in the calculated radiances. One approach would be to calculate the means and covariances of the nonlinearly calculated radiances given an a priori joint distribution for the input variables. This would be a very resource-intensive proposal if performed in real time. We propose a representation of the observation operator based on performing this moment calculation off line, with a dimensionality reduction step to allow for the effective calculation of the observation operator and the associated covariance in real time during the assimilation. The approach is applicable to other remotely sensed observations that depend nonlinearly on model variables, including wind vector fields. The approach has been successfully applied to the case of tropical cyclones, where the organization of the system helps in identifying the dimensionality-reducing variables.
Stratification effects on nonlinear elastic surface waves
NASA Astrophysics Data System (ADS)
Parker, D. F.
1988-01-01
On a homogeneous elastic half-space, linear surface waves are nondispersive. In each direction, waves having any profile travel without distortion. Nonlinearity causes intermodulation between the various wavelengths so that the signal distorts. Even when nonlinearity is small, sinusoidal profiles do not remain approximately sinusoidal. The absence of dispersion means that profiles suffer cumulative distortion, until the surface slope and strain become locally unbounded. Although this behaviour is typical of many signals, there are some signals for which intermodulation is constructive. These signals can travel coherently over large distances. For seismological applications, it is important to study the effects due to stratification. Dependence of the material constants on depth modifies the nonlinear evolution equations previously derived for homogeneous media. It has a smaller effect on higher frequencies than on lower frequencies. An approximate theory for short wavelength (high frequency) signals is introduced. Calculations show that when nonlinearity is no more important than dispersion, initially sinusoidal profiles propagate with surface slope remaining finite. When dispersion is small compared to nonlinearity, certain sharp peaked profiles can travel large distances while suffering little distortion.
Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc
2013-11-01
This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown. PMID:24180802
Rotational Doppler effect in nonlinear optics
NASA Astrophysics Data System (ADS)
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
NASA Astrophysics Data System (ADS)
Popov, N. N.; Radchenko, V. P.
2007-03-01
An analytical method for the solution of two-dimensional nonlinear creep problems is developed using as an example the biaxial extension of a plane from a stochastically inhomogeneous material with damage accumulation and the third stage of creep taken into account. The governing creep relation is adopted in accordance with the energetic version of the nonlinear theory of viscous flow. The stochasticity of the material is defined by two random functions of coordinates. Formulas for calculating the stress variance are obtained.
Nonlinearity of radiation health effects.
Pollycove, M
1998-01-01
The prime concern of radiation protection policy since 1959 has been to protect DNA from damage. In 1994 the United Nations Scientific Community on the Effects of Atomic Radiation focused on biosystem response to radiation with its report Adaptive Responses to Radiation of Cells and Organisms. The 1995 National Council on Radiation Protection and Measurements report Principles and Application of Collective Dose in Radiation Protection states that because no human data provides direct support for the linear nonthreshold hypothesis (LNT), confidence in LNT is based on the biophysical concept that the passage of a single charged particle could cause damage to DNA that would result in cancer. Several statistically significant epidemiologic studies contradict the validity of this concept by showing risk decrements, i.e., hormesis, of cancer mortality and mortality from all causes in populations exposed to low-dose radiation. Unrepaired low-dose radiation damage to DNA is negligible compared to metabolic damage. The DNA damage-control biosystem is physiologically operative on both metabolic and radiation damage and effected predominantly by free radicals. The DNA damage-control biosystem is suppressed by high dose and stimulated by low-dose radiation. The hormetic effect of low-dose radiation may be explained by its increase of biosystem efficiency. Improved DNA damage control reduces persistent mis- or unrepaired DNA damage i.e., the number of mutations that accumulate during a lifetime. This progressive accumulation of gene mutations in stem cells is associated with decreasing DNA damage control, aging, and malignancy. Recognition of the positive health effects produced by adaptive responses to low-dose radiation would result in a realistic assessment of the environmental risk of radiation. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 8 Figure 10 PMID:9539031
Ranking scientific publications: the effect of nonlinearity
NASA Astrophysics Data System (ADS)
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru
2014-10-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Ranking scientific publications: the effect of nonlinearity
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru
2014-01-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected. PMID:25322852
Nonlinear Talbot effect of rogue waves
NASA Astrophysics Data System (ADS)
Zhang, Yiqi; Belić, Milivoj R.; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-03-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Nonlinear effects in a model of a thermoacoustic refrigerator driven by a loudspeaker
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Zhe; Zhu, Jun-jie; Ding, Jin; Xia, Jie; Zhang, Shu-yi; Zhang, Hui; Ge, Huan
2015-03-01
It is known that acoustic nonlinear effects in thermoacoustic refrigerators are unfavorable to the performance because they transfer the acoustic energy of the fundamental wave to harmonic waves, while only the former is useful for refrigeration. To study the nonlinear effects in loudspeaker-drive thermoacoustic refrigerators, we measure the acoustic performance in a coupling system composed of a resonant pipe driven by an electrodynamic loudspeaker via an inverse horn. It is found that the nonlinear effects increase both the acoustic pressure of fundamental wave in the resonant pipe and the electroacoustic transfer efficiency of the system. Then, a theoretical model is established to study the nonlinear effects in the coupling system, in which the nonlinearities arising from the loudspeaker, inverse horn, and resonant pipe are taken into account, and the simulated results are used to explain the experimental phenomena.
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.
1996-01-01
The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.
An Energy Approach to a Micromechanics Model Accounting for Nonlinear Interface Debonding.
Tan, H.; Huang, Y.; Geubelle, P. H.; Liu, C.; Breitenfeld, M. S.
2005-01-01
We developed a micromechanics model to study the effect of nonlinear interface debonding on the constitutive behavior of composite materials. While implementing this micromechanics model into a large simulation code on solid rockets, we are challenged by problems such as tension/shear coupling and the nonuniform distribution of displacement jump at the particle/matrix interfaces. We therefore propose an energy approach to solve these problems. This energy approach calculates the potential energy of the representative volume element, including the contribution from the interface debonding. By minimizing the potential energy with respect to the variation of the interface displacement jump, the traction balanced interface debonding can be found and the macroscopic constitutive relations established. This energy approach has the ability to treat different load conditions in a unified way, and the interface cohesive law can be in any arbitrary forms. In this paper, the energy approach is verified to give the same constitutive behaviors as reported before.
Effective higher-order nonlinear coefficients of composites with weakly nonlinear media
NASA Astrophysics Data System (ADS)
Natenapit, Mayuree; Thongboonrithi, Chaivej
2010-05-01
The field equations, based on the third-order perturbation expansion of electrostatic potential, are derived, and our general formulae for higher-order effective nonlinear coefficients based on the energy definition, are presented and applied to dielectric composites consisting of dilute linear cylindrical inclusions randomly dispersed in a weakly nonlinear host media. The effective nonlinear coefficients are determined up to the ninth order. In addition, the results are also compared to those obtained using the average field method and likely to provide more accurate predictions of effective higher-order nonlinear responses.
ERIC Educational Resources Information Center
The Newsletter of the Comprehensive Center-Region VI, 1999
1999-01-01
Controversy surrounding the accountability movement is related to how the movement began in response to dissatisfaction with public schools. Opponents see it as one-sided, somewhat mean-spirited, and a threat to the professional status of teachers. Supporters argue that all other spheres of the workplace have accountability systems and that the…
ERIC Educational Resources Information Center
Lashway, Larry
1999-01-01
This issue reviews publications that provide a starting point for principals looking for a way through the accountability maze. Each publication views accountability differently, but collectively these readings argue that even in an era of state-mandated assessment, principals can pursue proactive strategies that serve students' needs. James A.…
Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems
Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...
Nonlinear analysis of bonded joints with thermal effects
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Herakovich, C. T.
1977-01-01
Nonlinear results are presented for adhesive bonded joints. It is shown that adhesive nonlinearities are only significant in the predicted adhesive shear stresses. Adherend nonlinearities and temperature dependent properties are shown to have little effect upon the adhesive stress predictions under mechanical and thermal loadings.
Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires
NASA Astrophysics Data System (ADS)
Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean
2010-01-01
We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.
Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects
NASA Astrophysics Data System (ADS)
Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young
2016-08-01
The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.
On nonlinear effects in fracture mechanics.
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Eftis, J.
1971-01-01
Linear elastic treatment of fracture is considered applicable for net section stress up to about 0.8 the uniaxial tensile yield stress. Crack front plastic yield is still small enough to be viewed and treated as a small perturbation to the local crack front elastic stress field. Assuming these same circumstances and adopting the same point of view, an approach is presented for incorporating the nonlinear effects of small scale crack front plastic yield and slow crack extension in determination of the energy release rate and fracture toughness. Deviation from linearity of the load-displacement record in a fracture toughness test offers a quantifiable measure of these effects and is used to calculate the energy release rate. Fracture toughness values for one-eight inch thick 7075-T6 center cracked aluminum sheet are compared with uncorrected values and with values obtained by the Irwin method of plasticity correction.
Effect of Nonlinear Joints on Space Deployable Truss Structures
NASA Astrophysics Data System (ADS)
Guo, Hongwei; Deng, Zhongquan; Wu, Xiang; Liu, Rongqiang
2012-07-01
Joints nonlinearities with characteristics of freeplay and hysteresis are analyzed by describing joint nonlinear force-displacement based on describing function method. The nonlinear dynamic responses of the one- DOF system with joints under different exciting force levels are presented in the charts. The influence of the characterizing parameters, e.g., gaps, slipping forces of the joints on nonlinearities is analyzed. The nonlinear effects of freeplay and hysteresis present that the dynamic responses switch from one resonance frequency to another frequency when amplitude exceed the demarcation values. The hysteresis nonlinearity contributes nonlinear damping to the system. Dynamic responses of the modular beam-like deployable joint- dominated truss structure are tested under different sinusoidal exciting force levels which show obvious nonlinear behaviors. The nonlinear dynamic behaviors of the truss structure contributed by the joints shows a shift to lower resonance frequency and higher amplitude with the exciting force increases. The nonlinearity of the joints in the tested structure is identified to meet with the hysteresis nonlinearity. The experiment validates that describing method is an effective tool to model the joint nonlinearities.
Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.
Kawai, Shinnosuke; Komatsuzaki, Tamiki
2010-07-21
A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104
Cost-Effectiveness in Individual Development Accounts
ERIC Educational Resources Information Center
Schreiner, Mark; Ng, Guat Tin; Sherraden, Michael
2006-01-01
Because resources are limited, the benefits and costs of social-work interventions--like all interventions--must be compared with the benefits and costs of alternatives. Evidence-based practice should ask, What works? How well does it work? And what does it cost? This article analyzes the provision of Individual Development Accounts (IDAs) with a…
Designing More Effective Accountability Report Cards
ERIC Educational Resources Information Center
Sabbah, Faris M.
2011-01-01
The purpose of this study was to identify and design standards and procedures for creating easily interpreted accountability reports cards, consistent with the requirements spelled out in the No Child Left Behind Act of 2001 (NCLB). The use of public report cards was first raised during the debate that took place immediately prior to the passage…
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Nonlinear dielectric effect in supercritical diethyl ether
NASA Astrophysics Data System (ADS)
Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Martinez-Garcia, Julio Cesar
2014-09-01
Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (TC) and ψ ≈ 0.6 remote from TC. This can be linked to the emergence of the mean-field behavior in the immediate vicinity of TC, contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.
Nonlinear model for thermal effects in free-electron lasers
Peter, E. Endler, A. Rizzato, F. B.
2014-11-15
In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.
Rapid assessment of nonlinear optical propagation effects in dielectrics.
del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. PMID:25908267
Global non-linear effect of temperature on economic production
NASA Astrophysics Data System (ADS)
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate. PMID:26503051
The effect of system nonlinearities on system noise statistics
NASA Technical Reports Server (NTRS)
Robinson, L. H., Jr.
1971-01-01
The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.
The Effects of Different Teaching Approaches in Introductory Financial Accounting
ERIC Educational Resources Information Center
Chiang, Bea; Nouri, Hossein; Samanta, Subarna
2014-01-01
The purpose of the research is to examine the effect of the two different teaching approaches in the first accounting course on student performance in a subsequent finance course. The study compares 128 accounting and finance students who took introductory financial accounting by either a user approach or a traditional preparer approach to examine…
NASA Astrophysics Data System (ADS)
Song, Pengchao
Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.
Nonlinear effective pressure law for permeability
NASA Astrophysics Data System (ADS)
Li, M.; Xiao, W.-L.; Bernabé, Y.; Zhao, J.-Z.
2014-01-01
The permeability k of porous rocks is known to vary with confining pressure pc and pore fluid pressure pf. But it is, in principle, possible to replace the two-variable function k(pf, pc) by a function k(peff) of a single variable, peff(pf, pc), called the effective pressure. Our goal in this paper is to establish an experimental method for determining a possibly nonlinear, effective pressure law (EPL) for permeability, i.e., find the function κs(pf, pc) such that the effective pressure is given by peff = pc - κs(pf, pc) pf. We applied this method to a set of 26 sandstone cores from various hydrocarbon reservoirs in China. We found that κs greatly varied, from sample to sample, in magnitude and range, sometimes even reaching theoretically prohibited values (i.e., greater than 1 or lower than porosity). One interesting feature of κs(pf, pc) is that it could be approximately described in all rocks but one as a decreasing function κs(pc - pf) of Terzaghi's differential pressure. We also investigated the dependence of permeability on peff for each of our samples. Three models from the literature, i.e., exponential (E), power law (P), and the Walsh model (W), were tested. The (W) model was more likely to fit the experimental data of cores with a high pressure dependence of permeability whereas (E) occurred more frequently in low-pressure-sensitive rocks. Finally, we made various types of two- and three-dimensional microstructural observations that generally supported the trend mentioned above.
An alternative approach to characterize nonlinear site effects
Zhang, R.R.; Hartzell, S.; Liang, J.; Hu, Y.
2005-01-01
This paper examines the rationale of a method of nonstationary processing and analysis, referred to as the Hilbert-Huang transform (HHT), for its application to a recording-based approach in quantifying influences of soil nonlinearity in site response. In particular, this paper first summarizes symptoms of soil nonlinearity shown in earthquake recordings, reviews the Fourier-based approach to characterizing nonlinearity, and offers justifications for the HHT in addressing nonlinearity issues. This study then uses the HHT method to analyze synthetic data and recordings from the 1964 Niigata and 2001 Nisqually earthquakes. In doing so, the HHT-based site response is defined as the ratio of marginal Hilbert amplitude spectra, alternative to the Fourier-based response that is the ratio of Fourier amplitude spectra. With the Fourier-based approach in studies of site response as a reference, this study shows that the alternative HHT-based approach is effective in characterizing soil nonlinearity and nonlinear site response.
A Novel Effective Approach for Solving Fractional Nonlinear PDEs
Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi
2014-01-01
The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations.
The effect of nonlinear traveling waves on rotating machinery
NASA Astrophysics Data System (ADS)
Jauregui-Correa, Juan Carlos
2013-08-01
The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.
A Nonlinear Mixed Effects Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2009-01-01
The nonlinear mixed effects model for continuous repeated measures data has become an increasingly popular and versatile tool for investigating nonlinear longitudinal change in observed variables. In practice, for each individual subject, multiple measurements are obtained on a single response variable over time or condition. This structure can be…
Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Interplay of diffraction and nonlinear effects in the propagation of ultrashort pulses
NASA Astrophysics Data System (ADS)
Korpa, C. L.; Tóth, Gy; Hebling, J.
2016-02-01
We investigate the interplay of diffraction and nonlinear effects during the propagation of very short light pulses. Adapting the factorization approach to the problem at hand by keeping the transverse-derivative terms apart from the residual nonlinear contributions we derive an unidirectional propagation equation which is valid for weak dispersion and reduces to the slowly-evolving-wave-approximation in the case of paraxial rays. A comparison of the numerical simulation results for the two equations shows pronounced differences when self-focusing plays an important role. We devote special attention to modelling the propagation of ultrashort terahertz pulses taking into account diffraction as well as Kerr-type and second-order nonlinearities. Comparing the measured and simulated wave forms we deduce the value of the nonlinear refractive index of lithium niobate in the terahertz region to be three orders of magnitude larger than in the visible part of the spectrum.
NASA Astrophysics Data System (ADS)
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition. PMID:26497312
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2016-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523
The Negative Testing Effect and Multifactor Account
ERIC Educational Resources Information Center
Peterson, Daniel J.; Mulligan, Neil W.
2013-01-01
Across 3 experiments, we investigated the factors that dictate when taking a test improves subsequent memory performance (the "testing effect"). In Experiment 1, participants retrieving a set of targets during a retrieval practice phase ultimately recalled fewer of those targets compared with a group of participants who studied the…
Differential Effectiveness of Theoretical Accounts for Paradox.
ERIC Educational Resources Information Center
Forsyth, Nancy M.; Strong, Stanley R.
Paradoxical techniques in counseling consist of directing clients to practice the symptom which is causing them psychological distress. Both impression management theory and reactance theory have been advanced to explain the efficacy of such techniques. To examine the effectiveness of paradoxical techniques according to impression management and…
On the nonlinear nature of the turbulent α-effect
NASA Astrophysics Data System (ADS)
Cattaneo, Fausto; Hughes, David W.; Thelen, Jean-Claude
Galactic magnetic fields are, typically, modelled by mean-field dynamos involving the α-effect. Here we consider, very briefly, some of the issues involving the nonlinear dependence of α on the mean field.
Effects of Wave Nonlinearity on Wave Attenuation by Vegetation
NASA Astrophysics Data System (ADS)
Wu, W. C.; Cox, D. T.
2014-12-01
parameter can be used to parameterize CD to account for the effect of wave nonlinearity, particularly in shallow water, for vegetation of single stem diameter.
Beam-Plasma Interaction and Nonlinear Effects
Yoon, Peter H.
2009-11-10
This paper presents a survey of perturbative nonlinear plasma theory known as the weak turbulence theory. After the basic concepts and methodology of the weak turbulence theory are outlined in sufficient detail, numerical solutions of the weak turbulence theory obtained in the context of the beam-plasma interaction are compared against particle-in-cell (PIC) numerical simulations. It is demonstrated that theory and PIC simulation are in excellent agreement.
Effects of Accountancy Internship on Subsequent Academic Performance.
ERIC Educational Resources Information Center
Kwong, K. S.; Lui, Gladie
1991-01-01
Explores the effects of accounting internships upon subsequent academic achievement. Reports that grade point averages and degree examination results of 10 Chinese University of Hong Kong students who had been interns were compared to scores of 236 accounting majors who had not. Concludes that internships increased student knowledge and…
Non-linear effects in bunch compressor of TARLA
NASA Astrophysics Data System (ADS)
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Effect of Nozzle Nonlinearities upon Nonlinear Stability of Liquid Propellant Rocket Motors
NASA Technical Reports Server (NTRS)
Padmanabhan, M. S.; Powell, E. A.; Zinn, B. T.
1975-01-01
A three dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite amplitude oscillatory flow inside the subsonic portion of a choked, slowly convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.
Non-Linear Effects in Knowledge Production
NASA Astrophysics Data System (ADS)
Purica, Ionut
2007-04-01
The generation of technological knowledge is paramount to our present development; the production of technological knowledge is governed by the same Cobb Douglas type model, with the means of research and the intelligence level replacing capital, respectively labor. We are exploring the basic behavior of present days' economies that are producing technological knowledge, along with the `usual' industrial production and determine a basic behavior that turns out to be a `Henon attractor'. Measures are introduced for the gain of technological knowledge and for the information of technological sequences that are based respectively on the underlying multi-valued modal logic of the technological research and on nonlinear thermodynamic considerations.
Relativistic effects on nonlinear lower hybrid oscillations in cold plasma
Maity, Chandan; Chakrabarti, Nikhil
2011-04-15
Nonlinear lower hybrid mode in a quasineutral magnetized plasma is analyzed in one space dimension using Lagrangian coordinates. In a cold fluid, we treat electron fluid relativistically, whereas ion fluid nonrelativistically. The homotopy perturbation method is employed to obtain the nonlinear solution which also finds the frequency-amplitude relationship for the lower hybrid mode. The solution indicates that the amplitude of oscillation increases due to the weak relativistic effects. The appearance of density spikes is not ruled out in a magnetized plasma.
Kinetic equations for a density matrix describing nonlinear effects in spectral line wings
Parkhomenko, A. I. Shalagin, A. M.
2011-11-15
Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.
Linear and nonlinear Zeno effects in an optical coupler
Abdullaev, F. Kh.; Konotop, V. V.; Shchesnovich, V. S.
2011-04-15
It is shown that, in a simple coupler where one of the waveguides is subject to controlled losses of the electric field, it is possible to observe an optical analog of the linear and nonlinear quantum Zeno effects. The phenomenon consists in a counterintuitive enhancement of transparency of the coupler with an increase of the dissipation and represents an optical analog of the quantum Zeno effect. Experimental realization of the phenomenon based on the use of chalcogenide glasses is proposed. The system allows for observation of the crossover between the linear and nonlinear Zeno effects, as well as the effective manipulation of light transmission through the coupler.
Functional Nonlinear Mixed Effects Models For Longitudinal Image Data
Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu
2015-01-01
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Yost, William T.
1990-01-01
The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.
Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites
NASA Astrophysics Data System (ADS)
Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, L. Y.; Fetisov, Y. K.; Sreenivasulu, G.; Srinivasan, G.
2014-05-01
Theory and results of a systematic study on the nature of nonlinear magnetoelectric (ME) interactions in layered ferromagnetic and ferroelectric composites are discussed. The model that considers the nonlinearity associated with magnetostriction of the ferromagnet is to result in (i) a dc component and (ii) frequency doubling when the composite is subjected to an ac magnetic field. In the presence of two ac magnetic fields of different frequencies, nonlinear effects give rise to generation of ME voltages at the sum and difference of the fields frequencies. The efficiencies of nonlinear ME interactions are shown to be a function of the second derivative of the magnetostriction with respect to the bias magnetic field. The predictions of the model are compared with data for bilayers of lead zirconate titanate (PZT) and ferromagnetic layers with wide variations in saturation magnetostrictions and saturation magnetic fields, i.e., an amorphous ferromagnetic (AF) alloy, Ni, or permendur. Under linear excitation conditions an enhancement in the ME voltage is measured when the ac magnetic field is applied at the acoustic mode frequencies. Under nonlinear excitation conditions the mechanical deformation and the ME response occur at twice the excitation frequency and the AF-PZT composite shows a much higher nonlinear ME effects. In addition, the AF-PZT shows an efficient frequency mixing than the samples with Ni or permendur when subjected to two ac magnetic fields. The frequency mixing is shown to be of importance for magnetic field sensor applications.
Nonlinear Peltier effect and thermoconductance in nanowires
Bogachek, E.N.; Scherbakov, A.G.; Landman, U.
1999-10-01
A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager{close_quote}s relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed. {copyright} {ital 1999} {ital The American Physical Society}
The nonlinear effect in relativistic Compton scattering for an intense circularly polarized laser
NASA Astrophysics Data System (ADS)
Luo, W.; Zhuo, H. B.; Ma, Y. Y.; Zhu, Z. C.; Fan, G. T.; Xu, W.; Song, Y. M.
2014-07-01
Compton scattering between an intense laser pulse and a relativistic electron beam offers a promising development path toward high-energy, high-brightness x- and gamma-ray sources. Increasing laser peak power to obtain intense x- and gamma rays causes nonlinear Compton scattering to occur. To predict high-order harmonic radiation properties, we upgrade a Monte Carlo laser-Compton scattering simulation code (MCLCSS) by taking into account the nonlinear effect for the relativistic Compton scattering process. The energy spectra and angular and harmonic intensity distributions of the scattered photons are investigated using nonlinear Compton scattering of an intense circularly polarized laser. It is found that the laser parameter {{a}_{0}}\\equiv e{\\rm{A}}\\;{{m}_{e}}{{c}^{-2}} plays an important role in the generation of high-order harmonic radiation. Our study also suggests that the high-energy tails of the second and higher harmonics will stray from the backscattering region.
NASA Astrophysics Data System (ADS)
Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang
2014-05-01
Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.
The Effects of Pre-College Accounting on the College Accounting Student.
ERIC Educational Resources Information Center
Schroeder, Nicholas
1985-01-01
Through a research project, the author found that the attitudes of college accounting students toward high school accounting as the starting point for an accounting education and also the introductory financial accounting grades of college students are often closely associated with extensive accounting coursework completed prior to college. (CT)
Surface effect on the nonlinear forced vibration of cantilevered nanobeams
NASA Astrophysics Data System (ADS)
Dai, H. L.; Zhao, D. M.; Zou, J. J.; Wang, L.
2016-06-01
The nonlinear forced vibration behavior of a cantilevered nanobeam is investigated in this paper, essentially considering the effect due to the surface elastic layer. The governing equation of motion for the nano-cantilever is derived, with consideration of the geometrical nonlinearity and the effects of additional flexural rigidity and residual stress of the surface layer. Then, the nonlinear partial differential equation (PDE) is discretized into a set of nonlinear ordinary differential equations (ODEs) by means of the Galerkin's technique. It is observed that surface effects on the natural frequency of the nanobeam is of significance, especially for the case when the aspect ratio of the nanobeam is large. The nonlinear resonant dynamics of the nanobeam system is evaluated by varying the excitation frequency around the fundamental resonance, showing that the nanobeam would display hardening-type behavior and hence the frequency-response curves bend to the right in the presence of positive residual surface stress. However, with the negative residual surface stress, this hardening-type behavior can be shifted to a softening-type one which becomes even more evident with increase of the aspect ratio parameter. It is also demonstrated that the combined effects of the residual stress and aspect ratio on the maximum amplitude of the nanobeam may be pronounced.
Joint nonlinearity effects in the design of a flexible truss structure control system
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1986-01-01
Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.
Solvent effects on the nonlinear optical responses of anil derivatives
NASA Astrophysics Data System (ADS)
Plaquet, Aurélie; Bogdan, Elena; Antonov, Liudmil; Rodriguez, Vincent; Ducasse, Laurent; Champagne, Benoıît; Castet, Frédéric
2015-01-01
This contribution addresses the solvent effects on the second-order nonlinear optical responses of three representative anil derivatives, and in particular on their variations upon switching between the enol-imine and keto-amine forms. The impact of solute-solvent interactions is investigated by means of ab initio and DFT calculations in which solvent effects are included through the polarizable continuum model. In addition, for one of the compounds, Hyper-Rayleigh Scattering experiments and ab initio calculations are combined to highlight the impact of the solvent-induced equilibrium displacement. These studies show that the global solvent effect on the nonlinear optical responses originates from both the displacement of the tautomeric equilibrium and from the modification of the second-order nonlinear optical response of the individual tautomeric forms.
Nonlinear neural mapping analysis of the adverse effects of drugs.
Domine, D; Guillon, C; Devillers, J; Lacroix, R; Lacroix, J; Doré, J C
1998-01-01
Numerous drugs have been identified as presenting adverse effects towards the driving of vehicles. A large set of these drugs was compiled and classified into ten categories. Nonlinear neural mapping (N2M) was used to derive a typology of these molecules and also to link their adverse effects to therapeutic categories and structural information. PMID:9517012
Using Instrumental Variables Properly to Account for Selection Effects
ERIC Educational Resources Information Center
Porter, Stephen R.
2012-01-01
Selection bias is problematic when evaluating the effects of postsecondary interventions on college students, and can lead to biased estimates of program effects. While instrumental variables can be used to account for endogeneity due to self-selection, current practice requires that all five assumptions of instrumental variables be met in order…
NASA Astrophysics Data System (ADS)
Niculescu, Ecaterina C.; Eseanu, Nicoleta; Radu, Adrian
2013-05-01
An investigation of the laser radiation effects on the nonlinear optical rectification in an AlGaAs inverse parabolic quantum well with asymmetrical barriers is performed within the effective mass approximation, taking into account the dielectric mismatch between the semiconductor and the surrounding medium. Using the accurate dressing effect for the confinement potential and electrostatic self-energy due to the image-charges, we prove that: (i) a spatially dependent effective mass in the laser-dressing parameter definition is required for precise calculations of the energy levels; (ii) the dielectric confinement provides a potential mechanism for controlling electronic states and optical properties of quantum wells. In addition, the laser dependence of the energy where the optical rectification reaches its maximum can be adjusted by external electric fields. The joint action of the intense high-frequency laser and static electric fields may provide tuning of the nonlinear properties in this type of dielectrically modulated heterostructures.
Competition between the tensor light shift and nonlinear Zeeman effect
Chalupczak, W.; Wojciechowski, A.; Pustelny, S.; Gawlik, W.
2010-08-15
Many precision measurements (e.g., in spectroscopy, atomic clocks, quantum-information processing, etc.) suffer from systematic errors introduced by the light shift. In our experimental configuration, however, the tensor light shift plays a positive role enabling the observation of spectral features otherwise masked by the cancellation of the transition amplitudes and creating resonances at a frequency unperturbed either by laser power or beam inhomogeneity. These phenomena occur thanks to the special relation between the nonlinear Zeeman and light shift effects. The interplay between these two perturbations is systematically studied and the cancellation of the nonlinear Zeeman effect by the tensor light shift is demonstrated.
Nonlinear effects generation in non-adiabatically tapered fibres
NASA Astrophysics Data System (ADS)
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
Effects of nonlinearity on cell-ECM interactions
Wen, Qi; Janmey, Paul A.
2014-01-01
Filamentous biopolymers such as F-actin, vimentin, fibrin and collagen that form networks within the cytoskeleton or the extracellular matrix have unusual rheological properties not present in most synthetic soft materials that are used as cell substrates or scaffolds for tissue engineering. Gels formed by purified filamentous biopolymers are often strain stiffening, with an elastic modulus that can increase an order of magnitude at moderate strains that are relevant to cell and tissue deformation in vivo. This review summarizes some experimental studies of nonlinear rheology in biopolymer gels, discusses possible molecular mechanisms that account for strain stiffening, and explores the possible relevance of non-linear rheology to the interactions between cell and extracellular matrices. PMID:23748051
Collisional effects on nonlinear ion drag force for small grains
Hutchinson, I. H.; Haakonsen, C. B.
2013-08-15
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Quantum Effects in the Nonlinear Response of Graphene Plasmons.
Cox, Joel D; Silveiro, Iván; García de Abajo, F Javier
2016-02-23
The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices. PMID:26718484
Specular nonlinear anisotropic polarization effect along fourfold crystal symmetry axes
NASA Astrophysics Data System (ADS)
Bungay, A. R.; Popov, S. V.; Zheludev, N. I.; Svirko, Yu. P.
1995-02-01
We present what is to our knowledge the first experimental observation of the specular nonlinear anisotropic polarization effect of a pump-induced polarization-plane rotation for normal-incidence reflection from the (001) surface of a cubic crystal. In GaAs, azimuth rotation of the order of 9 \\times 10 -6 rad is seen for a pump intensity of 75 MW cm-2 at 750 nm, from which the anisotropic component of the cubic nonlinearity |Re( chi xxxx-2 chi xxyy- chi xyyx)|=5 \\times 10 -9 esu is found.
Nonlinear effects in interference of bose-einstein condensates
Liu; Wu; Niu
2000-03-13
Nonlinear effects in the interference of Bose-Einstein condensates are studied using exact solutions of the one-dimensional nonlinear Schrodinger equation, which is applicable when the lateral motion is confined or negligible. With the inverse scattering method, the interference pattern is studied as a scattering problem with the linear Schrodinger equation, whose potential is profiled by the initial density distribution of the condensates. Our theory not only provides an analytical framework for quantitative predictions for the one-dimensional case, it also gives an intuitive understanding of some mysterious features of the interference patterns observed in experiments and numerical simulations. PMID:11018868
Effective-medium theory for weakly nonlinear composites
NASA Astrophysics Data System (ADS)
Zeng, X. C.; Bergman, D. J.; Hui, P. M.; Stroud, D.
1988-11-01
We propose an approximate general method for calculating the effective dielectric function of a random composite in which there is a weakly nonlinear relation between electric displacement and electric field of the form D=ɛE+χ||E||2E, where ɛ and χ are position dependent. In a two phase-comopsite, to first order in the nonlinear coefficients χ1 and χ2, the effective nonlinear dielectric susceptibility is found to be χe=0, where ɛ(0)e is the effective dielectric constant in the linear limit (χi=0,i=1,2) and ɛi and pi are the dielectric function and volume fraction of the ith component. The approximation is applied to a calculation of χe in the Maxwell-Garnett approximation (MGA) and the effective-medium approximation. For low concentrations of nonlinear inclusions in a linear host medium, our MGA reduces to the results of Stroud and Hui. An exact calculation of χe is carried out for the Hashin-Shtrikman microgeometry and compared to our MG approximation.
Nonlinear optical effects in chalcogenide photoresists
NASA Astrophysics Data System (ADS)
Rosenblum, G.; Sfez, B. G.; Kotler, Z.; Lyubin, V.; Klebanov, M.
1999-11-01
Both the "after-pulse effect" and the dynamic characteristics of photostructural transformations induced in glassy As0.5Se0.5 films by pulsed 532 nm excitation have been studied. The after-pulse effect investigation demonstrated more than a 103 times increase of the photosensitivity in case of pulsed excitation. Dynamic characteristics showed a dual time scale behavior and different intensity dependence of transient and long time scale signals. The obtained data indicate that the strong increase of photosensitivity following short intense pulsed light excitation is due to a two-photon effect that aids the process of structural rearrangement.
Contrast effects in spontaneous evaluations: a psychophysical account.
