Science.gov

Sample records for account relativistic effects

  1. Relativistic Hall effect.

    PubMed

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes. PMID:22540559

  2. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts. PMID:22519307

  3. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2015-07-01

    The main factors affecting the accuracy and computational cost of the Second-order Möller-Plesset perturbation theory (MP2) calculation of (77) Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390-466 ppm) dominates over diamagnetic term (192-198 ppm) resulting in a total shielding relativistic correction of about 230-260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70-80 ppm. In the (77) Se NMR chemical shifts scale, relativistic corrections are about 20-30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of (77) Se NMR chemical shifts of the medium-sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of (77) Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. PMID:25998325

  4. Relativistic spin effects in the baryon spectrum

    SciTech Connect

    Garcilazo, Humberto

    2005-04-01

    We study the nonstrange baryon spectrum within a three-body theory that treats relativistically both the space and the spin variables. The relativistic effects of the spin are about one order of magnitude smaller than those due to the use of relativistic momentum variables. The relativistic treatment of the spin breaks the degenerancy that is present in the nonrelativistic model and in the model with only relativistic momentum variables.

  5. Relativistic effects on x-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-04-01

    Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).

  6. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  7. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-01

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  8. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  9. Quantum Monte Carlo studies of relativistic effects in light nuclei

    SciTech Connect

    J. L. Forest; V. R. Pandharipande; A. Arriaga

    1998-05-01

    Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials and their boost corrections. In this work the authors use the variational Monte Carlo method to study two kinds of relativistic effects in the binding energy of {sup 3}H and {sup 4}He. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by about 15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of 0.4 (1.9) MeV in {sup 3}H ({sup 4}He) and account for 37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.

  10. Relativistic effects in Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; Di Dio, Enea; Viel, Matteo

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2-5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  11. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2015-06-01

    Relativistic calculations of (29)Si NMR shielding constants (chemical shifts) in the series of halosilanes SiX(n)H(4-n) (X = F, Cl, Br and I) are performed within a full four-component relativistic Dirac's scheme using relativistic Dyall's basis sets. Three different theoretical levels are tested in the computation of (29)Si NMR chemical shifts in comparison with experiment: namely, four-component relativistic GIAO-DFT, four-component relativistic GIAO-RPA, and a hybrid scheme of a nonrelativistic GIAO-MP2 with taking into account relativistic corrections using the four-component relativistic GIAO-RPA. The DFT results give larger relativistic effects as compared to the RPA data which might be rationalized in terms of the manifestation of correlation effects taken into account at the DFT level and not accounted for at the uncorrelated RPA level. Taking into account solvent effects slightly improves agreement with experiment, however, being not a matter of principle. Generally, relativistic pure nonempirical wave function methods perform much better as compared to relativistic DFT methods when benchmarked to experiment. PMID:25946056

  12. Relativistic Effects in Two Photon Decay of 0-+ Quarkonium

    NASA Astrophysics Data System (ADS)

    Zhou, H. Q.; Zou, B. S.

    Relativistic effects in two photon decay of 0-+ quarkonium are investigated with a relativistic phenomenological approach. Comparing with the non-relativistic approximation, the relativistic phenomenological approach gives corrections coming from three sources: qbar q relative momentum distribution, qbar q relative energy distribution and description of quark spinors in the meson. These relativistic effects are studied in detail for cbar c and sbar s systems.

  13. General relativistic effects in atom interferometry

    SciTech Connect

    Dimopoulos, Savas; Hogan, Jason M.; Kasevich, Mark A.; Graham, Peter W.

    2008-08-15

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the nonrelativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this, we develop a method for calculating the phase shift in general relativity. Both the atoms and the light are treated relativistically and all coordinate dependencies are removed, thus revealing novel terms, cancellations, and new origins for previously calculated terms. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the nonlinear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose specific experiments, one currently under construction, to measure each of these effects. These experiments could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the Universe, and preferred frame and location effects.

  14. General Relativistic Effects in Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  15. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  16. Isospin flip as a relativistic effect: NN interactions

    NASA Technical Reports Server (NTRS)

    Buck, W. W.

    1993-01-01

    Results are presented of an analytic relativistic calculation of a OBE nucleon-nucleon (NN) interaction employing the Gross equation. The calculation consists of a non-relativistic reduction that keeps the negative energy states. The result is compared to purely non-relativistic OBEP results and the relativistic effects are separated out. One finds that the resulting relativistic effects are expressable as a power series in (tau(sub 1))(tau(sub 2)) that agrees, qualitatively, with NN scattering. Upon G-parity transforming this NN potential, one obtains, qualitatively, a short range NN spectroscopy in which the S-states are the lowest states.

  17. Magnetogenesis through a Relativistic Biermann Effect

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    2012-10-01

    In a 2010 Physical Review Letter, Mahajan and Yoshida proposed a relativistic correction to the well-known Biermann Battery. The Biermann Battery allows for the generation of magnetic fields in a plasma fluid from orthogonal gradients in temperature and entropy (Bt ∇T x∇σ). The proposed correction would result in an additional term, proportional to the gradient of velocity squared crossed with the gradient of entropy (Bt ∇v^2 x∇σ). This new effect can in some cases provide the dominate source of magnetic field growth, even when the fluid is only mildly relativistic. This could in turn help explain the dynamics of certain relativistic plasmas, including modern laser plasmas and astrophysical jets. It is possible it could even provide a primordial source for the seed fields needed to explain the cosmological magnetic fields that appear to permeate most galaxies. In my poster, I will explain the theory underlying this new correction and present simulations demonstrating magnetic field growth in a variety of test cases, performed using both a particle-in-cell code and a fluid model.

  18. Relativistic Effects Break Periodicity in Group 6 Diatomic Molecules.

    PubMed

    Wang, Yi-Lei; Hu, Han-Shi; Li, Wan-Lu; Wei, Fan; Li, Jun

    2016-02-01

    The finding of the periodic law is a milestone in chemical science. The periodicity of light elements in the Periodic Table is fully accounted for by quantum mechanics. Here we report that relativistic effects change the bond multiplicity of the group 6 diatomic molecules M2 (M = Cr, Mo, W, Sg) from hextuple bonds for Cr2, Mo2, W2 to quadruple bonds for Sg2, thus breaking the periodicity in the nonrelativistic domain. The same trend is also found for other superheavy-element diatomics Rf2, Db2, Bh2, and Hs2. PMID:26787134

  19. Relativistic treatment of inertial spin effects

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  20. Relativistic effects on atomic and molecular properties of the heaviest elements

    NASA Astrophysics Data System (ADS)

    Pershina, V.; Anton, J.; Bastug, T.

    2007-10-01

    Interaction of superheavy element 112 and its homolog Hg with inert and gold surfaces was studied on the basis of atomic and molecular fully-relativistic (4-component) DFT electronic structure calculations. Performance of additional non-relativistic calculations allowed one to demonstrate the role and magnitude of relativistic effects on adsorption energies and bond distances of the studied systems. For example, on quartz, element 112 will be stronger adsorbed than Hg by about 5 kJ/mol (or at 5 degrees higher temperatures) due to the stronger van der Waals interaction. This is caused by the relativistically contracted smallest atomic radius of element 112. Non-relativistically, the trend would be opposite. On surface of gold, element 112 will be about 20 kJ/mol weaker adsorbed than Hg (i.e., it will be deposited at about 100 degrees lower temperatures than Hg). Such a decrease in Δ Hads comes at the account of the weaker interaction of the relativistically stabilized 7s1/2(112) orbital with valence orbitals of gold. Still, the relatively large adsorption energy of element 112 is indicative that it is a transition metal forming intermetallic compounds with Au and other metals due to the involvement of the relativistically destabilized 6d orbitals. The influence of relativistic effects on the adsorption energy depends, however, on the adsorption position.

  1. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  2. Relativistic effects in nuclear many-body systems

    SciTech Connect

    Coester, F.

    1985-01-01

    Different approaches to the formulation of relativistic many-body dynamics yield different perspectives of nature and the magnitude of ''relativistic effects''. The effects of Lorentz invariance appear to be relatively unimportant. Important dynamical features of spinorial many-body formalisms are effects of subnuclear degrees of freedom which are represented in the many-body forces of the covariant nuclear Hamiltonian. 24 refs.

  3. Tensor coupling effect on relativistic symmetries

    NASA Astrophysics Data System (ADS)

    Chen, ShouWan; Li, DongPeng; Guo, JianYou

    2016-08-01

    The similarity renormalization group is used to transform the Dirac Hamiltonian with tensor coupling into a diagonal form. The upper (lower) diagonal element becomes a Schr¨odinger-like operator with the tensor component separated from the original Hamiltonian. Based on the operator, the tensor effect of the relativistic symmetries is explored with a focus on the single-particle energy contributed by the tensor coupling. The results show that the tensor coupling destroying (improving) the spin (pseudospin) symmetry is mainly attributed to the coupling of the spin-orbit and the tensor term, which plays an opposite role in the single-particle energy for the (pseudo-) spin-aligned and spin-unaligned states and has an important influence on the shell structure and its evolution.

  4. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  5. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    NASA Astrophysics Data System (ADS)

    Belghit, Slimen; Sid, Abdelaziz

    2016-06-01

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  6. Oscillator strengths of some Ba lines - A treatment including core-valence correlation and relativistic effects

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Jaffe, R. L.; Langhoff, S. R.; Partridge, H.; Mascarello, F. G.

    1985-01-01

    Theoretical calculations of selected excitation energies and oscillator strengths for Ba are presented that overcome the difficulties of previous theoretical treatments. A relativistic effective-core potential treatment is used to account for the relativistic core contraction, but the outermost ten electrons are treated explicitly. Core-valence correlation can be included in this procedure in a rigorous and systematic way through a configuration-interaction calculation. Insight is gained into the importance of relativistic effects by repeating many of the calculations using an all-electron nonrelativistic treatment employing an extended Slater basis set. It is found that the intensity of the intercombination line 3P1-1S0 is accurately determined by accounting for the deviation from LS coupling through spin-orbit mixing with the 1P1 state, and that deviations from the Lande interval rule provide an accurate measure of the degree of mixing.

  7. Large-scale imprint of relativistic effects in the cosmic magnification

    NASA Astrophysics Data System (ADS)

    Duniya, Didam G. A.

    2016-05-01

    Apart from the known weak gravitational lensing effect, the cosmic magnification acquires relativistic corrections owing to Doppler, integrated Sachs-Wolfe, time-delay and other (local) gravitational potential effects, respectively. These corrections grow on very large scales and high redshifts z , which will be the reach of forthcoming surveys. In this work, these relativistic corrections are investigated in the magnification angular power spectrum, using both (standard) noninteracting dark energy (DE), and interacting DE (IDE). It is found that for noninteracting DE, the relativistic corrections can boost the magnification large-scale power by ˜40 % at z =3 , and increases at lower z . It is also found that the IDE effect is sensitive to the relativistic corrections in the magnification power spectrum, particularly at low z —which will be crucial for constraints on IDE. Moreover, the results show that if relativistic corrections are not taken into account, this may lead to an incorrect estimate of the large-scale imprint of IDE in the cosmic magnification; including the relativistic corrections can enhance the true potential of the cosmic magnification as a cosmological probe.

  8. Lorentz symmetry breaking effects on relativistic EPR correlations

    NASA Astrophysics Data System (ADS)

    Belich, H.; Furtado, C.; Bakke, K.

    2015-09-01

    Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations.

  9. Calculations of the ionization potentials of the halogens by the relativistic Hartree-Rock-Dirac method taking account of superposition of configurations

    SciTech Connect

    Tupitsyn, I.I.

    1988-03-01

    The ionization potentials of the halogen group have been calculated. The calculations were carried out using the relativistic Hartree-Fock method taking into account correlation effects. Comparison of theoretical results with experimental data for the elements F, Cl, Br, and I allows an estimation of the accuracy and reliability of the method. The theoretical values of the ionization potential of astatine obtained here may be of definite interest for the chemistry of astatine.

  10. Relativistic and quantum electrodynamic effects in superheavy elements

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, Peter; Pašteka, Lukáš F.; Punnett, Andrew; Bowman, Patrick O.

    2015-12-01

    The current status of relativistic electronic structure theory for superheavy elements is reviewed. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their chemical and physical behaviour. The role of quantum electrodynamic effects beyond the no-virtual-pair approximation, which is usually neglected in relativistic molecular calculations, is discussed. Changes in periodic trends due to relativistic effects are outlined for the superheavy elements with nuclear charge Z = 111- 120. We also analyse the role of the negative energy states for the electronic stability of superheavy elements beyond the critical nuclear charge (Zcrit ≈ 170), where the 1s state enters the negative energy continuum at - 2mec2.

  11. Effects of retardation in relativistic equations with confining interaction

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    A method has been developed for solving two body relativistic bound state equations in momentum space with a confining interaction. A total of six different three dimensional reductions of the Bethe-Salpeter equations are studied with particular emphasis placed on the competing roles of relativistic kinematics and retardation. The results indicate that these two effects counteract each other and this sheds some light on why nonrelativistic models of meson spectroscopy have been quite successful.

  12. Relativistic effects on nonlinear lower hybrid oscillations in cold plasma

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2011-04-15

    Nonlinear lower hybrid mode in a quasineutral magnetized plasma is analyzed in one space dimension using Lagrangian coordinates. In a cold fluid, we treat electron fluid relativistically, whereas ion fluid nonrelativistically. The homotopy perturbation method is employed to obtain the nonlinear solution which also finds the frequency-amplitude relationship for the lower hybrid mode. The solution indicates that the amplitude of oscillation increases due to the weak relativistic effects. The appearance of density spikes is not ruled out in a magnetized plasma.

  13. One-pion exchange current effects on magnetic form factor in the relativistic formalism

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Liu, Jian; Ren, Zhongzhou

    2016-08-01

    One-pion exchange current effects on the magnetic form factors of some odd nuclei are studied in the relativistic formalism. The Dirac wave functions of nucleons are calculated from the relativistic mean-field theory. After fitting to experimental data by quenching factors, it is found that taking the one-pion exchange currents into account gives a better description of the magnetic form factor. The root-mean-square radii of the valance nucleon orbits are also calculated in RMF model, which coincide with experimental radii extracted with meson exchange current corrections.

  14. Relativistic effects on information measures for hydrogen-like atoms

    NASA Astrophysics Data System (ADS)

    Katriel, Jacob; Sen, K. D.

    2010-01-01

    Position and momentum information measures are evaluated for the ground state of the relativistic hydrogen-like atoms. Consequences of the fact that the radial momentum operator is not self-adjoint are explicitly studied, exhibiting fundamental shortcomings of the conventional uncertainty measures in terms of the radial position and momentum variances. The Shannon and Rényi entropies, the Fisher information measure, as well as several related information measures, are considered as viable alternatives. Detailed results on the onset of relativistic effects for low nuclear charges, and on the extreme relativistic limit, are presented. The relativistic position density decays exponentially at large r, but is singular at the origin. Correspondingly, the momentum density decays as an inverse power of p. Both features yield divergent Rényi entropies away from a finite vicinity of the Shannon entropy. While the position space information measures can be evaluated analytically for both the nonrelativistic and the relativistic hydrogen atom, this is not the case for the relativistic momentum space. Some of the results allow interesting insight into the significance of recently evaluated Dirac-Fock vs. Hartree-Fock complexity measures for many-electron neutral atoms.

  15. Relativistic effects for low Earth orbit satellites using GPS

    NASA Astrophysics Data System (ADS)

    Spallicci, A.; Jimenez, C.; Prisco, G.; Ashby, N.

    1992-06-01

    The relativistic corrections for a low Earth orbit satellite are evaluated. The GPS (Global Positioning System) satellite clock rate is slowed before launch by 4.465 x 10(exp -10), called the 'factory offset', for time dilation and gravitational frequency shift. This offset cancels the main constant relativistic effects for terrestrial users, which in order to operate in coordinate time have only to process the GPS orbital eccentricities, a sinusoidal function whose peaks are in the order of tens of ns, and the Sagnac effect. For a space user the situation greatly differs, because a large part of the relativistic effects are still present due to the high velocity of the satellite and its location in the Earth gravitational field. Past tests and proposals for future measurements with GPS--perigee advance, Shapiro time delay, preferred frame independence, Lense Thirring effect, light bending and gravitational waves--are reviewed.

  16. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    PubMed

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects. PMID:27434184

  17. Relativistic Effects on Reflection X-ray Spectra of AGN

    SciTech Connect

    Lee, Khee-Gan; Fuerst, Steven V.; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  18. Relativistic Effects on the Radial Equilibrium of Nonneutral Plasmas

    SciTech Connect

    Rome, M.; Pozzoli, R.; Kotelnikov, I.

    2009-03-30

    Relativistic effects on the radial equilibrium of nonneutral plasmas confined in cylindrical traps are analyzed for rigid and sheared modes of plasma rotation, both with and without the presence of a coaxial inner charged conductor. The changes with respect to the non-relativistic results are especially pronounced for the fast rotational equilibrium solutions. In particular, relativistic effects can limit the plasma outer radius. Analytical estimates of this maximum radius are found both for a rigid plasma rotation and for the case of a uniform plasma density. It is also observed that the Brillouin density limit is modified when the shielding of the external magnetic field by the current associated with the plasma rotation becomes significant.

  19. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  20. Effective photon mass and exact translating quantum relativistic structures

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Manrique, Marcos Antonio Albarracin

    2016-04-01

    Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spin effects are not decisive.

  1. Correlation and relativistic effects in actinide ions

    SciTech Connect

    Safronova, U. I.; Safronova, M. S.

    2011-11-15

    Wavelengths, line strengths, and transition rates are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited 6s{sup 2}6p{sup 5}nl and 6s6p{sup 6}nl states and the ground 6s{sup 2}6p{sup 6} state in Ac{sup 3+}, Th{sup 4+}, and U{sup 6+} Rn-like ions. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in these hole-particle systems. The RMBPT method agrees with multiconfigurational Dirac-Fock (MCDF) calculations in lowest order, includes all second-order correlation corrections, and includes corrections from negative-energy states. The calculations start from a [Xe]4f{sup 14}5d{sup 10}6s{sup 2}6p{sup 6} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. Evaluated multipole matrix elements for transitions from excited states to the ground states are used to determine the line strengths, transition rates, and multipole polarizabilities. This work provides a number of yet unmeasured properties of these actinide ions for various applications and for benchmark tests of theory and experiment.

  2. Non-relativistic leptogenesis

    NASA Astrophysics Data System (ADS)

    Bödeker, Dietrich; Wörmann, Mirco

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ~ 20%) effects compared to previous computations.

  3. The effect of direct positron production on relativistic feedback rates

    NASA Astrophysics Data System (ADS)

    Vodopiyanov, I. B.; Dwyer, J. R.; Lucia, R. J.; Cramer, E. S.; Arabshahi, S.; Rassoul, H.

    2013-12-01

    Relativistic feedback produces a self-sustaining runaway electron discharge via the production of backward propagating positrons and back-scattered x-rays. To date, only positrons created from pair-production by gamma-rays interacting with the air have been considered. In contrast, direct pair-production involves the creation of electron-positron pairs directly from the interaction of energetic runaway electrons with nuclei, and so it does not require the generation of bremsstrahlung gamma-rays. For high electric fields, where the runaway electron avalanche length scales are short, pair-production involving bremsstrahlung gamma-rays makes a smaller contribution to the total relativistic feedback rates than at lower fields, since both the bremsstrahlung interaction and the pair-production need to occur over a short length. On the other hand, for high fields, because direct positron production only involves one interaction, it may make a significant contribution to relativistic feedback rates in some cases. In this poster, we shall present the direct positron production cross-sections and calculate the effects on the relativistic feedback rates due to this process.

  4. Relativistic Effects in Chemistry: More Common Than You Thought

    NASA Astrophysics Data System (ADS)

    Pyykkö, Pekka

    2012-05-01

    Relativistic effects can strongly influence the chemical and physical properties of heavy elements and their compounds. This influence has been noted in inorganic chemistry textbooks for a couple of decades. This review provides both traditional and new examples of these effects, including the special properties of gold, lead-acid and mercury batteries, the shapes of gold and thallium clusters, heavy-atom shifts in NMR, topological insulators, and certain specific heats.

  5. Effects of trapping and finite temperature in a relativistic degenerate plasma

    SciTech Connect

    Shah, H. A.; Qureshi, M. N. S.; Masood, W.; Tsintsadze, N. L.

    2011-10-15

    In the present work, we have undertaken, for the first time, investigation on the effect of trapping on the formation of solitary structures in relativistic degenerate plasmas. Such plasmas have been observed in dense astrophysical objects, and in laboratory these may result due to the interaction of intense lasers with matter. We have used the relativistic Fermi-Dirac distribution to describe the dynamics of the degenerate trapped electrons by solving the kinetic equation. The Sagdeev potential approach has been employed to obtain the arbitrary amplitude solitary structures both when the plasma has been considered cold and when small temperature effects have been taken into account. The theoretical results obtained have been analyzed numerically for different parameter values, and the results have been presented graphically.

  6. Relativistic AC gyromagnetic effects in ultraintense laser-matter interaction.

    PubMed

    Geindre, J P; Audebert, P; Marjoribanks, R S

    2006-08-25

    We demonstrate that in ultraintense ultrafast laser-matter interaction, the interplay of laser-induced oscillating space-charge fields with laser E and B fields can strongly affect whether the interaction is relativistic or not: stronger laser fields may not in fact produce more relativistic plasma interactions. We show that there exists a regime of interaction, in the relation of laser intensity and incident angle, for which the Brunel effect of electron acceleration is strongly suppressed by AC gyromagnetic fields, at a frequency different from the laser field. Analytically and with 1.5D particle-in-cell modeling, we show that from gyromagnetic effects, even in the absence of usual J x B second-harmonic contributions, there are strong effects on the harmonic emission and on the generation of attosecond pulses. PMID:17026310

  7. Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Yoo, Jaiyul; Koyama, Kazuya

    2013-05-01

    We explore the signatures of quintessence and modified gravity theories in the relativistic description of galaxy clustering within a parametrized post-Friedmann framework. For this purpose, we develop a calibration method to consistently account for horizon-scale effects in the linear parametrized post-Friedmann perturbations of minimally and nonminimally coupled scalar-tensor theories and test it against the full model-specific fluctuations. We further study the relativistic effects in galaxy clustering for the normal and self-accelerating branches of the Dvali-Gabadadze-Porrati braneworld model as well as for phenomenological modifications of gravity. We quantify the impact of modified gravity and dark energy models on galaxy clustering by computing the velocity-to-matter density ratio F, the velocity contribution R, and the potential contribution P and give an estimate of their detectability in future galaxy surveys. Our results show that, in general, the relativistic correction contains additional information on gravity and dark energy, which needs to be taken into account in consistent horizon-scale tests of departures from ΛCDM using the galaxy-density field.

  8. The nonlinear effect in relativistic Compton scattering for an intense circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Luo, W.; Zhuo, H. B.; Ma, Y. Y.; Zhu, Z. C.; Fan, G. T.; Xu, W.; Song, Y. M.

    2014-07-01

    Compton scattering between an intense laser pulse and a relativistic electron beam offers a promising development path toward high-energy, high-brightness x- and gamma-ray sources. Increasing laser peak power to obtain intense x- and gamma rays causes nonlinear Compton scattering to occur. To predict high-order harmonic radiation properties, we upgrade a Monte Carlo laser-Compton scattering simulation code (MCLCSS) by taking into account the nonlinear effect for the relativistic Compton scattering process. The energy spectra and angular and harmonic intensity distributions of the scattered photons are investigated using nonlinear Compton scattering of an intense circularly polarized laser. It is found that the laser parameter {{a}_{0}}\\equiv e{\\rm{A}}\\;{{m}_{e}}{{c}^{-2}} plays an important role in the generation of high-order harmonic radiation. Our study also suggests that the high-energy tails of the second and higher harmonics will stray from the backscattering region.

  9. Angular dependence of Wigner time delay: Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.

    2016-05-01

    Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).

  10. RANDOM WALKS AND EFFECTIVE OPTICAL DEPTH IN RELATIVISTIC FLOW

    SciTech Connect

    Shibata, Sanshiro; Tominaga, Nozomu; Tanaka, Masaomi

    2014-05-20

    We investigate the random walk process in relativistic flow. In the relativistic flow, photon propagation is concentrated in the direction of the flow velocity due to the relativistic beaming effect. We show that in the pure scattering case, the number of scatterings is proportional to the size parameter ξ ≡ L/l {sub 0} if the flow velocity β ≡ v/c satisfies β/Γ >> ξ{sup –1}, while it is proportional to ξ{sup 2} if β/Γ << ξ{sup –1}, where L and l {sub 0} are the size of the system in the observer frame and the mean free path in the comoving frame, respectively. We also examine the photon propagation in the scattering and absorptive medium. We find that if the optical depth for absorption τ{sub a} is considerably smaller than the optical depth for scattering τ{sub s} (τ{sub a}/τ{sub s} << 1) and the flow velocity satisfies β≫√(2τ{sub a}/τ{sub s}), then the effective optical depth is approximated by τ{sub *} ≅ τ{sub a}(1 + β)/β. Furthermore, we perform Monte Carlo simulations of radiative transfer and compare the results with the analytic expression for the number of scatterings. The analytic expression is consistent with the results of the numerical simulations. The expression derived in this study can be used to estimate the photon production site in relativistic phenomena, e.g., gamma-ray burst and active galactic nuclei.

  11. How Do The Relativistic Effects Effect the Appearance of a Clothed Black Hole?

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoling; Zhang, S. N.; Feng, Yuxin; Yao, Yangsen

    2002-01-01

    For an accretion disk around a black hole, the strong relativistic effects affect every aspect of the radiation from the disk, including the spectrum, the light-curve, and the image. If the disk is in high inclination angle (nearly edge-on), the image will be greatly distorted; the farther side of the disk will appear to bend toward the observer, photons from the other side of the disk can reach the observer (if they are not blocked by the disk) to form a ghost image. This work differs mainly from previous work by taking into account the temperature distribution of a standard thin disk model and investigating the expected images from different viewing angles and in different energy bands. The edge-blocking effect is also considered. Direct images of black hole systems may be obtained with future X-ray missions like MAXIM pathfinder.

  12. Effects of Preplasma in 10-ps Relativistic Laser Matter Interaction

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Stephens, R. B.; Peebles, J.; McGuffey, C.; Qiao, B.; Beg, F.; Sentoku, Y.; Link, A.; Chen, H.; McLean, H.; Theobald, W.; Haberberger, D.; Davies, A.

    2014-10-01

    Experiments were performed using the kJ 10-ps OMEGA EP laser to study the effect of preplasma on fast electron generation and energy coupling in relativistic laser plasma interaction (LPI) with a controlled preplasma at various scalelength created by a 1-ns UV laser. Targets were multilayered planar foil consisting of an Al substrate, a buried Cu layer and a thick conductive CH layer. Preplasma density profile and relativistic LPI generated fields were characterized using a 10-ps 4 ω optical probe (angular filter refractometry and polarimetry) together with radiography using a high-energy proton beam produced by the second kJ 10-ps EP beam. Fast electrons were diagnosed by measuring Cu K-shell fluorescence emission and bremsstrahlung radiation. Electron energy spectrum was monitored by a magnetic spectrometer. Preliminary results showed nonlinear interaction instabilities and a reduced electron temperature with increasing preplasma scalelength. Dynamics of the relativistic LPI and the resultant fast electron beam characteristics and energy coupling will be presented. Supported by the US DOE under DE-NA0002026 and DE-FC02-04ER54789.

  13. First example of the correlated calculation of the one-bond tellurium-carbon spin-spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects.

    PubMed

    Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B

    2016-06-01

    This work reports on the comprehensive calculation of the NMR one-bond spin-spin coupling constants (SSCCs) involving carbon and tellurium, (1) J((125) Te,(13) C), in four representative compounds: Te(CH3 )2 , Te(CF3 )2 , Te(CCH)2 , and tellurophene. A high-level computational treatment of (1) J((125) Te,(13) C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4-component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium-containing compounds, basis sets, and methods used for obtainig spin-spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium-carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of (1) J((125) Te,(13) C) reaching as much as almost 50% of the total value of (1) J((125) Te,(13) C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3-6% and 0-4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non-relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc. PMID:26931355

  14. Relativistic stellar stability: Preferred-frame effects

    NASA Technical Reports Server (NTRS)

    Ni, W.

    1973-01-01

    Possible preferred-frame effects on stellar stability were examined and no new instabilities were found. In particular, it is shown that: (1) Although terms linear in the preferred-frame velocity w (time-odd terms, analogous to viscosity and energy generation) change the shapes of the normal modes, their symmetry properties prevent them from changing the characteristic frequencies. Thus, no new vibrational or secular instabilities can occur. (2) Terms quadratic in w do not change either the shapes of the normal modes or the characteristic frequencies for radial pulsations. Thus, they have no influence on radial stability. (3) Terms quadratic in w do change both the normal modes and the characteristic frequencies of nonradial pulsations; but in the limit of a neutral mode these changes vanish. Hence, there is no modification of the criterion for convective stability, i.e., the standard Schwarzschild criterion remains valid.

  15. Relativistic Beaming Effect in Fermi Blazars

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Bastieri, D.; Yang, J. H.; Liu, Y.; Wu, D. X.; Li, S. H.

    2014-09-01

    The most identified sources observed by Fermi/LAT are blazars, based on which we can investigate the emission mechanisms and beaming effect in the γ-ray bands for blazars. Here, we used the compiled around 450 Fermi blazars with the available X-ray observations to estimate their Doppler factors and compared them with the integral γ-ray luminosity in the range of 1-100 GeV. It is interesting that the integral γ-ray luminosity is closely correlated with the estimated Doppler factor, for the whole sample. When the dependence of the correlation between them and the X-ray luminosity is removed, the correlation is still strong, which suggests that the γ-ray emissions are strongly beamed.

  16. Self-magnetized effects in relativistic cold plasmas due to ponderomotive forces: application to relativistic magnetic guiding of light.

    PubMed

    Lehner, T; di Menza, L

    2002-01-01

    Nonlinear equations are derived relevant to describe the propagation of powerful electromagnetic fields launched within a plasma. The nonlinear generation of self-induced collective electromagnetic perturbations are obtained with matter lying in the relativistic regime. Our main result is the self-consistent treatment of the coupled equations between the pump and its self-induced fields. In particular, a mechanism is pointed out for self-generation of quasistatic magnetic field that is due to the relativistic ponderomotive force. This process is found to be more efficient to produce quasistatic magnetic fields, as confirmed by recent experiments, as compared to known effects such as the inverse Faraday effect. As an application, we investigate conditions for relativistic magnetic guiding of light to occur under the combined action of the self-induced density and magnetic field. PMID:11800797

  17. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties

    NASA Astrophysics Data System (ADS)

    Roura, P. G.; Melo, J. I.; Ruiz de Azúa, M. C.; Giribet, C. G.

    2006-08-01

    The linear response within the elimination of the small component formalism is aimed at obtaining the leading order relativistic corrections to magnetic molecular properties in the context of the elimination of the small component approximation. In the present work we extend the method in order to include two-body effects in the form of a mean field one-body operator. To this end we consider the four-component Dirac-Hartree-Fock operator as the starting point in the evaluation of the second order relativistic expression of magnetic properties. The approach thus obtained is the fully consistent leading order approximation of the random phase approximation four-component formalism. The mean field effect on the relativistic corrections to both the diamagnetic and paramagnetic terms of magnetic properties taking into account both the Coulomb and Breit two-body interactions is considered.

  18. Weakly relativistic and ponderomotive effects on self-focusing and self-compression of laser pulses in near critical plasmas

    SciTech Connect

    Bokaei, B.; Niknam, A. R.

    2014-10-15

    The spatiotemporal dynamics of high power laser pulses in near critical plasmas are studied taking in to account the effects of relativistic and ponderomotive nonlinearities. First, within one-dimensional analysis, the effects of initial parameters such as laser intensity, plasma density, and plasma electron temperature on the self-compression mechanism are discussed. The results illustrate that the ponderomotive nonlinearity obstructs the relativistic self-compression above a certain intensity value. Moreover, the results indicate the existence of the turning point temperature in which the compression process has its strongest strength. Next, the three-dimensional analysis of laser pulse propagation is investigated by coupling the self-focusing equation with the self-compression one. It is shown that in contrast to the case in which the only relativistic nonlinearity is considered, in the presence of ponderomotive nonlinearity, the self-compression mechanism obstructs the self-focusing and leads to an increase of the laser spot size.

  19. QED effects and radiation generation in relativistic laser plasma

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Bashmakov, V. F.

    2011-06-01

    The radiative and quantum effects in laser plasmas are discussed. The self-consistent numerical model based on particle-in-cell and Monte-Carlo methods are developed. First we analyze the spectra of Compton backscattered photons and betatron radiation in the classical and quantum regimes. Then we address an interaction between intense laser pulse and relativistic electron beam. Finally we discuss the electron-positron pair plasma production in extremely-intense laser field. It is shown that such plasma can be an efficient source of energetic gammaquanta.

  20. The Relaxation Effect in Dissipative Relativistic Fluid Theories

    NASA Astrophysics Data System (ADS)

    Lindblom, Lee

    1996-04-01

    The dynamics of the fluid fields in a large class of causal dissipative fluid theories is studied. It is shown that the physical fluid states in these theories must relax (on a time scale that is characteristic of the microscopic particle interactions) to ones that are essentially indistinguishable from the simple relativistic Navier-Stokes descriptions of these states. Thus, for example, in the relaxed form of a physical fluid state the stress energy tensor is in effect indistinguishable from a perfect fluid stress tensor plus small dissipative corrections proportional to the shear of the fluid velocity, the gradient of the temperature, etc.

  1. Relativistic Effects Around Black Holes: Smearing Absorption Edges

    NASA Technical Reports Server (NTRS)

    Zhang, X. L.; Feng, Y. X.; Zhang, S. N.; Yao, Y.

    2002-01-01

    Broad iron absorption structures have been observed in the X-ray spectra of both AGNs and black hole X-ray binaries (BHXBs). A correctly modeled absorption structure can reveal the physical condition of the source, help to determine the continuum spectra and thus help to estimate other spectral lifes more accurately. The absorption structures are usually thought to be caused by the reflection of X-rays by the accretion disks around the central black holes, and the broadening can be a ttributed to the ionization states of the disk and relativistic effects.

  2. Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma

    SciTech Connect

    Bokaei, B.; Niknam, A. R.; Jafari Milani, M. R.

    2013-10-15

    The propagation characters of Gaussian laser beam in collisionless plasma are investigated by considering the ponderomotive and relativistic nonlinearities. The second-order differential equation of dimensionless beam width parameter is solved numerically, taking into account the effect of electron temperature. The results show that the ponderomotive force does not facilitate the relativistic self-focusing in all intensity ranges. In fact, there exists a certain intensity value that, if below this value, the ponderomotive nonlinearity can contribute to the relativistic self-focusing, or obstruct it, if above. It is also indicated that there is a temperature interval in which self-focusing can occur, while the beam diverges outside of this region. In addition, the results represent the existence of a “turning point temperature” in the mentioned interval that the self-focusing has the strongest power. The value of the turning point is dependent on laser intensity in which higher intensities result in higher turning point.

  3. Relativistic gravity and parity-violating nonrelativistic effective field theories

    NASA Astrophysics Data System (ADS)

    Wu, Chaolun; Wu, Shao-Feng

    2015-06-01

    We show that the relativistic gravity theory can offer a framework to formulate the nonrelativistic effective field theory in a general coordinate invariant way. We focus on the parity violating case in 2 +1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the nonrelativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as the holographic dictionary in the context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed, which captures universal geometric properties and generates nonuniversal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled nonrelativistic fluids in magnetic field. In particular, by identifying the shift function in the gravity as a minus of guiding center velocity, we obtain the Hall viscosity with its relation to Landau orbital angular momentum density proportional to Wen-Zee shift. Our formalism has a good projection to lowest Landau level.