Klauer, Karl Christoph; Teige-Mocigemba, Sarah; Spruyt, Adriaan
2009-02-01
In the affective-priming paradigm, target stimuli are preceded by evaluatively polarized prime stimuli and then are to be classified as either good or bad as fast as possible. The typical and robust finding is assimilation: Primes facilitate the processing of evaluatively consistent targets relative to evaluatively inconsistent targets. Nevertheless, contrast effects have repeatedly been observed. The authors propose a new psychophysical account of normal (assimilative) and reversed (contrastive) priming effects and test new predictions derived from it in 5 studies: In Studies 1 and 2, the authors' account is shown to provide a better explanation of contrastive effects in a priming paradigm with two primes than the traditional attentional account does. Furthermore, as predicted by the new account, contrast effects emerge at an intermediate stimulus-onset asynchrony (SOA, Study 3) and even with short SOAs when target onset takes participants by surprise (Study 4). Finally, the use of extremely valenced primes triggers corrective efforts (Study 5) as predicted. Implications for priming measures of evaluative associations are discussed. PMID:19159132
An interference account of the missing-VP effect
Häussler, Jana; Bader, Markus
2015-01-01
Sentences with doubly center-embedded relative clauses in which a verb phrase (VP) is missing are sometimes perceived as grammatical, thus giving rise to an illusion of grammaticality. In this paper, we provide a new account of why missing-VP sentences, which are both complex and ungrammatical, lead to an illusion of grammaticality, the so-called missing-VP effect. We propose that the missing-VP effect in particular, and processing difficulties with multiply center-embedded clauses more generally, are best understood as resulting from interference during cue-based retrieval. When processing a sentence with double center-embedding, a retrieval error due to interference can cause the verb of an embedded clause to be erroneously attached into a higher clause. This can lead to an illusion of grammaticality in the case of missing-VP sentences and to processing complexity in the case of complete sentences with double center-embedding. Evidence for an interference account of the missing-VP effect comes from experiments that have investigated the missing-VP effect in German using a speeded grammaticality judgments procedure. We review this evidence and then present two new experiments that show that the missing-VP effect can be found in German also with less restricting procedures. One experiment was a questionnaire study which required grammaticality judgments from participants without imposing any time constraints. The second experiment used a self-paced reading procedure and did not require any judgments. Both experiments confirm the prior findings of missing-VP effects in German and also show that the missing-VP effect is subject to a primacy effect as known from the memory literature. Based on this evidence, we argue that an account of missing-VP effects in terms of interference during cue-based retrieval is superior to accounts in terms of limited memory resources or in terms of experience with embedded structures. PMID:26136698
Effect of dynamical friction on nonlinear energetic particle modes
Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.
2010-09-15
A fully nonlinear model is developed for the bump-on-tail instability including the effects of dynamical friction (drag) and velocity space diffusion on the energetic particles driving the wave. The results show that drag provides a destabilizing effect on the nonlinear evolution of waves. Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario of the wave evolution, leading to the creation of phase space holes and clumps that move away from the original eigenfrequency. Later in time, the electric field associated with a hole is found to be enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the frequency evolution between holes and clumps. The combined effect of drag and diffusion produces a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady state regimes. An analytical model is presented, which explains the aforementioned diversity. A continuous production of hole-clump pairs in the absence of collisions is also observed.
NASA Astrophysics Data System (ADS)
Nguyen, Quan Minh
2011-12-01
We investigate the propagation of solitons of the perturbed nonlinear Schrodinger equation (NLSE) via asymptotic perturbation techniques and numerical simulations. The dissertation consists of several inter-related projects [22, 98, 103, 108, 109] that are focused on the effects of nonlinear processes and randomness on dynamics of pulses of light in optical waveguides. We particularly consider two of the most important nonlinear processes affecting pulse dynamics in multichannel optical waveguides: weak cubic loss and delayed Raman response. In the presence of weak cubic loss [98], we obtain the analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Furthermore, we show that amplitude dynamics in an N-channel waveguide system is described by a Lotka-Volterra model for N competing species. We find the conditions on the time slot width and the soliton's equilibrium amplitude value under which the transmission is stable. The predictions of the reduced Lotka-Volterra model are confirmed by numerical solution of a coupled-NLSE model, which takes into account intra-pulse and inter-pulse effects due to cubic nonlinearity and cubic loss. These results uncover an interesting analogy between the dynamics of energy exchange in pulse collisions and population dynamics in Lotka-Volterra models. In the presence of delayed Raman response [103,108,109], we show that the dynamics of pulse amplitudes in an N-channel transmission system in differential phase shift keying (DPSK) scheme is described by an N-dimensional predator-prey model. We find the equilibrium states with non-zero amplitudes and prove their stability by obtaining the Lyapunov function. We then show that stable transmission can be achieved by a proper choice of the frequency profile of linear amplifier gain. We also investigate the impact of Raman self- and collsion
Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis.
Thompson, Henry J; Jiang, Weiqin; Zhu, Zongjian
2009-09-01
Evidence is strong that a reduction in risk for breast cancer is associated with moderate to vigorous physical activity (PA); however, there is limited understanding of the role of type, intensity, duration, and frequency of PA and their mechanisms in accounting for this health benefit. The objective of this review is to stimulate investigations of candidate mechanisms that may account for the effects of the intensity and duration of aerobic PA on breast cancer risk and tumor burden. Three hypotheses are considered: 1) the mTOR network hypothesis: PA inhibits carcinogenesis by suppressing the activation of the mTOR signaling network in mammary carcinomas; 2) the hormesis hypothesis: the carcinogenic response to PA is nonlinear and accounted for by a physiological cellular stress response; and 3) the metabolic reprogramming hypothesis: PA limits the amount of glucose and glutamine available to mammary carcinomas thereby inducing apoptosis because tumor-associated metabolic programming is reversed. To link these hypotheses to systemic effects of PA, it is recommended that consideration be given to determining: 1) what contracting muscle releases into circulation or removes from circulation that would directly modulate the carcinogenic process in epithelial cells; 2) whether the effects of muscle contraction on epithelial cell carcinogenesis are exerted in an endocrine, paracrine, autocrine, or intracrine manner; and 3) if the effects of muscle contraction on malignant cells differ from effects on normal or premalignant cells that do not manifest the hallmarks of malignancy. PMID:19588523
New non-linear photovoltaic effect in uniform bipolar semiconductor
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
Multiple carbon accounting to support just and effective climate policies
NASA Astrophysics Data System (ADS)
Steininger, Karl W.; Lininger, Christian; Meyer, Lukas H.; Muñoz, Pablo; Schinko, Thomas
2016-01-01
Negotiating reductions in greenhouse gas emission involves the allocation of emissions and of emission reductions to specific agents, and notably, within the current UN framework, to associated countries. As production takes place in supply chains, increasingly extending over several countries, there are various options available in which emissions originating from one and the same activity may be attributed to different agents along the supply chain and thus to different countries. In this way, several distinct types of national carbon accounts can be constructed. We argue that these accounts will typically differ in the information they provide to individual countries on the effects their actions have on global emissions; and they may also, to varying degrees, prove useful in supporting the pursuit of an effective and just climate policy. None of the accounting systems, however, prove 'best' in achieving these aims under real-world circumstances; we thus suggest compiling reliable data to aid in the consistent calculation of multiple carbon accounts on a global level.
Nonlinear effects on composite laminate thermal expansion
NASA Technical Reports Server (NTRS)
Hashin, Z.; Rosen, B. W.; Pipes, R. B.
1979-01-01
Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.
Nonlinearity of resistive impurity effects on van der Pauw measurements
Koon, D. W.
2006-09-15
The dependence of van der Pauw resistivity measurements on local macroscopic inhomogeneities is shown to be nonlinear. A resistor grid network models a square laminar specimen, enabling the investigation of both positive and negative local perturbations in resistivity. The effect of inhomogeneity is measured both experimentally, for an 11x11 grid, and computationally, for both 11x11 and 101x101 grids. The maximum 'shortlike' perturbation produces 3.1{+-}0.2 times the effect predicted by the linear approximation, regardless of its position within the specimen, while all 'openlike' perturbations produce a smaller effect than predicted. An empirical nonlinear correction for f(x,y) is presented which provides excellent fit over the entire range of both positive and negative perturbations for the entire specimen.
Tunable optics derived from nonlinear acoustic effects
NASA Astrophysics Data System (ADS)
Higginson, Keith A.; Costolo, Michael A.; Rietman, Edward A.; Ritter, Joseph M.; Lipkens, Bart
2004-05-01
Gradient index lenses were formed in a liquid-filled cavity supporting an ultrasonic standing wave. The constructed devices acted as diverging lenses or axicon lenses, depending on whether the center or edge region is interrogated. The focal length of the diverging lens was controllable with the frequency and amplitude of applied ultrasound from -100 mm to negative infinity. Experiments and models suggest that the primary process contributing to lensing is the steady-state density component of the finite-amplitude standing wave; sound amplitudes up to 150 MPa were calculated in glycerin, corresponding to a maximum contrast in the refractive on the order of 0.1%. This amplitude was also sufficient to move high index nanometer-scale particles via an acoustic radiation force and thereby create larger refractive index gradients. The segregation of suspended nanoparticles was found to enhance the lensing effects that occurred in the pure fluids. Concepts are also explored to manipulate the particle distribution in order to create converging lenses and/or other desirable optical components.
Dissipative effects in nonlinear Klein-Gordon dynamics
NASA Astrophysics Data System (ADS)
Plastino, A. R.; Tsallis, C.
2016-03-01
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.
The real evidence of effects from source to freefield as base for nonlinear seismology
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Marmureanu, Alexandru; Ortanza Cioflan, Carmen-; -Florinela Manea, Elena
2014-05-01
Authors developed in last time the concept of "Nonlinear Seismology-The Seismology of the XXI Century". Prof. P. M. Shearer, California Univ. in last book:(i) Strong ground accelerations from large earthquakes can produce a non-linear response in shallow soils; (ii) The shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes; (iii) This is an active area of research in strong motion and engineering seismology. Aki: Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think. Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification (Tectonophysics, 218, 93-111, 1993). The difficulty to seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding and splitting up (if it is possible…and if it is necessary!) the effects of earthquake source, propagation path and local geological site conditions. To see the actual influence of nonlinearity of the whole system (seismic source-path propagation-local geological structure) the authors used to study the free field response spectra which are the last in this chain and they are the ones who are taken into account in seismic design of all structures. Soils from last part of this system(source-freefield) exhibit a strong nonlinear behaviour under cyclic loading conditions and although have many common mechanical properties require the use of different models to describe behavior differences. Sands typically have low rheological properties and can be modeled with an acceptable linear elastic model and clays which frequently presents significant changes over time can be modeled by a nonlinear viscoelastic model The real evidence of site effects from source to freefield
Nonlinear analysis of magnetization dynamics excited by spin Hall effect
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2015-03-01
We investigate the possibility of exciting self-oscillation in a perpendicular ferromagnet by the spin Hall effect on the basis of a nonlinear analysis of the Landau-Lifshitz-Gilbert (LLG) equation. In the self-oscillation state, the energy supplied by the spin torque during a precession on a constant energy curve should equal the dissipation due to damping. Also, the current to balance the spin torque and the damping torque in the self-oscillation state should be larger than the critical current to destabilize the initial state. We find that these conditions in the spin Hall system are not satisfied by deriving analytical solutions of the energy supplied by the spin transfer effect and the dissipation due to the damping from the nonlinear LLG equation. This indicates that the self-oscillation of a perpendicular ferromagnet cannot be excited solely by the spin Hall torque.
Low-Intensity Nonlinear Spectral Effects in Compton Scattering
Hartemann, F V; Albert, F; Siders, C W; Barty, C P
2010-02-23
Nonlinear effects are known to occur in Compton scattering light sources, when the laser normalized 4-potential, A = e{radical}-A{sub {mu}}A{sup {mu}}/m{sub 0}c approaches unity. In this letter, it is shown that nonlinear spectral features can appear at arbitrarily low values of A, if the fractional bandwidth of the laser pulse, {Delta}{phi}{sup -1}, is sufficiently small to satisfy A{sup 2} {Delta}{phi} {approx_equal} 1. A three dimensional analysis, based on a local plane-wave, slow-varying envelope approximation, enables the study of these effects for realistic interactions between an electron beam and a laser pulse, and their influence on high-precision Compton scattering light sources.
Nonlinear dynamics of long-wave Marangoni convection in a binary mixture with the Soret effect
NASA Astrophysics Data System (ADS)
Morozov, M.; Oron, A.; Nepomnyashchy, A. A.
2013-05-01
We investigate the nonlinear dynamics of long-wave Marangoni convection in a 2D binary-liquid layer heated from below. Free surface deformations and the Soret effect are taken into account. We employ the set of evolution equations derived in earlier work in the case of small Galileo and Lewis numbers and solve it numerically with periodic boundary conditions. We validate our numerical solution by comparison between the results obtained via two different numerical methods, as well as by comparison with the prior analytical results. We study the transitions between the nonlinear regimes emerging at finite supercriticality values and find a rich variety of patterns. In a sufficiently large computational domain, we observe multistability of waves chaotic in time and spatially replicated periodic and quasiperiodic solutions. For sufficiently high values of the Marangoni number, we also observe a breakdown of model equations.
Finite element nonlinear flutter and fatigue life of 2-D panels with temperature effects
NASA Technical Reports Server (NTRS)
Mei, Chuh; Xue, David Y.
1991-01-01
A frequency domain method for two-dimensional nonlinear panel flutter with thermal effects obtained from a consistent finite element formulation is presented. The von Karman nonlinear strain-displacement relation is used to account for large deflections, and the quasi-steady first-order piston theory is employed for aerodynamic loading. The finite element frequency domain results are compared with analytical time domain solutions. In a limit-cycle motion, the panel frequency and stress can be determined, thus fatigue life can be predicted. The influence of temperature and dynamic pressure on panel fatigue life is presented. An endurance dynamic pressure can be established at a given temperature from the present method.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
Spin Hall effect of light in inhomogeneous nonlinear medium
NASA Astrophysics Data System (ADS)
Li, Hehe; Li, Xinzhong
2016-01-01
In this paper, we investigate the spin Hall effect of a polarized Gaussian beam (GB) in a smoothly inhomogeneous isotropic and nonlinear medium using the method of the eikonal-based complex geometrical optics which describes the phase front and cross-section of a light beam using the quadratic expansion of a complex-valued eikonal. The linear complex-valued eikonal terms are introduced to describe the polarization-dependent transverse shifts of the beam in inhomogeneous nonlinear medium which is called the spin Hall effect of beam. We know that the spin Hall effect of beam is affected by the nonlinearity of medium and include two parts, one originates from the coupling between the spin angular momentum and the extrinsic orbital angular momentum due to the curve trajectory of the center of gravity of the polarized GB and the other from the coupling between the spin angular momentum and the intrinsic orbital angular momentum due to the rotation of the beam with respect to the central ray.
A quantum probability account of order effects in inference.
Trueblood, Jennifer S; Busemeyer, Jerome R
2011-01-01
Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before. PMID:21951058
Motion analysis of a motorcycle taking into account the rider's effects
NASA Astrophysics Data System (ADS)
Zhu, Shaopeng; Murakami, Shintaroh; Nishimura, Hidekazu
2012-08-01
In this paper, to analyse the rider's effects on the motion of a motorcycle, we model a rider-motorcycle system by taking into account the leaning motion of the rider's upper torso and his/her arm connection with the handlebars. The nonlinearity of the tyre force is introduced by utilising hyperbolic tangent functions to approximate a Magic Formula tyre model. On the basis of a derived nonlinear state-space model, we analyse the effects of not only the rider's arms but also his/her postures during steady turning by simulations. The rider's postures including lean-with, lean-in and lean-out are realised by adding the lean torque to the rider's upper torso. The motorcycle motion and the rider's effects are analysed in the case where the friction coefficient of the road surface changes severely during steady turning. In addition, a linearised state-space model is derived during steady turning, and a stability analysis of the rider-motorcycle system is performed.
The list strength effect: a contextual competition account.
Diana, Rachel A; Reder, Lynne M
2005-10-01
Research on the list strength effect (LSE) has shown that learning some words on a list more strongly than others impairs memory for the weakly learned words when tested with a recall task. Norman (2002) demonstrated that the LSE also occurs within the recollection process of a recognition test. In this study, a mechanistic dual-process account of the LSE was tested that simultaneously makes predictions concerning additional sources of context in interference effects. In two experiments, we attempted to replicate Norman's (2002) findings and provide the basis for our modeling efforts. We found evidence for a recollection LSE in raw measures of responding, with memory performance also benefiting from reinstatement of perceptual characteristics at test. However, large differences in the hits between the lists were accompanied by small differences in false alarms, such that when d' is calculated, differences between the lists are not significant. We propose an account of the LSE whereby the actual effect of competition between items on the list is small, although present, and difficult to distinguish from large effects of bias due to the strength manipulations. We argue that our findings provide support for a mechanistic explanation of LSE that is based on competition of source activation and changes in the thresholds for responses. PMID:16532860
Effects on non-linearities on aircraft poststall motion
Rohacs, J.; Thomasson, P.; Mosehilde, E.
1994-12-31
The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.
Nonlinear effects for a cylindrical gravitational two-soliton
NASA Astrophysics Data System (ADS)
Tomizawa, Shinya; Mishima, Takashi
2015-06-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study the nonlinear effects of gravitational waves, such as Faraday rotation and the time-shift phenomenon. In a previous work, we analyzed the single-soliton solution constructed using Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex-conjugate poles, by which we can avoid the light-cone singularities that are unavoidable in a single-soliton case. In particular, we compute the amplitudes of nonlinear gravitational waves and the time dependence of the polarizations. Furthermore, we consider the time-shift phenomenon for soliton waves, which means that a wave packet can propagate at a velocity slower than light.
Preliminary Evaluation of Nonlinear Effects on TCA Flutter
NASA Technical Reports Server (NTRS)
Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.
1998-01-01
The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.
Taking into account photofission effects in gamma-activation analysis
Dayvdov, M.G.; Kishel'gof, V.V.; Naumov, A.P.; Trukhov, A.V.
1986-11-01
The authors proposed a method for calculating the effect of photofission of U and Th, which is based on the well-known laws of physics of photofission and methods for calculating the activity of fission products. The authors compared the results of numerical calculations of the gamma spectra of photofission products with the measurements performed with a Ge (Li) detector with the spectra from activated model samples of U and Th. The method developed enables calculating the coefficients of interference and is also applicable to the solution of the problems of optimization of gamma activation analysis taking into account U and Th fission.
Teaching accountability: using client feedback to train effective family therapists.
Sparks, Jacqueline A; Kisler, Tiffani S; Adams, Jerome F; Blumen, Dale G
2011-10-01
The AAMFT Task Force on Core Competencies (Nelson et al., 2007) proposed that marriage and family therapy (MFT) educators teach and provide evidence of trainee competence beyond coursework and accrued clinical hours. This article describes the integration of a systematic client feedback protocol into an MFT-accredited program's curricula to address the call for outcome-based learning. Outcome management (OM) provides a framework for teaching and assessing trainee effectiveness. Continuous incorporation of client feedback embodies collaborative, strengths-based, integrative, and diversity-centered program values. Students learn a system for being accountable to clients, the profession, and service communities. PMID:22007779
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films
NASA Astrophysics Data System (ADS)
Tallent, Jack; Song, Q. Wang; Li, Zengfa; Stuart, Jeff; Birge, R. R.
1996-09-01
We report the effective nonlinearity for photochromic conversion in a blue-membrane bacteriorhodopsin film hosted in a dry polyvinyl alcohol matrix. The shift in absorption maximum on photoconversion in this film is larger than that of the same material in hydrated form, thus offering a larger modulation of the refractive index. The photoexcited index modulation is stable for several months, which provides for holographic data recording and long-term photochromic data storage. The effective index modulation is experimentally measured and is in good agreement with the theoretical predictions based on the Kramers-Kronig transformation.
Nonlinear Electron Transport Effects in a Chiral Carbon Nanotube
Yevtushenko, O.M.; Slepyan, G.Y.; Maksimenko, S.A.; Lakhtakia, A.; Romanov, D.A.
1997-08-01
We present a novel, general, semiclassical theory of electron transport in a carbon nanotube exposed to an external electric field. The charge carriers are treated in the framework of the simplified tight-binding model. Simultaneous exposure to rapidly oscillating (ac) and constant (dc) electric fields is considered to exemplify our theory. Nonlinear and chiral effects are found, and their interaction is delineated. We predict the effect of an ac electric field on the magnitude and the direction of the total time-averaged current. {copyright} {ital 1997} {ital The American Physical Society}
Prerequisite Change and Its Effect on Intermediate Accounting Performance
ERIC Educational Resources Information Center
Huang, Jiunn; O'Shaughnessy, John; Wagner, Robin
2005-01-01
As of Fall 1996, San Francisco State University changed its introductory financial accounting course to focus on a "user's" perspective, de-emphasizing the accounting cycle. Anticipating that these changes could impair subsequent performance, the Department of Accounting instituted a new prerequisite for intermediate accounting: Students would…
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
E. A. Belli; Hammett, G. W.; Dorland, W.
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Effects of nonlinear reservoir compaction on casing behavior
Chia, Y.P.; Bradley, D.A.
1988-08-01
Depletion of overpressured, undercompacted reservoirs can cause large reservoir pressure drops and sediment compaction, which may result in casing deformation and well failure. To predict soil and casing deformation during depletion, a finite-element model was developed. Nonlinear elastic and plastic behavior of the soils and slippage along the wellbore boundary are major advancements in this study. This axisymmetric model is composed of casing wall, cement column, slippage interface, and sediments from 11,400 to 13,200 ft (3475 to 4025 m) in depth with a radius of 3,400 ft (1035 m). This study features a process of concurrent fluid flow, nonlinear elastic and plastic soil deformation, slippage from the wellbore boundary, and casing deformation. The modeling results show that the decline in near-wellbore reservoir pressure during depletion causes vertical compaction in both the sand reservoirs and the confining shale formations. Slippage next to the wellbore decreases the axial shear load placed on the casing by the sediments. Nonlinear elastic and plastic soils show a greater tendency for casing deformation with depletion than do linear elastic soils. Axial strains in the casing above the yield strain eventually developed as near-wellbore reservoir pressure was allowed to decline to a minimum. Because this effect is quantified, the production rate may be held to a safe maximum so that the operating limits of the casing are not exceeded. Criteria are given to improve both completion design and production rate specification.
Nonlinear viscoelastic characterization of polycarbonate
NASA Technical Reports Server (NTRS)
Caplan, E. S.; Brinson, H. F.
1982-01-01
Uniaxial tensile creep and recovery data from polycarbonate at six temperatures and six stress levels are analyzed for nonlinear viscoelastic constitutive modeling. A theory to account for combined effects of two or more accelerating factors is presented.
Negative congruency effects: a test of the inhibition account.
Kiesel, Andrea; Berner, Michael P; Kunde, Wilfried
2008-03-01
Masked priming experiments occasionally revealed surprising effects: Participants responded slower for congruent compared to incongruent primes. This negative congruency effect (NCE) was ascribed to inhibition of prime-induced activation [Eimer, M., & Schlaghecken, F. (2003). Response faciliation and inhibition in subliminal priming. Biological Psychology, 64, 7-26.] that sets in if the prime activation is sufficiently strong. The current study tests this assumption by implementing manipulations designed to vary the amount of prime-induced activation in three experiments. In Experiments 1 and 3, NCEs were observed despite reduced prime-induced activation. Experiment 2 revealed no NCE with at least similar prime strength. Thus, the amount of prime activation did not predict whether or not NCEs occurred. The findings are discussed with regard to the inhibition account and the recently proposed account of mask-induced activation [cf. Lleras, A., & Enns, J. T. (2004). Negative compatibility or object updating? A cautionary tale of mask-dependent priming. Journal of Experimental Psychology: General, 133, 475-493; Verleger, R., Jaskowski, P., Aydemir, A., van der Lubbe, R. H. J., & Groen, M. (2004). Qualitative differences between conscious and nonconscious processing? On inverse priming induced by masked arrows. Journal of Experimental Psychology: General, 133, 494-515]. PMID:17188514
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Bulut, Hasan
2015-10-01
In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.
Criteria for Determination of Material Control and Accountability System Effectiveness
John Wright
2008-03-01
The Nevada Test Site (NTS) is a test bed for implementation of the Safeguards First Principles Initiative (SFPI), a risk-based approach to Material Control & Accountability (MC&A) requirements. The Comprehensive Assessment of Safeguards Strategies (COMPASS) model is used to determine the effectiveness of MC&A systems under SFPI. Under this model, MC&A is divided into nine primary elements. Each element is divided into sub-elements. Then each sub-element is assigned two values, effectiveness and contribution, that are used to calculate the rating. Effectiveness is a measure of subelement implementation and how well it meets requirements. Contribution is a relative measure of the importance, and functions as a weighting factor. The COMPASS model provides the methodology for calculation of sub-element and element ratings, but not the actual criteria. Each site must develop its own criteria. For the rating to be meaningful, the effectiveness criteria must be objective and based on explicit, measurable criteria. Contribution (weights) must reflect the importance within the MC&A program. This paper details the NTS approach to system effectiveness and contribution values, and will cover the following: the basis for the ratings, an explanation of the contribution “weights,” and the objective, performance based effectiveness criteria. Finally, the evaluation process will be described.
Nonlocal homogenization for nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Gorlach, Maxim A.; Voytova, Tatiana A.; Lapine, Mikhail; Kivshar, Yuri S.; Belov, Pavel A.
2016-04-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analyzing resonant nonlinear metamaterials.
Calvo, Florent; Li, Yejun; Kiawi, Denis M; Bakker, Joost M; Parneix, Pascal; Janssens, Ewald
2015-10-21
For structural assignment of gas phase compounds, infrared action spectra are usually compared to computed linear absorption spectra. However, action spectroscopy is highly nonlinear owing to the necessary transfer of the excitation energy and its subsequent redistribution leading to statistical ionization or dissociation. Here, we examine by joint experiment and dedicated modeling how such nonlinear effects affect the spectroscopic features in the case of selected inorganic clusters. Vibrational spectra of neutral silicon clusters are recorded by tunable IR-UV two-color ionization while IR spectra for cationic vanadium oxide clusters are obtained by IR multiphoton absorption followed by dissociation of the bare cluster or of its complex with Xe. Our kinetic modeling accounts for vibrational anharmonicities, for the laser interaction through photon absorption and stimulated emission rates, as well as for the relevant ionization or dissociation rates, all based on input parameters from quantum chemical calculations. Comparison of the measured and calculated spectra indicates an overall agreement as far as trends are concerned, except for the photodissociation of the V3O7(+)-Xe messenger complex, for which anharmonicities are too large and poorly captured by the perturbative anharmonic model. In all systems studied, nonlinear effects are essentially manifested by variations in the intensities as well as spectral broadenings. Differences in some band positions originate from inaccuracies of the quantum chemical data rather than specific nonlinear effects. The simulations further yield information on the average number of photons absorbed, which is otherwise unaccessible information: several to several tens of photons need to be absorbed to observe a band through dissociation, while three to five photons can be sufficient for detection of a band via IR-UV ionization. PMID:26208251
Clinical Trials: Spline Modeling is Wonderful for Nonlinear Effects.
Cleophas, Ton J
2016-01-01
Traditionally, nonlinear relationships like the smooth shapes of airplanes, boats, and motor cars were constructed from scale models using stretched thin wooden strips, otherwise called splines. In the past decades, mechanical spline methods have been replaced with their mathematical counterparts. The objective of the study was to study whether spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial and also to study whether it can detect patterns in a trial that are relevant but go unobserved with simpler regression models. A clinical trial assessing the effect of quantity of care on quality of care was used as an example. Spline curves consistent of 4 or 5 cubic functions were applied. SPSS statistical software was used for analysis. The spline curves of our data outperformed the traditional curves because (1) unlike the traditional curves, they did not miss the top quality of care given in either subgroup, (2) unlike the traditional curves, they, rightly, did not produce sinusoidal patterns, and (3) unlike the traditional curves, they provided a virtually 100% match of the original values. We conclude that (1) spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial; (2) spline modeling can detect patterns in a trial that are relevant but may go unobserved with simpler regression models; (3) in clinical research, spline modeling has great potential given the presence of many nonlinear effects in this field of research and given its sophisticated mathematical refinement to fit any nonlinear effect in the mostly accurate way; and (4) spline modeling should enable to improve making predictions from clinical research for the benefit of health decisions and health care. We hope that this brief introduction to spline modeling will stimulate clinical investigators to start using this wonderful method. PMID:23689089
Supersonic flow past oscillating airfoils including nonlinear thickness effects
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1954-01-01
A solution to second order in thickness is derived for harmonically oscillating two-dimensional airfoils in supersonic flow. For slow oscillations of an arbitrary profile, the result is found as a series including the third power of frequency. For arbitrary frequencies, the method of solution for any specific profile is indicated, and the explicit solution derived for a single wedge. Nonlinear thickness effects are found generally to reduce the torsional damping, and so enlarge the range of Mach numbers within which torsional instability is possible.
Nonlinear and edge effects in a thermoacoustic refrigerator
NASA Astrophysics Data System (ADS)
Blanc-Benon, Philippe; Marx, David
2006-05-01
In the present work, the full compressible Navier-Stokes equations are solved numerically, and the flow and heat transfer around a 2-D stack plate immerged in an acoustic standing wave are computed. Distortion of the waveform temperature are found and are explained using the results of a former nonlinear analysis. The temperature difference between the ends of the plate is investigated and compared to linear theory. The effects of the acoustic Mach number and geometrical parameters on refrigerator performance are investigated.Results reported here may explain a part of the difference between theoretical predictions and experimental results.
Longitudinal emittance growth due to nonlinear space charge effect
NASA Astrophysics Data System (ADS)
Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.
2012-03-01
Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.
Nonlinear dynamics induced anomalous Hall effect in topological insulators
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223
Nonlinear cosmological consistency relations and effective matter stresses
Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin E-mail: lukas.hollenstein@unige.ch E-mail: martin.kunz@unige.ch
2012-05-01
We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.
Nonlinear dynamics induced anomalous Hall effect in topological insulators
NASA Astrophysics Data System (ADS)
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.
Nonlinear dynamics induced anomalous Hall effect in topological insulators.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223
Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems
NASA Astrophysics Data System (ADS)
Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.
2006-05-01
Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.
Asymmetric nonlinear response of the quantized Hall effect
NASA Astrophysics Data System (ADS)
Siddiki, A.; Horas, J.; Kupidura, D.; Wegscheider, W.; Ludwig, S.
2010-11-01
An asymmetric breakdown of the integer quantized Hall effect (IQHE) is investigated. This rectification effect is observed as a function of the current value and its direction in conjunction with an asymmetric lateral confinement potential defining the Hall bar. Our electrostatic definition of the Hall bar via Schottky gates allows a systematic control of the steepness of the confinement potential at the edges of the Hall bar. A softer edge (flatter confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a larger current density. For one soft and one hard edge, the breakdown current depends on its direction, resembling rectification. This nonlinear magneto-transport effect confirms the predictions of an emerging screening theory of the IQHE.
Nonlinear effects of consumer density on multiple ecosystem processes.
Klemmer, Amanda J; Wissinger, Scott A; Greig, Hamish S; Ostrofsky, Milton L
2012-07-01
1. In the face of human-induced declines in the abundance of common species, ecologists have become interested in quantifying how changes in density affect rates of biophysical processes, hence ecosystem function. We manipulated the density of a dominant detritivore (the cased caddisfly, Limnephilus externus) in subalpine ponds to measure effects on the release of detritus-bound nutrients and energy. 2. Detritus decay rates (k, mass loss) increased threefold, and the loss of nitrogen (N) and phosphorus (P) from detrital substrates doubled across a range of historically observed caddisfly densities. Ammonium and total soluble phosphorus concentrations in the water column also increased with caddisfly density on some dates. Decay rates, nutrient release and the change in total detritivore biomass all exhibited threshold or declining responses at the highest densities. 3. We attributed these threshold responses in biophysical processes to intraspecific competition for limiting resources manifested at the population level, as density-dependent per-capita consumption, growth, development and case : body size in caddisflies was observed. Moreover, caddisflies increasingly grazed on algae at high densities, presumably in response to limiting detrital resources. 4. These results provide evidence that changes in population size of a common species will have nonlinear, threshold effects on the rates of biophysical processes at the ecosystem level. Given the ubiquity of negative density dependence in nature, nonlinear consumer density-ecosystem function relationships should be common across species and ecosystems. PMID:22339437
Linear and nonlinear effects in detonation wave structure formation
NASA Astrophysics Data System (ADS)
Borisov, S. P.; Kudryavtsev, A. N.
2016-06-01
The role of linear and nonlinear effects in the process of formation of detonation wave structure is investigated using linear stability analysis and direct numerical simulation. A simple model with a one-step irreversible chemical reaction is considered. For linear stability computations, both the local iterative shooting procedure and the global Chebyshev pseudospectral method are employed. Numerical simulations of 1D pulsating instability are performed using a shock fitting approach based on a 5th order upwind-biased compact-difference discretization and a shock acceleration equation deduced from the Rankine-Hugoniot conditions. A shock capturing WENO scheme of the 5th order is used to simulate propagation of detonation wave in a plane channel. It is shown that the linear analysis predicts correctly the mode dominating on early stages of flow evolution and the size of detonation cells which emerge during these stages. Later, however, when a developed self-reproducing cellular structure forms, the cell size is approximately doubled due to nonlinear effects.
Dielectric Decrement Effects on Nonlinear Electrophoresis of Ideally Polarizable Particles
NASA Astrophysics Data System (ADS)
Moran, Jeffrey L.; Chan, Wai Hong Ronald; Buie, Cullen R.; Figliuzzi, Bruno
2014-11-01
We present numerical simulations of nonlinear electrophoresis of ideally polarizable particles that specifically include the effects of a spatially non-uniform dielectric permittivity near the particle surface. Models for this dielectric decrement phenomenon have been developed by several authors, including Ben-Yaakov et al. [J. Phys.: Condens. Matter 2009] Hatlo et al. [EPL 2012], and Zhao & Zhai [JFM 2013]. We extend this work to ideally polarizable particles and include the effects of surface conduction and advective transport in the electric double layer. By numerically solving for the coupled velocity field, electric potential, and ionic concentration distributions in the bulk solution surrounding the particle, we demonstrate that the dielectric decrement model predicts ionic saturation around the particle and thus physical implications that resemble those resulting from the steric model developed by Kilic et al. [PRE 2007], albeit with differences that reflect the nonlinearity of the modified Poisson-Boltzmann equation. In addition, we develop a generalized condensed layer model that approximates both the steric and dielectric decrement models in the limits of strong electric fields and negligible surface conduction to obtain more physical insights into these models. We demonstrate that the mobility in both models asymptotically scales as the square root of the electric field at high fields, recovering the result of Bazant et al. [Adv. Colloid Interface Sci. 2009].
Nonlinear effects in new magnetic pickup coils for JET
Quercia, A.; Pomaro, N.; Visone, C.
2006-10-15
In the framework of the JET magnetic diagnostic enhancement, a set of pickup coils (UC subsystem) wound on metallic Inconel registered 600 former was manufactured. For cross-validation purposes, two different calibration methods were used. A discrepancy in the range of 3% was observed, which can be explained when considering the dependence of the calibration coefficients on the field strength, which in turn is mostly due to the nonlinear behavior of the Inconel former. For this reason a specimen of Inconel was analyzed by means of a magnetometer, which showed a nonlinear and hysteretic behavior occurring at low field level (below 5 mT). The calibration coefficients are also measured at low field (0.1-2 mT) and so are affected by such peculiar ferromagnetic behavior. Moreover, the ferromagnetic behavior might be sensitive to mechanical and thermal treatments performed during probe manufacturing and testing. Therefore the achievable accuracy for the calibration of coils wound on Inconel formers is limited by the following effects: (i) the field level in operation can be completely different from the field used in the calibration procedure; (ii) measurements of the magnetic properties on Inconel specimens cannot be extrapolated to the former, because of unpredictable effects of mechanical and thermal treatments made on the coil; (iii) residual magnetization; and (iv) temperature variations during operation.
Effects of model sensitivity and nonlinearity on nonlinear regression of ground water flow
Yager, R.M.
2004-01-01
Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.
Effective phonocardiogram segmentation using time statistics and nonlinear prediction
NASA Astrophysics Data System (ADS)
Sridharan, Rajeswari; Janet, J.
2010-02-01
In the fields of image processing, signal processing and recognition, image Segmentation is an efficient method for segmenting the phonocardiograph signals (PCG) is offered. Primarily, inter-beat segmentation is approved and carried out by means of DII lead of the ECG recording for identifying the happenings of the very first heart sound (S1). Then, the intra-beat segmentation is attained by the use of recurrence time statistics (RTS), and that is very sensitive to variations of the renovated attractor in a state space derived from nonlinear dynamic analysis. Apart from this if the segmentation with RTS is unsuccessful, a special segmentation is proposed using threshold that is extracted from the high frequency rate decomposition and the feature extraction of the disorder is classified based on the murmur sounds. In the Inter-beat segmentation process the accuracy was 100% of the over all PCG recording. Taking into account a different level of PCG beats were strongly concerned by different types of cardiac murmurs and intra-beat segmentation are give up for an accurate result.
A Bayesian nonlinear mixed-effects disease progression model
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2016-01-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562
Mental Accounting in Portfolio Choice: Evidence from a Flypaper Effect.
Choi, James J; Laibson, David; Madrian, Brigitte C
2009-12-01
Consistent with mental accounting, we document that investors sometimes choose the asset allocation for one account without considering the asset allocation of their other accounts. The setting is a firm that changed its 401(k) matching rules. Initially, 401(k) enrollees chose the allocation of their own contributions, but the firm chose the match allocation. These enrollees ignored the match allocation when choosing their own-contribution allocation. In the second regime, enrollees simultaneously selected both accounts' allocations, leading them to mentally integrate the two. Own-contribution allocations before the rule change equal the combined own- and match-contribution allocations afterwards, whereas combined allocations differ sharply across regimes. PMID:20027235
Negative refraction, gain and nonlinear effects in hyperbolic metamaterials.
Argyropoulos, Christos; Estakhri, Nasim Mohammadi; Monticone, Francesco; Alù, Andrea
2013-06-17
The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices. PMID:23787691
Nuclear Material Control and Accountability System Effectiveness Tool (MSET)
Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T; Campbell, Billy J; Hammond, Glenn A; Meppen, Bruce W; Brown, Richard F
2011-01-01
A nuclear material control and accountability (MC&A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC&A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC&A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC&A system (2) A fault tree of the operating MC&A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC&A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area [MBA]) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance factor reports on the
Zhukov, A. E. Arakcheeva, E. M.; Gordeev, N. Yu.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.; Savelyev, A. V.
2011-07-15
Peak modulation frequency of lasers based on self-organized quantum dots is calculated taking into account the effect of nonlinear gain saturation. Because of a large nonlinear gain coefficient and a reduction in the differential gain with increasing optical losses, the peak modulation frequency is attained for an optimum loss level that is significantly lower than the saturated optical gain in the active region. For lasers based on multiply stacked arrays of quantum dots, the peak modulation frequency first increases with increasing number of quantum-dot layers before leveling off, with the limiting value being inversely proportional to the nonlinear gain coefficient.
Integrating Effective Writing Skills in the Accounting Curriculum.
ERIC Educational Resources Information Center
May, Gordon S.; Arevalo, Claire
1983-01-01
The J. M. Tull School of Accounting at the University of Georgia has developed a program that integrates the teaching of writing skills with the regular accounting courses. Students in a three-course sequence write a total of eight papers--technical, memos, or reports--in assignments that resemble writing tasks encountered by professional…
Huang, Hong-Zhong; Yuan, Rong
2014-01-01
Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866
Spurious effects of analog-to-digital conversion nonlinearities on radar range-Doppler maps
NASA Astrophysics Data System (ADS)
Doerry, A. W.; Dubbert, D. F.; Tise, B. L.
2015-05-01
High-performance radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. System nonlinearities generate harmonic spurs that at best degrade, and at worst generate false target detections. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this paper the relationship of INL to radar performance; in particular its manifestation in a range-Doppler map or image.
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Nonlinear effects in the correlation of tracks and covariance propagation
NASA Astrophysics Data System (ADS)
Sabol, C.; Hill, K.; Alfriend, K.; Sukut, T.
2013-03-01
Even though there are methods for the nonlinear propagation of the covariance the propagation of the covariance in current operational programs is based on the state transition matrix of the 1st variational equations, thus it is a linear propagation. If the measurement errors are zero mean Gaussian, the orbit errors, statistically represented by the covariance, are Gaussian. When the orbit errors become too large they are no longer Gaussian and not represented by the covariance. One use of the covariance is the association of uncorrelated tracks (UCTs). A UCT is an object tracked by a space surveillance system that does not correlate to another object in the space object data base. For an object to be entered into the data base three or more tracks must be correlated. Associating UCTs is a major challenge for a space surveillance system since every object entered into the space object catalog begins as a UCT. It has been proved that if the orbit errors are Gaussian, the error ellipsoid represented by the covariance is the optimum association volume. When the time between tracks becomes large, hours or even days, the orbit errors can become large and are no longer Gaussian, and this has a negative effect on the association of UCTs. This paper further investigates the nonlinear effects on the accuracy of the covariance for use in correlation. The use of the best coordinate system and the unscented Kalman Filter (UKF) for providing a more accurate covariance are investigated along with assessing how these approaches would result in the ability to correlate tracks that are further separated in time.
Mental Accounting in Portfolio Choice: Evidence from a Flypaper Effect
Choi, James J.; Laibson, David; Madrian, Brigitte C.
2009-01-01
Consistent with mental accounting, we document that investors sometimes choose the asset allocation for one account without considering the asset allocation of their other accounts. The setting is a firm that changed its 401(k) matching rules. Initially, 401(k) enrollees chose the allocation of their own contributions, but the firm chose the match allocation. These enrollees ignored the match allocation when choosing their own-contribution allocation. In the second regime, enrollees simultaneously selected both accounts’ allocations, leading them to mentally integrate the two. Own-contribution allocations before the rule change equal the combined own- and match-contribution allocations afterwards, whereas combined allocations differ sharply across regimes. PMID:20027235
NASA Astrophysics Data System (ADS)
Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert
2016-06-01
We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.
Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Theiler, James; Foy, Bernard R.; Fraser, Andrew M.
2006-05-01
When a matched filter is used for detecting a weak target in a cluttered background (such as a gaseous plume in a hyperspectral image), it is important that the background clutter be well-characterized. A statistical characterization can be obtained from the off-plume pixels of a hyperspectral image, but if on-plume pixels are inadvertently included, then that background characterization will be contaminated. In broad area search scenarios, where detection is the central aim, it is by definition unknown which pixels in the scene are off-plume, so some contamination is inevitable. In general, the contaminated background degrades the ability of the matched-filter to detect that signal. This could be a practical problem in plume detection. A linear analysis suggests that the effect is limited, and actually vanishes in some cases. In this study, we take into account the Beer's Law nonlinearity of plume absorption, and we investigate the effect of that nonlinearity on the signal contamination.
Accounting for Recoil Effects in Geochronometers: A New Model Approach
NASA Astrophysics Data System (ADS)
Lee, V. E.; Huber, C.
2012-12-01
dated grain is a major control on the magnitude of recoil loss, the first feature is the ability to calculate recoil effects on isotopic compositions for realistic, complex grain shapes and surface roughnesses. This is useful because natural grains may have irregular shapes that do not conform to simple geometric descriptions. Perhaps more importantly, the surface area over which recoiled nuclides are lost can be significantly underestimated when grain surface roughness is not accounted for, since the recoil distances can be of similar characteristic lengthscales to surface roughness features. The second key feature is the ability to incorporate dynamical geologic processes affecting grain surfaces in natural settings, such as dissolution and crystallization. We describe the model and its main components, and point out implications for the geologically-relevant chronometers mentioned above.
Nonlinear optical effects in colloidal carbon nanohorns—a new optical limiting material
NASA Astrophysics Data System (ADS)
Dengler, Stefanie; Muller, Olivier; Hege, Cordula; Eberle, Bernd
2016-09-01
Many carbon based nanomaterials exhibit nonlinear optical response over a large wavelength range when irradiated with intense laser light what makes them promising candidates for optical limiting purposes. Besides nonlinear absorption some of these well studied nanostructures like carbon nanotubes or carbon black owe their prominent limiting efficiency particularly to induced nonlinear scattering. In this paper, our investigations on carbon nanohorns are presented—a new and very promising nonlinear optical material. It offers excellent properties like a low optical limiting threshold and a high nonlinear attenuation when tested with nanosecond laser pulses at wavelengths of 532 nm or 1064 nm. At moderate irradiation levels near the nonlinear threshold our measurements performed on colloidal carbon nanohorns reveal broadband nonlinear absorption as the dominant optical limiting effect. Towards higher irradiation levels significant nonlinear scattering takes place as a secondary process. In contrast to 532 nm, at 1064 nm nonlinear scattering is less strong even at high irradiation levels and the nonlinear response is dominated by nonlinear absorption.
Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects
NASA Astrophysics Data System (ADS)
Tai, Tamin; Ghamsari, B. G.; Bieler, T.; Anlage, Steven M.
2015-10-01
The performance of niobium-based superconducting radio frequency (SRF) particle-accelerator cavities can be sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, a wide-bandwidth microwave microscope with localized and strong RF magnetic fields is developed by integrating a magnetic write head into the near-field microwave microscope to enable mapping of the local electrodynamic response in the multi-GHz frequency regime at cryogenic temperatures. This magnetic writer demonstrates a localized and strong RF magnetic field on bulk Nb surface with Bsurface>102 mT and submicron resolution. By measuring the nonlinear response of the superconductor, nonlinearity coming from the nanoscale weak-link Josephson junctions due to the contaminated surface in the cavity-fabrication process is demonstrated.
Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects.
Halimi, Abderrahim; Honeine, Paul; Bioucas-Dias, Jose M
2016-10-01
This paper presents three hyperspectral mixture models jointly with Bayesian algorithms for supervised hyperspectral unmixing. Based on the residual component analysis model, the proposed general formulation assumes the linear model to be corrupted by an additive term whose expression can be adapted to account for nonlinearities (NLs), endmember variability (EV), or mismodeling effects (MEs). The NL effect is introduced by considering a polynomial expression that is related to bilinear models. The proposed new formulation of EV accounts for shape and scale endmember changes while enforcing a smooth spectral/spatial variation. The ME formulation considers the effect of outliers and copes with some types of EV and NL. The known constraints on the parameter of each observation model are modeled via suitable priors. The posterior distribution associated with each Bayesian model is optimized using a coordinate descent algorithm, which allows the computation of the maximum a posteriori estimator of the unknown model parameters. The proposed mixture and Bayesian models and their estimation algorithms are validated on both synthetic and real images showing competitive results regarding the quality of the inferences and the computational complexity, when compared with the state-of-the-art algorithms. PMID:27416597
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1987-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines
Kozyrev, Alexander B.; Weide, Daniel W. van der
2005-05-27
The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.
Modal contributions and effects of spurious poles in nonlinear subspace identification
NASA Astrophysics Data System (ADS)
Marchesiello, S.; Fasana, A.; Garibaldi, L.
2016-06-01
Stabilisation diagrams have become a standard tool in the linear system identification, due to the capability of reducing the user interaction during the parameter extraction process. Their use in the presence of nonlinearity was recently introduced and it was demonstrated to be effective even in presence of non-smooth nonlinearities and high modal density. However, some variability of the identification results was reported, in particular concerning the quantification of the nonlinear effects, because of the presence of spurious modes, due to an over-estimation of the system order. In this paper the impact of spurious poles on the nonlinear subspace identification is investigated and some modal decoupling tools are introduced, which make it possible to identify modal contributions of physical poles on the nonlinear dynamics. An experimental identification is then conducted on a multi-degree-of-freedom system with a local nonlinearity and the significant improvements of the estimates obtained by the proposed approach are highlighted.
Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-21
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. PMID:23339902
Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides
NASA Astrophysics Data System (ADS)
He, Bing; Yan, Shu-Bin; Wang, Jing; Xiao, Min
2015-05-01
It is generally difficult to study the dynamical properties of a quantum system with both inherent quantum noises and nonperturbative nonlinearity. Due to the possibly drastic intensity increase of an input coherent light in gain-loss waveguide couplers with parity-time (PT ) symmetry, the Kerr effect from a nonlinearity added into the system can be greatly enhanced and is expected to create macroscopic entangled states of the output light fields with huge photon numbers. Meanwhile, quantum noises also coexist with the amplification and dissipation of the light fields. Under the interplay between the quantum noises and nonlinearity, the quantum dynamical behaviors of the systems become rather complicated. However, the important quantum noise effects have been mostly neglected in previous studies about nonlinear PT -symmetric systems. Here we present a solution to this nonperturbative quantum nonlinear problem, showing the real-time evolution of the system observables. The enhanced Kerr nonlinearity is found to give rise to a previously unknown decoherence effect that is irrelevant to the quantum noises and imposes a limit on the emergence of macroscopic nonclassicality. In contrast to what happens in linear systems, the quantum noises exert significant impact on the system dynamics and can create nonclassical light field states in conjunction with the enhanced Kerr nonlinearity. This study on the noise involved in quantum nonlinear dynamics of coupled gain-loss waveguides can help to better understand the quantum noise effects in many nonlinear systems.
NASA Astrophysics Data System (ADS)
Abgaryan, K. K.; Reviznikov, D. L.
2016-01-01
A three-level scheme for modeling nanosized semiconductor heterostructures with account for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantummechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, calculation of the distribution of carriers in the heterostructure based on the solution to the Schrödinger and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas with account for various scattering mechanisms. To speed up the computations of electron density in the heterostructure, the approach based on the approximation of the nonlinear dependence of the electron density on the potential in combination with the linearization of the Poisson equation is used. The efficiency of this approach in problems of the class in question is demonstrated.
NASA Astrophysics Data System (ADS)
Liao, Ying-Po; Safak, Ilgar; Kaihatu, James M.; Sheremet, Alex
2015-11-01
The sensitivity of wave-mud interaction on directionality and nonlinearity is investigated. A phase-resolving nonlinear wave model which accounts for directional wave propagation and mud damping is used to simulate wave propagation over a muddy shelf. Field data from an experiment conducted at the central chenier plain coast, western Louisiana, USA are used to validate the model. Recently, verification of a one-dimensional wave model with the field data showed that this model was able to replicate the evolution of wave spectra over muddy bottoms. In this study, unidirectional wave spectra were also run through the parabolic model, but with various initial angles. Linear wave model runs were also performed in order to gauge the effect of nonlinear evolution on the results. Significant wave height and total energy contained in three different spectral bands from the model are compared to the data over the shelf, and correlation metrics calculated. While the model generally performs well no matter the initial angle, at no point does a zero initial angle compare best to the data, indicating that a unidirectional model may be missing some of the dynamical features of wave propagation over a muddy shelf. Furthermore, despite similar correlation scores between linear and nonlinear model comparisons of bulk statistics, it is seen the linear model does not replicate some aspects of the spectral evolution (such as low-frequency generation and amplification) shown in the data and captured by the nonlinear model. Despite the relatively short propagation distance, the effects of both directionality and nonlinearity play a noticeable role in wave evolution over a muddy seabed.
Effects of nonlinear damping in flexible space structures
NASA Technical Reports Server (NTRS)
Hu, Anren; Taylor, Lawrence W.
1988-01-01
The classical Krylov-Bogoliubov "averaging" technique is used to study a class of nonlinear damping models, for which the damping force is proportional to the product of positive integer or fractional power of absolute values of displacement and that of velocity. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on damping ratio, but also on the initial amplitude, the time to measure the response, frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce energy of the system as well as to pass energy to higher modes. Experimental evidence such as in Spacecraft Control Laboratory Experiment seems to support the need for nonlinear models.
Nonlinear dynamics of wind waves: multifractal phase/time effects
NASA Astrophysics Data System (ADS)
Mellen, R. H.; Leykin, I. A.
In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 < α < 2 for the type of multifractal and the co-dimension 0 < C1 < 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1). The actual estimate is close to the limiting value α = 2, which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.
Nonlinear fluctuation effects in dynamics of freely suspended films
NASA Astrophysics Data System (ADS)
Kats, E. I.; Lebedev, V. V.
2015-03-01
Long-scale dynamic fluctuation phenomena in freely suspended films is analyzed. We consider isotropic films that, say, can be pulled from bulk smectic-A liquid crystals. The key feature of such objects is possibility of bending deformations of the film. The bending (also known as flexular) mode turns out to be anomalously weakly attenuated. In the harmonic approximation there is no viscous-like damping of the bending mode, proportional to q2 (q is the wave vector of the mode), since it is forbidden by the rotational symmetry. Therefore, the bending mode is strongly affected by nonlinear dynamic fluctuation effects. We calculate the dominant fluctuation contributions to the damping of the bending mode due to its coupling to the inplane viscous mode, which restores the viscous-like q2 damping of the bending mode. Our calculations are performed in the framework of the perturbation theory where the coupling of the modes is assumed to be small, then the bending mode damping is relatively weak. We discuss our results in the context of existing experiments and numeric simulations of the freely suspended films and propose possible experimental observations of our predictions.
Pulsed currents carried by whistlers. VI. Nonlinear effects
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
1996-07-01
In a large magnetized laboratory plasma (n≂1011 cm-3, kTe≥1 eV, B0≥10 G, 1 m × 2.5 m), current pulses in excess of the Langmuir limit (150 A, 0.2 μs) are drawn to electrodes in a parameter regime characterized by electron magnetohydrodynamics (ωci≪ω≪ωce). The transient plasma current is transported by low-frequency whistlers forming wave packets with topologies of three-dimensional vortices. The generalized vorticity, Ω, is shown to be frozen into the electron fluid drifting with velocity v, satisfying ∂Ω/∂t≂∇×(v×Ω). The nonlinearity in v×Ω is negligible since v and Ω(r,t) are found to be nearly parallel. However, large currents associated with v≥(2kTe/me)1/2 lead to strong electron heating which modifies the damping of whistlers in collisional plasmas. Heating in a flux tube provides a filament of high Spitzer conductivity, which permits a nearly collisionless propagation of whistler pulses. This filamentation effect is not associated with density modifications as in modulational instabilities, but arises from conductivity modifications. The companion paper [Stenzel and Urrutia, Phys. Plasmas 3, 2599 (1996)] shows that, after the decay of the transient wave magnetic field, magnetic helicity remains in the plasma due to temperature-gradient driven currents.
Stochastic nonlinear mixed effects: a metformin case study.
Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien
2016-02-01
In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution. PMID:26585899
Materialism Moderates the Effect of Accounting for Time on Prosocial Behaviors.
Li, Jibo; Chen, Yingying; Huang, Xiting
2015-01-01
Accounting for time is defined as putting a price on time. Researchers have demonstrated that accounting for time reduces the time individuals spend on others; however, its association with monetary donations has not been examined. We hypothesized that accounting for time will activate a utility mindset that would affect one's allocation of time and money. In Study 1, the mediating effect of utility mindsets on the relationship between accounting for time and prosocial behavior was examined. In Study 2, we examined the effect of accounting for time on time spent helping and donating money, and the moderating role of material values on the relationship between accounting for time and prosocial behavior. Results showed that accounting for time activated a mindset of utility maximization that, in turn, reduced participants' prosocial behavior; moreover, materialism moderated the effect of accounting for time on prosocial behavior. PMID:25751602
Zahariev, Federico; Gordon, Mark S.
2014-05-14
This work presents an extension of the linear response TDDFT/EFP method to the nonlinear-response regime together with the implementation of nonlinear-response TDDFT/EFP in the quantum-chemistry computer package GAMESS. Included in the new method is the ability to calculate the two-photon absorption cross section and to incorporate solvent effects via the EFP method. The nonlinear-response TDDFT/EFP method is able to make correct qualitative predictions for both gas phase values and aqueous solvent shifts of several important nonlinear properties.
Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes
NASA Astrophysics Data System (ADS)
Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D.; Sahraoui, B.
2012-12-01
In this work, we present the third order nonlinear optical investigation of two gold complexes, which differ by the nature of the counter cations. The impact of the different design in the architecture through a set of hydrogen bonds in the case of Au-Mel of the systems on the nonlinearity has been studied by means of the Z-scan setup under 532 nm, 30 ps laser excitation, allowing for the determination of the nonlinear absorption and refraction of the samples. Significant modification of the nonlinear optical response between the two metal complexes has been found suggesting a clear effect of the counter cation.
Compensating for dispersion and the nonlinear Kerr effect without phase conjugation.
Paré, C; Villeneuve, A; Bélanger, P A; Doran, N J
1996-04-01
We propose the use of a dispersive medium with a negative nonlinear refractive-index coefficient as a way to compensate for the dispersion and the nonlinear effects resulting from pulse propagation in an optical fiber. The undoing of pulse interaction might allow for increased bit rates. PMID:19865438
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
ERIC Educational Resources Information Center
Hosal-Akman, Nazli; Simga-Mugan, Can
2010-01-01
This study explores the effect of teaching methods on the academic performance of students in accounting courses. The study was carried out over two semesters at a well-known university in Turkey in principles of financial accounting and managerial accounting courses. Students enrolled in the courses were assigned to treatment and control groups.…
The effect of accountable care organizations on oncology practice.
Shulman, Lawrence N
2014-01-01
Cancer care accounts for a significant portion of the rise in health care costs, and therefore, as national efforts escalate to control cost, cancer care will be a focus of concern. Cost increases in cancer care are related to many factors, including increasing cancer incidence in an aging population, the introduction of new high-cost therapeutics, and the high cost of end-of-life care. Accountable care organizations (ACOs) have been one of the major efforts directed at controlling health care costs. How cancer care will fit into the rubric of ACOs is not entirely clear but will certainly evolve over the coming years. The oncology profession has the opportunity to play a role in this evolution or could leave the evolution to others driving the process, such as the Centers for Medicare and Medicaid Services (CMS), private payers, and ACOs. Ideally all parties will work together to provide a construct for high-value, high-quality care for patients with cancer while contributing to cost control in overall health care. PMID:24857141
Intrinsic nonlinear effects of dipole magnets in small rings
NASA Astrophysics Data System (ADS)
Xu, H. S.; Huang, W. H.; Tang, C. X.; Lee, S. Y.
2016-06-01
We find that dynamic aperture depends significantly on the bending radii of dipole magnets when designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are conducted to study these resonances. Our analysis results agree well with the tracking results at the third-order resonances 3 νx=ℓ and νx±2 νz=ℓ , where ℓ 's are the integer multiple of the number of superperiods.
Pulsed currents carried by whistlers. VI. Nonlinear effects
Urrutia, J.M.; Stenzel, R.L.
1996-07-01
In a large magnetized laboratory plasma ({ital n}{approx_equal}10{sup 11} cm{sup {minus}3}, {ital kT}{sub {ital e}}{ge}1 eV, {ital B}{sub 0}{ge}10 G, 1 m {times} 2.5 m), current pulses in excess of the Langmuir limit (150 A, 0.2 {mu}s) are drawn to electrodes in a parameter regime characterized by electron magnetohydrodynamics ({omega}{sub {ital ci}}{lt}{omega}{lt}{omega}{sub {ital ce}}). The transient plasma current is transported by low-frequency whistlers forming wave packets with topologies of three-dimensional vortices. The generalized vorticity, {bold {Omega}}, is shown to be frozen into the electron fluid drifting with velocity {ital v}, satisfying {partial_derivative}{bold {Omega}}/{partial_derivative}{ital t}{approx_equal}{nabla}{times}({ital v}{times}{bold {Omega}}). The nonlinearity in {ital v}{times}{bold {Omega}} is negligible since {ital v} and {bold {Omega}}({ital r},{ital t}) are found to be nearly parallel. However, large currents associated with {ital v}{ge}(2{ital kT}{sub {ital e}}/{ital m}{sub {ital e}}){sup 1/2} lead to strong electron heating which modifies the damping of whistlers in collisional plasmas. Heating in a flux tube provides a filament of high Spitzer conductivity, which permits a nearly collisionless propagation of whistler pulses. This filamentation effect is {ital not} associated with density modifications as in modulational instabilities, but arises from conductivity modifications. The companion paper [Stenzel and Urrutia, Phys. Plasmas {bold 3}, 2599 (1996)] shows that, after the decay of the transient wave magnetic field, magnetic helicity remains in the plasma due to temperature-gradient driven currents. {copyright} {ital 1996 American Institute of Physics.}
Spectral investigation of nonlinear local field effects in Ag nanoparticles
Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji
2015-03-21
The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.
An enhanced temperature index model for debris-covered glaciers accounting for thickness effect
NASA Astrophysics Data System (ADS)
Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.
2016-08-01
Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the
Daulatabadkar, Pragya Ghosh, S.
2015-07-31
An investigation is carried out in III-V compound semiconductor when a strong transverse magnetic field is applied. By considering the heating effect of carriers, an analytical investigation is made for n-InSb in which the nonlinearity arises due to dependence of effective mass on electronic temperature. At optical frequencies the temperature dependence part of momentum transfer collision frequency is assumed to be negligibly small. The linear and nonlinear parts of optical parameters are evaluated through the first and third order susceptibility of InSb sample. The analysis reveals that the nonlinear part of refractive index increases with intensity which leads to self-focusing of the beam. Thus by adjusting the doping concentration pump frequency and intensity, one may achieve desired nonlinearity in the crystal. Hence n - InSb sample establishes its potentials as candidate material for fabrication of cubic nonlinear devices.
Effects due to nonlinear modification of driven current on tearing mode stabilization
NASA Astrophysics Data System (ADS)
Dong, Ge; Reiman, Allan; Fisch, Nathaniel
2015-11-01
Neoclassical tearing modes (NTMs) can be destabilized by a helical perturbation in the boostrap current, and can result in large magnetic islands which are detrimental to confinement in toroidal plasma devices. NTM stability properties and dynamics can be strongly affected by current drive in various scenarios. The modified Rutherford equation is generally used to calculate the contributions from the current drive, without considering the self- consistent change in the driven current associated with the nonlinear effects. In this study, we evaluated the importance of such nonlinear effects as the effect of the change in Te on the current drive efficiency, and the nonlinear interaction of the current drive and the electric field.
NASA Astrophysics Data System (ADS)
Deng, Jiechun; Xu, Haiming; Zhang, Leying
2016-05-01
Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.
Effect of cantilever nonlinearity in nanoscale tensile testing
NASA Astrophysics Data System (ADS)
Ding, Weiqiang; Guo, Zaoyang; Ruoff, Rodney S.
2007-02-01
Microcantilevers are widely used in micro-/nanoscale mechanics studies. The nonlinear response of a cantilever at large deflection is sometimes overlooked. A general study of cantilever beam nonlinearity under a variety of loading conditions was performed with analytical and finite element analyses. Analytical equations for the applied load and the cantilever deflection were obtained. The cantilever nonlinearity was found to increase with increasing cantilever deflection and/or angle of loading. Tensile tests were performed on templated carbon nanotubes (TCNTs) with a custom-made nanomanipulator inside a scanning electron microscope. Atomic force microscope (AFM) cantilevers were used to load the TCNTs and sense the force. During the tests the AFM cantilevers were loaded to relatively large deflections with nonvertical loads applied at the AFM tip. Based on the slope and the loading angle measurements, the breaking forces of the TCNTs were obtained through numerical integration of the analytical equations. A comparison was made between the load results obtained from linear and nonlinear analyses. The linear analysis was found to underestimate the applied load by up to 15%.
Returns to Education: Accounting for Enrolment and Completion Effects
ERIC Educational Resources Information Center
Hérault, Nicolas; Zakirova, Rezida
2015-01-01
This paper contributes to the literature by separately analysing the course enrolment and completion effects of vocational education and training (VET) as well as higher education. Moreover, we investigate the persistence of these wage effects over time while controlling for two potential selection biases. We take advantage of the Longitudinal…
Generalized mean-field or master equation for nonlinear cavities with transverse effects.
Dunlop, A M; Firth, W J; Heatley, D R; Wright, E M
1996-06-01
We present a general form of master equation for nonlinear-optical cavities that can be described by an ABCD matrix. It includes as special cases some previous models of spatiotemporal effects in lasers. PMID:19876153
Surface-enhanced nonlinear optical effects and detection of adsorbed molecular monolayers
Shen, Y.R.; Chen, C.K.; Heinz, T.F.; Ricard, D.
1981-01-01
The observation of a number of surface-enhanced nonlinear optical effects is discussed. The feasibility of using second-harmonic generation to detect the adsorption of molecular monolayers on a metal surface in an electrolytic solution is shown.
Nonlinear optical properties and optical power limiting effect of Giemsa dye
NASA Astrophysics Data System (ADS)
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
NASA Astrophysics Data System (ADS)
Zhu, Baohua; Wang, Fangfang; Cao, Yawan; Wang, Chong; Wang, Ji; Gu, Yuzong
2016-06-01
CdS nanocrystals are attached on graphene nanosheets and their nonlinear optical properties are investigated by picosecond Z-scan technique at 532 nm. We found that synergistic effect between the graphene and CdS makes a major enhancement on the nonlinear optical absorption of graphene/CdS nanohybrid in comparison with cooperative effect, and the synergistic improvement is restricted by nonradiative defects in hybrid. The synergistic mechanism involving the local field theory and charge transfer evolution is proposed.
The effect of problem perturbations on nonlinear dynamical systems and their reduced order models
Serban, R; Homescu, C; Petzold, L
2005-03-03
Reduced order models are used extensively in many areas of science and engineering for simulation, design, and control. Reduction techniques for nonlinear dynamical systems produce models that depend strongly on the nominal set of parameters for which the reduction is carried out. In this paper we address the following two questions: 'What is the effect of perturbations in the problem parameters on the output functional of a nonlinear dynamical system?' and 'To what extent does the reduced order model capture this effect?'
Correction for nonlinear photon counting effects in lidar systems
NASA Technical Reports Server (NTRS)
Donovan, D. P.; Whiteway, J. A.; Carswell, A. I.
1992-01-01
Photomultiplier tubes (PMT's) employed in the photon counting (PC) mode of operation are widely used as detectors in lidar systems. In our laboratory, we have developed a versatile Nd:YAG lidar which is used for measurement of both the middle atmosphere and the troposphere. With this system, we encounter a very wide range of signal levels ranging from the extremely weak signals from the top of the mesosphere to the very strong returns from low level clouds. Although the system is capable of operating the PMT's in either the analog detection or photon counting mode, we find that often when we use photon counting we have portions of our lidar return which contain very useful information but are not within the linear operating regime of the PC system. We report the results of our efforts to explore the extent to which such high intensity PC signals can be quantitatively analyzed. In particular, a useful model relating the mean 'true' count rate and the observed count rate is presented and it's application to our system demonstrated. This model takes into account the variation in height of the PMT output pulses and the effect of the pulse height discrimination threshold.
Teacher Effects, Value-Added Models, and Accountability
ERIC Educational Resources Information Center
Konstantopoulos, Spyros
2014-01-01
Background: In the last decade, the effects of teachers on student performance (typically manifested as state-wide standardized tests) have been re-examined using statistical models that are known as value-added models. These statistical models aim to compute the unique contribution of the teachers in promoting student achievement gains from grade…
Facilitative Orthographic Neighborhood Effects: The SERIOL Model Account
ERIC Educational Resources Information Center
Whitney, Carol; Lavidor, Michal
2005-01-01
A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the…
76 FR 35295 - Delivering an Efficient, Effective, and Accountable Government
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
..., 2011. [FR Doc. 2011-15181 Filed 6-15-11; 11:15 am] Billing code 3195-W1-P ... June 16, 2011 Part III The President Executive Order 13576--Delivering an Efficient, Effective, and... / Thursday, June 16, 2011 / Presidential Documents#0;#0; #0; #0;Title 3-- #0;The President ] Executive...
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Temporal laser-pulse-shape effects in nonlinear Thomson scattering
NASA Astrophysics Data System (ADS)
Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.
2016-06-01
The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.
Effect of nonlinear electromechanical interaction upon wind power generator behavior
NASA Astrophysics Data System (ADS)
Selyutskiy, Yury D.; Klimina, Liubov A.
2014-12-01
A mathematical model is developed for describing a small horizontal axis wind turbine with electric generator, such that the electromechanical interaction is non-linear in current. Dependence of steady regimes of the system upon parameters of the model is studied. In particular, it is shown that increase of wind speed causes qualitative restructuring of the set of steady regimes, which leads to considerable change in behavior of the wind power generator. The proposed model is verified against data obtained in experiments.
Hubble space telescope: Pointing error effects on nonlinear ball joints
NASA Technical Reports Server (NTRS)
Farmer, J. E.; Grissett, F. R.
1985-01-01
The Hubble Space Telescope pointing error produced by optical benches mounted on free ball joints is examined. Spacecraft cable connections are assumed to produce translational and rotational damping and restoring forces which act through the optical bench center of mass. The nonlinear dynamics are modeled and then implemented using an existing computer program for simulating the vehicle dynamics and pointing control system algorithm. Results are presented for the test case which indicate acceptable performance.
Nonlinear effects in spin relaxation of cavity polaritons
Solnyshkov, D. D.; Shelykh, I. A. Glazov, M. M.; Malpuech, G.; Amand, T.; Renucci, P.; Marie, X.; Kavokin, A. V.