  4. Relativistic effects in the double S- and P-wave charmonium production in e{sup +}e{sup -} annihilation

    SciTech Connect

    Elekina, E. N.; Martynenko, A. P.

    2010-03-01

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the second order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.

  5. Best-fit estimate of relativistic effects in time-delay experiments.

    NASA Technical Reports Server (NTRS)

    Richard, J.-P.

    1972-01-01

    Time-delay experiments are analyzed within the frame of a curved space-time. Residuals from Newtonian best fits of relativistic data are used as a measure of the 'relativistic effects.' Radial transponder trajectories are considered. If the motion is towards the sun, the relativistic residuals are of the order of 100 m. If the motion is away from the sun, they are at the 10-km level and the fraction due to the second-order curvature of the metric is at the 1-km level. Those effects are significantly smaller than those calculated from the divergence of the Newtonian and relativistic predictions after exact fit of the initial measurements.

  6. Relativistic Effects and the Chemistry of the Heaviest Main-Group Elements

    ERIC Educational Resources Information Center

    Thayer, John S.

    2005-01-01

    The chemical properties of the heaviest main-group elements often show features not found in their lighter counterparts while relativistic effects play an important role in the chemistry of these elements. The unusual properties and their relation to relativistic effects with emphasis on the new research are emphasized.

  7. The effects of radiation drag on radial, relativistic hydromagnetic winds

    NASA Technical Reports Server (NTRS)

    Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong

    1992-01-01

    The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.

  8. Analogous of Hartman Effect for Relativistic Particles Through "Transparent" Barrier

    NASA Astrophysics Data System (ADS)

    Germano, Massimo

    2015-02-01

    The phase time in a nonrelativistic monodimensional tunneling is, for short barrier length, greater than the time it takes for the light in vacuum to travel the same path. Nevertheless, if the length is increased to the limit of "opaque" barrier ( κ L ≫ 1), where κ is the decay constant of the evanescent wave, the phase time becomes independent from the length (Hartman effect), so that apparent superluminal velocities (independently from unresolved questions about their physical meaning) are possible increasing length in this limit. Here is analytically demonstrated that apparent superluminal behavior can be found also in another situation: for highly relativistic particles, in the limit of "transparent barrier" ( κ L ≪ 1), is found that the phase time is always shorter than the correspondent time for light in vacuum, and that apparent superluminal velocities (following the Hartman definition) are always possible independently from the barrier length.

  9. Relativistic optimized effective potential method-application to alkali metals.

    PubMed

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  10. Electron correlation and relativistic effects in the coinage metal compounds. II. Heteronuclear dimers: CuAg, CuAu, and AgAu

    NASA Astrophysics Data System (ADS)

    Kellö, Vladimir; Sadlej, Andrzej J.

    1995-08-01

    Electric properties of heteronuclear dimers of the coinage metals are calculated at the level of the CCSD(T) approximation applied to 38 electrons of the valence and next-to-valence atomic shells. The relativistic effects are accounted for by using the scalar approximation to the Pauli hamiltonian. Both the pure relativistic and mixed relativistic-correlation contributions to energies and electric properties are computed. All calculations have been carried out by using the recently developed first-order polarized basis sets of the coinage metal atoms. In the non-relativistic approximation all studied dimers show only a moderate degree of polarity; the non-relativistic CuAg turns out to be the most polar dimer with the Cu(-)Ag(+) polarity. The relativistic effects considerably reduce the negative value of the CuAg dipole moment, change the sign of the CuAu dipole moment, and make the AgAu molecule the most polar species in the series. Simultaneously, the parallel component of the dipole polarizability shows only a small relativistic contraction. The calculated quasirelativistic interaction potentials have a correct behavior in the vicinity of their minima and give the Re and ωe values in complete agreement with experiment. Much less satisfactory are the dissociation energy data which seem to suffer from the single reference configuration approximation.

  11. Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2009-03-01

    An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.

  12. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves

    SciTech Connect

    Abbas, Gohar; Bashir, M. F.; Murtaza, G.

    2011-10-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].

  14. RELATIVISTIC COLLAPSE AND EXPLOSION OF ROTATING SUPERMASSIVE STARS WITH THERMONUCLEAR EFFECTS

    SciTech Connect

    Montero, Pedro J.; Janka, Hans-Thomas; Mueller, Ewald

    2012-04-10

    We present results of general relativistic simulations of collapsing supermassive stars with and without rotation using the two-dimensional general relativistic numerical code Nada, which solves the Einstein equations written in the BSSN formalism and the general relativistic hydrodynamic equations with high-resolution shock-capturing schemes. These numerical simulations use an equation of state that includes the effects of gas pressure and, in a tabulated form, those associated with radiation and the electron-positron pairs. We also take into account the effect of thermonuclear energy released by hydrogen and helium burning. We find that objects with a mass of Almost-Equal-To 5 Multiplication-Sign 10{sup 5} M{sub Sun} and an initial metallicity greater than Z{sub CNO} Almost-Equal-To 0.007 do explode if non-rotating, while the threshold metallicity for an explosion is reduced to Z{sub CNO} Almost-Equal-To 0.001 for objects uniformly rotating. The critical initial metallicity for a thermonuclear explosion increases for stars with a mass Almost-Equal-To 10{sup 6} M{sub Sun }. For those stars that do not explode, we follow the evolution beyond the phase of black hole (BH) formation. We compute the neutrino energy loss rates due to several processes that may be relevant during the gravitational collapse of these objects. The peak luminosities of neutrinos and antineutrinos of all flavors for models collapsing to a BH are L{sub {nu}} {approx} 10{sup 55} erg s{sup -1}. The total radiated energy in neutrinos varies between E{sub {nu}} {approx} 10{sup 56} erg for models collapsing to a BH and E{sub {nu}} {approx} 10{sup 45}-10{sup 46} erg for models exploding.

  15. Relativistic Collapse and Explosion of Rotating Supermassive Stars with Thermonuclear Effects

    NASA Astrophysics Data System (ADS)

    Montero, Pedro J.; Janka, Hans-Thomas; Müller, Ewald

    2012-04-01

    We present results of general relativistic simulations of collapsing supermassive stars with and without rotation using the two-dimensional general relativistic numerical code Nada, which solves the Einstein equations written in the BSSN formalism and the general relativistic hydrodynamic equations with high-resolution shock-capturing schemes. These numerical simulations use an equation of state that includes the effects of gas pressure and, in a tabulated form, those associated with radiation and the electron-positron pairs. We also take into account the effect of thermonuclear energy released by hydrogen and helium burning. We find that objects with a mass of ≈5 × 105 M ⊙ and an initial metallicity greater than Z CNO ≈ 0.007 do explode if non-rotating, while the threshold metallicity for an explosion is reduced to Z CNO ≈ 0.001 for objects uniformly rotating. The critical initial metallicity for a thermonuclear explosion increases for stars with a mass ≈106 M ⊙. For those stars that do not explode, we follow the evolution beyond the phase of black hole (BH) formation. We compute the neutrino energy loss rates due to several processes that may be relevant during the gravitational collapse of these objects. The peak luminosities of neutrinos and antineutrinos of all flavors for models collapsing to a BH are L ν ~ 1055 erg s-1. The total radiated energy in neutrinos varies between E ν ~ 1056 erg for models collapsing to a BH and E ν ~ 1045-1046 erg for models exploding.

  16. Spinodal instabilities and the distillation effect in relativistic hadronic models

    SciTech Connect

    Avancini, S. S.; Menezes, D. P.; Brito, L.; Provide circumflex ncia, C.; Chomaz, Ph.

    2006-08-15

    Liquid-gas phase transitions in asymmetric nuclear matter give rise to a distillation effect that corresponds to the formation of droplets of high-density symmetric matter in a background of a neutron gas possibly with a very small fraction of protons. In the present work we test the model dependence of this effect. We study the spinodal instabilities of asymmetric nuclear matter within six different mean-field relativistic models with both constant and density-dependent coupling parameters. We also consider the effects of introducing the {delta} meson and the nonlinear {omega}-{rho} coupling. It is shown that the distillation effect within density-dependent models is not so efficient and is comparable to results obtained for nonrelativistic models. Thermodynamical instabilities of nuclear matter neutralized by electrons as found in stellar matter are also investigated. The high Fermi energy of electrons completely erases the instability of density-dependent models. The other models still show a small region of instability but the distillation effect completely disappears because the electron presence freezes the proton fluctuations.

  17. Effects of δ mesons in relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh K.; Biswal, S. K.; Bhuyan, M.; Patra, S. K.

    2014-04-01

    The effect of δ- and ω-ρ-meson cross couplings on asymmetry nuclear systems are analyzed in the framework of an effective field theory motivated relativistic mean field formalism. The calculations are done on top of the G2 parameter set, where these contributions are absent. To show the effect of δ meson on the nuclear system, we split the isospin coupling into two parts: (i) gρ due to ρ meson and (ii) gδ for δ meson. Thus, our investigation is based on varying the coupling strengths of the δ and ρ mesons to reproduce the binding energies of the nuclei Ca48 and Pb208. We calculate the root mean square radius, binding energy, single particle energy, density, and spin-orbit interaction potential for some selected nuclei and evaluate the Lsym and Esym coefficients for nuclear matter as function of δ- and ω-ρ-meson coupling strengths. As expected, the influence of these effects are negligible for the symmetric nuclear system, but substantial for the contribution with large isospin asymmetry.

  18. Relativistic effects on the nuclear magnetic shielding tensor

    NASA Astrophysics Data System (ADS)

    Melo, J. I.; Ruiz de Azua, M. C.; Giribet, C. G.; Aucar, G. A.; Romero, R. H.

    2003-01-01

    A new approach for calculating relativistic corrections to the nuclear magnetic shieldings is presented. Starting from a full relativistic second order perturbation theory expression a two-component formalism is constructed by transforming matrix elements using the elimination of small component scheme and separating out the contributions from the no-virtual pair and the virtual pair part of the second order corrections to the energy. In this way we avoid a strong simplification used previously in the literature. We arrive at final expressions for the relativistic corrections which are equivalent to those of Fukui et al. [J. Chem Phys. 105, 3175 (1996)] and at some other additional terms correcting both the paramagnetic and the diamagnetic part of the nuclear magnetic shielding. Results for some relativistic corrections to the shieldings of the heavy and light nuclei in HX and CH3X (X=Br,I) at both random phase and second order polarization propagator approach levels are given.

  19. Effects of radiation reaction in relativistic laser acceleration

    SciTech Connect

    Hadad, Y.; Labun, L.; Rafelski, J.; Elkina, N.; Klier, C.; Ruhl, H.

    2010-11-01

    The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.

  20. Relativistic Effects in the Photoionization-Excitation of Neon

    NASA Astrophysics Data System (ADS)

    Gorczyca, T. W.; Felfli, Z.

    1998-05-01

    In a purely non-relativistic theoretical treatment of the neon 2p^43s(^2P) satellite, the angular distribution parameter and the ratio of populations of the ^2P_3/2 and ^2P_1/2 ionic fine structure levels are both independent of photon energy. Recent synchrotron measurements(A. A. Wills, N. Berrah, T. W. Gorczyca, B. Langer, Z. Felfli, M. Alsheri, O. Nayandin, and J. D. Bozek, unpublished) have observed marked deviation from this predicted behavior, however, indicating that spin-orbit effects are important. In order to study spin-orbit effects in this region of complex doubly-excited resonances, we have performed R-matrix calculations to determine MQDT scattering and dipole matrices. Important computational aspects are 1) an extensive configuration interaction (CI) for target and scattering wavefunctions, 2) a recoupling transformation from LS-coupled to JK-coupled matrices, 3) a second transformation using term coupling coefficients of the ionic targets, and 4) the MQDT reduction to physical scattering matrices using experimental fine structure target energies. The resultant differential cross sections, resolved into photoelectron angle and final ionic fine structure level, show many interesting deviations from the LS-predicted behavior, and are compared to the recent experimental results.^1

  1. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    SciTech Connect

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.

  2. Doppler factors in satellite-to-satellite tracking. [with relativistic effects

    NASA Technical Reports Server (NTRS)

    Marini, J. W.

    1974-01-01

    The Doppler factors occurring in range rate satellite-to-satellite tracking measurements are derived with special relativistic effects included. The error resulting from the use of simplified expressions for these factors is discussed.

  3. Observation of relativistic effects in collective Thomson scattering

    SciTech Connect

    Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Divol, L; Tynan, G R; Froula, D H

    2009-10-08

    We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v{sub osc}/c = eE{sub 0}/cm{omega}{sub 0} << 1 and T{sub e} < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N{sub 2} gas-jet plasma by varying the plasma density from 3 x 10{sup 18} cm{sup -3} to 7 x 10{sup 19} cm{sup -3} and electron temperature between 85 eV and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A fully relativistic treatment of the Thomson scattering form factor has been developed and shows excellent agreement with the experimental data.

  4. Relativistic corrections for screening effects on the energies of hydrogen-like atoms embedded in plasmas

    SciTech Connect

    Poszwa, A.; Bahar, M. K.

    2015-01-15

    The influence of relativistic and plasma screening effects on energies of hydrogen-like atoms embedded in plasmas has been studied. The Dirac equation with a more general exponential cosine screened potential has been solved numerically and perturbatively, by employing the direct perturbation theory. Properties of spectra corresponding to bound states and to different sets of the potential parameters have been studied both in nonrelativistic and relativistic approximations. Binding energies, fine-structure splittings, and relativistic energy shifts have been determined as functions of parameters of the potential. The results have been compared with the ones known from the literature.

  5. Effects of relativistic electron temperature on parametric instabilities for intense laser propagation in underdense plasma

    SciTech Connect

    Zhao, Yao; Zheng, Jun; Chen, Min; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming E-mail: zhengming.sheng@strath.ac.uk

    2014-11-15

    Effects of relativistic electron temperature on stimulated Raman scattering and stimulated Brillouin scattering instabilities for high intensity lasers propagating in underdense plasma are studied theoretically and numerically. The dispersion relations for these instabilities are derived from the relativistic fluid equation. For a wide range of laser intensity and electron temperature, it is found that the maximum growth rate and the instability region in k-space can be reduced at relativistic electron temperature. Particle-in-cell simulations are carried out, which confirm the theoretical analysis.

  6. Spin dynamics in relativistic light-matter interaction

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2015-05-01

    Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.

  7. Relativistic calculations of the nuclear recoil effect in highly charged Li-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Shabaev, V. M.; Tupitsyn, I. I.; Plunien, G.

    2013-09-01

    Relativistic theory of the nuclear recoil effect in highly charged Li-like ions is considered within the Breit approximation. The normal mass shift (NMS) and the relativistic NMS (RNMS) are calculated by perturbation theory to zeroth and first orders in the parameter 1/Z. The calculations are performed using the dual kinetic balance method with the basis functions constructed from B-splines. The results of the calculations are compared with the theoretical values obtained by other methods.

  8. Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma

    SciTech Connect

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.

    2009-03-15

    The effect of the weakly relativistic ponderomotive force in the interaction of an intense laser pulse with an underdense plasma is studied. This force modifies the electron density distribution. Furthermore, the existence of intense laser pulses in plasma causes the electron relativistic mass to appear and, consequently, the plasma frequency decreases. It is clear that the electron temperature also affects the dielectric permittivity of plasma. By considering the weakly relativistic and ponderomotive effects, the nonlinear dielectric permittivity of plasma is obtained. Taking into account the Maxwell equations and the nonlinear dielectric permittivity, the electric and magnetic field profiles in plasma are investigated. It is shown that the electromagnetic field profiles deviate from sinusoidal structure. Also, the steepening of the electron density profile decreases by increasing the electron temperature and decreasing the laser pulse intensity. The wavelength of oscillations decreases by increasing the energy flux. Finally, it is found that the electric and magnetic field profiles are lengthened by increasing the electron temperature.

  9. Ab initio investigation of light-induced relativistic spin-flip effects in magneto-optics

    NASA Astrophysics Data System (ADS)

    Mondal, Ritwik; Berritta, Marco; Carva, Karel; Oppeneer, Peter M.

    2015-05-01

    Excitation of a metallic ferromagnet such as Ni with an intensive femtosecond laser pulse causes an ultrafast demagnetization within approximately 300 fs. It was proposed that the ultrafast demagnetization measured in femtosecond magneto-optical experiments could be due to relativistic light-induced processes. We perform an ab initio investigation of the influence of relativistic effects on the magneto-optical response of Ni. To this end, first, we develop a response theory formulation of the additional appearing ultrarelativistic terms in the Foldy-Wouthuysen transformed Dirac Hamiltonian due to the electromagnetic field, and second, we compute the influence of relativistic light-induced spin-flip transitions on the magneto-optics. Our ab initio calculations of relativistic spin-flip optical excitations predict that these can give only a very small contribution (≤0.1 %) to the laser-induced magnetization change in Ni.

  10. Relativistic effects on the thermal expansion of the actinide elements

    SciTech Connect

    Soederlind, P.; Nordstroem, L.; Lou Yongming; Johansson, B. )

    1990-09-01

    The room-temperature linear thermal-expansion coefficient is calculated for the light actinides thorium, protactinium, uranium, neptunium, and plutonium for the fcc crystal structure. The relativistic spin-orbit interaction is included in these calculations. We show that the spin-orbit splitting of the 5{ital f} band gives rise to a considerable increase of the thermal expansion and to a large extent explains the observed anomalously large thermal expansion for the neptunium and plutonium metals.

  11. Geometric relativistic phase from Lorentz symmetry breaking effects in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bakke, K.

    2016-04-01

    In this paper, we have investigated the arising of geometric quantum phases in a relativistic quantum dynamics of a Dirac neutral particle from the spontaneous Lorentz symmetry violation effects in the cosmic string spacetime. We started by the Dirac equation in an effective metric, and we have observed a relativistic geometric phase which stems from the topology of the cosmic string spacetime and an intrinsic Lorentz symmetry breaking effects. It is shown that both Lorentz symmetry breaking effects and the topology of the defect yields a phase shift in the wave function of the nonrelativistic spin-1/2 particle.

  12. Relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Coulomb-like potential induced by the Lorentz symmetry breaking effects

    SciTech Connect

    Bakke, K.; Belich, H.

    2013-06-15

    In this work, we discuss the relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Dirac neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present new possible scenarios of studying Lorentz symmetry breaking effects by fixing the space-like vector field background in special configurations. It is worth mentioning that the criterion for studying the violation of Lorentz symmetry is preserving the gauge symmetry. -- Highlights: •Two new possible scenarios of studying Lorentz symmetry breaking effects. •Coulomb-like potential induced by the Lorentz symmetry breaking effects. •Relativistic Landau–He–McKellar–Wilkens quantization. •Exact solutions of the Dirac equation.

  13. Accountability.

    ERIC Educational Resources Information Center

    The Newsletter of the Comprehensive Center-Region VI, 1999

    1999-01-01

    Controversy surrounding the accountability movement is related to how the movement began in response to dissatisfaction with public schools. Opponents see it as one-sided, somewhat mean-spirited, and a threat to the professional status of teachers. Supporters argue that all other spheres of the workplace have accountability systems and that the…

  14. Accountability.

    ERIC Educational Resources Information Center

    Lashway, Larry

    1999-01-01

    This issue reviews publications that provide a starting point for principals looking for a way through the accountability maze. Each publication views accountability differently, but collectively these readings argue that even in an era of state-mandated assessment, principals can pursue proactive strategies that serve students' needs. James A.…

  15. Small amplitude solitons in a warm plasma with smaller and higher order relativistic effects

    SciTech Connect

    Kalita, B. C.; Das, R.

    2007-07-15

    Solitons have been investigated in a warm plasma through the Korteweg-de Vries (KdV) equation, considering a smaller relativistic effect for {gamma}{approx_equal}O(v{sup 2}/c{sup 2}) and {gamma}{sub e}{approx_equal}O(u{sup 2}/c{sup 2}) and higher relativistic effects for {gamma}{approx_equal}O(v{sup 4}/c{sup 4}) and {gamma}{sub e}{approx_equal}O(u{sup 4/}c{sup 4}). Compressive fast ion-acoustic solitons are observed to exist in the entire range (u{sub 0}-v{sub 0}) subject to a suitable mathematical condition satisfied by the initial streaming velocities u{sub 0},v{sub 0} of the electrons and the ions, respectively, electron to ion mass ratio Q(=m{sub e}/m{sub i}) and ion to electron temperature ratio {sigma}(=T{sub i}/T{sub e}). Further, rarefactive solitons of pretty small amplitudes are observed in the small upper range of |u{sub 0}-v{sub 0}| for higher order relativistic effect which are found to change parabolically. It is essentially important to report in our model of plasma, that the higher order relativistic effect slows down the soliton speed to V{<=}0.10 for all temperature ratios {sigma} for small amplitude waves. On the other hand, the smaller order relativistic effect permits the soliton to exist even at a relatively much higher speed V<0.30. Solitons of high (negligible) amplitudes are found to generate at the smaller (greater) difference of initial streamings (u{sub 0}-v{sub 0}) corresponding to both the relativistic effects.

  16. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  17. Effect of the plasma-generated magnetic field on relativistic electron transport.

    PubMed

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver. PMID:21867317

  18. The effect of density gradient on the growth rate of relativistic Weibel instability

    SciTech Connect

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-02-15

    In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, η, is larger than the critical temperature anisotropy, η{sub c}, (η > η{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for η < η{sub c}, the thermal spread of the energetic electrons reduces the growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, γ > 2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing η by a factor of 100 and increasing relativistic parameter by a factor of 3.

  19. Permanent electric dipole moments of alkaline-earth-metal monofluorides: Interplay of relativistic and correlation effects

    NASA Astrophysics Data System (ADS)

    Prasannaa, V. S.; Sreerekha, S.; Abe, M.; Bannur, V. M.; Das, B. P.

    2016-04-01

    The interplay of the relativistic and correlation effects in the permanent electric dipole moments of the X 2Σ+ electronic ground states of the alkaline-earth-metal monofluorides (BeF, MgF, CaF, SrF, and BaF) has been studied using a relativistic coupled cluster method. The calculations were carried out using double, triple, and quadruple zeta basis sets, and with no core orbitals frozen. The results are compared with those of other calculations available in the literature and with experiments. The correlation trends in the permanent electric dipole moments of these molecules are discussed in detail. This information will be useful in throwing light on the interplay between relativistic and correlation effects of other properties that are relevant to fundamental physics.

  20. Study of transport properties with relativistic ponderomotive effect in two-electron temperature plasma

    SciTech Connect

    Sen, Sonu Dubey, A.; Varshney, Meenu Asthana; Varshney, Dinesh

    2014-04-24

    In the present paper we make an analytical investigation to study transport properties with relativistic ponderomotive effect in two-electron temperature plasma. Using fluid model the two-electron temperature are introduced through relativistic ponderomotive force for the transportation of two species of electrons. Applying WKB and paraxial ray approximation the nonlinear dielectric constant and self-focusing equation is evaluated and analyzed with experimental relevance. Numerical calculations are made for different concentration of electron density (10{sup 19}−10{sup 21} per cm{sup 3}) at arbitrary values of laser intensity in the range 10{sup 18}−10{sup 21} W/cm{sup 2}. For a minimum radius depending on the initial conditions it is oscillating between a minimum and maximum value. The hot electrons leading to the increase of the on-axis transportation and favorable effect on relativistic self-focusing.

  1. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  2. Relativistic correlation effects on the x-ray spectra of Li-like ions

    NASA Astrophysics Data System (ADS)

    Natarajan, L.

    2016-03-01

    The wavelengths and rates of electric dipole transitions between states with n =2 and n =1 of doubly excited Li-like ions have been studied for some selected ions in the range 13 ≤Z ≤54 using fully relativistic multiconfiguration Dirac-Fock wave functions in the active space approximation with the inclusion of finite nuclear size, Breit interaction, self-energy, and vacuum polarization. A detailed discussion on the effects of intercomplex correlation around Z =26 and intracomplex correlation around Z =37 leading to irregularities and sharp discontinuities in the x-ray rates noticed for a few transitions has been provided. An unusually large contribution of Breit interaction has been found for intercomplex correlation in certain cases. The present results are compared with other available experimental and theoretical data. The errors associated with the transitions are highlighted for some experimentally available lines taking into account the uncertainties on the fine-structure energy levels and also on the line strengths.

  3. Relativistic and Correlation Effects in CuH, AgH and AuH: Comparison of Various Relativistic Methods

    NASA Technical Reports Server (NTRS)

    Collins, Charlene L.; Dyall, Kenneth G.; Schaefer, Henry F., III

    1994-01-01

    The effects of relativity on the bond lengths, dissociation energies, and harmonic vibrational frequencies of the 1Epsilon(+) electronic ground states of the group IB hydrides CuH, AgH and AuH have been evaluated with a variety of ab initio methods. These properties were investigated with moderately-sized basis sets at the self-consistent field Hartree Fock (SCF HF) level and with second-order Moller-Plesset (MP2) perturbation theory for electron correlation. Comparisons were made between all-electron results using the nonrelativistic Hamiltonian, perturbation theory (PT) at first-order with only the one-electron non-fine structure terms of the Breit-Pauli Hamiltonian, the spin-free Douglas-Kroll (DK) transformed Dirac Hamiltonian and the untransformed Dirac Hamiltonian, and results using two sets of relativistic effective core potentials (RECPs). The expected trends of bond length decrease, dissociation energy increase and harmonic frequency increase with both relativity and correlation are found. Both sets of RECPs are shown to give good results, if accompanied by a reasonable basis set. The DK method is demonstrated to be an inexpensive, reliable approximation to the DHF method.

  4. Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion

    SciTech Connect

    Lamata, L.; Leon, J.; Schaetz, T.; Solano, E.

    2007-06-22

    We present a method of simulating the Dirac equation in 3+1 dimensions for a free spin-1/2 particle in a single trapped ion. The Dirac bispinor is represented by four ionic internal states, and position and momentum of the Dirac particle are associated with the respective ionic variables. We show also how to simulate the simplified 1+1 case, requiring the manipulation of only two internal levels and one motional degree of freedom. Moreover, we study relevant quantum-relativistic effects, like the Zitterbewegung and Klein's paradox, the transition from massless to massive fermions, and the relativistic and nonrelativistic limits, via the tuning of controllable experimental parameters.

  5. Relativistic effects of the rotation of the earth on remote clock synchronization

    NASA Technical Reports Server (NTRS)

    Reinhardt, V.

    1974-01-01

    A treatment is given of relativistic clock synchronization effects due to the rotation of the earth. Unlike other approaches, the point of view of an earth fixed coordinate system is used which offers insight to many problems. An attempt is made to give the reader an intuitive grasp of the subject as well as to provide formulae for his use. Specific applications to global timekeeping, navigation, VLBI, relativistic clock experiments, and satellite clock synchronization are discussed. The question of whether atomic clocks are ideal clocks is also treated.

  6. Influence of relativistic effects on satellite-based clock synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2016-03-01

    Clock synchronization between the ground and satellites is a fundamental issue in future quantum telecommunication, navigation, and global positioning systems. Here, we propose a scheme of near-Earth orbit satellite-based quantum clock synchronization with atmospheric dispersion cancellation by taking into account the spacetime background of the Earth. Two frequency entangled pulses are employed to synchronize two clocks, one at a ground station and the other at a satellite. The time discrepancy of the two clocks is introduced into the pulses by moving mirrors and is extracted by measuring the coincidence rate of the pulses in the interferometer. We find that the pulses are distorted due to effects of gravity when they propagate between the Earth and the satellite, resulting in remarkably affected coincidence rates. We also find that the precision of the clock synchronization is sensitive to the source parameters and the altitude of the satellite. The scheme provides a solution for satellite-based quantum clock synchronization with high precision, which can be realized, in principle, with current technology.

  7. Search for general relativistic effects in table-top displacement metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Diaz, Rosemary T.; Macdonald, Daniel R.

    2004-01-01

    As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission, were used to search for locally anisotropic space-time, with a null result at the 10 to the negative 10th power level.

  8. Search for general relativistic effects in table-top displacement metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Macdonald, Daniel R.; Diaz, Rosemary T.

    2004-01-01

    As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission were used to search for locally anisotropic space-time, with a null result at the 10 to the negative tenth power level.

  9. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  10. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  11. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  12. Relativistic effects on giant resonances in electron-impact double ionization

    SciTech Connect

    Pindzola, M.S.

    1987-06-01

    The electron-impact double-ionization cross section for Fr/sup +/ is calculated in the distorted-wave Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to the cross section is found to be quite sensitive to changes in the double-well potential caused by relativistic effects on bound-state wave functions.

  13. Group velocity dispersion and relativistic effects on the wakefield induced by chirped laser pulse in parabolic plasma channel

    SciTech Connect

    Sohbatzadeh, F.; Akou, H.

    2013-04-15

    The excitation of wake field plasma waves by a short laser pulse propagating through a parabolic plasma channel is studied. The laser pulse is assumed to be initially chirped. In this regard, the effects of initial and induced chirp on the plasma wake field as well as the laser pulse parameters are investigated. The group velocity dispersion and nonlinear relativistic effects were taken into account to evaluate the excited wake field in two dimension using source dependent expansion method. Positive, negative, and un-chirped laser pulses were employed in numerical code to evaluate the effectiveness of the initial chirp on 2-D wake field excitation. Numerical results showed that for laser irradiances exceeding 10{sup 18}W/cm{sup 2}, an intense laser pulse with initial positive chirp generates larger wake field compared to negatively and un-chirped pulses.

  14. Group velocity dispersion and relativistic effects on the wakefield induced by chirped laser pulse in parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Akou, H.

    2013-04-01

    The excitation of wake field plasma waves by a short laser pulse propagating through a parabolic plasma channel is studied. The laser pulse is assumed to be initially chirped. In this regard, the effects of initial and induced chirp on the plasma wake field as well as the laser pulse parameters are investigated. The group velocity dispersion and nonlinear relativistic effects were taken into account to evaluate the excited wake field in two dimension using source dependent expansion method. Positive, negative, and un-chirped laser pulses were employed in numerical code to evaluate the effectiveness of the initial chirp on 2-D wake field excitation. Numerical results showed that for laser irradiances exceeding 1018W/cm2, an intense laser pulse with initial positive chirp generates larger wake field compared to negatively and un-chirped pulses.

  15. The Effect of Pre-formed Plasmas on Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Divol, Laurent; Chen, Hui; Nagel, Sabrina; Williams, G. Jackson; Kerr, Shaun

    2014-10-01

    Pre-formed plasmas effects have been extensively studied and are known to affect relativistic electrons production via laser plasma interactions. However, there are still many unknowns, such as laser energy absorption vs. scale-length and material dependence. We have investigated the pre-formed plasmas effects on relativistic electrons by simultaneously measuring the plasma density with a 2w optical interferometer and relativistic electron energy distributions on the LLNL Titan laser. The pre-formed plasmas were produced on Parylene-N and Ti targets by a separate laser and/or the ASE of the short pulse (SP) laser with upper 1019 W/cm2 at 1w. A 3-D wedge geometry HYDRA simulation is used to benchmark sub-critical density and infer scale-length at the critical density. Electron energy ratios of along the SP beam to the target back normal show stronger pre-formed plasmas effects on creation of relativistic electrons from Parylene-N than Ti. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344 and funded by LDRD (#12-ERD-062).

  16. On the Curvature Effect of a Relativistic Spherical Shell

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2015-07-01

    We consider a relativistic spherical shell and calculate its spectral flux as received by a distant observer. Using two different methods, we derive a simple analytical expression of the observed spectral flux and show that the well-known relation \\hat{α }=2+\\hat{β } (between temporal index \\hat{α } and spectral index \\hat{β }) of the high-latitude emission is naturally achieved in our derivation but holds only when the shell moves with a constant Lorentz factor Γ. Presenting numerical models in which the shell is undergoing acceleration or deceleration, we show that the simple \\hat{α }=2+\\hat{β } relation does indeed deviate as long as Γ is not constant. For the models under acceleration, we find that the light curves produced purely by the high-latitude emission initially exhibit much steeper decay than in the constant Γ case and gradually resume the \\hat{α }=2+\\hat{β } relation in about one and a half orders of magnitude in observer time. For the models under deceleration, the trend is opposite. The light curves made purely by the high-latitude emission initially exhibit a shallower decay than in the constant Γ case and gradually resume the relation \\hat{α }=2+\\hat{β } in a similar order of magnitude in observer time. We also show that how fast the Lorentz factor Γ of the shell increases or decreases is the main ingredient determining the initial steepness or shallowness of the light curves.

  17. Cost-Effectiveness in Individual Development Accounts

    ERIC Educational Resources Information Center

    Schreiner, Mark; Ng, Guat Tin; Sherraden, Michael

    2006-01-01

    Because resources are limited, the benefits and costs of social-work interventions--like all interventions--must be compared with the benefits and costs of alternatives. Evidence-based practice should ask, What works? How well does it work? And what does it cost? This article analyzes the provision of Individual Development Accounts (IDAs) with a…

  18. Designing More Effective Accountability Report Cards

    ERIC Educational Resources Information Center

    Sabbah, Faris M.

    2011-01-01

    The purpose of this study was to identify and design standards and procedures for creating easily interpreted accountability reports cards, consistent with the requirements spelled out in the No Child Left Behind Act of 2001 (NCLB). The use of public report cards was first raised during the debate that took place immediately prior to the passage…

  19. Oxidative addition of hydrogen halides and dihalogens to Pd. Trends in reactivity and relativistic effects.

    PubMed

    de Jong, G Theodoor; Kovacs, Attila; Bickelhaupt, F Matthias

    2006-06-29

    We have theoretically studied the oxidative addition of HX and X(2) to palladium for X = F, Cl, Br, I and At, using both nonrelativistic and ZORA-relativistic density functional theory at BLYP/QZ4P. The purpose is 3-fold: (i) to obtain a set of consistent potential energy surfaces (PESs) to infer accurate trends in reactivity for simple, archetypal oxidative addition reactions; (ii) to assess how relativistic effects modify these trends along X = F, Cl, Br, I and At; and (iii) to rationalize the trends in reactivity in terms of the reactants' molecular-orbital (MO) electronic structure and the H-X and X-X bond strengths. For the latter, we provide full Dirac-Coulomb CCSD(T) benchmarks. All oxidative additions to Pd are exothermic and have a negative overall barrier, except that of HF which is approximately thermoneutral and has a positive overall barrier. The activation barriers of the HX oxidative additions decrease systematically as X descends in group 17 of the periodic table; those of X(2) first increase, from F to Cl, but then also decrease further down group 17. On the other hand, HX and X(2) show clearly opposite trends regarding the heat of reaction: that of HX becomes more exothermic and that of X(2) less exothermic as X descends in group 17. Relativistic effects can be as large as 15-20 kcal/mol but they do not change the qualitative trends. Interestingly, the influence of relativistic effects on activation barriers and heats of reaction decreases for the heavier halogens due to counteracting relativistic effects in palladium and the halogens. PMID:16789784

  20. The relativistic operator of interaction of two quasimolecular electrons as a third-order effect of quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Lazur, V. Yu.; Pavlyk, O. F.; Reity, A. K.

    2010-10-01

    We solve the problem of interaction two quasimolecular electrons located at an arbitrary separation near different atoms (nuclei). We consider third-order effects in quantum electrodynamics, which include the virtual photon exchange between electrons with emission (absorption) of a real photon. We obtain the general expression for matrix elements of the operator of the effective interaction energy of two quasimolecular electrons with the external radiation field, which allows calculating probabilities of inelastic processes with rearrangement at slow collisions of multicharge ions with relativistic atoms. We demonstrate that consistently taking the natural condition of the interaction symmetry with respect to the two electrons into account results in the appearance of additional terms in the operators of spin-orbit, spin-spin, and retarded interactions compared with the previously obtained expressions for these operators. We construct the operator of the dipole-dipole interaction of two neutral atoms located at an arbitrary separation.