2007-09-15
We present the general kinetic formalism for the description of spin and energy relaxation of the cavity polaritons in the framework of the Born-Markov approximation. All essential mechanisms of polariton redistribution in reciprocal space together with the final state bosonic stimulation are taken into account from our point of view. The developed theory is applied to describe our experimental results on the polarization dynamics obtained in the polariton parametric amplifier geometry (pumping at the so-called magic angle). Under circular pumping, we show that the spin relaxation time is strongly dependent on the detuning between the exciton and cavity mode energies mainly because of the influence of the detuning on the coupling strength between the photon-like part of the exciton-polariton lower dispersion branch and the reservoir of uncoupled exciton states. In the negative detuning case we find a very long spin relaxation time of about 300 ps. In the case of excitation by a linearly polarized light, we have experimentally confirmed that the anisotropy of the polariton-polariton interaction is responsible for the build-up of the cross-linear polarization of the signal. In the spontaneous regime the polarization degree of the signal is -8% but it can reach -65% in the stimulated regime. The long-living linear polarization observed at zero detuning indicates that the reservoir is formed by excitons localized at the anisotropic islands oriented along the crystallographic axes. Finally, under elliptical pumping, we have directly measured in the time domain and modeled the effect of self-induced Larmor precession, i.e., the rotation of the linear polarization of a state about an effective magnetic field proportional to the projection of the total spin of exciton-polaritons in the cavity on its growth axis.
Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides
NASA Astrophysics Data System (ADS)
Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei
2016-04-01
This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.
NASA Astrophysics Data System (ADS)
Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko
2016-08-01
We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.
Dagne, Getachew; Huang, Yangxin
2016-01-01
Censored data are characteristics of many bioassays in HIV/AIDS studies where assays may not be sensitive enough to determine gradations in viral load determination among those below a detectable threshold. Not accounting for such left-censoring appropriately can lead to biased parameter estimates in most data analysis. To properly adjust for left-censoring, this paper presents an extension of the Tobit model for fitting nonlinear dynamic mixed-effects models with skew distributions. Such extensions allow one to specify the conditional distributions for viral load response to account for left-censoring, skewness and heaviness in the tails of the distributions of the response variable. A Bayesian modeling approach via Markov Chain Monte Carlo (MCMC) algorithm is used to estimate model parameters. The proposed methods are illustrated using real data from an HIV/AIDS study. PMID:22992288
Dagne, Getachew; Huang, Yangxin
2012-01-01
Censored data are characteristics of many bioassays in HIV/AIDS studies where assays may not be sensitive enough to determine gradations in viral load determination among those below a detectable threshold. Not accounting for such left-censoring appropriately can lead to biased parameter estimates in most data analysis. To properly adjust for left-censoring, this paper presents an extension of the Tobit model for fitting nonlinear dynamic mixed-effects models with skew distributions. Such extensions allow one to specify the conditional distributions for viral load response to account for left-censoring, skewness and heaviness in the tails of the distributions of the response variable. A Bayesian modeling approach via Markov Chain Monte Carlo (MCMC) algorithm is used to estimate model parameters. The proposed methods are illustrated using real data from an HIV/AIDS study. PMID:22992288
El-Basyouny, Karim; Sayed, Tarek
2012-03-01
Full Bayes linear intervention models have been recently proposed to conduct before-after safety studies. These models assume linear slopes to represent the time and treatment effects across the treated and comparison sites. However, the linear slope assumption can only furnish some restricted treatment profiles. To overcome this problem, a first-order autoregressive (AR1) safety performance function (SPF) that has a dynamic regression equation (known as the Koyck model) is proposed. The non-linear 'Koyck' model is compared to the linear intervention model in terms of inference, goodness-of-fit, and application. Both models were used in association with the Poisson-lognormal (PLN) hierarchy to evaluate the safety performance of a sample of intersections that have been improved in the Greater Vancouver area. The two models were extended by incorporating random parameters to account for the correlation between sites within comparison-treatment pairs. Another objective of the paper is to compute basic components related to the novelty effects, direct treatment effects, and indirect treatment effects and to provide simple expressions for the computation of these components in terms of the model parameters. The Koyck model is shown to furnish a wider variety of treatment profiles than those of the linear intervention model. The analysis revealed that incorporating random parameters among matched comparison-treatment pairs in the specification of SPFs can significantly improve the fit, while reducing the estimates of the extra-Poisson variation. Also, the proposed PLN Koyck model fitted the data much better than the Poisson-lognormal linear intervention (PLNI) model. The novelty effects were short lived, the indirect (through traffic volumes) treatment effects were approximately within ±10%, whereas the direct treatment effects indicated a non-significant 6.5% reduction during the after period under PLNI compared to a significant 12.3% reduction in predicted collision
Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth
Piazza, F.; Resto, O.; Morell, G.
2007-07-01
The surface topography of hydrogenated tetrahedral amorphous carbon (ta-C:H) is critical for various applications such as microelectromechanical devices, magnetic and optical storage devices, and medical implants. The surface topography of ta-C:H films deposited by distributed electron cyclotron resonance plasma from C{sub 2}H{sub 2} gas precursor was investigated. The effects of pressure, together with ion flux and energy, are studied by atomic force microscopy in relation to the structural evolution of the films. The results are compared with the predictions of the Edward-Wilkinson model [Proc. R. Soc. London, Ser. A 44, 1039 (1966)] recently proposed to account for ta-C:H growth and with previous interpretations based on hypersonic shock waves. The random hillocks observed on the smooth surfaces of ta-C:H films deposited at high pressure are thought to result from the interference of high energy shock waves triggered by C{sub 4}H{sub x}{sup +} ions that produce overlapping collision cascades and induce nonlinear effects.
Noise-induced transitions and resonant effects in nonlinear systems
NASA Astrophysics Data System (ADS)
Zaikin, Alexei
2003-02-01
Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Sabatier, James M.; Pauls, Kathleen E.; Genis, Sean A.
2006-05-01
When airborne sound at two primary tones, f I, f II (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the "target." Profiles at the primaries f I, f II, and nonlinearly generated combination frequencies f I-(f II-f I) and f II+(f II-f I) , 2f I-(f II-f I), f I+f II and 2f II+(f II-f I) (among others) have been measured for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil and in a gravel road bed. [M.S. Korman and J.M. Sabatier, J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. It is observed that the "on target" to "off target" contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments are performed both on and off the mine in an effort to understand the nonlinearities in each case.
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Effects of nonlinear damping on random response of beams to acoustic loading
NASA Technical Reports Server (NTRS)
Mei, C.; Prasad, C. B.
1986-01-01
Effects of both nonlinear damping and large-deflection are included in the theoretical analysis in an attempt to explain the experimental phenomena of aircraft panels excited at high sound pressure levels; that is the broadening of the strain response peak and the increase of the modal frequency. Two nonlinear damping models are considered in the analysis using a single-mode approach. Mean square maximum deflection, mean square maximum strain, and spectral density function of maximum strain for simply supported and clamped beams are obtained. It is demonstrated that nonlinear damping contributes significantly to the broadening of the response peak and to the mean square maximum deflection and strain.
Vacuum Rabi splitting effect in nanomechanical QED system with nonlinear resonator
NASA Astrophysics Data System (ADS)
Zhao, MingYue; Gao, YiBo
2016-08-01
Considering the intrinsic nonlinearity in a nanomechanical resonator coupled to a charge qubit, vacuum Rabi splitting effect is studied in a nanomechanical QED (qubit-resonator) system. A driven nonlinear Jaynes-Cummings model describes the dynamics of this qubit-resonator system. Using quantum regression theorem and master equation approach, we have calculated the two-time correlation spectrum analytically. In the weak driving limit, these analytical results clarify the influence of the driving strength and nonlinearity parameter on the correlation spectrum. Also, numerical calculations confirm these analytical results.
Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Hu, Y.
1991-01-01
In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.
The effect of higher order harmonics on second order nonlinear phenomena
NASA Astrophysics Data System (ADS)
Shahverdi, Amin; Borji, Amir
2015-05-01
A new method which is a combination of the harmonic balance and finite difference techniques (HBFD) is proposed for complete time-harmonic solution of the nonlinear wave equation. All interactions between different harmonics up to an arbitrary order can be incorporated. The effect of higher order harmonics on two important nonlinear optical phenomena, namely, the second harmonic generation (SHG) and frequency mixing is investigated by this method and the results are compared with well-known analytical solutions. The method is quite general and can be used to study wave propagation in all nonlinear media.
Effects of geometric nonlinearities on the response of optimized box beam structures
NASA Technical Reports Server (NTRS)
Ragon, S.; Gurdal, Z.
1993-01-01
The present minimum-mass designs for a two-spar rectangular box beam were derived on the basis of linear-buckling FEM analysis constraints. In order to ascertain the effects of any geometric nonlinearities on these designs, each was subjected to a geometrically nonlinear FEM analysis. In all cases, the structure collapses below the design load, and does so in a mode which differs from that of linear theory. This discrepancy is attributable to such nonlinear panel-interaction mechanisms as rib-crusing loads. The optimized design is highly sensitive to crushing loads, relative to the nonoptimal design.
NASA Astrophysics Data System (ADS)
Anglada-Escudé, G.; Torra, J.
2006-04-01
Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.
Two-dimensional linear and nonlinear Talbot effect from rogue waves
NASA Astrophysics Data System (ADS)
Zhang, Yiqi; Belić, Milivoj R.; Petrović, Milan S.; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng
2015-03-01
We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.
Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami
NASA Astrophysics Data System (ADS)
Saito, Tatsuhiko; Inazu, Daisuke; Miyoshi, Takayuki; Hino, Ryota
2014-08-01
This study reveals the roles of the wave dispersion and nonlinear effects for the 2011 Tohoku-Oki earthquake tsunami. We conducted tsunami simulations based on the nonlinear dispersive equations with a high-resolution source model. The simulations successfully reproduced the waveforms recorded in the offshore, deep sea, and focal areas. The calculated inundation area coincided well with the actual inundation for the Sendai Plain, which was the widest inundation area during this event. By conducting sets of simulations with different tsunami equations, we obtained the followings insights into the wave dispersion, nonlinear effects, and energy dissipation for this event. Although the wave dispersion was neglected in most studies, the maximum amplitude was significantly overestimated in the deep sea if the dispersion was not included. The waveform observed at the station with the largest tsunami height (˜2 m) among the deep-ocean stations also verified the necessity of the dispersion. It is well known that the nonlinear effects play an important role for the propagation of a tsunami into bays and harbors. Additionally, nonlinear effects need to be considered to accurately model later waves, even for offshore stations. In particular, including nonlinear terms rather than the inundation was more important when precisely modeling the waves reflected from the coast.
NASA Technical Reports Server (NTRS)
Denier, James P.; Hall, Philip
1992-01-01
The development of fully nonlinear Goertler vortices in high Reynolds number flow in a symmetrically constricted channel is investigated. Attention is restricted to the case of 'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled constriction height is asymptotically large. Such flows are known to develop a Goldstein singularity and subsequently become separated at some downstream station past the point of maximum channel constriction. It is shown that these flows can support fully nonlinear Goertler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which have an appreciable region of local concave curvature upstream of the position at which separation occurs. The effect on the onset of separation due to the nonlinear Goertler modes is discussed. A brief discussion of other possible nonlinear states which may also have a dramatic effect in delaying (or promoting) separation is given.
Redesign of the mixed-mode bending delamination test to reduce nonlinear effects
NASA Technical Reports Server (NTRS)
Reeder, James R.; Crews, John H., Jr.
1992-01-01
The mixed-mode bending (MMB) test uses a lever to apply simultaneously mode I and mode II loading to a split-beam specimen. An iterative analysis that accounts for the geometric nonlinearity of the MMB test was developed. The analysis accurately predicted the measured load-displacement response and the strain energy release rate, G, of an MMB test specimen made of AS4/PEEK. The errors in G when calculated using linear theory were found to be as large as 30 percent in some cases. Because it would be inconvenient to use a nonlinear analysis to analyze MMB data, the MMB apparatus was redesigned to minimize the nonlinearity. With the improved apparatus, loads are applied just above the midplane of the test specimen through a roller attached to the lever. This apparatus was demonstrated by measuring the mixed-mode delamination fracture toughhess of the test specimen. The nonlinearity errors associated with testing this tough composite material were less than +/- 3 percent. The data from the improved MMB apparatus analyzed with a linear analysis were similar to those found with the original apparatus and the nonlinear analysis.
NASA Astrophysics Data System (ADS)
Korman, Murray S.
2005-09-01
When airborne sound at two primary tones, f1, f2 (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the ``target.'' Profiles at f1, f2, and f1-(f2-f1), f2+(f2-f1), 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) (among others) are measured for a VS 1.6 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil. It is observed that the ``on target'' to ``off target'' contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments along with two-tone tests are performed both on and off the mine in an effort to understand the nonlinearities in each case. [Work supported by U.S. Army RDECOM CERDEC, NVESD.
Temperature-dependent nonlinear Hall effect in macroscopic Si-MOS antidot array
NASA Astrophysics Data System (ADS)
Kuntsevich, A. Yu.; Shupletsov, A. V.; Nunuparov, M. S.
2016-05-01
By measuring magnetoresistance and the Hall effect in a classically moderate perpendicular magnetic field in a Si-MOSFET-type macroscopic antidot array, we found a nonlinear with field, temperature- and density-dependent Hall resistivity. We argue that this nonlinearity originates from low mobility shells of the antidots with a strong temperature dependence of the resistivity and suggest a qualitative explanation of the phenomenon.
Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation
NASA Astrophysics Data System (ADS)
Todo, Y.; Berk, H. L.; Breizman, B. N.
2010-08-01
Nonlinear magnetohydrodynamic (MHD) effects on Alfvén eigenmode evolution were investigated via hybrid simulations of an MHD fluid interacting with energetic particles. The investigation focused on the evolution of an n = 4 toroidal Alfvén eigenmode (TAE) which is destabilized by energetic particles in a tokamak. In addition to fully nonlinear code, a linear-MHD code was used for comparison. The only nonlinearity in that linear code is from the energetic-particle dynamics. No significant difference was found in the results of the two codes for low saturation levels, δB/B ~ 10-3. In contrast, when the TAE saturation level predicted by the linear code is δB/B ~ 10-2, the saturation amplitude in the fully nonlinear simulation was reduced by a factor of 2 due to the generation of zonal (n = 0) and higher-n (n >= 8) modes. This reduction is attributed to the increased dissipation arising from the nonlinearly generated modes. The fully nonlinear simulations also show that geodesic acoustic mode is excited by the MHD nonlinearity after the TAE mode saturation.
Bilgel, Murat; Prince, Jerry L; Wong, Dean F; Resnick, Susan M; Jedynak, Bruno M
2016-07-01
It is important to characterize the temporal trajectories of disease-related biomarkers in order to monitor progression and identify potential points of intervention. These are especially important for neurodegenerative diseases, as therapeutic intervention is most likely to be effective in the preclinical disease stages prior to significant neuronal damage. Neuroimaging allows for the measurement of structural, functional, and metabolic integrity of the brain at the level of voxels, whose volumes are on the order of mm(3). These voxelwise measurements provide a rich collection of disease indicators. Longitudinal neuroimaging studies enable the analysis of changes in these voxelwise measures. However, commonly used longitudinal analysis approaches, such as linear mixed effects models, do not account for the fact that individuals enter a study at various disease stages and progress at different rates, and generally consider each voxelwise measure independently. We propose a multivariate nonlinear mixed effects model for estimating the trajectories of voxelwise neuroimaging biomarkers from longitudinal data that accounts for such differences across individuals. The method involves the prediction of a progression score for each visit based on a collective analysis of voxelwise biomarker data within an expectation-maximization framework that efficiently handles large amounts of measurements and variable number of visits per individual, and accounts for spatial correlations among voxels. This score allows individuals with similar progressions to be aligned and analyzed together, which enables the construction of a trajectory of brain changes as a function of an underlying progression or disease stage. We apply our method to studying cortical β-amyloid deposition, a hallmark of preclinical Alzheimer's disease, as measured using positron emission tomography. Results on 104 individuals with a total of 300 visits suggest that precuneus is the earliest cortical region to
ERIC Educational Resources Information Center
Roloff, Michael E.; Campion, Douglas E.
1987-01-01
Confirms the debilitating effects of accountability on bargaining. Finds that (1) when accountable, bargainers with authority strayed further from group's position but deviated less on their final offer; (2) delegated authority significantly reduced the number of deadlocks; and (3) high self monitors strayed less from group's position but deviated…
The Effects of Increased Accountability Standards on Graduation Rates for Students with Disabilities
ERIC Educational Resources Information Center
Moore, Mitzi Lee
2012-01-01
This research sought to determine if unintended effects of increased accountability standards on graduation rates for students with disabilities existed. Data from one southeastern state were utilized in order to determine if graduation rates were impacted as a result of higher accountability standards. In addition, administrator attitudes on…
ERIC Educational Resources Information Center
Cheng, K. W. Kevin
2009-01-01
This study mainly explored the effect of applying web-based collaborative learning instruction to the accounting curriculum on student's problem-solving attitudes in Technical Education. The research findings and proposed suggestions would serve as a reference for the development of accounting-related curricula and teaching strategies. To achieve…
"Catalyst Data": Perverse Systemic Effects of Audit and Accountability in Australian Schooling
ERIC Educational Resources Information Center
Lingard, Bob; Sellar, Sam
2013-01-01
This paper examines the perverse effects of the new accountability regime central to the Labor government's national reform agenda in schooling. The focus is on National Assessment Program -- Literacy and Numeracy (NAPLAN) results that now act as "catalyst data" and are pivotal to school and system accountability. We offer a case…
ERIC Educational Resources Information Center
Rich, Anne J.; Dereshiwsky, Mary I.
2011-01-01
This paper presents the results of a study assessing the comparative effectiveness of teaching an undergraduate intermediate accounting course in the online classroom format. Students in a large state university were offered an opportunity to complete the first course in intermediate accounting either online or on-campus. Students were required to…
Framework for an Effective Assessment and Accountability Program: The Philadelphia Example
ERIC Educational Resources Information Center
Porter, Andrew C.; Chester, Mitchell D.; Schlesinger, Michael D.
2004-01-01
The purpose of this article is to put in the hands of researchers, practitioners, and policy makers a powerful framework for building and studying the effects of high-quality assessment and accountability programs. The framework is illustrated through a description and analysis of the assessment and accountability program in the School District of…
Cramming: The Effects of School Accountability on College-Bound Students. Working Paper 7
ERIC Educational Resources Information Center
Donovan, Colleen; Figlio, David; Rush, Mark
2007-01-01
This paper presents the first evidence of the effects of school accountability systems on the long-term human capital development of high-performing, college-bound students. The results are mixed. On the one hand, the evidence is consistent that school accountability sanction threats are associated with changes in student study habits. Students…
Collisional Effects on Nonlinear Ion Drag Force for Small Grains
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Haakonsen, C. B.
2013-10-01
Ion drag force arising from plasma flow past an embedded grain in a plasma is a vital part of dusty plasma dynamics. Ion-neutral collisions are often significant for experimental dusty plasmas. They are here included self-consistently in properly nonlinear comprehensive drag calculations, for the first time. The ion drag on a spherical grain is calculated using particle in cell codes SCEPTIC and COPTIC. Using ion velocity ``drift'' distribution appropriate for flow driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality level. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if nonlinear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided. Partially supported by NSF/DOE Grant DE-FG02-06ER54982 and Science Graduate Fellowship Program DE-AC05-06OR23100.
Primarily nonlinear effects observed in a driven asymmetrical vibrating wire
NASA Astrophysics Data System (ADS)
Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.
2005-01-01
The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
Nonlinear effects for the Taylor column for a hemisphere
NASA Technical Reports Server (NTRS)
Crisalli, A. J.; Walker, J. D. A.
1976-01-01
When a flow is forced past an obstacle in a rapidly rotating fluid, a Taylor column forms. This is defined by a set of vertical detached shear layers circumscribing the obstacle which provide the smooth transition from an external inviscid potential flow to a stagnant core above the obstacle. For a hemispherical object, the main adjustment takes place in an external E to the 1/4 power layer and an internal E to the 2/7 power layer; here, the nonlinear flow in these layers is investigated. The problem in the E to the 1/4 power layer is identical to a problem occurring in magnetohydrodynamic flow; in addition, some features of the magnetohydrodynamic problem have been resolved. Numerical solutions are obtained for the steady nonlinear external E to the 1/4 power layer flow up to the point where unsteady flow separation from the Taylor column is imminent. The response of the internal E to the 2/7 power layer to the flow in the E to the 1/4 power layer is calculated, and the results suggest that the internal shear layer is unlikely to play any significant role in the separation process
Nonlinear effects of stretch on the flame front propagation
Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.
2010-10-15
In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)
Multiphase continuum model to describe dynamic loading effects in nonlinear porous media
Swift, R.P.; Burton, D.E.; Bryan, J.B.; Glenn, H.D.
1985-03-01
A multiphase constitutive model that couples nonlinear deformation to porous flow has been developed for numerical analyses of dynamic behavior of geological media. The model has been incorporated into the explicit finite-difference code TENSOR and applied to examine the phenomenology associated with contained explosions and nuclear surface cratering in a coral geology. For contained explosions in nearly saturated media, the model predicts a region of liquefaction to exist adjacent to the cavity. This region is markedly enhanced for the case of total saturation and the associated pore pressure buildup indicate that the stability of the residual stress field may be threatened. Based on plausible assumptions about the geology and the constitutive relations of coral, we have shown that the multiphase constitutive model can relate subsidence to calculational parameters such as peak effective stress. Most of the observed volume of the Koa crater at the Pacific Proving Grounds can be accounted for by late time consolidation of the damaged coral. 21 refs., 10 figs.
ERIC Educational Resources Information Center
Warrick, C. Shane
2006-01-01
As instructors of accounting, we should take an abstract topic (at least to most students) and connect it to content known by students to help increase the effectiveness of our instruction. In a recent semester, ordinary items such as colors, a basketball, and baseball were used to relate the subject of accounting. The accounting topics of account…
NASA Astrophysics Data System (ADS)
Kang, Dong-Keun; Yang, Hyun-Ik; Kim, Chang-Wan
2015-11-01
A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain-displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.
2012-01-01
In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles. PMID:22520273
NASA Astrophysics Data System (ADS)
Henari, F. Z.; Al-Saie, A.
2006-12-01
We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.
Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation
Afhami, Saeedeh; Eslami, Esmaeil
2014-08-15
An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.
Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps.
Doerry, Armin Walter; Dubbert, Dale F.; Tise, Bertice L.
2014-07-01
Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the rela tionship of INL to GMTI performance. - 4 - Acknowledgements This report is the result of a n unfunded Research and Development effort . Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidia ry of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.
Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada
2003-11-25
Results of three-dimensional hybrid simulations of the field-reversed configuration (FRC) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs. A wide range of ''bar s'' values is considered, where the ''bar s'' is the FRC kinetic parameter, which measures the number of ion gyroradii in the configuration. The linear and nonlinear stability of MHD modes with toroidal mode numbers n greater than or equal to 1 is investigated, including the effects of ion rotation, finite electron pressure, and weak toroidal field. Low-''bar s'' simulations show nonlinear saturation of the n = 1 tilt mode. The n greater than or equal to 2 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to ion spin-up in the toroidal direction. Large-''bar s'' simulations show no saturation of the tilt mode, and there is a slow nonlinear evolution of the instability after the initial fast linear growth. Overall, the hybrid simulations demonstrate the importance of nonlinear effects, which are responsible for the saturation of instabilities in low-''bar s'' configurations, and also for the increase in FRC life-time compared to MHD models in high-''bar s'' configurations.
Oscillatory flow in jet pumps: nonlinear effects and minor losses.
Petculescu, A; Wilen, L A
2003-03-01
A nonresonant, lumped-element technique is used to investigate the behavior of tapered cylindrical flow constrictions (jet pumps) in the nonlinear oscillatory flow regime. The array of samples studied spans a wide range of inlet curvature radii and taper angles. By measuring the rectified steady pressure component developed across a jet pump as well as the acoustic impedance, the minor loss coefficients for flow into and out of the narrow end of the jet pump are determined. These coefficients are found to be relatively insensitive to all but the smallest curvature radii (i.e., sharp edges). For fixed radius of curvature, the inflow minor loss coefficient increases with increasing taper angle while the outflow coefficient remains relatively constant. For all of the samples, the steady flow minor loss coefficients are also measured and compared to their oscillatory flow counterparts. The agreement is good, confirming the so-called Iguchi hypothesis. PMID:12656363
Nonlinear effects of dark energy clustering beyond the acoustic scales
Anselmi, Stefano; Sefusatti, Emiliano E-mail: dlopez_n@ictp.it
2014-07-01
We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.
Nanoscale nonlinear effects in Erbium-implanted Yttrium Orthosilicate
NASA Astrophysics Data System (ADS)
Kukharchyk, Nadezhda; Shvarkov, Stepan; Probst, Sebastian; Xia, Kangwei; Becker, Hans-Werner; Pal, Shovon; Markmann, Sergej; Kolesov, Roman; Siyushev, Petr; Wrachtrup, Jörg; Ludwig, Arne; Ustinov, Alexey V.; Wieck, Andreas D.; Bushev, Pavel
2016-09-01
Doping of substrates at desired locations is a key technology for spin-based quantum memory devices. Focused ion beam implantation is well-suited for this task due to its high spacial resolution. In this work, we investigate ion-beam implanted erbium ensembles in Yttrium Orthosilicate crystals by means of confocal photoluminescence spectroscopy. The sample temperature and the post-implantation annealing step strongly reverberate in the properties of the implanted ions. We find that hot implantation leads to a higher activation rate of the ions. At high enough fluences, the relation between the fluence and final concentration of ions becomes non-linear. Two models are developed explaining the observed behaviour.
NASA Astrophysics Data System (ADS)
Zhang, Jianfeng; Xuan, Fu-Zhen; Xiang, Yanxun; Zhao, Peng
2016-05-01
The effect of plastic deformations on the nonlinear ultrasonic response in austenite stainless steel was investigated under the tensile, asymmetric cyclic, and symmetric cyclic loadings. Nonlinear ultrasonic wave measurement was performed on the interrupted specimens. Results show that cyclic and monotonic plastic deformations lead to the significantly different acoustic nonlinear response. The increase of dislocation density and martensite transformation causes the increase of acoustic nonlinearity. By contrast, the well-developed cell structures decrease the acoustic nonlinear response. Under the asymmetric cyclic loading condition, the lightly decrease of acoustic nonlinearity is caused by the development of cell structures, while the slight increase of acoustic nonlinearity should be attributed to the increase of martensite transformation. Comparatively, the severe increase of acoustic nonlinearity during the first stage under symmetric cyclic loading is ascribed to the fast generation of dislocation structures and martensite transformation.
Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer
NASA Astrophysics Data System (ADS)
Wedin, Hâkan; Cherubini, Stefania; Bottaro, Alessandro
2015-07-01
The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K ̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K ̂=0 ). This leads to a Reynolds number of approximately Rec=54 400 for the onset of linearly unstable waves, and close to Reg=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985), 10.1017/S0022112085003482; J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Rec=796 and Reg=294 . For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re-ρ, where the value of ρ depends on the permeability coefficient K ̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a
Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.
2014-06-07
We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.
NASA Astrophysics Data System (ADS)
Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.
2014-06-01
We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.
Nonlinear system identification of frictional effects in a beam with a bolted joint connection
NASA Astrophysics Data System (ADS)
Eriten, Melih; Kurt, Mehmet; Luo, Guanyang; Michael McFarland, D.; Bergman, Lawrence A.; Vakakis, Alexander F.
2013-08-01
We perform nonlinear system identification (NSI) of the effects of frictional connections in the dynamics of a bolted beam assembly. The methodology utilized in this work combines experimental measurements with slow-flow dynamic analysis and empirical mode decomposition, and reconstructs the dynamics through reduced-order models. These are in the form of single-degree-of-freedom linear oscillators (termed intrinsic modal oscillators—IMOs) with forcing terms derived directly from the experimental measurements through slow-flow analysis. The derived reduced order models are capable of reproducing the measured dynamics, whereas the forcing terms provide important information about nonlinear damping effects. The NSI methodology is applied to model nonlinear friction effects in a bolted beam assembly. A 'monolithic' beam with identical geometric and material properties is also tested for comparison. Three different forcing (energy) levels were considered in the tests in order to study the energy-dependencies of the damping nonlinearities induced in the beam from the bolted joint. In all cases, the NSI methodology employed was successful in identifying the damping nonlinearities, their spatial distributions and their effects of the vibration modes of the structural component.
Effect of nonlinear soil-structure interaction on seismic response of low-rise SMRF buildings
NASA Astrophysics Data System (ADS)
Raychowdhury, Prishati; Singh, Poonam
2012-12-01
The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional fl exibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winklerbased approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design.
Accounting for Accountability.
ERIC Educational Resources Information Center
Colorado State Dept. of Education, Denver. Cooperative Accountability Project.
This publication reports on two Regional Educational Accountability Conferences on Techniques sponsored by the Cooperative Accountability Project. Accountability is described as an "emotionally-charged issue" and an "operationally demanding concept." Overviewing accountability, major speakers emphasized that accountability is a means toward…
Nonlinear dynamics of the tearing mode with two-fluid and curvature effects in tokamaks
Meshcheriakov, Dmytro; Maget, Patrick; Garbet, Xavier; Lütjens, Hinrich; Beyer, Peter
2014-01-15
Curvature and diamagnetic effects are both known to have an influence on tearing mode dynamics. In this paper, we investigate the impact of these effects on the nonlinear stability and saturation of a (2, 1) island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments, where its behavior is not well understood from the single fluid MHD model. Simulations show that a metastable state induced by diamagnetic effect exists for this mode and that it also produces a reduction of the saturated island size, in presence of toroidal curvature. The mode is found to be nonlinearly destabilized by a seed island and it saturates at a macroscopic level causing a significant confinement degradation. The interpretation of dual states, with either no island on q = 2 or a large one, observed on discharges with high non inductive current source on Tore Supra, is revisited.
The role of nonlinear effects in the propagation of noise from high-power jet aircraft.
Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A
2008-06-01
To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft. PMID:18537360
Nonlinear effects at high flux-flow electric fields.
Huebener, R P
2009-06-24
Ohm's law with the linear relation between resistive voltage and electric current is strictly valid only in the limit of infinitesimally small voltages. On the other hand, at finite electric voltages nonlinearities in the electric resistance can develop due to the energy picked up by the charge carriers in the electric field. This can lead to important effects both in the case of semiconductors and of superconductors, where the energy rise of the charge carriers or the quasiparticles can become relatively large. In this paper we limit our discussion to the flux-flow voltage in the mixed state of a type-II superconductor. At sufficiently low temperatures the energy dependence of the quasiparticle density of states and, hence, of the quasiparticle scattering rate can cause distinct nonlinear effects in the flux-flow resistance. The recent advances in thin-film sample preparation provided new opportunities for observing nonlinear effects of the latter kind. PMID:21828432
NASA Astrophysics Data System (ADS)
Germanis, S.; Katsidis, C.; Tsintzos, S.; Stavrinidis, A.; Konstantinidis, G.; Florini, N.; Kioseoglou, J.; Dimitrakopulos, G. P.; Kehagias, Th.; Hatzopoulos, Z.; Pelekanos, N. T.
2016-07-01
We report enhanced Stark tuning of single exciton lines in self-assembled (211 )B InAs quantum dots (QDs) as a consequence of pronounced piezoelectric effects in polar orientations, making this QD system particularly sensitive to relatively "small" applied external fields. The Stark shifts in the first hundreds of kilovolts per centimeter of applied external field are at least 2.5 times larger, compared to those observed in nonpiezoelectric (100) InAs QDs of similar size. To account quantitatively for the observed transition energies and Stark shifts, we utilize a graded In-composition potential profile, as deduced from local strain analysis performed on high-resolution transmission microscopy images of the QDs. Our results provide a direct demonstration of the importance of nonlinear piezoelectric effects in zincblende semiconductors.
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing. PMID:18040322
Nonlinear effects in propagation of radiation of X-ray free-electron lasers
NASA Astrophysics Data System (ADS)
Nosik, V. L.
2016-05-01
Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.
Effect of irradiation on nonlinear optical recirculation cavity performance
NASA Astrophysics Data System (ADS)
Saitta, M.; Tikhoplav, R.; Jovanovic, I.
2012-02-01
In applications such as the production of hydrogen ions for accelerators in spallation neutron sources, charge stripping of hydrogen ions using high-power lasers represents an attractive technical approach. The use of laser-ion interaction in conjunction with a laser recirculation cavity holds promise for improved efficiency, but the high-radiation environment raises concerns about the longevity of the key components of such a system, especially the nonlinear crystal used for frequency conversion. We present the results of an in-reactor irradiation experiment in which a sample beta-barium borate crystal has been irradiated with fast neutrons and gamma-rays, accompanied with the Monte Carlo analysis of the irradiation dose and its comparison with typical conditions at the Spallation Neutron Source at Oak Ridge National Laboratory. The results suggest that our design of the laser recirculation cavity exhibits a radiation hardness consistent with maintaining enhancement factors of the order of 10 over >10 years, but a more detailed experimental study is needed to investigate the radiation hardness of cavity designs exhibiting greater enhancement factors.
Nonlinear topographic effects in two-layer flows
NASA Astrophysics Data System (ADS)
Baines, Peter; Johnson, Edward
2016-02-01
We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm) diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1), there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm).
Xu, Hao; Sun, Yujun; Wang, Xinjie; Fu, Yao; Dong, Yunfei; Li, Ying
2014-01-01
An individual-tree diameter growth model was developed for Cunninghamia lanceolata in Fujian province, southeast China. Data were obtained from 72 plantation-grown China-fir trees in 24 single-species plots. Ordinary non-linear least squares regression was used to choose the best base model from among 5 theoretical growth equations; selection criteria were the smallest absolute mean residual and root mean square error and the largest adjusted coefficient of determination. To account for autocorrelation in the repeated-measures data, we developed one-level and nested two-level nonlinear mixed-effects (NLME) models, constructed on the selected base model; the NLME models incorporated random effects of the tree and plot. The best random-effects combinations for the NLME models were identified by Akaike's information criterion, Bayesian information criterion and −2 logarithm likelihood. Heteroscedasticity was reduced with two residual variance functions, a power function and an exponential function. The autocorrelation was addressed with three residual autocorrelation structures: a first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and a compound symmetry structure (CS). The one-level (tree) NLME model performed best. Independent validation data were used to test the performance of the models and to demonstrate the advantage of calibrating the NLME models. PMID:25084538
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.
2004-01-01
An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.
Numerical investigation of nonlinear propagation distortion effects in helicopter rotor noise.
Menounou, Penelope; Vitsas, Panagiotis A
2009-10-01
The effect of nonlinear propagation distortion on helicopter rotor noise is presented based on measured data for low-speed descent and numerical calculations that predict the noise level away from the helicopter with and without nonlinear effects. It is shown that for some frequency bands the difference between linear and nonlinear calculations can be as high as 7 dB. Blade vortex interaction (BVI) noise, the dominant noise contributor during descent, is mainly examined. It is shown that advancing side BVI noise is affected by nonlinear distortion, while retreating side BVI noise is not. Based on signal characteristics at source, two quantities are derived. The first quantity (termed polarity) is based on the pressure gradient of the source signal and can be used to determine whether a BVI signal will evolve as an advancing or a retreating side signal. The second quantity (termed weighted rise time) is a measure of the impulsiveness of the BVI signal and can be used to determine at which frequency nonlinear effects start to appear. Finally, polarity and weighted rise time are shown to be applicable in cases of BVI noise generated from different blade tips, as well as in cases of non-BVI noise. PMID:19813785
Nonlinear damage effect in graphene synthesis by C-cluster ion implantation
Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui
2012-07-02
We present few-layer graphene synthesis by negative carbon cluster ion implantation with C{sub 1}, C{sub 2}, and C{sub 4} at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.
NASA Astrophysics Data System (ADS)
Zaytsev, A. K.; Wang, C.-L.; Lin, C.-H.; You, Y.-J.; Tsai, F.-H.; Pan, C.-L.
2012-02-01
We report the performance of a picosecond master-oscillator power amplifier (MOPA) system based on a diode-pumped solid-state (DPSS) seed laser and Yb-doped fiber amplifier. An average power of 28 W at ˜200 MHz repetition rate is achieved by using only one amplification stage. We found that positive nonlinear phase shift induced by nonlinear effect in the active fiber can be effectively compensated by a grating pair. A pulse duration of ˜1.6 ps is shown after recompression.
NASA Technical Reports Server (NTRS)
Stein, M.
1985-01-01
Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.
NASA Astrophysics Data System (ADS)
Power, H.; Soavi, J.; Kantachuvesiri, P.; Nieto, C.
2015-10-01
In this work, a detailed study of the effect of the Thompson and Troian's nonlinear slip condition on the flow behaviour of a Newtonian incompressible fluid between two concentric rotating cylinders (Couette flow) is considered. In Thompson and Troian's nonlinear condition, the slip length on the Navier slip condition is considered to be a function of the tangential shear rate at the solid surface instead of being a constant. The resulting formulation presents an apparent singularity on the slip length when a critical shear rate is approached. By considering this type of nonlinear slip condition, it is possible to predict complex characteristics of the flow field not previously reported in the literature, and to show the effect of nonlinear slip on the inverted velocity profiles previously observed in the linear slip case. Particular attention is given to the behaviour of the flow field near the critical shear rate. In such a limit, it is found that the flow field tends to slip flow with a finite slip length. Consequently, previous critique on the singular behaviour of Thompson and Troian's nonlinear model is not valid in the present case.
Fu, Liyong; Zhang, Huiru; Lu, Jun; Zang, Hao; Lou, Minghua; Wang, Guangxing
2015-01-01
In this study, an individual tree crown ratio (CR) model was developed with a data set from a total of 3134 Mongolian oak (Quercus mongolica) trees within 112 sample plots allocated in Wangqing Forest Bureau of northeast China. Because of high correlation among the observations taken from the same sampling plots, the random effects at levels of both blocks defined as stands that have different site conditions and plots were taken into account to develop a nested two-level nonlinear mixed-effect model. Various stand and tree characteristics were assessed to explore their contributions to improvement of model prediction. Diameter at breast height, plot dominant tree height and plot dominant tree diameter were found to be significant predictors. Exponential model with plot dominant tree height as a predictor had a stronger ability to account for the heteroskedasticity. When random effects were modeled at block level alone, the correlations among the residuals remained significant. These correlations were successfully reduced when random effects were modeled at both block and plot levels. The random effects from the interaction of blocks and sample plots on tree CR were substantially large. The model that took into account both the block effect and the interaction of blocks and sample plots had higher prediction accuracy than the one with the block effect and population average considered alone. Introducing stand density into the model through dummy variables could further improve its prediction. This implied that the developed method for developing tree CR models of Mongolian oak is promising and can be applied to similar studies for other tree species. PMID:26241912
Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay
NASA Astrophysics Data System (ADS)
Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun
2015-06-01
In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.
NASA Astrophysics Data System (ADS)
Paterson, Greig A.
2013-05-01
Numerous non-ideal factors can influence paleointensity data, but the detection of these factors remains problematic and new approaches to understanding how paleointensity data behave are needed. In this study, a recently developed stochastic model of single domain (SD) paleointensity behaviour is expanded to investigate the effects that anisotropic and non-linear thermoremanent magnetizations (TRMs) have on the paleointensity results and the parameters used to select data. The model results indicate that before applying any form of correction these non-ideal factors can produce results that are self-consistent, but highly inaccurate. The methods that are currently used to correct for anisotropic and non-linear TRMs are effective and greatly increase the likelihood of obtaining accurate results. The corrections, however, do not restore the results to those of ideal SD samples measured with the same laboratory-to-ancient field ratio, but the data are restored to those of ideal SD samples with the equivalent laboratory-to-ancient magnetization ratios (MLab/MAnc). The simulations indicate that non-linear and anisotropic TRM have no or only a weak influence on the parameters commonly used to select paleointensity data, which means that these non-ideal factors are effectively undetectable. These new models suggest that the paleointensity behaviour of thermally/chemically stable SD samples, whether they are ideally behaved, anisotropy or non-linear TRM corrected, is near universal and depends only on MLab/MAnc and the choice of paleointensity protocol (i.e. Coe-type versus Thellier). Given the high self-consistency and highly inaccurate results that anisotropic and non-linear TRM can yield, it is essential to test for such effects and all Thellier-type paleointensity studies must include tests for anisotropic and non-linear TRM to assert the reliability of the data obtained.
But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.
2014-04-28
Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm{sup 2} was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm{sup 2} to ∼5 kW/cm{sup 2})
Suppression of intrachannel nonlinear effects in high-speed WDM systems
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Vasic, Bane
2006-10-01
High-speed optical transmission systems operating at 40 Gb/s or higher are severely limited by intrachannel nonlinearities such as intrachannel four-wave mixing (IFWM) and intrachannel cross-phase modulation (IXPM). Approaches to deal with intrachannel nonlinearities may be classified into three broad categories: modulation formats, constrained (or line) coding, and equalization techniques. The IFWM is a phase-sensitive effect, and the aim of the first approach is to remove the phase short-term coherence of the pulses emitted in a given neighborhood. The role of constrained coding is to avoid those waveforms in the transmitted signal that are most likely to be received incorrectly. In this paper we describe two alternative techniques for suppression of intrachannel nolinearities: (i) constrained coding techniques, and (ii) combined nonlinear ISI cancellation and error control. Three different constrained coding techniques will be presented: (a) the use of constrained encoding itself, (b) combined constrained and error control coding and (c) deliberate error insertion. The nonlinear ISI cancellation scheme employs the maximum a posteriori probability (MAP) symbol decoding based on Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, while the forward error correction is based on low-density parity-check (LDPC) codes. The nonlinear ISI channel is modeled by a finite state machine (FSM) whose transition and output functions describe the dependency of the channel statistics and the ISI on transmitted patterns. The BCJR algorithm operates on a trellis of the corresponding FSM, and creates the soft information (detected bit likelihoods) used in the iterative decoder. To improve the BER performance of nonlinear BCJR equalizer further, a noise-predictive BCJR equalizer is introduced. The main feature of these schemes is that they can operate in the regime of very strong intrachannel nonlinearities where FEC schemes such as turbo or LDPC codes are not designed to operate.
Accounting for One-Group Clustering in Effect-Size Estimation
ERIC Educational Resources Information Center
Citkowicz, Martyna; Hedges, Larry V.
2013-01-01
In some instances, intentionally or not, study designs are such that there is clustering in one group but not in the other. This paper describes methods for computing effect size estimates and their variances when there is clustering in only one group and the analysis has not taken that clustering into account. The authors provide the effect size…
The Effects of Distance Education Materials on the Traditional Accounting Course
ERIC Educational Resources Information Center
Bozok, Mehmet Sinan
2011-01-01
In this study, under the assumption of the distance education materials used in a traditional accounting course as supporting tools, the effect on the student success is investigated. Results show us positive effect on the student success according to the grades. It is not only beneficial to the students but also to the instructors. (Contains 1…
NASA Astrophysics Data System (ADS)
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
Cylindrical effects in weakly nonlinear Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Liu, Wan-Hai; Ma, Wen-Fang; Wang, Xu-Lin
2015-01-01
The classical Rayleigh-Taylor instability (RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent (i.e., gravity pointing inward) and divergent (i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one. Project supported by the National Basic Research Program of China (Grant No. 10835003), the National Natural Science Foundation of China (Grant No. 11274026), the Scientific Research Foundation of Mianyang Normal University, China (Grant Nos. QD2014A009 and 2014A02), and the National High-Tech ICF Committee.
Experimental study of non-linear effects in a typical shear lap joint configuration
NASA Astrophysics Data System (ADS)
Hartwigsen, C. J.; Song, Y.; McFarland, D. M.; Bergman, L. A.; Vakakis, A. F.
2004-10-01
Although mechanical joints are integral parts of most practical structures, their modelling and their effects on structural dynamics are not yet fully understood. This represents a serious impediment to accurate modelling of the dynamics and to the development of reduced-order, finite element models capable of describing the effects of mechanical joints on the dynamics. In this work we provide an experimental study to quantify the non-linear effects of a typical shear lap joint on the dynamics of two structures: a beam with a bolted joint in its center; and a frame with a bolted joint in one of its members. Both structures are subjected to a variety of dynamical tests to determine the non-linear effects of the joints. The tests reveal several important influences on the effective stiffness and damping of the lap joints. The possibility of using Iwan models to represent the experimentally observed joint effects is discussed.
2014-01-01
This study reviews new pension accounting with K-IFRS and provides empirical changes in liability for retirement allowances with adoption of K-IFRS. It will help to understand the effect of pension accounting on individual firm's financial report and the importance of public announcement of actuarial assumptions. Firms that adopted K-IFRS had various changes in retirement liability compared to the previous financial report not based on K-IFRS. Their actuarial assumptions for pension accounting should be announced, but only few of them were published. Data analysis shows that the small differences of the actuarial assumption may result in a big change of retirement related liability. Firms within IT industry also have similar behaviors, which means that additional financial regulations for pension accounting are recommended. PMID:25013868
Kim, JeongYeon
2014-01-01
This study reviews new pension accounting with K-IFRS and provides empirical changes in liability for retirement allowances with adoption of K-IFRS. It will help to understand the effect of pension accounting on individual firm's financial report and the importance of public announcement of actuarial assumptions. Firms that adopted K-IFRS had various changes in retirement liability compared to the previous financial report not based on K-IFRS. Their actuarial assumptions for pension accounting should be announced, but only few of them were published. Data analysis shows that the small differences of the actuarial assumption may result in a big change of retirement related liability. Firms within IT industry also have similar behaviors, which means that additional financial regulations for pension accounting are recommended. PMID:25013868
Nonlinear Waves in Reaction Diffusion Systems: The Effect of Transport Memory
HURD,ALAN J.; KENKRE,V.M.; MANNE,K.K.
1999-11-04
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wavefronts in reaction diffusion systems. We obtain new results such as the possibility of spatial oscillations in the wavefront shape for certain values of the system parameters and high enough wavefront speeds. We also generalize earlier known results concerning the minimum wavefront speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piece-wise linear representation of the nonlinearity.
Studies of non-linear optical effects for agile beam steering
NASA Astrophysics Data System (ADS)
Vachss, F.; McMichael, I.; Yeh, P.
1993-11-01
The objective of this program is the demonstration of a new technique for massless beam steering of high energy laser radiation. Using the effect of nonlinear electrostriction in acousto-optic devices, we show large improvements in diffraction efficiency and resolution. These results are obtained through the development of a novel geometry for acousto-optic beam steering and of a prototype device designed to take advantage of this geometry. Theoretical and experimental results of this effort establish the validity of large aperture, high frequency nonlinear acousto-optic beam steering. The results are found to be applicable to steering of high power laser beams.
Effect of Solvent on Nonlinear Refractive Index of 2-(2‧-HYDROXYPHENYL) Benzoxazole
NASA Astrophysics Data System (ADS)
ZHANG, GUILAN; XIONG, FEIBING; ZHANG, BAO; TANG, GUOQING; CHEN, WENJU; WANG, LIANYING; BAI, YUBAI
Nonlinear refractive indexes n2 of 2-(2‧-hydroxyphenyl) benzoxazole (HBO) in three species of solvent (cyclohexane, ethanol and dimethyl sulfoxide) have been determined by using the Z-scan technique. The experimental results show that the n2 of HBO is strongly dependent on the polarity of the solvent. Through the study on the absorption and fluorescence spectra of HBO in different solvents, we regard that the principal origin of the nonlinear refractive index of HBO is not the thermal effect because of absorption of incident light but the excited state intramolecular proton transfer of HBO under the incident light.
Nonlinear effects in the energy loss of a slow dipole in a free-electron gas
Alducin, M.; Juaristi, J.I.
2002-11-01
We analyze beyond linear-response theory the energy loss of a slow dipole moving inside a free-electron gas. The energy loss is obtained from a nonlinear treatment of the scattering of electrons at the dipole-induced potential. This potential and the total electronic density are calculated with density-functional theory. We focus on the interference effects, i.e., the difference between the energy loss of a dipole and that of the isolated charges forming it. Comparison of our results to those obtained in linear-response theory shows that a nonlinear treatment of the screening is required to accurately describe the energy loss of slow dipoles.
Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption
NASA Astrophysics Data System (ADS)
Keshav, Walia; Sarabjit, Kaur
2016-01-01
In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.
NASA Astrophysics Data System (ADS)
Jackson, E. J.; Coussios, C.-C.; Cleveland, R. O.
2014-06-01
Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity.
Predicting the phonon spectra of coupled nonlinear chains using effective phonon theory
NASA Astrophysics Data System (ADS)
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-06-01
In general one-dimensional nonlinear lattices, extensive studies have discovered the existence of renormalized phonons due to nonlinear interactions and found these renormalized phonons, as the energy carriers, are responsible for heat transport. Within the framework of renormalized phonons, a generic form of renormalized phonon spectrum has been derived and effective phonon theory (EPT) has been developed to explain the heat transport in general 1D nonlinear lattices. Our attention is dedicated to generalizing the EPT for two-layer nonlinear lattices and deriving the analytic expression of phonon spectra. By calculating the phonon spectra of different coupled models with EPT, it is found that the phonon dispersion relation is in good agreement with the result obtained from the spectral energy density method. It is demonstrated that the EPT of a coupled system can predict the phonon spectra of two-layer nonlinear lattices well. Thus, this finding may shed light on the prediction of heat conduction behavior in a coupled system, qualitatively, and provide a useful guide for designing thermal devices.
The nonlinear effect of two-color light on bacterial viability
NASA Astrophysics Data System (ADS)
Lukyanovich, P. A.; Zon, B. A.; Grabovich, M. Yu; Shchelukhina, E. V.; Danilova, I. I.; Orlova, M. V.; Sapeltseva, I. O.; Sinugina, D. I.
2016-01-01
A bacterial (Escherichia coli) viability nonlinear effect is found experimentally after continuous irradiation by composite red and blue light. The dependence of bacterial viability on irradiance at equal specific doses is interpreted as possible two-photon absorption causing DNA damage that is similar to damage from the absorption of UV quanta.
Generalized mean-field or master equation for nonlinear cavities with transverse effects
Dunlop, A.M.; Firth, W.J.; Heatley, D.R.; Wright, E.
1996-06-01
We present a general form of master equation for nonlinear-optical cavities that can be described by an {ital ABCD}matrix. It includes as special cases some previous models of spatiotemporal effects in lasers. {copyright} {ital 1996 Optical Society of America.}
CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR
Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...
IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
Preston, RJ. Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
For considerations of cancer risk assessment from exposure to environmenta...
Effects of focusing on third-order nonlinear processes in isotropic media. [laser beam interactions
NASA Technical Reports Server (NTRS)
Bjorklund, G. C.
1975-01-01
Third-order nonlinear processes in isotropic media have been successfully used for tripling the efficiency of high-power laser radiation for the production of tunable and fixed-frequency coherent vacuum UV radiation and for up-conversion of IR radiation. The effects of focusing on two processes of this type are studied theoretically and experimentally.
ERIC Educational Resources Information Center
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.
2011-01-01
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
NASA Astrophysics Data System (ADS)
Nafari, F.; Ghoranneviss, M.
2016-08-01
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.
Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum
ERIC Educational Resources Information Center
Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo
2004-01-01
We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…
Review of radio-frequency, non-linear effects on the ionosphere
NASA Astrophysics Data System (ADS)
Gordon, William E.; Duncan, Lewis M.
1988-06-01
The nonlinear effects of powerful radio waves on the ionosphere are reviewed. The history of such effects beginning in the early 1930s are retold, highlighting important events up to the late 1960s. A phenomenological treatment is then given to ohmic heating, parametric instabilities, self-focusing, and kilometric-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. The benefits that international cooperation would provide for this research are discussed, giving a list of future research challenges.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2004-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for prediction of geometrically nonlinear response due to combined thermal-acoustic loadings. As with any such method, the accuracy of the solution is dictated by the selection of the modal basis, through which the nonlinear modal stiffness is determined. In this study, a suite of available bases are considered including (i) bending modes only; (ii) coupled bending and companion modes; (iii) uncoupled bending and companion modes; and (iv) bending and membrane modes. Comparison of these solutions with numerical simulation in physical degrees-of-freedom indicates that inclusion of any membrane mode variants (ii - iv) in the basis affects the bending displacement and stress response predictions. The most significant effect is on the membrane displacement, where it is shown that only the type (iv) basis accurately predicts its behavior. Results are presented for beam and plate structures in the thermally pre-buckled regime.
Nonlinear effects of inertial Alfvén wave in low beta plasmas
Rinawa, M. L. Gaur, Nidhi Sharma, R. P.
2015-02-15
This paper is devoted to the study of the nonlinear interaction and propagation of high frequency pump inertial Alfvén wave (IAW) with comparatively low frequency IAW with emphasis on nonlinear effects and applications within space plasma and astrophysics for low β-plasma (β≪m{sub e}/m{sub i}). We have developed a set of dimensionless equations in the presence of ponderomotive nonlinearity due to high frequency pump IAW in the dynamics of comparatively low frequency IAW. Stability analysis and numerical simulation have been carried out for the coupled system comprising of pump IAW and low frequency IAW to study the localization and turbulent spectra, applicable to auroral region. The result reveals that localized structures become more complex and intense in nature at the quasi steady state. From the obtained result, we found that the present model may be useful to study the turbulent fluctuations in accordance with the observations of FAST/THEMIS spacecraft.
Nonlinearity of Helmholtz resonators
NASA Technical Reports Server (NTRS)
Sirignano, W. A.
1972-01-01
Consideration of the nonlinear damping of pressure oscillations by means of acoustic liners consisting of a perforated plate communicating with a volume or of individual Helmholtz resonators. A nonlinear analysis leads to a modified first-order theory; in particular, some second-order damping effects (due to the formation of jets through the orifices) are considered, while other less important damping effects (of second order) are neglected. The effect of the vena contracta in the orifice flow is also taken into account, and the conditions of maximum damping are discussed. A determination is made of the orifice velocity, the cavity pressure, the admittance coefficient, the resistance, and the reactance, and good agreement is found between the theoretically determined resistance and orifice velocity and the pertinent experimental data.
Effects of time ordering in quantum nonlinear optics
NASA Astrophysics Data System (ADS)
Quesada, Nicolás; Sipe, J. E.
2014-12-01
We study time-ordering corrections to the description of spontaneous parametric down-conversion (SPDC), four-wave mixing (SFWM), and frequency conversion using the Magnus expansion. Analytic approximations to the evolution operator that are unitary are obtained. They are Gaussian preserving, and allow us to understand order-by-order the effects of time ordering. We show that the corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad. The calculation of the effects of time ordering on the joint spectral amplitude of the photons generated in SPDC and SFWM are reduced to quadrature.
The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.
2016-06-06
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less
The effect of crack orientation on the nonlinear interaction of a P wave with an S wave
NASA Astrophysics Data System (ADS)
TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.
2016-06-01
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.
NASA Astrophysics Data System (ADS)
Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent
2016-04-01
Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.
Effect of background plasma nonlinearities on dissipation processes in plasmas
NASA Astrophysics Data System (ADS)
Nekrasov, F. M.; Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.
1999-01-01
The Coulomb collision effect on the bounce-resonance dissipation is considered for toroidal magnetized plasmas. The solution of the Vlasov equation with a simplified Fokker-Planck collision operator is presented. The parallel components of the dielectric tensor are obtained. A collisionless limit of wave dissipation is found.
Testing the Item-Order Account of Design Effects Using the Production Effect
ERIC Educational Resources Information Center
Jonker, Tanya R.; Levene, Merrick; MacLeod, Colin M.
2014-01-01
A number of memory phenomena evident in recall in within-subject, mixed-lists designs are reduced or eliminated in between-subject, pure-list designs. The item-order account (McDaniel & Bugg, 2008) proposes that differential retention of order information might underlie this pattern. According to this account, order information may be encoded…
NASA Technical Reports Server (NTRS)
Bayliss, A.; Maestrello, L.; Turkel, E.
1985-01-01
The fluctuating field of a jet excited by transient mass injection is simulated numerically. The model is developed by expanding the state vector as a mean state plus a fluctuating state. Nonlinear terms are not neglected, and the effect of nonlinearity was studied. A high order numerical method is used to compute the solution. The results show a significant spectral broadening in the flow field due to the nonlinearity. In addition, large scale structures are broken down into smaller scales.
Confinement Effects with Films of Nonlinear Poly-styrene
NASA Astrophysics Data System (ADS)
Foster, Mark; He, Qiming; Narayanan, Suresh; Wu, David
2015-03-01
The surface fluctuations of annealed melt films of 6k cyclic polystyrene (CPS), its linear analog, and a long-branched chain were measured using X-ray photon correlation spectroscopy (XPCS) for films of various thicknesses. The surface fluctuations of the 6k linear PS melt films 17 nm and thicker and the 6k cyclic melt films 28 nm and thicker can be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized only by the bulk viscosity. When a film of CPS is 24 nm or thinner, the behavior can no longer be captured using the HCT with bulk viscosity. The surface fluctuations behave as though the film has an effective viscosity higher than the bulk value. The thickness at which confinement effects are seen for the 6k CPS chains is larger than that for the linear analogs. Confinement effects for long-branched chains appear at even larger thicknesses relative to Rg. Acknowledgements: Use of the Advanced Photon Source at Argonne National Laboratory was supported by the DOE's Office of Science under Contract DE-AC02-06-CH11357. This work was supported by NSF Grants CBET-0730692 and CBET-0731319.
Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.
Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro
2015-07-01
The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for
Weech-Maldonado, Robert; Benson, Keith J; Gamm, Larry D
2003-01-01
Community health partnerships (CHPs) are promoted as effective cooperative interorganizational relationships to improve community health status while conserving resources. However, relatively little is known about the effectiveness of these partnerships in achieving their goals. Using concepts from a network effectiveness framework (Provan and Milward, 2001) and a network accountability framework (Gamm, 1998), the authors propose that successful CHPs are those that are effective in multiple levels (community, network, organization/particpants) and/or accountability dimensions (political, commercial, clinical/patient, and community). The combined frameworks serve to identify a number of community health stakeholders and associated interests that vary according to accountability dimensions to which CHPs respond. Using survey data from over 400 participants in 25 Community Care Networks, the authors assess the usefulness of the conceptual framework in evaluating CHP effectiveness. The results suggest that CHP participants recognize three different levels of analysis in their evaluation of network effectiveness: community, network, and organization/participant. Furthermore, the results show that respondents distinguish between two different organization/participant benefits: enabling and client services. While respondents rated the intangible resources or enabling benefits (e.g., legitimacy and learning) of partnership participation most highly, client services resulting from CHP participation (e.g., client services and referrals) received the lowest ratings. Community benefit (e.g., improving community health status) and network effectiveness (e.g., ability to provide efficient, high quality health and human services) received ratings that fall between the enabling and client services. Given the relatively good scores (above 60%) received by CHPs on all four effectiveness dimensions considered here, it appears that the majority of respondents find at least some
Surface mediated nonlinear optic effects in liquid crystals
NASA Astrophysics Data System (ADS)
Merlin, Jessica M.
Liquid crystals have become a significant part of technology, mainly through their use in the display industry. This is due in part to the fact that the optical properties of liquid crystals are easily manipulated electronically. It has been recognized that the optical properties liquid crystals may also be controlled using light. Because of this, there are other various applications being explored for liquid crystals in photorefraction, optical limiting and switching, and in spatial light modulators. Although, the photorefractive effect was reported in liquid crystals over 10 years ago, there is still controversy over the exact mechanism for the reorientation of the liquid crystal director. This difficulty may be due in part to the fact that it is difficult to characterize the effect using photorefractive measurements and figures of merit. The optical and electronic control of liquid crystals will be studied here using a Friedericksz transition measurement in a twist cell geometry. This type of apparatus was chosen because it leads to a more direct demonstration of the surface effect. Namely, by studying changes in the Friedericksz transition threshold in a twist cell, a more direct observation of changes in the internal field may be observed. First a brief introduction to liquid crystals and their role in technology will be presented. This will be followed by a more rigorous discussion of the physics of liquid crystals and a review of the important literature. The experimental apparatus and the materials and cell geometry used will be described followed by the results of those measurements. Finally, the results will be considered in terms of a model involving interfacial charge and discussed in the context of previous work.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Suming; Nie, Zongxiu
2014-11-01
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a(u) and q(u), which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%. PMID:25183226
Nonlinear effect of debonding of wafer type piezoelectric actuator on the behaviour of Lamb wave
NASA Astrophysics Data System (ADS)
Yelve, Nitesh P.; Mitra, Mira; Mujumdar, P. M.
2014-03-01
In Lamb wave based techniques for damage detection, Piezoelectric Wafer (PW) transducers are often used for actuating Lamb wave. They offer advantages such as portability and, cost effectiveness. However, because of prolonged use, excessive voltage supply, or improper bonding onto the host structure, these PW actuators may get partially debonded from the host structure. In this paper, the nonlinear effect of this debonding on the behavior of Lamb wave manifested in the form of higher harmonics, is studied both experimentally and through Finite Element (FE) simulation. Augmented Lagrangian algorithm is used in FE simulation to solve the contact problem at the breathing debond. Three higher harmonics are observed in the experiments and also in the FE simulation. Morlet wavelet transform is implemented in the study for time-frequency analysis and the results are reported in the paper. Nonlinearity parameter β obtained from fundamental and second harmonics in the experiments and the simulation, is found to be increasing with increase in the debonding area. This shows that actuator debonding produces contact nonlinearity and thereby induces higher harmonics in the Lamb wave. Therefore, in damage detection using Lamb wave based nonlinear techniques, the higher harmonics produced may get influenced by the false higher harmonics produced by actuator debonding, leading to incorrect results. Also these false higher harmonics resulting from actuator debonding may show illusory presence of defect in a pristine material, if bonding of the actuator is not taken care of properly.
Lee, Miriam Chang Yi; Chow, Jia Yi; Komar, John; Tan, Clara Wee Keat; Button, Chris
2014-01-01
Learning a sports skill is a complex process in which practitioners are challenged to cater for individual differences. The main purpose of this study was to explore the effectiveness of a Nonlinear Pedagogy approach for learning a sports skill. Twenty-four 10-year-old females participated in a 4-week intervention involving either a Nonlinear Pedagogy (i.e.,manipulation of task constraints including equipment and rules) or a Linear Pedagogy (i.e., prescriptive, repetitive drills) approach to learn a tennis forehand stroke. Performance accuracy scores, movement criterion scores and kinematic data were measured during pre-intervention, post-intervention and retention tests. While both groups showed improvements in performance accuracy scores over time, the Nonlinear Pedagogy group displayed a greater number of movement clusters at post-test indicating the presence of degeneracy (i.e., many ways to achieve the same outcome). The results suggest that degeneracy is effective for learning a sports skill facilitated by a Nonlinear Pedagogy approach. These findings challenge the common misconception that there must be only one ideal movement solution for a task and thus have implications for coaches and educators when designing instructions for skill acquisition. PMID:25140822
Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models
Roshani, Daem; Ghaderi, Ebrahim
2016-01-01
Background and Objective: Cox model is a popular model in survival analysis, which assumes linearity of the covariate on the log hazard function, While continuous covariates can affect the hazard through more complicated nonlinear functional forms and therefore, Cox models with continuous covariates are prone to misspecification due to not fitting the correct functional form for continuous covariates. In this study, a smooth nonlinear covariate effect would be approximated by different spline functions. Material and Methods: We applied three flexible nonparametric smoothing techniques for nonlinear covariate effect in the Cox models: penalized splines, restricted cubic splines and natural splines. Akaike information criterion (AIC) and degrees of freedom were used to smoothing parameter selection in penalized splines model. The ability of nonparametric methods was evaluated to recover the true functional form of linear, quadratic and nonlinear functions, using different simulated sample sizes. Data analysis was carried out using R 2.11.0 software and significant levels were considered 0.05. Results: Based on AIC, the penalized spline method had consistently lower mean square error compared to others to selection of smoothed parameter. The same result was obtained with real data. Conclusion: Penalized spline smoothing method, with AIC to smoothing parameter selection, was more accurate in evaluate of relation between covariate and log hazard function than other methods. PMID:27041809
Diffraction Interference Induced Superfocusing in Nonlinear Talbot Effect
Liu, Dongmei; Zhang, Yong; Wen, Jianming; Chen, Zhenhua; Wei, Dunzhao; Hu, Xiaopeng; Zhao, Gang; Zhu, S. N.; Xiao, Min
2014-01-01
We report a simple, novel subdiffraction method, i.e. diffraction interference induced superfocusing in second-harmonic (SH) Talbot effect, to achieve focusing size of less than λSH/4 (or λpump/8) without involving evanescent waves or subwavelength apertures. By tailoring point spread functions with Fresnel diffraction interference, we observe periodic SH subdiffracted spots over a hundred of micrometers away from the sample. Our demonstration is the first experimental realization of the Toraldo di Francia's proposal pioneered 62 years ago for superresolution imaging. PMID:25138077
Nonlinear Plasma Effects in Natural and Artificial Aurora
Mishin, E. V.
2011-01-04
This report describes common features of natural ('Enhanced') aurora and 'artificial aurora'(AA) created by electron beams injected from sounding rockets. These features cannot be explained solely by col-lisional degradation of energetic electrons, thereby pointing to collisionless plasma effects. The fundamental role in electron beam-ionosphere interactions belongs to Langmuir turbulence. Its development in the (weakly-ionized) ionosphere is significantly affected by electron-neutral collisions, so that the heating and acceleration of plasma electrons proceed more efficiently than in collisionless plasmas. As a result, a narrow layer of enhanced auroral glow/ionization is formed above the standard collisional peak.
The hysteresis-free negative capacitance field effect transistors using non-linear poly capacitance
NASA Astrophysics Data System (ADS)
Fan, S.-T.; Yan, J.-Y.; Lai, D.-C.; Liu, C. W.
2016-08-01
A gate structure design for negative capacitance field effect transistors (NCFETs) is proposed. The hysteresis loop in current-voltage performances is eliminated by the nonlinear C-V dependence of polysilicon in the gate dielectrics. Design considerations and optimizations to achieve the low SS and hysteresis-free transfer were elaborated. The effects of gate-to-source/drain overlap, channel length scaling, interface trap states and temperature impact on SS are also investigated.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.
2004-01-01
An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.
ERIC Educational Resources Information Center
Packard, Richard D.; Dereshiwsky, Mary I.
A process for evaluating the effectiveness of educational organizations, with a focus on accountability, is described. An evaluation of 15 pilot-test school districts in the Arizona Career Ladder Project reveals the existence of a major discrepancy between meeting program requirements and achieving program success. A theoretical model of…
Lee, Hwa-Young; Yang, Bong-Ming; Kang, Minah
2016-01-01
Background Despite continued global efforts, HIV/AIDS outcomes in developing countries have not made much progress. Poor governance in recipient countries is often seen as one of the reasons for ineffectiveness of aid efforts to achieve stated objectives and desired outcomes. Objective This study examines the impact of two important dimensions of governance – control of corruption and democratic accountability – on the effectiveness of HIV/AIDS official development assistance. Design An empirical analysis using dynamic panel Generalized Method of Moments estimation was conducted on 2001–2010 datasets. Results Control of corruption and democratic accountability revealed an independent effect and interaction with the amount of HIV/AIDS aid on incidence of HIV/AIDS, respectively, while none of the two governance variables had a significant effect on HIV/AIDS prevalence. Specifically, in countries with accountability level below −2.269, aid has a detrimental effect on incidence of HIV/AIDS. Conclusion The study findings suggest that aid programs need to be preceded or at least accompanied by serious efforts to improve governance in recipient countries and that democratic accountability ought to receive more critical attention. PMID:27189199
Outputs as Educator Effectiveness in the United States: Shifting towards Political Accountability
ERIC Educational Resources Information Center
Piro, Jody S.; Mullen, Laurie
2013-01-01
The definition of educator effectiveness is being redefined by econometric modeling to evidence student achievement on standardized tests. While the reasons that econometric frameworks are in vogue are many, it is clear that the strength of such models lie in the quantifiable evidence of student learning. Current accountability models frame…
14 CFR 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...
ERIC Educational Resources Information Center
Opfer, V. Darleen; Henry, Gary T.; Mashburn, Andrew J.
2008-01-01
High stakes accountability (HSA) reforms were enacted in state after state and federally through the No Child Left Behind law, based on the belief that incentives that have consequences attached are effective ways to motivate educators to improve student performance. Our focus for this article is on school district level responses to HSA reforms…
ERIC Educational Resources Information Center
Vicknair, David; Wright, Jeffrey
2015-01-01
Evidence of confusion in intermediate accounting textbooks regarding the annual percentage rate (APR) and annual effective rate (AER) is presented. The APR and AER are briefly discussed in the context of a note payable and correct formulas for computing each is provided. Representative examples of the types of confusion that we found is presented…
14 CFR Section 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...
14 CFR Section 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...
14 CFR Section 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
...EPA is announcing that Eastern Research Group, Inc. (ERG), an EPA contractor for external scientific peer review, will convene an independent panel of experts and organize and conduct an external peer review workshop to review the external review draft report titled, ``Implications of Climate Change for Bioassessment Programs and Approaches to Account for Effects'' (EPA/600/R-11/036A) and its......
ERIC Educational Resources Information Center
Chen, Clement C.; Jones, Keith T.