  1. Role of the Russell-McPherron Effect in the Acceleration of Relativistic Electrons

    NASA Technical Reports Server (NTRS)

    McPherron, R. L.; Baker, D. N.; Crooker, N. U.

    2010-01-01

    While it is well known that high fluxes of relativistic electrons in the Earth's radiation belts are associated with high-speed solar wind and its heightened geoeffectiveness,less known is the fact that the Russell McPherron(R M) effect strongly controls whether or not a given high-speed stream is geoffective. To test whether it then follows that the R M effect also strongly controls fluxes of relativistic electrons, we perform a superposed epoch analysis across corotating interaction regions (CIR) keyed on the interfaces between slow and fast wind. A total of 394 stream interfaces were identified in the years 1994-2006. Equinoctial interfaces were separated into four classes based on the R-M effect,that is, whether the solar wind on either side of the interface was either(geo)effective (E) or ineffective (I) depending on season and the polarity of the interplanetary magnetic field (IMF). Four classes of interface identified as II, IE, EI,and EE are possible. The classes IE and EI correspond to CIRs with polarity changes indicating passage through the heliospheric current sheet. To characterize the behavior of solar wind and magnetospheric variables, we produced maps of dynamic cumulative probability distribution functions (cdfs) as a function of time over 10-day intervals centered on the interfaces. These reveal that effective high-speed streams have geomagnetic activity nearly twice as strong as ineffective streams and electron fluxes a factor of 12 higher. In addition they show that an effective low-speed stream increases the flux of relativistic electrons before the interface so that an effective to ineffective transition results in lower fluxes after the interface.We conclude that the R-M effect plays a major role in organizing and sustaining a sequence of physical processes responsible for the acceleration of relativistic electrons.

  2. The Effects of Different Teaching Approaches in Introductory Financial Accounting

    ERIC Educational Resources Information Center

    Chiang, Bea; Nouri, Hossein; Samanta, Subarna

    2014-01-01

    The purpose of the research is to examine the effect of the two different teaching approaches in the first accounting course on student performance in a subsequent finance course. The study compares 128 accounting and finance students who took introductory financial accounting by either a user approach or a traditional preparer approach to examine…

  3. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.

    PubMed

    Lantto, Perttu; Romero, Rodolfo H; Gómez, Sergio S; Aucar, Gustavo A; Vaara, Juha

    2006-11-14

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X(2+), X(4+), XH(2), and XH(3) (-) (X=Si-Pb) as well as X(3+), XH(3), and XF(3) (X=P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH(3) (-), XH(3), and XF(3), and is equally large in XH(2) as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of approximately 1500 ppm between BiH(3) and BiF(3). The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom

  4. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    NASA Astrophysics Data System (ADS)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  5. Quantum-mechanical description of Lense-Thirring effect for relativistic scalar particles

    NASA Astrophysics Data System (ADS)

    Silenko, A. J.

    2013-12-01

    Exact expression for the Foldy-Wouthuysen Hamiltonian of scalar particles is used for a quantum-mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantummechanical description of the full Lense-Thirring effect based on the Laplace-Runge-Lenz vector is given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and acceleration operators are obtained. The equation for the acceleration defines the Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the frame-dragging effect.

  6. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.

    PubMed

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena

    2016-07-21

    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy. PMID:27177252

  7. Formal relations connecting different approaches to calculate relativistic effects on molecular magnetic properties

    NASA Astrophysics Data System (ADS)

    Zaccari, D. G.; Ruiz de Azúa, M. C.; Melo, J. I.; Giribet, C. G.

    2006-02-01

    In the present work a set of formal relations connecting different approaches to calculate relativistic effects on magnetic molecular properties are proven. The linear response (LR) within the elimination of the small component (ESC), Breit Pauli, and minimal-coupling approaches are compared. To this end, the leading order ESC reduction of operators within the minimal-coupling four-component approach is carried out. The equivalence of all three approaches within the ESC approximation is proven. It is numerically verified for the NMR nuclear-magnetic shielding tensor taking HX and CH3X (X =Br,I) as model compounds. Formal relations proving the gauge origin invariance of the full relativistic effect on the NMR nuclear-magnetic shielding tensor within the LR-ESC approach are presented.

  8. Relativistic scattering with a spatially dependent effective mass in the Dirac equation

    SciTech Connect

    Alhaidari, A. D.; Bahlouli, H.; Abdelmonem, M. S.; Al-Hasan, A.

    2007-06-15

    We formulate a relativistic algebraic method of scattering for systems with spatially dependent mass based on the J-matrix method. The reference Hamiltonian is the three-dimensional Dirac Hamiltonian but with a mass that is position-dependent with a constant asymptotic limit. Additionally, this effective mass distribution is locally represented in a finite dimensional function subspace. The spinor couples to spherically symmetric vector and pseudo scalar potentials that are short-range such that they are accurately represented by their matrix elements in the same finite dimensional subspace. We calculate the relativistic phase shift as a function of energy for a given configuration and study the effect of spatial variation of the mass on the energy resonance structure.

  9. Relativistic effects on the bonding and properties of the hydrides of platinum

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.

  10. Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model

    SciTech Connect

    Chaves, A. J.; Paula, W. de; Frederico, T.; Lima, G. D.; Cordeiro, C. E.; Delfino, A.

    2011-04-15

    We show that the assumption of a nontrivial zero band gap for a graphene sheet within an effective relativistic field theoretical model description of interacting Dirac electrons on the surface of graphene describes the experimental band gap of graphene nanoribbons for a wide range of widths. The graphene band gap is dynamically generated, corresponding to a nontrivial gapless solution, found in the limit of an infinitely wide graphene ribbon. The nanoribbon band gap is determined by the experimental graphene work function.

  11. A Non-Relativistic Look at the Compton Effect

    ERIC Educational Resources Information Center

    Feller, Steve; Giri, Sandeep; Zakrasek, Nicholas; Affatigato, Mario

    2014-01-01

    In a usual modern physics class the Compton effect is used as the pedagogical model for introducing relativity into quantum effects. The shift in photon wavelengths is usually introduced and derived using special relativity. Indeed, this works well for explaining the effect. However, in the senior author's class one of the student coauthors…

  12. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor. PMID:26574455

  13. The Negative Testing Effect and Multifactor Account

    ERIC Educational Resources Information Center

    Peterson, Daniel J.; Mulligan, Neil W.

    2013-01-01

    Across 3 experiments, we investigated the factors that dictate when taking a test improves subsequent memory performance (the "testing effect"). In Experiment 1, participants retrieving a set of targets during a retrieval practice phase ultimately recalled fewer of those targets compared with a group of participants who studied the…

  14. Differential Effectiveness of Theoretical Accounts for Paradox.

    ERIC Educational Resources Information Center

    Forsyth, Nancy M.; Strong, Stanley R.

    Paradoxical techniques in counseling consist of directing clients to practice the symptom which is causing them psychological distress. Both impression management theory and reactance theory have been advanced to explain the efficacy of such techniques. To examine the effectiveness of paradoxical techniques according to impression management and…

  15. Dynamical Relativistic Effects in Quasielastic 1p -Shell Proton Knockout from O{sup 16}

    SciTech Connect

    Gao, J.; Anderson, B. D.; Aniol, K. A.; Auerbach, L.; Baker, F. T.; Berthot, J.; Bertin, P.-Y.; Boeglin, W. U.

    2000-04-10

    We have measured the cross section for quasielastic 1p -shell proton knockout in the {sup 16}O( e, e{sup '}p) reaction at {omega}=0.439 GeV and Q{sup 2}=0.8 (GeV/c){sup 2} for missing momentum P{sub miss}{<=}355 MeV /c . We have extracted the response functions R{sub L+TT} , R{sub T} , R{sub LT} , and the left-right asymmetry, A{sub LT} , for the 1p{sub 1/2} and the 1p{sub 3/2} states. The data are well described by relativistic distorted wave impulse approximation calculations. At large P{sub miss} , the structure observed in A{sub LT} indicates the existence of dynamical relativistic effects. (c) 2000 The American Physical Society.

  16. The nucleon and Delta-resonance masses in relativistic chiral effective-field theory

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen

    2005-11-28

    We study the chiral behavior of the nucleon and De-isobar masses within a manifestly covariant chiral effective-field theory, consistent with the analyticity principle. We compute the {pi} N and {pi}{Delta} one-loop contributions to the mass and field-normalization constant, and find that they can be described in terms of universal relativistic loop functions, multiplied by appropriate spin, isospin and coupling constants. We show that these relativistic one-loop corrections, when properly renormalized, obey the chiral power-counting and vanish in the chiral limit. The results including only the {pi} N-loop corrections compare favorably with the lattice QCD data for the pion-mass dependence of the nucleon and De masses, while inclusion of the {pi}/De loops tends to spoil this agreement.

  17. Ultra intense laser/plasma interaction at normal incidence: Relativistic mirrors effects, high harmonics generation and absorption

    NASA Astrophysics Data System (ADS)

    Sanz, Javier; Debayle, Arnaud; Mima, K.

    2012-11-01

    An analytical study of the relativistic interaction of a linearly-polarized laser-field of ω frequency with highly overdense plasma is presented. Very intense high harmonics are generated produced by relativistic mirrors effects due to the relativistic electron plasma oscillation. Also, in agreement with 1D Particle-In-Cell Simulations (PICS), the model self-consistently explains the transition between the sheath inverse bremsstrahlung (SIB) absorption regime and the J×B heating (responsible for the 2ω electron bunches), as well as the mean electron energy.

  18. Relativistic nuclear recoil, electron correlation and QED effects in highly charged Ar ions

    NASA Astrophysics Data System (ADS)

    Harman, Z.; Soria Orts, R.; Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Artemyev, A. N.; Tupitsyn, I. I.; Jentschura, U. D.; Keitel, C. H.; Tawara, H.; Ullrich, J.; Shabaev, V. M.; Volotka, A. V.

    2007-06-01

    We have performed extensive theoretical studies on the 1s^22s^22p^2P3/2 -- ^2P1/2 M1 transition in Ar^13+ ions. Accurate radiative lifetimes are sensitive to QED corrections like the electron anomalous magnetic moment and to relativistic electron correlation effects. The lifetime of the P3/2 metastable state was determined to be 9.573(4)(5) ms (stat)(syst) [1] using the Heidelberg electron beam ion trap. Theoretical predictions cluster around a value that is significantly shorter than this high-precision experimental result. This discrepancy is presently unexplained. The wavelengths of the above transition in Ar^13+ and the 1s^22s2p ^3P1 -- ^3P2 M1 transition in Ar^14+ were compared for the isotopes ^36Ar and ^40Ar [2]. The observed mass shift has confirmed the relativistic theory of nuclear recoil effects in many-body systems. Our calculations, based on the fully relativistic recoil operator, are in excellent agreement with the measured results. [1] A. Lapierre, U.D. Jentschura, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 95, 183001 (2005); [2] R. Soria Orts, Z. Harman, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 97, 103002 (2006)

  19. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    SciTech Connect

    Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  20. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    PubMed

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  1. Inflationary back-reaction effects from Relativistic Quantum Geometry

    NASA Astrophysics Data System (ADS)

    Bellini, Mauricio

    2016-03-01

    We study the dynamics of scalar metric fluctuations in a non-perturbative variational formalism recently introduced, by which the dynamics of a geometrical scalar field θ, describes the quantum geometrical effects on a Weylian-like manifold with respect to a background Riemannian space-time. In this letter we have examined an example in the framework of inflationary cosmology. The resulting spectral predictions are in very good agreement with observations and other models of inflation.

  2. Multireference and relativistic effects in NiH

    NASA Astrophysics Data System (ADS)

    Marian, Christel M.; Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    1989-09-01

    Large multireference CI calculations have been performed for the ground state of NiH. The effects of relativity were investigated using both a variational (no pair) theory and perturbation theory. The largest CI calculations included up to 29 reference states and were performed at the contracted CI level. The calculated and experimental results (within parentheses) are for Re 2.76 a0 (2.76 a0), for ωe 1997 cm-1 (2003 cm-1) and for the dipole moment μ 2.32 D (2.4±0.1 D). The effects of relativity are -0.03 a0, +60 cm-1 and -0.3 D, respectively. The effects of going from a reference selection threshold of 0.05 to a selection threshold of 0.02 and a different set of CASSCF orbitals was before applying Davidson's correction +0.07 a0 for Re and about +30 cm-1 for ωe, and after applying this correction +0.06 a0 and -80 cm-1, respectively. The most accurate results for the dipole moment was obtained using the multireference ACPF method.

  3. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  4. General relativistic effects in quantum interference of “clocks”

    NASA Astrophysics Data System (ADS)

    Zych, M.; Pikovski, I.; Costa, F.; Brukner, Č.

    2016-06-01

    Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of “clocks”, which aim to test novel quantum effects that arise from time dilation. “Clock” interference experiments could be realised with atoms or photons in near future laboratory experiments.

  5. Effects of Accountancy Internship on Subsequent Academic Performance.

    ERIC Educational Resources Information Center

    Kwong, K. S.; Lui, Gladie

    1991-01-01

    Explores the effects of accounting internships upon subsequent academic achievement. Reports that grade point averages and degree examination results of 10 Chinese University of Hong Kong students who had been interns were compared to scores of 236 accounting majors who had not. Concludes that internships increased student knowledge and…

  6. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule

    NASA Astrophysics Data System (ADS)

    Cloët, Ian C.; Bentz, Wolfgang; Thomas, Anthony W.

    2016-01-01

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q |≳0.5 GeV . The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  7. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    PubMed

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei. PMID:26849589

  8. Relativistically corrected geometries obtained with analytical gradients: normalized elimination of the small component using an effective potential

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-03-01

    For the quasi-relativistic normalized elimination of small component using an effective potential (NESC-EP) method, analytical energy gradients were developed, programmed, and implemented in a standard quantum chemical program package. NESC-EP with analytical gradients was applied to determine geometry, vibrational frequencies, and dissociation enthalpies of ferrocene, tungsten hexafluoride, and tungsten hexacarbonyle. Contrary to non-relativistic calculations and calculations carried out with RECPs for the same compounds, NESC-EP provided reliable molecular properties in good agreement with experiment. The computational power of NESC-EP results from the fact that reliable relativistic corrections are obtained at a cost level only slightly larger than that of a non-relativistic calculation.

  9. Interference effects in angular and spectral distributions of X-ray Transition Radiation from Relativistic Heavy Ions crossing a radiator: Influence of absorption and slowing-down

    NASA Astrophysics Data System (ADS)

    Fiks, E. I.; Pivovarov, Yu. L.

    2015-07-01

    Theoretical analysis and representative calculations of angular and spectral distributions of X-ray Transition Radiation (XTR) by Relativistic Heavy Ions (RHI) crossing a radiator are presented taking into account both XTR absorption and RHI slowing-down. The calculations are performed for RHI energies of GSI, FAIR, CERN SPS and LHC and demonstrate the influence of XTR photon absorption as well as RHI slowing-down in a radiator on the appearance/disappearance of interference effects in both angular and spectral distributions of XTR.

  10. Nonlinear positron-acoustic waves in fully relativistic degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Mamun, A. A.

    2016-03-01

    The nonlinear positron-acoustic (PA) waves propagating in a fully relativistic electron-positron-ion (EPI) plasma (containing degenerate electrons and positrons, and immobile heavy ions) have been theoretically investigated. A fully relativistic hydrodynamic model, which is consistent with the relativistic principle has been used, and the reductive perturbation method is employed to derive the dynamical Korteweg-de Vries equation. The dynamics of electrons as well as positrons, and the presence of immobile heavy ions are taken into account. It is found that the effects of relativistic degeneracy of electrons and positrons, static heavy ions, plasma particles velocity, enthalpy, etc have significantly modified the basic properties of the PA solitary waves propagating in the fully relativistic EPI plasmas. The application of the results of our present work in astrophysical compact objects such as white dwarfs and neutron stars, etc are briefly discussed.

  11. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  12. Observation of coherence in the time-reversed relativistic photoelectric effect.

    PubMed

    Tashenov, S; Banaś, D; Beyer, H; Brandau, C; Fritzsche, S; Gumberidze, A; Hagmann, S; Hillenbrand, P-M; Jörg, H; Kojouharov, I; Kozhuharov, Ch; Lestinsky, M; Litvinov, Yu A; Maiorova, A V; Schaffner, H; Shabaev, V M; Spillmann, U; Stöhlker, Th; Surzhykov, A; Trotsenko, S

    2014-09-12

    The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process. PMID:25259973

  13. Covariant spectator theory of np scattering: Effective range expansions and relativistic deuteron wave functions

    NASA Astrophysics Data System (ADS)

    Gross, Franz; Stadler, Alfred

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with χ2/Ndata≃1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  14. Mercury Methylation by Cobalt Corrinoids: Relativistic Effects Dictate the Reaction Mechanism.

    PubMed

    Demissie, Taye B; Garabato, Brady D; Ruud, Kenneth; Kozlowski, Pawel M

    2016-09-12

    The methylation of Hg(II) (SCH3 )2 by corrinoid-based methyl donors proceeds in a concerted manner through a single transition state by transfer of a methyl radical, in contrast to previously proposed reaction mechanisms. This reaction mechanism is a consequence of relativistic effects that lower the energies of the mercury 6p1/2 and 6p3/2 orbitals, making them energetically accessible for chemical bonding. In the absence of spin-orbit coupling, the predicted reaction mechanism is qualitatively different. This is the first example of relativity being decisive for the nature of an observed enzymatic reaction mechanism. PMID:27510509

  15. Fountain effect of laser-driven relativistic electrons inside a solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Jobe, D.; Spielman, R.; Leblanc, P.; Ivanov, V. V.; Sentoku, Y.; Yates, K.; Wiewior, P.; Bychenkov, V. Yu.

    2011-09-26

    Ultrafast interferometry with sub-ps resolution has been applied for the direct measurement of an electron density induced by a laser-driven relativistic electron beam inside a solid dielectric. The topology of the interference phase shift shows the signature of the ''fountain effect,'' a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields. The very low ionization, {approx}0.1%, observed after the heating pulse suggests a fast recombination at the sub-ps time scale.

  16. Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking

    NASA Astrophysics Data System (ADS)

    Gersten, A.; Thomas, A. W.; Weyrauch, M.

    1990-04-01

    We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.

  17. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    SciTech Connect

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  18. NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R. E-mail: olcaball@ncsu.edu E-mail: surmanr@union.edu

    2012-02-01

    Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.

  19. Calculation of the relativistic Bloch correction to stopping power

    NASA Technical Reports Server (NTRS)

    Ahlen, S. P.

    1982-01-01

    Bloch's technique of joining the nonrelativistic Bethe and Bohr stopping-power expressions by taking into account wave-packet effects for close collisions is extended to the relativistic case. It is found that Bloch's nonrelativistic correction term must be modified and that charge asymmetric terms appear. Excellent agreement is observed by comparing the results of these calculations to recent data on the stopping power of relativistic heavy ions.

  20. Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms

    SciTech Connect

    Oshima, Sachiko; Fujita, Takehisa; Asaga, Tomoko

    2007-03-15

    The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects as well as nuclear finite size effects in Xe and Hg atomic systems. Due to Schiff's theorem, the first order perturbation energy of EDM is canceled out by the second order perturbation energy for the point nucleus. The nuclear finite size effects arising from the intermediate atomic excitations may be finite for deformed nucleus but it is extremely small. The finite size contribution of the intermediate nuclear excitations in the second order perturbation energy is completely canceled by the third order perturbation energy. As the results, the finite contribution to the atomic EDM comes from the first order perturbation energy of relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM d{sub n} for Xe and Hg, respectively, though the calculations are carried out with a simplified single-particle nuclear model. From this relation in Hg atomic system, we can extract the neutron EDM which is found to be just comparable with the direct neutron EDM measurement.

  1. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  2. Relativistic real-space multiple scattering calculations of EELS

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Sorini, A.; Levine, Z. H.

    2006-03-01

    We present an extension of the real space multiple scattering code FEFF8 for ab initio, relativistic calculations of electron energy loss spectra (EELS), which is applicable both to periodic and non-periodic systems. The approach explains the observed relativistic shifts in the magic angle. In addition, the method can account for experimental parameters such as collection and convergence angles of the microscope and sample orientation. We also discuss relativistic effects on inelastic electron scattering including the density correction to the stopping power. Our results are compared with other approaches and with experiment. B. Jouffrey, P. Schattschneider and C. Hebert, Ultramicroscopy 102, 61 (2004).

  3. Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity

    NASA Astrophysics Data System (ADS)

    Wu, Ning

    2006-03-01

    Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrödinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrödinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.

  4. The Effects of Pre-College Accounting on the College Accounting Student.

    ERIC Educational Resources Information Center

    Schroeder, Nicholas

    1985-01-01

    Through a research project, the author found that the attitudes of college accounting students toward high school accounting as the starting point for an accounting education and also the introductory financial accounting grades of college students are often closely associated with extensive accounting coursework completed prior to college. (CT)

  5. Dynamical Relativistic Effects in Photoionization: Spin-Orbit-Resolved Angular Distributions of Xenon 4d Photoelectrons near the Cooper Minimum

    SciTech Connect

    Wang, H.; Snell, G.; Hemmers, O.; Sant'Anna, M. M.; Sellin, I.; Berrah, N.; Lindle, D. W.; Deshmukh, P. C.; Haque, N.; Manson, S. T.

    2001-09-17

    Two decades ago, it was predicted [Y.S.Kim et al., Phys.Rev.Lett.46, 1326 (1981)] that relativistic effects should alter the dynamics of the photoionization process in the vicinity of Cooper minima. The present experimental and theoretical study of the angular distributions of Xe 4d{sub 3/2} and 4d{sub 5/2} photoelectrons demonstrates this effect for the first time. The results clearly imply that relativistic effects are likely to be important for intermediate-Z atoms at most energies.

  6. Magnetohydrodynamics of chiral relativistic fluids

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg

    2015-08-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  7. Using Instrumental Variables Properly to Account for Selection Effects

    ERIC Educational Resources Information Center

    Porter, Stephen R.

    2012-01-01

    Selection bias is problematic when evaluating the effects of postsecondary interventions on college students, and can lead to biased estimates of program effects. While instrumental variables can be used to account for endogeneity due to self-selection, current practice requires that all five assumptions of instrumental variables be met in order…

  8. Effect of relativistic and ponderomotive nonlinearities on stimulated Raman scattering in laser plasma interaction

    SciTech Connect

    Sharma, R. P.; Gupta, M. K.

    2006-11-15

    In this paper, the authors have investigated the effect of ultra-intense laser beam filaments on stimulated Raman scattering (SRS) in unmagnetized plasma when relativistic and ponderomotive nonlinearities are operative. First, the filamentary dynamics of laser beam is studied. In these structures, the plasma wave generation and associated SRS process are studied. The effect of filamentation on SRS back reflectivity has been studied in detail. For the typical laser plasma parameters, i.e., laser beam Nd:YAG ({lambda}=1064 nm), laser beam radius=15 {mu}m, laser power flux=6x10{sup 17} W/cm{sup 2}, electron density=1.9x10{sup 19} per cm{sup 3}, the SRS reflectivity reduces by a factor 2.5 due to ponderomotive effects.

  9. Combined effect of relativistic and ponderomotive filamentation on coexisting stimulated Raman and Brillouin scattering

    SciTech Connect

    Vyas, Ashish Singh, Ram Kishor; Sharma, R. P.

    2014-11-15

    This paper presents a model to study the interplay between the stimulated Raman (SRS) and Brillouin scattering (SBS) along with the combined effect of relativistic and ponderomotive nonlinearities, at relativistic laser power. As the intense non-uniform laser beam propagates through the plasma, both the non-linearities are operative and modify the plasma refractive index in such a manner that one enhances the self-focusing (of the pump beam) caused by the other non-linearity. The interplay between the scattering processes (SRS and SBS) affects the pump filamentation process because of pump depletion and at the same time these scattering processes get modified due to this filamentation process. An impact of the filamentation process and coexistence of the scattering processes (SRS and SBS) on the back-reflectivity of scattered beams (SRS and SBS) has been explored and found that the back-reflectivity gets modified significantly. Results are also compared with the three wave interaction case (isolated SRS or SBS case)

  10. Study of the Smith-Purcell effect in the relativistic regime

    SciTech Connect

    Doucas, G.; Dumitru, M.; Korschinck, G.

    1995-12-31

    We propose to investigate the spontaneous emission of radiation arising out of the interaction of a relativistic electron beam with a metallic grating (the Smith-Purcell effect). The work will concentrate, primarily, in the 50-120 {mu}m part of the infrared spectrum and will be an extension of the work begun by the Oxford-Dartmouth-Essex collaboration; one of the early objectives of the project will be to develop a quantitative understanding of the power spectrum of the emitted radiation over a wide range of emission angles. In particular, the limits of relativistic peaking of forward directed emission will be investigated. The electron beam will be produced by laser irradiation of a metallic cathode in the terminal of a small Van de Graff accelerator located in the Technische Universitaet, Muenchen. Beam energies will be in the range of 2 - 4 MeV. Initial tests on photoproduction of electrons have yielded 10 mA pulses with a width of about 20 ns. The electron pulse length is long enough to not only produce easily observed levels of spontaneous emission, but in principle gain due to stimulated emission should also be observable. Observation of gain is a second goal of the project. The manufacture of the grating chamber and the voltage tests on the accelerator will progress in parallel. This is a 3-year project and is supported, in part, by the British-German Academic Research Collaboration (ARC) program.

  11. Spin Hall effect in two-dimensional systems within the relativistic phase shift model

    NASA Astrophysics Data System (ADS)

    Johansson, Annika; Herschbach, Christian; Fedorov, Dmitry V.; Henk, Jürgen; Mertig, Ingrid

    2015-11-01

    Recently, a relativistic phase shift model (RPSM) was introduced [D. V. Fedorov et al., Phys. Rev. B 88, 085116 (2013), 10.1103/PhysRevB.88.085116] to describe the skew-scattering mechanism of the spin Hall effect caused by impurities in bulk crystals. Here, we present its analog derived for two-dimensional (2D) systems. The proposed 2D-RPSM is applied to one-monolayer noble-metal films with various substitutional impurities and the obtained results are compared with those of corresponding first-principles calculations. We demonstrate that, in contrast to the three-dimensional RPSM, the considered model does not provide a sufficient qualitative description of the transport properties. Therefore, an ab initio treatment is necessary for the description of the spin Hall effect in two-dimensional crystals.

  12. Statistics of neutrinos and relativistic effective degrees of freedom in the early universe

    NASA Astrophysics Data System (ADS)

    Iizuka, Jun; Kitabayashi, Teruyuki

    2016-03-01

    We study the effects of the presence of non-pure fermionic neutrinos on the relativistic effective degrees of freedom g∗ in the early universe. The statistics of neutrinos is transformed from Fermi-Dirac (FD) to Bose-Einstein (BE) via Maxwell-Boltzmann (MB) statistics. The equilibrium energy density of pure bosonic neutrinos is larger than the energy density of pure fermionic neutrinos. One may expect that the relation g∗FD < g∗MB < g∗BE. We show that this relation is not always satisfied with degenerate neutrinos. We discuss briefly the cosmological consequences of this transformation for dark matter problem as well as the baryon-photon ratio in the universe.

  13. The gravitomagnetic interaction and its relationship to other relativistic gravitational effects

    NASA Technical Reports Server (NTRS)

    Nordtvedt, Kenneth

    1991-01-01

    To better understand the relationship between the expected precession rates of an orbiting gyroscope (GP-B) and other observable consequences in the solar system of relativistic, post-Newtonian gravity, a phenomenological model was developed of post-Newtonian gravity which presupposes the very minimum possible concerning the nature and foundations of the gravitational interaction. Solar system observations, chiefly interplanetary ranging, fix all the parameters in the phenomenological model to various levels of precision. This permits prediction of gyroscope precession rates to better than 10 pct. accuracy. A number of new precession terms are calculated which would exist if gravity were not a metric field phenomenon, but this would clash with other empirical observations of post-Newtonian effects in gravity. It is shown that gravitomagnetism, the post-Newtonian gravitational corrections to the interactions between moving matter, plays a ubiquitous role in determining a wide variety of gravitational effects, including the precession of orbiting gyroscopes.

  14. Relativistic description of pair production of doubly heavy baryons in e{sup +}e{sup −} annihilation

    SciTech Connect

    Martynenko, A. P.; Trunin, A. M.

    2015-05-15

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated.

  15. Contrast effects in spontaneous evaluations: a psychophysical account.

    PubMed

    Klauer, Karl Christoph; Teige-Mocigemba, Sarah; Spruyt, Adriaan

    2009-02-01

    In the affective-priming paradigm, target stimuli are preceded by evaluatively polarized prime stimuli and then are to be classified as either good or bad as fast as possible. The typical and robust finding is assimilation: Primes facilitate the processing of evaluatively consistent targets relative to evaluatively inconsistent targets. Nevertheless, contrast effects have repeatedly been observed. The authors propose a new psychophysical account of normal (assimilative) and reversed (contrastive) priming effects and test new predictions derived from it in 5 studies: In Studies 1 and 2, the authors' account is shown to provide a better explanation of contrastive effects in a priming paradigm with two primes than the traditional attentional account does. Furthermore, as predicted by the new account, contrast effects emerge at an intermediate stimulus-onset asynchrony (SOA, Study 3) and even with short SOAs when target onset takes participants by surprise (Study 4). Finally, the use of extremely valenced primes triggers corrective efforts (Study 5) as predicted. Implications for priming measures of evaluative associations are discussed. PMID:19159132

  16. An interference account of the missing-VP effect

    PubMed Central

    Häussler, Jana; Bader, Markus

    2015-01-01

    Sentences with doubly center-embedded relative clauses in which a verb phrase (VP) is missing are sometimes perceived as grammatical, thus giving rise to an illusion of grammaticality. In this paper, we provide a new account of why missing-VP sentences, which are both complex and ungrammatical, lead to an illusion of grammaticality, the so-called missing-VP effect. We propose that the missing-VP effect in particular, and processing difficulties with multiply center-embedded clauses more generally, are best understood as resulting from interference during cue-based retrieval. When processing a sentence with double center-embedding, a retrieval error due to interference can cause the verb of an embedded clause to be erroneously attached into a higher clause. This can lead to an illusion of grammaticality in the case of missing-VP sentences and to processing complexity in the case of complete sentences with double center-embedding. Evidence for an interference account of the missing-VP effect comes from experiments that have investigated the missing-VP effect in German using a speeded grammaticality judgments procedure. We review this evidence and then present two new experiments that show that the missing-VP effect can be found in German also with less restricting procedures. One experiment was a questionnaire study which required grammaticality judgments from participants without imposing any time constraints. The second experiment used a self-paced reading procedure and did not require any judgments. Both experiments confirm the prior findings of missing-VP effects in German and also show that the missing-VP effect is subject to a primacy effect as known from the memory literature. Based on this evidence, we argue that an account of missing-VP effects in terms of interference during cue-based retrieval is superior to accounts in terms of limited memory resources or in terms of experience with embedded structures. PMID:26136698

  17. Effect of self-magnetic fields on the nonlinear dynamics of relativistic electron beam with virtual cathode

    SciTech Connect

    Hramov, A. E.; Koronovskii, A. A.; Kurkin, S. A.; Filatova, A. E.

    2012-11-15

    The report is devoted to the results of the numerical study of the virtual cathode (VC) formation conditions in the relativistic electron beam (REB) under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam, and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.

  18. Performance of Density Functional Theory and Relativistic Effective Core Potential for Ru-Based Organometallic Complexes.

    PubMed

    Paranthaman, Selvarengan; Moon, Jiwon; Kim, Joonghan; Kim, Dong Eon; Kim, Tae Kyu

    2016-04-01

    Herein a performance assessment of density functionals used for calculating the structural and energetic parameters of bi- and trimetallic Ru-containing organometallic complexes has been performed. The performance of four popular relativistic effective core potentials (RECPs) has also been assessed. On the basis of the calculated results, the MN12-SX (range-separated hybrid functional) demonstrates good performance for calculating the molecular structures, while MN12-L (local functional) performs well for calculating the energetics, including that of the Ru-Ru bond breaking process. The choice of appropriate density functional is a crucial factor for calculating the energetics. The LANL08 demonstrates the lowest performance of the RECPs for calculating the molecular structures, especially the Ru-Ru bond length. PMID:26986051

  19. Higher-order nonlocal effects of a relativistic ponderomotive force in high-intensity laser fields.

    PubMed

    Iwata, Natsumi; Kishimoto, Yasuaki

    2014-01-24

    We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile. PMID:24484146

  20. Copper and Silver Carbene Complexes without Heteroatom-Stabilization: Structure, Spectroscopy, and Relativistic Effects.

    PubMed

    Hussong, Matthias W; Hoffmeister, Wilhelm T; Rominger, Frank; Straub, Bernd F

    2015-08-24

    Salts of a copper and a silver carbene complex were prepared from dimesityl diazomethane, made possible by the steric shielding of the N-heterocyclic carbene (NHC) ancillary ligand IPr**. The mint-green complex [IPr**Ag=CMes2 ](+) [NTf2 ](-) is the first isolated silver carbene complex without heteroatom donor substituents. Single-crystal X-ray diffraction provides evidence for a predominant carbenoid character, and supports the postulation of such reactive species as intermediates in silver-catalyzed C-H activation reactions. The greenish yellow copper carbene complex [IPr**Cu=CMes2 ](+) [NTf2 ](-) has spectroscopic properties in between the isostructural silver complex and the already reported emerald green gold carbene complex. A comparison in the Group 11 series indicates that relativistic effects are responsible for the strong σ bond and the significant π back-bonding in the gold carbene moiety. PMID:26189567

  1. Covariant spectator theory of np scattering: Effective range expansions and relativistic deuteron wave functions

    SciTech Connect

    Gross, Franz; Stadler, Alfred

    2010-09-15

    We present the effective range expansions for the {sup 1}S{sub 0} and {sup 3}S{sub 1} scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with {chi}{sup 2}/N{sub data{approx_equal}}1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  2. Intense relativistic electron beam generation and prepulse effect in high power cylindrical diode

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Kumar, D. D. P.; Kumar, Senthil; Sharma, Archana; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-01-01

    Intense gigawatt relativistic electron beam has been generated in a high power cylindrical diode in the presence of prepulse. A bipolar prepulse voltage, recorded at the diode, varies both in amplitude and time duration with the Marx generator voltage. It was found that only at the accelerating gap {<=}1.65 cm there is some shot to shot variation in the diode voltage and current for the same Marx generator voltage. The anode and cathode plasma expansion velocities were calculated using the perveance data. The plasma expands at 5 cm/{mu}s for 1.85 cm radial anode-cathode gap and the plasma velocity decreases for smaller gap. It was found that the effect of the prepulse is less pronounced in the cylindrical diode as compared to planar diode that allows one operation of the cylindrical diode with the gap {<=}1.85 cm.

  3. Electron correlation and relativistic effects in photoabsorption processes of heavy closed shell atoms: Intermediate shells of Mercury

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanima; Deshmukh, P. C.; Manson, S. T.