2007-01-01
A survey was conducted of Master of Business Administration (MBA) students in an accounting class at a university in the Northern United States to compare students' assessments of course effectiveness and overall satisfaction with the course. One group of students were enrolled in a traditional in-class section, and another group in a…
Effects of Individual Development Accounts (IDAs) on Household Wealth and Saving Taste
ERIC Educational Resources Information Center
Huang, Jin
2010-01-01
This study examines effects of individual development accounts (IDAs) on household wealth of low-income participants. Methods: This study uses longitudinal survey data from the American Dream Demonstration (ADD) involving experimental design (treatment group = 537, control group = 566). Results: Results from quantile regression analysis indicate…
Study of statis and dynamic stress effects in nonlinear solids
NASA Technical Reports Server (NTRS)
Namkung, M.
1985-01-01
As the basic physical principles behind the low-field magnetoacoustic interactions have been unfolded, a new step in the present research had to be taken. First, the stress measurements began in samples obtained in real railroad wheel and rail materials. Second, the effect of texture, which is the prime obstacle of conventional NDE techniques, has been investigated. The first stage shows experimental results on these subjects again confirmed that the present technique is most suited for nondestructive stress characterization in steel components. The stress effects on the magnetoacoustic interaction obtained in a sample made from railroad rail which were very similar to those obtained previously in 1045 steel. These results being somewhat different from the results with low (1020) and high (1095) carbon steels, there seemed to be certain range of medium carbon steels having the same characteristics. Also, as expected from the model, the stress information obtained by this technique has been confirmed to be least affected by the presence of texture.
Nonlinear simulations of particle source effects on edge localized mode
Huang, J.; Tang, C. J.; Chen, S. Y.; Wang, Z. H.
2015-12-15
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.
Nonlinear simulations of particle source effects on edge localized mode
NASA Astrophysics Data System (ADS)
Huang, J.; Chen, S. Y.; Wang, Z. H.; Tang, C. J.
2015-12-01
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.
A Theoretical Method for Characterizing Nonlinear Effects in Paul Traps with Added Octopole Field.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Chen, Suming; Nie, Zongxiu
2015-08-01
In comparison with numerical methods, theoretical characterizations of ion motion in the nonlinear Paul traps always suffer from low accuracy and little applicability. To overcome the difficulties, the theoretical harmonic balance (HB) method was developed, and was validated by the numerical fourth-order Runge-Kutta (4th RK) method. Using the HB method, analytical ion trajectory and ion motion frequency in the superimposed octopole field, ε, were obtained by solving the nonlinear Mathieu equation (NME). The obtained accuracy of the HB method was comparable with that of the 4th RK method at the Mathieu parameter, q = 0.6, and the applicable q values could be extended to the entire first stability region with satisfactory accuracy. Two sorts of nonlinear effects of ion motion were studied, including ion frequency shift, Δβ, and ion amplitude variation, Δ(C(2n)/C0) (n ≠ 0). New phenomena regarding Δβ were observed, although extensive studies have been performed based on the pseudo-potential well (PW) model. For instance, the |Δβ| at ε = 0.1 and ε = -0.1 were found to be different, but they were the same in the PW model. This is the first time the nonlinear effects regarding Δ(C(2n)/C0) (n ≠ 0) are studied, and the associated study has been a challenge for both theoretical and numerical methods. The nonlinear effects of Δ(C(2n)/C0) (n ≠ 0) and Δβ were found to share some similarities at q < 0.6: both of them were proportional to ε, and the square of the initial ion displacement, z(0)(2). PMID:25924875
NASA Astrophysics Data System (ADS)
Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen
2016-06-01
In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.
NASA Astrophysics Data System (ADS)
Carrara, P.; De Lorenzis, L.; Bentz, D. P.
2016-08-01
The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The three-dimensional HCP microstructures are obtained through segmentation of x-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicitly taken into account. The homogenized diffusivity of the HCP is then derived through a least square homogenization technique. Comparisons between numerical results and experimental data from the literature are presented.
Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber
NASA Astrophysics Data System (ADS)
Koehler, J. R.; Butsch, A.; Euser, T. G.; Noskov, R. E.; St. J. Russell, P.
2013-11-01
The freely-suspended glass membranes in a dual-nanoweb fiber, driven at resonance by intensity-modulated light, exhibit a giant optomechanical nonlinearity. We experimentally investigate the effect of squeezed-film damping by exploring the pressure dependence of resonant frequency and mechanical quality factor. As a consequence of the unusually narrow slot between the nanowebs (22 μm by 550 nm), the gas-spring effect causes a pressure-dependent frequency shift that is ˜15 times greater than typically measured in micro-electro-mechanical devices. When evacuated, the dual-nanoweb fiber yields a quality factor of ˜3 600 and a resonant optomechanical nonlinear coefficient that is ˜60 000 times larger than the Kerr effect.
Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks.
Demirkaya, A; Frantzeskakis, D J; Kevrekidis, P G; Saxena, A; Stefanov, A
2013-08-01
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem. PMID:24032958
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)
2001-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.
Sepehri Javan, N; Adli, F
2013-10-01
Nonlinear dynamics of an intense circularly polarized laser beam interacting with a hot magnetized plasma is investigated. Using a relativistic fluid model, a modified nonlinear Schrödinger equation is derived based on a quasineutral approximation, which is valid for hot plasma. Using a three-dimensional model, spatial-temporal development of the laser pulse is investigated. The occurrence of some nonlinear phenomena such as self-focusing, self-modulation, light trapping, and filamentation of the laser pulse is discussed. Also the effect of polarization and external magnetic field on the nonlinear evolution of these phenomena is studied. PMID:24229288
Beam-shape effects in nonlinear Compton and Thomson scattering
Heinzl, T.; Seipt, D.; Kaempfer, B.
2010-02-15
We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus is on the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane-wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focusing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focusing, and hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity-induced spectral red shift, higher harmonics, and their substructure becomes feasible.
Schmidt, James R
2016-09-01
Performance is impaired when a distracting stimulus is incongruent with the target stimulus (e.g., "green" printed in red). This congruency effect is decreased when the proportion of incongruent trials is increased, termed the proportion congruent effect. This effect is typically interpreted in terms of the adaptation of attention in response to conflict. In contrast, the contingency account argues that the effect is driven by the learning of predictive relationships between words and responses. In a recent report, Abrahamse, Duthoo, Notebaert, and Risko (2013) demonstrated larger changes in the magnitude of the proportion congruent effect when switching from a mostly congruent list to a mostly incongruent list, relative to the reverse order. They argued that this asymmetric list shifting effect fits only with the conflict adaptation perspective. However, the current paper presents reanalyses of this data and an adaptation of the Parallel Episodic Processing model that together demonstrate how the contingency account can explain these findings equally well when considering the generally accepted notion that performance improves with practice. The contingency account may still be the most parsimonious view. (PsycINFO Database Record PMID:27585071
A computational account of the production effect: Still playing twenty questions with nature.
Jamieson, Randall K; Mewhort, D J K; Hockley, William E
2016-06-01
People remember words that they read aloud better than words that they read silently, a result known as the production effect. The standing explanation for the production effect is that producing a word renders it distinctive in memory and, thus, memorable at test. By 1 key account, distinctiveness is defined in terms of sensory feedback. We formalize the sensory-feedback account using MINERVA 2, a standard model of memory. The model accommodates the basic result in recognition as well as the fact that the mixed-list production effect is larger than its pure-list counterpart, that the production effect is robust to forgetting, and that the production and generation effects have additive influences on performance. A final simulation addresses the strength-based account and suggests that it will be more difficult to distinguish a strength-based versus distinctiveness-based explanation than is typically thought. We conclude that the production effect is consistent with existing theory and discuss our analysis in relation to Alan Newell's (1973) classic criticism of psychology and call for an analysis of psychological principles instead of laboratory phenomena. (PsycINFO Database Record PMID:27244357
NASA Astrophysics Data System (ADS)
Zhang, Xiaozhong; Luo, Zhaochu
Size limitation of silicon FET hinders the further scaling down of silicon based CPU. To solve this problem, spin based magnetic logic devices were proposed but almost all of them could not be realized experimentally except for NOT logic operation. A magnetic field controlled reconfigurable semiconductor logic using InSb was reported. However, InSb is very expensive and not compatible with the silicon technology. Based on our Si based magnetoresistance (MR) device, we developed a Si based reconfigurable magnetic logic device, which could do all four Boolean logic operations including AND, OR, NOR and NAND. By coupling nonlinear transport effect of semiconductor and anomalous Hall effect of magnetic material, we propose a PMA material based MR device with a remarkable non local MR of >20000 % at ~1 mT. Based on this MR device, we further developed a PMA material based magnetic logic device which could do all four Boolean logic operations. This makes it possible that magnetic material does both memory and logic. This may result in a memory-logic integrated system leading to a non von Neumann computer
Nonlinear vibrations of viscoelastic rectangular plates
NASA Astrophysics Data System (ADS)
Amabili, Marco
2016-02-01
Nonlinear vibrations of viscoelastic thin rectangular plates subjected to normal harmonic excitation in the spectral neighborhood of the lowest resonances are investigated. The von Kármán nonlinear strain-displacement relationships are used and geometric imperfections are taken into account. The material is modeled as a Kelvin-Voigt viscoelastic solid by retaining all the nonlinear terms. The discretized nonlinear equations of motion are studied by using the arclength continuation and collocation method. Numerical results are obtained for the fundamental mode of a simply supported square plate with immovable edges by using models with 16 and 22 degrees of freedom and investigating solution convergence. Comparison to viscous damping and the effect of neglecting nonlinear viscoelastic damping terms are shown. The change of the frequency-response with the retardation time parameter is also investigated as well as the effect of geometric imperfections.
NASA Astrophysics Data System (ADS)
Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago
Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.
ERIC Educational Resources Information Center
Yang, Ji Seung
2012-01-01
Nonlinear multilevel latent variable modeling has been suggested as an alternative to traditional hierarchical linear modeling to more properly handle measurement error and sampling error issues in contextual effects modeling. However, a nonlinear multilevel latent variable model requires significant computational effort because the estimation…
Improving nonlinear modeling capabilities of functional link adaptive filters.
Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio
2015-09-01
The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613
NASA Astrophysics Data System (ADS)
Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro
2015-10-01
Sonodynamic treatment is a treatment method that uses chemical bio-effect of cavitation bubbles. Reactive oxygen species that can kill cancerous tissue is induced by such chemical effect of cavitation bubbles and it is important to generate them efficiently for effective sonodynamic treatment. Cavitation cloud can be formed by an effect of nonlinear propagation and focus and in this study, it was experimentally investigated if cavitation cloud was useful for efficient generation of reactive oxygen species. As a result, it was demonstrated that cavitation cloud would be useful for efficient generation of reactive oxygen species.
NASA Technical Reports Server (NTRS)
Smith, David D.
2002-01-01
This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.
Accounting for Behavior in Treatment Effects: New Applications for Blind Trials.
Chassang, Sylvain; Snowberg, Erik; Seymour, Ben; Bowles, Cayley
2015-01-01
The double-blind randomized controlled trial (DBRCT) is the gold standard of medical research. We show that DBRCTs fail to fully account for the efficacy of treatment if there are interactions between treatment and behavior, for example, if a treatment is more effective when patients change their exercise or diet. Since behavioral or placebo effects depend on patients' beliefs that they are receiving treatment, clinical trials with a single probability of treatment are poorly suited to estimate the additional treatment benefit that arises from such interactions. Here, we propose methods to identify interaction effects, and use those methods in a meta-analysis of data from blinded anti-depressant trials in which participant-level data was available. Out of six eligible studies, which included three for the selective serotonin re-uptake inhibitor paroxetine, and three for the tricyclic imipramine, three studies had a high (>65%) probability of treatment. We found strong evidence that treatment probability affected the behavior of trial participants, specifically the decision to drop out of a trial. In the case of paroxetine, but not imipramine, there was an interaction between treatment and behavioral changes that enhanced the effectiveness of the drug. These data show that standard blind trials can fail to account for the full value added when there are interactions between a treatment and behavior. We therefore suggest that a new trial design, two-by-two blind trials, will better account for treatment efficacy when interaction effects may be important. PMID:26062024
Linear and nonlinear effect of sheared plasma flow on resistive tearing modes
Hu, Qiming Hu, Xiwei; Yu, Q.
2014-12-15
The effect of sheared plasma flow on the m/n = 2/1 tearing mode is studied numerically (m and n are the poloidal and toroidal mode numbers). It is found that in the linear phase the plasma flow with a weak or moderate shear plays a stabilizing effect on tearing mode. However, the mode is driven to be more unstable by sufficiently strong sheared flow when approaching the shear Alfvén resonance (AR). In the nonlinear phase, a moderate (strong) sheared flow leads to a smaller (larger) saturated island width. The stabilization of tearing modes by moderate shear plasma flow is enhanced for a larger plasma viscosity and a lower Alfvén velocity. It is also found that in the nonlinear phase AR accelerates the plasma rotation around the 2/1 rational surface but decelerates it at the AR location, and the radial location satisfying AR spreads inwards towards the magnetic axis.
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.
2003-01-01
Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.
NASA Astrophysics Data System (ADS)
Lotfipour, H.; Allameh, Z.; Roknizadeh, R.; Heydari, H.
2016-03-01
Using two different schemes, a non-classical-squeezed state of light is detected and characterized. In the first scheme, in a one-dimensional cavity with a moving mirror (non-stationary Casimir effect) in the principal mode, we study the photon generation rate for two modes (squeezed and coherent state) of a driving field. Since the cavity with the moving mirror (similar to an optomechanical system) can be considered an analogue to a Kerr-like medium, in the second scheme, the probability amplitude for multi-photon absorption in a nonlinear (Kerr) medium will be quantum mechanically calculated. It is shown that because of the presence of nonlinear effects, the responses of these two systems to the squeezed versus coherent state are considerably distinguishable. The drastic difference between the results of these two states of light can be viewed as a proposal for detecting non-classical states.
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.
2003-01-01
Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine- shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.
NASA Astrophysics Data System (ADS)
Li, Nianbei; Li, Baowen
2012-12-01
Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory, effective phonon theory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonon theory is able to predict the scaling exponents of temperature-dependent thermal conductivities quantitatively and consistently.
Wu, Heng-Qing; Sun, Shi-Ling; Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min
2012-11-01
In the present work, Li@porphyrins and their derivatives were designed in order to explore the effect of dehydrogenation/hydrogenation on linear and nonlinear optical properties. Their stable structures were obtained by the M06-2X method. Moreover, the M06-2X method showed that dehydrogenation/hydrogenation has greatly influences polarizabilities (α₀ values) and hyperpolarizabilities (β(tot) and γ(tot) values): α₀ values ranged from 331 to 389 au, β(tot) values from 0 to 2465 au, and γ(tot) values from -21.2 × 10⁴ to 21.4 × 10⁴ au. This new knowledge of the effect of dehydrogenation/hydrogenation on nonlinear optical properties may prove beneficial to the design and development of high-performance porphyrin materials. PMID:22722697
Berry curvature induced nonlinear Hall effect in time-reversal invariant materials
NASA Astrophysics Data System (ADS)
Sodemann, Inti; Fu, Liang
2015-03-01
It is well-known that a non-vanishing Hall conductivity requires time-reversal symmetry breaking. However, in this work, we demonstrate that a Hall-like transverse current can occur in second-order response to an external electric field in a wide class of time-reversal invariant and inversion breaking materials. This nonlinear Hall effect arises from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. We show that the nonlinear Hall coefficient is a rank-two pseudo-tensor, whose form is determined by point group symmetry. We will describe the optimal conditions and candidate materials to observe this effect. IS is supported by the Pappalardo Fellowship in Physics. LF is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.
NASA Astrophysics Data System (ADS)
Sarkhosh, L.; Mansour, N.
2015-06-01
In nanoparticle colloidal systems, the thermal nonlinearity is affected by the thermal parameters of the surrounding solution. Having a low temperature gradient rate solution may be a key factor in producing high thermal nonlinear properties in colloids. In this manuscript, the effect of the thermal conductivity of the surrounding liquid environment on the thermal nonlinear refraction of gold nanoparticles (AuNPs) synthesized by laser ablation of a gold target in different solutions is investigated. Gold nanoparticles colloids have been fabricated by the nanosecond pulsed laser ablation of a pure gold plate in different liquid environments with a thermal conductivity range of 0.14-0.60 W mK-1 including cyclohexanone, castor oil, dimethyl sulfoxide, ethylene glycol, glycerin and water. The AuNPs colloids exhibit a UV-Vis absorption spectrum with a surface plasmon absorption peak at about 540 ± 20 nm. The thermal nonlinear optical responses of the gold colloids are measured using the Z-scan technique under low power CW laser irradiation at 532 nm near the surface plasmon peak of the nanoparticles. Our results show that the nonlinear refractive index of the nanoparticle colloids is considerably affected by the thermal conductivity of liquid medium. The largest nonlinear refractive index of -3.1 × 10-7 cm2 W-1 is obtained for AuNP in cyclohexanone with the lowest thermal conductivity of 0.14 W mK-1 whereas the lowest one of -0.1 × 10-7 cm2 W-1 is obtained for AuNP in water with the highest thermal conductivity of 0.60 W mK-1. This study shows that the nonlinear refractive index value of colloids can be controlled by the thermal conductivity of the used liquid’s environment. This allows us to design low threshold optical limiters by choosing a solution with low thermal conductivity for colloidal nanoparticles.
Long, Qi; Chung, Matthias; Moreno, Carlos S.; Johnson, Brent A.
2011-01-01
In biomedical studies, it is of substantial interest to develop risk prediction scores using high-dimensional data such as gene expression data for clinical endpoints that are subject to censoring. In the presence of well-established clinical risk factors, investigators often prefer a procedure that also adjusts for these clinical variables. While accelerated failure time (AFT) models are a useful tool for the analysis of censored outcome data, it assumes that covariate effects on the logarithm of time-to-event are linear, which is often unrealistic in practice. We propose to build risk prediction scores through regularized rank estimation in partly linear AFT models, where high-dimensional data such as gene expression data are modeled linearly and important clinical variables are modeled nonlinearly using penalized regression splines. We show through simulation studies that our model has better operating characteristics compared to several existing models. In particular, we show that there is a non-negligible effect on prediction as well as feature selection when nonlinear clinical effects are misspecified as linear. This work is motivated by a recent prostate cancer study, where investigators collected gene expression data along with established prognostic clinical variables and the primary endpoint is time to prostate cancer recurrence. We analyzed the prostate cancer data and evaluated prediction performance of several models based on the extended c statistic for censored data, showing that 1) the relationship between the clinical variable, prostate specific antigen, and the prostate cancer recurrence is likely nonlinear, i.e., the time to recurrence decreases as PSA increases and it starts to level off when PSA becomes greater than 11; 2) correct specification of this nonlinear effect improves performance in prediction and feature selection; and 3) addition of gene expression data does not seem to further improve the performance of the resultant risk
The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips
NASA Technical Reports Server (NTRS)
Ballarini, R.; Luo, H. A.
1994-01-01
A model which can be used to predict the two-dimensional nonlinear behavior of bridged cracks in orthotropic strips is presented. The results obtained using a singular integral equation formulation which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant, the nondimensional quantities employed by Cox and Marshall can generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role of composite constituent properties in the behavior of bridged cracks is clarified.
Upadhyay, Ajay K.; Singh, Ram Gopal; Singh, Vijay; Jha, Pallavi
2008-12-15
The present study deals with the propagation of an ultrashort narrow laser beam in a parabolic plasma channel. The effect of transverse ponderomotive nonlinearity on the propagation characteristics of the laser beam is analyzed. Using the variational technique, coupled equations describing the evolution of pulse length and spot size are obtained. The variation of intensity, of mismatched and matched laser pulses, with propagation distance is graphically depicted.
Nonlinear spectroscopic effects in quantum gases induced by atom-atom interactions
Safonov, A. I. Safonova, I. I.; Yasnikov, I. S.
2013-05-15
We consider nonlinear spectroscopic effects-interaction-enhanced double resonance and spectrum instability-that appear in ultracold quantum gases owing to collisional frequency shift of atomic transitions and, consequently, due to the dependence of the frequencies on the population of various internal states of the particles. Special emphasis is put to two simplest cases, (a) the gas of two-level atoms and (b) double resonance in a gas of three-level bosons, in which the probe transition frequency remains constant.
Nonlinear growing neutrino cosmology
NASA Astrophysics Data System (ADS)
Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof
2016-03-01
The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.
Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D
Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Tobias, Benjamin; Zeeland, Michael Van; Wang, Feng
2015-04-15
In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.
Q-switched laser in an SMS cavity for inhibiting nonlinear effects.
Zhou, Jiaqi; Lu, Yi; He, Bing; Gu, Xijia
2015-07-01
In the design of high-power Q-switched fiber lasers, nonlinear effects often become barriers that prevent the scale up of pulse energy and peak power. New designs and components that could inhibit or suppress nonlinear effects are in high demand, particularly in all-fiber configurations. In this paper, we demonstrated a Q-switched Yb-doped fiber laser in a single-mode multimode single-mode (SMS) structure to inhibit fiber nonlinear effects. The laser-generated Q-switched pulses with a peak power close to 1 kW (pulse width and energy of 100 ns and 92 μJ, respectively). The output spectrum of this laser was compared with that of a Q-switched Yb-doped fiber laser built in a conventional configuration with similar output peak power. The results showed, for the first time to our knowledge, that the SMS Q-switched laser completely inhibited the stimulated Raman scattering and significantly reduced self-phase modulation. PMID:26193155
A nonlinear generalized continuum approach for electro-elasticity including scale effects
NASA Astrophysics Data System (ADS)
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear
Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments
NASA Astrophysics Data System (ADS)
Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Mumm, H. P.; O`Shaughnessy, C. M.; Schelhammer, K. W.; Thompson, A. K.; Yue, A. T.
2016-03-01
In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.
Accounting for strong localized heterogeneities and local transport effect in core calculations
Ruggieri, J.M.; Doriath, J.Y.; Finck, P.J.; Boyer, R.
1996-09-01
Two methods based on the variational nodal transport method have been developed to account for localized heterogeneities and local transport effects in full core calculations. A local mesh refinement technique relies on using the projected partial ingoing surface currents produced during coarse-mesh iterations as boundary conditions for fine-mesh calculations embedded within the coarse-mesh calculations. The outgoing fine-mesh partial currents are averaged to serve in the coarse-mesh iterations. Then, a mixed transport-diffusion method using two levels of angular approximations for the surface partial currents depending on the node considered has been implemented to account for local transport effects in full core diffusion calculations. These methods have been tested for a model of the Superphenix complementary shutdown rods.
NASA Astrophysics Data System (ADS)
Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.
2015-06-01
The effect of interdiffusion on electronic states and nonlinear light absorption in Gaussian-shaped double quantum rings is studied. The confining potential, electron energy spectrum, wave functions and absorption coefficient are obtained for different values of diffusion parameter. The effect of the variation of Gaussian parameters is considered as well. The selection rules for the intraband transitions in the cases of the light polarization parallel and perpendicular to the quantum rings' axis are obtained. It is shown that the interdiffusion can be used as an effective tool for the purposeful manipulation of the electric and optical properties of the considered structure.
Nonlinear side effects of fs pulses inside corneal tissue during photodisruption
NASA Astrophysics Data System (ADS)
Heisterkamp, A.; Ripken, T.; Mamom, T.; Drommer, W.; Welling, H.; Ertmer, W.; Lubatschowski, H.
In order to evaluate the potential for refractive surgery, fs laser pulses of 150-fs pulse duration were used to process corneal tissue of dead and living animal eyes. By focusing the laser radiation down to spot sizes of several microns, very precise cuts could be achieved inside the treated cornea, accompanied with minimum collateral damage to the tissue by thermal or mechanical effects. During histo-pathological analysis by light and transmission electron microscopy considerable side effects of fs photodisruption were found. Due to the high intensities at the focal region several nonlinear effects occurred. Self-focusing, photodissociation, UV-light production were observed, leading to streak formation inside the cornea.
A New Method for Determining the Non-Linear Effective Pressure
NASA Astrophysics Data System (ADS)
Xiao, W.; Li, L.; Bernabe, Y.; Zhao, J.; Li, M.
2014-12-01
The physical properties (for example, permeability k) of linear elastic materials usually obey a simple effective pressure law (EPL), peff= pc-αpf (peff: effective pressure; pc: confining pressure; pf: pore fluid pressure), where α is a constant, often taken to be equal to 1 in the well-known Terzaghi' law, peff=pc-pf. However, non-linear EPL's, peff=pc-αs(pf, pc)pf, where the secant coefficient αs(pf, pc) is a function of pc and pf, should be expected in non-linear elastic rocks [Robin, 1978] and have been previously reported for permeability in low-permeability sandstones [Li et al, 2009, 2014]. A new method for experimentally determining non-linear EPL's for permeability was tested on low-permeability sandstones from reservoirs in China. The permeability of these low-permeability sandstones was measured while simultaneously cycling pf and pc (with 0 ≤ pf < pc). Based on the analysis of the experimental data using the Response Surface Method [Box and Draper, 1987], a contour map of permeability was drawn in the plane [pf, pc], from which the secant coefficient αs(pf, pc) and the effective pressure peff(pf, pc) were calculated. We found that αs(pf, pc) varied in the entire theoretically allowed range, φ ≤ αs(pf, pc) ≤ 1, where φ is the porosity. It is most interesting that αs(pf, pc) could be approximately described as a decreasing function αs(pc-pf) of Terzaghi's differential pressure. Moreover, the non-linear EPL determined using the new method allowed a better estimation of the pressure dependence of permeability, k(peff), than classic Terzaghi' law, k(pc-pf).
Solitary Waves in the Model of Active Media, Taking into Account Effects of Relaxation
NASA Astrophysics Data System (ADS)
Likus, W.; Vladimirov, V. A.
2015-04-01
We study a system of differential equations simulating transport phenomena in active structured media. The model is a generalization of McKean's modification of the celebrated FitzHugh-Nagumo system, describing the nerve impulse propagation in axon. It takes into account the effects of memory, connected with the presence of internal structure. We construct explicitly the localized traveling wave solutions and analyze their stability.
NASA Astrophysics Data System (ADS)
Shafiei, Navvab; Kazemi, Mohammad; Ghadiri, Majid
2016-08-01
This study is concerned with the small-scale effect on the nonlinear flapwise bending vibration of rotating cantilever and propped cantilever nanobeams. Euler-Bernoulli beam theory is used to model the nanobeam with nonlinearity. Nonlinear strain-displacement relations are employed to account for geometric nonlinearity of the system. The axial forces are modeled as the true spatial and thermal variations due to the rotation. Hamilton's principle is used to derive the nonlinear governing equation and nonlocal nonlinear boundary conditions based on Eringen's nonlocal elasticity theory. Finally, the differential quadrature method is used in conjunction with the direct iterative method to derive the nonlinear vibration frequencies of the nanobeam. The effects of the angular velocity, nonlocal small-scale parameter, temperature change and nonlinear amplitude on nonlinear vibration of the rotary nanobeam are discussed. The results of this work can be used in nanosensors, nanomotors, nanoturbines and NEMS applications.
Hydromechanics behavior of dam with core by taking into account the effect of contact
NASA Astrophysics Data System (ADS)
Bekkouche, A.; Benadla, Z.; Houmadi, Y.; Ghefir, M.
2008-07-01
Forces acting on the thin cores of earth dams could be reduced by the effect of contact with the refills. Thus the effective stress could be reduced and in turn will induce cracks at the base of the dams. This phenomenon is called hydraulic fracturing. The modeling of this phenomenon, using ANSYS program, by taking into account the effect of contact will make possible the prediction of global behavior of the dam and in the meantime will allow the assessment of the thickness of the core under which the effect of contact will have an influence. A parametric study has been performed to understand the relationship between the effect of contact and the variation of the effective stress.
NASA Astrophysics Data System (ADS)
Panyam Mohan Ram, Meghashyam
In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading
Tuning the elastic nonlinearities in composite nanomaterials.
Guerder, Pierre-Yves; Giordano, Stefano; Matar, Olivier Bou; Vasseur, Jérôme Olivier
2015-04-15
The possibility of tuning the nonlinear effective response of composite materials and structures is of great importance for developing new concepts such as soft metamaterials, acoustic diodes, nonlinear waveguides and phononic crystals. In this paper we develop a homogenization technique for dispersions of nonlinear particles in a soft matrix able to take account of second and third order elastic nonlinearities. Based on this method, we prove the possibility to strongly amplify a given particles nonlinearity (either the second or the third one) under specific conditions concerning the linear response of the two constituents (particles and matrix). We finally give a realistic example based on a population of porous polymer particles embedded in a PDMS matrix. PMID:25786413
NASA Astrophysics Data System (ADS)
Liu, Yanping; Zhang, Feng; Wei, Jianzhou
2016-12-01
By constructing a population model of multi-species competition, a community with nonlinear interaction relationship is investigated, in which the species' response delay and environmental fluctuation effects (i.e., seasonal fluctuation of resource supplies and species' reproductive activities) on population are considered. Firstly, the conditions about competitive coexistence (i.e., persistence of all species) and competitive exclusion (i.e., only partial of species, but not all, keep persistence) of the community are established, and the underlying ecological mechanism of these results are analyzed. Secondly, by some illustrative examples, the interactive effects of nonlinear competition, species' response delay and environmental fluctuation on the structure of community are explored. It is demonstrated that small response delay and slight deviation of nonlinear competition indexes from 1 have little impact on the coexistence of community, but acute changes have distinct negative influence on community coexistence. This reveals to us that parameter perturbations of natural communities should keep in an appropriate range, which is of great significance in conservation and restoration biology.
Electrorheological Source of Nonlinear Dielectric Effects in Molecular Glass-Forming Liquids.
Samanta, Subarna; Richert, Ranko
2016-08-11
We have measured the dielectric relaxation spectra of eight glass-forming liquids in the presence of electric direct current (dc)-bias fields ranging from 100 to 500 kV/cm. For every sample, we observe two distinct field-induced effects: a reduction in the relaxation amplitude and an increase in the primary structural relaxation time that is associated with viscous flow. Whereas amplitude change is typical of the well-known dielectric saturation, the field-induced increase in viscosity is a source of nonlinear behavior that has been recognized only recently. We find that this electrorheological behavior occurs in all polar liquids of this study, and its magnitude is correlated with the field-induced change in thermodynamic entropy. It constitutes a significant source of nonlinear dielectric behavior, which occurs for both dc and alternating current fields. PMID:27404019
Medium-Range Ordering in Liquids Appearing in Nonlinear Dielectric Effect Studies
NASA Astrophysics Data System (ADS)
Zioło, Jerzy; Rzoska, Sylwester J.; Drozd-Rzoska, Aleksandra
Results of nonlinear dielectric effect (NDE) studies in supercooling epoxy resin EPON 5, nitrobenzene and menthol are presented. In each case on cooling a non-exponential decay of the NDE response after switching-off the strong electric field was found. The obtained "nonlinear" relaxation time is more than 106 times longer than the structural relaxation time (alpha relaxation) detected from "linear" broad band dielectric spectroscopy. For EPON 5 it is shown that for the whole tested range of temperatures the NDE relaxation time can be well parameterized by the Vogel-Fulcher-Tamman relation. For higher temperatures the NDE decay time can also be portrayed by the critical-like dependence, with the power exponent y=1.
Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang
2015-01-01
Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447
Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR.
Baker, Chams; Vanus, Benoit; Wuilpart, Marc; Chen, Liang; Bao, Xiaoyi
2016-08-22
We present a novel approach for the generation of high extinction-ratio square pulses based on self-phase modulation of sinusoidally modulated optical signals (SMOS). A SMOS in a nonlinear medium experiences self-phase modulation induced by the nonlinear Kerr effect leading to the generation of distinct sidebands. A small variation in the peak power of the SMOS leads to a large variation in the power of the sidebands. Impressing a square pulse on the SMOS and filtering a sideband component results in a higher extinction-ratio square pulse. The advantage of high extinction-ratio pulses is demonstrated by a reduced background noise level in the Rayleigh backscattering traces of a phase-OTDR vibration measurement system. PMID:27557220
Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles
NASA Astrophysics Data System (ADS)
McMahon, Matthew David
This dissertation describes experimental and computational studies of the effects of ordered arrangement on the linear and nonlinear optical properties of metal nanoparticles. The principal result is that second-harmonic light may be generated and observed from nanoparticle gratings having maximum in-plane symmetry, provided that one looks at non-normal observation angles. These measurements are made possible by a custom-built variable-angle microscope, and enable a variety of studies of the second-order nonlinear response of nanoparticles that were not previously feasible. In addition, the surface plasmon resonance of metal nanoparticles is studied by linear spectroscopy. A comparison of experimental data with computational modeling shows that under normal ambient conditions, Ag nanoparticles tarnish by a sulfidation reaction more readily than bulk silver, and that even a very thin surface layer of corroded material (Ag2S) considerably redshifts and weakens the localized surface plasmon resonance of a nanoparticle.
Non-linear effects in the support motion of an elastically mounted slider crank mechanism
NASA Astrophysics Data System (ADS)
Davidson, I.
1983-01-01
A study is made of an in-line slider crank mechanism in which the sliding mass is elastically supported. The ratio of crank length to connecting rod length is not assumed small and relatively large displacements of the support are allowed. Ordinary and parametric non-linear terms are thus retained in the equations of motion. It is shown that the presence of parametric terms gives rise to additional conditions for resonance in the support motion. Approximate solutions are obtained for the fundamental and half subharmonic steady state responses and the effect of the non-linear and parametric terms examined. The stability of the steady state responses is considered and it is shown that instability is associated with a negative slope of the amplitude frequency characteristic.
Effect of joint damping and joint nonlinearity on the dynamics of space structures
NASA Technical Reports Server (NTRS)
Bowden, Mary; Dugundji, John
1988-01-01
Analyses of the effect of linear joint characteristics on the vibrations of a free-free, three-joint beam model show that increasing joint damping increases resonant frequencies and increases modal damping but only to the point where the joint gets 'locked up' by damping. This behavior is different from that predicted by modeling joint damping as proportional damping. Nonlinear analyses of the three-joint model with cubic springs at the joints show all the classical single DOF nonlinear response behavior at each resonance of the multiple DOF system: nondoubling of response for a doubling of forcing amplitude, multiple solutions, jump behavior, and resonant frequency shifts. These properties can be concisely quantified by characteristic backbone curves, which show the locus of resonant peaks for increasing forcing amplitude.