    2015-05-01

    Accuracy in the study of the photoionization of heavy atomic systems requires the inclusion of both many-body effects (correlation) and relativistic interactions. The Relative Random Phase Approximation (RRPA) is a powerful theoretical model which includes many important electron corrections, along with relativity, in the calculation of atomic photoionization. Previously, valence photoionization in atomic mercury has been investigated using RRPA. To expand the understanding of the the correlation and relativistic effects further, photoionization of the intermediate subshells of atomic mercury, 4s, 4p, 4d, 4f, 5s and 5d, have been studied at different levels of truncations as a means of pinpointing the specific aspect(s) of correlation that is important in a given case. It has been found that the intermediate subshells are sensitive to the correlation and relativistic effects but not as significantly as in the case of valence shell photoionization. In this work we have systematically investigated the changes caused by relativistic and correlation effects on both dipole (E1) and quadrupole (E2) photoionization parameters for atomic mercury.

  4. Relativistic effects on the nuclear magnetic shieldings of rare-gas atoms and halogen in hydrogen halides within relativistic polarization propagator theory

    NASA Astrophysics Data System (ADS)

    Gomez, Sergio S.; Maldonado, Alejandro; Aucar, Gustavo A.

    2005-12-01

    In this work an analysis of the electronic origin of relativistic effects on the isotropic dia- and paramagnetic contributions to the nuclear magnetic shielding σ(X ) for noble gases and heavy atoms of hydrogen halides is presented. All results were obtained within the 4-component polarization propagator formalism at different level of approach [random-phase approximation (RPA) and pure zeroth-order approximation (PZOA)], by using a local version of the DIRAC code. From the fact that calculations of diamagnetic contributions to σ within RPA and PZOA approaches for HX(X =Br,I,At) and rare-gas atoms are quite close each to other and the finding that the diamagnetic part of the principal propagator at the PZOA level can be developed as a series [S(Δ)], it was found that there is a branch of negative-energy "virtual" excitations that contribute with more than 98% of the total diamagnetic value even for the heavier elements, namely, Xe, Rn, I, and At. It contains virtual negative-energy molecular-orbital states with energies between -2mc2 and -4mc2. This fact can explain the excellent performance of the linear response elimination of small component (LR-ESC) scheme for elements up to the fifth row in the Periodic Table. An analysis of the convergency of S(Δ ) and its physical implications is given. It is also shown that the total contribution to relativistic effects of the innermost orbital (1s1/2) is by far the largest. For the paramagnetic contributions results at the RPA and PZOA approximations are similar only for rare-gas atoms. On the other hand, if the mass-correction contributions to σp are expressed in terms of atomic orbitals, a different pattern is found for 1s1/2 orbital contributions compared with all other s-type orbitals when the whole set of rare-gas atoms is considered.

  5. Multiple carbon accounting to support just and effective climate policies

    NASA Astrophysics Data System (ADS)

    Steininger, Karl W.; Lininger, Christian; Meyer, Lukas H.; Muñoz, Pablo; Schinko, Thomas

    2016-01-01

    Negotiating reductions in greenhouse gas emission involves the allocation of emissions and of emission reductions to specific agents, and notably, within the current UN framework, to associated countries. As production takes place in supply chains, increasingly extending over several countries, there are various options available in which emissions originating from one and the same activity may be attributed to different agents along the supply chain and thus to different countries. In this way, several distinct types of national carbon accounts can be constructed. We argue that these accounts will typically differ in the information they provide to individual countries on the effects their actions have on global emissions; and they may also, to varying degrees, prove useful in supporting the pursuit of an effective and just climate policy. None of the accounting systems, however, prove 'best' in achieving these aims under real-world circumstances; we thus suggest compiling reliable data to aid in the consistent calculation of multiple carbon accounts on a global level.

  6. Tensor effects in shell evolution at Z, N=8, 20, and 28 using nonrelativistic and relativistic mean-field theory

    SciTech Connect

    Moreno-Torres, M.; Anguiano, M.; Grasso, M.; Van Giai, N.; Liang, H.; De Donno, V.

    2010-06-15

    Tensor effects in shell evolution are studied within the mean-field approach. Particular attention is paid to the analysis of the magic gaps in different regions of the nuclear chart, namely, Z,N=8, 20, and 28. Hartree-Fock calculations with Skyrme and Gogny interactions are performed where the tensor term has a zero and finite range, respectively. Results obtained with and without the tensor component are compared between them and with the experimental data, when available. To complete this analysis, the tensor effect is also investigated within the relativistic Hartree-Fock model, where the exchange of rho mesons and pions is taken into account. It turns out that the tensor effect in the evolution of the magic gaps can be more easily identified in the cases Z,N=8 and 20, whereas the interpretation of the effect is more complicated for Z or N= 28. Consequently, we indicate the regions defined by the magic numbers 8 and 20 as suitable for fitting the tensor parameters in a mean-field approach: We suggest to include explicitly the data associated to these gap evolutions in the fitting procedures. In general, with the parametrizations used in this work (which have not been fitted on these data), the mean-field results obtained with the tensor contribution do not reproduce the experimental trend, that is, the reduction of the gaps at 8 and 20 that is observed when going toward the drip lines. Since some of the considered nuclei have N=Z, a discussion will be devoted to the interpretation of the experimental data concerning these nuclei and to the Wigner-energy correction.

  7. A study on the effects of relativistic heavy charged particles on the cellular microenvironment

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain Vincent

    This study was done under the National Aeronautics Space Administration (NASA) effort to assess the effect of cosmic radiation on astronauts during a 3 year mission to Mars. Carcinogenesis is known to be induced more efficiently by cosmic radiation. Our attention was turned towards one of the most efficient cosmic particles in inducing cancer, relativistic Fe, and focused in assessing its effect on the cellular microenvironment (ECM). Previous observations on mammary glands were showing irregularities in the immunoreactivity of the ECM protein laminin one hour after whole body irradiation with 1GeV/amu Fe ions for a dose of 0.8 Gy. This effect was not observed after 5 Gy γ-rays exposure. The rapidity of such a change suggested that the effect might be due to a physical event specific to relativistic charged particles (HZE), rather than a biological event. Our study showed that this effect is actually a complex and rapid response of the microenvironment to highly ionizing radiation. It involves a fast disruption of the basement membrane of the ECM induced by the highly localized ionization and reactive oxygen formation around the track of the Fe ion. This disruption triggers further chemical and biological responses involved in the remodeling of the laminin network in the basement membrane. A metalloproteinase is suspected to be the intermediate protease affecting laminin. The HZE effect on the microenvironment was seen in both mouse mammary glands and skin, but the laminin isoforms sensitive to Fe ions were different for each organ, with a clear disruption of laminin-1 network in skin and of laminin-5 in mammary glands. In addition, the laminin receptor integrins seem to be involved in this mechanism, but its contribution is unclear at this point. Finally, such studies suggest a shift from the concept of relative biological effectiveness (RBE) used in classical radiation biology since the effect is only seen with HZE at viable whole body doses. In addition, this

  8. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  9. A quantum probability account of order effects in inference.

    PubMed

    Trueblood, Jennifer S; Busemeyer, Jerome R

    2011-01-01

    Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before. PMID:21951058

  10. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  11. Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions.

    PubMed

    Siminos, E; Grech, M; Skupin, S; Schlegel, T; Tikhonchuk, V T

    2012-11-01

    The effective increase of the critical density associated with the interaction of relativistically intense laser pulses with overcritical plasmas, known as self-induced transparency, is revisited for the case of circular polarization. A comparison of particle-in-cell simulations to the predictions of a relativistic cold-fluid model for the transparency threshold demonstrates that kinetic effects, such as electron heating, can lead to a substantial increase of the effective critical density compared to cold-fluid theory. These results are interpreted by a study of separatrices in the single-electron phase space corresponding to dynamics in the stationary fields predicted by the cold-fluid model. It is shown that perturbations due to electron heating exceeding a certain finite threshold can force electrons to escape into the vacuum, leading to laser pulse propagation. The modification of the transparency threshold is linked to the temporal pulse profile, through its effect on electron heating. PMID:23214893

  12. The list strength effect: a contextual competition account.

    PubMed

    Diana, Rachel A; Reder, Lynne M

    2005-10-01

    Research on the list strength effect (LSE) has shown that learning some words on a list more strongly than others impairs memory for the weakly learned words when tested with a recall task. Norman (2002) demonstrated that the LSE also occurs within the recollection process of a recognition test. In this study, a mechanistic dual-process account of the LSE was tested that simultaneously makes predictions concerning additional sources of context in interference effects. In two experiments, we attempted to replicate Norman's (2002) findings and provide the basis for our modeling efforts. We found evidence for a recollection LSE in raw measures of responding, with memory performance also benefiting from reinstatement of perceptual characteristics at test. However, large differences in the hits between the lists were accompanied by small differences in false alarms, such that when d' is calculated, differences between the lists are not significant. We propose an account of the LSE whereby the actual effect of competition between items on the list is small, although present, and difficult to distinguish from large effects of bias due to the strength manipulations. We argue that our findings provide support for a mechanistic explanation of LSE that is based on competition of source activation and changes in the thresholds for responses. PMID:16532860

  13. Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    NASA Astrophysics Data System (ADS)

    Krüger, C. J.; Ho, W. C. G.; Andersson, N.

    2015-09-01

    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of g -modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the star's crust and the emergence of a set of shear modes.

  14. Relativistic density-functional theory with the optimized effective potential and self-interaction correction: Application to atomic structure calculations (Z=2-106)

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Min; Chu, Shih-I.

    1998-02-01

    We present a self-interaction-free relativistic density-functional theory (DFT). The theory is based on the extension of our recent nonrelativistic DFT treatment with optimized effective potential (OEP) and self-interaction correction (SIC) [Phys. Rev. A 55, 3406 (1997)] to the relativistic domain. Such a relativistic OEP-SIC procedure yields an orbital-independent single-particle local potential with proper long-range Coulombic (-1/r) behavior. The method is applied to the ground-state energy calculations for atoms with Z=2-106. A comparison with the corresponding nonrelativistic OEP-SIC calculations and other relativistic calculations is made. It is shown that the ionization potentials (obtained from the highest occupied orbital energies) and individual orbital binding energies determined by the present relativistic OEP-SIC method agree well with the experimental data across the Periodic Table.

  15. The effect of different solar wind parameters upon significant relativistic electron flux dropouts in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Li, Wen; Bortnik, Jacob; Thorne, Richard M.; Lu, Quanming; Ma, Qianli; Tao, Xin; Wang, Shui

    2015-06-01

    Superposed epoch analyses were performed on 193 significant relativistic electron flux dropout events, in order to study the roles of different solar wind parameters in driving the depletion of relativistic electrons, using ~16 years of data from the POES and GOES missions, and the OMNIWEB solar wind database. We find that the solar wind dynamic pressure and interplanetary magnetic field (IMF) Bz play key roles in causing the relativistic electron flux dropouts, but also that either large solar wind dynamic pressure or strong southward IMF Bz by itself is capable of producing the significant depletion of relativistic electrons. The relativistic electron flux dropouts occur not only when the magnetopause is compressed closer to the Earth but also when the magnetopause is located very far (> ~10 RE). Importantly, our results show that in addition to the large solar wind dynamic pressure, which pushes the magnetopause inward strongly and causes the electrons to escape from the magnetosphere, relativistic electrons can also be scattered into the loss cone and precipitate into the Earth's atmosphere during periods of strong southward IMF Bz, which preferentially provides a source of free energy for electromagnetic ion cyclotron (EMIC) wave excitation. This is supported by the fact that the strongest electron precipitation into the atmosphere is found in the dusk sector, where EMIC waves are typically observed in the high-density plasmasphere or plume and cause efficient electron precipitation down to ~1 MeV.

  16. High Z effects in accounting for radiative component of the electron magnetic moment in hydrogen-like atoms

    NASA Astrophysics Data System (ADS)

    Sveshnikov, K. A.; Khomovskii, D. I.

    2013-03-01

    The behavior of electron energy levels in hydrogen-like atoms is studied while taking into account the nonperturbative interaction between the radiative component of the magnetic moment of a free electron Δ g free and the Coulomb field of an atomic nucleus with charge Z, including those with Z > 137. It is shown that for Zα ≪ 1 the energy-level shift is rather effectively determined through the matrix elements of the corresponding Dirac-Pauli operator with relativistic Coulomb wave functions. At the same time, for superheavy nuclei with Z ˜ 170, this shift, generated by Δ g free, is genuinely nonperturbative, behaves like ˜ Z 5 near the threshold of negative continuum, exceeds all the estimates of radiative corrections coming from vacuum polarization and electron self-energy known so far, and turns out to be at least of the same order as the effects of nuclear charge screening by filled electron shells.

  17. Taking into account photofission effects in gamma-activation analysis

    SciTech Connect

    Dayvdov, M.G.; Kishel'gof, V.V.; Naumov, A.P.; Trukhov, A.V.

    1986-11-01

    The authors proposed a method for calculating the effect of photofission of U and Th, which is based on the well-known laws of physics of photofission and methods for calculating the activity of fission products. The authors compared the results of numerical calculations of the gamma spectra of photofission products with the measurements performed with a Ge (Li) detector with the spectra from activated model samples of U and Th. The method developed enables calculating the coefficients of interference and is also applicable to the solution of the problems of optimization of gamma activation analysis taking into account U and Th fission.

  18. Teaching accountability: using client feedback to train effective family therapists.

    PubMed

    Sparks, Jacqueline A; Kisler, Tiffani S; Adams, Jerome F; Blumen, Dale G

    2011-10-01

    The AAMFT Task Force on Core Competencies (Nelson et al., 2007) proposed that marriage and family therapy (MFT) educators teach and provide evidence of trainee competence beyond coursework and accrued clinical hours. This article describes the integration of a systematic client feedback protocol into an MFT-accredited program's curricula to address the call for outcome-based learning. Outcome management (OM) provides a framework for teaching and assessing trainee effectiveness. Continuous incorporation of client feedback embodies collaborative, strengths-based, integrative, and diversity-centered program values. Students learn a system for being accountable to clients, the profession, and service communities. PMID:22007779

  19. Engine control techniques to account for fuel effects

    SciTech Connect

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  20. Heavy element effects in the diagonal Born–Oppenheimer correction within a relativistic spin-free Hamiltonian

    DOE PAGESBeta

    Imafuku, Yuji; Abe, Minori; Schmidt, Michael W.; Hada, Masahiko

    2016-03-22

    Methodologies beyond the Born–Oppenheimer (BO) approximation are nowadays important to explain high precision spectroscopic measurements. Most previous evaluations of the BO correction are, however, focused on light-element molecules and based on a nonrelativistic Hamiltonian, so no information about the BO approximation (BOA) breakdown in heavy-element molecules is available. The present work is the first to investigate the BOA breakdown for the entire periodic table, by considering scalar relativistic effects in the Diagonal BO correction (DBOC). In closed shell atoms, the relativistic EDBOC scales as Z1.25 and the nonrelativistic EDBOC scales as Z1.17, where Z is the atomic number. Hence, wemore » found that EDBOC becomes larger in heavy element atoms and molecules, and the relativistic EDBOC increases faster than nonrelativistic EDBOC. We have further investigated the DBOC effects on properties such as potential energy curves, spectroscopic parameters, and various energetic properties. The DBOC effects for these properties are mostly affected by the lightest atom in the molecule. Furthermore, in X2 or XAt molecule (X = H, Li, Na, K, Rb, and Cs) the effect of DBOC systematically decreases when X becomes heavier but in HX molecules, the effect of DBOC seems relatively similar among all the molecules.« less

  1. Heavy Element Effects in the Diagonal Born-Oppenheimer Correction within a Relativistic Spin-Free Hamiltonian.

    PubMed

    Imafuku, Yuji; Abe, Minori; Schmidt, Michael W; Hada, Masahiko

    2016-04-01

    Methodologies beyond the Born-Oppenheimer (BO) approximation are nowadays important to explain high precision spectroscopic measurements. Most previous evaluations of the BO correction are, however, focused on light-element molecules and based on a nonrelativistic Hamiltonian, so no information about the BO approximation (BOA) breakdown in heavy-element molecules is available. The present work is the first to investigate the BOA breakdown for the entire periodic table, by considering scalar relativistic effects in the Diagonal BO correction (DBOC). In closed shell atoms, the relativistic EDBOC scales as Z(1.25) and the nonrelativistic EDBOC scales as Z(1.17), where Z is the atomic number. Hence, we found that EDBOC becomes larger in heavy element atoms and molecules, and the relativistic EDBOC increases faster than nonrelativistic EDBOC. We have further investigated the DBOC effects on properties such as potential energy curves, spectroscopic parameters, and various energetic properties. The DBOC effects for these properties are mostly affected by the lightest atom in the molecule. Hence, in X2 or XAt molecule (X = H, Li, Na, K, Rb, and Cs) the effect of DBOC systematically decreases when X becomes heavier but in HX molecules, the effect of DBOC seems relatively similar among all the molecules. PMID:27003510

  2. Prerequisite Change and Its Effect on Intermediate Accounting Performance

    ERIC Educational Resources Information Center

    Huang, Jiunn; O'Shaughnessy, John; Wagner, Robin

    2005-01-01

    As of Fall 1996, San Francisco State University changed its introductory financial accounting course to focus on a "user's" perspective, de-emphasizing the accounting cycle. Anticipating that these changes could impair subsequent performance, the Department of Accounting instituted a new prerequisite for intermediate accounting: Students would…

  3. Negative congruency effects: a test of the inhibition account.

    PubMed

    Kiesel, Andrea; Berner, Michael P; Kunde, Wilfried

    2008-03-01

    Masked priming experiments occasionally revealed surprising effects: Participants responded slower for congruent compared to incongruent primes. This negative congruency effect (NCE) was ascribed to inhibition of prime-induced activation [Eimer, M., & Schlaghecken, F. (2003). Response faciliation and inhibition in subliminal priming. Biological Psychology, 64, 7-26.] that sets in if the prime activation is sufficiently strong. The current study tests this assumption by implementing manipulations designed to vary the amount of prime-induced activation in three experiments. In Experiments 1 and 3, NCEs were observed despite reduced prime-induced activation. Experiment 2 revealed no NCE with at least similar prime strength. Thus, the amount of prime activation did not predict whether or not NCEs occurred. The findings are discussed with regard to the inhibition account and the recently proposed account of mask-induced activation [cf. Lleras, A., & Enns, J. T. (2004). Negative compatibility or object updating? A cautionary tale of mask-dependent priming. Journal of Experimental Psychology: General, 133, 475-493; Verleger, R., Jaskowski, P., Aydemir, A., van der Lubbe, R. H. J., & Groen, M. (2004). Qualitative differences between conscious and nonconscious processing? On inverse priming induced by masked arrows. Journal of Experimental Psychology: General, 133, 494-515]. PMID:17188514

  4. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-01

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  5. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    SciTech Connect

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  6. Effect of cathode diameter on intense relativistic electron beam generation in the presence of prepulse

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Kumar, D. D. P.; Kumar, Senthil; Sharma, V. K.; Patel, Ankur; Sharma, Archana; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-07-01

    Intense gigawatt relativistic electron beam generation studies were carried out in the presence of prepulse. Electron beams were generated using planar and annular graphite cathodes of various diameters at a fixed 25 mm anode-cathode gap. For the planar cathode, the beam parameters obtained are 340 keV, 24 kA, and 100 ns at a 680 A/cm{sup 2} current density. With an annular cathode, 346 keV, 10 kA, and 100 ns electron beam could be generated at a 3.4 kA/cm{sup 2} current density. The peak electric field in the diode varies from 58 to 138 kV/cm. A bipolar prepulse voltage has been recorded at the diode for both the cathodes. The amplitude of the negative prepulse voltage varies with the Marx generator voltage but the time duration remains same. The positive prepulse voltage varies both in amplitude and time duration with the Marx generator voltage. Some shot to shot variation in the diode voltage and current were recorded for the annular cathode due to the nonreproducibility of the prepulse generated plasma. It was found that the effect of prepulse is more pronounced in the cathode of larger diameter.

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  8. Comparison of relativistic effects in barycentric and Earth-centered coordinates and implications for determination of GM for Earth

    NASA Technical Reports Server (NTRS)

    Ashby, Neil

    1987-01-01

    The results of an investigation of relativistic effects which have an influence on the determination of GM sub E (M sub E is the mass of the Earth, G is the Newtonian gravitaional constant) are summarized. The detailed arguments and derivations are discussed. The Parametrized Post-Newtonian (PPN) coordinates; Eddington-Clark (EC) coordinates; a coordinate system based on barycentric dynamical time (TBC coordinates); and Local Inertial coordinates are discussed.

  9. Effects of the cosmological expansion on the bubble nucleation rate for relativistic first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Metaxas, Dimitrios

    2008-09-01

    I calculate the first corrections to the dynamical preexponential factor of the bubble nucleation rate for a relativistic first-order phase transition in an expanding cosmological background by estimating the effects of the Hubble expansion rate on the critical bubbles of Langer’s statistical theory of metastability. I also comment on possible applications and problems that arise when one considers the field theoretical extensions of these results (the Coleman De Luccia and Hawking-Moss instantons and decay rates).

  10. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  11. Criteria for Determination of Material Control and Accountability System Effectiveness

    SciTech Connect

    John Wright

    2008-03-01

    The Nevada Test Site (NTS) is a test bed for implementation of the Safeguards First Principles Initiative (SFPI), a risk-based approach to Material Control & Accountability (MC&A) requirements. The Comprehensive Assessment of Safeguards Strategies (COMPASS) model is used to determine the effectiveness of MC&A systems under SFPI. Under this model, MC&A is divided into nine primary elements. Each element is divided into sub-elements. Then each sub-element is assigned two values, effectiveness and contribution, that are used to calculate the rating. Effectiveness is a measure of subelement implementation and how well it meets requirements. Contribution is a relative measure of the importance, and functions as a weighting factor. The COMPASS model provides the methodology for calculation of sub-element and element ratings, but not the actual criteria. Each site must develop its own criteria. For the rating to be meaningful, the effectiveness criteria must be objective and based on explicit, measurable criteria. Contribution (weights) must reflect the importance within the MC&A program. This paper details the NTS approach to system effectiveness and contribution values, and will cover the following: the basis for the ratings, an explanation of the contribution “weights,” and the objective, performance based effectiveness criteria. Finally, the evaluation process will be described.

  12. Relativistic Doppler Beaming and Misalignments in AGN Jets

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  13. Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma

    SciTech Connect

    Abedi, Samira; Dorranian, Davoud; Abari, Mehdi Etehadi; Shokri, Babak

    2011-09-15

    In this paper, the effect of weakly relativistic ponderomotive force in the interaction of intense laser pulse with nonisothermal, underdense, collisional plasma is studied. Ponderomotive force modifies the electron density and temperature distribution. By considering the weakly relativistic effect and ohmic heating of plasma electrons, the nonlinear dielectric permittivity of plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. It is shown that with considering the ohmic heating of electrons and collisions, the effect of ponderomotive force in weakly relativistic regime leads to steepening the electron density profile and increases the temperature of plasma electrons noticeably. Bunches of electrons in plasma become narrower. By increasing the laser pulse strength, the wavelength of density oscillations decreases. In this regime of laser-plasma interaction, electron temperature increases sharply by increasing the intensity of laser pulse. The amplitude of electric and magnetic fields increases by increasing the laser pulse energy while their wavelength decreases and they lost their sinusoidal form.

  14. Relativistic interactions and realistic applications

    SciTech Connect

    Hoch, T.; Madland, D.; Manakos, P.; Mannel, T.; Nikolaus, B.A.; Strottman, D. |

    1992-12-31

    A four-fermion-coupling Lagrangian (relativistic Skyrme-type) interaction has been proposed for relativistic nuclear structure calculations. This interaction, which has the merit of simplicity, is from the outset tailored as an effective interaction for relativistic Hartree-Fock calculations. Various extensions of such a model are discussed and compared with Walecka`s meson-nucleon mean field approach. We also present results of the calculation of nuclear ground state properties with an extended (density dependent) version of the four fermion interaction in a relativistic Hartree-Fock approximation.

  15. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect

    Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  16. Relativistic effects on electric properties of many-electron systems in spin-averaged Douglas-Kroll and Pauli approximations

    NASA Astrophysics Data System (ADS)

    Kellö, Vladimir; Sadlej, Andrzej J.; Hess, Bernd A.

    1996-08-01

    Relativistic effects and electron correlation effects on the dipole moments of the coinage metal hydrides are investigated and compared employing one-component (scalar) relativistic approximations based on the mass-velocity and Darwin operator and, alternatively, the Douglas-Kroll-transformed spin-averaged no-pair Hamiltonian. The former of the two operators is found to perform quite accurately for CuH and AgH. For AuH the limits of the Pauli approximation seem to be reached, as can be inferred from a comparison with the values obtained within the spin-averaged Douglas-Kroll no-pair formalism. The coupled cluster calculations in the Douglas-Kroll no-pair approximation for relativistic effects establish the dipole moment values of the coinage metal hydrides as equal to 1.05 a.u. for CuH, 1.14 a.u. for AgH and 0.52 for AuH. The corresponding non-relativistic results are 1.14 a.u., 1.36 a.u., and 1.22 a.u., respectively. Some formal problems arising in applications of the Douglas-Kroll no-pair approximation are discussed. It is shown that the Hellmann-Feynman theorem leads to a rather complicated form of the first-order energy change due to external perturbation. The usual expectation value formula is, however, valid through terms proportional to 1/c4 and can be used in most applications. The invariance property with respect to a shift in the external potential is addressed for the Douglas-Kroll no-pair approximation in a finite basis set.

  17. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-01

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  18. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    SciTech Connect

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-15

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  19. Bulk resonance absorption induced by relativistic effects in laser-plasma interaction

    SciTech Connect

    Ding Wenjun; Sheng, Z.-M.; Zhang, J.; Yu, M. Y.

    2009-04-15

    Resonance absorption in relativistic laser-plasma interaction is studied via two-dimensional particle-in-cell simulation. As the laser intensity increases from the linear regime, the absorption rate first decreases due to relativistic modulation of the electron plasma oscillations excited at the mode conversion layer. However, the trend reverses after a critical intensity. The reversal can be attributed to the fact that the relativistic critical layer depends on the local intensity of the laser pulse, so that instead of occurring in a thin layer, resonance absorption occurs in a plasma bulk region, leading absorption rate increase. The reflected-light spectrum also shows broadening and splitting of the harmonics at high laser intensities, which can be attributed to critical-surface oscillations driven by the laser ponderomotive force.

  20. Potential Energy Curves in the CASSCF/CASPT2 and FS-MR-CC Methods: The Role of Relativistic Effects.

    PubMed

    Barysz, Maria

    2016-04-12

    Ab initio CASSCF/CASPT2 calculations for the electronic ground and for a wide range of excited states of Li2 and Na2 dimers are presented. The computed spectroscopic parameters agree very well with the experimental data. This indicates that the old CASSCF/CASPT2 method can be as successfully applied to study excited states of molecules as recently developed the multireference Fock-space coulped-cluster method. The role of relativistic effects in the correct description of the potential energy curves has been investigated using as an example the SiAu molecule. The accuracy of the new infinite-order two-component relativistic method has been studied and its advantage over the Douglas-Kroll-Hess method demonstrated. PMID:26914182

  1. Effect of Relativistic Plasma on Extreme-Ultraviolet Harmonic Emission from Intense Laser-Matter Interactions

    SciTech Connect

    Krushelnick, K.; Dangor, A. E.; Mangles, S. P. D.; Rozmus, W.; Wagner, U.; Habara, H.; Norreys, P. A.; Beg, F. N.; Wei, M. S.; Bochkarev, S. G.; Clark, E. L.; Gopal, A.; Evans, R. G.; Robinson, A. P. L.; Tatarakis, M.; Zepf, M.

    2008-03-28

    Experiments were performed in which intense laser pulses (up to 9x10{sup 19} W/cm{sup 2}) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma.

  2. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  3. The effect of ULF compressional modes and field line resonances on relativistic electron dynamics

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rankin, R.; Kabin, K.; Marchand, R.; Mann, I. R.

    2007-04-01

    The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r, φ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602-8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M, and the evolution of the distribution function f(r,φ,M,t) from an assumed initial condition is calculated by assuming f remains constant along electron trajectories. The azimuthal variation in ULF wave structure is shown to have a profound effect on the electron dynamics once a threshold in azimuthal variation is exceeded. Electron energy changes occur that are significantly larger than the trapping width corresponding to the maximum wave amplitude. We show how this can be explained in terms of the overlap of multiple resonance islands, produced by the introduction of azimuthal amplitude variation. This anomalous energisation is characterised by performing parameter scans in the modulation amplitude ɛ and the wave electric field. A simple parametric model for the threshold is shown to give reasonable agreement with the threshold observed in the electron dynamics model. Above the threshold, the radial transport averaged over φ is shown to become diffusive in nature over a timescale of about 25 wave periods. The anomalous energisation described in this paper occurs over the first 15 wave periods, indicating the importance of convective transport in this process.

  4. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.

    PubMed

    Maldonado, Alejandro F; Aucar, Gustavo A

    2014-09-11

    The reference values for NMR magnetic shieldings, σ(ref), are of the highest importance when theoretical analysis of chemical shifts are envisaged. The fact that the nonrelativistically valid relationship among spin-rotation constants and magnetic shieldings is not any longer valid for heavy atoms requires that the search for σ(ref) for such atoms needs new strategies to follow. We present here results of σ(ref) that were obtained by applying our own simple procedure which mixes accurate experimental chemical shifts (δ) and theoretical magnetic shieldings (σ). We calculated σ(Sn) and σ(Pb) in a family of heavy-halogen-containing molecules. We found out that σ(ref)[Sn;Sn(CH3)4] in gas phase should be close to 3864.11 ± 20.05 ppm (0.5%). For Pb atom, σ(ref)[Pb;Pb(CH3)4] should be close to 14475.1 ± 500.7 ppm. Such theoretical values correspond to calculations with the relativistic polarization propagator method, RelPPA, at the RPA level of approach. They are closer to experimental values as compared to those obtained applying few different functionals such as PBE0, B3LYP, BLYP, BP86, KT2, and KT3 of the density functional theory, DFT. We studied tin and lead shieldings of the XY(4-n)Z(n) (X = Sn, Pb; Y, Z = H, F, Cl, Br, I) and PbH(4-n)I(n) (n = 0, 1, 2, 3, 4) family of compounds with four-component functionals as implemented in the DIRAC code. For these systems results of calculations with RelPPA-RPA are more reliable than DFT ones. We argue about why those DFT functionals must be modified in order to obtain more accurate results of NMR magnetic shieldings within the relativistic regime: first, there is a dependence among both electron-correlation and relativistic effects that should be introduced in some way in the functionals; and second, the DIRAC code uses standard nonrelativistic functionals and the functionals B3LYP and PBE0 were parametrized only with data taken from light elements. It can explain why they are not able to properly introduce

  5. On Radiative Acceleration of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Takahara, F.

    1997-10-01

    The formation and acceleration of relativistic jets by radiative forces in black hole systems are investigated. Under a variety of circumstances, we calculate the bulk acceleration and radiative cooling of a confined plasma cell, immersed in different types of radiation fields and interacting by Compton scattering. Both non-relativistic (cold) and relativistic (hot) jet plasma, comprising mixtures of electron-proton and electron-positron components, are treated. We pay attention to some conceivable effects, previously neglected, which may possibly enhance the bulk acceleration; among them are an anisotropically radiating accretion disk surface, beamed secondary radiation from the inner jet, and scattering in the energy dependent Klein-Nishina regime. Our results are discussed in the context of relativistic jets in active galactic nuclei and Galactic black hole candidates, and the conditions necessary for successfully reproducing their observed properties are highlighted. In particular, the velocities of the recently discovered superluminal jets in Galactic black hole candidates (Lorentz factors of Γ ~ 2.5) are readily and very robustly accounted for if the jet is composed primarily of electron-positron pairs and the disk luminosity is near the Eddington value; the jet kinetic power can be consistent with optical depth and pair annihilation constraints. On the other hand, severe difficulty is met in attaining the velocities of AGN jets (Γ ~ 10), which can only be realized when a significant amount of beamed secondary radiation is present. We also contemplate additional important issues, such as global energetics.

  6. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hamiltonian.

    PubMed

    Lipparini, Filippo; Gauss, Jürgen

    2016-09-13

    We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application. PMID:27464026

  7. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  8. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    SciTech Connect

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

  9. Relativistic effects on the nuclear magnetic resonance shielding of FX (X = F, Cl, Br, I, and At) molecular systems.

    PubMed

    Gómez, Sergio S; Aucar, Gustavo A

    2011-05-28

    We present ab inito full four-component and spin-free calculations of the NMR shielding parameter, σ, in the FX (X = F, Cl, Br, I and At) molecular systems. A different expression that overcomes the traditional non-relativistic (NR) approximation used to calculate the relationship between spin-rotation constants and the paramagnetic terms of σ(p) are given. Large deviations from NR results are obtained for σ(X; X = I and At) and for σ(F; FAt). σ(∥)(p)(I; FI) is zero within the NR approach but -447.4 parts per million from our calculations. The electronic origin of relativistic corrections are analyzed. All passive SO contributions are obtained as a difference between full four-component calculations and spin-free ones. Considering relativistic effects on the anisotropy, we obtain a deviation of 10% for I and 25% for At. σ(∥)(SO)(X) is always negative and σ(∥)(SF)(X) is always positive; the passive SO becomes larger than the SF one for X = Br, I, and At. Both σ(∥)(SO)(X) and σ(⊥)(SO)(X) have a functional dependence such as a Z(X)(b) being the exponent 3.5 and 3.65, respectively. The passive SO contribution to the anisotropy has a similar functional dependence with an exponent of 3.60, meaning that its perpendicular component is larger than its corresponding parallel component. PMID:21639447

  10. Relativistic Effects and Polarization in Three High-Energy Pulsar Models

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.; Rudak, B.

    2004-01-01

    We present the influence of the special relativistic effects of aberration and light travel time delay on pulsar high-energy lightcurves and polarization characteristics predicted by three models: the two-pole caustic model, the outer gap model, and the polar cap model. Position angle curves and degree of polarization are calculated for the models and compared with the optical data on the Crab pulsar. The relative positions of peaks in gamma-ray and radio lightcurves are discussed in detail for the models. We find that the two-pole caustic model can reproduce qualitatively the optical polarization characteristics of the Crab pulsar - fast swings of the position angle and minima in polarization degree associated with both peaks. The anticorrelation between the observed flux and the polarization degree (observed in the optical band also for B0656+14) naturally results from the caustic nature of the peaks which are produced in the model due to the superposition of radiation from many different altitudes, ie. polarized at different angles. The two-pole caustic model also provides an acceptable interpretation of the main features in the Crab's radio profile. Neither the outer gap model nor the polar cap model are able to reproduce the optical polarization data on the Crab. Although the outer gap model is very successful in reproducing the relative positions of gamma-ray and radio peaks in pulse profiles, it can reproduce the high-energy lightcurves only when photon emission from regions very close to the light cylinder is included.

  11. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    SciTech Connect

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-12-15

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  12. Compression-amplified EMIC waves and their effects on relativistic electrons

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-06-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6RE). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT2/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT2/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (˜850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  13. Comment on ``Relativistic effects on the spin entanglement of two massive Dirac particles''

    NASA Astrophysics Data System (ADS)

    Caban, Paweł; Rembieliński, Jakub

    2012-12-01

    The paper of Choi [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.012334 84, 012334 (2011)] discusses the use of the Foldy-Wouthuysen mean-spin operator in the theory of relativistic quantum information. However, the paper contains some incorrect statements and misunderstandings.

  14. Magnetogenesis through Relativistic Velocity Shear

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  15. Waves in general relativistic two-fluid plasma around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Rahman, M. Atiqur

    2012-10-01

    Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation.

  16. Spin-orbit interaction in relativistic nuclear structure models

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Mutschler, A.; Khan, E.; Vretenar, D.