Effect of halogenation on the nonlinear optical properties of porthyrin and substituted porphyrins
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.; Moore, Craig E.; Benloss, Angela; Thompson, Albert N., Jr.; Richards, Rosalie A.; Roney, Celeste A.; Sanghadasa, Mohan
1998-01-01
The effect that fluorine and chlorine substitution has on the nonlinear optical properties of porphyrin, tetramethylporphyrin and tetraphenylporphyrin has been theoretically studied. The calculations of nonlinear optical properties have been obtained by performing finite-field calculations on structures determined by semiempirical methods. In addition, tetra(p-chlorophenyl)porphyrin and tetra(p-bromophenyl)porphyrin were synthesized by the condensation of pyrrol and the appropriate aldehyde. Thin films of polymethylmethacrylate were obtained containing these materials, by spin coating onto glass substrates. The films were characterized by third-harmonic generation. It was determined that the experimental conditions enhance the third-order polarizability of the tetraphenylporphyrins by a factor of about 1.6.
Nonlinear effects and Joule heating in I-V curves in manganites
NASA Astrophysics Data System (ADS)
Mercone, Silvana; Frésard, Raymond; Caignaert, Vincent; Martin, Christine; Saurel, Damien; Simon, Charles; André, Gilles; Monod, Philippe; Fauth, François
2005-07-01
We study the influence of the Joule effect on the nonlinear behavior of the transport I-V curves in polycrystalline samples of the manganite Pr0.8Ca0.2MnO3 by using the crystalline unit-cell parameters as an internal thermometer in x-ray and neutron diffractions. We develop a simple analytical model to estimate the temperature profile in the samples. Under the actual experimental conditions we show that the internal temperature gradient or the difference between the temperature of the sample and that of the thermal bath is at the origin of the nonlinearity observed in the I-V curves. Consequences on other compounds with colossal magnetoresistance are also discussed.
Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang
2015-01-01
Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447
Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong
2016-04-01
The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. PMID:26857904
Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes
NASA Astrophysics Data System (ADS)
McHarris, Wm C.
2011-07-01
In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles — Einstein's "spooky action-at-a-distance," incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations — so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could well
Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime
Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.
2010-12-15
The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model {kappa}(T)={kappa}{sub SH}[1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where {kappa}{sub SH} is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2005-01-01
An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.
Sicherman, A.; Fortney, D.S.; Patenaude, C.J.
1993-07-01
DOE Material Control and Accountability Order 5633.3A requires that facilities handling special nuclear material evaluate their effectiveness against protracted theft (repeated thefts of small quantities of material, typically occurring over an extended time frame, to accumulate a goal quantity). Because a protracted theft attempt can extend over time, material accountability-like (MA) safeguards may help detect a protracted theft attempt in progress. Inventory anomalies, and material not in its authorized location when requested for processing are examples of MA detection mechanisms. Crediting such detection in evaluations, however, requires taking into account potential insider subversion of MA safeguards. In this paper, the authors describe a database model for evaluating MA safeguards effectiveness against protracted theft that addresses potential subversion. The model includes a detailed yet practical structure for characterizing various types of MA activities, lists of potential insider MA defeat methods and access/authority related to MA activities, and an initial implementation of built-in MA detection probabilities. This database model, implemented in the new Protracted Insider module of ASSESS (Analytic System and Software for Evaluating Safeguards and Security), helps facilitate the systematic collection of relevant information about MA activity steps, and ``standardize`` MA safeguards evaluations.
Effects of nonlinearities in power ultrasonic transducers using time reversal focalization
NASA Astrophysics Data System (ADS)
Pérez Alvarez, N.; Noris Franceschetti, N.; Adamowski, J. C.
2010-01-01
This paper presents the characterization of nonlinearities in a Langevin-type ultrasonic power transducer using pulse excitations and a time reversal focalization technique. The nonlinear behavior of this power transducer is evaluated analyzing the signal obtained after focalization in time reversal process. In a linear regime, time reversal produces a focused pulse which amplitude and width depends only on the transducer's transfer function. When the supplied power is increased, three non-linear effects appear in the systems response. First, the focus shape loss symmetry respect to center; second, the focus amplitude increases without proportionality to input voltage, and finally, in the frequency spectrum appears harmonics of the thickness mode resonance frequency. The displacement at the end transducer surface was measured by an optical fiber vibrometer. Traditional frequency domain methods are also used to show phase variations close to each resonance frequency. The time reversal is implemented using the Frequency Domain Time Reversal (FDTR), that technique ensures the linear regime in the first step of the process.
Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise
NASA Astrophysics Data System (ADS)
Ray, Christian; Cooper, Tim; Balazsi, Gabor
2012-02-01
In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.
Jiménez-Sánchez, Arturo; Isunza-Manrique, Itzel; Ramos-Ortiz, Gabriel; Rodríguez-Romero, Jesús; Farfán, Norberto; Santillan, Rosa
2016-06-30
Design parameters derived from structure-property relationships play a very important role in the development of efficient molecular-based functional materials with optical properties. Here, we report on the linear and nonlinear optical properties of a fluorene-derived dipolar system (DS) and its octupolar analogue (OS), in which donor and acceptor groups are connected by a phenylacetylene linkage, as a strategy to increase the number of delocalized electrons in the π-conjugated system. The optical nonlinear response was analyzed in detail by experimental and theoretical methods, showing that, in the octupolar system OS, the dipolar effects induced a strong two-photon absorption process whose magnitude is as large as 2210 GM at infrared wavelengths. Solvatochromism studies were implemented to obtain further insight on the charge transfer process. We found that the triple bond plays a fundamental role in the linear and nonlinear optical responses. The strong solvatochromism behavior in DS and OS was analyzed by using four empirical solvent scales, namely Lippert-Mataga, Kamlet-Taft, Catalán, and the recently proposed scale of Laurence et al., finding consistent results of strong solvent polarizability and viscosity dependence. Finally, the role of the acceptor groups was further studied by synthesizing the analogous compound 2DS, having no acceptor group. PMID:27281172
Pitch glide effect induced by a nonlinear string-barrier interaction
NASA Astrophysics Data System (ADS)
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
NASA Astrophysics Data System (ADS)
Park, Youngyong; Do, Younghae; Altmeyer, Sebastian; Lai, Ying-Cheng; Lee, GyuWon
2015-02-01
We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.
Nonlinear delta(f) Simulations of Collective Effects in Intense Charged Particle Beams
Hong Qin
2003-01-21
A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, et al., in Proc. of the Particle Accelerator Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles.
Effect of gas velocity on the weakly nonlinear instability of a planar viscous sheet
Yang, Li-Jun Chen, Pi-Min; Wang, Chen
2014-07-15
A weakly nonlinear spatial instability of a two-dimensional planar viscous sheet for sinuous disturbances in a co-flowing inviscid gas stream is investigated theoretically, with an emphasis on the effect of the surrounding gas velocity. The solutions of the second-order interface disturbances are derived and the wave deformation has been computed. The results indicate that the second-order surface disturbance of the fundamental sinuous mode is varicose, which causes the thinning and the subsequent breakup of the liquid sheet. The nonlinear behaviors of the planar sheet are quite sensitive to variations in gas-to-liquid velocity ratio. The deviation of the velocity ratio from the value of unity leads to a larger growth rate, a larger second-order initial amplitude, and a shorter breakup length, and therefore enhances the instability. The growth rates predicted by the present nonlinear analysis according to the shortest breakup length are generally smaller than the linear predictions and can better conform to the experimental measures of Barreras et al. [“Linear instability analysis of the viscous longitudinal perturbation on an air-blasted liquid sheets,” Atomization Sprays 11, 139 (2001)]. Furthermore, the wave deformations of the most unstable disturbances are presented. The nonlinear instability of the planar sheet for a fixed velocity difference is performed. An equal increase of the gas and liquid velocity reduces the spatial growth rate and increases the breakup length, but generally has no influences on the second-order initial amplitude and the wavelength of the disturbance.
Semi-Empirical Characterization of Ground Motions Including Source, Path and Nonlinear Site Effects
NASA Astrophysics Data System (ADS)
Seyhan, Emel
The objective of this thesis is to improve the physical understanding of earthquake ground motion characteristics related to source, path and nonlinear site effects and our ability to model those effects with engineering models. Site database work was performed within the context of the NGA-West 2 project. Starting with the site database from original (2008) NGA project (last edited in 2006), we provided site classifications for 2538 new sites and re-classifications of previous sites. The principal site parameter is the time-averaged shear wave velocity in the upper 30 m (Vs30 ), which is characterized using measurements where available, and proxy-based relationships otherwise. We improved the documentation and consistency of site descriptors used as proxies for the estimation of Vs30, developed evidence-based protocols for Vs30 estimation from available proxies, and augmented estimates of various basin depth parameters. Site factors typically have a small-strain site amplification that captures impedance and resonance effects coupled with nonlinear components. Site factors in current NEHRP Provisions are empirically-derived at relatively small ground motion levels and feature simulation-based nonlinearity. We show that current NEHRP site factors have discrepancies with respect to the site terms in the original NGA GMPEs both in the linear site amplification (especially for Classes B, C, D, and E) and the degree of nonlinearity (Classes C and D). We analyzed the NGA-West 2 dataset and simulation-based models for site amplification to develop a new model. The model has linear and nonlinear additive components. The linear component is fully empirical, being derived from worldwide ground motion data (regional effects were examined but found to not be sufficiently important to be included in the model). The model features linear Vs30-scaling in a log-log sense below a corner velocity (Vc), and no Vs30-scaling for velocities faster than Vc. The nonlinear component is
NASA Astrophysics Data System (ADS)
Ayten, B.; Westerhof, E.; the ASDEX Upgrade Team
2014-07-01
Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al (1989 Phys. Rev. Lett. 62 426). We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in the case of locked islands or when the magnetic island rotation period is longer than the collisional time scale. The non-linear effects result in an overall reduction of the current drive efficiency for this case with absorption of the EC power on the low-field side of the electron cyclotron resonance layer. As a consequence of the non-linear effects, also the stabilizing effect of the ECCD on the island is reduced from linear expectations.
Naimi, Ashley I.; Richardson, David B.; Cole, Stephen R.
2013-01-01
In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218–1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/. PMID:24077092
Domain wall contribution to the nonlinear dielectric response: effective potential model
NASA Astrophysics Data System (ADS)
Placeres-Jiménez, R.; Rino, J. P.; Gonçalves, A. M.; Eiras, J. A.
2015-11-01
Domain wall displacement has an important contribution to the different nonlinear dielectric responses observed in ferroelectrics. For a moderated alternating electric field, domain walls perform a small displacement around their equilibrium positions. Such motion of the domain walls can be modelled as a body moving in a viscous medium under the action of an effective potential W(l). From this model the dispersion relationships are derived. The exact expression for the effective potential is found assuming that the dielectric permittivity depends on the electric field strength as \\varepsilon \\propto 1/(α +β {{E}2}) . The effect of multidomain structure and polarization hysteresis are introduced through the effective field approximation {{E}\\text{eff}}\\equiv E+κ P(E) . An important merit of the model is that it allows the simulation of transient polarization processes for the arbitrary input signal, predicting a power law for the polarization and depolarization currents. An analytic expression is found for the dependence of the permittivity on the electric field strength that correctly reproduces its hysteretic behaviour. The polarization loop and nonlinear dielectric response for subswitching the alternating electric field are simulated and compared with experimental data obtained from PZT thin films. It was observed that the simulated dielectric loss was lower than the experimental one, which can be explained as a result of the interaction of domain walls with defects. Point defects are introduced into the model as a perturbation of the effective potential, showing the dependence of the dielectric loss on the concentration of the defects.
Peel, D; Waples, R S; Macbeth, G M; Do, C; Ovenden, J R
2013-03-01
Theoretical models are often applied to population genetic data sets without fully considering the effect of missing data. Researchers can deal with missing data by removing individuals that have failed to yield genotypes and/or by removing loci that have failed to yield allelic determinations, but despite their best efforts, most data sets still contain some missing data. As a consequence, realized sample size differs among loci, and this poses a problem for unbiased methods that must explicitly account for random sampling error. One commonly used solution for the calculation of contemporary effective population size (N(e) ) is to calculate the effective sample size as an unweighted mean or harmonic mean across loci. This is not ideal because it fails to account for the fact that loci with different numbers of alleles have different information content. Here we consider this problem for genetic estimators of contemporary effective population size (N(e) ). To evaluate bias and precision of several statistical approaches for dealing with missing data, we simulated populations with known N(e) and various degrees of missing data. Across all scenarios, one method of correcting for missing data (fixed-inverse variance-weighted harmonic mean) consistently performed the best for both single-sample and two-sample (temporal) methods of estimating N(e) and outperformed some methods currently in widespread use. The approach adopted here may be a starting point to adjust other population genetics methods that include per-locus sample size components. PMID:23280157
NASA Astrophysics Data System (ADS)
Bagarello, F.; Haven, E.
2016-02-01
We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the interest of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call the decision functions is deduced by introducing a suitable Hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their environments, which are generated by their electors and by people who still have no clear idea for which party to vote (or even if to vote). The Hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same Hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).
Hosgood, G; Scholl, D T
2001-01-29
The issue of euthanasia is unique to veterinary clinical studies evaluating survival time. The decision to euthanize an animal is based on several factors including the health of the animal but also age and cost of treatment. The literature shows inconsistent methods used to account for observations from euthanized animals. Also, over 50% and up to 100% of animals in many studies have been euthanized. Our study illustrates the effects of different methods of accounting for observations from euthanized animals in survival analysis. Three data sets with different proportions of outcomes (alive, lost-to-follow-up, dead due to disease of interest, dead due to other disease, euthanized due to disease of interest, euthanized due to other disease) were used. Each data set was stratified according to treatment or a group characteristic (e.g. tumor type). Our methods for accounting for observations from euthanized animals were established from methods used in the literature and included right-censoring. Kaplan-Meier product-limit survival-function estimation was performed on each data set. Different methods resulted in inconsistent conclusions of significant differences between strata. At times, the ranking of the estimates of median survival time for strata was reversed. Right-censoring and use of Kaplan-Meier methods is inappropriate to evaluate observations from euthanized animals because censoring of such observations is informative. The current methods used by clinical investigators are inadequate to measure survival time reliably. PMID:11154786
NASA Astrophysics Data System (ADS)
Sun, Young; Shang, Dashan; Chai, Yisheng; Cao, Zexian; Lu, Jun
2015-09-01
From the viewpoint of electric circuit theory, the three fundamental two-terminal passive circuit elements, resistor R , capacitor C, and inductor L, are defined in terms of a relationship between two of the four basic circuit variables, charge q, current i, voltage v, and magnetic flux φ. From a symmetry concern, there should be a fourth fundamental element defined from the relationship between charge q and magnetic flux φ. Here we present both theoretical analysis and experimental evidences to demonstrate that a two-terminal passive device employing the magnetoelectric (ME) effects can exhibit a direct relationship between charge q and magnetic flux φ, and thus is able to act as the fourth fundamental circuit element. The ME effects refer to the induction of electric polarization by a magnetic field or magnetization by an electric field, and have attracted enormous interests due to their promise in many applications. However, no one has linked the ME effects with fundamental circuit theory. Both the linear and nonlinear-memory devices, termed transtor and memtranstor, respectively, have been experimentally realized using multiferroic materials showing strong ME effects. Based on our work, a full map of fundamental two-terminal circuit elements is constructed, which consists of four linear and four nonlinear-memory elements. This full map provides an invaluable guide to developing novel circuit functionalities in the future.
De la Cruz, Rolando; Meza, Cristian; Arribas-Gil, Ana; Carroll, Raymond J.
2016-01-01
Joint models for a wide class of response variables and longitudinal measurements consist on a mixed-effects model to fit longitudinal trajectories whose random effects enter as covariates in a generalized linear model for the primary response. They provide a useful way to assess association between these two kinds of data, which in clinical studies are often collected jointly on a series of individuals and may help understanding, for instance, the mechanisms of recovery of a certain disease or the efficacy of a given therapy. When a nonlinear mixed-effects model is used to fit the longitudinal trajectories, the existing estimation strategies based on likelihood approximations have been shown to exhibit some computational efficiency problems (De la Cruz et al., 2011). In this article we consider a Bayesian estimation procedure for the joint model with a nonlinear mixed-effects model for the longitudinal data and a generalized linear model for the primary response. The proposed prior structure allows for the implementation of an MCMC sampler. Moreover, we consider that the errors in the longitudinal model may be correlated. We apply our method to the analysis of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. We also conduct a simulation study to assess the importance of modelling correlated errors and quantify the consequences of model misspecification. PMID:27274601
NASA Astrophysics Data System (ADS)
Simanovskii, I. B.; Viviani, A.; Dubois, F.; -C., Legros J.
2011-02-01
The nonlinear development of oscillatory instability under the joint action of buoyant and thermocapillary effects in a multilayer system, is investigated. The nonlinear convective regimes are studied by the finite difference method. Two different types of boundary conditions - periodic boundary conditions and rigid heat-insulated lateral walls, are considered. It is found that in the case of periodic boundary conditions, the competition of both mechanisms of instability may lead to the development of specific types of flow: buoyant-thermocapillary traveling wave and pulsating traveling wave. In the case of rigid heat-insulated boundaries, various types of nonlinear flows - symmetric and asymmetric oscillations, have been found.
NASA Astrophysics Data System (ADS)
Ramos Quoirin, Humberto; Umezu, Kenichiro
2014-12-01
We investigate a semilinear elliptic equation with a logistic nonlinearity and an indefinite nonlinear boundary condition, both depending on a parameter λ. Overall, we analyze the effect of the indefinite nonlinear boundary condition on the structure of the positive solutions set. Based on variational and bifurcation techniques, our main results establish the existence of three nontrivial non-negative solutions for some values of λ, as well as their asymptotic behavior. These results suggest that the positive solutions set contains an S-shaped component in some case, as well as a combination of a C-shaped and an S-shaped components in another case.
Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.
Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin
2015-08-01
Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise. PMID:26187271
The Effect of Moral Intensity on Ethical Decision Making in Accounting
ERIC Educational Resources Information Center
Yang, Hui-Ling; Wu, Wei-Pang
2009-01-01
The purpose of this study was to examine the dimensionality of a moral intensity construct in four ethical accounting scenarios and how the dimensions directly affect the specific processes of moral decision making of accounting students. A survey was conducted with 233 accounting students enrolled in the school of accounting in a university of…
NASA Astrophysics Data System (ADS)
Gapochka, M. G.; Denisov, M. M.; Denisova, I. P.; Kalenova, N. V.; Korolev, A. F.
2015-11-01
The paper is devoted to mathematical modeling of the nonlinear vacuum electrodynamics effect: the action of the strong magnetic field of a pulsar on the propagation of electromagnetic waves. It is shown that, due to the birefringence of the vacuum, for one normal wave, it takes more time to travel from a pulsar to a detector installed on astrophysical satellites than for the other normal wave. The delay of the pulse carried by the second normal wave relative to pulse carried by the first normal wave from the common point of origin to the satellite is calculated.
Control of a Bose-Einstein condensate by dissipation: Nonlinear Zeno effect
Shchesnovich, V. S.; Konotop, V. V.
2010-05-15
We show that controlled dissipation can be used as a tool for exploring fundamental phenomena and managing mesoscopic systems of cold atoms and Bose-Einstein condensates. Even the simplest boson-Josephson junction, that is, a Bose-Einstein condensate in a double-well trap, subjected to removal of atoms from one of the two potential minima allows one to observe such phenomena as the suppression of losses and the nonlinear Zeno effect. In such a system the controlled dissipation can be used to create desired macroscopic states and implement controlled switching among different quantum regimes.
On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains
NASA Astrophysics Data System (ADS)
Cantrell, Robert Stephen; Cosner, Chris
We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.
The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots
NASA Astrophysics Data System (ADS)
Zimbovskaya, Natalya A.
2015-06-01
In the present work, we theoretically study the nonlinear regime of charge transport through a quantum dot coupled to the source and drain reservoirs. The investigation is carried out using a nonequilibrium Green's function formalism beyond the Hartree-Fock approximation. Employed approximations for the relevant Green's functions allow to trace a transition from Coulomb blockade regime to Kondo regime in the thermoelectric transport. Effects arising when electrons move in response to thermal gradient applied across the system are discussed, including experimentally observed thermovoltage zeros.
Inverse spin-Hall effect voltage generation by nonlinear spin-wave excitation
NASA Astrophysics Data System (ADS)
Feiler, Laura; Sentker, Kathrin; Brinker, Manuel; Kuhlmann, Nils; Stein, Falk-Ulrich; Meier, Guido
2016-02-01
We investigate spin currents in microstructured permalloy/platinum bilayers that are excited via magnetic high-frequency fields. Due to this excitation spin pumping occurs at the permalloy/platinum interface and a spin current is injected into the platinum layer. The spin current is detected as a voltage via the inverse spin-Hall effect. We find two regimes reflected by a nonlinear, abrupt voltage surge, which is reproducibly observed at distinct excitation field strengths. Micromagnetic simulations suggest that the surge is caused by excitation of a spin-wave-like mode. The comparatively large voltages reveal a highly efficient spin-current generation method in a mesoscopic spintronic device.
Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.
Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G
2013-01-01
We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern. PMID:23383815
Riès, Stephanie K; Fraser, Douglas; McMahon, Katie L; de Zubicaray, Greig I
2015-10-01
The "distractor-frequency effect" refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture-word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The whole-brain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and low-frequency distractor words, with the former associated with a steeper slope on the time window spanning from 100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism. PMID:26042502
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. PMID:24070825
El Nady, K; Ganghoffer, J F
2016-05-01
The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. PMID:26541071
Can intertrial priming account for the similarity effect in visual search?
Becker, Stefanie I; Ansorge, Ulrich; Horstmann, Gernot
2009-07-01
In a visual search task, a salient distractor often elongates response times (RTs) even when it is task-irrelevant. These distraction costs are larger when the irrelevant distractor is similar than when dissimilar to the target. In the present study, we tested whether this similarity effect is mostly due to more frequent oculomotor capture by target-similar versus target-dissimilar distractors (contingent capture hypothesis), or to elongated dwell times on target-similar versus dissimilar distractors (attentional disengagement hypothesis), by measuring the eye movements of the observers during visual search. The results showed that similar distractors were both selected more frequently, and produced longer dwell times than dissimilar distractors. However, attentional capture contributed more to the similarity effect than disengagement. The results of a second experiment showed that stronger capture by similar than dissimilar distractors in part reflected intertrial priming effects: distractors which had the same colour as the target on the previous trial were selected more frequently than distractors with a different colour. These priming effects were however too small to account fully for the similarity effect. More importantly, the results indicated that allegedly stimulus-driven intertrial priming effects and allegedly top-down controlled similarity effects may be mediated by the same underlying mechanism. PMID:19358862
ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING
Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.; Ratzlaff, Pete; Siemiginowska, Aneta E-mail: vkashyap@cfa.harvard.edu E-mail: rpete@head.cfa.harvard.edu
2011-04-20
While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can be applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.
NASA Astrophysics Data System (ADS)
Olmez, O.; Ozbulut, M.; Yildiz, M.; Goren, O.
2016-06-01
The present study investigates the vortical and nonlinear effects in the roll motion of a 2-D body with square cross-sections by using Smoothed Particle Hydrodynamics (SPH). A 2-D rigid body with square cross-section is taken into account for the benchmark study and subjected to the oscillatory roll motion with a given angular frequency. The governing equations are continuity equation and Euler's equation with artificial viscosity term. Weakly Compressible SPH (WCSPH) scheme is employed for the discretization of the governing equations. Velocities of the fluid particles are updated by means of XSPH+Artificial Particle Displacement (VXSPH+APD) algorithm. In this method only the free surface fluid particles are subjected to VXSPH algorithm while the APD algorithm is employed for the fully populated flow regions. The hybrid usage of numerical treatment keeps free surface particles together by creating an artificial surface tension on the free surface. VXSPH+APD is a proven numerical treatment to provide the most accurate results for this type of free surface flows (Ozbulut et al. 2014). The results of the present study are compared with those of the experimental studies as well as with those of the numerical methods obtained from the current literature.
Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective
NASA Astrophysics Data System (ADS)
Hamilton, R.; Hadley, N.
2012-12-01
The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.
Lima, Mauricio; Ernest, S K Morgan; Brown, James H; Belgrano, Andrea; Stenseth, Nils C
2008-09-01
Using long-term data on two kangaroo rats in the Chihuahuan Desert of North America, we fitted logistic models including the exogenous effects of seasonal rainfall patterns. Our aim was to test the effects of intraspecific interactions and seasonal rainfall in explaining and predicting the numerical fluctuations of these two kangaroo rats. We found that logistic models fit both data sets quite well; Dipodomys merriami showed lower maximum per capita growth rates than Dipodomys ordii, and in both cases logistic models were nonlinear. Summer rainfall appears to be the most important exogenous effect for both rodent populations; models including this variable were able to predict independent data better than models including winter rainfall. D. merriami was also negatively affected by another kangaroo rat (Dipodomys spectabilis), consistent with previous experimental evidence. We hypothesized that summer rainfall influences the carrying capacity of the environment by affecting seed availability and the intensity of intraspecific competition. PMID:18831180
Sharma, R. P.; Gupta, M. K.
2006-11-15
In this paper, the authors have investigated the effect of ultra-intense laser beam filaments on stimulated Raman scattering (SRS) in unmagnetized plasma when relativistic and ponderomotive nonlinearities are operative. First, the filamentary dynamics of laser beam is studied. In these structures, the plasma wave generation and associated SRS process are studied. The effect of filamentation on SRS back reflectivity has been studied in detail. For the typical laser plasma parameters, i.e., laser beam Nd:YAG ({lambda}=1064 nm), laser beam radius=15 {mu}m, laser power flux=6x10{sup 17} W/cm{sup 2}, electron density=1.9x10{sup 19} per cm{sup 3}, the SRS reflectivity reduces by a factor 2.5 due to ponderomotive effects.
ERIC Educational Resources Information Center
Fast, Ellen Forte
This guide was developed to serve as a resource for the staffs of state education agencies and local education agencies who are responsible for producing state, district, or school report cards of the type required under many state or district accountability systems as well as under the No Child Left Behind Act (NCLB). The guide is not intended to…
Non-Linear Oscillation in Ionic Current Due to Size Effect in Glass Nanopipette
NASA Astrophysics Data System (ADS)
Takami, Tomohide; Deng, Xiao Long; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho
2012-11-01
We studied the size effect of the ionic current in glass pipette, and found an interesting 2.7 mHz oscillation at 50 nm. In this study, we would like to discuss the mechanism of the non-linear oscillation. Cation-rich layer with its Debye length λ exists in nanopipette, and its conductivity σd is lower than that in the central bulk layer σb in this study. The pressure difference ΔP = ΔcRT where Δc is the difference in concentrations between in and out of the pipette. Then, the ionic current I can be estimated by using Hagen-Poiseuille equation; I =π/8 η ΔcRT/l {σdr4 + (σb -σd) (λ - r) 2 (r2 + 2 rλ -λ2) } . (r : inner radius, l: pipette length, η: viscosity) The last term indicates the non-linear oscillation. Moreover, we roughly estimated λ = 2.08 ×(2r) 1 / 2. Then, the bulk layer appears appropriately when 2 r 50 nm, which causes the effective ionic current oscillation. This work was supported by KOSEF NRL Program grant funded by the Korea Government MEST (Grant No. 2010-0024525 and R0A-2008-000-20052-0), and WCU Program through the KOSEF funded by the MEST (Grant No. R31-2008-000-10057-0).
NASA Technical Reports Server (NTRS)
Callegari, A. J.
1979-01-01
A nonlinear theory for sound propagation in variable area ducts carrying a nearly sonic flow is presented. Linear acoustic theory is shown to be singular and the detailed nature of the singularity is used to develop the correct nonlinear theory. The theory is based on a quasi-one dimensional model. It is derived by the method of matched asymptotic expansions. In a nearly chocked flow, the theory indicates the following processes to be acting: a transonic trapping of upstream propagating sound causing an intensification of this sound in the throat region of the duct; generation of superharmonics and an acoustic streaming effect; development of shocks in the acoustic quantities near the throat. Several specific problems are solved analytically and numerical parameter studies are carried out. Results indicate that appreciable acoustic power is shifted to higher harmonics as shocked conditions are approached. The effect of the throat Mach number on the attenuation of upstream propagating sound excited by a fixed source is also determined.
Nonlinear effect of elastic vortexlike motion on the dynamic stress state of solids
NASA Astrophysics Data System (ADS)
Shilko, Evgeny V.; Grinyaev, Yurii V.; Popov, Mikhail V.; Popov, Valentin L.; Psakhie, Sergey G.
2016-05-01
We present a theoretical analysis of the dynamic stress-strain state of regions in a solid body that are involved in a collective elastic vortexlike motion. It is shown that the initiation of elastic vortexlike motion in the material is accompanied by the appearance of dilatancy and equivalent strain, the magnitudes of which are proportional to the square of the ratio of linear velocity on the periphery of the elastic vortex to the velocity of longitudinal elastic waves (P wave). Under conditions of dynamic loading the described dynamic effects are able to initiate inelastic deformation or destruction of the material at loading speeds of a few percent of the P -wave speed. The obtained analytical estimates suggest that dynamic nonlinear strains can make a significant contribution in a number of widely studied nonlinear dynamic phenomena in solids. Among them are the effect of acoustic (dynamic) dilatancy in solids and granular media, which leads to the generation of longitudinal elastic waves by transverse waves [V. Tournat et al., Phys. Rev. Lett. 92, 085502 (2004), 10.1103/PhysRevLett.92.085502] and the formation of an array of intense "hot spots" (reminiscent of shear-induced hydrodynamic instabilities in fluids) in adiabatic shear bands [P. R. Guduru et al., Phys. Rev. E 64, 036128 (2001), 10.1103/PhysRevE.64.036128].
Effects of nonlinear sound propagation on the characteristic timbres of brass instruments.
Myers, Arnold; Pyle, Robert W; Gilbert, Joël; Campbell, D Murray; Chick, John P; Logie, Shona
2012-01-01
The capacity of a brass instrument to generate sounds with strong high-frequency components is dependent on the extent to which its bore profile supports nonlinear sound propagation. At high dynamic levels some instruments are readily sounded in a "cuivré" (brassy) manner: this phenomenon is due to the nonlinear propagation of sound in ducts of the proportions typical of labrosones (lip-reed aerophones). The effect is also evident at lower dynamic levels and contributes to the overall tonal character of the various kinds of brass instrument. This paper defines a brassiness potential parameter derived from the bore geometries of brass instruments. The correlation of the brassiness potential parameter with spectral enrichment as measured by the spectral centroid of the radiated sound is examined in playing tests using musicians, experiments using sine-wave excitation of instruments, and simulations using a computational tool. The complementary effects of absolute bore size on spectral enrichment are investigated using sine-wave excitation of cylindrical tubes and of instruments, establishing the existence of a trade-off between bore size and brassiness potential. The utility of the brassiness potential parameter in characterizing labrosones is established, and the graphical presentation of results in a 2D space defined by bore size and brassiness potential demonstrated. PMID:22280689
Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF.
Azhar, M; Wong, G K L; Chang, W; Joly, N Y; Russell, P St J
2013-02-25
The effective Kerr nonlinearity of hollow-core kagomé-style photonic crystal fiber (PCF) filled with argon gas increases to ~15% of that of bulk silica glass when the pressure is increased from 1 to 150 bar, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering-absent in noble gases-and having an extremely high optical damage threshold. As a result, detailed and well-controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton-created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realization of reconfigurable supercontinuum sources, wavelength convertors and short-pulse laser systems. PMID:23481974
NASA Astrophysics Data System (ADS)
Wei, Nijun; Coffey, William T.; Déjardin, Pirre-Michel; Kalmykov, Yuri P.
External dc bias field effects on the nonlinear dielectric relaxation and dynamic Kerr effect of a system of permanent dipoles in a uniaxial mean field potential are studied via the rotational Brownian motion model. Postulated in terms of the infinite hierarchy of differential-recurrence equations for the statistical moments (the expectation value of the Legendre polynomials), the dielectric and Kerr effect ac stationary responses may be evaluated for arbitrary dc bias field strength via perturbation theory in the ac field. We have given two complementary approaches for treating the nonlinear effects. The first is based on perturbation theory allowing one to calculate the nonlinear ac stationary responses using powerful matrix methods. The second approach based on the accurate two-mode approximation [D.A. Garanin, Phys. Rev. E. 54, 3250 (1996)] effectively generalizes the existing results for dipolar systems in superimposed ac and dc fields to a mean field potential. The results apply both to nonlinear dielectric relaxation and dynamic Kerr effect of nematics and to magnetic birefringence relaxation of ferrofluids. Furthermore, the given methods of the solution of infinite hierarchies of multi-term recurrence relations are quite general and can be applied to analogous nonlinear response problems.
ERIC Educational Resources Information Center
Berryhill, Joseph; Linney, Jean Ann; Fromewick, Jill
2009-01-01
Education policies in the United States and other nations have established academic standards and made teachers accountable for improved standardized test scores. Because policies can have unintended effects, in this study we investigated U.S. elementary school teachers' perceptions of their state's accountability policy, particularly its effect…
Kennedy, R.P.; Kincaid, R.H.; Short, S.A.
1985-03-01
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5.
Teachers' perceptions of value and effects of outdoor education during an age of accountability
NASA Astrophysics Data System (ADS)
Schmitt, Thomas R.
The purpose of this study was to gain an understanding of teachers' perceptions of the value and effects of a residential Outdoor Education experience during an age of accountability, which was defined as the era which commenced with the passage of the No Child Left Behind Act of 2001. Focus group interviews were conducted with four groups of teachers who participated in a residential Outdoor Education experience with their students during the 2004-2005 school year. The major findings of this study were: (1) Teachers perceive value in the OE experience because of the multi-faceted effects upon their students and classes; (2) Teachers perceived the OE experience positively affected their students' learning through providing hands-on and authentic experiences, development of thinking skills, and enhancing the school's curriculum; (3) Teachers perceived the OE experience positively affected their students' social and emotional development as evidenced by an increase in self esteem, independence, maturity, personal responsibility, and an expanded worldview; (4) Teachers perceived the OE experience positively affected their students' sense of community as evidenced by an increase in team building and cohesiveness, more productive staff-student relationships, the emergence of different "star" students, and greater inclusion of special needs students; (5) Teachers perceived students' appreciation of the environment increased; and (6) Teachers did not perceive any imminent changes to their school's Outdoor Education programming due to the accountability provisions of No Child Left behind (2001). This study's findings suggested implications for school administrators, which were that they should: articulate desired effects to stakeholders; communicate connections to learning standards; and expand the OE experience to foster greater environmental issue focus.
5 CFR 1655.9 - Effect of loans on individual account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... contributions and attributable earnings, pro rata from each TSP Fund in which the account is invested and pro... participant's account is invested. All pro rated amounts will be based on the balances in each TSP Fund...