    2016-08-01

    Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to its orbital motion, whereas nonrelativistic SCMF methods necessitate a phenomenological ansatz for the effective spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data; however, standard relativistic mean-field and nonrelativistic Hartree-Fock models use effective spin-orbit potentials with different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analyzed, and it is shown that it leads to an isovector structure similar to the one used in standard nonrelativistic Hartree-Fock models. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the isovector-scalar channel of relativistic mean-field models. The reproduction of the empirical kink in the isotope shifts of even Pb nuclei by relativistic effective interactions points to the occurrence of pseudospin symmetry in the single-neutron spectra in these nuclei.

  17. Relativistic thermal plasmas - Pair processes and equilibria

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.

    1982-01-01

    The work of Bisnovatyi-Kogan, Zel'dovich and Sunyaev (1971) is extended and generalized, through the inclusion of pair-producing photon processes and effects due to the finite size of the plasma, in an investigation of the equilibria of relativistic thermal plasmas which takes into account electron-positron creation and annihilation and photons produced within the plasma. It is shown that the bridge between an effectively thin plasma and an effectively thick plasma occurs in the transrelativistic region, where the dimensionless temperature value is between 0.1 and 1.0 and the temperature remains in this region over a great luminosity range.

  18. Mental Accounting in Portfolio Choice: Evidence from a Flypaper Effect.

    PubMed

    Choi, James J; Laibson, David; Madrian, Brigitte C

    2009-12-01

    Consistent with mental accounting, we document that investors sometimes choose the asset allocation for one account without considering the asset allocation of their other accounts. The setting is a firm that changed its 401(k) matching rules. Initially, 401(k) enrollees chose the allocation of their own contributions, but the firm chose the match allocation. These enrollees ignored the match allocation when choosing their own-contribution allocation. In the second regime, enrollees simultaneously selected both accounts' allocations, leading them to mentally integrate the two. Own-contribution allocations before the rule change equal the combined own- and match-contribution allocations afterwards, whereas combined allocations differ sharply across regimes. PMID:20027235

  19. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  20. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  1. Unstable particles in non-relativistic quantum mechanics?

    SciTech Connect

    Hernandez-Coronado, H.

    2011-10-14

    The Schroedinger equation is up-to-a-phase invariant under the Galilei group. This phase leads to the Bargmann's superselection rule, which forbids the existence of the superposition of states with different mass and implies that unstable particles cannot be described consistently in non-relativistic quantum mechanics (NRQM). In this paper we claim that Bargmann's rule neglects physical effects and that a proper description of non-relativistic quantum mechanics requires to take into account this phase through the Extended Galilei group and the definition of its action on spacetime coordinates.

  2. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  3. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T; Campbell, Billy J; Hammond, Glenn A; Meppen, Bruce W; Brown, Richard F

    2011-01-01

    A nuclear material control and accountability (MC&A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC&A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC&A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC&A system (2) A fault tree of the operating MC&A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC&A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area [MBA]) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance factor reports on the

  4. Integrating Effective Writing Skills in the Accounting Curriculum.

    ERIC Educational Resources Information Center

    May, Gordon S.; Arevalo, Claire

    1983-01-01

    The J. M. Tull School of Accounting at the University of Georgia has developed a program that integrates the teaching of writing skills with the regular accounting courses. Students in a three-course sequence write a total of eight papers--technical, memos, or reports--in assignments that resemble writing tasks encountered by professional…

  5. Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed.

    PubMed

    Stanke, Monika; Adamowicz, Ludwik

    2013-10-01

    In this work, we describe how the energies obtained in molecular calculations performed without assuming the Born-Oppenheimer (BO) approximation can be augmented with corrections accounting for the leading relativistic effects. Unlike the conventional BO approach, where these effects only concern the relativistic interactions between the electrons, the non-BO approach also accounts for the relativistic effects due to the nuclei and due to the coupling of the coupled electron-nucleus motion. In the numerical sections, the results obtained with the two approaches are compared. The first comparison concerns the dissociation energies of the two-electron isotopologues of the H2 molecule, H2, HD, D2, T2, and the HeH(+) ion. The comparison shows that, as expected, the differences in the relativistic contributions obtained with the two approaches increase as the nuclei become lighter. The second comparison concerns the relativistic corrections to all 23 pure vibrational states of the HD(+) ion. An interesting charge asymmetry caused by the nonadiabatic electron-nucleus interaction appears in this system, and this effect significantly increases with the vibration excitation. The comparison of the non-BO results with the results obtained with the conventional BO approach, which in the lowest order does not describe the charge-asymmetry effect, reveals how this effect affects the values of the relativistic corrections. PMID:23679131

  6. Highly Relativistic Electrons from UARS and Their Effect on Atmospheric Ozone

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.; Goldberg, R. A.; Jackman, C. H.; Chenette, D. L.; Gaines, E. E.

    2001-12-01

    In a study involving 5 of the instruments on UARS, we have investigated how fluxes of high-energy electrons could modify the chemistry of the upper stratosphere and mesosphere. Fluxes of high-energy electrons (E > 100~keV) have been predicted to deplete mesospheric ozone by 20% or more, and stratospheric ozone to a lesser degree. Precipitating fluxes of these electrons can increase by 1--2 orders of magnitude during highly relativistic electron (HRE) events, and often contain significant contributions from electrons with E > 1~MeV. This research has produced a database of differential electron energy spectra obtained during the decline of solar cycle 22. We have used this database to understand the radiation environment of low-Earth orbit. We will show how the HEPS data provides energy-dependent lifetimes for the energetic electrons and that elevated electron fluxes should be expected on any satellite mission lasting more than 1 week. Once the electron fluxes are known, the atmospheric effects can be predicted by model calculations and those predictions compared with composition measurements. For the instantaneous electron fluxes measured during a large May 1992 HRE, relative depletions of ozone greater than 15% were predicted to occur between altitudes of 60--80~km, where HO{}x reactions cause a local minimum in the ozone concentration. The chemical signature of an HRE would be ozone depletions in the region of enhanced flux, particularly within the magnetic L-shell limits of 3 < L < 4. Data from HEPS, CLAES, HALOE, HRDI, and MLS were combined to search for such effects during the May 1992 HRE. Mesospheric ozone measurements from HRDI and stratospheric ozone measurements by CLAES and MLS were searched for the predicted depletions. The seasonal evolution of water vapor was monitored with HALOE. Our analysis shows that between altitudes of 65--75 km the ozone mixing ratio was relatively constant within the overlapping local solar time bands during May 1992. Above 80

  7. Mental Accounting in Portfolio Choice: Evidence from a Flypaper Effect

    PubMed Central

    Choi, James J.; Laibson, David; Madrian, Brigitte C.

    2009-01-01

    Consistent with mental accounting, we document that investors sometimes choose the asset allocation for one account without considering the asset allocation of their other accounts. The setting is a firm that changed its 401(k) matching rules. Initially, 401(k) enrollees chose the allocation of their own contributions, but the firm chose the match allocation. These enrollees ignored the match allocation when choosing their own-contribution allocation. In the second regime, enrollees simultaneously selected both accounts’ allocations, leading them to mentally integrate the two. Own-contribution allocations before the rule change equal the combined own- and match-contribution allocations afterwards, whereas combined allocations differ sharply across regimes. PMID:20027235

  8. Pseudo-Newtonian models for the equilibrium structures of rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Il Kim, Hee; Mok Lee, Hyung

    2009-10-01

    We obtain equilibrium solutions for rotating compact stars, including special relativistic effects. The gravity is assumed to be Newtonian, but we use the active mass density, which takes into account all energies such as the motion of the fluid, internal energy and pressure energy in addition to the rest-mass energy, in computing the gravitational potential using Poisson's equation. Such a treatment could be applicable to neutron stars with relativistic motions or a relativistic equation of state. We applied Hachisu's self-consistent field (SCF) method to find spheroidal as well as toroidal sequences of equilibrium solutions. Our solutions show better agreement with general relativistic solutions than the Newtonian relativistic hydrodynamic approach, which does not take into account the active mass. Physical quantities such as the peak density and equatorial radii in our solutions agree with the general relativistic ones to within 5 per cent. Therefore our approach can be used as a simple alternative to the fully relativistic one when a large number of model calculations is necessary, as it requires much fewer computational resources.

  9. Communication: Determination of relativistic effects from X-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-02-01

    In this communication, a procedure is presented which allows for the determination of the scalar-relativistic contraction of individual electronic shells of transition metal atoms from X-ray structure factor data. The procedure is verified and benchmarked employing theoretical and experimental F(hkl) data, revealing an overall good agreement between the experimentally determined results and the theoretical reference values. From the experimental data, the relativistic contraction of the n = 2 shell of a cerium atom is, for example, determined as 0.097 pm, compared to a theoretical reference value of 0.116 pm. It is further demonstrated that the reproducibility of the results is excellent when comparing different experimental data sets. Finally, the dependency of the according results on the data resolution of the structure factor data is investigated.

  10. Relativistic entrainment matrix of a superfluid nucleon-hyperon mixture. II. Effect of finite temperatures

    SciTech Connect

    Gusakov, Mikhail E.; Kantor, Elena M.; Haensel, Pawel

    2009-07-15

    We calculate the important quantity of superfluid hydrodynamics, the relativistic entrainment matrix for a nucleon-hyperon mixture at arbitrary temperature. In the nonrelativistic limit this matrix is also termed the Andreev-Bashkin or mass-density matrix. Our results can be useful for modeling the pulsations of massive neutron stars with superfluid nucleon-hyperon cores and for studies of the kinetic properties of superfluid baryon matter.

  11. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    SciTech Connect

    Ross, James Steven

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  12. Relativistic and Solvation Effects on the Stability of Gold(III) Halides in Aqueous Solution.

    PubMed

    Theilacker, Kolja; Schlegel, H Bernhard; Kaupp, Martin; Schwerdtfeger, Peter

    2015-10-19

    The redox stability of gold halide complexes in aqueous solution has been examined quantum-chemically by a systematic comparison of scalar- and nonrelativistic pseudopotential calculations, using both COSMO and D-COSMO-RS solvent models for water. After a computational benchmarking of density-functional methods against CCSD(T) results for the gas phase decomposition AuX4(-) → AuX2(-) + X2, B3LYP calculations have been used to establish solvent contributions. While relativity clearly enhances the stability of AuX4(-) (X = F, Cl, Br, I) complexes against X2 elimination, solvation favors the lower oxidation state. Solvation and relativity are nonadditive, due to the relativistic reduction of bond polarity. At scalar relativistic D-COSMO-RS level, the reaction AuX4(-) ⇌ AuX2(-) + X2 is computed to be endergonic, except for X = I, where it is slightly exergonic. Under the chosen conditions, partial hydrolysis of AuCl4(-) to AuCl3OH(-) is exergonic. The latter complex in turn is stable against Cl2 elimination. The disproportionation 3 AuCl2(-) ⇌ AuCl4(-) + 2 Au(s) + 2 Cl(-) is clearly exergonic. All of the computed reaction energies at scalar relativistic D-COSMO-RS level agree well with the observed speciation in dilute pH-neutral solutions at ambient temperatures. PMID:26421633

  13. Pion-nucleon correlations in finite nuclei in a relativistic framework: Effects on the shell structure

    NASA Astrophysics Data System (ADS)

    Litvinova, Elena

    2016-04-01

    The relativistic particle-vibration coupling (RPVC) model is extended by the inclusion of isospin-flip excitation modes into the phonon space, introducing a new mechanism of dynamical interaction between nucleons with different isospin in the nuclear medium. Protons and neutrons exchange by collective modes which are formed by isovector π and ρ-mesons, in turn, softened considerably because of coupling to nucleons of the medium. These modes are investigated within the proton-neutron relativistic random phase approximation (pn-RRPA) and relativistic proton-neutron time blocking approximation (pn-RTBA). The appearance of isospin-flip states with sizable transition probabilities at low energies points out that they are likely to couple to the single-particle degrees of freedom and, in addition to isoscalar low-lying phonons, to modify their spectroscopic characteristics. Such a coupling is quantified for the shell structure of 100,132Sn and found significant for the location of the dominant single-particle states.

  14. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  15. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  16. Sorting chromatic sextupoles for easily and effectively correcting second order chromaticity in the Relativistic Heavy Ion Collider

    SciTech Connect

    Luo,Y.; Tepikian, S.; Fischer, W.; Robert-Demolaize, G.; Trbojevic, D.

    2009-01-02

    Based on the contributions of the chromatic sextupole families to the half-integer resonance driving terms, we discuss how to sort the chromatic sextupoles in the arcs of the Relativistic Heavy Ion Collider (RHIC) to easily and effectively correct the second order chromaticities. We propose a method with 4 knobs corresponding to 4 pairs of chromatic sextupole families to online correct the second order chromaticities. Numerical simulation justifies this method, showing that this method reduces the unbalance in the correction strengths of sextupole families and avoids the reversal of sextupole polarities. Therefore, this method yields larger dynamic apertures for the proposed RHIC 2009 100GeV polarized proton run lattices.

  17. Polarization of the Sunyaev-Zel'dovich effect: relativistic imprint of thermal and non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Shehzad Emritte, Mohammad; Colafrancesco, Sergio; Marchegiani, Paolo

    2016-07-01

    Inverse Compton (IC) scattering of the anisotropic CMB fluctuations off cosmic electron plasmas generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. The polarized SZ effect has important applications in cosmology and in astrophysics of galaxy clusters. However, this signal has been studied so far mostly in the non-relativistic regime which is valid only in the very low electron temperature limit for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation to the IC scattering of a thermal electron plasma in the relativistic regime have been done but these cannot be applied to a more general or mildly relativistic electron distribution. In this paper we derive a general form of the SZ effect polarization that is valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population which can be co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole for both thermal and non-thermal electron populations, focussing in particular on the CMB quadrupole and octupole that provide the largest detectable signals in cosmic structures (like galaxy clusters). We found that the CMB quadrupole induced Stoke parameter Q is always positive with a maximum amplitude at a frequency ≈ 216 GHz which increases non-linearly with increasing cluster temperature. On the contrary, the CMB octupole induced Q spectrum shows a cross-over frequency which depends on the cluster electron temperature in a linear way, while it shows a non-linear dependence on the minimum momentum p1 of a non-thermal power-law spectrum as well as a linear dependence on the power-law spectral index of the non-thermal electron population. We discuss some of the possibilities to disentangle the quadrupole

  18. On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects

    SciTech Connect

    Bashinov, A. V.; Kim, A. V.; University of Nizhny Novgorod, 603950 Nizhny Novgorod

    2013-11-15

    A simple electrodynamic model is developed to define plasma-field structures in self-consistent ultra-relativistic laser-plasma interactions when the radiation reaction effects come into play. An exact analysis of a circularly polarized laser interacting with plasmas is presented. We define fundamental notions, such as nonlinear dielectric permittivity, ponderomotive and dissipative forces acting in a plasma. Plasma-field structures arising during the ultra-relativisitc interactions are also calculated. Based on these solutions, we show that about 50% of laser energy can be converted into gamma-rays in the optimal conditions of laser-foil interaction.

  19. Polarization effect on the relativistic nonlinear dynamics of an intense laser beam propagating in a hot magnetoactive plasma.

    PubMed

    Sepehri Javan, N; Adli, F

    2013-10-01

    Nonlinear dynamics of an intense circularly polarized laser beam interacting with a hot magnetized plasma is investigated. Using a relativistic fluid model, a modified nonlinear Schrödinger equation is derived based on a quasineutral approximation, which is valid for hot plasma. Using a three-dimensional model, spatial-temporal development of the laser pulse is investigated. The occurrence of some nonlinear phenomena such as self-focusing, self-modulation, light trapping, and filamentation of the laser pulse is discussed. Also the effect of polarization and external magnetic field on the nonlinear evolution of these phenomena is studied. PMID:24229288

  20. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  1. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  2. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Takale, M. V.

    2016-05-01

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  3. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  4. Accounting for Recoil Effects in Geochronometers: A New Model Approach

    NASA Astrophysics Data System (ADS)

    Lee, V. E.; Huber, C.

    2012-12-01

    dated grain is a major control on the magnitude of recoil loss, the first feature is the ability to calculate recoil effects on isotopic compositions for realistic, complex grain shapes and surface roughnesses. This is useful because natural grains may have irregular shapes that do not conform to simple geometric descriptions. Perhaps more importantly, the surface area over which recoiled nuclides are lost can be significantly underestimated when grain surface roughness is not accounted for, since the recoil distances can be of similar characteristic lengthscales to surface roughness features. The second key feature is the ability to incorporate dynamical geologic processes affecting grain surfaces in natural settings, such as dissolution and crystallization. We describe the model and its main components, and point out implications for the geologically-relevant chronometers mentioned above.

  5. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  6. Determination of the ground state energies of the H{2/+}, D{2/+} and H{2/+} molecular ions taking into account relativistic corrections

    NASA Astrophysics Data System (ADS)

    Dineykhan, M.; Zhaugasheva, S. A.; Bekbaev, A. K.; Ishmukhamedov, I. S.

    2012-12-01

    On the basis of determination of the asymptotic behavior of correlation functions of the corresponding field currents with the corresponding quantum numbers an analytic method for determination of the energy spectrum of three-body Coulomb system is suggested. Our results show that the constituent masses of particles, which we have defined as masses of particles in a bound state, differ from masses of particles in a free-state. The constituent mass to the free state mass relation for the electron is greater than the same mass relation for the proton, deuteron and triton. It was also found that this constituent electron mass has different values in each systems, i.e. in H{2/+}, D{2/+} and T{2/+} hydrogen molecular ions. The contributions of exchange and self-energy diagrams were taken into account in the determination of the energy spectrum of the three-body Coulomb system. Our results show that the self-energy diagram contribution is inversely proportional to the square of the constituent mass of particles. This contribution is sufficient for the electron and is negligible for the proton, deuteron and triton. When defining the energy and the wave function (WF), it is necessary to take into account the contributions of both the exchange and self-energy diagrams.

  7. Interaction of a relativistic soliton with a nonuniform plasma.

    PubMed

    Rouhani, M R; Abbasi, H; Pajouh, H Hakimi; Shukla, P K; Tsintsadze, N L

    2002-06-01

    By using a relativistic fluid model, a nonlinear theory for the propagation of an intense laser pulse in an inhomogeneous cold plasma is developed. Assuming that the radiation spot size is larger than the plasma wavelength, we derive an envelope equation for the momentum of the electron fluid, taking into account relativistic electron mass variation and finite amplitude electron density perturbations that are driven by the relativistic ponderomotive force of light. Localized solutions of the envelope equation are discussed from an energy integral containing an effective potential. Numerical results for envelope solitons are obtained in a quasistationary approximation. The dependency of these localized solutions on the amplitude and the group velocity of the laser pulse is discussed. Also derived is an equation that governs the dynamics of the pulse center. PMID:12188834

  8. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  9. Relativistic formulation of the Voigt profile

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  10. Distinct optical properties of relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-06-01

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  11. Distinct optical properties of relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  12. Effects of front-surface target structures on properties of relativistic laser-plasma electrons.

    PubMed

    Jiang, S; Krygier, A G; Schumacher, D W; Akli, K U; Freeman, R R

    2014-01-01

    We report the results of a study of the role of prescribed geometrical structures on the front of a target in determining the energy and spatial distribution of relativistic laser-plasma electrons. Our three-dimensional particle-in-cell simulation studies apply to short-pulse, high-intensity laser pulses, and indicate that a judicious choice of target front-surface geometry provides the realistic possibility of greatly enhancing the yield of high-energy electrons while simultaneously confining the emission to narrow (<5°) angular cones. PMID:24580345

  13. Relativistic effects on cyclotron wave absorption by an energetic electron tail in the PLT tokamak

    SciTech Connect

    Mazzucato, E.; Efthimion, P.; Fidone, I.

    1984-07-01

    Electron cyclotron wave absorption by mildly relativistic electrons in the low density regime of the PLT tokamak is investigated. Appreciable wave damping is found for vertical propagation at frequencies of 50, 60, and 70 GHz when the spatially constant cyclotron frequency is 89 GHz. The perpendicular temperature T/sub perpendicular/(v/sub parallel/) of the fast tail is also measured from emission of radiation in the same direction. The results obtained are in satisfactory agreement with the theory of wave emission and absorption.

  14. Relativistically corrected nuclear magnetic resonance chemical shifts calculated with the normalized elimination of the small component using an effective potential-NMR chemical shifts of molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-07-01

    A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.

  15. General relativistic observables for the ACES experiment

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.; Yu, Nan; Toth, Viktor T.

    2016-02-01

    We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J2 and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to <1 ps and ˜4 ×1 0-17 for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential.

  16. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  17. A reduced model for relativistic electron beam transport in solids and dense plasmas

    NASA Astrophysics Data System (ADS)

    Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.

    2014-07-01

    A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.

  18. Dynamics of relativistic jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  19. Gravity at the horizon: on relativistic effects, CMB-LSS correlations and ultra-large scales in Horndeski's theory

    NASA Astrophysics Data System (ADS)

    Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco

    2016-07-01

    We address the impact of consistent modifications of gravity on the largest observable scales, focusing on relativistic effects in galaxy number counts and the cross-correlation between the matter large scale structure (LSS) distribution and the cosmic microwave background (CMB). Our analysis applies to a very broad class of general scalar-tensor theories encoded in the Horndeski Lagrangian and is fully consistent on linear scales, retaining the full dynamics of the scalar field and not assuming quasi-static evolution. As particular examples we consider self-accelerating Covariant Galileons, Brans-Dicke theory and parameterizations based on the effective field theory of dark energy, using the hi class code to address the impact of these models on relativistic corrections to LSS observables. We find that especially effects which involve integrals along the line of sight (lensing convergence, time delay and the integrated Sachs-Wolfe effect—ISW) can be considerably modified, and even lead to O(1000%) deviations from General Relativity in the case of the ISW effect for Galileon models, for which standard probes such as the growth function only vary by O(10%). These effects become dominant when correlating galaxy number counts at different redshifts and can lead to ~ 50% deviations in the total signal that might be observable by future LSS surveys. Because of their integrated nature, these deep-redshift cross-correlations are sensitive to modifications of gravity even when probing eras much before dark energy domination. We further isolate the ISW effect using the cross-correlation between LSS and CMB temperature anisotropies and use current data to further constrain Horndeski models. Forthcoming large-volume galaxy surveys using multiple-tracers will search for all these effects, opening a new window to probe gravity and cosmic acceleration at the largest scales available in our universe.

  20. Matrix formulation of direct perturbation theory of relativistic effects in a kinetically balanced basis

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner; Liu, Wenjian

    2008-06-01

    Direct perturbation theory (DPT) and its quasi-degenerate version (QD-DPT) in a matrix formulation, i.e. DPT-mat and QD-DPT-mat are derived from the matrix representation of the Dirac operator in a kinetically balanced basis, both in the intermediate and the unitary normalization. The results are compared with those of an earlier formulation in terms of operators and wave functions. In the wave function formulation it is imperative to describe the weak singularities of the wave function at the position of a point nucleus correctly and to satisfy the key relation between large and small components locally. This formulation is incompatible with an expansion in a regular basis. In a matrix formulation in a kinetically balanced basis both the large and the small component are expanded in regular basis sets and the key relation is only satisfied in the mean. DPT is essentially a theory at bispinor level. Although it is possible to eliminate the small component to arrive at a quasi-relativistic theory, this requires some care. A both compact and numerically stable formulation is in terms of the large and the small component. The generalization from a theory for one state to a quasi-degenerate formulation for a set of states, is very simple in the matrix formulation, but rather complicated and somewhat indirect at wave function level, where an intermediate quasi-relativistic step is needed. The advantage of the matrix formulation is particularly pronounced in the unitary normalization.

  1. Materialism Moderates the Effect of Accounting for Time on Prosocial Behaviors.

    PubMed

    Li, Jibo; Chen, Yingying; Huang, Xiting

    2015-01-01

    Accounting for time is defined as putting a price on time. Researchers have demonstrated that accounting for time reduces the time individuals spend on others; however, its association with monetary donations has not been examined. We hypothesized that accounting for time will activate a utility mindset that would affect one's allocation of time and money. In Study 1, the mediating effect of utility mindsets on the relationship between accounting for time and prosocial behavior was examined. In Study 2, we examined the effect of accounting for time on time spent helping and donating money, and the moderating role of material values on the relationship between accounting for time and prosocial behavior. Results showed that accounting for time activated a mindset of utility maximization that, in turn, reduced participants' prosocial behavior; moreover, materialism moderated the effect of accounting for time on prosocial behavior. PMID:25751602

  2. Understanding cage effects in imidazolium ionic liquids by 129Xe NMR: MD simulations and relativistic DFT calculations.

    PubMed

    Saielli, Giacomo; Bagno, Alessandro; Castiglione, Franca; Simonutti, Roberto; Mauri, Michele; Mele, Andrea

    2014-12-01

    (129)Xe NMR has been recently employed to probe the local structure of ionic liquids (ILs). However, no theoretical investigation has been yet reported addressing the problem of the dependence of the chemical shift of xenon on the cage structure of the IL. Therefore, we present here a study of the chemical shift of (129)Xe in two ionic liquids, [bmim][Cl] and [bmim][PF6], by a combination of classical MD simulations and relativistic DFT calculations of the xenon shielding constant. The bulk structure of the two ILs is investigated by means of the radial distribution functions, paying special attention to the local structure, volume, and charge distribution of the cage surrounding the xenon atom. Relativistic DFT calculations, based on the ZORA formalism, on clusters extracted from the trajectory files of the two systems, yield an average relative chemical shift in good agreement with the experimental data. Our results demonstrate the importance of the cage volume and the average charge surrounding the xenon nucleus in the IL cage as the factors determining the effective shielding. PMID:25394282

  3. Research on effect of emission uniformity on X-band relativistic backward oscillator using conformal PIC code

    NASA Astrophysics Data System (ADS)

    Chen, Zaigao

    2016-07-01

    Explosive emission cathodes (EECs) are adopted in relativistic backward wave oscillators (RBWOs) to generate intense relativistic electron beam. The emission uniformity of the EEC can render saturation of the power generation unstable and the output mode impure. However, the direct measurement of the plasma parameters on the cathode surface is quite difficult and there are very few related numerical study reports about this issue. In this paper, a self-developed three-dimensional conformal fully electromagnetic particle in cell code is used to study the effect of emission uniformity on the X-band RBWO; the electron explosive emission model and the field emission model are both implemented in the same cathode surface, and the local field enhancement factor is also considered in the field emission model. The RBWO with a random nonuniform EEC is thoroughly studied using this code; the simulation results reveal that when the area ratio of cathode surface for electron explosive emission is 80%, the output power is unstable and the output mode is impure. When the annular EEC does not emit electron in the angle range of 30°, the RBWO can also operate normally.

  4. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  5. Ionospheric effects of the simultaneous occurrence of a solar proton event and relativistic electron precipitation as recorded by ground-based instruments at different latitudes

    NASA Astrophysics Data System (ADS)

    Shirochkov, A. V.; Makarova, L. N.; Sokolov, S. N.; Sheldon, W. R.

    2004-08-01

    The intense event of highly relativistic electron (HRE) precipitation of May 1992 has been analyzed using data from ground-based observations (riometers and VLF phase measurements). Special attention was given to some features of this event observed at high and very high geomagnetic latitudes, since this aspect of the event was not well documented in previous studies. A remarkable feature of the HRE event of May 1992 was the simultaneous occurrence of a strong solar proton event (SPE), although reliable evidence shows that the simultaneous appearance of SPE and HRE events is not unique. It was demonstrated that a meridian chain of riometers with high latitudinal resolution is an effective and low-cost (as compared with satellite observations) tool to separate the effects of solar proton and relativistic electrons in the lower ionosphere. A significant conclusion is that the polar cap area is free from relativistic electron precipitation. Other interesting aspects of this complex geophysical phenomenon are also discussed.

  6. Relativistic Electron-Electron Bremsstrahlung in Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jia; Kawai, Norio; Kawamura, Takaichi; Maegauchi, Tetsuo; Narumi, Hajime

    1982-05-01

    Transition matrices and differential cross sections for electron-electron bremsstrahlung in relativistic energy region are calculated by the lowest-order perturbation theory of quantum electrodynamics. The bremsstrahlung spectra and emission rates are evaluated for relativistic Maxwellian plasma. The results are discussed in comparison with those obtained by non-relativistic and extreme-relativistic approximations and it is noted that the relativistic effect becomes appreciable above the order of 10 keV for the electron temperature.

  7. An Assessment of the Effects of Teaching Methods on Academic Performance of Students in Accounting Courses

    ERIC Educational Resources Information Center

    Hosal-Akman, Nazli; Simga-Mugan, Can

    2010-01-01

    This study explores the effect of teaching methods on the academic performance of students in accounting courses. The study was carried out over two semesters at a well-known university in Turkey in principles of financial accounting and managerial accounting courses. Students enrolled in the courses were assigned to treatment and control groups.…

  8. Theory of the relativistic gyrotwistron

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Li, H.

    1992-04-01

    A generalized theory of the relativistic gyrotwistron, the device combining the elements of the gyroklystron and the gyro-traveling wave tube, is presented. A modulation of electrons in the input cavity is considered with the account of modulation in an electron axial momentum that is important for relativistic particles passing through a short cavity. A comprehensive study of large-signal operation of the output waveguide section in the cases of gyroresonance at the fundamental and second cyclotron harmonics has demonstrated a wide variety of electron bunching phenomena and the possibility of achieving high electron efficiency in a wide range of gyrotwistron parameters.

  9. The effect of accountable care organizations on oncology practice.

    PubMed

    Shulman, Lawrence N

    2014-01-01

    Cancer care accounts for a significant portion of the rise in health care costs, and therefore, as national efforts escalate to control cost, cancer care will be a focus of concern. Cost increases in cancer care are related to many factors, including increasing cancer incidence in an aging population, the introduction of new high-cost therapeutics, and the high cost of end-of-life care. Accountable care organizations (ACOs) have been one of the major efforts directed at controlling health care costs. How cancer care will fit into the rubric of ACOs is not entirely clear but will certainly evolve over the coming years. The oncology profession has the opportunity to play a role in this evolution or could leave the evolution to others driving the process, such as the Centers for Medicare and Medicaid Services (CMS), private payers, and ACOs. Ideally all parties will work together to provide a construct for high-value, high-quality care for patients with cancer while contributing to cost control in overall health care. PMID:24857141

  10. Parallel Douglas-Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas-Kroll contracted basis sets

    NASA Astrophysics Data System (ADS)

    de Jong, W. A.; Harrison, R. J.; Dixon, D. A.

    2001-01-01

    A parallel implementation of the spin-free one-electron Douglas-Kroll-Hess (DKH) Hamiltonian in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of a standard (nonrelativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ(X=D,T,Q,5) basis sets for H, He, B-Ne, Al-Ar, and Ga-Br is discussed. The effect of DKH at the Hartree-Fock level on the bond distances, vibrational frequencies, and total dissociation energies for CF4, SiH4, SiF4, and Br2CO is discussed. It is suggested that the predominant effect of the scalar relativistic correction on the total dissociation energy can be calculated at the Hartree-Fock level if an adequate basis set is used.

  11. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string space-time

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bakke, K.

    2016-03-01

    The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.

  12. Plasma effects on harmonic spectra generated from moderately relativistic laser-plasma interactions.

    PubMed

    Ondarza-Rovira, R; Boyd, T J M

    2012-08-01

    When intense p-polarized laser light is incident on a plasma with an electron density many times the critical density, the flux of fast electrons created by Brunel absorption excites plasma oscillations. These oscillations may in turn affect the spectrum of high harmonics by modulating the spectrum at the plasma frequency, ω(p), and by coupling to the radiation field through the steep density gradient at the plasma-vacuum interface, so generating plasma line emission (PLE) at ω(p) and harmonics of ω(p). Both aspects depend sensitively on a range of plasma and laser pulse parameters, including the initial electron density, the density profile at the plasma-vacuum interface, and the intensity, pulse shape, and pulse length of the incident laser light. These various dependences have been characterised for moderately relativistic laser-plasma interactions by means of a series of particle-in-cell (PIC) simulations. PMID:23005869

  13. Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.

    2008-01-01

    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.

  14. Structural asymmetries, relativistic beaming and orientation effects in Lobe-Dominated Quasars

    NASA Astrophysics Data System (ADS)

    Onuchukwu, C. C.; Ubachukwu, A. A.

    2013-03-01

    We have examined statistically, structural asymmetries and simple relativistic beaming/source orientation in a sample of Lobe-Dominated Quasars (LDQs) using the source size D as orientation parameter; relative core strength R as beaming parameter; arm-length ratio Q, apparent flux ratio R ∗, and bending angle Φ as asymmetric parameters. Our result for Q>1.5, based on the median value data is inconsistent with beaming scenario, where we expect stronger negative correlation for more asymmetric sources, between our beaming parameter R and orientation parameter D than for less asymmetric sources Q≤1.5. This observation indicates that structural asymmetries may depend more on intrinsic factors than beaming. Our kinematic asymmetric model of extra galactic radio sources suggests that larger (possibly older) sources are less asymmetric, which may be interpreted to be indicative of other factors other than beaming as responsible for the observed asymmetries in radio sources.

  15. Effects of initially energetic electrons on relativistic laser-driven electron plasma waves

    SciTech Connect

    Yazdanpanah, J. Anvari, A.

    2014-02-15

    In this paper, using kinetic calculations and accurate 1D2V particle-in-cell simulations, we point out the important role of initially energetic electrons of the distribution tail in the behavior of high amplitude electron plasma waves (EPWs). In the presence of these electrons, the conventional warm fluid theory (WFT) breaks at very high wave amplitudes that are still noticeably lower than the wave breaking amplitude (WBA). The fluid breakdown results in electron super-heating with respect to the adiabatic laws. Indeed, a new kinetic regime of the relativistic EPWs appears below the WBA. It is argued that the mentioned super-heating results in WBA values lower than the corresponding WFT prediction.

  16. The effect of the conductivity of drift chamber walls on the dynamics of a relativistic electron beam with a virtual cathode

    NASA Astrophysics Data System (ADS)

    Badarin, A. A.; Kurkin, S. A.; Koronovskii, A. A.; Hramov, A. E.

    2015-12-01

    The effect of conductivity of walls of a drift chamber of the axial vircator on the behavior of a relativistic electron beam with a supercritical current was investigated. The dynamics of a relativistic electron beam is shown to be characterized by the formation of a virtual cathode of complex structure with two or three potential minima in the azimuthal direction, which rotate around the drift space axis. It is established that variation in the conductivity of drift chamber walls leads to stepwise switching of the generation frequency and a sharp change in the output power. Dependences of the output radiation power of the investigated vircator system on the conductivity of drift chamber walls for two characteristic regimes of the dynamics of a relativistic electron beam were obtained.

  17. Nonrelativistic nucleon effective masses in nuclear matter: Brueckner-Hartree-Fock model versus relativistic Hartree-Fock model

    NASA Astrophysics Data System (ADS)

    Li, A.; Hu, J. N.; Shang, X. L.; Zuo, W.

    2016-01-01

    The density and isospin dependencies of nonrelativistic nucleon effective mass (mN*) are studied, which is a measure of the nonlocality of the single particle (s.p.) potential. It can be decoupled as the so-called k mass (mk*, i.e., the nonlocality in space) and E mass (mE*, i.e., the nonlocality in time). Both k mass and E mass are determined and compared by using the latest versions of the nonrelativistic Brueckner-Hartree-Fock (BHF) model and the relativistic Hartree-Fock (RHF) model. The latter is achieved based on the corresponding Schrödinger equivalent s.p. potential in a relativistic framework. We demonstrate the origins of different effective masses and discuss also their neutron-proton splitting in the asymmetric matter in different models. We find that the neutron-proton splittings of both the k mass and the E mass have the same asymmetry dependencies at the densities considered; namely, mk,n *>mk,p * and mE,p *>mE,n * . However, the resulting splittings of nucleon effective masses could have different asymmetry dependencies in these two models because they could be dominated either by the k mass (then we have mn*>mp* in the BHF model), or by the E mass (then we have mp*>mn* in the RHF model). The isospin splitting in the BHF model is more consistent with the recent analysis from the nucleon-nucleus-scattering data, while the small E mass mE* in the RHF case as a result of the missing ladder summation finally leads to an opposite splitting behavior.