5 CFR 1655.9 - Effect of loans on individual account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contributions and attributable earnings, pro rata from each TSP Fund in which the account is invested and pro... participant's account is invested. All pro rated amounts will be based on the balances in each TSP Fund...
NASA Technical Reports Server (NTRS)
Jongen, T.; Machiels, L.; Gatski, T. B.
1997-01-01
Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.
The three most effective strategies for handling patients with overdue accounts.
Hills, Laura
2012-01-01
Many medical practice employees find the collections tasks assigned to them to be a source of discomfort, reluctance, and even dread. This is understandable. Talking about overdue accounts is not something most people want to do. This article focuses on the three most effective strategies that medical practice employees can use to help them feel more confident when they handle patients who have overdue accounts. It provides a sample 135-day collection program and variations of it that many medical practices use. It offers medical practice employees 10 tips to help them develop a stronger, more businesslike attitude when they approach their collection duties. It provides a list of more than 15 daily affirmations that medical practice employees can use to develop a more positive attitude about making collection calls and having one-on-one collection meetings with patients. Finally, this article presents a worst-case scenario exercise to help medical practice employees face their worst fears about collection calls and meetings and to feel more at ease when they confront patients about their debts. PMID:22920021
Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando
2012-06-01
The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species. PMID:22083284
Liu, W. H.; He, X. T.; Yu, C. P.
2012-07-15
When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit of the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.
A New Approach to Accountability: Creating Effective Learning Environments for Programs
ERIC Educational Resources Information Center
Surr, Wendy
2012-01-01
This article describes a new paradigm for accountability that envisions afterschool programs as learning organizations continually engaged in improving quality. Nearly 20 years into the era of results-based accountability, a new generation of afterschool accountability systems is emerging. Rather than aiming to test whether programs have produced…
The Effect of International Financial Reporting Standards Convergence on U. S. Accounting Curriculum
ERIC Educational Resources Information Center
Bates, Homer L.; Waldrup, Bobby E.; Shea, Vincent
2011-01-01
Major changes are coming to U.S. financial accounting and accounting education as U. S. generally accepted accounting principles (GAAP) and international financial reporting standards (IFRS) converge within the next few years. In 2008, the U.S. Securities and Exchange Commission (SEC) published a proposed "road map" for the potential…
Cornacchia, M.; Evans, L.
1985-06-01
A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection.
2012-01-01
Background Although many studies have documented health effects of ambient temperature, little evidence is available in subtropical or tropical regions, and effect modifiers remain uncertain. We examined the effects of daily mean temperature on mortality and effect modification in the subtropical city of Guangzhou, China. Methods A Poisson regression model combined with distributed lag non-linear model was applied to assess the non-linear and lag patterns of the association between daily mean temperature and mortality from 2003 to 2007 in Guangzhou. The case-only approach was used to determine whether the effect of temperature was modified by individual characteristics, including sex, age, educational attainment and occupation class. Results Hot effect was immediate and limited to the first 5 days, with an overall increase of 15.46% (95% confidence interval: 10.05% to 20.87%) in mortality risk comparing the 99th and the 90th percentile temperature. Cold effect persisted for approximately 12 days, with a 20.39% (11.78% to 29.01%) increase in risk comparing the first and the 10th percentile temperature. The effects were especially remarkable for cardiovascular and respiratory mortality. The effects of both hot and cold temperatures were greater among the elderly. Females suffered more from hot-associated mortality than males. We also found significant effect modification by educational attainment and occupation class. Conclusions There are significant mortality effects of hot and cold temperatures in Guangzhou. The elderly, females and subjects with low socioeconomic status have been identified as especially vulnerable to the effect of ambient temperatures. PMID:22974173
The Hall dynamo effect and nonlinear mode coupling during sawtooth magnetic reconnection
Ding, W. X.; Brower, D. L.; Deng, B. H.; Almagri, A. F.; Craig, D.; Fiksel, G.; Mirnov, V.; Prager, S. C.; Sarff, J. S.; Svidzinski, V.
2006-11-15
During magnetic reconnection associated with sawtooth activity in a reversed field pinch, we observe a large fluctuation-induced Hall electromotive force, <{delta}Jx{delta}B>/n{sub e}e, which is capable of modifying the equilibrium current. This Hall dynamo effect is determined in the hot plasma core by laser Faraday rotation which measures equilibrium and fluctuating magnetic field and current density. We find that the Hall dynamo is strongest when nonlinear mode coupling between three spatial Fourier modes of the resistive tearing instability is present. Mode coupling alters the phase relation between magnetic and current density fluctuations for individual Fourier modes leading to a finite Hall effect. Detailed measurements of the spatial and temporal dynamics for the dominant core resonant mode under various plasma configurations are described providing evidence regarding the origin of the Hall dynamo.
Evaluation of fractional photothermolysis effect in a mouse model using nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Guo, Han Wen; Tseng, Te-Yu; Dong, Chen-Yuan; Tsai, Tsung-Hua
2014-07-01
Fractional photothermolysis (FP) induces discrete columns of photothermal damage in skin dermis, thereby promoting collagen regeneration. This technique has been widely used for treating wrinkles, sun damage, and scar. In this study, we evaluate the potential of multiphoton microscopy as a noninvasive imaging modality for the monitoring of skin rejuvenation following FP treatment. The dorsal skin of a nude mouse underwent FP treatment in order to induce microthermal zones (MTZs). We evaluated the effect of FP on skin remodeling at 7 and 14 days after treatment. Corresponding histology was performed for comparison. After 14 days of FP treatment at 10 mJ, the second harmonic generation signal recovered faster than the skin treated with 30 mJ, indicating a more rapid regeneration of dermal collagen at 10 mJ. Our results indicate that nonlinear optical microscopy is effective in detecting the damaged areas of MTZ and monitoring collagen regeneration following FP treatment.
On the Nonlinear Effects in Focused Ultrasound Beams with Frequency Power Law Attenuation
NASA Astrophysics Data System (ADS)
Jiménez, N.; Redondo, J.; Sánchez-Morcillo, V.; Iglesias, P. C.; Camarena, F.
When finite amplitude ultrasound propagation is considered, changes in spatial features of focused ultrasound beams can be observed. These nonlinear effects typically appear in thermoviscous fluids as focal displacements, beam-width variations or gain changes. However, in soft-tissue media, the frequency dependence of the attenuation doesn't obey a squared law. In this way, these complex media response leads to weak dispersion that prevents the cumulative processes of energy transfer to higher harmonics. In this work we explore the influence of different frequency power law attenuation responses and its influence on the self-defocusing effects in focused ultrasound beams. Thus, we numerically explore the spatial field distributions produced by low-Fresnel number devices and High Intensity Focused Ultrasound (HIFU) radiating trough different soft-tissue media.
Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Van Winkle, Daniel; /SLAC
2007-07-06
Several high-current accelerators use feedback techniques in the accelerating RF systems to control the impedances seen by the circulating beam. These Direct and Comb Loop architectures put the high power klystron and LLRF signal processing components inside feedback loops, and the ultimate behavior of the systems depends on the individual sub-component properties. Imperfections and non-idealities in the signal processing leads to reduced effectiveness in the impedance control loops. In the PEP-II LLRF systems non-linear effects have been shown to reduce the achievable beam currents, increase low-mode longitudinal growth rates and reduce the margins and stability of the LLRF control loops. We present measurements of the driver amplifiers used in the PEP-II systems, and present measurement techniques needed to quantify the small-signal gain, linearity, transient response and image frequency generation of these amplifiers.
Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium
Sun, Xiankai; Zhang, Xufeng; Schuck, Carsten; Tang, Hong X.
2013-01-01
Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations and numerical simulations. PMID:23486445
Thermodynamic Self-Limiting Growth of Heteroepitaxial Islands Induced by Nonlinear Elastic Effect.
Hu, Hao; Niu, Xiaobin; Liu, Feng
2016-06-01
We investigate nonlinear elastic effect (NLEF) on the growth of heteroepitaxial islands, a topic of both scientific and technological significance for their applications as quantum dots. We show that the NLEF induces a thermodynamic self-limiting growth mechanism that hinders the strain relaxation of coherent island beyond a maximum size, which is in contrast to indefinite strain relaxation with increasing island size in the linear elastic regime. This self-limiting growth effect shows a strong dependence on the island facet angle, which applies also to islands inside pits patterned in a substrate surface with an additional dependence on the pit inclination angle. Consequently, primary islands nucleate and grow first in the pits and then secondary islands nucleate at the rim around the pits after the primary islands reach the self-limited maximum size. Our theory sheds new lights on understanding the heteroepitaxial island growth and explains a number of past and recent experimental observations. PMID:27203611
Examination of time-variable input effects in a nonlinear analogue magnetosphere model
NASA Technical Reports Server (NTRS)
Baker, D. N.; Klimas, A. J.; Roberts, D. A.
1991-01-01
The plasma physical analog model (an extension of the damped, harmonic-oscillator dripping faucet model) is employed to consider explicitly the effect of time-varying the inputs. This work is equivalent to considering the effects of northward and southward turnings of the interplanetary magnetic field for various periods of time. It is found that relatively extended episodes (not less than 2 hours) of turned-on input with shorter (about 1 hour) periods of turned-off input lead to model behavior much like the continuously driven case. Going to short input intervals with longer periods of zero input leads to highly irregular and dramatically fluctuating episodes of magnetotail unloading. These results give an insight into the diversity of apparent magnetospheric responses during relatively isolated substorm conditions. This work shows the absolutely critical interdependence (in a nonlinear dynamical system) of input phasing and internal magnetospheric response cycles.
Absence of nonlinear Meissner effect in YBa2Cu3O6.95
NASA Astrophysics Data System (ADS)
Carrington, A.; Giannetta, R. W.; Kim, J. T.; Giapintzakis, J.
1999-06-01
We present measurements of the field and temperature dependence of the penetration depth (λ) in high purity, untwinned single crystals of YBa2Cu3O6.95 in all three crystallographic directions. The temperature dependence of λ is linear down to low temperatures, showing that our crystals are extremely clean. Both the magnitude and temperature dependence of the field dependent correction to λ, however, are considerably different from that predicted from the theory of the nonlinear Meissner effect for a d-wave superconductor (Yip-Sauls theory). Our results suggest that the Yip-Sauls effect is either absent or is unobservably small in the Meissner state of YBa2Cu3O6.95.
Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity
Shabad, Anatoly E.; Usov, Vladimir V.
2011-05-15
In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed the speed of light in the vacuum c=1, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed, resulting in complex energy ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear, too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are tested to establish that the ones leading to spontaneous vacuum magnetization possess wrong convexity.
Focused optical and acoustic beams in media with nonlinear absorption
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Sukhorukov, A. A.
1996-11-01
Optical and acoustic beams are known to be useful for medical and biological applications, such as diagnostics, surgery, etc. At high intensities both nonlinear lens effects and nonlinear absorption can be significant for the beams. The nonlinear absorption arises due to two-photon optical processes or acoustic shock wave formation. The present work is devoted to the theoretical description of nonlinear beam propagation and focal spot formation taking into account the competition between focusing, diffraction and absorption. We derived a new nonlinear integro- differential equation describing the spatial evolution of the beam width. The general analytical solution of this equation is obtained for arbitrary boundary conditions. The simple formulas are derived for the angle divergence in the far field, as well as for beam width at nonlinear waist. The results of the analysis of these key parameters in different situations are presented.
Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta; Gomez, Pablo
2016-01-01
A number of models of visual-word recognition assume that the repetition of an item in a lexical decision experiment increases that item's familiarity/wordness. This would produce not only a facilitative repetition effect for words, but also an inhibitory effect for nonwords (i.e., more familiarity/wordness makes the negative decision slower). We conducted a two-block lexical decision experiment to examine word/nonword repetition effects in the framework of a leading “familiarity/wordness” model of the lexical decision task, namely, the diffusion model (Ratcliff et al., 2004). Results showed that while repeated words were responded to faster than the unrepeated words, repeated nonwords were responded to more slowly than the nonrepeated nonwords. Fits from the diffusion model revealed that the repetition effect for words/nonwords was mainly due to differences in the familiarity/wordness (drift rate) parameter. This word/nonword dissociation favors those accounts that posit that the previous presentation of an item increases its degree of familiarity/wordness. PMID:26925021
Del Giovane, Cinzia; Vacchi, Laura; Mavridis, Dimitris; Filippini, Graziella; Salanti, Georgia
2013-01-15
For a network meta-analysis, an interlinked network of nodes representing competing treatments is needed. It is often challenging to define the nodes as these typically refer to similar but rarely identical interventions. The objectives of this paper are as follows: (i) to present a series of network meta-analysis models that account for variation in the definition of the nodes and (ii) to exemplify the models where variation in the treatment definitions relates to the dose. Starting from the model that assumes each node has a 'fixed' definition, we gradually introduce terms to explain variability by assuming that each node has several subnodes that relate to different doses. The effects of subnodes are considered monotonic, linked with a 'random walk', random but exchangeable, or have a linear pattern around the treatment mean effect. Each model can be combined with different assumptions for the consistency of effects and might impact on the ranking of the treatments. Goodness of fit, heterogeneity and inconsistency were assessed. The models are illustrated in a star network for the effectiveness of fluoride toothpaste and in a full network comparing agents for multiple sclerosis. The fit and parsimony measures indicate that in the fluoride network the impact of the dose subnodes is important whereas in the multiple sclerosis network the model without subnodes is the most appropriate. The proposed approach can be a useful exploratory tool to explain sources of heterogeneity and inconsistency when there is doubt whether similar interventions should be grouped under the same node. PMID:22815277
Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta; Gomez, Pablo
2016-01-01
A number of models of visual-word recognition assume that the repetition of an item in a lexical decision experiment increases that item's familiarity/wordness. This would produce not only a facilitative repetition effect for words, but also an inhibitory effect for nonwords (i.e., more familiarity/wordness makes the negative decision slower). We conducted a two-block lexical decision experiment to examine word/nonword repetition effects in the framework of a leading "familiarity/wordness" model of the lexical decision task, namely, the diffusion model (Ratcliff et al., 2004). Results showed that while repeated words were responded to faster than the unrepeated words, repeated nonwords were responded to more slowly than the nonrepeated nonwords. Fits from the diffusion model revealed that the repetition effect for words/nonwords was mainly due to differences in the familiarity/wordness (drift rate) parameter. This word/nonword dissociation favors those accounts that posit that the previous presentation of an item increases its degree of familiarity/wordness. PMID:26925021
Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects
NASA Technical Reports Server (NTRS)
Green Robert O.; Moreno, Jose F.
1996-01-01
AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially
Kinetics of silver release from microfuel with taking into account the limited-solubility effect
Ivanov, A. S. Rusinkevich, A. A.
2014-12-15
The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code. This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.
Effects of accounting rules on utility choices of energy technologies in the United States
NASA Astrophysics Data System (ADS)
Spinrad, B. I.
1980-07-01
Comparisons of the costs of power systems, specifically the cost of nuclear versus other power systems, are discussed. The effects of inconsistent accounting are examined. Five systems that supply electrical power are cost analyzed: (1) light water reactors; (2) liquid metal fast breeder reactors; (3) coal plants, with scrubbers, burning low sulfur or processed high sulfur coal; (4) coal plants with fluidized bed combustion of high sulfur coal; and (5) solar power plants with sufficient storage for baseload use. Cost estimates for the system are made and justified. Cost comparison results show that, contrary to currently accepted conclusions, light water reactors have a decisive cost advantage over coal; if assumed target costs are met, after development, liquid metal fast breeder reactor would be the cheapest system; and if postdevelopment target costs are met, solar power plants are almost competitive with the nuclear systems and are much cheaper than coal.
Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto
2016-05-13
Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope. PMID:27044988
Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects.
Gendelman, O V; Zolotarevskiy, V; Savin, A V; Bergman, L A; Vakakis, A F
2016-03-01
We describe and explore accelerating oscillatory fronts in sonic vacua with nonlocal interactions. As an example, a chain of particles oscillating in the plane and coupled by linear springs, with fixed ends, is considered. When one end of this system is harmonically excited in the transverse direction, one observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. Position of the front obeys the scaling law l(t) ∼ t(4/3). The frequency of the oscillatory tail remains constant, and the wavelength scales as λ ∼ t(1/3). These scaling laws result from the nonlocal effects; we derive them analytically (including the scaling coefficients) from a continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation threshold is evaluated on the basis of a simplified discrete model, further reduced to a completely integrable nonlinear system. Given their simplicity, nonlinear sonic vacua of the type considered herein should be common in periodic lattices. PMID:27078353
Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers.
Chang, Guoqing; Li, Chih-Hao; Phillips, David F; Walsworth, Ronald L; Kärtner, Franz X
2010-06-01
We propose and analyze a new approach to generate a broadband astro-comb by spectral broadening of a narrowband astro-comb inside a highly nonlinear optical fiber. Numerical modeling shows that cascaded four-wave-mixing dramatically degrades the input comb's side-mode suppression and causes side-mode amplitude asymmetry. These two detrimental effects can systematically shift the center-of-gravity of astro-comb spectral lines as measured by an astrophysical spectrograph with resolution approximately 100,000; and thus lead to wavelength calibration inaccuracy and instability. Our simulations indicate that this performance penalty, as a result of nonlinear spectral broadening, can be compensated by using a filtering cavity configured for double-pass. As an explicit example, we present a design based on an Yb-fiber source comb (with 1 GHz repetition rate) that is filtered by double-passing through a low finesse cavity (finesse = 208), and subsequent spectrally broadened in a 2-cm, SF6-glass photonic crystal fiber. Spanning more than 300 nm with 16 GHz line spacing, the resulting astro-comb is predicted to provide 1 cm/s (approximately 10 kHz) radial velocity calibration accuracy for an astrophysical spectrograph. Such extreme performance will be necessary for the search for and characterization of Earth-like extra-solar planets, and in direct measurements of the change of the rate of cosmological expansion. PMID:20588402
Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models
Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.
2012-04-23
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.
Cascaded nonlinearity caused by local-field effects in the two-level atom
Dolgaleva, Ksenia; Boyd, Robert W.; Sipe, John E.
2007-12-15
Contributions to the fifth-order nonlinear optical susceptibility {chi}{sup (5)} of a collection of homogeneously broadened two-level atoms that scale as N{sup 2}({gamma}{sub at}{sup (3)}){sup 2} and N{sup 2}|{gamma}{sub at}{sup (3)}|{sup 2}, where {gamma}{sub at}{sup (3)} is the lower-order atomic hyperpolarizability and N is the atomic number density, are predicted theoretically. These 'cascaded' contributions are a consequence of local-field effects. We determine them from a fifth-order solution of the Lorentz-Maxwell-Bloch equations. They are missing from a straightforward generalization of Bloembergen's result for the local field correction to the second order nonlinearity, but are recovered by a careful application of his general approach. We find that at high atomic densities (N>10{sup 15} cm{sup -3}) the value of the cascaded third-order contribution can be as large as the 'direct' fifth-order term in the expression for the fifth-order susceptibility.
NASA Astrophysics Data System (ADS)
Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.
2015-02-01
Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.
Nonlinear optical effects on retinal damage thresholds in the 1200-1400 nm wavelength range
NASA Astrophysics Data System (ADS)
Echeverria, Francesco Jozac
Recent changes in the maximum permissible exposure (MPE) limits for near-infrared (NIR) laser exposures are analyzed in light of nonlinear optical phenomena. We have evaluated the thresholds for supercontinuum (SC) generation for ultra-short (femtosecond) laser exposures in the NIR region and compared these values with the MPEs listed in the American National Standard for Safe Use of Lasers 2014 Edition (ANSI Z136.1-2014). Due to the strong increase in ocular absorption in the 1.2 to 1.4 micrometer (i.e. 1200-1400 nm) range, evaluation of the SC generation phenomenon is necessary because any shift in laser energy within the eye to shorter wavelengths (i.e. greater frequency) could lead to unforeseen increases in hazards to the retina. The findings of this research do in fact indicate a shift in laser energy to shorter wavelengths for femtosecond pulsed lasers. In addition, an analysis involving spectral measurements through a water cuvette leads to estimations involving the eye configuration that show radiant exposures exceeding the ANSI thresholds for visible wavelengths. The implications of these findings are such that enough NIR energy is converted to visible energy near the retina when dealing with femtosecond pulsed lasers, warranting further studies in examining what the effects caused by nonlinear optical phenomena due to ultrashort pulsed lasers have on MPE thresholds established for eye safety.
Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects
NASA Astrophysics Data System (ADS)
Gendelman, O. V.; Zolotarevskiy, V.; Savin, A. V.; Bergman, L. A.; Vakakis, A. F.
2016-03-01
We describe and explore accelerating oscillatory fronts in sonic vacua with nonlocal interactions. As an example, a chain of particles oscillating in the plane and coupled by linear springs, with fixed ends, is considered. When one end of this system is harmonically excited in the transverse direction, one observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. Position of the front obeys the scaling law l (t ) ˜t4 /3 . The frequency of the oscillatory tail remains constant, and the wavelength scales as λ ˜t1 /3 . These scaling laws result from the nonlocal effects; we derive them analytically (including the scaling coefficients) from a continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation threshold is evaluated on the basis of a simplified discrete model, further reduced to a completely integrable nonlinear system. Given their simplicity, nonlinear sonic vacua of the type considered herein should be common in periodic lattices.
Effects of anisotropy and stress on the non-linear magnetic susceptibility of ferromagnets
NASA Astrophysics Data System (ADS)
Melikhov, Yevgen; Hauser, Hans; Li, Lu; Jiles, David; Grossinger, Roland
2004-03-01
The magnetic susceptibility of ferromagnetic materials changes if mechanical stress is applied. This arises mainly because of the changes in the effective anisotropy arising from the magnetoelastic coupling. In order to correctly describe these changes theoretically by non-linear hysteresis modeling, the variation of these parameters with both anisotropy and stress must be understood. The interpretation of the underlying physics behind these variations as well as the means for determining the changes in theoretical parameters are important issues in hysteresis modeling. We report studies undertaken using two non-linear hysteresis models, namely the Jiles-Atherton model and the Hauser energetic model. The study examined the initial magnetization curve at low magnetic fields - where domain wall displacements are dominant and the anhysteretic (hysteresis-free) magnetization at high fields - where most of the magnetization processes taking place are reversible. The results were verified by comparison with experimental results taken on amorphous Co77B23 ribbon under applied tensile stress. This research was supported by the US DoE, office of Basic Energy Science, Materials Science Division. Ames Laboratory is operated for the US DoE by ISU under contract number W-7405-ENG-82.
A simple method to account for drift orbit effects when modeling radio frequency heating in tokamaks
NASA Astrophysics Data System (ADS)
Van Eester, D.
2005-09-01
In the last years tremendous progress was made in modeling radio frequency heating in tokamaks. Not only the adopted models have gradually become more realistic, also the present generation of computers has allowed to study wave-particle interaction effects with previously unattainable detail. In the present paper a semi-analytical method is adopted to evaluate the dielectric response of a plasma to electromagnetic waves in the ion cyclotron domain of frequencies accounting for drift orbit effects in an axisymmetric tokamak. The method relies on subdividing the orbit into elementary segments in which the integrations can be performed analytically or by tabulation, and it hinges on the local bookkeeping of the relation between the variables defining an orbit and those describing the magnetic geometry. Although the method allows computation of elementary building blocks for either the wave or the Fokker-Planck equation, the focus here is on the latter. Using the coefficients evaluated using the proposed semi-analytical method, a 3-D Fokker-Planck code was developed which accounts for the radial width of the guiding center orbits and thus not only describes RF induced velocity space diffusion, but equally accounts for the RF induced radial drift. Preliminary results of this new 3-D Fokker-Planck code are presented. The adopted numerical resolution relies on a subdivision of the integration domain in tetrahedres. This specific shape of the elementary volumes allows imposing the boundary conditions (in particular the nonlocal conditions across the curved trapped/passing boundary connecting one trapped to two passing orbits) elegantly. The particular chosen shape also readily permits zooming in on regions where more detail is required. Casting the equation in its weak Galerkin form, it is solved relying on the finite element technique. Unless special attention is devoted to the optimization of the inversion of the system of linear equations resulting from projecting the
NASA Astrophysics Data System (ADS)
Li, Bo; Liu, Richeng; Jiang, Yujing
2016-07-01
Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J < 10-3, whereas their values change significantly when J > 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr < 10-3, the scale effect is negligibly small. Finally, a necessary condition to apply the cubic law to fluid flow through fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.
Wang, Menghua
2016-05-30
To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude
Sediment erodability in sediment transport modelling: Can we account for biota effects?
NASA Astrophysics Data System (ADS)
Le Hir, P.; Monbet, Y.; Orvain, F.
2007-05-01
Sediment erosion results from hydrodynamic forcing, represented by the bottom shear stress (BSS), and from the erodability of the sediment, defined by the critical erosion shear stress and the erosion rate. Abundant literature has dealt with the effects of biological components on sediment erodability and concluded that sediment processes are highly sensitive to the biota. However, very few sediment transport models account for these effects. We provide some background on the computation of BSS, and on the classical erosion laws for fine sand and mud, followed by a brief review of biota effects with the aim of quantifying the latter into generic formulations, where applicable. The effects of macrophytes, microphytobenthos, and macrofauna are considered in succession. Marine vegetation enhances the bottom dissipation of current energy, but also reduces shear stress at the sediment-water interface, which can be significant when the shoot density is high. The microphytobenthos and secreted extracellular polymeric substances (EPS) stabilise the sediment, and an increase of up to a factor of 5 can be assigned to the erosion threshold on muddy beds. However, the consequences with respect to the erosion rate are debatable since, once the protective biofilm is eroded, the underlying sediment probably has the same erosion behaviour as bare sediment. In addition, the development of benthic diatoms tends to be seasonal, so that stabilising effects are likely to be minimal in winter. Macrofaunal effects are characterised by extreme variability. For muddy sediments, destabilisation seems to be the general trend; this can become critical when benthic communities settle on consolidated sediments that would not be eroded if they remained bare. Biodeposition and bioresuspension fluxes are mentioned, for comparison with hydrodynamically induced erosion rates. Unlike the microphytobenthos, epifaunal benthic organisms create local roughness and are likely to change the BSS generated
NASA Astrophysics Data System (ADS)
Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.
2016-04-01
We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.
MHD stability of ITER H-mode confinement with pedestal bootstrap current effects taken into account
NASA Astrophysics Data System (ADS)
Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.; Mahajan, S. M.; Hatch, D.; Liu, X.
2015-11-01
We have shown that the bootstrap current can have significant effects both on tokamak equilibrium and stability (Nucl. Fusion 53, 063009 (2013)). For ITER H-mode discharges pedestal density is low and consequently bootstrap current is large. We reconstruct numerically ITER equilibria with bootstrap current taken into account. Especially, we have considered a more realistic scenario in which density and temperature profiles can be different. The direct consequence of bootstrap current effects on equilibrium is the modification of local safety factor profile at pedestal. This results in a dramatic change of MHD mode behavior. The stability of ITER numerical equilibria is investigated with AEGIS code. Both low-n and peeling-ballooning modes are investigated. Note that pressure gradient at pedestal is steep. High resolution computation is needed. Since AEGIS code is an adaptive code, it can well handle this problem. Also, the analytical continuation technique based on the Cauchy-Riemann condition of dispersion relation is applied, so that the marginal stability conditions can be determined. Both numerical scheme and results will be presented. The effects of different density and temperature profiles on ITER H-mode discharges will be discussed. This research is supported by U. S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.
NASA Astrophysics Data System (ADS)
Xu, Yujie; Zhang, Hongliang; Li, Jie; Lai, Yanqing
2013-11-01
A nonlinear shallow-water model combined with the effect of anode gas bubbles was derived for the melt flows and interface instability in aluminum reduction cells. Both the electromagnetic forces and the drag forces between the bath and gas bubbles, as the main driven forces for the melt flows, were taken into account in this model. A comparative numerical study was carried out using both the model considering the bubble and the model without considering the bubble. The results show the effect of the bubble cannot be neglected in a fluid dynamics analysis for the aluminum reduction cell. The bath flow, induced by the motion of bubbles, presents a series of small eddies rather than large eddies as the metal flow pattern shows. The horizontal drag forces between the bath and the bubbles in the bath layer enlarge the deformation of the metal-bath interface, to some extent, but have a positive influence on stabilizing the metal-bath interface perturbations.
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.
1990-01-01
The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.
NASA Astrophysics Data System (ADS)
Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal
2016-07-01
A multifunctional combinational logic module capable of performing several signal manipulation tasks all-optically, such as half-addition/subtraction, single-bit comparison, and 2-to-4 decoding simultaneously is proposed. Several logic functions (A+B¯, A.B, A¯.B, A.B¯, A⊕B, and A⊙B) between two input signals A and B are implemented by harnessing a number of nonlinear effects, such as cross-phase modulation (XPM), cross-gain modulation (XGM), and four-wave mixing (FWM) inside only two highly nonlinear fibers (HNLF) arranged in a parallel structure. The NOR gate (A+B¯) is realized by the means of XPM effect in the first HNLF, whereas, A‾.B, A.B¯, and A.B logics have relied on utilization of XGM and FWM processes, respectively, in parametric medium made up of the second HNLF of parallel arrangement. The remaining A⊕B and A⊙B logics required for successful implementation of the proposed simultaneous scheme are attained by temporally combining previously achieved (A‾.B and A.B‾) and (A.B and A+B‾) logics. Quality-factor ≥7.4 and extinction ratio ≥12.30 dB have been achieved at repetition rates of 100 Gbps for all logic functions (A+B‾, A.B, A¯.B, A.B¯, A⊕B, and A⊙B), suggesting successful simultaneous implementation.
Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction
Fast, Shannon M.; González, Marta C.; Markuzon, Natasha
2015-01-01
Background Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence. Methodology The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response. Conclusions The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy. PMID:26288274
NASA Astrophysics Data System (ADS)
Sateesh, V. L.; Upadhyay, C. S.; Venkatesan, C.
2010-07-01
Polarization-electric-field (P-E) interaction results in rendering the stress tensor non-symmetric and in a nonlinear force term in the equilibrium equation. In this paper, an attempt is made to study these (P-E) nonlinear effects on the static response of laminated composite plates with piezo actuators. Further, this paper also focuses on finding the most effective piezo lay-up and ply orientation which gives the maximum deflections. Four different piezo lay-up configurations and three ply orientations are considered. It has been observed from the study that width-wise strips show more transverse bending and twisting. However, full length piezo layers show maximum longitudinal bending. The results of nonlinear analysis show a more considerable softening trend in deformations than that of the linear analysis in the case of longitudinal bending and twisting. In the case of transverse bending this nonlinear effect shows a hardening trend. Further, it has been observed that the influence of P-E nonlinearity depends on the stiffness of the core material, the geometric arrangement of piezo patches, the boundary conditions and the actuation voltage.
Nonlinear kinetic modeling of stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Benisti, Didier
2011-10-01
Despite its importance for many applications, such as or Raman amplification or inertial confinement fusion, deriving a nonlinear estimate of Raman reflectivity in a plasma has remained quite a challenge for decades. This is mainly due to the nonlinear modification of the electron distribution function induced by the plasma wave (EPW), which, in turn, modifies the propagation of this wave. In this paper is derived an envelope equation for the EPW valid in 3D and which accounts for the nonlinear change of its collisionless (Landau-like) damping rate, group velocity, coupling to the electromagnetic drive, frequency and wave number. Our theoretical predictions for each of these terms are carefully compared against results from Vlasov simulations of stimulated Raman scattering (SRS), as well as with other theories. Moreover, our envelope model shows to be as accurate as a Vlasov code in predicting Raman threshold in 1D. Making comparisons with experimental results nevertheless requires including transverse dimensions and letting Raman start from noise. To this end, we performed a completely new derivation of the electrostatic fluctuations in a plasma, which accounts nonlinear effects. Moreover, based on our Multi-D simulations of Raman scattering with our envelope code BRAMA, we discuss the effect on SRS of wave front bowing, transverse detrapping and of a completely new defocussing effect due to the local change in the direction of the EPW group velocity induced by the nonlinear decrease of Landau damping.
NASA Astrophysics Data System (ADS)
Thankappan, Aparna; Thomas, Sheenu; Nampoori, V. P. N.
2013-10-01
We report on the solvent effect on the third order optical nonlinearity of betanin natural dye extracted from red beet root and their third order nonlinear optical (NLO) properties have been studied using a Q-switched Nd:YAG laser at 532 nm. The third order nonlinearity of these samples are dominated by nonlinear absorption, which leads to strong optical limiting and their strength is influenced by the solvent used, suggesting that betanin natural dyes are promising candidate for the development of photonic nonlinear optic devices.
NASA Astrophysics Data System (ADS)
Chen, F.; Gindre, D.; Nunzi, J.-M.
2007-09-01
Tunable distributed feedback (DFB) lasing output based on reflection grating configuration instead of the traditional transmission grating type was realized from rhodamine 6G (R6G)-doped ethanol and DCM-doped methanol. Pure gain coupling and additional index coupling were obtained in R6G-doped ethanol and DCM-doped methanol, respectively. The tuning which was independent on the refractive index of the lasing media went through all of the tuning data for the two cases. Dual-peak lasing emissions indicative of the existence of the index grating from the DCM-doped methanol were observed. The interval between the dual peaks increased as the increasing of the pump energy. The effect can be used to estimate the resonant nonlinear refractive index of luminescent materials.
On-axis non-linear effects with programmable Dammann lenses under femtosecond illumination.
Pérez Vizcaíno, Jorge; Mendoza-Yero, Omel; Borrego-Varillas, Rocío; Mínguez-Vega, Gladys; Vázquez de Aldana, Javier R; Láncis, Jesús
2013-05-15
We demonstrate the utilization of Dammann lenses codified onto a spatial light modulator (SLM) for triggering non-linear effects. With continuous wave illumination Dammann lenses are binary phase optical elements that generate a set of equal intensity foci. We theoretically calculate the influence of ultrashort pulse illumination on the uniformity of the generated pattern, which is affected by chromatic aberration for pulses with temporal widths lower than 100 fs. The simulations also indicate that acceptable uniformity can be achieved for pulses of several fs by shortening the distance among foci which can be easily modified with the SLM. Multifocal second-harmonic generation (SHG) and on-axis multiple filamentation are produced and actively controlled in β-BaB2O4 (BBO) and fused silica samples, respectively, with an amplified Ti: Sapphire femtosecond laser of 30 fs pulse duration. Experimental results are in very good agreement with theoretical calculations. PMID:23938889