  18. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  19. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    SciTech Connect

    Wallin, Erik; Gonoskov, Arkady; Marklund, Mattias

    2015-03-15

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  20. Effects of momentum conservation and flow on angular correlations observed in experiments at the BNL Relativistic Heavy Ion Collider

    SciTech Connect

    Pratt, Scott; Schlichting, Soeren; Gavin, Sean

    2011-08-15

    Correlations of azimuthal angles observed at the Relativistic Heavy Ion Collider have gained great attention due to the prospect of identifying fluctuations of parity-odd regions in the field sector of QCD. Whereas the observable of interest related to parity fluctuations involves subtracting opposite-sign from same-sign correlations, the STAR collaboration reported the same-sign and opposite-sign correlations separately. It is shown here how momentum conservation combined with collective elliptic flow contributes significantly to this class of correlations, although not to the difference between the opposite- and same-sign observables. The effects are modeled with a crude simulation of a pion gas. Although the simulation reproduces the scale of the correlation, the centrality dependence is found to be sufficiently different in character to suggest additional considerations beyond those present in the pion gas simulation presented here.

  1. Which is the quantum decay law of relativistic particles?

    NASA Astrophysics Data System (ADS)

    Alavi, S. A.; Giunti, C.

    2015-03-01

    We discuss the relation between the quantum-mechanical survival probability of an unstable system in motion and that of the system at rest. The usual definition of the survival probability which takes into account only the time evolution of an unstable system leads to a relation between the survival probability of the system in motion and that of the system at rest which is different from the standard relation based on relativistic time dilation. This approach led other authors to claim non-standard quantum-mechanical effects which are in clear contradiction with Special Relativity. We show that an appropriate relativistic definition of the survival probability which takes into account also the space evolution of an unstable system leads to the standard relation between the survival probability of the system in motion and that of the system at rest, in agreement with Special Relativity. We present a rigorous derivation of this result based on a wave packet treatment.

  2. Returns to Education: Accounting for Enrolment and Completion Effects

    ERIC Educational Resources Information Center

    Hérault, Nicolas; Zakirova, Rezida

    2015-01-01

    This paper contributes to the literature by separately analysing the course enrolment and completion effects of vocational education and training (VET) as well as higher education. Moreover, we investigate the persistence of these wage effects over time while controlling for two potential selection biases. We take advantage of the Longitudinal…

  3. Inverse Compton Scattering in Mildly Relativistic Plasma

    NASA Technical Reports Server (NTRS)

    Molnar, S. M.; Birkinshaw, M.

    1998-01-01

    We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.

  4. Teacher Effects, Value-Added Models, and Accountability

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros

    2014-01-01

    Background: In the last decade, the effects of teachers on student performance (typically manifested as state-wide standardized tests) have been re-examined using statistical models that are known as value-added models. These statistical models aim to compute the unique contribution of the teachers in promoting student achievement gains from grade…

  5. Facilitative Orthographic Neighborhood Effects: The SERIOL Model Account

    ERIC Educational Resources Information Center

    Whitney, Carol; Lavidor, Michal

    2005-01-01

    A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the…

  6. 76 FR 35295 - Delivering an Efficient, Effective, and Accountable Government

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ..., 2011. [FR Doc. 2011-15181 Filed 6-15-11; 11:15 am] Billing code 3195-W1-P ... June 16, 2011 Part III The President Executive Order 13576--Delivering an Efficient, Effective, and... / Thursday, June 16, 2011 / Presidential Documents#0;#0; #0; #0;Title 3-- #0;The President ] Executive...

  7. Laser hosing in relativistically hot plasmas.

    PubMed

    Li, G; Mori, W B; Ren, C

    2013-04-12

    Electron response in an intense laser is studied in the regime where the electron temperature is relativistic. Equations for laser envelope and plasma density evolution, both in the electron plasma wave and ion acoustic wave regimes, are rederived from the relativistic fluid equations to include relativistic plasma temperature effect. These equations are used to study short-pulse and long-pulse laser hosing instabilities using a variational method approach. The analysis shows that relativistic electron temperatures reduce the hosing growth rates and shift the fastest-growing modes to longer wavelengths. These results resolve a long-standing discrepancy between previous nonrelativistic theory and simulations or experiments on hosing. PMID:25167277

  8. Relativistic effects for the reaction Sg + 6 CO → Sg(CO){sub 6}: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO){sub 6}

    SciTech Connect

    Malli, Gulzari L.

    2015-02-14

    Our ab initio all-electron fully relativistic Dirac–Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO){sub 6} as −7.39 and −6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO){sub 6} are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg–C and C–O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO){sub 6} is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO){sub 6}, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO){sub 6}.

  9. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6.

    PubMed

    Malli, Gulzari L

    2015-02-14

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO)6 as -7.39 and -6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO)6 are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg-C and C-O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO)6 is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO)6, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO)6. PMID:25681910

  10. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.

    2015-02-01

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO)6 as -7.39 and -6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO)6 are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ˜0.40 eV is marginal. The Sg-C and C-O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ˜14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ˜7 kJ/mol due to relativistic effects to the mean energy of Sg(CO)6 is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO)6, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO)6.

  11. Relativistic Density Functional Theory with Optimized Effective Potential and Self-Interaction Correction : Application to Atomic Structure Calculations ( Z = 2 to 106)

    NASA Astrophysics Data System (ADS)

    Tong, X. M.; Chu, S. I.

    1998-05-01

    We introduce a self-interaction-free relativistic density functional theory (DFT) for the treatment of both the static and dynamical properties of many-electron atoms (X.M. Tong and S.I. Chu, Phys. Rev. A57), 855 (1998).. The theory is based on the extension of our recent development of non-relativistic DFT treatment (X.M. Tong and S.I. Chu, Phys. Rev. A55), 3406 (1997). with optimized effective potential (OEP) and self-interaction-corrction (SIC) to the relativistic domain. The relativistic OEP/SIC procedure yields orbital-independent single- particle local potential with proper long-range Coulombic (-1/r) behavior and is capable of providing accurate description of the ground, excited, and autoionizing states. The method is applied to the atomic structure calculations of atoms with Z = 2 to 106. Good agreement with the experimental data for both the ionization potentials (obtained from the highest occupied orbital energies) and individual orbital binding energies is obtained across the periodic table. To our knowledage, this is the first DFT calculation that has achieved such a quantitative accuracy. Detailed results will be presented.

  12. Indirect relativistic bridge and substituent effects from the 'heavy' environment on the one-bond and two-bond (13)C-(1)H spin-spin coupling constants.

    PubMed

    Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B

    2016-01-01

    Indirect relativistic bridge effect (IRBE) and indirect relativistic substituent effect (IRSE) induced by the 'heavy' environment of the IV-th, V-th and VI-th main group elements on the one-bond and geminal (13)C-(1)H spin-spin coupling constants are observed, and spin-orbit parts of these two effects were interpreted in terms of the third-order Rayleigh-Schrödinger perturbation theory. Both effects, IRBE and IRSE, rapidly increase with the total atomic charge of the substituents at the coupled carbon. The accumulation of IRSE for geminal coupling constants is not linear with respect to the number of substituents in contrast to the one-bond couplings where IRSE is an essentially additive quantity. PMID:26352434

  13. Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jin; Zhao, Wen; Zhang, Yang; Zhu, Zong-Hong

    2016-01-01

    Relic gravitational waves (RGWs) generated in the early universe form a stochastic GW background, which can be directly probed by measuring the timing residuals of millisecond pulsars. In this paper, we investigate the constraints on the RGWs and on the inflationary parameters by the observations of current and potential future pulsar timing arrays. In particular, we focus on effects of various cosmic phase transitions (e.g., e+e- annihilation, QCD transition, and supersymmetry breaking) and relativistic free-streaming gases (neutrinos and dark fluids) in the general scenario of the early universe, which have been neglected in the previous works. We find that the phase transitions can significantly damp the RGWs in the sensitive frequency range of pulsar timing arrays, and the upper limits of the tensor-to-scalar ratio r increase by a factor ˜2 for both current and future observations. However, the effects of free-steaming neutrinos and dark fluids are all too small to be detected. Meanwhile, we find that, if the effective equation of state w in the early universe is larger than 1 /3 , i.e., deviating from the standard hot big bang scenario, the detection of RGWs by pulsar timing arrays becomes much more promising.

  14. Dynamics of Relativistic Magnetized Explosions

    NASA Astrophysics Data System (ADS)

    Lyutikov, M.

    2001-11-01

    The dynamics of (i) relativistic blast waves propagating through magnetized medium, (ii) magnetic explosions (when most energy is released in a form of toroidal magnetic field) is considered taking into account possible inhomogeneities of density and external magnetic field and additional energy supply. Self-similar solutions for the internal structure in the bulk flow and in the strongly magnetized sheath near contact discontinuity are found.

  15. On Alleviating the Debilitating Effects of Accountability on Bargaining: Authority and Self-Monitoring.

    ERIC Educational Resources Information Center

    Roloff, Michael E.; Campion, Douglas E.

    1987-01-01

    Confirms the debilitating effects of accountability on bargaining. Finds that (1) when accountable, bargainers with authority strayed further from group's position but deviated less on their final offer; (2) delegated authority significantly reduced the number of deadlocks; and (3) high self monitors strayed less from group's position but deviated…

  16. The Effects of Increased Accountability Standards on Graduation Rates for Students with Disabilities

    ERIC Educational Resources Information Center

    Moore, Mitzi Lee

    2012-01-01

    This research sought to determine if unintended effects of increased accountability standards on graduation rates for students with disabilities existed. Data from one southeastern state were utilized in order to determine if graduation rates were impacted as a result of higher accountability standards. In addition, administrator attitudes on…

  17. The Effect of Web-Based Collaborative Learning Methods to the Accounting Courses in Technical Education

    ERIC Educational Resources Information Center

    Cheng, K. W. Kevin

    2009-01-01

    This study mainly explored the effect of applying web-based collaborative learning instruction to the accounting curriculum on student's problem-solving attitudes in Technical Education. The research findings and proposed suggestions would serve as a reference for the development of accounting-related curricula and teaching strategies. To achieve…

  18. "Catalyst Data": Perverse Systemic Effects of Audit and Accountability in Australian Schooling

    ERIC Educational Resources Information Center

    Lingard, Bob; Sellar, Sam

    2013-01-01

    This paper examines the perverse effects of the new accountability regime central to the Labor government's national reform agenda in schooling. The focus is on National Assessment Program -- Literacy and Numeracy (NAPLAN) results that now act as "catalyst data" and are pivotal to school and system accountability. We offer a case…

  19. Assessing the Comparative Effectiveness of Teaching Undergraduate Intermediate Accounting in the Online Classroom Format

    ERIC Educational Resources Information Center

    Rich, Anne J.; Dereshiwsky, Mary I.

    2011-01-01

    This paper presents the results of a study assessing the comparative effectiveness of teaching an undergraduate intermediate accounting course in the online classroom format. Students in a large state university were offered an opportunity to complete the first course in intermediate accounting either online or on-campus. Students were required to…

  20. Framework for an Effective Assessment and Accountability Program: The Philadelphia Example

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Chester, Mitchell D.; Schlesinger, Michael D.

    2004-01-01

    The purpose of this article is to put in the hands of researchers, practitioners, and policy makers a powerful framework for building and studying the effects of high-quality assessment and accountability programs. The framework is illustrated through a description and analysis of the assessment and accountability program in the School District of…

  1. Cramming: The Effects of School Accountability on College-Bound Students. Working Paper 7

    ERIC Educational Resources Information Center

    Donovan, Colleen; Figlio, David; Rush, Mark

    2007-01-01

    This paper presents the first evidence of the effects of school accountability systems on the long-term human capital development of high-performing, college-bound students. The results are mixed. On the one hand, the evidence is consistent that school accountability sanction threats are associated with changes in student study habits. Students…

  2. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  3. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  4. Generally Contracted Valence-Core/Valence Basis Sets for Use with Relativistic Effective Core Potentials and Spin-Orbit Coupling Operators

    SciTech Connect

    Ermler, Walter V.; Tilson, Jeffrey L.

    2012-12-15

    A procedure for structuring generally contracted valence-core/valence basis sets of Gaussian-type functions for use with relativistic effective core potentials (gcv-c/v-RECP basis sets) is presented. Large valence basis sets are enhanced using a compact basis set derived for outer core electrons in the presence of small-core RECPs. When core electrons are represented by relativistic effective core potentials (RECPs), and appropriate levels of theory, these basis sets are shown to provide accurate representations of atomic and molecular valence and outer-core electrons. Core/valence polarization and correlation effects can be calculated using these basis sets through standard methods for treating electron correlation. Calculations of energies and spectra for Ru, Os, Ir, In and Cs are reported. Spectroscopic constants for RuO2+, OsO2+, Cs2 and InH are calculated and compared with experiment.

  5. Colorful Accounting

    ERIC Educational Resources Information Center

    Warrick, C. Shane

    2006-01-01

    As instructors of accounting, we should take an abstract topic (at least to most students) and connect it to content known by students to help increase the effectiveness of our instruction. In a recent semester, ordinary items such as colors, a basketball, and baseball were used to relate the subject of accounting. The accounting topics of account…

  6. Relativistic corrections to fractal analyses of the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Célérier, M.-N.; Thieberger, R.

    2001-02-01

    The effect of curvature on the results of fractal analyses of the galaxy distribution is investigated. We show that, if the universe satisfies the criteria of a wide class of parabolic homogeneous models, the observers measuring the fractal index with the integrated conditional density procedure may use the Hubble formula, without having to allow for curvature, out to distances of 600 Mpc, and possibly far beyond. This contradicts a previous claim by Ribeiro (\\cite{r33}) that, in the Einstein-de Sitter case, relativistic corrections should be taken into account at much smaller scales. We state for the class of cosmological models under study, and give grounds for conjecture for others, that the averaging procedure has a smoothing effect and that, therefore, the redshift-distance relation provides an upper limit to the relativistic corrections involved in such analyses.

  7. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Gauss, Jürgen; Stanton, John F.

    2013-08-01

    A cost-effective treatment of scalar-relativistic effects on nuclear magnetic shieldings based on the spin-free exact-two-component theory in its one-electron variant (SFX2C-1e) is presented. The SFX2C-1e scheme gains its computational efficiency, in comparison to the four-component approach, from a focus on spin-free contributions and from the elimination of the small component. For the calculation of nuclear magnetic shieldings, the separation of spin-free and spin-dependent terms in the parent four-component theory is carried out here for the matrix representation of the Dirac equation in terms of a restricted-magnetically balanced gauge-including atomic orbital basis. The resulting spin-free four-component matrix elements required to calculate nuclear magnetic shieldings are then used to construct the corresponding SFX2C-1e Hamiltonian and its perturbed counterpart in the context of SFX2C-1e analytic derivative theory. To demonstrate the applicability of the approach, we report coupled-cluster calculations for prototypical problems such as the 17O shieldings of transition-metal oxo complexes (MO_4^{2-}, M = Cr, Mo, and W) and the 129Xe shieldings of xenon fluorides (XeF2, XeF4, and XeF6).

  8. Sea-Quark Flavor Asymmetry in the Nucleon from a Relativistic Analysis of the Drell-Yan Scattering off Nuclei

    NASA Astrophysics Data System (ADS)

    Molochkov, Alexander

    The study presented in this paper shows that accounting for the relativistic structure of the deuteron allows to explain the ratio of the Drell-Yan pair production cross-sections at the low Bjorken x off the deuteron and the proton. Thus, the sea quark distributions in the nucleon should be studied with accounting for the effects of the relativistic structure of the deuteron. The suggested approach reduces theoretical uncertainty in extracting the ratio bar {u}/bar {d} from the data and it is important for the clarification of the nature of the sea quark asymmetry in the nucleon.

  9. Comparative SEU sensitivities to relativistic heavy ions

    SciTech Connect

    Koga, R.; Crain, S.H.; Crain, W.R.; Crawford, K.B.; Hansel, S.J.

    1998-12-01

    SEU sensitivity of microcircuits to relativistic heavy ions is compared to that measured with low-energy ions of comparable LET values. Multiple junction charge collection in a complex circuit seems to mask the effect of varying charge generations due to different iron track structures. Heavy ions at sub-relativistic speeds may generate nuclear fragments, sometimes resulting in SEUs.

  10. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  11. Search for parity and time reversal violating effects in HgH: Relativistic coupled-cluster study

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K.; Vaval, Nayana; Pal, Sourav

    2016-03-01

    The high effective electric field (Eeff) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation requires a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large Eeff value (123.2 GV/cm) which makes it a potential candidate for the next generation eEDM experiment. Our study also reveals that it has a large scalar-pseudoscalar (S-PS) P,T -violating interaction constant, Ws = 284.2 kHz. To judge the accuracy of the obtained results, we have calculated parallel and perpendicular magnetic hyperfine structure (HFS) constants and compared with the available experimental values. The results of our calculation are found to be in nice agreement with the experimental values. Therefore, by looking at the HFS results, we can say that both Eeff and Ws values are also very accurate. Further, We have derived the relationship between these quantities and the ratio which will help to get model independent value of eEDM and S-PS interaction constant.

  12. Jet quenching effects on the direct, elliptic, and triangular flow at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Andrade, R. P. G.; Noronha, J.; Denicol, Gabriel S.

    2014-08-01

    In this paper we investigate how the energy and momentum deposited by partonic dijets in the quark-gluon plasma (QGP) may affect the direct, elliptic, and triangular flow of low (and intermediate) pT hadrons in central Au +Au collisions at the BNL Relativistic Heavy Ion Collider. The dijets are modeled as external sources in the energy-momentum conservation equations for hydrodynamics, which are solved on an event-by-event basis within the ideal-fluid approximation. We focus our investigation at midrapidity and solve the hydrodynamic equations by imposing boost invariance. Differential anisotropic flow coefficients for pT≳1GeV are found to be significantly enhanced if the dijets deposit on average more than 12 GeV in the QGP (or more than 6 GeV per jet). Because this extra energy and momentum added to the medium perturbs the geometry-induced hydrodynamic expansion, the correlation between the v2 and v3 coefficients (for pT≳1GeV) and their corresponding initial eccentricities are considerably weakened. In addition, we argue that the extra amount of direct flow induced by dijets may be quantified by comparing the azimuthal dependence of dihadron correlations in dijet events with the corresponding quantity obtained in events without dijets. This comparison could be used to give a rough estimate of the magnitude of the effective coupling between the jets and the medium.

  13. Search for parity and time reversal violating effects in HgH: Relativistic coupled-cluster study.

    PubMed

    Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav

    2016-03-28

    The high effective electric field (Eeff) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation requires a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large Eeff value (123.2 GV/cm) which makes it a potential candidate for the next generation eEDM experiment. Our study also reveals that it has a large scalar-pseudoscalar (S-PS) P,T-violating interaction constant, Ws = 284.2 kHz. To judge the accuracy of the obtained results, we have calculated parallel and perpendicular magnetic hyperfine structure (HFS) constants and compared with the available experimental values. The results of our calculation are found to be in nice agreement with the experimental values. Therefore, by looking at the HFS results, we can say that both Eeff and Ws values are also very accurate. Further, We have derived the relationship between these quantities and the ratio which will help to get model independent value of eEDM and S-PS interaction constant. PMID:27036448

  14. Spatiotemporal evolution of high power laser pulses in relativistic magnetized inhomogeneous plasmas

    SciTech Connect

    Bokaei, B.; Niknam, A. R. Imani, E.

    2015-09-15

    In this work, the spatiotemporal evolution of Gaussian laser pulse propagated through a plasma is investigated in the presence of an external axial magnetic field. The coupled equations of self-focusing and self-compression are obtained via paraxial approximation by taking into account the relativistic nonlinearity. The effect of axial magnetic field on simultaneously relativistic self-focusing and self-compression of the laser pulse is studied for homogeneous and inhomogeneous plasmas. The results show that the simultaneous use of both axial magnetic field and density ramp-up leads to generate pulses with the smallest spot size and shortest compression length.

  15. Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Liska, Matthew T. P.

    2015-10-01

    In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.

  16. Accounting for Accountability.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Cooperative Accountability Project.

    This publication reports on two Regional Educational Accountability Conferences on Techniques sponsored by the Cooperative Accountability Project. Accountability is described as an "emotionally-charged issue" and an "operationally demanding concept." Overviewing accountability, major speakers emphasized that accountability is a means toward…

  17. Hot relativistic winds and the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Fujimura, F. S.; Kennel, C. F.

    1981-01-01

    Efforts to formulate a self-consistent model of pulsar magnetospheres which links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula are reviewed. The use of a relativistic MHD wind is recommended to account for global photon emission and the invisibility of the method of plasma transport. Consideration of a magnetic monopole relativistic wind due to an axially symmetric aligned rotator is combined with calculations of the initial velocity of the wind to show that the flow velocity in such a model will never exceed Mach 1. Extending the solution to the case of a hot relativistic wind at supersonic speeds is noted to yield results consistent with observations of the Crab Nebula

  18. First-order post-Newtonian analysis of the relativistic tidal effects for satellite gradiometry and the Mashhoon-Theiss anomaly

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Paik, Ho Jung

    2016-02-01

    With continuous advances in technology, future satellite gradiometry missions will be capable of performing precision relativistic experiments and imposing constraints on modern gravity theories. To this end, the full first-order post-Newtonian tidal tensor under inertially guided and Earth-pointing local frames along post-Newtonian orbits is worked out. The physical picture behind the "Mashhoon-Theiss anomaly" is explained at the post-Newtonian level. The relativistic precession of the local frame with respect to the sidereal frame will produce modulations of Newtonian tidal forces along certain bases, which gives rise to two different kinds of secular tidal tensors. The measurements of the secular tidal force from the frame-dragging effect is also discussed.

  19. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches.

    PubMed

    Vícha, Jan; Novotný, Jan; Straka, Michal; Repisky, Michal; Ruud, Kenneth; Komorovsky, Stanislav; Marek, Radek

    2015-10-14

    The role of various factors (structure, solvent, and relativistic treatment) was evaluated for square-planar 4d and 5d transition-metal complexes. The DFT method for calculating the structures was calibrated using a cluster approach and compared to X-ray geometries, with the PBE0 functional (def2-TZVPP basis set) providing the best results, followed closely by the hybrid TPSSH and the MN12SX functionals. Calculations of the NMR chemical shifts using the two-component (2c, Zeroth-Order Regular Approximation as implemented in the ADF package) and four-component (4c, Dirac-Coulomb as implemented in the ReSpect code) relativistic approaches were performed to analyze and demonstrate the importance of solvent corrections (2c) as well as a proper treatment of relativistic effects (4c). The importance of increased exact-exchange admixture in the functional (here PBE0) for reproducing the experimental data using the current implementation of the 2c approach is partly rationalized as a compensation for the missing exchange-correlation response kernel. The kernel contribution was identified to be about 15-20% of the spin-orbit-induced NMR chemical shift, ΔδSO, which roughly corresponds to an increase in ΔδSO introduced by the artificially increased exact-exchange admixture in the functional. Finally, the role of individual effects (geometry, solvent, relativity) in the NMR chemical shift is discussed in selected complexes. Although a fully relativistic DFT approach is still awaiting the implementation of GIAOs for hybrid functionals and an implicit solvent model, it nevertheless provides reliable NMR chemical shift data at an affordable computational cost. It is expected to outperform the 2c approach, in particular for the calculation of NMR parameters in heavy-element compounds. PMID:26344822

  20. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    NASA Astrophysics Data System (ADS)

    Vasconcellos, C. A. Zen

    2015-12-01

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  1. Relativistic electron and ion dust charging currents

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2009-09-15

    A first theoretical attempt is made to present a relativistic generalization of the well-known orbit-limited motion theory. The appropriate relativistic (electron and ion) dust charging currents are derived. The nonlinear electrostatic potential is then expressed in terms of the variable dust charge and we take advantage of this new transcendental relation to investigate briefly the effects of relativistic charge carriers. As the relativistic character of the plasma increases, it becomes evident that certain negative values of the dust charge can never be achieved as increasingly larger values of the nonlinear potential are involved. The obtained formulas bring a possibility to build theories of nonlinear collective process in relativistic dusty plasmas.

  2. Plasma effects on the spontaneous emission of synchrotron radiation from weakly relativistic electrons

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Wu, C. S.

    1977-01-01

    A method for computing the spectral emissivity of spontaneous synchrotron radiation is discussed. The Klimontovich (1967) formalism in plasma kinetic theory is adopted in which an ensemble average of the microscopically emitted power is considered. The present method clarifies the meaning of the random phase approximation which is imposed in several existing theories of synchrotron radiation. Both the effects of dielectric polarization and two-particle correlations are included in the present discussion. The theory is applied to the case of a plasma in thermal equilibrium, for which it is shown that the effect of pair correlations on the emissivity vanishes. On the other hand, the effect of dielectric polarization is studied numerically for a wide range of parameters.

  3. Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions

    SciTech Connect

    Hirano, Tetsufumi; Nara, Yasushi

    2009-06-15

    We study effects of eccentricity fluctuations on the elliptic flow coefficient v{sub 2} at midrapidity in both Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quark gluon plasma phase and a hadronic transport model for the hadronic matter. For initial conditions in hydrodynamic simulations, both the Glauber model and the color glass condensate model are employed to demonstrate the effect of initial eccentricity fluctuations originating from the nucleon position inside a colliding nucleus. The effect of eccentricity fluctuations is modest in semicentral Au+Au collisions, but significantly enhances v{sub 2} in Cu+Cu collisions.

  4. Accounting for One-Group Clustering in Effect-Size Estimation

    ERIC Educational Resources Information Center

    Citkowicz, Martyna; Hedges, Larry V.

    2013-01-01

    In some instances, intentionally or not, study designs are such that there is clustering in one group but not in the other. This paper describes methods for computing effect size estimates and their variances when there is clustering in only one group and the analysis has not taken that clustering into account. The authors provide the effect size…

  5. The Effects of Distance Education Materials on the Traditional Accounting Course

    ERIC Educational Resources Information Center

    Bozok, Mehmet Sinan

    2011-01-01

    In this study, under the assumption of the distance education materials used in a traditional accounting course as supporting tools, the effect on the student success is investigated. Results show us positive effect on the student success according to the grades. It is not only beneficial to the students but also to the instructors. (Contains 1…

  6. Electron cyclotron wave generation by relativistic electrons

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1994-01-01

    We show that an energetic electron distribution which has a temperature anisotropy (T perpendicular to b is greater than T parallel to b), or which is gyrating about a DC magnetic field, can generate electron cyclotron waves with frequencies below the electron cyclotron frequency. Relativistic effects are included in solving the dispersion equation and are shown to be quantitatively important. The basic idea of the mechanism is the coupling of the beam mode to slow waves. The unstable electron cyclotron waves are predominantly electromagnetic and right-hand polarized. For a low-density plasma in which the electron plasma frequency is less than the electron cyclotron frequency, the excited waves can have frequencies above or below the electron plasma frequency, depending upon the parameters of the energetic electron distribution. This instability may account for observed Z mode waves in the polar magnetosphere of the Earth and other planets.

  7. Effect of relativistic acceleration on localized two-mode Gaussian quantum states

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Lorek, Krzysztof; Checińska, Agata; Smith, Alexander R. H.; Mann, Robert B.; Dragan, Andrzej

    2016-06-01

    We study how an arbitrary Gaussian state of two localized wave packets, prepared in an inertial frame of reference, is described by a pair of uniformly accelerated observers. We explicitly compute the resulting state for arbitrarily chosen proper accelerations of the observers and independently tuned distance between them. To do so, we introduce a generalized Rindler frame of reference and analytically derive the corresponding state transformation as a Gaussian channel. Our approach provides several new insights into the phenomenon of vacuum entanglement such as the highly nontrivial effect of spatial separation between the observers including sudden death of entanglement. We also calculate the fidelity of the two-mode channel for nonvacuum Gaussian states and obtain bounds on classical and quantum capacities of a single-mode channel. Our framework can be directly applied to any continuous variable quantum information protocol in which the effects of acceleration or gravity cannot be neglected.

  8. Gate Tunable Relativistic Mass and Berry's phase in Topological Insulator Nanoribbon Field Effect Devices

    PubMed Central

    Jauregui, Luis A.; Pettes, Michael T.; Rokhinson, Leonid P.; Shi, Li; Chen, Yong P.

    2015-01-01

    Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point, and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices. PMID:25677703

  9. Gate Tunable Relativistic Mass and Berry's phase in Topological Insulator Nanoribbon Field Effect Devices

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Pettes, Michael T.; Rokhinson, Leonid P.; Shi, Li; Chen, Yong P.

    2015-02-01

    Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point, and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices.

  10. Empirical Analysis of Retirement Pension and IFRS Adoption Effects on Accounting Information: Glance at IT Industry

    PubMed Central

    2014-01-01

    This study reviews new pension accounting with K-IFRS and provides empirical changes in liability for retirement allowances with adoption of K-IFRS. It will help to understand the effect of pension accounting on individual firm's financial report and the importance of public announcement of actuarial assumptions. Firms that adopted K-IFRS had various changes in retirement liability compared to the previous financial report not based on K-IFRS. Their actuarial assumptions for pension accounting should be announced, but only few of them were published. Data analysis shows that the small differences of the actuarial assumption may result in a big change of retirement related liability. Firms within IT industry also have similar behaviors, which means that additional financial regulations for pension accounting are recommended. PMID:25013868

  11. Empirical analysis of retirement pension and IFRS adoption effects on accounting information: glance at IT industry.

    PubMed

    Kim, JeongYeon

    2014-01-01

    This study reviews new pension accounting with K-IFRS and provides empirical changes in liability for retirement allowances with adoption of K-IFRS. It will help to understand the effect of pension accounting on individual firm's financial report and the importance of public announcement of actuarial assumptions. Firms that adopted K-IFRS had various changes in retirement liability compared to the previous financial report not based on K-IFRS. Their actuarial assumptions for pension accounting should be announced, but only few of them were published. Data analysis shows that the small differences of the actuarial assumption may result in a big change of retirement related liability. Firms within IT industry also have similar behaviors, which means that additional financial regulations for pension accounting are recommended. PMID:25013868

  12. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    PubMed

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-01-01

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858

  13. Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies

    PubMed Central

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-01-01

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858

  14. Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-01

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  15. Effect of quark gluon plasma on charm quark produced in relativistic heavy ion collision

    NASA Astrophysics Data System (ADS)

    Younus, Mohammed; Srivastava, Dinesh K.; Bass, Steffen A.

    2014-05-01

    Charm quarks are produced mainly in the pre-equilibrium stage of heavy ion collision and serve as excellent probes entering the thermalized medium. They come out with altogether different momenta and energies and fragments into D-mesons and decay into non-photonic electrons which are observed experimentally. Here we present the effect of QGP on charm quark production using two different models: first one based on Wang-Huang-Sarcevic model of multiple scattering of partons and the second one is based on Parton Cascade Model with Boltzmann transport equation used for charm quark evolution in QGP.

  16. The effects of angular momentum conservation in relativistic heavy ion collisions

    SciTech Connect

    Becattini, F.; Piccinini, F.

    2007-11-19

    The effects of angular momentum conservation in peripheral heavy ion collisions at very high energy are investigated. If a sufficiently large fraction of the initial angular momentum of the interaction region is converted into intrinsic angular momentum, the azimuthal anisotropy (elliptic flow) gets enhanced and the transverse momentum spectra turn out to be further broadened. A distinctive signature of the existence of spinning subregions in the plasma is the generation of a net polarization of the emitted hadrons with peculiar kinematical features. These phenomena might be possibly observed at LHC, where the initial angular momentum of the colliding ions will be about a factor 30 larger than at RHIC.

  17. Relativistic theory of astrometric observations. III. Radio interferometry of remote sources

    SciTech Connect

    Pavlov, N.V.

    1985-01-01

    A relativistic VLBI equation and relativistic expressions for the delay time and the interference frequency are derived in the post-Newtonian approximation of the GTR. In the equations obtained all the relativistic corrections due to the solar gravitational field and the motion of the terrestrial observer are taken into account within the limits of the adopted calculation accuracy.

  18. A confirmation of the general relativistic prediction of the Lense-Thirring effect.

    PubMed

    Ciufolini, I; Pavlis, E C

    2004-10-21

    An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error. PMID:15496915

  19. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  20. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  1. Estimation of intrabeam scattering effects for Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Zisman, M.S.

    1988-05-01

    The effects of intrabeam scattering on the beam dimensions and energy spread of a 100 GeV/amu gold beam are estimated. After 10 hours, growth of the transverse emittance is about a factor of three, with a similar growth in momentum spread. These findings are in agreement with earlier results of Parzen. Sensitivity of the results to the initial beam conditions is explored. In addition, calculations have been carried out for the case of high frequency (214 MHz) RF system. In this case the growth is more severe, giving a fivefold increase in transverse emittance. To ensure that the momentum spread after 10 hours does not exceed the RF momentum acceptance, a voltage in excess of 32 MV would be needed. 5 refs., 4 figs., 3 tabs.

  2. The General Relativistic Two Body Problem and the Effective One Body Formalism

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    A new analytical approach to the motion and radiation of (comparable mass) binary systems has been introduced in 1999 under the name of Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

  3. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei

    NASA Astrophysics Data System (ADS)

    Aucar, Ignacio A.; Gómez, Sergio S.; de Azúa, Martín C. Ruiz; Giribet, Claudia G.

    2012-05-01

    A theoretical study of the relation between the relativistic formulation of the nuclear magnetic shielding and spin-rotation tensors is presented. To this end a theoretical expression of the relativistic spin-rotation tensor is formulated, considering a molecular Hamiltonian of relativistic electrons and non-relativistic nuclei. Molecular rotation effects are introduced considering the terms of the Born-Oppenheimer decomposition, which couple the electrons and nuclei dynamics. The loss of the simple relation linking both spectral parameters in the non-relativistic formulation is further analyzed carrying out a perturbative expansion of relativistic effects by means of the linear response within the elimination of the small component approach. It is concluded that relativistic effects on the spin-rotation tensor are less important than those of the nuclear magnetic shielding tensor.

  4. Ab initio study on ferroelectric instability induced by relativistic effects in PbTe

    NASA Astrophysics Data System (ADS)

    Kim, Jinwoong; Jhi, Seung-Hoon

    2014-03-01

    A recent study [E. S. Bozin et al., Science 330, 1660 (2010)] reported unusual ferroelectric instability in lead chalcogenides at heating, which is contrast to typical ferroelectric transitions that occur at cooling. This study explains the emergence of local dipole formation due to the softening of transverse optical (TO) phonon modes. However, standard first-principles calculations do not support the phonon softening (imaginary frequency). Here, we present that the spin-orbit interaction should be included in the calculations to correctly produce the instability and that, as such, thermal expansion leads to the softening in TO phonon modes. Another controversial finding in experiment that the frequency of TO mode is finite and increases with temperatures can be explained if anharmonic effects are considered together with the spin-orbit interaction. Our study shows that the spin-orbit interaction can be critical for the structural stability and thus affect the thermoelectric or structural phase transition. This work was supported by the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2012-C2-68).

  5. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  6. The Effective-One-Body Approach to the General Relativistic Two Body Problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Nagar, Alessandro

    The two-body problem in General Relativity has been the subject of many analytical investigations. After reviewing some of the methods used to tackle this problem (and, more generally, the N-body problem), we focus on a new, recently introduced approach to the motion and radiation of (comparable mass) binary systems: the Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

  7. A Possible Test of the J2c-2 General Relativistic Orbital Effects with Juno

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2014-03-01

    For the first time, the 1PN J2c-2 effects could be measured by the Juno mission in the gravitational field of Jupiter during its nearly yearlong science phase thanks to the high eccentricity (e = 0.947) of the spacecraft's orbit and to the huge oblateness of Jupiter (J2 = 1.47 × 10-2). A numerical analysis shows that the expected J2c-2 range-rate signal for Juno should be as large as ≈ 280 microns per second (μm s-1) during a typical 6 h pass at its closest approach to Jupiter. The radio science apparatus of Juno should reach an accuracy in Doppler range-rate measurements of ≈ 1 - 5 μm s-1 over such passes. The range-rate signature of the classical even zonal perturbations is different from the J2c-2 one. Thus, further investigations, based on covariance analyses of simulated Doppler data and dedicated parameters estimation, are worth of further consideration.

  8. Relativistically strong Langmuir turbulence in the kinetic regime

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2011-08-15

    Using a kinetic description, the relativistically strong Langmuir turbulence is investigated, which has considered the nonlinear wave-wave, wave-particle interactions and the relativistic effects of electrons. The relativistic Zakharov equations have been obtained. On the basis of these equations, dynamics of collapse has been studied. It is shown that the field strength of relativistic Langmuir plasmons will increase and the ponderomotive expulsion of particles gives rise to the formation of density caviton during the collapsing, which is useful for understanding the natural structural element of relativistically strong Langmuir turbulence.

  9. Testing the Item-Order Account of Design Effects Using the Production Effect

    ERIC Educational Resources Information Center

    Jonker, Tanya R.; Levene, Merrick; MacLeod, Colin M.

    2014-01-01

    A number of memory phenomena evident in recall in within-subject, mixed-lists designs are reduced or eliminated in between-subject, pure-list designs. The item-order account (McDaniel & Bugg, 2008) proposes that differential retention of order information might underlie this pattern. According to this account, order information may be encoded…

  10. Relativistic calculation of atomic M-shell ionization by protons

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1983-01-01

    Relativistic plane-wave Born-approximation calculations of cross sections for M-shell ionization of Ho-67, Au-79, U-92 by protons with incident energies from 0.05 to 1 MeV are reported. Dirac-Hartree-Slater wave functions were employed and binding-energy change and Coulomb deflection were taken into account. Associated X-ray production cross sections were also computed. Results are compared with previous theoretical predictions and with experimental data. Definite improvement in the theory has been attained by the use of realistic wave functions and consistent inclusion of the effects of relativity.

  11. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    SciTech Connect

    Vasconcellos, C. A. Zen

    2015-12-17

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  12. Evaluating the effectiveness of community health partnerships: a stakeholder accountability approach.

    PubMed

    Weech-Maldonado, Robert; Benson, Keith J; Gamm, Larry D

    2003-01-01

    Community health partnerships (CHPs) are promoted as effective cooperative interorganizational relationships to improve community health status while conserving resources. However, relatively little is known about the effectiveness of these partnerships in achieving their goals. Using concepts from a network effectiveness framework (Provan and Milward, 2001) and a network accountability framework (Gamm, 1998), the authors propose that successful CHPs are those that are effective in multiple levels (community, network, organization/particpants) and/or accountability dimensions (political, commercial, clinical/patient, and community). The combined frameworks serve to identify a number of community health stakeholders and associated interests that vary according to accountability dimensions to which CHPs respond. Using survey data from over 400 participants in 25 Community Care Networks, the authors assess the usefulness of the conceptual framework in evaluating CHP effectiveness. The results suggest that CHP participants recognize three different levels of analysis in their evaluation of network effectiveness: community, network, and organization/participant. Furthermore, the results show that respondents distinguish between two different organization/participant benefits: enabling and client services. While respondents rated the intangible resources or enabling benefits (e.g., legitimacy and learning) of partnership participation most highly, client services resulting from CHP participation (e.g., client services and referrals) received the lowest ratings. Community benefit (e.g., improving community health status) and network effectiveness (e.g., ability to provide efficient, high quality health and human services) received ratings that fall between the enabling and client services. Given the relatively good scores (above 60%) received by CHPs on all four effectiveness dimensions considered here, it appears that the majority of respondents find at least some

  13. BOOK REVIEW: Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Antoine, J.-P.

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled `Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  14. A Process Assessment Model for Evaluation, Improvement & Accountability in Effectively Meeting Organizational Purpose and Goals.

    ERIC Educational Resources Information Center

    Packard, Richard D.; Dereshiwsky, Mary I.

    A process for evaluating the effectiveness of educational organizations, with a focus on accountability, is described. An evaluation of 15 pilot-test school districts in the Arizona Career Ladder Project reveals the existence of a major discrepancy between meeting program requirements and achieving program success. A theoretical model of…

  15. Control of corruption, democratic accountability, and effectiveness of HIV/AIDS official development assistance

    PubMed Central

    Lee, Hwa-Young; Yang, Bong-Ming; Kang, Minah

    2016-01-01

    Background Despite continued global efforts, HIV/AIDS outcomes in developing countries have not made much progress. Poor governance in recipient countries is often seen as one of the reasons for ineffectiveness of aid efforts to achieve stated objectives and desired outcomes. Objective This study examines the impact of two important dimensions of governance – control of corruption and democratic accountability – on the effectiveness of HIV/AIDS official development assistance. Design An empirical analysis using dynamic panel Generalized Method of Moments estimation was conducted on 2001–2010 datasets. Results Control of corruption and democratic accountability revealed an independent effect and interaction with the amount of HIV/AIDS aid on incidence of HIV/AIDS, respectively, while none of the two governance variables had a significant effect on HIV/AIDS prevalence. Specifically, in countries with accountability level below −2.269, aid has a detrimental effect on incidence of HIV/AIDS. Conclusion The study findings suggest that aid programs need to be preceded or at least accompanied by serious efforts to improve governance in recipient countries and that democratic accountability ought to receive more critical attention. PMID:27189199

  16. Outputs as Educator Effectiveness in the United States: Shifting towards Political Accountability

    ERIC Educational Resources Information Center

    Piro, Jody S.; Mullen, Laurie

    2013-01-01

    The definition of educator effectiveness is being redefined by econometric modeling to evidence student achievement on standardized tests. While the reasons that econometric frameworks are in vogue are many, it is clear that the strength of such models lie in the quantifiable evidence of student learning. Current accountability models frame…

  17. 14 CFR 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...

  18. The District Effect: Systemic Responses to High Stakes Accountability Policies in Six Southern States

    ERIC Educational Resources Information Center

    Opfer, V. Darleen; Henry, Gary T.; Mashburn, Andrew J.

    2008-01-01

    High stakes accountability (HSA) reforms were enacted in state after state and federally through the No Child Left Behind law, based on the belief that incentives that have consequences attached are effective ways to motivate educators to improve student performance. Our focus for this article is on school district level responses to HSA reforms…

  19. Annual Percentage Rate and Annual Effective Rate: Resolving Confusion in Intermediate Accounting Textbooks

    ERIC Educational Resources Information Center

    Vicknair, David; Wright, Jeffrey

    2015-01-01

    Evidence of confusion in intermediate accounting textbooks regarding the annual percentage rate (APR) and annual effective rate (AER) is presented. The APR and AER are briefly discussed in the context of a note payable and correct formulas for computing each is provided. Representative examples of the types of confusion that we found is presented…

  20. 14 CFR Section 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...

  1. 14 CFR Section 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...

  2. 14 CFR Section 18 - Objective Classification-Cumulative Effect of Changes in Accounting Principles

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Objective Classification-Cumulative Effect of Changes in Accounting Principles Section 18 Section 18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM...

  3. 76 FR 20974 - Implications of Climate Change for Bioassessment Programs and Approaches To Account for Effects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ...EPA is announcing that Eastern Research Group, Inc. (ERG), an EPA contractor for external scientific peer review, will convene an independent panel of experts and organize and conduct an external peer review workshop to review the external review draft report titled, ``Implications of Climate Change for Bioassessment Programs and Approaches to Account for Effects'' (EPA/600/R-11/036A) and its......

  4. Blended Learning vs. Traditional Classroom Settings: Assessing Effectiveness and Student Perceptions in an MBA Accounting Course

    ERIC Educational Resources Information Center

    Chen, Clement C.; Jones, Keith T.

    2007-01-01

    A survey was conducted of Master of Business Administration (MBA) students in an accounting class at a university in the Northern United States to compare students' assessments of course effectiveness and overall satisfaction with the course. One group of students were enrolled in a traditional in-class section, and another group in a…

  5. Effects of Individual Development Accounts (IDAs) on Household Wealth and Saving Taste

    ERIC Educational Resources Information Center

    Huang, Jin

    2010-01-01

    This study examines effects of individual development accounts (IDAs) on household wealth of low-income participants. Methods: This study uses longitudinal survey data from the American Dream Demonstration (ADD) involving experimental design (treatment group = 537, control group = 566). Results: Results from quantile regression analysis indicate…

  6. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  7. Numerical estimates of drift loss and Dst effect for outer radiation belt relativistic electrons with arbitrary pitch angle

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Chan; Lee, D.-Y.; Kim, H.-J.; Lee, E. S.; Choi, C. R.

    2010-03-01

    Satellite observations often show that relativistic electron fluxes that decrease during a geomagnetic storm main phase do not recover their prestorm level even when the storm has substantially recovered. A possible explanation for such sustained flux dropout is that the electrons that move to larger shells (L shells) aided by the disturbance storm time (Dst) effect associated with the main phase geomagnetic field depression may be suffering drift loss to the magnetopause, resulting in irreversible (nonadiabatic) flux decreases during a geomagnetic storm. In this study, we have numerically evaluated the drift loss effect by combining it with the Dst effect and including off-equatorially mirroring electrons for three different storm conditions obtained by averaging 95 geomagnetic storms that occurred from 1997 to 2002. Using the Tsyganenko T02 model and our own simplified method, we estimated the storm time flux changes based on the guiding center orbit dynamics. Assuming that there is no competing source mechanism taking place at the same time, our calculations of the electron fluxes at equatorial midnight suggest that the drift loss when combined with the Dst effect can be responsible for flux dropouts, which can be seen even inside the geosynchronous orbit during storm periods. Specifically, by evaluating omnidirectional flux values at three specific times that correspond to the storm onset time, the time of minimum Dst value, and the end of the Dst recovery, we have obtained the following numerical results. First, for the strong storm with -150 nT < Dstmin ≤ -100 nT, the combined drift loss and Dst effect can cause a complete dropout of the electron flux for r ≥ ˜5 RE at the end of the storm recovery. A nearly full recovery of the particle flux by the adiabatic Dst effect is seen only for r < ˜5 RE. For the moderate storm with -100 nT < Dstmin ≤ -50 nT, the overall flux decrease level at the end of the storm recovery is less significant compared to that

  8. Relativistic scattered wave calculations on UF6

    NASA Technical Reports Server (NTRS)

    Case, D. A.; Yang, C. Y.

    1980-01-01

    Self-consistent Dirac-Slater multiple scattering calculations are presented for UF6. The results are compared critically to other relativistic calculations, showing that the results of all molecular orbital calculations are in qualitative agreement, as measured by energy levels, population analyses, and spin-orbit splittings. A detailed comparison is made to the relativistic X alpha(RX alpha) method of Wood and Boring, which also uses multiple scattering theory, but incorporates relativistic effects in a more approximate fashion. For the most part, the RX alpha results are in agreement with the present results.

  9. Relativistic corrections to the triton binding energy

    SciTech Connect

    Sammarruca, F.; Xu, D.P.; Machleidt, R. )

    1992-11-01

    The influence of relativity on the triton binding energy is investigated. The relativistic three-dimensional version of the Bethe-Salpeter equation proposed by Blankenbecler and Sugar (BbS) is used. Relativistic (nonseparable) one-boson-exchange potentials (constructed in the BbS framework) are employed for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is found that relativistic effects increase the triton binding energy by about 0.2 MeV. Including charge dependence (besides relativity), the final triton binding energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potentials, respectively.

  10. Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.; Bentz, D. P.

    2016-08-01

    The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The three-dimensional HCP microstructures are obtained through segmentation of x-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicitly taken into account. The homogenized diffusivity of the HCP is then derived through a least square homogenization technique. Comparisons between numerical results and experimental data from the literature are presented.

  11. Proportion congruency and practice: A contingency learning account of asymmetric list shifting effects.

    PubMed

    Schmidt, James R

    2016-09-01

    Performance is impaired when a distracting stimulus is incongruent with the target stimulus (e.g., "green" printed in red). This congruency effect is decreased when the proportion of incongruent trials is increased, termed the proportion congruent effect. This effect is typically interpreted in terms of the adaptation of attention in response to conflict. In contrast, the contingency account argues that the effect is driven by the learning of predictive relationships between words and responses. In a recent report, Abrahamse, Duthoo, Notebaert, and Risko (2013) demonstrated larger changes in the magnitude of the proportion congruent effect when switching from a mostly congruent list to a mostly incongruent list, relative to the reverse order. They argued that this asymmetric list shifting effect fits only with the conflict adaptation perspective. However, the current paper presents reanalyses of this data and an adaptation of the Parallel Episodic Processing model that together demonstrate how the contingency account can explain these findings equally well when considering the generally accepted notion that performance improves with practice. The contingency account may still be the most parsimonious view. (PsycINFO Database Record PMID:27585071

  12. A computational account of the production effect: Still playing twenty questions with nature.

    PubMed

    Jamieson, Randall K; Mewhort, D J K; Hockley, William E

    2016-06-01

    People remember words that they read aloud better than words that they read silently, a result known as the production effect. The standing explanation for the production effect is that producing a word renders it distinctive in memory and, thus, memorable at test. By 1 key account, distinctiveness is defined in terms of sensory feedback. We formalize the sensory-feedback account using MINERVA 2, a standard model of memory. The model accommodates the basic result in recognition as well as the fact that the mixed-list production effect is larger than its pure-list counterpart, that the production effect is robust to forgetting, and that the production and generation effects have additive influences on performance. A final simulation addresses the strength-based account and suggests that it will be more difficult to distinguish a strength-based versus distinctiveness-based explanation than is typically thought. We conclude that the production effect is consistent with existing theory and discuss our analysis in relation to Alan Newell's (1973) classic criticism of psychology and call for an analysis of psychological principles instead of laboratory phenomena. (PsycINFO Database Record PMID:27244357

  13. Effect of large-scale disturbances of the solar wind on the dynamics of relativistic electrons of the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Bezrodnykh, I. P.; Morozova, E. I.; Shafer, Iu. G.

    1987-01-01

    The relationship betwen intensity increases of electrons in the outer magnetosphere and large-scale disturbances of the solar wind is investigated on the basis of Prognoz-6,7 and Raduga satellite measurements of high-energy (1 MeV) electrons. It is shown that the effect of high-speed solar-wind streams on the magnetosphere consists in the acceleration of electrons near the magnetopause and in the intensification of the transfer of the accelerated particles (as well as those exsisting in the interplanetary medium) into the magnetosphere. Particular attention is given to Dst variations and the dynamics of relativistic electrons at L = 6.6.

  14. Electromagnetic processes in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Baur, G.

    1986-10-01

    Electromagnetic effects in relativistic heavy ion collisions with impact parameter larger than the sum of the nuclear radii are studied using the virtual photon method. With increasing value of the relativistic parameter γ the hardness of the virtual photon spectrum increases. This leads to interesting new effects which will also have to be considered in the design of future relativistic heavy ion machines and experiments. The excitation of high-lying giant E1 and E2 multipole resonances is calculated as well as electromagnetic pion production. Coulomb bremsstrahlung is calculated and compared to the bremsstrahlung emitted in the more violent central nuclear collisions. K-shell ionization and electron-positron pair production is studied. The latter process has a very large cross section for heavy ions and contributes significantly to the stopping power of relativistic heavy ions in a dense medium.

  15. Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis.

    PubMed

    Thompson, Henry J; Jiang, Weiqin; Zhu, Zongjian

    2009-09-01

    Evidence is strong that a reduction in risk for breast cancer is associated with moderate to vigorous physical activity (PA); however, there is limited understanding of the role of type, intensity, duration, and frequency of PA and their mechanisms in accounting for this health benefit. The objective of this review is to stimulate investigations of candidate mechanisms that may account for the effects of the intensity and duration of aerobic PA on breast cancer risk and tumor burden. Three hypotheses are considered: 1) the mTOR network hypothesis: PA inhibits carcinogenesis by suppressing the activation of the mTOR signaling network in mammary carcinomas; 2) the hormesis hypothesis: the carcinogenic response to PA is nonlinear and accounted for by a physiological cellular stress response; and 3) the metabolic reprogramming hypothesis: PA limits the amount of glucose and glutamine available to mammary carcinomas thereby inducing apoptosis because tumor-associated metabolic programming is reversed. To link these hypotheses to systemic effects of PA, it is recommended that consideration be given to determining: 1) what contracting muscle releases into circulation or removes from circulation that would directly modulate the carcinogenic process in epithelial cells; 2) whether the effects of muscle contraction on epithelial cell carcinogenesis are exerted in an endocrine, paracrine, autocrine, or intracrine manner; and 3) if the effects of muscle contraction on malignant cells differ from effects on normal or premalignant cells that do not manifest the hallmarks of malignancy. PMID:19588523

  16. Accounting for Behavior in Treatment Effects: New Applications for Blind Trials.

    PubMed

    Chassang, Sylvain; Snowberg, Erik; Seymour, Ben; Bowles, Cayley

    2015-01-01

    The double-blind randomized controlled trial (DBRCT) is the gold standard of medical research. We show that DBRCTs fail to fully account for the efficacy of treatment if there are interactions between treatment and behavior, for example, if a treatment is more effective when patients change their exercise or diet. Since behavioral or placebo effects depend on patients' beliefs that they are receiving treatment, clinical trials with a single probability of treatment are poorly suited to estimate the additional treatment benefit that arises from such interactions. Here, we propose methods to identify interaction effects, and use those methods in a meta-analysis of data from blinded anti-depressant trials in which participant-level data was available. Out of six eligible studies, which included three for the selective serotonin re-uptake inhibitor paroxetine, and three for the tricyclic imipramine, three studies had a high (>65%) probability of treatment. We found strong evidence that treatment probability affected the behavior of trial participants, specifically the decision to drop out of a trial. In the case of paroxetine, but not imipramine, there was an interaction between treatment and behavioral changes that enhanced the effectiveness of the drug. These data show that standard blind trials can fail to account for the full value added when there are interactions between a treatment and behavior. We therefore suggest that a new trial design, two-by-two blind trials, will better account for treatment efficacy when interaction effects may be important. PMID:26062024

  17. Modulational instabilities in relativistic pair plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.

    2016-05-01

    We study the modulational instability of an intense photon beam in a relativistic pair plasma. We use the wave-kinetic description of the photon field and relativistic fluid equations for electrons and positrons. This allows us to consider the influence of the photon spectral distribution and photon recoil effects on the instability threshold and growth rates. The case of very low frequencies modulations, well below plasma frequency, is compared to that of high-frequency modulations corresponding to the plasmon decay instability.

  18. Relativistic effect on 77Se NMR chemical shifts of various selenium species in the framework of zeroth-order regular approximation.

    PubMed

    Nakanishi, Waro; Hayashi, Satoko; Katsura, Yoshifumi; Hada, Masahiko

    2011-08-11

    The relativistic effects on absolute magnetic shielding tensors (σ(Se)) are explicitly evaluated for various selenium species (40 species) with the DFT(BLYP)-GIAO method. Calculations are performed under relativistic and nonrelativistic conditions with the Slater-type basis sets in ADF 2010 in the framework of ZORA, employing the optimized structures under nonrelativistic conditions at B3LYP of Gaussian 03. Quadruple zeta all electron with four polarization functions (QZ4Pae) are mainly applied to evaluate σ(Se). Ranges of the effect on diamagnetic (σ(d)(Se)), paramagnetic shielding tensors (σ(p)(Se)), and σ(d+p)(Se) (= σ(d)(Se) + σ(p)(Se)) are -24 to -20 ppm, -115 to -3 ppm, and -136 to -26 ppm, respectively. The spin-orbit terms (σ(so)(Se)) are evaluated to be 92-225 ppm with QZ4Pae, which clarifies the effect on total shielding tensors (σ(t)(Se) = σ(d+p)(Se) + σ(so)(Se)) to be -8 to 152 ppm, at the spin-orbit ZORA level. The calculated σ(t)(Se) values reproduced well the observed values. PMID:21710994

  19. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Mumm, H. P.; O`Shaughnessy, C. M.; Schelhammer, K. W.; Thompson, A. K.; Yue, A. T.

    2016-03-01

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  20. Accounting for strong localized heterogeneities and local transport effect in core calculations

    SciTech Connect

    Ruggieri, J.M.; Doriath, J.Y.; Finck, P.J.; Boyer, R.

    1996-09-01

    Two methods based on the variational nodal transport method have been developed to account for localized heterogeneities and local transport effects in full core calculations. A local mesh refinement technique relies on using the projected partial ingoing surface currents produced during coarse-mesh iterations as boundary conditions for fine-mesh calculations embedded within the coarse-mesh calculations. The outgoing fine-mesh partial currents are averaged to serve in the coarse-mesh iterations. Then, a mixed transport-diffusion method using two levels of angular approximations for the surface partial currents depending on the node considered has been implemented to account for local transport effects in full core diffusion calculations. These methods have been tested for a model of the Superphenix complementary shutdown rods.

  1. Solitary Waves in the Model of Active Media, Taking into Account Effects of Relaxation

    NASA Astrophysics Data System (ADS)

    Likus, W.; Vladimirov, V. A.

    2015-04-01

    We study a system of differential equations simulating transport phenomena in active structured media. The model is a generalization of McKean's modification of the celebrated FitzHugh-Nagumo system, describing the nerve impulse propagation in axon. It takes into account the effects of memory, connected with the presence of internal structure. We construct explicitly the localized traveling wave solutions and analyze their stability.

  2. Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process

    SciTech Connect

    Rawat, Priyanka; Purohit, Gunjan; Gauniyal, Rakhi

    2014-06-15

    A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of a ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.

  3. Relativistic coupled-cluster calculations on XeF{sub 6}: Delicate interplay between electron-correlation and basis-set effects

    SciTech Connect

    Cheng, Lan Stanton, John F.; Gauss, Jürgen

    2015-06-14

    A systematic relativistic coupled-cluster study is reported on the harmonic vibrational frequencies of the O{sub h}, C{sub 3v}, and C{sub 2v} conformers of XeF{sub 6}, with scalar-relativistic effects efficiently treated using the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). Atomic natural orbital type basis sets recontracted for the SFX2C-1e scheme have been shown to provide rapid basis-set convergence for the vibrational frequencies. SFX2C-1e as well as complementary pseudopotential based computations consistently predicts that both O{sub h} and C{sub 3v} structures are local minima on the potential energy surface, while the C{sub 2v} structure is a transition state. Qualitative disagreement between the present results for the O{sub h} structure and those from CCSD(T)-F12b calculations [Peterson et al., J. Phys. Chem. A 116, 9777 (2012)], which yielded a triply degenerate imaginary frequency for the O{sub h} structure, is attributed here to the high sensitivity of the computed harmonic frequencies of the t{sub 1u} bending modes to the basis-set effects of triples contributions.

  4. Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets.

    SciTech Connect

    De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.

    2001-01-01

    A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.

  5. Relativistic and non-relativistic analysis of whistler-mode waves in a hot anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Sazhin, S. S.; Sumner, A. E.; Temme, N. M.

    1992-02-01

    The dispersion equation for parallel whistler-mode propagation in a hot anisotropic plasma is analysed numerically in both weakly relativistic and nonrelativistic approximations under the assumption that wave growth or damping does not influence the wave refractive index. The results of this analysis are compared with the results of an asymptotic analysis of the same equation, and the range of applicability of the latter results is specified. It is pointed out that relativistic effects lead to a decrease in the range of frequencies for which instability occurs. For a moderately anisotropic plasma (T/T = 2) relativistic effects lead to an increase in the maximum value of the increment of instability.

  6. Hydromechanics behavior of dam with core by taking into account the effect of contact

    NASA Astrophysics Data System (ADS)

    Bekkouche, A.; Benadla, Z.; Houmadi, Y.; Ghefir, M.

    2008-07-01

    Forces acting on the thin cores of earth dams could be reduced by the effect of contact with the refills. Thus the effective stress could be reduced and in turn will induce cracks at the base of the dams. This phenomenon is called hydraulic fracturing. The modeling of this phenomenon, using ANSYS program, by taking into account the effect of contact will make possible the prediction of global behavior of the dam and in the meantime will allow the assessment of the thickness of the core under which the effect of contact will have an influence. A parametric study has been performed to understand the relationship between the effect of contact and the variation of the effective stress.

  7. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  8. A database model for evaluating material accountability safeguards effectiveness against protracted theft

    SciTech Connect

    Sicherman, A.; Fortney, D.S.; Patenaude, C.J.

    1993-07-01

    DOE Material Control and Accountability Order 5633.3A requires that facilities handling special nuclear material evaluate their effectiveness against protracted theft (repeated thefts of small quantities of material, typically occurring over an extended time frame, to accumulate a goal quantity). Because a protracted theft attempt can extend over time, material accountability-like (MA) safeguards may help detect a protracted theft attempt in progress. Inventory anomalies, and material not in its authorized location when requested for processing are examples of MA detection mechanisms. Crediting such detection in evaluations, however, requires taking into account potential insider subversion of MA safeguards. In this paper, the authors describe a database model for evaluating MA safeguards effectiveness against protracted theft that addresses potential subversion. The model includes a detailed yet practical structure for characterizing various types of MA activities, lists of potential insider MA defeat methods and access/authority related to MA activities, and an initial implementation of built-in MA detection probabilities. This database model, implemented in the new Protracted Insider module of ASSESS (Analytic System and Software for Evaluating Safeguards and Security), helps facilitate the systematic collection of relevant information about MA activity steps, and ``standardize`` MA safeguards evaluations.

  9. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    NASA Astrophysics Data System (ADS)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  10. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  11. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  12. Weakly nonlinear kink-type solitary waves in a fully relativistic plasma

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine

    2010-08-15

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study small but finite amplitude solitary waves. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. A kink-solitary wave solution is outlined. Due to electron relativistic effect, the localized structure may experience either a spreading or a compression. This latter phenomenon (compression) becomes less effective and less noticeable as the relativistic character of the ions becomes important. Our results may be relevant to cosmic relativistic double-layers and relativistic plasma structures that involve energetic plasma flows.

  13. Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

    NASA Astrophysics Data System (ADS)

    Xue, W. X.; Yao, J. M.; Hagino, K.; Li, Z. P.; Mei, H.; Tanimura, Y.

    2015-02-01

    Background: The impurity effect of hyperons on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E 2 transition strength in low-lying states of the hypernucleus Λ7Li . Many more data on low-lying states of Λ hypernuclei will be measured soon for s d -shell nuclei, providing good opportunities to study the Λ impurity effect on nuclear low-energy excitations. Purpose: We carry out a quantitative analysis of the Λ hyperon impurity effect on the low-lying states of s d -shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ hyperon is injected into the lowest positive-parity (Λs) and negative-parity (Λp) states. Method: We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ binding energies of hypernuclei as well as the potential-energy surfaces (PESs) in the (β ,γ ) deformation plane. We also calculate the PESs for the Λ hypernuclei with good quantum numbers by using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking 25,27Mg Λ and Si31Λ as examples, we analyze the impurity effects of Λs and Λp on the low-lying states of the core nuclei. Results: We show that Λs increases the excitation energy of the 21+ state and decreases the E 2 transition strength from this state to the ground state by 12 %to17 % . On the other hand, Λp tends to develop pronounced energy minima with larger deformation, although it modifies the collective parameters in such a way that the collectivity of the core nucleus can be either increased or decreased. Conclusions: The quadrupole deformation significantly affects the

  14. Causal Inference in Occupational Epidemiology: Accounting for the Healthy Worker Effect by Using Structural Nested Models

    PubMed Central

    Naimi, Ashley I.; Richardson, David B.; Cole, Stephen R.

    2013-01-01

    In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218–1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/. PMID:24077092

  15. Accounting for missing data in the estimation of contemporary genetic effective population size (N(e) ).

    PubMed

    Peel, D; Waples, R S; Macbeth, G M; Do, C; Ovenden, J R

    2013-03-01

    Theoretical models are often applied to population genetic data sets without fully considering the effect of missing data. Researchers can deal with missing data by removing individuals that have failed to yield genotypes and/or by removing loci that have failed to yield allelic determinations, but despite their best efforts, most data sets still contain some missing data. As a consequence, realized sample size differs among loci, and this poses a problem for unbiased methods that must explicitly account for random sampling error. One commonly used solution for the calculation of contemporary effective population size (N(e) ) is to calculate the effective sample size as an unweighted mean or harmonic mean across loci. This is not ideal because it fails to account for the fact that loci with different numbers of alleles have different information content. Here we consider this problem for genetic estimators of contemporary effective population size (N(e) ). To evaluate bias and precision of several statistical approaches for dealing with missing data, we simulated populations with known N(e) and various degrees of missing data. Across all scenarios, one method of correcting for missing data (fixed-inverse variance-weighted harmonic mean) consistently performed the best for both single-sample and two-sample (temporal) methods of estimating N(e) and outperformed some methods currently in widespread use. The approach adopted here may be a starting point to adjust other population genetics methods that include per-locus sample size components. PMID:23280157

  16. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  17. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  18. The effects of different methods of accounting for observations from euthanized animals in survival analysis.

    PubMed

    Hosgood, G; Scholl, D T

    2001-01-29

    The issue of euthanasia is unique to veterinary clinical studies evaluating survival time. The decision to euthanize an animal is based on several factors including the health of the animal but also age and cost of treatment. The literature shows inconsistent methods used to account for observations from euthanized animals. Also, over 50% and up to 100% of animals in many studies have been euthanized. Our study illustrates the effects of different methods of accounting for observations from euthanized animals in survival analysis. Three data sets with different proportions of outcomes (alive, lost-to-follow-up, dead due to disease of interest, dead due to other disease, euthanized due to disease of interest, euthanized due to other disease) were used. Each data set was stratified according to treatment or a group characteristic (e.g. tumor type). Our methods for accounting for observations from euthanized animals were established from methods used in the literature and included right-censoring. Kaplan-Meier product-limit survival-function estimation was performed on each data set. Different methods resulted in inconsistent conclusions of significant differences between strata. At times, the ranking of the estimates of median survival time for strata was reversed. Right-censoring and use of Kaplan-Meier methods is inappropriate to evaluate observations from euthanized animals because censoring of such observations is informative. The current methods used by clinical investigators are inadequate to measure survival time reliably. PMID:11154786

  19. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  20. Lifetime effects for high-resolution gamma-ray spectroscopy at relativistic energies and their implications for the RISING spectrometer

    NASA Astrophysics Data System (ADS)

    Doornenbal, P.; Reiter, P.; Grawe, H.; Saito, T.; Al-Khatib, A.; Banu, A.; Beck, T.; Becker, F.; Bednarczyk, P.; Benzoni, G.; Bracco, A.; Bürger, A.; Caceres, L.; Camera, F.; Chmel, S.; Crespi, F. C. L.; Geissel, H.; Gerl, J.; Górska, M.; Grebosz, J.; Hübel, H.; Kavatsyuk, M.; Kavatsyuk, O.; Kmiecik, M.; Kojouharov, I.; Kurz, N.; Lozeva, R.; Maj, A.; Mandal, S.; Meczynski, W.; Million, B.; Podolyák, Zs.; Richard, A.; Saito, N.; Schaffner, H.; Seidlitz, M.; Striepling, T.; Walker, J.; Warr, N.; Weick, H.; Wieland, O.; Winkler, M.; Wollersheim, H. J.

    2010-02-01

    The lineshapes and peak position of Doppler corrected γ-ray spectra from in-beam experiments at relativistic energies are investigated with respect to the intrinsic energy resolution of the employed detectors, the particles' velocities, and the photons' emission angle uncertainties at the moment of γ-ray emission. The uncertainties in velocity and photon emission angle are dependent on the lifetime of the excited state. The impact of these two observables on the lineshape and energy resolution are studied for the RISING γ-spectrometer by means of simulations and experimental results from a two-step fragmentation experiment at ≈200 MeV/u. Potential use of the distinct lineshape for lifetime determination is demonstrated for measured γ-ray transitions.

  1. The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State

    NASA Astrophysics Data System (ADS)

    Speck, Jared

    2013-07-01

    In this article, we study the 1 + 3-dimensional relativistic Euler equations on a pre-specified conformally flat expanding spacetime background with spatial slices that are diffeomorphic to {R}^3. We assume that the fluid verifies the equation of state {p = c2s ρ,} where {0 ≤ cs ≤ √{1/3}} is the speed of sound. We also assume that the reciprocal of the scale factor associated with the expanding spacetime metric verifies a c s -dependent time-integrability condition. Under these assumptions, we use the vector field energy method to prove that an explicit family of physically motivated, spatially homogeneous, and spatially isotropic fluid solutions are globally future-stable under small perturbations of their initial conditions. The explicit solutions corresponding to each scale factor are analogs of the well-known spatially flat Friedmann-Lemaître-Robertson-Walker family. Our nonlinear analysis, which exploits dissipative terms generated by the expansion, shows that the perturbed solutions exist for all future times and remain close to the explicit solutions. This work is an extension of previous results, which showed that an analogous stability result holds when the spacetime is exponentially expanding. In the case of the radiation equation of state p = (1/3)ρ, we also show that if the time-integrability condition for the reciprocal of the scale factor fails to hold, then the explicit fluid solutions are unstable. More precisely, we show the existence of an open family of initial data such that (i) it contains arbitrarily small smooth perturbations of the explicit solutions' data and (ii) the corresponding perturbed solutions necessarily form shocks in finite time. The shock formation proof is based on the conformal invariance of the relativistic Euler equations when {c2s = 1/3,} which allows for a reduction to a well-known result of Christodoulou.

  2. Exact Relativistic Newtonian Representation of Gravitational static Spacetime Geometries

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava

    2016-09-01

    We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite useful in studying a wide range of astrophysical phenomena, especially in strong field gravity.

  3. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  4. The Effect of Moral Intensity on Ethical Decision Making in Accounting

    ERIC Educational Resources Information Center

    Yang, Hui-Ling; Wu, Wei-Pang

    2009-01-01

    The purpose of this study was to examine the dimensionality of a moral intensity construct in four ethical accounting scenarios and how the dimensions directly affect the specific processes of moral decision making of accounting students. A survey was conducted with 233 accounting students enrolled in the school of accounting in a university of…

  5. Early and Late Electrophysiological Effects of Distractor Frequency in Picture Naming: Reconciling Input and Output Accounts.

    PubMed

    Riès, Stephanie K; Fraser, Douglas; McMahon, Katie L; de Zubicaray, Greig I

    2015-10-01

    The "distractor-frequency effect" refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture-word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The whole-brain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and low-frequency distractor words, with the former associated with a steeper slope on the time window spanning from 100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism. PMID:26042502

  6. Theoretical study of the relativistic molecular rotational g-tensor

    SciTech Connect

    Aucar, I. Agustín Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  7. Theoretical study of the relativistic molecular rotational g-tensor.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Ruiz de Azúa, Martín C

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH(+) (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH(+) systems. Only for the sixth-row Rn atom a significant deviation of this relation is found. PMID:25416870

  8. Can intertrial priming account for the similarity effect in visual search?

    PubMed

    Becker, Stefanie I; Ansorge, Ulrich; Horstmann, Gernot

    2009-07-01

    In a visual search task, a salient distractor often elongates response times (RTs) even when it is task-irrelevant. These distraction costs are larger when the irrelevant distractor is similar than when dissimilar to the target. In the present study, we tested whether this similarity effect is mostly due to more frequent oculomotor capture by target-similar versus target-dissimilar distractors (contingent capture hypothesis), or to elongated dwell times on target-similar versus dissimilar distractors (attentional disengagement hypothesis), by measuring the eye movements of the observers during visual search. The results showed that similar distractors were both selected more frequently, and produced longer dwell times than dissimilar distractors. However, attentional capture contributed more to the similarity effect than disengagement. The results of a second experiment showed that stronger capture by similar than dissimilar distractors in part reflected intertrial priming effects: distractors which had the same colour as the target on the previous trial were selected more frequently than distractors with a different colour. These priming effects were however too small to account fully for the similarity effect. More importantly, the results indicated that allegedly stimulus-driven intertrial priming effects and allegedly top-down controlled similarity effects may be mediated by the same underlying mechanism. PMID:19358862

  9. Split Fermi Surface Properties based on the Relativistic Effect in Superconductor PdBiSe with the Cubic Chiral Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kakihana, Masashi; Nakamura, Ai; Teruya, Atsushi; Harima, Hisatomo; Haga, Yoshinori; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2015-03-01

    We grew single crystals of PdBiSe with the ullmannite-type cubic chiral structure and carried out de Haas-van Alphen (dHvA) experiments to clarify the Fermi surface properties. The Fermi surfaces are found to split into two different Fermi surfaces, reflecting the non-centrosymmetric crystal structure. A splitting energy between two nearly spherical Fermi surfaces named α and α' is determined as 1050-1260 K. These Fermi surfaces are identified to be due the band-149 and -150 electron Fermi surfaces centered at the Γ point from the results of full-potential linearized augmented plane wave (FLAPW) energy band calculations under consideration of a mass correction in the spin-orbit interaction for Bi-6p electrons based on the relativistic effect. The theoretical splitting energy between these Fermi surfaces is 1080-1150 K, which is in good agreement with the experimental value.

  10. ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING

    SciTech Connect

    Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.; Ratzlaff, Pete; Siemiginowska, Aneta E-mail: vkashyap@cfa.harvard.edu E-mail: rpete@head.cfa.harvard.edu

    2011-04-20

    While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can be applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.

  11. Kinetic analysis of thermally relativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  12. Kinetic analysis of thermally relativistic flow with dissipation

    SciTech Connect

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-15

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  13. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    relativistic equations of satellite motion in the vicinity of the extended bodies. Anticipating improvements in radio and laser tracking technologies over the next few decades, we apply this method to spacecraft orbit determination. We emphasize the number of feasible relativistic gravity tests that may be performed within the context of the parameterized WFSMA. Based on the planeto-centric equations of motion of a spacecraft around the planet, we suggested a new null test of the Strong Equivalence Principle (SEP). The experiment to measure the corresponding SEP violation effect could be performed with the future Mercury Orbiter mission. We discuss other relativistic effects, including the perihelion advance and the redshift and geodetic precession of the orbiter's orbital plane about Mercury, as well as the possible future implementation of the proposed formalism in software codes developed for solar-system orbit determination. All the important calculations are completely documented, and the references contain an extensive list of cited literature.

  14. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  15. Relativistic quantum corrections to laser wakefield acceleration.

    PubMed

    Zhu, Jun; Ji, Peiyong

    2010-03-01

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons. PMID:20365881

  16. Relativistic quantum corrections to laser wakefield acceleration

    SciTech Connect

    Zhu Jun; Ji Peiyong

    2010-03-15

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons.

  17. A Guide to Effective Accountability Reporting: Designing Public Reports that Effectively Communicate Accountability, Assessment and Other Quantitative Education Indicators in an Easily Understood Format.

    ERIC Educational Resources Information Center

    Fast, Ellen Forte

    This guide was developed to serve as a resource for the staffs of state education agencies and local education agencies who are responsible for producing state, district, or school report cards of the type required under many state or district accountability systems as well as under the No Child Left Behind Act (NCLB). The guide is not intended to…

  18. The Effects of Education Accountability on Teachers: Are Policies Too-Stress Provoking for Their Own Good?

    ERIC Educational Resources Information Center

    Berryhill, Joseph; Linney, Jean Ann; Fromewick, Jill

    2009-01-01

    Education policies in the United States and other nations have established academic standards and made teachers accountable for improved standardized test scores. Because policies can have unintended effects, in this study we investigated U.S. elementary school teachers' perceptions of their state's accountability policy, particularly its effect…

  19. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  20. Relativistic helix traveling wave tube amplifiers

    SciTech Connect

    Freund, H.P.; Vanderplaats, N.R.; Kodis, M.A. )

    1992-07-01

    A relativistic field theory of a helix traveling wave tube (TWT) is described for the case in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is applied to the study of a TWT with an intense relativistic electron beam. The analysis implicitly includes beam space-charge effects and is valid for arbitrary azimuthal mode number, and the coupled-wave Pierce theory is recovered in the [ital near]-[ital resonant] limit. The results indicate that impressive gains and efficiencies are possible in this regime. In addition, the interaction is relatively insensitive to the effects of a beam energy spread.

  1. Teachers' perceptions of value and effects of outdoor education during an age of accountability

    NASA Astrophysics Data System (ADS)

    Schmitt, Thomas R.

    The purpose of this study was to gain an understanding of teachers' perceptions of the value and effects of a residential Outdoor Education experience during an age of accountability, which was defined as the era which commenced with the passage of the No Child Left Behind Act of 2001. Focus group interviews were conducted with four groups of teachers who participated in a residential Outdoor Education experience with their students during the 2004-2005 school year. The major findings of this study were: (1) Teachers perceive value in the OE experience because of the multi-faceted effects upon their students and classes; (2) Teachers perceived the OE experience positively affected their students' learning through providing hands-on and authentic experiences, development of thinking skills, and enhancing the school's curriculum; (3) Teachers perceived the OE experience positively affected their students' social and emotional development as evidenced by an increase in self esteem, independence, maturity, personal responsibility, and an expanded worldview; (4) Teachers perceived the OE experience positively affected their students' sense of community as evidenced by an increase in team building and cohesiveness, more productive staff-student relationships, the emergence of different "star" students, and greater inclusion of special needs students; (5) Teachers perceived students' appreciation of the environment increased; and (6) Teachers did not perceive any imminent changes to their school's Outdoor Education programming due to the accountability provisions of No Child Left behind (2001). This study's findings suggested implications for school administrators, which were that they should: articulate desired effects to stakeholders; communicate connections to learning standards; and expand the OE experience to foster greater environmental issue focus.

  2. 5 CFR 1655.9 - Effect of loans on individual account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contributions and attributable earnings, pro rata from each TSP Fund in which the account is invested and pro... participant's account is invested. All pro rated amounts will be based on the balances in each TSP Fund...

  3. 5 CFR 1655.9 - Effect of loans on individual account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contributions and attributable earnings, pro rata from each TSP Fund in which the account is invested and pro... participant's account is invested. All pro rated amounts will be based on the balances in each TSP Fund...

  4. Predicting NonInertial Effects with Algebraic Stress Models which Account for Dissipation Rate Anisotropies

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Machiels, L.; Gatski, T. B.

    1997-01-01

    Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.

  5. The three most effective strategies for handling patients with overdue accounts.

    PubMed

    Hills, Laura

    2012-01-01

    Many medical practice employees find the collections tasks assigned to them to be a source of discomfort, reluctance, and even dread. This is understandable. Talking about overdue accounts is not something most people want to do. This article focuses on the three most effective strategies that medical practice employees can use to help them feel more confident when they handle patients who have overdue accounts. It provides a sample 135-day collection program and variations of it that many medical practices use. It offers medical practice employees 10 tips to help them develop a stronger, more businesslike attitude when they approach their collection duties. It provides a list of more than 15 daily affirmations that medical practice employees can use to develop a more positive attitude about making collection calls and having one-on-one collection meetings with patients. Finally, this article presents a worst-case scenario exercise to help medical practice employees face their worst fears about collection calls and meetings and to feel more at ease when they confront patients about their debts. PMID:22920021

  6. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander

    2008-02-01

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.

  7. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    NASA Astrophysics Data System (ADS)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-06-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  8. Relativistic simulations of eccentric binary neutron star mergers: One-arm spiral instability and effects of neutron star spin

    NASA Astrophysics Data System (ADS)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L.

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron star spin can strongly affect the already rich phenomenology in the postmerger gravitational wave signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our simulations, the resulting hypermassive neutron star develops the one-arm (m =1 ) spiral instability, the most pronounced cases being those with small but non-negligible neutron star spins. For long-lived hypermassive neutron stars, the presence of this instability leads to improved prospects for detecting these events through gravitational waves, and thus may give information about the neutron star equation of state.

  9. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    SciTech Connect

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  10. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  11. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  12. A New Approach to Accountability: Creating Effective Learning Environments for Programs

    ERIC Educational Resources Information Center

    Surr, Wendy

    2012-01-01

    This article describes a new paradigm for accountability that envisions afterschool programs as learning organizations continually engaged in improving quality. Nearly 20 years into the era of results-based accountability, a new generation of afterschool accountability systems is emerging. Rather than aiming to test whether programs have produced…

  13. The Effect of International Financial Reporting Standards Convergence on U. S. Accounting Curriculum

    ERIC Educational Resources Information Center

    Bates, Homer L.; Waldrup, Bobby E.; Shea, Vincent

    2011-01-01

    Major changes are coming to U.S. financial accounting and accounting education as U. S. generally accepted accounting principles (GAAP) and international financial reporting standards (IFRS) converge within the next few years. In 2008, the U.S. Securities and Exchange Commission (SEC) published a proposed "road map" for the potential…

  14. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    SciTech Connect

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  15. Relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Ring, Peter; Zhao, Pengwei

    In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.

  16. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  17. Relativistic jets and star formation

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey Vincent; Mukherjee, Dipanjan; Wagner, Alex; Slatyer Sutherland, Ralph

    2015-08-01

    We are conducting simulations of jets interacting with molecular and atomic gas on scales of a few kpc in forming galaxies. Competing processes, such as the dispersion of gas in the galaxy and star formation in the high-pressure environment determine whether positive or negative feedback predominates. We shall present our new simulations including an assessment of these different effects. Our simulations also predict the velocity and velocity dispersion of atomic and molecular gas in galaxies, which are undergoing interaction with relativistic jets. These results are of interest to radio and optical spectral imaging observations of galaxies undergoing feedback.

  18. On the Dissociation of Word/Nonword Repetition Effects in Lexical Decision: An Evidence Accumulation Account

    PubMed Central

    Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta; Gomez, Pablo

    2016-01-01

    A number of models of visual-word recognition assume that the repetition of an item in a lexical decision experiment increases that item's familiarity/wordness. This would produce not only a facilitative repetition effect for words, but also an inhibitory effect for nonwords (i.e., more familiarity/wordness makes the negative decision slower). We conducted a two-block lexical decision experiment to examine word/nonword repetition effects in the framework of a leading “familiarity/wordness” model of the lexical decision task, namely, the diffusion model (Ratcliff et al., 2004). Results showed that while repeated words were responded to faster than the unrepeated words, repeated nonwords were responded to more slowly than the nonrepeated nonwords. Fits from the diffusion model revealed that the repetition effect for words/nonwords was mainly due to differences in the familiarity/wordness (drift rate) parameter. This word/nonword dissociation favors those accounts that posit that the previous presentation of an item increases its degree of familiarity/wordness. PMID:26925021

  19. Network meta-analysis models to account for variability in treatment definitions: application to dose effects.

    PubMed

    Del Giovane, Cinzia; Vacchi, Laura; Mavridis, Dimitris; Filippini, Graziella; Salanti, Georgia

    2013-01-15

    For a network meta-analysis, an interlinked network of nodes representing competing treatments is needed. It is often challenging to define the nodes as these typically refer to similar but rarely identical interventions. The objectives of this paper are as follows: (i) to present a series of network meta-analysis models that account for variation in the definition of the nodes and (ii) to exemplify the models where variation in the treatment definitions relates to the dose. Starting from the model that assumes each node has a 'fixed' definition, we gradually introduce terms to explain variability by assuming that each node has several subnodes that relate to different doses. The effects of subnodes are considered monotonic, linked with a 'random walk', random but exchangeable, or have a linear pattern around the treatment mean effect. Each model can be combined with different assumptions for the consistency of effects and might impact on the ranking of the treatments. Goodness of fit, heterogeneity and inconsistency were assessed. The models are illustrated in a star network for the effectiveness of fluoride toothpaste and in a full network comparing agents for multiple sclerosis. The fit and parsimony measures indicate that in the fluoride network the impact of the dose subnodes is important whereas in the multiple sclerosis network the model without subnodes is the most appropriate. The proposed approach can be a useful exploratory tool to explain sources of heterogeneity and inconsistency when there is doubt whether similar interventions should be grouped under the same node. PMID:22815277

  20. On the Dissociation of Word/Nonword Repetition Effects in Lexical Decision: An Evidence Accumulation Account.

    PubMed

    Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta; Gomez, Pablo

    2016-01-01

    A number of models of visual-word recognition assume that the repetition of an item in a lexical decision experiment increases that item's familiarity/wordness. This would produce not only a facilitative repetition effect for words, but also an inhibitory effect for nonwords (i.e., more familiarity/wordness makes the negative decision slower). We conducted a two-block lexical decision experiment to examine word/nonword repetition effects in the framework of a leading "familiarity/wordness" model of the lexical decision task, namely, the diffusion model (Ratcliff et al., 2004). Results showed that while repeated words were responded to faster than the unrepeated words, repeated nonwords were responded to more slowly than the nonrepeated nonwords. Fits from the diffusion model revealed that the repetition effect for words/nonwords was mainly due to differences in the familiarity/wordness (drift rate) parameter. This word/nonword dissociation favors those accounts that posit that the previous presentation of an item increases its degree of familiarity/wordness. PMID:26925021

  1. Kinetics of silver release from microfuel with taking into account the limited-solubility effect

    SciTech Connect

    Ivanov, A. S. Rusinkevich, A. A.

    2014-12-15

    The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code. This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.

  2. Effects of accounting rules on utility choices of energy technologies in the United States

    NASA Astrophysics Data System (ADS)

    Spinrad, B. I.

    1980-07-01

    Comparisons of the costs of power systems, specifically the cost of nuclear versus other power systems, are discussed. The effects of inconsistent accounting are examined. Five systems that supply electrical power are cost analyzed: (1) light water reactors; (2) liquid metal fast breeder reactors; (3) coal plants, with scrubbers, burning low sulfur or processed high sulfur coal; (4) coal plants with fluidized bed combustion of high sulfur coal; and (5) solar power plants with sufficient storage for baseload use. Cost estimates for the system are made and justified. Cost comparison results show that, contrary to currently accepted conclusions, light water reactors have a decisive cost advantage over coal; if assumed target costs are met, after development, liquid metal fast breeder reactor would be the cheapest system; and if postdevelopment target costs are met, solar power plants are almost competitive with the nuclear systems and are much cheaper than coal.

  3. A simple method to account for drift orbit effects when modeling radio frequency heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.

    2005-09-01

    In the last years tremendous progress was made in modeling radio frequency heating in tokamaks. Not only the adopted models have gradually become more realistic, also the present generation of computers has allowed to study wave-particle interaction effects with previously unattainable detail. In the present paper a semi-analytical method is adopted to evaluate the dielectric response of a plasma to electromagnetic waves in the ion cyclotron domain of frequencies accounting for drift orbit effects in an axisymmetric tokamak. The method relies on subdividing the orbit into elementary segments in which the integrations can be performed analytically or by tabulation, and it hinges on the local bookkeeping of the relation between the variables defining an orbit and those describing the magnetic geometry. Although the method allows computation of elementary building blocks for either the wave or the Fokker-Planck equation, the focus here is on the latter. Using the coefficients evaluated using the proposed semi-analytical method, a 3-D Fokker-Planck code was developed which accounts for the radial width of the guiding center orbits and thus not only describes RF induced velocity space diffusion, but equally accounts for the RF induced radial drift. Preliminary results of this new 3-D Fokker-Planck code are presented. The adopted numerical resolution relies on a subdivision of the integration domain in tetrahedres. This specific shape of the elementary volumes allows imposing the boundary conditions (in particular the nonlocal conditions across the curved trapped/passing boundary connecting one trapped to two passing orbits) elegantly. The particular chosen shape also readily permits zooming in on regions where more detail is required. Casting the equation in its weak Galerkin form, it is solved relying on the finite element technique. Unless special attention is devoted to the optimization of the inversion of the system of linear equations resulting from projecting the

  4. Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity

    SciTech Connect

    Rotondo, Michael; Rueda, Jorge A.; Ruffini, Remo; Xue Shesheng

    2011-10-15

    The recent formulation of the relativistic Thomas-Fermi model within the Feynman-Metropolis-Teller theory for compressed atoms is applied to the study of general relativistic white dwarf equilibrium configurations. The equation of state, which takes into account the {beta}-equilibrium, the nuclear and the Coulomb interactions between the nuclei and the surrounding electrons, is obtained as a function of the compression by considering each atom constrained in a Wigner-Seitz cell. The contribution of quantum statistics, weak, nuclear, and electromagnetic interactions is obtained by the determination of the chemical potential of the Wigner-Seitz cell. The further contribution of the general relativistic equilibrium of white dwarf matter is expressed by the simple formula {radical}(g{sub 00}){mu}{sub ws}=constant, which links the chemical potential of the Wigner-Seitz cell {mu}{sub ws} with the general relativistic gravitational potential g{sub 00} at each point of the configuration. The configuration outside each Wigner-Seitz cell is strictly neutral and therefore no global electric field is necessary to warranty the equilibrium of the white dwarf. These equations modify the ones used by Chandrasekhar by taking into due account the Coulomb interaction between the nuclei and the electrons as well as inverse {beta} decay. They also generalize the work of Salpeter by considering a unified self-consistent approach to the Coulomb interaction in each Wigner-Seitz cell. The consequences on the numerical value of the Chandrasekhar-Landau mass limit as well as on the mass-radius relation of {sup 4}He, {sup 12}C, {sup 16}O and {sup 56}Fe white dwarfs are presented. All these effects should be taken into account in processes requiring a precision knowledge of the white dwarf parameters.

  5. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion. PMID:21929132

  6. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. A relativistic spherical vortex

    PubMed Central

    Pekeris, C. L.

    1976-01-01

    This investigation is concerned with stationary relativistic flows of an inviscid and incompressible fluid. In choosing a density-pressure relation to represent relativistic “incompressibility,” it is found that a fluid in which the velocity of sound equals the velocity of light is to be preferred for reasons of mathematical simplicity. In the case of axially symmetric flows, the velocity field can be derived from a stream function obeying a partial differential equation which is nonlinear. A transformation of variables is found which makes the relativistic differential equation linear. An exact solution is obtained for the case of a vortex confined to a stationary sphere. One can make all three of the components of velocity vanish on the surface of the sphere, as in the nonrelativistic Hicks spherical vortex. In the case of an isolated vortex on whose surface the pressure is made to vanish, it is found that the pressure at the center of the sphere becomes negative, as in the nonrelativistic case. A solution is also obtained for a relativistic vortex advancing in a fluid. The sphere is distorted into an oblate spheroid. The maximum possible velocity of advance of the vortex is (2/3) c. PMID:16578745

  8. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  9. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    PubMed

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  10. Sediment erodability in sediment transport modelling: Can we account for biota effects?

    NASA Astrophysics Data System (ADS)

    Le Hir, P.; Monbet, Y.; Orvain, F.

    2007-05-01

    Sediment erosion results from hydrodynamic forcing, represented by the bottom shear stress (BSS), and from the erodability of the sediment, defined by the critical erosion shear stress and the erosion rate. Abundant literature has dealt with the effects of biological components on sediment erodability and concluded that sediment processes are highly sensitive to the biota. However, very few sediment transport models account for these effects. We provide some background on the computation of BSS, and on the classical erosion laws for fine sand and mud, followed by a brief review of biota effects with the aim of quantifying the latter into generic formulations, where applicable. The effects of macrophytes, microphytobenthos, and macrofauna are considered in succession. Marine vegetation enhances the bottom dissipation of current energy, but also reduces shear stress at the sediment-water interface, which can be significant when the shoot density is high. The microphytobenthos and secreted extracellular polymeric substances (EPS) stabilise the sediment, and an increase of up to a factor of 5 can be assigned to the erosion threshold on muddy beds. However, the consequences with respect to the erosion rate are debatable since, once the protective biofilm is eroded, the underlying sediment probably has the same erosion behaviour as bare sediment. In addition, the development of benthic diatoms tends to be seasonal, so that stabilising effects are likely to be minimal in winter. Macrofaunal effects are characterised by extreme variability. For muddy sediments, destabilisation seems to be the general trend; this can become critical when benthic communities settle on consolidated sediments that would not be eroded if they remained bare. Biodeposition and bioresuspension fluxes are mentioned, for comparison with hydrodynamically induced erosion rates. Unlike the microphytobenthos, epifaunal benthic organisms create local roughness and are likely to change the BSS generated

  11. Different Paths to Some Fundamental Physical Laws: Relativistic Polarization of a Moving Magnetic Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Yarman, T.

    2010-01-01

    In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…

  12. Motion analysis of a motorcycle taking into account the rider's effects

    NASA Astrophysics Data System (ADS)

    Zhu, Shaopeng; Murakami, Shintaroh; Nishimura, Hidekazu

    2012-08-01

    In this paper, to analyse the rider's effects on the motion of a motorcycle, we model a rider-motorcycle system by taking into account the leaning motion of the rider's upper torso and his/her arm connection with the handlebars. The nonlinearity of the tyre force is introduced by utilising hyperbolic tangent functions to approximate a Magic Formula tyre model. On the basis of a derived nonlinear state-space model, we analyse the effects of not only the rider's arms but also his/her postures during steady turning by simulations. The rider's postures including lean-with, lean-in and lean-out are realised by adding the lean torque to the rider's upper torso. The motorcycle motion and the rider's effects are analysed in the case where the friction coefficient of the road surface changes severely during steady turning. In addition, a linearised state-space model is derived during steady turning, and a stability analysis of the rider-motorcycle system is performed.

  13. MHD stability of ITER H-mode confinement with pedestal bootstrap current effects taken into account

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.; Mahajan, S. M.; Hatch, D.; Liu, X.

    2015-11-01

    We have shown that the bootstrap current can have significant effects both on tokamak equilibrium and stability (Nucl. Fusion 53, 063009 (2013)). For ITER H-mode discharges pedestal density is low and consequently bootstrap current is large. We reconstruct numerically ITER equilibria with bootstrap current taken into account. Especially, we have considered a more realistic scenario in which density and temperature profiles can be different. The direct consequence of bootstrap current effects on equilibrium is the modification of local safety factor profile at pedestal. This results in a dramatic change of MHD mode behavior. The stability of ITER numerical equilibria is investigated with AEGIS code. Both low-n and peeling-ballooning modes are investigated. Note that pressure gradient at pedestal is steep. High resolution computation is needed. Since AEGIS code is an adaptive code, it can well handle this problem. Also, the analytical continuation technique based on the Cauchy-Riemann condition of dispersion relation is applied, so that the marginal stability conditions can be determined. Both numerical scheme and results will be presented. The effects of different density and temperature profiles on ITER H-mode discharges will be discussed. This research is supported by U. S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  14. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534

  15. 3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi

    2006-01-01

    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.

  16. Radiation-Dominated Relativistic Current Sheets

    SciTech Connect

    Jaroschek, C. H.; Hoshino, M.

    2009-08-14

    Relativistic current sheets (RCSs) feature plasma instabilities considered as the potential key to magnetic energy dissipation in Poynting-flux-dominated plasma flows. Kinetic plasma simulations show that the physical nature of RCS evolution changes in the presence of radiation losses: In the ultrarelativistic regime (i.e., magnetization parameter sigma=10{sup 4} defined as the ratio of magnetic to plasma rest frame energy density), the combined effect of nonlinear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the relativistic tearing mode. In contrast to previous studies of the RCS with sigmaapprox1, the relativistic tearing mode then prevails over the drift kink mode. The ultrarelativistic RCS shows a typical life cycle from radiation-induced collapse towards a radiation-quiescent phase with topology analogous to that introduced by Sweet and Parker.

  17. New developments in relativistic dissipative fluid dynamics

    NASA Astrophysics Data System (ADS)

    Muronga, Azwinndini

    2010-09-01

    The recent notion of the perfect fluid created at the relativistic heavy ion collider (RHIC) has been embraced by many experimentalists and theorists alike. However, much of the evidence to this notion has been based on the success of describing some experimental observables by non-viscous hydrodynamics or by small shear viscosity to entropy density ratio. Developments on viscous hydrodynamics evolved from (0+1) dimensions (Bjorken scaling solution) over (1+1) dimensions (Bjorken + transverse flow) to (2+1) dimensions (elliptic flow) and currently (3+1) dimensions. There still exist some formal issues concerning the allowed form of the relativistic viscous hydrodynamic equations and what effects the new additional or higher order terms will have on the spacetime evolution and the experimental observables. Starting with a brief introduction of the basics of relativsitic fluid dynamics, I will discuss our current knowledge of relativistic theory of fluid dynamics in the presence of dissipative fluxes.

  18. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  19. Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction

    PubMed Central

    Fast, Shannon M.; González, Marta C.; Markuzon, Natasha

    2015-01-01

    Background Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence. Methodology The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response. Conclusions The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy. PMID:26288274

  20. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    NASA Astrophysics Data System (ADS)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the

  1. Properties of compressible elastica from relativistic analogy.

    PubMed

    Oshri, Oz; Diamant, Haim

    2016-01-21

    Kirchhoff's kinetic analogy relates the deformation of an incompressible elastic rod to the classical dynamics of rigid body rotation. We extend the analogy to compressible filaments and find that the extension is similar to the introduction of relativistic effects into the dynamical system. The extended analogy reveals a surprising symmetry in the deformations of compressible elastica. In addition, we use known results for the buckling of compressible elastica to derive the explicit solution for the motion of a relativistic nonlinear pendulum. We discuss cases where the extended Kirchhoff analogy may be useful for the study of other soft matter systems. PMID:26563905

  2. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284

  3. Structure of hypernuclei in relativistic approaches

    NASA Astrophysics Data System (ADS)

    Hagino, Kouichi; Yao, Jiangming

    We review the relativistic mean-field approaches to hypernuclear physics. This includes Lambda hypernuclei, anti-Lambda hypernuclei, and multistrangeness hypernuclei. We particularly focus on the properties of both ground state and collective excitations, hyperon binding energies, spinorbit splittings, magnetic moments, a stabilization of drip-line nuclei, and the hyperon impurity effect on nuclear collectivity. We also discuss briefly the influence of hyperons on neutron stars. We conclude that the relativistic mean-field approaches have achieved a great success in the studies of hypernuclear physics.

  4. Simultaneous Precipitation of Solar Protons and Relativistic Electrons as a New Factor Affecting the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Shirochkov, A. V.; Sokolov, S. N.

    In the field of solar - terrestrial physics during the last decade there has been renewed interest in the effects produced in the Earth atmosphere and ionosphere by fluxes of precipitated highly relativistic electrons. A series of investigation on the subject (preferably by means of satellite measurements) was performed recently, which discussed different aspects of these phenomena called HRE events. More careful study of the HRE events revealed previously unnoticed geophysical phenomenon: a great majority of the solar proton events (SPE) were accompanied by simultaneous precipitation of relativistic electron fluxes. The studies of previous SPE events attributed their atmospheric and ionospheric effects entirely to the solar proton fluxes. It turned out that such an assumption is wrong. Therefore we have actually a new class of geophysical phenomena when the Earth's atmosphere and ionosphere experience combined impact of simultaneously precipitating fluxes of solar protons and relativistic electrons. If one takes into accounts effect of enhanced density of the solar wind during the SPEs (i.e. its dynamic pressure) the real situation during these combined events became more complicated. In this paper the effects during the storm of May 1992 are analyzed as an example of such unusual combination. The methods of separation of the effects produced by different precipitation particles are presented. Other similar events are considered to demonstrate that such complex events are not unique geophysical phenomena.

  5. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    PubMed

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included. PMID:26986431

  6. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  7. Generalized charge-screening in relativistic Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-10-01

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, ( N s ∝ r T F 3 / r d 3 where rTF and rd are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

  8. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  9. Interstellar cloud shapes - A minimum-hypothesis account involving a purely gravitational effect

    NASA Technical Reports Server (NTRS)

    Fleck, Robert C., Jr.

    1992-01-01

    The effect produced by the anisotropic gravitational field on the shape of a nonspherical, self-gravitating interstellar cloud is examined. The projected axial ratios observed for molecular clouds can be accounted for if clouds are not generally in a state of strict dynamical equilibrium. For clouds having spectral line widths dominated by supersonic turbulent motions, this purely gravitational effect predicts a mean true axial ratio q about 0.3 for both oblate and prolate cloud geometries. Clouds having p less than about 0.3 are likely to be prolate and quite elongated. The observational data on molecular cloud cores, which have essentially thermal line widths, can be fitted equally well to either oblate or prolate spheroids having q between 0.1 and 0.4 with q about 0.2 providing the best match: highly elongated cores are again more likely to be prolate. While other processes certainly operate throughout the Galaxy to influence cloud shape, it appears plausible that at least some clouds may be shaped principally by their anisotropic gravitational field.

  10. Effects of parietal TMS on somatosensory judgments challenge interhemispheric rivalry accounts.

    PubMed

    Eshel, Neir; Ruff, Christian C; Spitzer, Bernhard; Blankenburg, Felix; Driver, Jon

    2010-10-01

    Interplay between the cerebral hemispheres is vital for coordinating perception and behavior. One influential account holds that the hemispheres engage in rivalry, each inhibiting the other. In the somatosensory domain, a seminal paper claimed to demonstrate such interhemispheric rivalry, reporting improved tactile detection sensitivity on the right hand after transcranial magnetic stimulation (TMS) to the right parietal lobe (Seyal, Ro, & Rafal, 1995). Such improvement in tactile detection ipsilateral to TMS could follow from interhemispheric rivalry, if one assumes that TMS disrupted cortical processing under the coil and thereby released the other hemisphere from inhibition. Here we extended the study by Seyal et al. (1995) to determine the effects of right parietal TMS on tactile processing for either hand, rather than only the ipsilateral hand. We performed two experiments applying TMS in the context of median-nerve stimulation; one experiment required somatosensory detection, the second somatosensory intensity discrimination. We found different TMS effects on detection versus discrimination, but neither set of results followed the prediction from hemispheric rivalry that enhanced performance for one hand should invariably be associated with impaired performance for the other hand, and vice-versa. Our results argue against a strict rivalry interpretation, instead suggesting that parietal TMS can provide a pedestal-like increment in somatosensory response. PMID:20678510

  11. Relativistic four- and two-component calculations of parity violation effects in chiral tungsten molecules of the form NWXYZ (X, Y, Z = H, F, Cl, Br, or I).

    PubMed

    Figgen, Detlev; Saue, Trond; Schwerdtfeger, Peter

    2010-06-21

    Parity violation (PV) effects to the electronic ground state structure for a series of chiral tungsten molecules of the type NWXYZ (X, Y, Z = H, F, Cl, Br, or I) are compared using four- (Dirac) and two- (X2C) component relativistic Hartree-Fock and density functional theories. The results show the computationally more affordable two-component X2C approach yields accurate results for all molecules investigated. The PV energy differences between the two enantiomers range from as little as 0.4 Hz for NWClBrI to 140 Hz for NWHClI using a generalized gradient approximation including exact exchange (B3LYP). The W-N stretching mode in these molecules lies in the experimentally favorable CO(2) laser frequency range, and we therefore investigated PV effects in vibrational transitions using a single normal mode analysis. Here the PV frequency shift between the two enantiomers ranges from 1.6 mHz for NWFBrI to 710 mHz for NWHClI. Thus these types of molecules could be useful for the future detection of PV effects in chiral molecules. PMID:20572708

  12. Carbon savings with transatlantic trade in pellets: accounting for market-driven effects

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu

    2015-11-01

    Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.

  13. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2007-12-01

    The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.

  14. Relativistic electrons and whistlers in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The path-integrated gain of parallel propagating whistlers driven unstable by an anisotropic distribution of relativistic electrons in the stable trapping region of Jupiter's inner magnetosphere was computed. The requirement that a gain of 3 e-foldings of power balance the power lost by imperfect reflection along the flux tube sets a stably-trapped flux of electrons which is close to the non-relativistic result. Comparison with measurements shows that observed fluxes are near the stably-trapped limit, which suggests that whistler wave intensities may be high enough to cause significant diffusion of electrons accounting for the observed reduction of phase space densities. A crude estimate of the wave intensity necessary to diffuse electrons on a radial diffusion time scale yields a lower limit for the magnetic field fluctuation intensity.

  15. General Relativistic and Newtonian White Dwarfs

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Rueda, J. A.; Ruffini, R.; Siutsou, I.

    2015-01-01

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of Newton's gravity and general relativity. In both cases Hartle's formalism is applied to construct the internal and external solutions to the field equations. The white dwarf (WD) matter is described by the Chandrasekhar equation of state. The region of stability of RWDs is constructed taking into account the mass-shedding limit, inverse β-decay instability, and the boundary established by the turning points of constant angular momentum J sequences which separates stable from secularly unstable configurations. We found the minimum rotation period ˜ 0.28 s in both cases and maximum rotating masses ˜ 1.534M⊙ and ˜ 1.516M⊙ for the Newtonian and general relativistic WDs, respectively. By using the turning point method we show that general relativistic WDs can indeed be axisymmetrically unstable whereas the Newtonian WDs are stable.

  16. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-06-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  17. Photospheric Emission from Collapsar Jets in 3D Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.

    2015-12-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.

  18. RELATIVISTIC MODEL ON PULSAR RADIO EMISSION AND POLARIZATION

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2012-02-20

    We have developed a relativistic model for pulsar radio emission and polarization by taking into account a detailed geometry of emission region, rotation, and modulation. The sparks activity on the polar cap leads to plasma columns in the emission region and modulated emission. By considering relativistic plasma bunches streaming out along the rotating dipolar field lines as a source of curvature radiation, we have deduced the polarization state of the radiation field in terms of the Stokes parameters. We have simulated a set of typical pulse profiles and analyzed the role of viewing geometry, rotation, and modulation in the pulsar polarization profiles. Our simulations explain most of the diverse behaviors of polarization generally found in pulsar radio profiles. We show that both the 'antisymmetric' and 'symmetric' types of circular polarization are possible within the framework of curvature radiation. We also show that the 'kinky' nature in the polarization position angle traverses might be due to the rotation and modulation effects. The phase lag of the polarization position angle inflection point relative to the phase of core peak depends upon the rotationally induced asymmetry in the curvature of source trajectory and modulation.

  19. Efficiency and Effectiveness in Higher Education: Who Is Accountable for What?

    ERIC Educational Resources Information Center

    Kenny, John

    2008-01-01

    There is little doubt that the modern university is far different to that of the early 90s and the work of academics has changed considerably over this time driven by the efficiency and accountability agenda. In taking stock of the changes, it needs to be recognised that often the cry for efficiency and accountability has been used as a mechanism…

  20. Evaluating the Effects of Child Savings Accounts Program Participation on Parental Well-Being

    ERIC Educational Resources Information Center

    Okech, David

    2012-01-01

    Objectives: Using baseline and second wave data, the study evaluated the impact of child savings accounts participation on parenting stress, personal mastery, and economic strain with N = 381 lower income parents who decided to join and those who did not join in a child development savings account program. Methods: Structural equation modeling for…